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Generalization of Tensor Factorization

and Applications∗

Kohei Hayashi

Abstract

A multi-dimensional array or a tensor is a common representation of relational

data such as the WWW network and protein-protein interactions. Given a data

tensor, tensor factorization finds low-dimensional features of it that are useful for

the data analysis.

As the first contribution of this thesis, we study a tensor factorization model

for a heterogeneously attributed tensor such as that contains mixed discrete and

continuous variables. The model can manage such heterogeneity by employing

individual exponential-family distributions for each attribute of the tensor. The

assumption of heterogeneity makes the Bayesian inference intractable, and we cast

the EM algorithm approximated by the Laplace method and Gaussian process.

We also extend the algorithm for online learning.

Next, we discuss a kernel-based tensor factorization framework for completion

of a partially observed tensor. We use the observed elements as inputs for a kernel

function. An efficient conjugate-gradient-based algorithm is developed, and it

enables us to capture the given tensor on high (possibly infinite) dimensions with

moderate computational cost. We also show that our framework includes the

K-nearest neighbor and the GP-based models as special cases.

We apply both methods to real data tensors and demonstrate their perfor-

mances with comparison to conventional methods.

Keywords:

Relational data, tensor factorization, exponential family, Bayesian inference, Gaus-

sian process, kernel method.
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テンソル分解の一般化とその応用∗

林 浩平

内容梗概

WWWネットワークや蛋白質相互作用といった関係データは多次元配列，あ
るいはテンソルとして表現できる．テンソル分解は与えられたデータテンソルの
低次元特徴量を抽出する手法であり，データ解析によく用いられる．
本論文では，まず第一の貢献として，例えば離散値と連続値をあわせ持つよ

うな，ヘテロな構造を持つテンソルに適したテンソル分解モデルを研究する．テ
ンソルの各要素ごとに異なる指数型分布族を仮定することで，データが持つヘテ
ロ性を適切に扱うことが可能となる．指数型分布族の採用によりベイズ推論が計
算困難となるため，ラプラス近似とガウス過程により近似したEMアルゴリズム
を新に導出する．またより大規模なデータを処理するためオンライン学習アルゴ
リズムへの拡張も行う．
次に，部分的に観測されたテンソルの要素補完のための，カーネル法に基づく

データテンソルのモデルを提案する．観測されたテンソルの要素そのものをカー
ネル関数の入力とし，データの低ランク性を仮定しないモデリングを可能とする．
共役勾配法に基づく効率的なアルゴリズムも同時に導出する．さらに，K-近傍
法，行列あるいはテンソル分解法，あるいはガウス過程に基づく手法が提案手法
の特別な場合として解釈可能であることを示す．
それぞれの手法について複数の実データを応用し，既存のテンソル分解法と

比較して提案手法の性能がどのような場合に優れているかを検証する．

キーワード

関係データ, テンソル分解, 指数型分布族, ベイズ推論, ガウス過程, カーネル法
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Chapter 1

Introduction

Multi-dimensional arrays or tensors are common representations of various data. As
a network can be represented by an adjacency matrix (note that a matrix is a special
case of a tensor), for example, a multi-dimensional network (Tang et al., 2009), having
multiple linkages, can be seen as a link types × nodes × nodes tensor. Another
example is a temporal sequence of measurements from various distributed sensors
such as microphones, thermometers, and video cameras, which are represented by a
tensor with dimensions sensor types × locations × time. Such kind of data are called
relational data (Getoor and Taskar, 2007), which are a collection of relationships
among objects.

1.1. Motivation and Contributions

Since tensor representations of relational data are high-dimensional and large-scale,
feature extraction is necessary in general for data analysis. Tensor factorization is
a method that transforms the original tensor into low-dimensional parameters with
keeping the tensor structure, which has various applications in data mining such as
face recognition, social network analysis, and EEG analysis (Kolda and Bader, 2009;
Mørup, 2011).

Many different ways of decomposing a tensor have been proposed (Kolda and
Bader, 2009; Acar and Yener, 2009). The Tucker decomposition (Tucker, 1966) is one
of the general forms of tensor factorization, which can be seen as a direct extension
of the singular value decomposition (SVD) from matrices to tensors. Recently, non-
negative extensions have been developed especially in neuroscience fields (Shashua
and Hazan, 2005; Cichocki et al., 2007). In the Bayesian community several authors
have studied its probabilistic extensions (Liu et al., 2007; Tao et al., 2008; Mørup and
Hansen, 2009; Chu and Ghahramani, 2009).

Simply speaking, the Tucker decomposition is based on two assumptions: (i)
observation noises are following a Gaussian distribution and (ii) the given tensor is
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low-rank 1. These two assumptions are general and make the algorithm feasible. Of
course, however, the Tucker decomposition is not effective when these assumptions
do not hold. A typical scenario is that the data are heterogeneously attributed, i.e.,
when the statistical properties of the attributes are quite different from each other.
For example, if the elements of the given tensor are mixed continuous and discrete
variables, the Gaussian noise assumption is not valid. In some real data sets the
low-rank assumption are also not satisfied. Apparently we cannot know whether the
given tensor is truly low-rank or not in advance, and the low-rank constraint may
make the performance worse, comparing to the usual data types such as vectors or
matrices.

Improving the computational efficiency is another important issue in tensor fac-
torization. An L-th order data tensor represents the all combinations among the L
different objects as the elements. The combinatorial explosion then easily occurs with
growing L and it rapidly consumes computational resources in both time and space.

In this thesis, we tackle these problems and propose two new tensor factorization
frameworks, which independently relaxes the Tucker decomposition’s assumptions.
Firstly, we introduce the basics about tensors and the Tucker decomposition. Next
we generalize the Tucker decomposition with employing the exponential-family dis-
tributions. A kernel extension of the Tucker decomposition is then discussed that
allows us to model a full-rank tensor. In each model an efficient learning algorithm
is developed and the performance is evaluated by using several real data sets.

Notation

Throughout this thesis, we call an L-dimensional arrays an L-mode or an L-th order
tensor. As special cases, 1- and 2-mode tensors are equivalent to vectors and matrices,
respectively. We use a lowercase bold letter as a vector, an uppercase bold letter as a
matrix and an uppercase bold letter with underline such as A as a tensor. We denote
an l-th mode unfolded tensor A by A(l). Unfolding, or matricizing of a tensor, is
done by reordering the elements of a tensor into a matrix with keeping the structure
with respect to one arbitrary mode of the tensor. We denote a vectorization of A
by vec A or simply ~a. For example, when we have an L-th order tensor A whose
dimensions are D1 × · · · × DL, A(l) is a Dl × D\l matrix with D\l ≡

∏
k 6=l Dk, and ~a

is a D-dimensional vector with D ≡ ∏L
l=1 Dl. I(·) denotes the indicator function.

1. We discuss the notion of the rank of tensors in Section 2.4

2



Chapter 2

Tensor Factorization

In this chapter, we shortly review the basics of a tensor and its factorization methods.
Note that we only discuss the case that the order of a data tensor is three (L = 3).
However, the formulations can easily be generalized to higher order tensors (L > 3).

2.1. Tucker Decomposition

Let X be a D1 × D2 × D3 observation tensor. The Tucker decomposition provides
a way to factorize X into a core tensor Z ∈ RK1×K2×K3 and three factor matrices
Ul ∈ RDl×Kl (l = 1, 2, 3), and represents an (i, j, k)-th element xijk of X as

xijk = yijk + εijk, (2.1)

yijk =
K1∑
q=1

K2∑
r=1

K3∑
s=1

zqrsu1,iqu2,jru3,ks (2.2)

where zqrs is a (q, r, s)-th element of Z, ul,iq is an (i, q)-th element of the factor matrix
Ul, and εijk is an additive observation noise. Figure 2.1 illustrates how the Tucker
decomposition factorizes the data tensor. The matrix Ul captures a structure of cor-
relation on the l-th mode of X. To reduce the redundancy of the model, orthonormal
constraints are commonly imposed to the factor matrices.

For later convenience, we rewrite equation (2.1) by a vector and a matrix form.
Let ~x be a D ≡ D1D2D3-dimensional vector whose elements are given by these of X
with appropriate reordering. Then we can rewrite equation (2.1) as

~x = W~z + ~ε, W ≡ U3 ⊗ U2 ⊗ U1 (2.3)

where ⊗ is the Kronecker product of matrices and W ∈ RD×K is a matrix which
maps a vectorized K ≡ K1K2K3-dimensional core tensor ~z to RD. In this form,
the Tucker decomposition is viewed as a standard linear model in which ~z is a K-
dimensional representation of the observation ~x in the linear space spanned by K
bases wd = u3,i ⊗ u2,j ⊗ u1,k, where wd is the d-th row vector of W, d is an index

3
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Figure 2.1: The Tucker decomposition.

of vectorized data associated with the index (i, j, k) of the tensor representation, and
ul,i is the i-th row vector of Ul. The structure of the data tensor is embedded in W
by the Kronecker products of {Ul}.

The Tucker decomposition estimates the parameters Z and {Ul} by minimiz-
ing the sum of square errors

∑
ijk ε2

ijk. Higher-order singular value decomposition
(HOSVD) (De Lathauwer et al., 2000b) is one of the methods to solve the Tucker
decomposition. HOSVD estimates Ul as the top Kl leading left singular vectors of
X(l) ∈ RDl×D\l . For more detail, see (Kolda and Bader, 2009; Cichocki et al., 2007).

2.2. PARAFAC

PARAFAC, also known as CANDECOMP, is another form of tensor factorization,
introduced by Harshman (1970). PARAFAC can be seen as a restricted model of
the Tucker decomposition, i.e., PARAFAC decomposes X into three factor matrices
A1 ∈ RD1×Q,A2 ∈ RD2×Q, and A3 ∈ RD3×Q:

xijk =
J∑

j=1

a1,iqa2,jqa3,kq + υijk (2.4)

where υijk is a noise (residual). In comparison with the Tucker decomposition, the
dimensions of the bases of PARAFAC are restricted to take the same value and each
basis only interact with the corresponding one. Due to the simplicity, the interpreta-
tion of the estimated factor matrices is much easier than the Tucker decomposition.

2.3. pTucker

A probabilistic extension of the Tucker decomposition has been proposed by Chu and
Ghahramani (2009). The model called pTucker employs the Gaussian likelihood and

4



Generalization of Tensor Factorization and Applications

the Gaussian prior to the parameters:

p(Z) =
∏
qrs

N(zqrs | 0, 1), (2.5)

p(Ul) =
∏
iq

N(ul,iq | 0, 1), (2.6)

p(X | Z,U1,U2,U3) =
∏
ijk

N(xijk | yijk, σ
2) (2.7)

where yijk is defined in Equation (2.2). pTucker estimates the factor matrix based on
the marginal likelihood,

Û1 = argmax
U1

p(U1)
∫

p(X | Z,U1, Û2, Û3)p(Z)dZ. (2.8)

Note that if Û2 and Û3 are known, we obtain Û1 as a closed-form solution.
Due to the Gaussian prior and the marginalization of the core tensor, the solution

of pTucker tends to be low-rank Chu and Ghahramani (2009) (next section introduces
the notion of low-rank of a tensor.) This effect is caused by the model marginalization
in the Bayesian inference (Nakajima et al., 2010, 2011).

2.4. Rank of Tensors

A rank-one tensor A is defined as the outer product of vectors, i.e.,

A = u ◦ v ◦ w ⇐⇒ aijk = uivjwk ∀i, j, k. (2.9)

If X can exactly be represented by sum of K rank-one tensors, we say the rank of X
is K. Although the notion of the tensor rank is simple and intuitive, the computation
of the tensor rank of a given tensor is not straightforward, which is known as an NP
complete problem (Hastad, 1990). Computation of the tensor rank is an important
problem in communication complexity (Pudlák et al., 1997) and its lower- and upper-
bounds are well studied (Alexeev et al., 2011).

Here we introduce the notion of mode-k rank (De Lathauwer and De Moor, 1998;
Tomioka et al., 2011), which is defined as the rank of the mode-k unfolded tensor,
i.e., rank(X(k)) for the given tensor X. Unlike the tensor rank, the mode-k rank is
solved by standard linear algebra techniques such as SVD, which is computable in
polynomial time. Note that the mode-k rank for matrices takes the same value of the
rank of matrices, i.e., rank(X) = rank(X>).

We say X is rank-(K1, K2, K3) tensor if the mode-k rank of X is Kl for l = 1, 2,
and 3. Note that, if X is rank-(K1, K2, K3), X is exactly represented by the Tucker
decomposition (2.1) with the K1 × K2 × K3 core tensor, which is simply obtained
by applying SVD for each unfolded tensor of X in polynomial time. The best rank-
(K̃1, K̃2, K̃3) approximation of K̃l < Kl for l = 1, 2, and 3 does, however, not coincide
to the Tucker decomposition constructed by the best K̃ approximation of SVDs.
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Chapter 3

Factorization of a Heterogeneous
Tensor

3.1. Introduction

The most basic and general problem setting in the network analysis is that of a single
network. But in many cases there possibly exist other different yet related networks.
Intuitively, if there exist correlations among the networks, it is effective to model the
entire structure holding among them rather than to model them independently. When
the data contain missing elements, such an integrative approach will be especially
effective for data completion. This idea, borrowing information from across multiple
data sources, can be seen as a typical data fusion (Hall and Llinas, 1997) or transfer
learning (Pan and Yang, 2010) problem. The tensor factorization methods seem to
be a desirable approach to deal with such multiple information.

However, the approach is unfeasible when the data are heterogeneously attributed,
i.e., when the statistical properties of the attributes are quite different from each other.
As discussed in the previous chapter, the Tucker decomposition estimates the param-
eters by the least squares approach, which is equivalent to the maximum likelihood
estimate under the assumption of the isotropic Gaussian noise. From this statis-
tical viewpoint, the Tucker decomposition is inappropriate to model non-Gaussian
observations such as a heterogeneously attributed array with both real and discrete
variables.

Another problem of tensor factorization is that the learning algorithm is not ap-
propriate for processing data in real-time. Since the learning algorithm of the Tucker
decomposition is mainly focused on the batch procedure, we need to re-compute the
entire structure of the data tensor whenever additional samples are observed; it is
difficult to analyze time-series data such as the multiple sensor measurements in an
online manner.

To overcome these problems, we propose a new tensor factorization method called
“Exponential family Tensor Factorization” (ETF), which generalizes the likelihood of
the Tucker decomposition by using exponential-family distributions. The exponential

6
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family is a class of distributions that is widely applicable for modeling various types
of data. For real-valued observations, we can use the Gaussian distribution. The
exponential distribution is especially useful for non-negative values. Discrete vari-
ables can be represented by distributions such as Poisson and Bernoulli. To deal with
the heterogeneity, we assume an individual exponential-family distribution for each
attribute on the array data. In addition, we introduce latent variables that capture
noise-corrupted heterogeneous array data into a unified low-dimensional parameter
space. Because there is no analytical solution when the exponential family is ap-
plied for Bayesian inference in general, we use the expectation-maximization (EM)
algorithm for parameter estimation, in which the Gaussian process (Rasmussen and
Williams, 2006) is employed for approximation. Our approximation scheme provides
a computationally efficient algorithm for parameter estimation compared to a näıve
sampling method, and also allows us to derive a Bayesian predictive distribution for
missing elements in a consistent manner. We also propose an efficient online learning
procedure of ETF. The online algorithm allows us to deal with a large but slen-
der data tensor such as time-series data, which the batch algorithm cannot handle
due to the computational complexity. In addition, it enables us to process a data
tensor sequentially in real-time without keeping past observations. Finally we show
that estimated parameters can be applied for missing-values prediction and anomaly
detection.

3.2. Exponential Family Tensor Factorization

As mentioned before, the Tucker decomposition estimates the parameters {Ul} and
~z by minimizing the sum of square errors. In a probabilistic perspective, we can
interpret that the Tucker decomposition models the expectation of ~x by W~z and
then estimates the maximum likelihood solution of {Ul} and ~z under the assumption
of a spherical Gaussian noise ~ε. However, this assumption is not appropriate when
the data X is heterogeneously distributed.

To overcome the heterogeneity, we employ the exponential-family distributions
defined by

Expon(x | ω) ≡ exp
[
ω>g(x) − ψ(ω) + F (x)

]
(3.1)

where g(x) = (x, g̃(x)>)> is a sufficient statistic with nonlinear function g̃, ω =
(θ, ω̃>)> is a natural parameter, exp(F (x)) is a base measure, and

ψ(ω) = ln
∫

exp[ω>g(x) + F (x)]dx (3.2)

is the log-partition function. The exponential family (3.1) includes many distributions
such as Gaussian, Poisson, and Binomial. If g(x) = x and ω = θ, i.e., only x is a
sufficient statistics, then the distribution (3.1) is specially called natural exponential
family.

7
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Table 3.1: Summary of popular distributions in the exponential family. Here we
define a sigmoid function f(θ) ≡ 1/(1 + e−θ). Note that a Bernoulli dis-
tribution is a special case of Binomial where n, the number of trials, is
1.

Distribution ω Domain of x ψ(ω) ψ′(ω) = E[x|ω] ψ′′(ω) = var[x|ω]
Gaussian (θ, ω̃)> (−∞,∞) 1

2( θ2

2ω̃ − ln 2ω̃) θ
2ω̃

1
2ω̃

Bernoulli θ {0, 1} ln(1 + eθ) f(θ) f(θ)(1 − f(θ))
Binomial θ {0, 1, . . . , n} n ln(1 + eθ) nf(θ) nf(θ)(1 − f(θ))
Poisson θ {0, 1, . . . } eθ eθ eθ

Exponential θ [0,∞) − ln(−θ) −1
θ

1
θ2

For example, the Gaussian distribution N(x|µ, σ2) with a mean µ and a variance
σ2 is written as

1√
2πσ2

exp
[
− 1

2σ2
(x − µ)2

]

= exp

(
µ/σ2

1/2σ2

)> (
x

−x2

)
− 1

2

(
µ2

2σ2
+ ln(2πσ2)

) .

Then we have g(x) = (x,−x2)>, ω = (µ/σ2, 1/2σ2)>, ψ(ω) = (θ2/2ω̃− ln 2ω̃)/2, and
F (x) = − ln(2π)/2. Note that some distributions (e.g., Poisson and Binomial) only
have the first natural parameter θ. Since ψ is the cumulant generating function of the
distribution (3.1), we see that the derivative ψ′ : ω 7→ ∂ψ/∂θ|ω is a mapping from
the natural parameter ω to the conditional expectation E[x|ω];

ψ′(ω) =
∂

∂θ
ln

∫
exp[ω>g(x) + F (x)]dx

=
∫

x exp[ω>g(x) − ψ(ω) + F (x)]dx = E[x|ω]. (3.3)

Similarly, the variance var[x|ω] is given by using the second derivative ψ′′ : ω 7→
∂2ψ/∂θ2|ω > 0, which implies that the exponential-family distribution (3.1) is log-
concave with respect to θ. Popular distributions in the exponential family are sum-
marized in table 3.1.

Let us consider a probabilistic generative model of a heterogeneous vectorized
data tensor ~x. We assume that d-th observation ~xd follows the distribution Exponh(d)

where h(d) ∈ {Gaussian, Poisson, . . . }. The data tensor may contain missing entries
and we denote an index set of the observed entries of ~x by I. Then we define the
likelihood as

~xI ∼
∏
d∈I

Exponh(d)(~xd | ~θd = w>
d ~z, ω̃h(d)) (3.4)
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Figure 3.1: An example of heterogeneously attributed tensors.

where ~xI is a vector collecting the observed entries. Note that the parameter ω̃h(d)

is shared by observations having same distribution index h(d) While the Tucker de-
composition parametrizes its expectation as E[~x] = W~z, our model considers a rep-

resentation of the natural parameter ω as ~θ = W~z. We treat the vector ~z as a latent
variable associated with ~x and assume a spherical Gaussian prior. We also consider
a standard Gaussian prior for each row of the factor matrices {Ul},

~z ∼ N(~z | 0, I), Ul ∼
Dl∏
i=1

N(u
(l)
i | 0, γ−1

l I). (3.5)

We call the above model ETF. The joint log-likelihood L is then written as

L =
∑
d∈I

{
~xd

~θd − ψh(d)(~θd)
}
− ||~z||2

2
−

L∑
l=1

γl

2
||Ul||2 + const. (3.6)

The heterogeneity of ETF is controlled by the distribution index h(d). Unlike
existing models of factorization such as PCA, ETF can independently choose the
distributions from the exponential family (3.1) for each attribute. This allows us
more flexible modeling of data. For example, let us consider two D2 × D3 matrices
X1 and X2 (see Figure 3.1). We assume that the statistical natures of these matrices
are quite different, e.g., the domain of X1 is positive integer and that of X2 is binary.
A näıve approach would be to model X1 and X2 independently. In our framework,
we combine X1 and X2 as a 2 × D2 × D3 tensor X and set Exponh to the Poisson
distribution for x1jk and to Bernoulli for x2jk (j = 1, . . . , D2, k = 1, . . . , D3). When
ETF is applied to X, U1 would extract the correlation information between X1 and
X2 in the low-dimensional natural parameter space. In this sense, our approach has
richer representation ability than the independent modeling of X1 and X2.

The likelihood function (3.4) has a strong connection to generalized linear models
with canonical links (McCullagh and Nelder, 1989). For example, if we choose a
Bernoulli distribution as Expon(x|ω) for binary data x ∈ {0, 1}, ψ′ becomes a sigmoid
function. In this case, ETF is equivalent to a logistic regression, where ~z, ~x, and W

9
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correspond the input, output, and regression coefficients, respectively. Note that
when we set all Expond for d = 1, . . . , D as the isotropic Gaussian, the log-likelihood
is equivalent to the loss function of the conventional Tucker decomposition.

3.3. Bayesian Inference

Given the observation ~x, we estimate the model parameters ~z, {Ul}, and ω̃. We
estimate {Ul} the marginal-MAP, which is the maximum of the marginal posterior

p({Ul} | ~xI) ∝
∫

p(~xI , {Ul} | ~z)p(~z)d~z. (3.7)

Since the integral operation is intractable, we employ the EM algorithm; however,
there are two difficulties for applying the EM algorithm to our model:

• E-step: The normalization term
∫

p(~xI |~z)p(~z)d~z of the posterior is generally
intractable because of the non-conjugacy of the prior and the likelihood, except
in the case that the given likelihood is fully Gaussian.

• M-step: When we maximize the expected log-likelihood E~z[L|~xI ] with respect
to the parameters {U1, . . . ,UL}, the main difficulty for evaluating the expected
log-likelihood resides in obtaining the expectation of ψ. Because the function
ψ is nonlinear, its expectation by the posterior is generally intractable.

To tackle these problems, we propose a new framework for approximation of the EM
algorithm with combining the two techniques: Laplace approximation and Gaussian
process (GP). Laplace approximation gives a posterior by a Gaussian distribution. GP
approximates ψ and ψ′ by exponential-quadratic forms in which the expectation by
the Gaussian distribution is analytically solvable. By combining the two, we compute
the expected log-likelihood and it allows us to employ a gradient-based optimization
in M-step. Furthermore, we can also derive the mean of the Bayesian predictive
distribution in a consistent manner.

As an alternative, MAP estimators for {~z,U1, . . . ,UL} are also plausible. Since
the MAP estimation only needs to maximize the joint log-likelihood (3.6), it does not
require to take the expectation. However, the MAP estimator is unstable for noisy
observations; we empirically show this fact in the experimental results at Section 3.7.1.
Note that, in our case, the MAP estimation is equivalent to the zeroth order delta
approximation (Blei and McAuliffe, 2007) of the marginal-MAP estimator.

3.3.1 Posterior Inference by Laplace’s Method

In E-step, we approximate the posterior p(~z|~x) by Gaussian q(~z) ≡ N(~z|~z0,Σ0) with
Laplace approximation where ~z0 is maximum a posteriori (MAP), i.e., the mode of
the posterior distribution of ~z, and Σ0 is the negative inverse of the Hessian of L
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at ~z0. We can use gradient-based method to find ~z0 with the following gradient and
Hessian,

∂L
∂~z

= W>(~x − ~ψ
′
) − ~z,

∂2L
∂~z(∂~z)>

= −W>Ψ′′W − I, (3.8)

where we define ~ψ
′
≡ (ψ′

h(1)(
~θ1), . . . , ψ

′
h(D)(

~θD)) and Ψ′′ ≡ diag(~ψ
′′
).1 Note that the

maximization of L with respect to ~z is a concave problem, since the negative Hessian
is positive definite. Thus, given W, we can find the global maximum of ~z.

3.3.2 Approximation of Expectation with GP

In M-step, we consider the marginal-MAP estimation of Ul. The expected log-
likelihood is approximated with the Laplace approximation as

L̄ ≡
∫
L(~z, {Ul})N(~z|~z0,Σ0)d~z

=
∑
d∈I

{~xdEq[~θd] − Eq[ψh(d)(~θd)]} −
L∑

l=1

γl

2
||Ul||2 + const. (3.9)

Here we introduce the unfolded core tensor Z(l) ∈ RKl×K\l and natural parameter

Θ(l) = UlZ
(l)B>

l ∈ RDl×D\l , (3.10)

Bl = UL ⊗ · · · ⊗ Ul+1 ⊗ Ul−1 ⊗ · · · ⊗ U1 (3.11)

By denoting by U−
l the pseudo inverse of Ul, we obtain the gradient of the expected

log-likelihood (3.9) as

∂L̄
∂Ul

= Eq[(X
(l) − Ψ′(l))Bl(Z

(l))>] − γlUl

= X(l)A>
l − Eq[Ψ

′(l){Θ(l)}>]U−
l − γlUl. (3.12)

where Ψ′(l) is the unfolded tensor of ~ψ
′
and Al ≡ Eq[Z

(l)]B>
l . Here we assume that

differential and integral operators are commutative.
To solve the intractable expectations Eq[ψh(d)(~θd)] in the expected log-likelihood (3.9)2

and Eq[Ψ
′(l){Θ(l)}>] in the gradient (3.12), we approximate ψh by a GP’s predictive

mean function mh. We separately summarize the approximation framework in Ap-
pendix, which is mainly based on the following theorem.

Theorem 1 Let m(p) be the p-th derivative of the predictive mean function of a GP
whose covariance function is a Gaussian kernel. For arbitrary positive integers p, q ≥
0, Ep(x∗)[x∗

qm(p)(x∗)] where p(x∗) is the Gaussian distribution with a mean µ∗ and a
variance σ2

∗ is explicitly written as a function of p, q, µ∗ and σ2
∗.

1. Here we omit θ from the functions ψ,ψ′, . . . for the sake of clarity.
2. The expected log-likelihood (3.9) is required to check the convergence of the EM algorithm.
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A proof of theorem 1 is given in Section A.4. We observe that the expectations

Eq[ψh(d)(~θd)] and Eq[Ψ
′(l){Θ(l)}>] are the cases of q = 0, p = 0 and q = 1, p = 1 in

theorem 1, and the solutions are given in equation (A.32) and (A.34), respectively.3

Note that the expectations in equation (3.9) and (3.12) can independently be

taken for each element of ~θ, since we assume that each element of ~x is independently
distributed in (3.4). For example, by a change of variable, we observe that the
expectation is rewritten as

∫
ψ(~θd)q(~z)d~z =

∫
ψ(~θd)q(~θd)d~θd (3.13)

where q(~θ) is a Gaussian distribution

q(~θ) = N(WEq[~z],Wcovq[~z]W
>). (3.14)

The result allows us to share the training inputs for each ψh, h = 1, . . . , H; it reduces
the total number of samples used in GP.

For updates of {Ul|l = 1, . . . , L}, we use an alternating optimization, or a block
coordinate descent approach (Bertsekas and Bertsekas, 1999), i.e., maximizing L̄ with
respect to Ul with fixed {Un|n 6= l} iteratively by changing the index l. We use a
quasi-Newton method to find the local optima with respect to {Ul}.

3.3.3 Details of Implementation and Computational Complexity

We estimate ω̃, which corresponds to a precision parameter of a Gaussian distribution
(see Table 3.1), by using a maximum likelihood solution of a variance of Gaussian
attributed elements. We initialize {Ul} by using HOSVD before starting the EM
algorithm. We show a pseudo code of our inference algorithm for an L-th order data
tensor X in Figure 1. Note that the subroutine PREPARE GP in Figure 1 is a prepos-
sessing procedure for the GP approximation, that includes a sampling procedure of
the GP’s inputs. For more details, see Section A.6.

The dominating complexity in E-step is the computation of the covariance (inverse
of the Hessian) in Laplace approximation, which needs O(K3) where K = dim(~z).
In the GP approximation of M-step, the inverse of kernel matrix C defined in (A.6)
needs O(N3), where N is the number of samples used as the GP’s training inputs. N
determines the accuracy of the approximation. We need this expensive computation
for each EM iteration. Before the update of Ul, we need to compute the pseudo inverse
U−

l , which is typically O(DlK
2
l ). The computation of the gradient with respect to

Ul needs O(DK\l).

3. Here we consider that W is not a random variable. Since we approximate the posterior of ~z as
Gaussian in the previous section, the posterior of ~θ = W~z is also a Gaussian. This allows us to
compute the above expectations as expectations with respect to not ~z but ~θ.

12



Generalization of Tensor Factorization and Applications

Algorithm 1 Batch algorithm for Bayesian inference of ETF, where X is an input
data tensor, {γl} are the hyper-parameters of the prior distributions, α is a hyper-
parameter of a kernel function of GP (see equation (A.1)), and N is the number of
sample used for the GP approximation. PREPARE GP is described in appendix A.6.

Input: X, {γl}, α, N
Estimate ω̃
Initialize U1, . . . ,UL by HOSVD

repeat
W = UL ⊗ · · · ⊗ U2 ⊗ U1

// E-step
~z0 = argmaxL(~z)
Ψ′′

0 = diag(ψ′′(w>
1 ~z0), . . . , ψ

′′(w>
D~z0))

Σ0 = (W>Ψ′′
0W + I)−1

// M-step
PREPARE GP(Θ, N)
for l = 1, . . . , L do

Ul = argmaxUl
L̄(U1, . . . ,UL)

end for
until Convergence
Return ~z,U1, . . . ,UL

3.4. Online learning Algorithm

In this section, we extend the batch algorithm to an online procedure which divides
a data tensor into multiple slices and sequentially estimates the parameters. This
extension allows real-time data processing and reduces computational cost at the
expense of the accuracy of the parameter estimation.

3.4.1 Sequential update of Ul

We assume that the l-th mode’s dimension of the data tensor is considerably large,
and cannot cast the batch algorithm. For such a tensor, we first slice the data tensor
X along l-th mode and divide X into D1 × . . . Dl−1 × D̃l ×Dl+1 × · · · ×DL tensor X̃
and D1 × . . . Dl−1 × (Dl − D̃l) × Dl+1 × · · · × DL tensor X̂. We choose D̃l(< Dl) as
sufficiently small so that the batch algorithm can handle X̃.

After the estimation of the parameters Z, {Un|n 6= l}, and {ul,i|i = 1, . . . , D̃l}
with the divided tensor X̃ by the batch algorithm, we estimate the remaining Ul with
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Algorithm 2 Online algorithm of Bayesian inference of ETF.

Input: X̃, X̂, {γl}, α, l, N
Estimate ω̃
initialize {~z0,U1, . . . ,UL} by the batch algorithm of ETF
W = UL ⊗ · · · ⊗ U2 ⊗ U1

Ψ′′
0 = diag(ψ′′(w>

1 ~z0), . . . , ψ
′′(w>

D~z0))
Λ0 = W>Ψ′′

0W + I
B = UL ⊗ · · · ⊗ Ul+1 ⊗ Ul−1 ⊗ · · · ⊗ U2 ⊗ U1

for i = 1, . . . , Dl do
Σi = (Λi−1)

−1

PREPARE GP(Θ, N)

ul,i = argmaxu
¯̀(l)
i

// Update posterior covariance
Wi = (ul,i)

> ⊗ B

Ψ′′
i = diag(ψ′′(θ

(l)
id )), θ

(l)
i = Wivec Z

(l)
0

Λi = Λi−1 + W>
i Ψ′′

i Wi

end for
Return ~z,U1, . . . ,UL

X̂. The marginal likelihood L̄ can be decomposed as

L̄ =
Dl∑
i=1

¯̀
l,i(ul,i) + const., (3.15)

¯̀
l,i(u) =

∑
d∈Il

{x(l)
id Eq[θ

(l)
id ] − Eq[ψ

(l)
id ]} − 1

2
||u||2 . (3.16)

Since the i-th row vector ul,i of Ul, depends only on the observation x
(l)
i , we can

sequentially estimate ul,i for i = 1, . . . , Dl. We simultaneously update the posterior
covariance Σ as well as ul,i, since the Hessian of the posterior distribution varies with
ul,i even if ~z is fixed (see equation (3.8)). The maximization of ¯̀

l,i and the update
of Σ correspond to the M- and the E-steps of the batch algorithm, respectively. We
summarize this algorithm in Figure 2.

An important advantage of the online algorithm is that the computational cost
is much lower than the batch algorithm. Since it does not need alternating updates
anymore, the convergence speed is considerably fast. Another advantage is the online
possessing for time-series data. The algorithm enables us to estimate ul,i in real-

time when x
(l)
i is observed every i-th time. However, since we do not use the entire

information of the observation in the online algorithm, prediction performance for
missing values would be worse especially when the feature space of new observation
x

(l)
i is substantially different from that of X̃. We investigate the performance of the

online algorithm in a case at Section 3.7.1.
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3.4.2 Computational complexity

Although it is difficult to compare the computational complexity, the online algorithm
are significantly faster than the batch algorithm. Since the online algorithm has
only one variable Ul to maximize, we no longer need to take a coordinate descent
approach used in the batch algorithm; it dramatically reduces the computational cost
for convergence. We will empirically show how the computational cost is improved in
Section 3.7.2.

Note that, in the case of K > D\l, we efficiently update the posterior covariance
Σi by using the matrix inversion lemma as

Σi = (Σ−1
i−1 + W>

i Ψ′′
i Wi)

−1

= Σi−1 − Σi−1W
>
i (Ψ′′

i + WiΣi−1W
>
i )−1WiΣi−1.

It reduces the computational complexity from O(K3) to O(D\l
3).

3.5. Applications

After the convergence of the algorithm, we have estimated parameters ~z and {Ul}
under the observed entries ~xI . We use these parameters for mainly two purposes:
missing-values prediction and anomaly detection. Given natural parameter ~θ, we
predict a missing element ~xd, d /∈ I by the mean of the Bayesian predictive distribution
E[~xd | ~xI ]. The factor matrix Ul is used to find anomalies which lies on the l-th mode
of the data.

3.5.1 Missing-values prediction

The marginalization of ~z by the posterior is intractable, which is required in the com-
putation of Bayesian predictive distribution. Instead, we approximate the nonlinear
function ψ′(θ) by a first-order derivative of the GP’s predictive mean m′, and we
obtain the approximated predictive mean given by

E[~xd | ~xI ] =
∫

~xd

∫
p(~xd | ~z,wd)p(~z | ~xI)d~zd~xd

=
∫

ψ′
h(d)(

~θd)p(~z | ~xI)d~z ' Eq[m
′
h(d)(

~θd)]. (3.17)

For the transformation of second line, we use the relation described in equation (3.3).

Theorem 1 gives the analytical form of the expectation Eq[m
′
h(d)(

~θd)] in equation (A.33),
which is the case of p = 1 and q = 0. We can also obtain the variance (p = 2) or any
other higher-order moments (p ≥ 3) of the predictive distribution of ETF by using
theorem 1.

3.5.2 Anomaly detection

As described in Section 2.1, the factor matrix Ul is a low-dimensional feature of the
l-th mode of the observation tensor. If we estimate parameters from the data tensor
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Figure 3.2: Anomaly detection as distance-based outlier detection on the estimated
parameter space.

which contains anomalous values, then the corresponding parts of the factor matrices
could be captured as outliers compared to other regular parts. By using the factor
matrix as inputs of outlier detection, we can find intrinsic anomalies without the
influence by the observation noise.

There are several methods for discovering outliers. Here we employ distance-based
outlier proposed by Knorr et al. (2000).

Definition 2 an object O in a data set T is a DB(p, r) outlier if at least fraction p
of the objects in T lies greater than distance r from O.

Figure 3.2 illustrates the idea of distance-based outlier. If we set p = 0.995 and we
have Dl = 1000, i.e. the number of point in Figure 3.2 is 1000, the point O is detected
as an outlier when the hypersphere centered in O with radius r contains at most 5
other points. Note that in the Tucker decomposition, the scale among {Ul} and Z
is ill-posed, i.e., αUl and 1

α
Z produces same Θ. Thus we need to normalize Ul in

column-wise before applying the distanced-based outlier. For example, if we employ
Euclidean distance, it becomes cosine similarity due to the normalization.

Note that we are only interested in the anomalies, of e.g., extra-ordinal nodes in a
multiple network. In other words, we don’t have interests for anomalies of individual
elements of data tensor but for distinctive dimensions of the mode.

3.6. Related Works

Recently, the tensor factorization methods are widely applied to data mining prob-
lems (Mørup, 2011). PARAFAC (Harshman, 1970) is a tensor factorization method
that can be seen as a special case of the Tucker method whose core tensor shares
the number of dimensions (K1 = K2 = · · · = KL) and is restricted to diagonal.
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PARAFAC is therefore more suitable for feature extraction and is applied to chemoin-
fomatics (Kolda and Bader, 2009). There are several algorithms for solving the Tucker
decomposition such as HOSVD, higher-order orthogonal iteration (HOOI) (De Lath-
auwer et al., 2000a) which is an iterative extension of HOSVD, and alternating gradi-
ent methods. Since the objective function of the Tucker decomposition is non-convex,
the solution obtained by these algorithms is not guaranteed to converge to a global
optimum. Recently, several works that formulate the Tucker decomposition as a con-
vex optimization problem are proposed (Liu et al., 2009; Tomioka et al., 2011); They
handles a fully parametrized tensor whose dimensions are same as a data tensor with
per-mode trace-norm regularization for the unfolding of the parameter tensors. Sun
et al. (2006) propose an efficient online learning algorithm which solves a special case
of the Tucker decomposition called Tucker 2.

Bayesian extensions of tensor factorization methods are also well studied. Chu
and Ghahramani (2009) proposed a probabilistic extension of the Tucker method,
known as pTucker. The model of pTucker can be seen as a special case of ETF whose
attributes are specified solely by Gaussian distribution. Instead of a MAP estimate,
pTucker marginalizes the core Z out and estimates a expectation of the marginal
posterior of {Ul}. The solution of pTucker will be robust than the non-Bayesian
tucker decomposition. In ETF, the marginalization of Z is basically intractable due
to the assumption of the heterogeneity. Even though the attributes are all Gaussian,
we need to evaluate the determinant of the Hessian and take its gradient for every
iteration, that is computationally demanding for the online optimization approach.
(Mørup and Hansen, 2009) proposed a model that can be seen as a sparse extension
of pTucker. Instead of marginalizing out the core tensor, the automatic relevance
determination (ARD) priors are introduced to the core and the factor matrices. The
ARD prior forces as the parameters to be sparse, and it is helpful for interpretation of
data structure. Shashua and Hazan (2005) studied the non-negative PARAFAC with
the latent variable. The parameter was inferred by the EM algorithm. A Bayesian
extension of PARAFAC for time-series data is also studied (Xiong et al., 2010) .

In several matrix factorization studies, the non-Gaussian observation has been
dealt with. Collins et al. (2002) proposed exponential family PCA (EPCA), which
generalizes the likelihood of probabilistic PCA to the exponential family with no prior
for the latent variable. A fully Bayesian extension of EPCA with Markov chain Monte
Carlo was also proposed (Mohamed et al., 2009). Wedel and Kamakura (2001) pro-
posed a similar model that also generalized the prior distribution of latent variable
to the exponential family. Unlike EPCA, the study focused on the handling of the
heterogeneous attributes. Similar approach are proposed in (Mavzgut et al., 2010) in
the context of multilinear PCA. Collective matrix factorization (Singh and Gordon,
2008) aims to improve the accuracy of the prediction by borrowing information across
the multiple matrices (not tensor) with different sizes. The loss function is equiva-
lent to the log-likelihood of the exponential-family distributions. Several studies on
tensor factorization have approached the data fusion problem, using the Tucker de-
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composition (Liu et al., 2010) or PARAFAC (Dunlavy et al., 2006) for homogeneous
data.

There are some works tackling large-scale optimization problem of tensor model-
ings. For large-scale data tensors, Leskovec and Faloutsos (2007) proposed a fast and
memory efficient algorithm of PARAFAC for a sparse tensor. This work empirically
shows that a small number of elements are enough for reconstruction of the data
tensor. It can compute a 1000 × 1000 × 1000 data tensor in ∼ 10, 000 seconds with
eliminating 99.5% of elements as missing. Pairwise interaction tensor factorization
(PITF) (Rendle and Thieme, 2010) is another tensor factorization method for tag rec-
ommendation problem implemented by the stochastic gradient. Like PARAFAC, the
core tensor of PITF is restricted to diagonal that improves the computational time.
Stochastic gradient descent (Bottou and LeCun, 2004; Koren et al., 2009) would be
also helpful to optimize large-scale tensor factorization.

3.7. Experiments

In this section, first we investigate the validity of the proposed approximation scheme
and the learning algorithm by using synthetic data. Then we evaluate the applicability
of our methods for missing-values prediction and anomaly detection in multiple sensor
measurements.

As the accuracy measure for missing-values prediction, we used the root mean
square error (RMSE), the mean absolute error (MAE), and the area under the
ROC curve (AUC) for Gaussian-, Poisson-, Bernoulli-attributes, respectively. Lower
RMSE/MAE and higher AUC imply better results. We also used the AUC for the
evaluation of anomaly detection.

For comparison, we prepared PARAFAC, the Tucker decomposition, and ETF
whose attributes were assumed all Gaussian, which corresponds to pTucker (Chu
and Ghahramani, 2009) with the EM algorithm. We used the N-way Toolbox for
Matlab (Andersson and Bro, 2000) for implementation of PARAFAC and the Tucker
decomposition with orthogonal constraints to factor matrices. All experiments were
done with Xeon 2.93 GHz 8 core machines.

3.7.1 Synthetic Data

To confirm validity of our learning algorithm, we generated synthetic data sets by
following the generative model of ETF. Firstly we compare approximation schemes
in estimation accuracy and computational time. Secondly we show that how the size
of X̃ affects the accuracy of parameter estimation in the online algorithm.

Comparison of approximations

We considered 9× 9× 9 observation tensor X. The true values of parameters Z, U1,
U2, and U3 were randomly drawn from their prior distribution with γl = 3. The
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Figure 3.3: The results of the parameter estimation for the synthetic data set by using
ETF with the zeroth-order delta method (Delta), MC, and GP approxi-
mation. Each error bar shows the mean and standard deviation of RMSEs
over 50 trials. The bar chart indicates the mean of the computational cost
(CPU time (sec)).

ranks of the core tensor (K1, K2, K3) were set to (3, 3, 3). We assumed that data
elements {xijk | j, k = 1, . . . , 9} were distributed by Gaussian for i = 1, 2, 3, Poisson
for i = 4, 5, 6, and Bernoulli for i = 7, 8, 9, respectively. Then we randomly divided
X into a training set (50%) and a testing set (50%) for the missing-values prediction
task. We generated 20 missing patterns with different random seeds and examined
errors of the estimation over the 20 trials. We compared the proposed approximation
by the GP with the zeroth delta method (Delta) discussed in Section 3.3 and a
simple Monte Carlo (MC) approach for the approximation of the expectation. Simple
Monte Carlo approximates an expectation of an arbitrary function f as E[f(θ)] ≈
1
N

∑N
n=1 f(θn) where the samples {θn} are drawn from the Gaussian-approximated

posterior distribution q(~θ) (3.14). We set the sample size N to 100, 1000, 10000 for
MC and 100, 1000 for our method, respectively. Note that the approximation errors
of both MC and GP converge to 0 when N → ∞. The dimensions of the core tensor
{Kl} and the hyper-parameter {γl} were set to the true value.

The RMSEs between the estimated and true natural parameters are shown in
Figure 3.3. The result shows that the delta method saved the computational time,
while the estimation error was the worst. Additionally, we observed that the GP
approximation method with N = 100 samples was more accurate than MC with
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Figure 3.4: The results of the parameter estimation for the synthetic data set by
using the online algorithm of ETF.
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Figure 3.5: The result of a counter example.

10000 samples, and also the computational time (indicated by the bar chart) of GP
was roughly 8 times faster than MC with 10000 samples.

Batch vs. online

We compared the batch algorithm (Algorithm 1) and the online algorithm (Algo-
rithm 2) with the setting of the previous experiment except that the dimensions of
the data tensor were given 9× 9× 100. We used the GP approximation method with
N = 200.

Figure 3.4 shows the RMSEs between the estimated and true natural parameters
~θ. The horizontal axis indicates the value of D̃3, the X̃’s dimension of the third mode,
i.e., the values at D̃3 = 100 shows the result of the batch algorithm. The result shows
the online algorithm worked better when D̃3 was sufficiently large.
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Figure 3.6: Comparison of computational times of the batch and the online part.

We also performed an experiment in an undesirable situation for the online al-
gorithm. With the same parameter settings, we generated two 9 × 9 × 50 tensors
X1 and X2 with different random seeds, and we combined the two tensors into a
9 × 9 × 100 tensor X. The result shown in Figure 3.5 indicates the errors were no
longer monotonically decreasing as Figure 3.4, since the basis was not consistent in
the entire data tensor.

We also compared the computational time which is shown in Figure 3.6. Each bar
shows the total computational time; the red parts indicate the computational time
for initial prepossessing with ETF batch and the blue parts indicate the remaining
online procedure. The figure shows the computational time of the online procedure
was mostly ignorable compared to the batch one.

3.7.2 Office-logging data

In this experiment, we used six temporal sequences of different types of sensor mea-
surements. The sensors had measured various behaviors of researchers, such as Email
sending/receiving, frequency of typing keyboard, and geometrical location, recorded
in C&C Innovation Research Laboratories (CCIL), NEC Corporation. This data set
has heterogeneity and is tensor structured. Each sequence contains the measurement
for 20 members, recorded in daily working hours (9 a.m. – 5 p.m.) We aggregated the
sequence of the measurements per hour and we got matrices X1, . . . ,X6 for each mea-
surement; the (i, j)-th element of X1 contains the number of Emails that researcher
i sent during a j-th time period. We summarize the data matrices in Table 3.2. We
assumed that the data sets {Xi} were distributed by Poisson for i = 1, 2, 3, 6, and
Gaussian for i = 4, 5, respectively.
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Table 3.2: Description of each measurement of the office-logging data. Min and Max
are minimum and maximum values of sensor measurements, respectively.
The unit of X4, X5, and X6 is a centimeter.

Name Measurement Type Min Max
X1 email send # of sent emails Count 0.00 14.00
X2 email recv # of received emails Count 0.00 15.00
X3 type freq # of typed keys on a PC Count 0.00 50422.00
X4 smloc X X coordinate Real −550.17 3444.15
X5 smloc Y Y coordinate Real 128.71 2353.55
X6 mtv Movement distance Non-negative 0.00 203136.96

Missing-values prediction

First we evaluated the performance of missing-value prediction. The aim here is to
investigate the validity of our model assumption of the heterogeneity for the sensor
measurements. Since the batch algorithm of ETF cannot handle the large data set
due to the memory overflow, we used a one-month office-logging datarecorded from
September 30 to December 28, 2009 (that is a 20 × 235 × 6 tensor.) We used the
GP approximation for ETF with N = 200 and γ1 = γ2 = γ3 = 1. The rank, i.e., the
dimensions of the core tensor, was prepared from {2× 2× 2, . . . , 6× 6× 6, 6× 7× 7}.
We randomly picked up 50% from observed elements of X as a training and another
50% of that as a testing set. We generated 10 missing patterns with different random
seeds and examined errors of the estimation over the 10 trials.

Test errors of missing-values prediction are shown in Figure 3.7. Overall, ETF and
pTucker, the Bayesian methods, outperformed PARAFAC and Tucker for all sensor
measurements. ETF outperformed or was comparable to pTucker in which the ranks
were greater than 4× 4× 4. We also performed a same experiment of missing-values
prediction with different time periods (from June 30 to July 30, 2010), which yielded
a similar consequence, shown in Figure 3.8, to the first data set.

Anomaly detection

Next we investigated an efficiency of anomaly detection. The aim here is to find
unexpected events, which are distinguishable from routine works in CCIL, with the
researchers’ behavior measured by the sensors. The anomaly events were rare to
happen, and we used long-term data set recorded from September 30, 2009 to July
31, 2010 (20× 1927× 6 tensor) to collect adequate amount of anomalies. NEC CCIL
provided 34 irregular events in that period, which is listed in Table 3.3; we defined
these 34 out of the total 1927 periods as anomalies in this experiment.
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Figure 3.7: The results of the missing-values prediction for the office logging data
(from September 30 to December 28, 2009).
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Figure 3.8: Another results of the missing-values prediction (from June 30 to July
30, 2010).

24



Generalization of Tensor Factorization and Applications

Table 3.3: List of irregular events of CCIL from September 30, 2009 to July 31, 2010.

Date Time Description

Dec 21 All day Private incident
Dec 22 15:00 Monthly seminar

16:00
Jun 15 13:00 Visiting tour

14:00
Feb 23 15:00 Monthly seminar

16:00
Feb 26 14:00 Monthly meeting

15:00
Mar 12 15:00 Monthly seminar

16:00
Apr 2 10:00 Monthly meeting
Apr 16 16:00 Workshop
Apr 28 14:00 Monthly seminar
May 13 10:00 Visiting tour
May 28 10:00 Monthly meeting
May 31 10:00 Visiting tour
Jun 3 13:00 Mid-term meeting

14:00
Jun 11 14:00 Visiting tour

15:00
Jun 18 15:00 Visiting tour
Jun 25 10:00 Monthly meeting
Jul 09 16:00 Visiting tour
Jul 12 9:00 Stocktaking
Jul 22 10:00 Monthly meeting
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Figure 3.9: The results of the anomaly detection for the long-term office logging data.

First we evaluated area under the ROC curve (AUC) score. By using DB(p, r)
outlier detection scheme, we computed a maximum r under setting p = 0.995 for each
row of a factor matrix. We used r as a degree of outlier; if the value r of u3,i (i-th
row of U3) was large then an irregular event would happen in i-th time period. We
evaluated the performance of the anomaly detection by AUC score with respect to
the r values for each event. AUC ideally takes its value in 0.5 to 1 and a higher AUC
score means a better result.

The AUC score of each method is shown in Figure 3.9. We find that the accuracy
of the anomaly detection by ETF was distinctively higher than the other methods in
every rank. Figure 3.10 shows ROC curves with various settings of DB outlier’s p val-
ues. For each method, we chose a rank which archives the best performance in AUC;
(4, 4, 4) for PARAFAC, (5, 5, 5) for Tucker, (6, 7, 7) for pTucker, and (6, 6, 6) for ETF.
The figure clearly shows ETF was totally accurate to detect anomalous events com-
pared to PARAFAC, Tucker, or pTucker. This was because ETF naturally extracted
the regular parts of the data under the appropriate assumption of exponential-family
distributions; The other methods would fail to capture intrinsic features due to the
assumption of Gaussian noise. The result also shows the choice of p was not sensitive
for p ≥ 0.95. We summarize computational times for each method in Figure 3.11.
Although the run time of pTucker was exponentially growing, our online algorithm
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scaled well for larger rank. Actually, the computational time of the online algorithm
was less than one minute per period; it was applicable for real-time computing.

3.8. Summary

In this chapter, we have proposed a procedure of exponential family tensor factor-
ization for integrating heterogeneously attributed array data. We have employed the
EM algorithm for Bayesian inference of the parameters with the GP approximation
scheme. The online version of the proposed algorithm has allowed us to deal with
real-time tracking of a large but slender data tensor. The experimental results have
showed that the method has appropriately captured the heterogeneous data tensor
and has been applicable to multiple sensor measurements for missing-values prediction
and anomaly detection.
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Chapter 4

Tensor Completion without
Low-rank Assumption

4.1. Introduction

Data completion of a partially observed tensor has recently emerged with lots of appli-
cations. A particular example is recommender systems. In these situations, we have
an R×C matrix X1 that represents relationships of user × item in which the (i, k)-
th element xik contains i-user’s preference such as a rating of k-th item. Normally
we observe only N ¿ RC elements of X. By predicting unobserved elements from
the observations, we can effectively recommend new items for users. In some cases,
side information such as users’ age and items’ price are simultaneously provided, that
will improve prediction performance. If we observe time-dependent information, the
problem takes a form of an array or tensor completion of a user × item × time data
tensor.

Matrix factorization methods are generally used for matrix completion and pop-
ular techniques for recommender systems (Koren et al., 2009). Matrix factorization
assumes the underlying (true) matrix of X is low-rank and estimate X by a low-rank
approximation X ' UV>, where U and V are the low-dimensional latent features of
users and items, respectively. For a data tensor X, tensor factorization such as the
Tucker decomposition is used.

Kernel-based approaches such as Gaussian process (GP) models for collaborative
filtering have recently been developed. In the kernel methods, relationships among
preferences are represented as a Gram matrix (a covariance matrix in the GP mod-
els) determined by kernel functions in which the measurements are assumed to be
externally given (e.g., side information). Yu et al. (2007) proposed a concept of the
tensor GP, in which the covariances of user preferences are factorized into user-wise
and item-wise covariances.

1. As mentioned, a matrix is a special case of a tensor.
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Although both methods are based on different mechanisms, we clearly understand
the common characteristic through the perspective of similarities. Tensor factoriza-
tion can be seen as a framework that learns similarities of users and items as the
parameters. While tensor factorization can flexibly determine the similarities from
observed elements, the low-rank constraint for the similarity matrices is necessary to
avoid overfitting and reduce computational complexity. In the GP-based models, the
covariance matrix naturally represents similarities of users and items. Since the sim-
ilarity measurements are assumed to be externally given, they potentially handle the
full-rank similarity (covariance) matrix without any constraint. However, the exact
inference of the GP for large-scale data sets is computationally infeasible; it requires
O(N3) computational cost. Low-rank approximations of the covariance matrix such
as Nyström approximation are widely used in practice (Drineas and Mahoney, 2005).

In this chapter, we introduce a new framework for partially observed tensor com-
pletion problems based on the idea of the tensor GP. We employ self-measuring sim-
ilarities in which the measurements are the elements of X themselves. The missing
values are embedded in the Gram matrix as latent variables, which involves a form of
kernel learning. Side information can be exploited but are not indispensable in our
framework. We develop an efficient algorithm for the exact inference for prediction
with O(

∏L
l=1 Dl

∑L
q=1 Dq) computational cost for a tensor X ∈ RD1,...,DL . Required

memory space is O(N). Our algorithm enables us to deal with similarity (covariance)
matrices as full-rank, and thus our method is applicable even if the underlying matrix
or tensor is full-rank. We also show that our framework includes K-nearest neigh-
bor, matrix and tensor factorization, and GP-based methods as special cases. Our
method is evaluated in the standard collaborative filtering problem and show that it
attains the lowest prediction error in the data set. The feasibility for multi-variate
data analysis (i.e., data tensors) is also explored.

4.2. Model

In this section, first we introduce our model for a data matrix. Next, we show its dual
representation with a kernel function related to GP models. Further generalizations
including tensorization of the model are also discussed.

4.2.1 Pairwise linear regression

We have a partially observed R×C data matrix X with row-specific features φi ∈ RA

for i = 1, . . . , R and column-specific features ψk ∈ RB for k = 1, . . . , C. We assume
that all the elements of X is centered at 0, which can be achieved by subtracting
the empirical mean 1

N

∑
(i,k)∈I xik from X, where I is an index set of the observed

elements, and we have N = |I| observations {xik|(i, k) ∈ I}. We also denote an
N -dimensional vector which contains the observed elements of X in a certain order
without overlapping by ~xI . For later convenience, we introduce an observation matrix
P ∈ {0, 1}N×RC that removes the unobserved elements, i.e., ~xI = P(vec X).
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We employ the idea of supervised learning approaches to missing-values prediction.
Suppose that each element xik is a label and a feature pair (φi,ψk) is a corresponding
input. Thus our goal is to predict the missing values {xjl|(j, l) /∈ I} via a supervised
learning model with a training data D = {(xik, {φi,ψk})|(i, k) ∈ I}. We model X as
a pairwise regression form

xik = f(φi,ψk) + εik, εik ∼ N(0, σ2), (4.1)

where εik is an i.i.d. Gaussian observation noise and f is a bilinear mapping with a
weight matrix W2:

f(φ, ψ) =
A∑

a=1

B∑
b=1

wabφaψb = φ>Wψ. (4.2)

In the bilinear form, φ and ψ are fully interacted through W, i.e., there are individual
free parameters {wab|a = 1, . . . , A, b = 1, . . . , B} against to all the combination of
feature pairs {φ1, . . . , φA} × {ψ1, . . . , ψB}. The bilinear form can be rewritten as a
standard linear model:

f(φi, ψk) = ~w>(ψk ⊗ φi) = ~w>ξik (4.3)

where ~w = vec W ∈ RAB is a vectorization of W and ⊗ denotes the Kronecker
product. To fit the model to X, we estimate a MAP solution of ~w with a standard
Gaussian prior ~w ∼ N(0, I), which corresponds to a least square solution with a
quadratic regularization

~̂w = argmin
~w

J(~w),

J(~w) ≡
∑

(i,k)∈I

∣∣∣∣∣∣xik − ~w>ξik

∣∣∣∣∣∣2 + σ2 ||~w||2 . (4.4)

Note that the loss function (4.4) is the negative joint log-likelihood of our model.

4.2.2 Kernel representation and self-measuring similarity

Suppose that we have the labels X but not the inputs {φi} and {ψk}, that cannot
handle by the supervised framework any more. Instead, we create the feature vectors
from X itself. We construct ξik, the feature of xik, from the i-th row vector xi: and the
k-th column vector x:k. Moreover, we restrict the form of ξik that can be factorized
into the features of row and column as same as Equation (4.3). Then we have a
pairwise feature function ξ:

ξ(xi:,x:k) = ψ(x:k) ⊗ φ(xi:) (4.5)

2. Here we use W as a different variable from that used in Chapter 2 and 3
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where φ and ψ are (nonlinear) feature functions of the row and the column, respec-
tively.

The representer theorem guarantees that the solution to (4.4) can be represented
by a linear sum of a kernel function. By substituting ξik = ξ(xi:,x:k), the dual
representation of the model (4.3) is given by

∑
(j,l)∈I

βjlk
(
(xi:,x:k), (xj:,x:l)

)
= β>kik (4.6)

where k(·, ·) is a positive semi-definite (PSD) kernel function defined by

k
(
(xi:,x:k), (xj:,x:l)

)
= 〈ξ(xi:,x:k), ξ(xj:,x:l)〉
= 〈φ(xi:),φ(xj:)〉〈ψ(x:k),ψ(x:l)〉.

Note that the pairwise kernel k ((x,y), (x′,y′)), called Kronecker kernel (Basilico
and Hofmann, 2004; Kashima et al., 2009b), is factorized into a product of the row-
specific kernel Σ(x,x′) = 〈φ(x),φ(x)〉 and the column-specific kernel Ω(y,y′) =
〈ψ(y),ψ(y′)〉. This property plays an important role in developing our efficient learn-
ing algorithm discussed in Section 4.3.1.

By substituting the MAP solution ~̂w into Equation (4.2), we obtain the solution
β̂ = (KI + σ2I)−1~xI where KI = PKP> and the Gram matrix K ∈ RRC×RC takes
the form K = Ω⊗Σ. Note that K is a matrix of so called self-measuring similarity,
because the similarities of X are measured via the kernel function k(·, ·) by using
X itself. The idea of self-measuring similarity was originally used with K-nearest
neighbor methods (see Section 4.4.) To compute the kernel function in which the
input contains missing values {xik|(i, k) /∈ I}, we introduce latent variables z\I ≡
{zik|(i, k) /∈ I}. Instead of the partially observed data matrix X, we use the completed
matrix X̃ as an input of the kernel function, where x̃ik = xik if (i, k) ∈ I otherwise
x̃ik = zik.

If the observed matrix represents reflective relationships, i.e., X is symmetric, our
model can naturally handle it by just setting Σ = Ω.

4.2.3 As a Bayesian probabilistic model

This model can be naturally extended to a Gaussian process. Recall that we have a
standard Gaussian prior N(~w|0, I) for ~w. Since a likelihood of f can be seen as the
Dirac measure p(f |~w,xi:,x:k) = I(f(xi:,x:k) = ~w>ξik), by marginalizing out ~w from
Equation (4.2) a tensor Gaussian process prior (Yu et al., 2007) with self-measuring
covariance function is obtained:

f(xi:,x:k) ∼ GP
(
0, k

(
(xi:,x:k), (xi′:,x:k′)

))
. (4.7)
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The fact can be verified by computing the mean and the covariance:

E[fik] =
∫

fik

∫
I(fik = ~w>ξik)N(~w|0, I)dwdfik

=
∫ ∫

fikI(fik = ~w>ξik)N(~w|0, I)dfikdw

=
∫

~w>ξikN(~w|0, I)dw

= 0,

cov[fik, fjl] =
∫ ∫

fikfjl

{∫
I(fik = ~w>ξik)I(fjl = ~w>ξjl)N(~w|0, I)dw

}
dfikdfjl

=
∫ ∫ ∫

fikfjlI(fik = ~w>ξik)I(fjl = ~w>ξjl)N(~w|0, I)dfikdfjldw

=
∫

~w>ξik ~w>ξjlN(~w|0, I)dw

= ξ>
ik

{∫
~w~w>N(~w|0, I)dw

}
ξjl

= ξ>
ikξjl,

where we denote f(xi:,x:k) by fik for simplicity. The mean and the variance of the
predictive distribution of (4.7) are then given by

E[xik | D, z\I ] = k>
ik(KI + σ2I)−1xI , (4.8)

var[xik | D, z\I ] = cik − k>
ik(KI + σ2I)−1kik, (4.9)

where cik = kik,ik + σ2. Note that the predictive mean (4.8) is the same as Equa-

tion (4.6) with the solution β̂; since the noise ε is Gaussian, and the predictive mean
is located at the same point as the MAP.

In Equation (4.1), if the covariance matrices Σ and Ω are known, then F ≡
[f(φi,ψk)]i,k follow a zero-mean matrix Gaussian distribution N(F | 0,Σ,Ω), which
is defined as

N(F | M,Σ,Ω) =
1

(2π)RC/2|Ω|R/2|Σ|C/2

× exp
(
−1

2
tr

[
Ω−1(F − M)TΣ−1(F − M)

])
. (4.10)

A matrix Gaussian distribution is a special case of a Gaussian distribution which
parametrizes a covariance matrix by the Kronecker product. This limitation reduces
the number of parameters from O(R2C2) to O(R2 + C2).

4.2.4 Further extensions

Tensor modeling

We can naturally extend our model to handle a higher order data tensor. Suppose
that we have an L-th order tensor X ∈ RD1×···×DL . Let X

(l)
i ∈ RD1×···×Dl−1×Dl+1×...DL
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denotes the i-th slice of the l-th mode of X. The model for X is reasonably induced
through Equation (4.6) where K is defined as

K = ΣL ⊗ · · · ⊗ Σ1, [Σl]mn = Σl(X
(l)
m ,X(l)

n ) (4.11)

where Σl(·, ·) is a PSD kernel function for the l-th mode. In this case, the weight
parameter in Equation (4.2) also becomes an L-th order tensor and the resulting
primal representation is considered as the Tucker decomposition model (2.1) with an
infinite-dimensional latent feature space.

Side information

If we have side information {si|i = 1, . . . , R} (e.g., demographic data of users such as
age) for each row, we exploit them by combining them with the self-measuring covari-
ance function. For example, we extend the kernel function into a sum form (4.12a)
or a product form (4.12b):

Σ(Ui,Uj) = α1Σ
′(xi:,xj:) + α2Σ

′′(si, sj), (4.12a)

Σ(Ui,Uj) = Σ′(xi:,xj:)Σ
′′(si, sj), (4.12b)

for α1, α2 > 0. Note that in both sum- and product-form, if kernel functions Σ′

and Σ′′ are PSD, then the resulting kernel function Σ is still PSD (Rasmussen and
Williams, 2006). The idea of the incorporation of side information with the sum form
is previously discussed by Abernethy et al. (2009).

Additive kernel

We can extend the kernel k to an additive form, i.e.,

k
(
(Ui,Vk), (Uj,Vl)

)
=

P∑
p=1

αpkp

(
(Ui,Vk), (Uj,Vl)

)

where kp((Ui,Vk), (Uj,Vl)) = Σp(Ui,Uj)Ωp(Vk,Vl). If Σp and Ωp for p = 1, . . . , P are
PSD with α1, . . . , αP ≥ 0, then the resulting kernel k holds PSD. For example, if
we set P = 2 and employ Kronecker delta function as Σ1 and Ω2, then we have the
Gram matrix represented as K = α1(Ω ⊗ I) + α2(I ⊗ Σ) = (α1Ω) ⊕ (α2Σ) where ⊕
denotes the Kronecker sum: A⊕B = A⊗ I + I⊗B. When α1 = α2 = 1, the kernel
function is specially called Cartesian kernel, that has recently been applied to data
mining (Kashima et al., 2009b) and geostatistics (Agovic et al., 2011).

4.3. Learning Algorithm

In this section, first we introduce an efficient algorithm to compute the mean of the
predictive distribution with assuming that the latent variables are known. Then we
discuss how to estimate the latent variables and the hyper-parameters.
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4.3.1 Prediction of missing values

As mentioned, we need to compute the inverse of (KI +σ2I) in Equation (4.8) to ob-
tain the predictive means, in which the näıve computational cost is O(N3). Instead,
we solve the linear equation

~xI = (KI + σ2I)β (4.13)

with respect to β. Note that (KI + σ2I) is positive definite when σ2 > 0. We solve
Equation (4.13) using the conjugate gradient method (Shewchuk, 1994), which is an
iterative method to solve a linear system in which the matrix is positive definite. Each
iteration of the conjugate gradient needs to perform a matrix-vector multiplication; in
our case that corresponds to the multiplication of KI and an N -dimensional vector,
which requires O(N2) computation and O(N) memory space.

The computational cost of the multiplication can still be reduced by exploiting a
structure in the covariance matrix. Because of the structure of the Kronecker product
in KI , a multiplication of KI and an N -dimensional vector v is rewritten as

KIv = P(Ω ⊗ Σ)P>v = vec P(ΣVΩ) (4.14)

where V ∈ RR×C is a matrix form of P>v, i.e., vec V = P>v. This technique,
called vec-trick (Vishwanathan et al., 2007; Kashima et al., 2009a), reduces the com-
putational complexity from O(N2) to O(RC(R + C)). We apply the same tech-
nique when K is modeling for a data tensor as described in Section 4.2.4. When we
have a D1 × · · · × DL data tensor, the computational complexity of the vec-trick is
O(

∏L
l=1 Dl(

∑L
q=1 Dq)).

Suppose we stop the iteration of the conjugate gradient when the `2 error of β̂l (i.e.,
between the solution at the l-th iteration and a solution of Equation (4.13) β∗) is less
than the error of the initial values β̂0 with a tolerance ε, i.e., ||β∗−β̂l||2 ≤ ε||β∗−β̂0||2.
Then the maximum number of iterations is bounded l ≤ 1

2

√
κ log

(
2
ε

)
where κ is the

condition number of (KI +σ2I) which is defined as the ratio of its maximum and the
minimum eigenvalue. The total cost for obtaining the solution β̂ is O(

√
κRC(R+C)).

Let γ be the observation rate, i.e. γ ≡ N/(RC), and the computational complexity
of the näıve approach is rewritten as O(γ3(RC)3). If X is nearly square, i.e., R ' C,
then our algorithm is much faster than the näıve one when the observation ratio γ
is roughly greater than κ

1
6 /R

2
3 .

Note that the variances of the predictive distribution (4.9) can also be obtained
by a similar way. Although it requires to solve multiple linear equations (4.13) where
~xI = P(kik ⊗ kik) for each (i, k)-th element, the parallel computation of them is
possible.

4.3.2 Estimation of latent variables and model selection

Since we have a probabilistic model, the empirical Bayesian approach, i.e., maxi-
mizing the marginal likelihood, is one of the desirable methods to estimate the latent
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Algorithm 3 Computation of predictive means.

Initialize ẑ
(0)
\I by row-wise or column-wise means of X

for l = 1 to maximum number of iterations do
Construct Σ and Ω with X, ẑ

(l−1)
\I , and side information

Solve ~xI = (KI + σ2I)β by the conjugate gradient descent with a tolerance ε
Compute predictive means (4.8) for unobserved elements

Update ẑ
(l)
\I by the predictive means

end for
Return ẑ

(l)
\I

variables. However, the optimization of the marginal log-likelihood is computation-
ally infeasible especially for large-scale data. Instead, we use the predictive means as
estimators of the latent variables, i.e., ẑ\I = E[x\I |D]. As discussed in the previous
subsection, the computation of the predictive means only require O(

√
κRC(R + C))

time and O(N) space, which is generally better than the empirical Bayesian approach.
Note that the values of ẑ\I affect the predictive mean (4.8) through the kernel func-
tions, thus we iteratively perform the estimation procedure. As an initial value of
ẑik for (i, k) /∈ I, we use a row-wise mean 1

|I,k|
∑

j∈I,k
xjk or a column-wise mean

1
|Ii,|

∑
l∈Ii,

xil, where I,k (Ii,) is a set of row (column) indices of observed element in

the k-th column (i-th row) of X. We summarize the entire algorithm as a pseudo
code in Algorithm 3. Note that when both φ(·) and ψ(·) are finite dimensional, this
EM-like iterative method can be interpreted as an approximation of the EM algorithm
(see Appendix B.1 for more details.)

We determine the hyper-parameter σ2 and kernel parameters by cross-validation.
Similarly, this model selection can be done with the same computational complexity
of the prediction.

4.4. Connection to other methods

Although there are a lot of approaches for recommender systems, their characteris-
tics can be specified by the following two intrinsic principles in general: (i) how to
measure similarities between the observed elements, and (ii) how to use the similarity
to construct the prediction model for the unobserved elements. In this point of view,
we show the connection from our model to K-nearest neighbor, matrix factorization,
and GP-based approaches.

4.4.1 K-nearest neighbor

The K-nearest neighbor (KNN) algorithm is one of the most popular approaches of
collaborative filtering. The user-based KNN method (Resnick et al., 1994) measure
the similarity between the i-th user (row) and the other j-th user for j = 1, . . . , R by
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using xi: and xj:. Then the predictive value of xik is given as

x̂KNN
ik =

∑
j∈Ri

s(xi:,xj:)xjk∑
j∈Ri

s(xi:,xj:)
(4.15)

where s(·, ·) is a similarity function such as the Pearson correlation and Ri is an index
set of top-K related users to the i-th user. When xi: and xj: contain missing values, the
similarity s(xi:,xj:) is computed based only on observed pairs {(xil, xjl)|l ∈ Ii, ∩Ij,}.
Note that we assume the reflectiveness for {Ri|i = 1 . . . , R}, i.e., j ∈ Ri if and only
if i ∈ Rj for i, j = 1, . . . , R.

Given {Ri|i = 1, . . . , R}, the loss function of the user-based KNN is explicitly
written as the following weighted squared loss∑

(i,k)/∈I

∑
j∈Ri

s(xi:,xj:)(xjk − yik)
2, (4.16)

where yik is a parameter of a predictive value of xik. The minimizer of yik in Equa-
tion (4.16) is equivalent to the predictive value of the user-based KNN (4.15) (see Ap-
pendix B.2.) Compared to our loss function (4.4), there is no parametric structure in
the model {yik|(i, k) /∈ I}. Instead, the importance weight of each observed sample
xjk ((j, k) ∈ I) for a missing element xik is introduced by s(xi:,xj:). Note that when a
shift-invariant similarity s(x,x′) = g(x−x′) is given, the predictive value of the user-
based KNN (4.15) is a conditional mean of the Nardaraya-Watson model (Bishop,
2007) in which the joint distribution for a pair of the i-th user and the k-th item is
defined as

pik(x, y) = p(x, y | Dik) =
1

|Ri|
∑

j∈Ri

h(x − xj:, y − xjk)

where Dik ≡ {(xj:, xjk)|j ∈ Ri} is training data and h(x, y) is the component density
function defined as

∫ ∞
−∞ h(x, y)dy = g(x). We see that the KNN independently models

the distribution of a pair (xi:, yik) and there is no transfer of knowledge to other pairs.
By defining Σij = s̄(xi:,xj:)I(j ∈ Ri) and Ωkl = I(k = l) with the normalized

similarity s̄(·, ·), the predictive value of the user-based KNN (4.15) is also rewritten
as x̂KNN

ik = k>
ik~xI . It can be seen as an approximation of the predictive mean (4.8)

with taking (KI + σ2I)−1 = I. We obtain an analogous result for the item-based
KNN (Sarwar et al., 2001). A unifying approach of the user- and the item-based
KNN was also proposed in (Wang et al., 2006).

4.4.2 Matrix and tensor factorization

In the pairwise linear model (4.2), we treat φi and ψk as the given feature vectors
of the i-th row and the k-th column, respectively. Here we consider they are hidden
variables that we have to estimate from observed data. Suppose that φi and ψk are
both Q-dimensional vectors satisfying Q ≤ min(R,C) and we give a Dirac measure
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p(W) = I(W = I) as a prior of W ∈ RQ×Q. If the all elements of X are observed,
then the probability distribution of the model (4.3) is simply rewritten as

p(X | Φ,Ψ,W) ∝ exp
(
− 1

2σ2

∣∣∣∣∣∣X − ΦWΨ>
∣∣∣∣∣∣2

Fro

)
(4.17)

where Φ> = (φ1, . . . , φR) and Ψ> = (ψ1, . . . , ψC). ||·||Fro denotes the Frobenius

norm defined by ||A||Fro =
√

tr(A>A). We estimate maximum marginal likelihood
solutions of {φi} and {ψk} that are achieved by minimizing the unregularized squared
loss function

argmin
Φ,Ψ

∣∣∣∣∣∣X − ΦΨ>
∣∣∣∣∣∣2

Fro
(4.18)

Here, matrix factorization can be interpreted as a learning framework of row-wise
and column-wise similarities under the low-rank constraints Σ = ΦΦ> and Ω =
ΨΨ>. This is in contrast to our model, which assumes Σ and Ω are both full-rank.
Bayesian extensions of matrix factorization were discussed in (Salakhutdinov and
Mnih, 2008a,b).

A more general case corresponds to a Bayesian extension of the Tucker decom-
position called pTucker model (Chu and Ghahramani, 2009). In Equation (4.17),
suppose that we have a latent factor Φl ∈ RDl×Ql for l = 1, . . . , L. By marginalizing
the weights W by a standard Gaussian prior, we obtain a tensor Gaussian distri-
bution (Dutilleul, 1999; Hoff, 2010). This is an extension of the matrix Gaussian
distribution (4.10) with parametrizing an l-th mode-specific covariance matrix Σl as
Σl = ΦlΦ

>
l and estimates {Φl}. Yu et al. (2009) proposed an nonparametric exten-

sion of probabilistic PCA, which can be seen as a special case of a two-mode pTucker
model where Σ1 is set as an identity matrix. Its cost function contains ’logdet’ regu-
larization term, and it enforces an estimator of Σ2 to be low-rank.

Our model is also related to the CUR decomposition (Mahoney and Drineas, 2009).
Here we employ the idea of self-measuring similarity to Equation (4.2), and suppose
that the feature functions φi = φ(xi:) and ψi = ψ(x:k) are identity functions with
the row- and column-wise sparsity, i.e. φ(xi:) = I(i ∈ R)xi: and ψ(x:k) = I(k ∈ C)x:k

where R and C are arbitrary index sets of rows and columns, respectively. Then the
loss function (4.4) is transformed to the following form

||X − XCWXR||2Fro + σ2 ||W||2Fro (4.19)

where XR ∈ RR×|R| (XC ∈ R|C|×C) is a submatrix of X that consists from |R| row
vectors {xi:|i ∈ R} (|C| column vectors {x:k|k ∈ C}). When σ2 = 0, the loss func-
tion (4.19) is equivalent to the one of the CUR decomposition and the solution is
given by Ŵ = X+

C XX+
R where A+ is the pseudo inverse of A.
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4.4.3 GP-based models

Yu et al. (2007) presented the idea of the tensor GP and proposed its approxima-
tion and an efficient learning algorithm for large-scale data sets. The approximated
model is roughly equivalent to matrix factorization with the regularization incorpo-
rating with side information. Bonilla et al. (2008) apply the tensor GP framework
to multi-task learning. After specifying the row covariance Σ with row-specific side
information, they empirically estimate the column covariance Ω. That is in contrast
to the tensor GP, which estimates both Σ and Ω by a nonparametric way. Probabilis-
tic matrix addition (Agovic et al., 2011) is a GP model that employs the Cartesian
kernel (see Section 4.2.4) as a covariance function instead of the Kronecker kernel.
Abernethy et al. (2009) proposed more general framework which generalizes the loss
functions J(W) (4.4) with imposing a low-rank constraint for the weight parameter
W, which results the model as low-rank.

In many cases, exact computation of these GP-based methods is infeasible and
several approximations such as a low-rank approximation of a Gram matrix are widely
used. Note that our learning algorithm described in Section 4.3.1 can directly be used
in these models.

4.5. Experimental results

In this section, first we investigate the behavior of the EM-like iterative update of the
latent variables which we discussed in Section 4.3.2 by synthetic data sets. Next we
evaluate the applicability for a real recommendation problem and data tensors. All
experiments were done with a Xeon 2.93 GHz 8 core machine.

4.5.1 Toy data set

We randomly generate ten 100 × 100 data matrices by following the generative
model (4.1) and (4.10) which we set σ2 = 0.3. We employ the RBF kernel as the
covariance functions.

Figure 4.1 shows the training and testing errors with growing the number of iter-
ations of the EM-like iterative method, which includes the testing error when we use
the mean, the row-wise means, and the column-wise means of the observed elements
as predictive values for comparison. We see that the larger σ2 works to prevent over-
fitting to the training (observed) elements. Our framework achieves same or better
prediction accuracy than the näıve predictors even for the full-rank matrix comple-
tion problem. Figure 4.2 is the result when the ranks of both Σ and Ω are 2. In
contrast to the result of the full rank covariance matrices (Figure 4.1), the iterative
method improves the testing errors in the first few iterations.
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Figure 4.1: RMSE v.s. the number of iterations of the EM-like heuristic with various
settings of σ2 and the observation ratio γ. The errorbars represent the
standard deviation.
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Figure 4.2: RMSE v.s. the number of iterations when Σ and Ω are low-rank.

4.5.2 Collaborative filtering

We use the Movielens 100k data set3, which contains 100, 000 ratings xik ∈ {1, 2, 3, 4, 5}
for 1, 682 movies labeled by 943 users. The observation ratio γ is 0.06. The data set
contains side information: user-specific features (e.g., age, gender, ...) and movie-
specific features (release date, genre, ...). The data set provides 90, 570 ratings for
training and remaining 9, 430 ratings for testing. After learning with the training
data set, we evaluate the RMSE for the testing data set.

We employ the RBF and the linear kernel as the covariance functions, and the
hyper-parameters including σ2 are determined by three-fold cross validation. We
prepare two similarities: a self-measuring similarity (“Self-measuring”), and a combi-
nation of self-measuring and side information (“Combination”). In “Combination”,
we use the sum form (4.12a) for the linear kernel and the product form (4.12b) for the
RBF kernel. We compare with standard methods for recommendation system which
includes user- and item-based KNN with the Pearson correlation and matrix factor-
ization. We also prepare the CUR decomposition (Mahoney and Drineas, 2009). To
handle the missing values in the CUR decomposition, the missing values in XC and
XR in Equation (4.19) are replaced by row- or column-wise means. The tensor GP
model is also included in the comparison, which is equivalent to our method given
the similarity measured by side information.

3. http://www.grouplens.org/node/73
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Table 4.1: RMSEs on the Movielens 100k data set.
Method RMSE Time
Tensor GP (linear) 1.1225 26s
Tensor GP (RBF) 1.0517 7m01s
CUR (row) 1.0245 5s
CUR (col) 1.0199 5s
KNN (user) 0.9507 7s
KNN (item) 0.9354 42s
Matrix Factorization 0.9345 1m38s
Self-measuring (linear) 0.9340 45m41s
Self-measuring (RBF) 0.9308 16m22s
Combination (linear) 0.9294 45m30s
Combination (RBF) 0.9256 18m25s

We summarize the prediction errors in Table 4.1. The result shows that our
method outperforms the comparative approaches. It suggests that the side informa-
tion are not enough to measure similarities compared to the self-measuring approach.
Nevertheless, the combination with the side information (“Combination”) further im-
proves the prediction performance compared to using the self-measuring alone (“Self-
measuring”). The best score (“Combination” with the RBF kernel) in Table 4.1 is
also the best over other 76 methods listed in mlcomp.org4 as of Oct, 2011.

4.5.3 Three-way tensor data sets

We use five real data sets called “Amino acids”, “Flow injection”, “Bread sensory”,
“Sugar process”, and “Fermentation process”.56 Note that both “Amino acids” and
“Flow injection” are known as rank deficit problems (Bro, 1998): “Amino acids”
is almost perfectly modeled by rank-3 PARAFAC (Harshman, 1970), a special case
of the Tucker decomposition. “Flow injection” is also captured by a similar low-
dimensional model.

For each data tensor, we randomly choose 50% of its elements as training data
(i.e. observed elements) for 100 different random seeds. The rest elements are used
for testing. We rescale each data tensor by its standard deviation to align the scales of
all data sets. We compare with the Tucker decomposition, pTucker, and PARAFAC.
We use the N-way Toolbox (Andersson and Bro, 2000) for the implementations of
the Tucker and PARAFAC. Here we omit the tensor GP model, since some of the
data sets do not contain side information. We use the RBF kernel that has individual
scale parameters λl for each l-th mode. Throughout this experiment, we fix the
hyper-parameters as σ2 = 1 (same as pTucker) and λl = Dl/D1D2D3 where Dl is

4. http://mlcomp.org/datasets/341
5. http://www.models.kvl.dk/datasets/
6. Here we follow the experimental settings in (Chu and Ghahramani, 2009).
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Table 4.2: Ranks of PARAFAC, Tucker, and pTucker selected by tucktest.

Data Set Amino acids Flow injection Bread sensory Sugar process Fermentation process
ranks 4 × 4 × 4 4 × 4 × 4 5 × 5 × 5 5 × 5 × 5 4 × 4 × 4

Table 4.3: RMSEs on the tensor data sets.

Data Set Amino acids Flow injection Bread sensory Sugar process Fermentation process
Dimensions 5 × 201 × 61 12 × 100 × 89 10 × 11 × 8 268 × 571 × 7 338 × 15 × 15
PARAFAC 0.0295 0.0612 2.2831 0.3336 0.2444
Tucker 0.0256 0.0523 1.6026 0.3319 0.2486
pTucker 0.0273 0.1476 0.6053 0.2214 0.2251
Self-measuring 0.0350 0.0428 0.5261 0.0421 0.1284

the dimensionality of the l-mode. The ranks of the tensor factorization methods are
preliminary specified by tucktest function of the N-way toolbox for each data set
(see Table 4.2.)

We summarize the result in Table 4.3. The result clearly shows the low-rank tensor
factorization methods performs well for the rank deficit data sets (“Amino acids” and
“Flow injection”). In the other data sets, on the contrary, our method outperformed
the low-rank models. To qualify the the characteristics of the proposed and the low-
rank methods, we visualize slices of recovered data tensors at Figure 4.3. Note that
here we set the observation ratio to 30% to clarify the difference. In “Amino acids”
data set (the top-panel of Figure 4.3), the tensor factorization methods smoothly
recovered the missing values in the low-dimensional feature spaces. In contrast, we see
some jaggies in the reconstructed elements of our method. The situation is completely
different in “Sugar process” data set (the bottom-panel of Figure 4.3). On one hand,
the slices recovered by the low-rank tensor factorization are entirely flat and they
failed to keep the wavy patterns, which are appeared in the original source. This is
because the underlying data matrix would not be low-rank and the tensor factorization
could not capture it in the low-dimensional space. Our method, on the other hand,
successfully reconstructed the missing values with keeping the fine wavy patterns.

4.6. Summary

In this chapter, we have presented a new kernel-based framework for matrix and
tensor completion problems. The proposed framework has separated row and column
kernel matrices that can be readily calculated only from observed elements. We
have also proposed an efficient conjugate gradient-based algorithm that exploits the
structure of the Kronecker product in the Gram matrix. The algorithm allows the
model to represent a full-rank matrix or tensor. On the Movielens 100k data set, we
have shown that the proposed approach achieves the lowest error outperforming both
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Figure 4.3: The results of reconstruction on “Amino acids” and “Sugar process” data
sets, in which the fourth slice of the first mode and fifth slice of the third
mode are illustrated in top and bottom panel, respectively. Original:
original data sources. Training: training data sets with missing values in-
dicated as blanks (70% of the elements are missing.) PARAFAC, Tucker,
pTucker, and Self-measuring: reconstructed slice by each method.

KNN and matrix factorization. On four real-world tensor data, we have shown that
we can achieve better error when the true underlying structure is full rank.
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Chapter 5

Conclusion

This thesis has presented the two extensions of the Tucker decomposition. First, to
handle heterogeneous tensors, we have generalized the likelihood distribution to the
exponential family and have proposed the batch and the online procedure for the
approximated Bayesian estimation of the parameters. Next, the kernelization of the
Tucker decomposition has been introduced with the moderately fast iterative learning
algorithm relaxing the low-rank assumption for the given tensor. The performance of
the two models has been evaluated with some synthetic and real data sets and in the
experimental results the proposed methods have outperformed the existing tensor
factorization methods when the standard assumptions – the Gaussian observation
model and the low-rank assumption – have been not holded.

5.1. Discussion and Future Works

The determination of the rank of ETF is an important issue for real applications.
We can specify the rank by using standard techniques of model selection such as
cross validation and empirical Bayes, while these approaches requires a large amount
of computational cost. In last few years, several authors reformulated the Tucker
decomposition as a convex problem with an explicit low-rank constraint (Tomioka
et al., 2011; Signoretto et al., 2011; Gandy et al., 2011), which is analogous to the
notion of compressive sensing (Fazel). These approaches will enable to determine
the rank automatically from the theoretical aspects and such extension will be a
promising future work for ETF.

As described in Section 3.3.1, the posterior of ETF is approximated by the Gaus-
sian density. Due to the log-concavity of the likelihood and the prior, the posterior
is also log-concave (uni-modal), and the Gaussian approximation is reasonable. The
Laplace approximation allows us to implement a faster algorithm rather than a nu-
merical approach based on the MC sampling, but we lose the information about the
higher-order moments.
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Another issue of ETF is that we must a priori specify the distribution for each
attribute before learning the model. In some cases, it is difficult to choose the appro-
priate exponential family distribution. The model selection of the distribution is an
open problem.

The conjugate-gradient-based algorithm discussed in Chapter 4 reduces the com-
putational complexity compared to the conventional approach. However, the algo-
rithm is still expensive to scale for large-scale data such as the Netflix data set. To
handle such large-scale data, it is necessary to take account the sparsity of the data.
Given, for example, a partially observed matrix X containing N ¿ RC elements. If
we employ the linear kernel in which the missing elements are filled by 0, the com-
plexity of the vec-trick (4.14) is reduced from O(RC(R + C)) to O(N max(R,C)). It
is also possible to employ other regularization terms instead of the `2

2 norm in Equa-
tion (4.4). For example, the regularization with the `1 norm introduces the sparsity
in the parameter which improves the interpretation of the model and also saves the
memory space. Recently several authors have developed efficient optimization meth-
ods for non-differentiable regularizations such as the `1 norm (Duchi and Singer, 2009;
Langford et al., 2009).
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のほぼ全ての内容はその際の共同研究に基づいた結果となっています．柴田先生がオー
ガナイズされた共同研究に参加したことでプロジェクトのスケジューリングやミー
ティングにおける段取りの決めかたなど，研究のメタな部分に関することを学ぶこと
ができました．

NEC C&C イノベーション研究所の方々にはセンサデータ解析に関する共同研究
の際にお世話になりました．特に山田敬嗣さん，國枝和雄さん，加藤大志さん，神谷
祐樹さんには研究の方向性やデータの取得方法などについて様々な示唆を頂きました．
東京大学の鹿島久嗣先生，冨岡亮太先生にはChapter 4の研究を始めとする様々な

共同研究にて大変お世話になりました．特に鹿島先生には IBISワークショップ 2008
でお会いしてから，私の研究アイデアの相談に乗って頂いたり数々の新しい研究ネタ
を教えて頂きました．また冨岡先生には共同研究を通じてテンソル分解の最適化など
関して学ばさせて頂きました．
池田研秘書の谷本史さんには学会出張や研究費関係でいつもお世話になりました．

特に自分がドイツに居る時，書類のコピーといった様々な用事を引き受けてくださり，
大変ありがたかったです．足立敏美さんには博士課程 3年時に学振の書類関係や博士
論文製本の際にお世話になりました．計算機クラスタMauiに関して作村論一先生に
は何度もお世話になりました．為井智也さんからはコーヒーに対するこだわりを教え
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て頂き，おかげで人生が少し豊かになった気がします．船谷浩之さんには一年上の先
輩ということで，学業やプライベートに関して様々なことに相談に乗って頂きました．
6階のエレベーターホールで毎日料理を作っていたのはいい思い出です．同期の小林
幹浩くんには主に食の面で色々とお世話になりました．いつかマンガ部屋でみんなに
作ってくれたバナナケーキが絶品でした．Mauricio Alexandre Parente Burdelisさん
とは席が 2年間半ずっと隣同士だったこともあり研究の合間に色々な話をしました．
論文の英語添削をいつも快く引き受けてくれ，論文の締切りで焦っていた私にとって
仏のようにありがたい存在でした．後輩の中村政義くんとは自分が博士一年目のとき
にチームを組んでUCSDデータマイニングコンテスト 2009に出場し，中村くんが発
見したデータの特徴抽出法のおかげでコンテストを優勝できました．このおかげで実
データ解析には特徴抽出が一番大事な要素であることを身を持って学べました．
博士課程 3年目には NEC 情報メディアプロセッシング研究所にて 3ヶ月弱イン

ターンシップに受け入れて頂き，実際のビジネスの現場で研究を行うという貴重な経
験をさせて頂きました．特にデータマイニングアンドビジネスアナリシス・テクノロ
ジーグループの藤巻遼平さんには北米出張中の忙しいなかメンターを引き受けて頂
き，スカイプやメールにてプログラミングから証明のフォローまで非常に丁寧な指導
をして頂きました．また同グループの森永聡さん，小阪勇気さんにも大変お世話にな
りました．
研究室外の方にも大変お世話になりました．自然言語処理学講座の小町守さんに

はインターンシップ応募書類を添削して頂いたり修士のときから様々なことでお世
話になりました．大阪大学の植野剛さんには研究のことや将来のことなどを gmailの
チャットでいつも相談に乗って頂きました．京都大学の前田新一先生や五十嵐康伸さ
んにはバスケットボールによく誘って頂きました．

I am grateful to Prof. Klaus-Robert Müller and Dr. Motoaki Kawanabe for
accepting me as a visiting researcher in Technische Universität Berlin. Studying in
Berlin is a valuable experience for me. Sometimes I miss a cold winter in Berlin.
最後に陰に陽に自分を支えてくれた親族に感謝します．
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Appendix A

Appendix for Chapter 3

A.1. Gaussian Process

Here we consider an approximation of ψh(θ) by the GP. Because ψh(θ) is univariate,
we only consider the case in which the input is one-dimensional for simplicity. First we
randomly generate N samples s ≡ (θ1, . . . , θN)> from an arbitrary distribution. Note
that, unlike the normal regression settings, we know the functional form of ψh(θ), e.g.,
ψh(θ) = eθ for Poisson distribution, and thus outputs yh ≡ (ψh(θ1), . . . , ψh(θN))> is
noise-free. For a given GP prior, the joint distribution over the outputs yh is the
Gaussian distribution with zero-mean and a N × N covariance matrix K, where the
(qr)-th element kqr of the covariance K is represented by a pre-determined covariance
function k(θq, θr). For convenience, we employ a Gaussian kernel as the covariance
function:

k(θq, θr; α) = exp
(
−α

2
||θq − θr||2

)
. (A.1)

The hyper-parameter α controls the smoothness of outputs. Using the Bayes theorem,
the predictive distribution of ψh∗ ≡ ψh(θ∗) at a new input θ∗ with training data
Dh ≡ {s,yh} is given by a univariate Gaussian distribution

p(ψh∗ | θ∗,Dh) = N(ψh∗ | mh(θ∗), v
2
h(θ∗)). (A.2)

The mean mh(θ∗) and the variance v2
h(θ∗) are given by

mh(θ∗) = b>
h k∗, v2

h(θ∗) = k∗∗ − k>
∗ K−1k∗ (A.3)

where k∗ = (k∗1, . . . , k∗N), k∗n = k(θ∗, θn), and bh ≡ K−1yh.

A.2. Derivative of GP

Here we consider to predict a derivative ψ′
h ≡ ∂ψ

∂θ
at a new input x∗. A straightforward

approach is to prepare another GP and independently model ψ′
h. However, ψh and
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ψ′
h are mutually correlated, and the joint modeling of them improves the accuracy of

the function approximation. The covariance function between ψh and ψ′
h is given by

the following lemma.

Lemma 3 (O’Hagan (1992)) Let f be a Gaussian process over one-dimensional
inputs a, b ∈ R where E[f(a)] = 0 and cov[f(a), f(b)] = k(a, b) with an arbitrary
covariance function k(·, ·). Then the covariance between (any higher order) derivatives
of the outputs of f is represented by a (higher order) derivative of k.

Proof Since cov[·, ·] and the derivative operator are commutative, then

cov

 ∂nf

∂xn

∣∣∣∣∣
xi

,
∂mf

∂xm

∣∣∣∣∣
xj

 =
∂n

∂an

∂m

∂bm
k

∣∣∣∣∣
a=xi,b=xj

. (A.4)

By applying the result of lemma 3 with the Gaussian covariance function, we observe
the following corollary.

Corollary 4 If the covariance function k(·, ·) is the Gaussian kernel function (A.1),
then the covariance function between an output and its derivative, and that between
the derivatives are given by

cov

 ∂f

∂x

∣∣∣∣∣
xi

, f(xj)

 = −cov

f(xi),
∂f

∂x

∣∣∣∣∣
xj


= −α(xi − xj)k(xi, xj), (A.5a)

cov

 ∂f

∂x

∣∣∣∣∣
xi

,
∂f

∂x

∣∣∣∣∣
xj

 = α{1 − α(xi − xj)
2}k(xi, xj). (A.5b)

Lemma 3 allows us to predict derivatives of outputs and, in addition, to use derivative
information as training inputs. To improve the approximation accuracy, we generate
N ′ inputs s′ ≡ {θN+1, . . . , θN+N ′} from an arbitrary distribution and calculate the cor-
responding derivative observations y′

h ≡ {ψ′
h(θN+1), . . . , ψ

′
h(θN+N ′)} as an additional

training data set D′
h ≡ {s′,y′

h}.
Now we have a joint distribution of {yh,y

′
h} with the covariance functions (A.5).

The predictive mean and the variance of the output ψh(θ∗) are given by

mh(θ∗) = β>
h κ∗, v2

h(θ∗) = k∗∗ − κ>
∗ C−1κ∗

where κ∗ = (k>
∗ ,−k′

∗
>
)>, βh = C−1(y>

h ,y′
h
>)>, and

C =

(
K(s, s) K′(s, s′)
K′(s′, s) K′′(s′, s′)

)
. (A.6)
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k′
ij and k′′

ij are defined by equation (A.5a) and (A.5b), respectively and k′
∗ = (k′

∗1, . . . , k
′
∗N ′).

The predictive mean and the variance of the derivative ψ′
h(θ∗) are also given by

m′
h(θ∗) = β>

h κ′
∗, v′

h
2
(θ∗) = k′′

∗∗ − κ′
∗
>
C−1κ′

∗ (A.7)

where κ′
∗ = (k′

∗
>
,k′′

∗
>
)> and k′′

∗ = (k′′
∗1, . . . , k

′′
∗N ′).

A.3. Marginalization of GP with Gaussian Density

In this section, we show that the marginalization of a GP has a closed form solution
when the covariance function is a Gaussian kernel and the input follows a Gaussian
distribution. For later convenience, first we introduce the following lemma:

Lemma 5 Let gi(x) = exp(−αi

2
||x − xi||2), i = 1, . . . ,M be Gaussian basis functions

with scale parameters αi ≥ 0 and location parameters xi. Let y be a random variable
following a Gaussian distribution N(y|x0, α

−1
0 ), then, for a finite positive integer n,

we observe that

∫
yn

(
M∏
i=1

gi(y)

)
N(y | x0, α

−1
0 )dy (A.8)

= E[yn | Ep[x], β−1]

√
α0

β

M∏
i=0

gi(Ep[x]) (A.9)

where β =
∑M

i=0 αi and p(x) is the mixture of the delta functions p(x) =
∑M

i=0
αi

β
δ(x−

xi). E[yn|µ, σ2] denotes the n-th order moment of a Gaussian distribution N(y|µ, σ2).

Proof We observe that

log N(y | x0, α
−1
0 )

M∏
i=1

gi(y) (A.10)

= log C0 −
β

2

M∑
i=0

αi

β
(y − xi)

2 (A.11)

= log C0 −
β

2
Ep[(y − x)2] (A.12)

= log C0 −
β

2
(y2 − 2Ep[x]y + Ep[x

2]) (A.13)

= log C0 −
β

2
{(y − Ep[x])2 + varp[x]} (A.14)
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where C0 =
√

α0

2π
is the normalization term and varp[x] = Ep[x

2] − Ep[x]2. Then we

have

N(y | x0, α
−1
0 )

M∏
i=1

gi(y) (A.15)

= C0 exp(−β

2
varp[x]) exp(−β

2
(y − Ep[x])2) (A.16)

=
C0

Cβ

exp(−β

2
varp[x])N(y | Ep[x], β−1) (A.17)

where Cβ =
√

β
2π

is the normalization term. Then we obtain

∫
ynN(y | x0, α

−1
0 )

M∏
i=1

gi(y)dy (A.18)

=
C0

Cβ

exp(−β

2
varp[x])

∫
ynN(y | Ep[x], β−1)dy (A.19)

=

√
α0

β
exp(−β

2
varp[x])E[yn | Ep[x], β−1] (A.20)

Since varp[x] =
∑M

i=0
αi

β
(xi − Ep[x])2,

exp(−β

2
varp[x]) =

M∏
i=0

exp(−αi

2
(xi − Ep[x])2) (A.21)

=
M∏
i=0

gi(Ep[x]) (A.22)

Note that the result of lemma 5 with n = 0 is known as Bayes-Hermite Quadra-
ture (O’Hagan, 1991; Rasmussen and Ghahramani, 2003).

A.4. Proof of Theorem 1

Now we prove theorem 1 by using corollary 4 and Lemma 5.

Proof Corollary 4 and equation (A.3) show that m(p)(x∗), the p-th order derivative
of the GP’s predictive mean at the new input x∗, represented as a product of a
polynomial of x∗ and a Gaussian basis function. Then, the marginalization of m(p)(x∗)
by a Gaussian distribution N(x∗|µ∗, σ

2
∗) can be written as a closed form solution by

applying lemma 5.
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A.5. Some examples of theorem 1

By using the result of theorem 1, we derive specific examples of the expectation
approximation required in equation (3.9), (3.12), and (3.17). We assume that θ∗ is a
Gaussian-distributed random variable with a mean µ∗ and a variance λ−1

∗ . We would
like to marginalize the predictive distribution:

∫
p(ψh∗ | θ∗,Dh)N(θ∗ | µ∗, λ

−1)dθ∗.
Although the marginal distribution is not a Gaussian1, the mean and the variance
can be obtained when we employ the Gaussian kernel as the covariance function. The
predictive mean m̄h∗ and variance v̄2

h∗ for the uncertain input θ∗ are written as

m̄h∗ =
∫∫

ψh∗p(ψh∗|Dh, θ∗)p(θ∗|µ∗, λ
−1
∗ )dψh∗dθ∗

= Eθ∗ [mh(θ∗)] = b>
h Eθ∗ [k∗], (A.23a)

v̄h∗ =
∫∫

(ψh∗ − mh∗)
2p(ψh∗|Dh, θ∗)p(θ∗|µ∗, λ

−1
∗ )dψh∗dθ∗

= b>
h Eθ∗ [k∗k

>
∗ ]bh + 1 − tr(K−1Eθ∗ [k∗k

>
∗ ]) − m̄2

h∗. (A.23b)

where

Eθ∗ [k∗i] =

√
λ∗

λ∗ + α
k(ei, µ∗; λ∗)k(ei, θi; α) (A.24)

Eθ∗ [k∗ik∗j] =

√
λ∗

λ∗ + 2α
k(Eij, µ∗; λ∗)

× k(Eij, θi; α)k(Eij, θj; α), (A.25)

ei =
λ∗µ∗ + αθi

λ∗ + α
, Eij =

λ∗µ∗ + α(θi + θj)

λ∗ + 2α
. (A.26)

By combining the result of equation (A.7), we have

m̄′
h∗ = b>

h Eθ∗ [k
′
∗], (A.27a)

v̄′
h∗ = b>

h Eθ∗ [k
′
∗(k

′
∗)

>]bh + 1

− tr(K−1Eθ∗ [k
′
∗(k

′
∗)

>]) − (m̄′
h∗)

2. (A.27b)

where

Eθ∗ [k
′
∗i] = αEθ∗ [k∗i](θi − ei), (A.28)

Eθ∗ [k
′
∗ik

′
∗j] = α2Eθ∗ [k∗ik∗j]{θiθj − 2Eij(θi + θj) (A.29)

+ E2
ij + (λ∗ + 2α)−1}. (A.30)

1. We can easily verify this by calculating that the third order derivative of the joint distribution
p(ψh∗ | θ∗,Dh)N(θ∗ | µ∗, λ

−1) with respect to θ∗ is not zero.
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Algorithm 4 PREPARE GP.

Input: ~θ0, N
Sample s from ~θ0

C = K−1(s, s)
for h = 1, . . . , H do

yh = (ψh(s1), . . . , ψh(sN))>

βh = Cy>
h

end for
Return {βh | h = 1, . . . , H}

By using the result of lemma 5 with n = 1, we also have

Eθ∗ [θ∗k
′
∗i] = αEθ∗ [k∗i]{θiei − e2

i − (λ∗ + α)−1}
= eiEθ∗ [k

′
∗i] − Eθ∗ [k∗i](λ∗ + α)−1 (A.31)

Finally we obtain the solutions of the following expectations:

Eq[mh(θd)] = b>
h Eθd

[kd] (A.32)

Eq[m
′
h(θd)] = b>

h Eθd
[k′

d] (A.33)

Eq[M
′(l){Θ(l)}>]ij =



D\l∑
a=1

Eq[θ
(l)
ia M ′(l)

ia (θia)] if i = j

D\l∑
a=1

Eq[θ
(l)
ia ]Eq[M

′(l)
ja(θja)] otherwise.

(A.34)

The further expectations in equations (A.32)-(A.34) are given by equations (A.24),
(A.28), and (A.31).

A.6. Algorithm PREPARE GP

Here we summarize the subroutine PREPARE GP, a prepossessing procedure for the
GP approximation used in algorithm 1 and 2. Figure 4 shows the pseudo code of
PREPARE GP.

For the GP approximation in the M-step (section 3.3.2), we need to determine the
training inputs s. For accurate approximation, it is important to cover an area by the
training inputs in which the posterior is dense and/or functions ψ and ψ′ take a large
value. Thus, we randomly choose N one-dimensional inputs θn (n = 1, . . . , N) from

each dimension of the posterior mean ~θ0 ≡ W~z0 according to the weights ψ(~θ0). In
an area in which the inputs are sparse, on the other hand, the mean of GP is close to
zero because the mean function of the GP prior is set to zero. This property would be
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problematic when we apply the gradient-based optimization, since the cost function
L̄(θ) diverges when θ → ∞. To avoid this problem, we use a barrier function instead
of the mean of GP when the input of GP is out of the area [min(s), max(s)]. We use
the zeroth-order delta method as the barrier function.
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Appendix for Chapter 4

B.1. Interpretation of EM-like iterative method

In the linear model (4.4), the EM-like iterative algorithm can be interpreted as the
EM algorithm with the following approximations. In the E-step, given the estimated
mean of the latent variables Ẑl−1, we use the predictive distribution p(X|D, Ẑl−1) as
a posterior of Z in (l − 1)-th iteration, i.e., p(Z|D) ≈ p(X|D, Ẑl−1). In the M-step,
the expected log-likelihood is replaced by its zeroth-order approximation, i.e.,

EZ[J(w,Z)] ≈ J(w, Ẑl) (B.1)

where Ẑl denotes the mean of the approximation of the posterior p(X|D, Ẑl−1), i.e., the
predictive values of X at (l − 1)-th iteration. With the approximation, the solution
of w in the linear Equation (4.13) is also the solution in the M-step. Note that
the approximated expected log-likelihood (B.1) is no longer the lower bound of the
marginal likelihood; it does not guarantee the convergence of the algorithm.

B.2. Minimizer of loss function of KNN

By taking differential of the loss function (4.16) with respect to yik and setting it to 0,
we obtain the predictive value of a missing element xik for (i, k) /∈ I. The derivative
is written as

∂

∂yik

∑
(i,k)/∈I

∑
j∈Ri

s(xi:,xj:)(xjk − yik)
2

= 2
∑

j∈Ri

s(xi:,xj:)(xjk − yik) = 0.

Then we have

yik

∑
j∈Ri

s(xi:,xj:) =
∑

j∈Ri

s(xi:,xj:)xjk,

yik = x̂KNN
ik .
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B.3. Details about experiment of collaborative filtering

In this section, we describe the experimental settings used in the experiment of col-
laborative filtering and its additional results.

B.3.1 Proposed methods

For the covariance functions, we prepared the RBF kernel Σ(x,x′) = Ω(x,x′) =
exp(−λ ||x − x′||2) and a scaled linear kernel 1

D

∑D
d=1 xdx

′
d where D is the dimension-

ality of x and x′.

We choose the hyper-parameters by three-fold cross validation from candidates
σ2 ∈ {1, 0.5, 0.1, 0.05} and λ ∈ {10−1, 10−2, 10−3, 10−4, 10−5} for the RBF kernel and
σ2 ∈ {10, 1, 0.1} for the linear kernel. Table B.1 shows the chosen hyper-parameters.

Table B.1: Selected hyper-parameters.
Tensor GP Self-measuring Combination

RBF σ2 0.1 0.5 0.5
λ 0.1 0.001 0.001

Linear σ2 10 0.1 0.1

We set the tolerance of the conjugate gradient ε as 10−3. As the initial values of
{zik}, we use the row-mean for Σ and the column mean for Ω. For fair comparison,
the number of the EM-like iteration is determined by early stopping with a validation
set randomly drawn 5% of training data.

B.3.2 KNN and matrix factorization

We used MyMediaLite1 as the implementations of KNN and matrix factorization. We
set the hyper-parameters by following the examples specially recommended for the
Movielens 100k dataset.2

B.3.3 CUR decomposition

We used the Matlab code3 of CUR decomposition (Mahoney and Drineas, 2009),
which was implemented by Christos Boutsidis.

We set the rank of the CUR decomposition as 64, selected by three-fold cross
validation from rank ∈ {21, 22, 23, . . . , 210}.
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Figure B.1: Test errors v.s. the number of iterations of the EM-like heuristic with
the RBF kernel.
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B.3.4 Behaviour of EM-like iteration

Figure B.1 shows the EM-like heuristic drastically improves the prediction accuracy
at the second iteration, while the third or further iterations make the prediction
performance worse.

B.4. Details about experiment of tensor data sets

In this section, we describe the experimental settings used in the experiment of the
tensor data sets and its additional results.

B.4.1 pTucker

We implemented the pTucker model by the EM algorithm. Note that missing values
did not involve throughout the algorithm as the original implementation (Chu and
Ghahramani, 2009).

B.4.2 Results with various settings of σ2

Figure B.2 shows how the regularization parameter4 effects to reconstruction of un-
observed elements. In figure B.2, the result of the reconstruction is better for small
σ2. When the regularization is strong (i.e. σ2 is large), the reconstruction result
tend to be unshaped and blurred. Nevertheless, the regularization caused by σ2 has a
different effect compared to the low-rank constraint. The corresponding RMSEs are
shown in figure B.3. Figure B.4 and B.5 are the results for “Sugar process” data set
and show similar results.

1. http://www.ismll.uni-hildesheim.de/mymedialite
2. http://www.ismll.uni-hildesheim.de/mymedialite/examples/datasets.html
3. http://www.cs.rpi.edu/~boutsc/files/AlgorithmCUR.m
4. Originally σ2 is a coefficient of L2-norm regularization of W (see Equation (4.4).)
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Figure B.2: Reconstruction results of the “Amino acids” data set with various σ2

settings.
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Figure B.3: Testing errors of the “Amino acids” data set with various σ2 settings.
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Figure B.4: Reconstruction results of the “Sugar process” data set with various σ2

settings.
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Figure B.5: Testing errors of the “Sugar process” data set with various σ2 settings.
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