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Surface Electromyography Derived with Electrode Grid
from Submental Region
and its Application to Vowel Recognitiort

Takatomi Kubo

Abstract

Speech of dysarthric patients becomes slurred and makes communicétmritdi
However, communication assistance methods for dysarthric patients have not been
established enough yet. There are great expectations to develop a novel assistance
method. In fact, there are various researches done on the communication assistance.
One of those is a study by Deng et al., which showed ffectveness of the speech
recognition based on surface electromyography (sSEMG). However, electrode locations
used in those previous studies are still controversial. This is because disc electrodes
or parallel bar electrodes were used in those studies. Although such electrodes are
commonly-used, they cannot avoid deterioration of signal-to-noise ratio caused by the
influence of innervation zones and crosstalks, which must be taken into account for
determining the electrode location.

SEMG measurement using an electrode grid which has multichannel is used as an
effective method to cope with the problems caused by innervation zones and crosstalks
in the electro-physiological researches. In this dissertation, we introduce the use of
electrode grid based measurement to speech recognition based on sEMG and inves-
tigate whether this measurement methodftfeaive or not. Producing five vowels
and submental region are employed as the experimental task and measurement site,
respectively. The reason why we choose the submental region is that electrical activity
of muscles which control the movement of tongue can be measured partly from it.

*DoctoralDissertation, Department of Bioinformatics and Genomics, Graduate School of Informa-
tion Science, Nara Institute of Science and Technology, NAIST-IS-DD0961011, February 2, 2012.



In this dissertation, first, we illustrate that the positions of innervation zones of
superficial muscles can be estimated by using an electrode grid. Second, we investigate
the feasibility of vowel recognition based on sEMG derived with electrode grid and
show that vowel recognition can be realized to some extent from sEMG signals of
submental region. And lastly, we describe the results of applying sparse discriminant
analysis to the sEMG signals which can contain redundancy. Thus, it is shown that
redundant channel can be removed by the proposed method.
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Chapter 1

Introduction

1. Background

Speech is a unique, complex, and dynamic motor activity through which individuals
express thoughts and emotions. It is one of the most powerful tools of the human
species, and it contributes greatly to the quality of life. However, dysarthria deprives
people of such an invaluable tool. According toffn[17], dysarthria is defined as “a
collective name for a group of neurologic speech disorders resulting from abnormali-
ties in the strength, speed, range, steadiness, tone, or accuracy of movements required
for control of the respiratory, phonatory, resonatory, articulatory, and prosodic aspects
of speech production. The responsible pathophysiologic disturbances are due to central
or peripheral nervous system abnormalities and most often reflect weakness; spastic-
ity; incoordination; involuntary movements; or excessive, reduced, or variable muscle
tone.” This definition implies that dysarthria can be categorized into types, each types
characterized by different underlying neuropathophysiological findinggble 1.1
summarizes the categorization scheme developed by Darley, Aronson, and Brown [11]
(unilateral upper motor neuron dysarthria is added [17]). Dysarthria arises from neu-
romuscular disease, such as cerebrovascular disease, parkinson disease, amyotrophic
lateral sclerosis (ALS), cerebral palsy, etc. The number of dysarthric patients in Japan
were estimated to be approximately from 650,000 to 700,000 [62]. Furthermore, be-
cause aging of population will worsen the situation, communication problem caused
by dysarthria will gain in importance.

Since severe dysarthric speech is consideralfiiicdit even for caregivers and fam-



Table 1.1. Types of dysarthria and their responsible lesion and neuromotor bases

Type Responsible lesion Neuromotor basis

Flaccid Lover motor neuron Weakness

Spastic Bilateral upper motor neuron Spasticity

Ataxic Cerebellum Incoordination

Hypokinetic  Extrapyramidal circuit Rigidity, or reduced range
of movement

Hyperkinetic Extrapyramidal circuit Abnormal movements

UUMN* UUMN* Weakness, incoordination,
or spasticity

Mixed More than one More than one basis

*UUMN:Unilateral upper motor neuron

ilies to understand, some of dysarthric patients have to use other communication tools
called augmentative and alternative communications (AAC), either temporarily or per-
manently [17,63]. AACs are heterogeneous, and include gesture, facial expression, eye
gaze, writing, boards with alphabets amdpictures, PC-based system wtithout
special user interface (Fig. J,land etc. Even if limb movements are ifistient,

these special interfaces can be used by any part of body which remains under volitional
control. However, communication tools described above are significantly less efficient
than speech despite requiring residual function. It is obviously needed to develop more
efficient AAC devices.

2. Related Works

In fact, there have been various researches on the communication assistance. In this
section, some of such researches are introduced.

2.1 Speech Recognition for Dysarthric Patients

If the content of what dysarthric patients want to say can be estimated, the method
will be a more dicient AAC device. In fact, there are some researches where speech
recognition was applied for dysarthric patients to estimate what they intended to say

2
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Figurel.1. Example of user interfaces of augmentative and alternative communica-
tions. Users can input touching or pushing these interface. This image is reprinted
from [10].

[56], since speech recognition technology has advanced to the point of being utilized
in our daily lives. However, users’ speech impairment have caused low recognition
accuracy. Attempts to apply speech recognition with standard, commercially available
technology have been largely unsuccessful, or successful for only a limited vocabulary
of words. Blaney et al. [3], Thomas-Stonell et al. [51], and Raghavendra et al. [43]
showed that speech recognition accuracy were significantly lower for individuals with
moderate to severe dysarthria compared to individuals without dysarthria. It is also
suggested that greater speech variability often correlates with increasing severity of
dysarthria. Therefore, it seems to béidult to achieve high recognition accuracy with
severe dysarthric patients. ExtensifEods have been underway to develop speech
recognition technology based on models of dysarthric speech [18,21,22, 34, 44].

2.2 SsEMG-based Speech Recognition

To improve the recognition accuracy of dysarthric patients, Deng et al. [15] proposed
a speech recognition system based on surface electromyography (sEMG), with and
without acoustic signal. In the former case, they showed that high word recognition ac-
curacy (over 95%) could be achieved for dysarthric patienffesng from stroke and
cerebral palsy under speaker-dependent isolated-word recognition condition. SEMG is
a procedure that measures muscle electrical activity associated with muscle fiber con-
traction by using electrodes attached on the skin. More detail about SEMG is provided
in the chapter 2.



Not only in cases when a user makes usual voiced speech, but also when voiceless
mouthed speech is made, SEMG-based speech recognition can support communica-
tion. Therefore, SEMG-based speech recognition may also enable tracheostomized
or ventilator-dependent individuals who havefidulty in producing voice. Actu-
ally, Fukuda et al. [19] proposed an SEMG-based Japanese speech synthesizer system,
where six Japanese phonemes (five vowels,/ag./i/, /u/, /e/,/o/, and one syllabic
nasal/n/) were recognized from the patterns of SEMG signals using a probabilistic
neural network, and then words were recognized from series of phonemes using hid-
den Markov models (HMMs). Although the recognition accuracy of continuous speech
production was lower than that of syllable-wise speech productitectere phoneme
recognition with a laryngectomee was achieved by Fukuda’'s system. The results of
their study indicate that SEMG-based speech recognition has the potential to be a novel
type of speech prosthesis.

SEMG-based speech recognition has been investigated as an augmentative or al-
ternative information source not only for dysarthric patients, but also for healthy peo-
ple [14].The first study of the SEMG-based speech recognition dates back to the mid-
1980s. In 1985, Sugie et al. used three channels of SEMG and a finite automaton to
discriminate five Japanese vowels [48]. The target muscles were the digastricus, the
zygomaticus major, and the orbicularis oris. An average recognition accuracy of 64%
was achieved, and they also demonstrated a pilot real-time system. Morse et al. inves-
tigated the availability of speech information in four channels of SEMG from neck and
head [37]. Recognition accuracies of 97% and 35% was observed for the vocabularies
of 2-word and 17-word, respectively.

Over the last decade, there has been significant progress in the researches on SEMG-
based speech recognition. Encouraging performance was first reported by Chan et
al. [6], who achieved an average word accuracy of 93% on a vocabulary of the En-
glish ten digits. Linear discriminant analysis (LDA) was used as classifier in this study.
Chan also demonstrated that an HMM is applicable in SEMG-based speech recognition
in other studies [4, 5]. Application scenario in these studies was to use sEMG-based
speech recognition in a noisy environment. Jorgensen et al. proved the applicability of
SEMG signals for non-audible speech recognition [24]. They chose a scaled conjugate
gradient net as a classifier, and reported 92% word accuracy on a set of six words with
dual tree wavelet feature. In the later study, they extended the vocabulary to six words



usedin previous study and ten English digits and reported a recognition accuracy of
73% with support vector machine using radial basis function [23].

Since the early studies described above were performed using isolated word recog-
nition, as a result, it was flicult to undertake vocabulary expansion. Therefore, new
word addition required training a new classifier. The training of reliable acoustic mod-
els for a larger vocabulary requires breaking words into sequences of sub-word units,
such as phonemes, syllables, or etc. Jou et al. has shown that larger vocabularies of 108
words can be recognized with a word accuracy of around 70% in a single speaker setup
by using the phoneme-based acoustic models [26]. They explored various feature ex-
traction methods that represented the SEMG signals for continuous speech recognition
better. Scheme et al. also incorporated an approach based on a phoneme model [45].
In order to process the data, they used an HMM, each of which represented a phoneme
instead of a word. An 18-phoneme vocabulary, which contained words from “zero”
to “nine”, was applied. The overall word accuracy was over 94.7%. Walliczek et
al. researched sEMG-based speech recognition based on sub-word units: phoneme
or syllable [54]. HMMs with Gaussian mixture models are used as classifiers. With
a 32-word vocabulary in continuously spoken speech, phoneme model outperformed
syllable model slightly with the accuracy of 79.8% and 79.3%. In the experiment with
the vocabulary which was not included in training data, phoneme model outperformed
syllable model with the accuracy of 62.4% and 55.1%. They also developed a time
domain feature extraction method that gains significant improvement for words and
sub-word units.

Wand et al. presented an experiments on speaker independent and speaker adaptive
SEMG-based speech recognition, based on an SEMG data recorded from 14 speakers
reading sentences in audible speaking mode, in a collaboration between Carnegie Mel-
lon University, University of Pittsburgh, and Chatham University [55]. Schultz et al.
described the training of context dependent phonetic feature bundles, which further
improved recognition performance on the 101-word vocabulary, with up to 90% word
accuracy in a speaker dependent setup [46]. This result was based on a large collection
of SEMG data recorded from 78 speakers. Zhou et al. showed dramatically improved
word recognition performance increasing recognition by an average of 20% over the
approach of Schema et al., and achieved an average word classification accuracy of
98.5% [59]. The sEMG data were processed by class-specific PCA prior to feature



extraction, and Mel-frequency cepstral coefficients (MFCCs) were used for feature
extraction. Then, an uncorrelated linear discriminant analysis was used for dimension-
ality reduction. The resulting data were classified through an HMM classifier to obtain
the phonemic log likelihoods of the phonemes, which are mapped to corresponding
words using a word classifier (GMM).

Thus, previous studies have indicated the potentigicéffeness of SEMG-based
speech recognition for both healthy people and dysarthric patients.

3. Research Purpose

Although feasibility of SEMG-based speech recognition has been shown, in order to
achieve a high recognition accuracy in SEMG-based speech recognition, it is necessary
to decide the appropriate location of the electrodes. However, in previous studies, con-
ventional disc electrodes or parallel bar electrodes were used and located empirically
according to anatomical knowledge, as showirig. 1.2 Because there exist rela-
tively small muscles in proximity to each other in the face or neck region, itfis dlit

to avoid the influence of cross talks and innervation zones when conventional measure-
ment methods are applied. It is required to take these factors into account carefully for
deciding the electrode location.

To cope with the influence of innervation zones and crosstalks, SEMG measure-
ment using electrode grid which has multichannel is used affactige method in the
electro-physiological research area [36]. Lapatki et al. [27—29] proposed a high den-
sity multichannel SEMG system using electrode grid to improve signal-to-noise ratio
of SEMG signals recorded from the lower facial muscles.

To avoid missing out information about speech in the SEMG measurement step,
we introduce the use of an electrode grid which consists of densely-spaced multielec-
trodes in this dissertation. Submental region is focused on as measurement site of
SEMG signals during the production of 5 vowel sounds. There are multiple muscles
in the submental region that play important roles in controlling the movements of the
mandible and tongue [2]. However, the submental region was not given much em-
phasis in previous studies, and only one or at most two channels were used in these
experiments. Their function should receive considerably more attention for speech
recognition, especially for vowel recognition.



Figurel.2. (lef) Electrode location used by Deng et al. This image is reprinted from
[15] (also used in [35]).

(right) Electrode location proposed by Jou et al. This image is reprinted from [26]
(also used in [25, 31, 46])

In this dissertation, we verify three subjects. First, we examine whether the posi-
tions of innervation zones of superficial muscles can be estimated by using electrode
grid. Second, we investigate feasibility of vowel recognition based on sEMG derived
with electrode grid. Finally, we deal with an issue caused by redundant signals derived
by electrode grid.

4. Organization of Dissertation

The remaining parts of this dissertation is organized as follows:

e Chapter 2 provides fundamental information about speech production and sEMG
measurement. These are considerably important and necessary to understand
this dissertation.

¢ In the chapter 3, we present SEMG system which we developed, and describe
SEMG recording procedure used in our experiment, and illustrate that the po-
sitions of innervation zones of superficial muscles can be estimated by using
electrode grid.



e Chapterd shows feasibility of vowel recognition based on sEMG derived with
electrode grid.

¢ In the chapter 5, we deal with an issue caused by redundant signals of electrode
grid.

e We end this dissertation with the chapter 6 which concludes our work and pro-
vides suggestions for future directions.



Chapter 2

Anatomical and Physiological Bases
Related to sEMG-based Speech
Recognition

1. Speech Production Mechanism

Human speech is produced by vocal organs presentéid.ir2.1[30]. In “source-filter
model”, speech production system is conceptualized as a combination of two parts: a
sound source and an acoustic filter. In this model, it is assumed that speech sounds are
produced by the action of a filter, the vocal tract, on a sound source.

The main energy source to provide the airflow is the lungs with the diaphragm and
breathing muscles. The diaphragm muscle and breathing muscles act in compressing
and decompressing the lungs. When speaking, the air flow is forced through the glottis
between the vocal cords and the larynx to the three main cavities of the vocal tract,
the pharynx and the oral and nasal cavities. From the oral and nasal cavities the air
flow exits through the nose and mouth, respectively. Opening between the vocal cords,
called the glottis, is the most important sound source in the vocal system. The most
important function of the vocal cord is to modulate the airflow by rapidly opening and
closing, causing sound source from which vowels and voiced consonants are produced.
[30,58].

The pharynx connects the larynx to the oral cavity. Its length can be changed
slightly by raising or lowering the larynx and the soft palate. The soft palate also

9
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Figure2.1. Vocal organs. This image is reprinted from [30]. (1) Nasal cavity, (2) Hard
palate, (3) Alveoral ridge, (4) Soft palate (Velum), (5) Tip of the tongue (Apex), (6)
Dorsum, (7) Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal cords,
(12) Vocal cords, (13) Larynx, (14) Esophagus, and (15) Trachea.

isolates or connects the route from the nasal cavity to the pharynx [30,58]. The oral
cavity is one of the important parts of the vocal tract. Its size, shape and acoustics can
be varied by the movements of the palate, the tongue, the lips, the cheeks and the teeth.
In particular, the tongue moves very flexibly. The tip and the edges of tongue can be
moved independently. The entire tongue can move forward, backward, upward and
downward. Therefore they allow constrictions to occur at various positions along the
vocal tract. The lip controls the size and shape of the mouth opening through which
speech sound is radiated. Unlike the oral cavity, the nasal cavity has fixed dimensions
and shape. The airflow to the nasal cavity is controlled by the soft palate [30, 58].

All of the muscles related to speech is controlled by the motor cortex of the brain.



Figure2.2. Muscles related to the tongue movement. Thisimage is reprinted from [39].
“abd”: anterior belly of digastric, “hg”: hyoglossus, “mh”: mylohyoideus, “pbd”:
posterior belly of digastric,“sh”: stylohyoideus

Motor signals produced by the brain for the movement of the face and tongue are
transmitted through some specialized cranial nerves. During speech production, vo-
cal organs are driven by coordinated muscle activations to manipulate the vocal tract
shape and provide proper sound source. Tongue is the most complex and important
speech organ that forms vocal tract shapes for producing most of the vowels and con-
sonants. The tongue is driven by activating a set of associate muscles when producing
speech [2,49]Kig. 2.2[39]). The anterior belly of the digastric, the mylohyoideus,
and the geniohyoideus act to pull the hyoid bone upward and forward, or to depress the
mandible. The anterior genioglossus is responsible for pulling the dorsum forward and
downward. The posterior genioglossus has the function of pulling the tongue root for-
ward and raising the dorsum. Thus, these muscles manipulate tongue shape, which is
relevant with the vowel production. Despite theirimportance in human speech commu-
nication, the physiological mechanisms of the tongue muscles are poorly understood,
or only assumed by information based on gross anatomy and a small number of muscle
electrical-physiology [2].
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2. Physiological Basis of SEMG

This chapter aims to provide fundamental information to understand the recording of
the electrical activity of muscle using surface electromyography.

2.1 Anatomy of Motor Unit

The structural unit of skeletal muscle is the muscle fiber. A muscle fiber is a thin
structure ranging from 10 to 100 microns in diameter [47]. The contraction of skeletal
muscle is controlled by the motor neurons, as showRig 2.3[66]. Each muscle
fiber can be activated by oremotor neuron in spinal cord. On the other hand, one
a-motor neuron can branch in up to multiple branches, each one terminating in a dif-
ferent muscle fiber. A functional unit which consistsaefotor neuron and all fibers
innervated by it is called “motor unit” (MU). The term “endplate” refers to the junction
between a muscle fiber and the terminal of themotor neuron [65]. Endplates tend

to be localized near the central zone of muscles which is called “innervation zones”.
The membrane current induced in trenotor neuron by the synaptic innervation sites
determines the firing pattern of the MU.

differential amplifier

Sl

EMG signal
surface electrodes

a b
e

-

nerve cells - "~

o
myofibers

Figure2.3. sEMG measurment. (This image is reprinted from “EMG Website” [66].)
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2.2 Motor Unit Recruitment and Firing Frequency

In voluntary contractions, force is modulated by a combination of MU recruitment and
changes in MU activation frequency [36]. MUs are recruited in order of increasing
size of thea-motor neuron (“size principle”). It is well documented that motor unit
recruitment and firing frequency (rate coding) depend primarily on the level of force
and the speed of contraction. When low-threshold MUs are recruited, this results in a
muscle contraction characterized by low force generating capabilities and high fatigue
resistance. With recruitments for greater force/anthster contraction, high threshold
fatigable MUs are recruited. In the intrinsic muscles of human hands, motor units
appears to be complete at relatively lower force. On the contrary, recruitments in the
biceps, brachialis, and deltoid muscles may continue until greater force is modulated. It
is demonstrated that firing rates of active MUs increase monotonically with increasing
force output.

2.3 Muscle Electrical Activity

The membrane of muscle fiber is the seat of the bioelectric phenomena which result
in SEMG signals. Key factor is dynamic voltage-dependent behavior of the mem-
brane permeability to the main ions. The semi-permeable membrane of muscle fiber is
composed of a lipid bilayer. It forms a physical barrier between intracellular and ex-
tracellular fluids, over which an ionic equilibrium is maintained. The composition of
the extracellular fluid and intracellular fluid aretérent, as shown ifiable 2.1 These
ionic equilibrium forms a resting potential at the muscle fiber membrane, typically -80
to -90 mV. lon pumps passively and actively control the flow of ions through the cell
membrane.

When muscle fibers become innervated, the diffusion characteristics on the muscle
fiber membrane are modified, andN&ows into muscle fiber. When a certain thresh-
old level is exceeded by the influx of Naa depolarization of the cellular membrane,
an action potential is developed. It is characterized by a quick change from -80 mV to
+30 mV. Beginning from the endplates, the action potential spreads across the muscle
fibers in both directions at a propagation speed of 2/& mMhe action potential leads
to a release of Ca ions in the intracellular fluid. They produces a chemical response
resulting in a shortening of the contractile elements of the muscle cells [47]. This
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monopolarelectrical burst is restored in the repolarization phase and is followed by a
hyperpolarization phase.

Table 2.1. Intracellular and Extracellular lon Concentration for Mammalian Muscle
(mEQL)

lon Intracellular fluid Extracellular fluid

K* 140 4
Na* 14 142
cr 4 125
HCO, 8 28

2.4 sEMG Measurement Procedure

SEMG is a non-invasive technique to measure muscle electrical activity relating to
muscular contractions with electrodes attached on the skin overlying a muscle or group
of muscles. The typical equipment consists of electrodes, (preamplifier,) amplifier,
analog-to-digital converter, and computer.

The skin can be considered as the boundary between two media: body tissue that
contains source of electric field, and insulating space (air). The sources of electric
field generate two-dimensional potential distribution on the skin. SEMG comprises the
sum of the electrical contributions made by the active MUs as detected by the surface
electrodes, as shown iig. 2.3 When surface electrodes are applied, the distance
between the current source and the detection point is significant, and the spatial low-
pass filtering &ect of the volume conductor becomes relevant. The surface signals are
usually detected as aftkrential of the signals recorded affdrent electrodes. Once
the signal has been amplified by the preamplifiers if they exist, it is amplified further
by the main amplifiers. After that, the signal is filtered and may be conditioned or
processed. For example, processing may consist of rectifying, averaging, or integrat-
ing the signal. Only the raw signal may be recorded and interpreted by itself. Most
EMG data, however, usually are subjected to some type of processing. More detailed
explanations can be found in [12,47,65].

14



SEMG measurement based on linear electrode array and electrode grid has pro-
posed to estimate muscle fiber conduction velockig( 2.4 and position of in-
nervation zones and to decompose sEMG signals into motor unit action potentials
[16, 33,50, 65]. The linear electrode array and electrode grid are comprised of point
electrodes from which single or doubldférential signals could be extractdelg. 2.4
shows the propagation of the action potentials, from which muscle fiber conduction
velocity can be estimated. The information obtained from multichannel signals was
shown to be important and useful for research and clinical application.

ELECTROE=IMH  ANEE=D 309N

10mm 18 4
>
muscle
fiber
5
myoneural -
junction \
_H
|41
motor
nerve
muscle electrode array amplifiers

Figure2.4. Patterns of SEMG signals derived with linear electrode array. (This image
is reprinted from “EMG Website” [66].)

2.5 Feature Extraction for sSEMG Signals

SEMG signals are expected to be used as effective system input not only for the speech
recognition but also for prosthetic hand. Features commonly used for SEMG signals
are introduced in this section [36, 40,41, 57].
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Time domain features

Features in the time domain are generally calculated quickly, and have been widely
used in research and in clinical practice.

e Integrated EMG
Integrated EMG (IEMG) is calculated as the summation of the absolute values
of the sEMG signal amplitude. Generally, IEMG is used as an onset index to
detect the muscle activity.It can be expressed as

IEMG = ilxnl

n=1
whereN denotes the length of the segment apdepresents tha-th sample in
the segment.

e Average rectified value
Average rectified value (ARV) can be calculated using the moving average of
full-wave rectified SEMG. It is an easy way for detection of the muscle activity.

Itis defined as "
ARV == 3" ||
n=1

2|~

e Rootmean square
Root Mean Square (RMS) is related to the constant force and non-fatiguing con-
traction. It relates to standard deviation, which can be expressed as

N

D%

n=1

RMS =

2|~

e Variance
Variance (VAR) uses the power of the SEMG signal as a feature. Generally,
the variance is the mean value of the square of the deviation of that variable.
However, mean of SEMG signal is close to zero. In consequence, variance of
SEMG can be calculated by
1 ©,
VAR= N_1 ., X

n
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e Zerocrossing
Zero crossing (ZC) is the number of times that SEMG signal crosses the zero.
In SEMG feature, the threshold condition is used to take into account the back-
ground noise. This feature provides an approximate estimation of frequency
domain properties.

e Willison Amplitude
Willison amplitude (WAMP) is the number of times that théfdience between
SEMG signal amplitude among two adjacent segments that exceeds a predefined
threshold to reduce noise e€its same as zero crossing. The definition is as

N-1

WAMP= 3" (1% = Xu.a)

n=1

1 if x>threshold
f(x) =
0 otherwise

WAMP is related to the firing of motor unit action potentials (MUAP) and the
muscle contraction level.

e Waveform length
Waveform length (WL) is the cumulative length of the waveform over the time
segment.

e Autoregressive coefficients
Autoregressive (AR) model describes each sample of SEMG signal as a linear
combination of previous samples (plus a white noise error term). The model is
basically described by the following form:

p
Xo == > @i X+ &
i=1

wherex, is a sample of the model signal, is AR coefficientsg, is white noise
or error sequence, amgis the order of AR model.
e Cepstrum
Cepstrum of a signal is defined as the inverse Fourier transform of the logarithm
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of the magnitude of the power spectrum of the signal data. Cepstricieets
are given by
ch = F M log| X(f) |

for each channel after time window was applied to the signé($) represents
the short-time frequency spectrum, while! indicates the inverse Fourier trans-
form. The lower Cepstral céigcients contain information about the spectral en-
velope.

Time-Frequency domain features

The purpose of feature extraction is to emphasize the important information in the
measured signals while rejecting noise and irrelevant signal change. Time-frequency
features allow accurate representation of the target physical phenomenon in a specific
frequency range. However, time-frequency representation generally requires a trans-
formation that lead to increase of computational cost.

e Short-time Fourier transform
The short-time Fourier transform (STFT) consists of a series of DTFs. STFT at
frequencym and timek can be expressed as

L-1

STFTKk, m] = Z x{i] g[i — K] & 2mint

i=1

whereL is the length of the sequence, agid is the window function. The reso-
lution in time and frequency is lower bounded by the time-bandwidth uncertainty
principle or Heisenberg inequality.

e Mean frequency
Mean frequency (MNF) is calculated based on power spectrum. It can be ex-

pressed as
M M
MNF:ZfiPi/ZPi
i=1 i=1

wheref; is the frequency of spectrum at frequency pifP; is the SEMG power
spectrum, and M is the number of frequency bins in the spectrum.
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e Medianfrequency
Median frequency (MDF) can be expressed as

MDF M 1M
2.P= 2 Pi=5).P
i=1 i=MDF i=1

e Wavelet transform [42]
The wavelet transform (WT) overcomes the main drawback of the STFT by vary-
ing the time-frequency aspect ratio and by producing a good frequency resolu-
tion in long time windows (low frequencies) and a good time localization at high
frequencies. Wavelet transform method is divided into two types: continuous
wavelet transform (CWT) and discrete wavelet transform (DWT). CWT is de-
fined as

CWT(r,a) = % f x(t)‘P( )dt

where¥(t) is the mother waveleg is the scale variable, andis the shift vari-
able. DWT is a technique that iteratively transforms an interested signal into
multi-resolution subsets of coefficients.
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Chapter 3

Proposed sEMG Recording Method
during Vowel Production

1. sEMG System Overview

1.1 Electrode Grid

In the experimental setup, we used an SEMG system developed by Hattori et al. with
few modifications made on the electrode grid [20, 64]. The electrodes which con-

sisted of silver bars in Hattori’'s study were substituted with spring connector pins

(SK KOHKI Co.,Ltd., AX-12ENR-00), with each pin having a diameter of 0.8 mm,

to absorb any dynamic displacement of the attached site (Fig. 3.1). The set of elec-
trodes were arranged in an array of 8 rows by 8 columns, with the interelectrode dis-
tance (IED) set to 5.08 mm, from center to center, in both directions. To reduce skin
impedance, a voltage follower circuit was built with each electrode.

1.2 Setup for SEMG measurement

The electric potential dierences between each pair of electrodes neighboring in col-
umn direction were amplified up to 66 dB with band-pass filtering between 10 to 1500
Hz. Subsequently, the electric potentigtdiences were digitized with a 16-bit analog-
to-digital converter (National Instruments, NI USB-6255) and a laptop computer run-
ning MATLAB with its Data Acquisition Toolbox (MathWorks, 2010a). A microphone
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Figure3.1. (eft) The electrode grid. The white double-headed arrow indicates the row
direction, and the gray double-headed arrow indicates the column direction.
(right) The location of the electrode grid on the submental region in lateral view.

(KNOWLES, SP0103NC3-3) was also attached in front of the electrode grid, so that
acoustic signal could be simultaneously recorded along with the SEMG signals.

2. Recording Procedure

For this experiment, six adult Japanese native speakers were recruited as participants
(two female and four male with mean age of 26.2 years. Reféalbde 3.1for more

detail). All of the participants had no known speech impairment. In each trial, the
subject was asked to produce each of the five Japanese vgaygls, (u/, /e/, and/o/)

once in a random order. The task vowels were presented on a screen for 1 second with
an interval of 2 seconds between each of them as showigin3.2 and the subjects

was instructed to start vowel production at the onset of a visual presentation and stop
at the dfset.
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Table 3.1. Age and sex of participants
SubjectiD Age Sex

1 33 Female
2 33 Male
3 24  Male
4 23  Male
5 22  Female
6 22 Male

Figure3.2. Experimental task presentation

Except for one subject (Subject 2), all other subjects (Subject 1, 3-6) conducted
fifty trials in one day, while Subject 2 conducted fifty trials divided in half over two
days. Every time subjects wanted to take a rest, enough time was given, while the
electrode grid was removed. Though Subject 2 did not want to rest, other subjects took
three to seven rest intervals throughout the experiment.

During vowel production, the SsEMG signals were recorded with the electrode grid
attached on the submental region as showRign 3.1 The grid's centerline in the
column direction and the last row were aligned with the center of the mandible and the
posterior edge of the submental triangle, respectively, by visual inspedtign.3.3
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mandible

Figure3.3. Anatomy of muscles in the submental region reprinted from [39] and cor-
responding positions of the electrodes. Black dots represent the positions of the elec-
trodes. “abd”: the anterior belly of the digastric, “mh”: the mylohyoideus, “sm”: seam

of the mylohyoideus (raphe of the mylohyoideus).

shows the muscles in the relatively superficial layer of the submental region and the
corresponding positions of the electrodes. The anterior bellies of digastrics produce
the sEMG signals whose amplitudes are relatively large. Therefore, the SEMG signals
not only from the mylohyoideus but also from muscles in deeper layers, e.g. the genio-
hyoideus and the genioglossus, tend to be masked. In addition, there are innervation
zones near the center of each muscle. Although the innervation zones and cross talks
should be taken into account to avoid deterioration of the signal-to-noise ratio, it seems
to be rather difficult to find appropriate locations using conventional bipolar electrodes
whose diameters or lengths are approximately 1 cm.

As preparation, the skin on the submental region was cleaned with an alcohol swab
prior to attaching the electrode grid. The electrode grid was fixed on a tripod, and
the subject grasped the tripod’s legs, wrapped with stainless sheets, which served as
the ground reference. Both the SEMG and acoustic signals were then captured and
digitized at 16 kHz with an analog-to-digital converter.

Written informed consents were obtained from the subject prior to the experiment.
This study was approved by the institutional ethics committee of Nara Institute of
Science and Technology.

Examples of the signals coming from each vowel produced by Subject 1 are illus-
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tratedin Fig. 3.4-3.8 Fig. 3.9and3.10is horizontally magnified signals with the
case of vowejo/ for 200 msec and 50 msec, respectively. The signals coming from
the anterior part seem to indicate similar patterns. Time delay caused by conduction
can be regarded as short, given a common time frame length used for a conventional
speech recognition.

Potential (uV)

Time (sec)

Figure3.4. sEMG signals during producing vowe/
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Figure3.6. SEMG signals during producing vowa/
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Fig. 3.11and3.12are spectrograms of the case samé&igs 3.9, The latter is
calculated from the channel “Row 3-4, Column 6”. A certain degree of stationarity
is shown in these figures. The onset of the SEMG signals were precede that of the
acoustic signal, and thdfset of the SEMG signals follows that of the acoustic signal.

Figure3.11. Spectrogram with the case producing vowgl
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3. Estimation of Innervation Zone

Hierarchical clustering, which was conducted according to Euclidean distances of the
normalized signals, revealed that not only the anterior part but also the middle and
posterior parts were clustered. The dendrogram of this hierarchical clustering is shown
in Fig. 3.13and3.14 In addition, correlations between the representative channels
and the whole channels during production/of are shown inFig. 3.15and 3.16.

The representative channels consist of the channels between the 3rd and 4th rows in
the 6th column and between the 7th and 8th rows in the 7th column. Hereafter, these
channels are denoted as “3-4, 6” and “7-8, 7”. While the channels “3-4, 6” and “7-8,
7" have positive correlations with the surrounding channels, these two channels have
a significant negative correlation @533 p < 5.0x1072°%) with each otherFig. 3.17
represents the correlations between all possible combinations of channels.

These results might be relevant with the innervation zones of the anterior bellies
of the digastrics from where the propagation of the motor unit action potentials starts
(Fig. 3.3and3.14). Thus, by using electrode grid, the position of innervation zones
can be estimated in the superficial muscles.

Distance

Figure3.13. Dendrogram of hierarchical clustering on channels. Each label denotes
the row and column of the channel, for example, “3, 6” denotes a channel between the
3rd and 4th electrodes in the row direction within the 6th column.
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Figure 3.14. Cluster and corresponding anatomical locations. The correspondence
between the cluster and the locations are represented by the colored shade. The anterior
parts, the middle ones, and posterior ones are clustered. Each of them is subdivided

into right and left.
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Figure3.15. Correlations between the signal coming from channel “3-4, 6” and those
coming from all channels of the electrode grid.
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Figure3.16. Correlations between the signal coming from channel “7-8, 7" and those
coming from all channels of the electrode grid.
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Figure3.17. Correlations between all possible combinations of channels.
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Chapter 4

Vowel Recognition Experiment

1. Introduction

To investigate whether electrode grid is morfgeetive in extracting information for
SEMG-based speech recognition than conventional electrodes, we compared the recog-
nition accuracies between two methods: One was based on signals from all channels
(hereatfter,“all-channel method”) and the other was based on virtually reconstructed
single bipolar signal (“single-channel method”).

2. Data Preprocessing

The sEMG signals were filtered with an 8th order low-pass Butterworth filter having a
cut-offfrequency of 500 Hz, and then downsampled to 2 kHz. The onsetsfisedo

of the acoustic signals were used as reference to determine those of the SEMG signals.
The criteria applied in detecting the onsets and offsets of the acoustic signals were
based on a set of amplitude thresholds, and these signals were then visually confirmed
and corrected manually in only one onset. With the consideration of the delay between
the SEMG signals and the acoustic signals [25], the onset of the SEMG signals were
set to precede that of the acoustic signals by 150 msec, although the resting state could
also be included. As for the offsets of SEMG signals, these were set to 150 msec after
the dfsets of the acoustic signals. These onsets diseéts of the SEMG signals were

used to extract data for the following feature extraction process.

34



3. Feature Extraction

To be able to compare the single-channel method with the all-channel method, bipo-
lar signals from all possible combinations of electrodes within the same column were
virtually reconstructed from original signals, by adding signals from all channels be-
tween the two selected electrodes. Two types of feature sets were used in this study:
(1) time domain features, and (2) cepstral coefficients. Features were extracted from
the windowed signals of each channel. The window length was set to 25 msec with 50
samples, while the window period was set to 12.5 msec with 25 samples.

The time domain features consisted of the average rectified value (ARV), root mean
square (RMS), zero-crossing rate of high-pass filtered signals, and the mean of the raw
signals, along with thé\ and AA features of these four features. To some extent,
these features were similar to the features proposed by Jou et al. [26] except that less
contextual information was used.

The real parts of the lower 15 cepstral flagents, including the Oth cdigcients,
were used as features, along with theand AA features. Several researches have
shown that Mel-frequency cepstral ¢gbeients (MFCC), which are derived from cep-
stral codficients by applying filter bank based on the Mel-scale, can also be used as
features [15, 59]. However, there is no physiological plausibility to use MFCCs to
parameterize SEMG signals, since the Mel-filter bank is designed to approximate hu-
man auditory perceptual response to acoustic signals. In addition, if the sampling rate,
window length used in this study, and spectral features of the SEMG signals are taken
into account, then the usefulness of Mel-filter bank will be reduced. Therefore, in this
study, we employed cepstral deients instead of MFCC. For the all-channel method,
features from all 56 channels were concatenated. This concatenation resulted in having
more than several hundreds of dimensional features.

Dimensionality reduction was performed using linear discriminant analysis (LDA),
which is commonly used to map the data onto a lower dimensional subspace keeping
discriminative information as much as possible. The resulting final dimensions were
reduced to four in both methods.
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4. Vowel Recognition

Continuous HMM was adopted for vowel modeling, since it has been shown that the
HMM is effective for SEMG-based speech recognition as well as for acoustic speech
recognition. An HMM represents a stochastic process that takes sequential data as the
inputs, and outputs the probabilities that the data are generated by the model. For each
vowel, we used a nine state left-to-right HMM with three Gaussian mixture compo-
nents, whose covariance matrices in each state are diagonal. Expectation maximiza-
tion (EM) algorithm [13] was utilized in parameter estimation, and the vowel with the
maximum likelihood was adopted as the recognition result. Hidden Markov Model
Toolbox [38] was used to implement the HMMs in this experiment. 5-fold cross-
validations were conducted to investigate the recognition accuracies.

5. Results

The comparison between the recognition accuracies of tfereint channels and fea-

ture conditions are shown irig. 4.1. For the single-channel method, the best recog-
nition accuracies between all possible electrode combinations are indicated. The all-
channel method outperformed the single-channel method. With respect to features,
using cepstral coefficients indicated higher recognition accuracies than using time
domain features. The all-channel method with cepstrafficoents achieved 85.6%
recognition accuracy for Subject 1 and 79.6% recognition accuracy for Subj&at 2.

ble 4.1 shows recognition accuracy of all subjects under using cepstral coefficients
from all channels. Although the recognition accuracies stay at 70% level with the sub-
jects whose speech durations were short, those of the other subjects are almost over
80%. There is a positive correlation.827,p < 0.05 two sided t-test) between the
mean speech durations and the recognition accuracies.

36



Table 4.1. Vowel recognition accuracy
SubjectiD Sex Speech duration (ms) Recognition
accuracy (%)

1 F 880+ 110 85.6

2 M 1150+ 88 79.6

3 M 505+ 24 71.2

4 M 537+ 29 72.8

5 F 1260+ 88 86.0

6 M 1042+ 115 85.6
100
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Figure4.1. Comparison of the recognition accuracies for conditions wiiereint
features and channels used. All ch: all-channel method, Single ch: single-channel
method, Ceps: cepstral d@ieients, TD: time domain features.

Fig. 4.2 depicts the diffrences of recognition accuracies between the used elec-
trode locations in the single-channel method, including the locations which were used
in Fig. 4.2 The top offFig. 4.2shows the result of the case when the participant was
Subject 1 and the IED was 15.24 mm. The “Row” and “Column” labels denote the
positions where the virtual bipolar electrodes in the grid were selected. In the follow-
ing, location (i-j, k) denotes the bipolar signal between two (row, column) positions:
(i, k) and (j, k). In the top ofFig. 4.2 the recognition accuracy reaches a maximum
of 51.6%, at location (5-8, 2). However, it can be seen that (4-7, 1), (4-7, 2), and (4-7,
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3), which are neighbors of the maximum point, indicate accuracies of 38.0%, 30.8%,
and 38.4%, respectively. In some parts of the central locations in rows “2-5” or “3-6”,
the accuracies are at 20 to 30%. In the centdfigf 4.2, the location of the highest
recognition accuracy is different from that of the topFad. 4.2. Yet some parts of

the central locations in the row direction still indicated accuracies in the range of 20 to
30%. In the bottom oFig. 4.2, tendencies of Subject 2 are shown. Here, the locations
(3-5, 3) and (3-5, 6) reach the recognition accuracies of 54.0% and 53.6%, respectively.
However, the location (3-5, 7) which is a neighbor of the location (3-5, 6) indicates an
accuracy of 28.4%. In some posterior locations, the accuracies are at 20 to 30%.
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Figure 4.2. Changes of recognition accuracies with electrode locations under the
single-channel method.top) Subject 1 with IED= 15.24 mm, (centgrSubject 1
with IED = 20.32 mm, (bottomSubject 2 with IED= 10.16 mm. The “Row” and

“Column” labels denote the rows and columns of the electrode grid from where virtual
bipolar electrodes were selected.
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Table 4.2and4.3illustrate the confusion matrices, in the all-channel method and
cepstral cofficients of Subject 1 and 2, respectively. The rows of the tables represent
the actual spoken vowels, while the columns represent the vowels recognized by the
HMMs. In both of Subject 1 and 2, there is a relatively high tendency that vglagls
and/e/ cannot be discriminated from each othEéig. 4.3-4.7shows boxplots derived
from each row, i.e. spoken vowel, of confusion matrices with respect to six subjects.
From these boxplots, itis also shown that vowalsind/e/are hard to be discriminated
from each other with high accuracy.

Table 4.2. Confusion matrix for the vowel recognition of Subject 1

Recognizedrowel | Accuray

/Al fel ol (%)

/a/|40 0 1 6 3 80

i/ 0 47 1 2 O 94
Spolenvowel /u/| O 1 48 0 1 96
e/l 8 2 0 37 3 74

/o/| 3 0 1 4 42 84

Table 4.3. Confusion matrix for the vowel recognition of Subject 2

Recognized/owel | Accuray

/& fou el o/ (%)

/13 2 0 9 O 78

i/ 1 38 3 8 O 76
Spolenvowel /ju/| O 0O 43 0 7 86
/e/| 6 3 0 38 3 76

/o/] 1 0 8 0 41 82
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Figure4.3. Recognized results of spoken voyial On each box, the central line is the
median, the asterisk is the mean, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and out-
liers are plotted individually by red plus sign. Two medians are significanfigreint

at the 5% significance level if their intervals which are represented by notches do not
overlap.
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6. Discussion

It has been confirmed in this experiment that the all-channel method has achieved con-
siderably higher recognition accuracies for the five Japanese vowels than the single-
channel method, although the oblique and lateral directions have not been investigated
in this study. This result indicates that using electrode grid is more effective in ex-
tracting information for sEMG-based speech recognition than using conventional elec-
trodes.

As shown inFig. 4.2, the single-channel method is influenced by the locations
of the selected electrodes. In addition, inter-individual variability is also shown in
Fig. 4.2. Therefore, when conventional disc or parallel bar electrodes are used, it
is highly important to carefully consider those locations with respect to each subject
might be required in order to achieve higher recognition accuracies. But, doing such
tests for each and every subject seems to be rather impractical. One of the reasons
for this inter-individual variability is that there areffirences in anatomical structures
and muscular coordination patterns. To take into account the anatomical structure,
magnetic resonance imaging (MRI) of the lower position of the face and neck should
be useful [49].

From the confusion matrices shown bgble 4.2and4.3 and the boxplots shown
by Fig. 4.3and4.6, there is a possibility that vowela/and/e/cannot be discriminated
with high accuracy from each other when only SsEMG signals from the submental re-
gion are used. This finding is consistent with another previous study. By using three
parallel bar electrodes, Manabe et al. [32] conducted an experiment of Japanese vowel
recognition based on sEMG signals measured from the orbicularis oris, the zygomati-
cus major, and the anterior belly of the digastric during mouthed speech. However,
only the RMS values of the signals were used as features. Although there seemed
to be dificulty in vowel recognition using the RMS value from the anterior belly of
the digastric, the RMS value from the orbicularis oris could contribute significantly to
the discrimination of the vowel&/ and/e/ (Fig. 4.8). Indeed, there is a flerence
in the condition of the usual voiced speech and voiceless mouthed speech between
our experiment and that of Manabe et al. But their experiment implies that additional
measurement from the orbicularis oris can improve the recognition accuracy of our
proposed method in discriminating between vowalsand/e/. Moreover, consonants
should also be considered in future studies. In order to achieve it, SEMG signals from
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Figure4.8. 3D distribution in feature space of a previous study. This image is reprinted
from [32].

other perioral muscles must be considered as well.

On the other hand, the tradeddir the dense measurement given by an electrode
grid is that it may contain signal redundancy. It is therefore necessary to reduce this
redundancy, considering the spatial inter-individual variability as well, especially when
working with dysarthric patients. To this end, experiments must be conducted with
more subjects.

7. Conclusion

This study proposed the use of an electrode grid for Japanese vowel recognition based
on surface electromyography (SEMG). We compared the recognition accuracies of five
Japanese vowels between two methods: the all-channel method which used an elec-
trode grid, and the single-channel method which used a virtually reconstructed single
bipolar signal. The former achieved recognition accuracies of approximately 80 to
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85%,which was higher than that of the latter. This result indicates that using an elec-
trode grid is more effective in extracting information for SEMG-based speech recogni-
tion than using a conventional disc or parallel bar electrode. Furthermore, future works
on obtaining the findings for spatial inter-individual variability of SEMG signals and
reducing the redundant electrodes are warranted.
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Chapter 5

Feature Selection for Vowel
Recognition

1. Introduction

In the vowel recognition experiments in chapter 4, using the electrode grid realizes
denser measurements and brings more information about speech. However, in using
the electrode grid, new problems such as unfavorable cost increase of both device
and computation arise due to the redundancies of some signals which consequently
lead to redundant features. To alleviate this problem, we introduce a feature selection
method. We apply sparse discriminant analysis (SDA) [7—9] which was proposed by
Clemmensen et al. as a solution, and investigate how this type of feature selection
influences the accuracy of vowel recognition.

The cepstral cd@icients are employed as features for this study, because the cep-
stral coefficients indicated higher recognition accuracies than the time domain features
as shown in chapter 4. The cepstral fmgents were extracted from the windowed
signals of each channel obtained from Subject 1. The real parts of the lower 15 cep-
stral codficients (including the Oth cdigcients),A features, andA features were used
as features. The features from all 56 channels were concatenated. This concatenation
resulted in having 2520 feature dimensions.
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2. Sparse Discriminant Analysis

Although, in our preliminary study, dimension reduction was performed using linear
discriminant analysis (LDA), in this study, we used sparse discriminant analysis (SDA)
[7—-9] proposed by Clemmensen et al. instead of LDA (SDA software in MATLAB is
available from [7]). SDA can perform feature selection simultaneously with dimension
reduction by imposing sparseness constraint.

Let X denote am x p data matrix with observations down the rows and features
in the columns, and lef denote am x K (classes) matrix of dummy variables which
indicate belonging classes. Clemmensen et al. defined the sparse optimal scoring
criterion as

ar%gninn‘l(llYB — XBIZ+ A2BIZ + ¥ 11B1L) . (5.1)

subjectton™[YO|5 = 1, (5.2)

where is apxq matrix of parameters which leadsq@omponents of direction§,is

Kxq matrix of scoresd andy are nonnegative tuning parameters, &g a symmetric
positive definite matrix. This method involves recasting the classification problem as
a regression problem by turning categorical variables into quantitative variables, via
0. lterative algorithm is used for finding a local minimum of the criterion (5.1) with
respect tg3 and@. For fixedd, 3;, ) = 1,...,q, is obtained by solving the modified
elastic net problem [60]:

B = argﬁminn‘l (Y0} = XBiliz + 13 2B; + ¥ 1IBjll1) - (5.3)
i
Wheny is large, thel; penalty ong; results in sparseness. For fix8dthe criterion
becomes
6 = arg minn™ Y@ - X35, (5.4)
o

subject ton 2 |[YO|2 = 1. (5.5)

Steps related to the equations (5.3) and (5.4) are iterated until convergence or until
a maximum number of iterations is reached. In the SDA software, the desired number
of features can be set insteadyof

In this study, we investigated the relationships between the recognition accuracies
and the numbers of selected features wiiet to 0, 0.01, 0.1, 1, 10, and 100. The num-
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berof componentg was set to 4, which was equal to that of LDA in our preliminary
study.

3. Results

Fig. 5.1shows the changes in recognition accuracies with the numbers of selected
features per component under varying valuga.aflowever, in this experiment, change
in 1 seems to have little influence on the recognition accuracies, especially in the range
of higher accuracies. In the chapter 4, the recognition accuracy of 85.6% was achieved
by applying LDA to all of the 2520 features, as showrkrig. 5.1 by the upper dashed
line. Indeed, the LDA method outperformed the SDA method, but our main purpose
is to investigate how feature selection influences the recognition accuracy. If there is
redundancy in the obtained features, SDA based method can reduce the numbers of se-
lected features without decline in the recognition accuracy. Actually, it can be seen in
Fig. 5.1that even if the features are compressed to one fifth of the total features, recog-
nition accuracies are still kept over 80%. However, as the number of selected features
decrease from 100 to 20, the recognition accuracies decrease steeply. In the chapter 4,
we also obtained the recognition accuracies by using LDA on virtually reconstructed
bipolar single channel signals which were calculated from all possible combinations
of electrodes within the same column of electrode grid. These virtually reconstructed
signals could be equivalent to signals measured by one channel of conventional bipo-
lar electrodes. The best recognition accuracy among all of the virtually reconstructed
signals is shown to be 51.6% and is indicated by the lower dashed IFig.iB.1.
Additionally, we investigated the numbers of selected times of features with respect
to the corresponding channels, orders of the cepstrdlicemts, and the difference in
cepstral coefficientg) features, an@dA features. The results of this investigation are
shown inFig. 5.2and5.3. These results are taken from the case when the number of
selected features per component is 100 anmsiset to 0.01. IrFig. 5.2, there are 28
channels, equivalent to half of all the channels, whose numbers of selected times are
0 to 4. Most of the channels from column 4 to 8 are regarded as redurféignts.3
shows that the cepstral déieients,A features, andA features whose orders are 6 or
higher are selected 4 times or less. Thi&edlence in cepstral coefficients features,
andAA features has little or no influence on the numbers of selected times.
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Figure5.1. Changes of recognition accuracies with the numbers of selected features.
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from all channels in the chapter 4. “LDA (single tgnotes the best recognition ac-
curacy obtained by using LDA on virtually reconstructed bipolar single channel signal
among all possible combinations of electrodes within the same column of electrode
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Figure5.2. The numbers that electrode channels were seled&yv ‘and “Column”
denote the row and column of electrode grid, respectively.

4. Discussion

It was illustrated inFig. 5.1 that feature selection compressing to 100 or 200 fea-
ture dimensions can be realized while discriminative powers are kept relatively higher.
From the point of view on the appropriate numbers of channels to extract information
about speech, it was suggested frbig. 5.1and5.2that using more than 28 channels
were preferable and that 1 channel of conventional bipolar electrodes is insufficient
to achieve acceptable recognition accuracy. As for features, regardledtecémte
in cepstral coeflicientg) features, andA features, higher order coefficients were re-
garded as redundant. Those values can have relatively higher correlation with each
other due to the nature of the cepstral ftagents, therefore they may tend to be re-
garded as redundant. To deal with the tratibetween cost for device and computation
and recognition accuracy, combination of dense measurement based on the electrode
grid and the feature selection method based on SDA is able to provide valuable infor-
mation as shown in this study. Redundant channels and cepstfitieogs can be
removed for the purpose to reduce device cost or computational cost.

However, the reason why the channels in column 4 to Bign 5.2 are regarded
as redundant might be due to left-right symmetry of anatomical strudkige.5.4is
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anatomical image of relatively superficial layer of submental region in the horizontal
sectional view. Red shaded part covers column 1 to 3 and it is roughly in accordance
with left one of the muscles called “anterior belly of the digastric”. On the other hand,

it is possible that patients with dysarthria due to paralysis may have laterality in their
SEMG signals. If that is the case, the channels regarded as redundant in this study
should not be removed for dysarthric patients. Experiments with dysarthric patients
are therefore essential in deciding appropriate electrode location for them.

5. Conclusion

This chapter investigated how feature selection influences the accuracy of vowel recog-
nition based on sEMG derived with a multichannel electrode grid. We applied SDA for
feature selection to cope with redundant signals. It was illustrated that feature selec-
tion compressing to one tenth or one twentieth of the total features could be achieved
without steep decline in recognition accuracies. In addition, the redundant channels
and features were specified by using SDA. Thus, combination of dense measurement
based on the electrode grid and the feature selection based on SDA fiteetive
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Figure5.4. Relationship between selected channels and anatomical structure

approach for the researches on sEMG-based speech recognition which has not been
established very well yet.
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Chapter 6

Conclusions

1. Summary

This dissertation proposed the use of an electrode grid for Japanese vowel recognition
based on surface electromyography (SEMG). First, we confirmed that innervation zone
of anterior belly of digastic can be roughly estimated.

Next, we compared the recognition accuracies of five Japanese vowels between
two methods: the all-channel method which used an electrode grid, and the single-
channel method which used a virtually reconstructed single bipolar signal. The former
achieved recognition accuracies of approximately 80 to 85%, which was higher than
that of the latter. This result indicates that using an electrode grid is nfi@etiee in
extracting information for SEMG-based speech recognition than using a conventional
disc or parallel bar electrode.

Also, this dissertation investigated how feature selection influences the accuracy
of vowel recognition based on sEMG derived with a multichannel electrode grid. We
applied SDA for feature selection to cope with redundant signals. It was illustrated
that feature selection compressing to some extent could be achieved without steep
decline in recognition accuracies. In addition, the redundant channels and features
were specified by using SDA. Hemi-lateral side of submental region was regarded as
redundant in this dissertation.
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2. Future works

For our future work, it is necessary to explore appropriate electrode locations not only
on the submental region but also on the lower face and neck region, especially when
considering recognition of consonants. Similarly, exploring with higher dimensional
features which includes but is not limited to various time domain features, frequency
domain features, and wavelet ¢eients will be significant in extracting more in-
formation about speech. Because SEMG-based speech recognition has not been es-
tablished very well yet, it seems unlikely that such explorations can be done without
including redundant data. In addition, in this scenario, there will be high dimensional
low sample size setting which will be problematic. Although LDA is more likely to
cause overfitting in the high dimensional low sample size setting, SDA has the potential
to be more effctive because of its capability to reduce overfitting. Furthermore, SDA
is straightforwardly extended to sparse mixture discriminant analysis (SMDA) [8, 9]
which can deal with mixture of Gaussians. SMDA can be suitable for word recogni-
tion and continuous speech recognition. SMDA in MATLAB is also available from [7].
Thus, SDA and SMDA have great potentials to Iffieetive tools for the researches on
SEMG-based speech recognition.

Besides, obtaining the findings for spatial inter-individual variability of SEMG sig-
nals are warranted. This spatial inter-individual variability is largely due fiedi
ence in anatomical structure and coordination pattern of muscles. To take into account
the anatomical structure, magnetic resonance imaging (MRI) of the lower position of
the face and neck should be useful [4%]ig. 6.1shows example of MRI image of
them [1}. Source localization [52,53] based on sEMG signals can be also useful for
speech recognition, when the anatomical structure obtained by MRI is utilized as the
constraint.

Our actual goal is clinical application of SEMG-based speech recognition to dysarthric
patients. SEMG signals of patients with some kind of dysarthria present neurogenic
change of EMG signals [61]. To achieve high recognition accuracy with dysarthric

1TheMRI data used in this study is part of “ATR MRI data of Japanese vowel production” that were
acquired at and released from ATR Human Information Science Laboratories under “Research of Human
Communication” funded by the National Institute of Information and Communications Technology. The
use of the database and release of the results are under the license agreement with ATR-Promotions Co.
Ltd.
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Figure6.1. MRI image of vocal tract

patients, we have to consider change in firing rate and amplitude. Experiments with
dysarthric patients and accumulation of their data are necessary to investigate feasibil-
ity of SEMG-based speech recognition with dysarthric patients. Our proposed method
is also applicable as rehabilitation aid by providing feedback information derived from
SEMG signals to the patients. Since tongue is less visible compared with upper limb
or lower limb, feedback about tongue state will be more useful for rehabilitation.
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Figure6.2. (upper lef) MRI image of arm, @pper righ) 3D geometry mode con-
structed from the MRI datal,bpttom) Reconstructed activities. These images are
reprinted from [53]
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