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SurfaceElectromyography Derived with Electrode Grid

from Submental Region

and its Application to Vowel Recognition∗

Takatomi Kubo

Abstract

Speech of dysarthric patients becomes slurred and makes communication difficult.

However, communication assistance methods for dysarthric patients have not been

established enough yet. There are great expectations to develop a novel assistance

method. In fact, there are various researches done on the communication assistance.

One of those is a study by Deng et al., which showed the effectiveness of the speech

recognition based on surface electromyography (sEMG). However, electrode locations

used in those previous studies are still controversial. This is because disc electrodes

or parallel bar electrodes were used in those studies. Although such electrodes are

commonly-used, they cannot avoid deterioration of signal-to-noise ratio caused by the

influence of innervation zones and crosstalks, which must be taken into account for

determining the electrode location.

sEMG measurement using an electrode grid which has multichannel is used as an

effective method to cope with the problems caused by innervation zones and crosstalks

in the electro-physiological researches. In this dissertation, we introduce the use of

electrode grid based measurement to speech recognition based on sEMG and inves-

tigate whether this measurement method is effective or not. Producing five vowels

and submental region are employed as the experimental task and measurement site,

respectively. The reason why we choose the submental region is that electrical activity

of muscles which control the movement of tongue can be measured partly from it.

∗DoctoralDissertation, Department of Bioinformatics and Genomics, Graduate School of Informa-

tion Science, Nara Institute of Science and Technology, NAIST-IS-DD0961011, February 2, 2012.
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In this dissertation, first, we illustrate that the positions of innervation zones of

superficial muscles can be estimated by using an electrode grid. Second, we investigate

the feasibility of vowel recognition based on sEMG derived with electrode grid and

show that vowel recognition can be realized to some extent from sEMG signals of

submental region. And lastly, we describe the results of applying sparse discriminant

analysis to the sEMG signals which can contain redundancy. Thus, it is shown that

redundant channel can be removed by the proposed method.

Keywords:

surface electromyography, electrode grid, submental region, speech recognition, dysarthria
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格子状電極を用いたオトガイ下部からの表面筋電図計測

および母音認識へのその応用∗

久保　孝富

内容梗概

構音障害を来した患者では、発話が不明瞭となり、コミュニケーションに支

障を来してしまう。しかし、構音障害者へのコミュニケーション支援の方法は、

十分に確立されているとは言い難く、新たな支援方法の開発に期待が寄せられて

いる。実際にコミュニケーション支援の目的で様々な研究が行われており、その

ような研究の一つに表面筋電図信号に基づいた音声認識が有効であることを示し

たDengらの報告がある。一方で、表面筋電図信号に基づいた音声認識の先行研

究では、電極の配置の妥当性に議論の余地が残っている。これら先行研究では、

一般的に用いられる皿状電極やパラレルバー電極を用いて表面筋電図計測を行っ

ているが、神経支配帯やクロストーク等の影響により信号対ノイズ比の低下を生

じ得るため、電極の配置の際にそれらの要因に対して十分な考慮が必要となる。

神経支配帯やクロストークの影響に対処する上で、多計測点を有する格子状

電極を用いた表面筋電図計測が、電気生理学の研究分野では有効な方法だとされ

ている。そのため、本研究では、表面筋電図信号に基づいた音声認識に対して、

格子状電極を用いた計測方法の導入を試み、その有用性の検証を行う。実験課題

には、音声においての重要性を考慮して 5母音を採用することとし、そして計測

部位はオトガイ下部とする。オトガイ下部を対象とする理由は、母音生成におい

て重要と考えられる器官である舌の運動に関与する筋活動の計測を行えるからで

ある。

本論文では、まず格子状電極を用いることで表層にある筋肉の神経支配帯の

位置が特定され得ることを示す。次に、格子状電極によって導出された表面筋電

図信号を用いて母音認識の実現が可能か検証し、実際にオトガイ下部からのみで

∗奈良先端科学技術大学院大学 情報科学研究科 情報生命科学専攻 博士論文, NAIST-IS-

DD0961011, 2012年 2月 2日.
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あっても一定の精度で母音認識を実現できることを示す。最後に、格子状電極を用

いることで計測信号に冗長性が生じてしまうと考えられるが、sparse discriminant

analysisを用いることで、冗長なチャンネルを削減できる可能性があることを示す。

キーワード

表面筋電図,格子状電極,オトガイ下部,音声認識,構音障害
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Chapter 1

Introduction

1. Background

Speech is a unique, complex, and dynamic motor activity through which individuals

express thoughts and emotions. It is one of the most powerful tools of the human

species, and it contributes greatly to the quality of life. However, dysarthria deprives

people of such an invaluable tool. According to Duffy [17], dysarthria is defined as “a

collective name for a group of neurologic speech disorders resulting from abnormali-

ties in the strength, speed, range, steadiness, tone, or accuracy of movements required

for control of the respiratory, phonatory, resonatory, articulatory, and prosodic aspects

of speech production. The responsible pathophysiologic disturbances are due to central

or peripheral nervous system abnormalities and most often reflect weakness; spastic-

ity; incoordination; involuntary movements; or excessive, reduced, or variable muscle

tone.” This definition implies that dysarthria can be categorized into types, each types

characterized by different underlying neuropathophysiological findings.Table 1.1

summarizes the categorization scheme developed by Darley, Aronson, and Brown [11]

(unilateral upper motor neuron dysarthria is added [17]). Dysarthria arises from neu-

romuscular disease, such as cerebrovascular disease, parkinson disease, amyotrophic

lateral sclerosis (ALS), cerebral palsy, etc. The number of dysarthric patients in Japan

were estimated to be approximately from 650,000 to 700,000 [62]. Furthermore, be-

cause aging of population will worsen the situation, communication problem caused

by dysarthria will gain in importance.

Since severe dysarthric speech is considerably difficult even for caregivers and fam-

1



Table 1.1. Types of dysarthria and their responsible lesion and neuromotor bases
Type Responsible lesion Neuromotor basis

Flaccid Lower motor neuron Weakness

Spastic Bilateral upper motor neuron Spasticity

Ataxic Cerebellum Incoordination

Hypokinetic Extrapyramidal circuit Rigidity, or reduced range

of movement

Hyperkinetic Extrapyramidal circuit Abnormal movements

UUMN* UUMN* Weakness, incoordination,

or spasticity

Mixed More than one More than one basis

*UUMN:Unilateral upper motor neuron

ilies to understand, some of dysarthric patients have to use other communication tools

called augmentative and alternative communications (AAC), either temporarily or per-

manently [17,63]. AACs are heterogeneous, and include gesture, facial expression, eye

gaze, writing, boards with alphabets and/or pictures, PC-based system with/without

special user interface (Fig. 1.1), and etc. Even if limb movements are insufficient,

these special interfaces can be used by any part of body which remains under volitional

control. However, communication tools described above are significantly less efficient

than speech despite requiring residual function. It is obviously needed to develop more

efficient AAC devices.

2. Related Works

In fact, there have been various researches on the communication assistance. In this

section, some of such researches are introduced.

2.1 Speech Recognition for Dysarthric Patients

If the content of what dysarthric patients want to say can be estimated, the method

will be a more efficient AAC device. In fact, there are some researches where speech

recognition was applied for dysarthric patients to estimate what they intended to say

2



Figure1.1. Example of user interfaces of augmentative and alternative communica-

tions. Users can input touching or pushing these interface. This image is reprinted

from [10].

[56], since speech recognition technology has advanced to the point of being utilized

in our daily lives. However, users’ speech impairment have caused low recognition

accuracy. Attempts to apply speech recognition with standard, commercially available

technology have been largely unsuccessful, or successful for only a limited vocabulary

of words. Blaney et al. [3], Thomas-Stonell et al. [51], and Raghavendra et al. [43]

showed that speech recognition accuracy were significantly lower for individuals with

moderate to severe dysarthria compared to individuals without dysarthria. It is also

suggested that greater speech variability often correlates with increasing severity of

dysarthria. Therefore, it seems to be difficult to achieve high recognition accuracy with

severe dysarthric patients. Extensive efforts have been underway to develop speech

recognition technology based on models of dysarthric speech [18,21,22,34,44].

2.2 sEMG-based Speech Recognition

To improve the recognition accuracy of dysarthric patients, Deng et al. [15] proposed

a speech recognition system based on surface electromyography (sEMG), with and

without acoustic signal. In the former case, they showed that high word recognition ac-

curacy (over 95%) could be achieved for dysarthric patients suffering from stroke and

cerebral palsy under speaker-dependent isolated-word recognition condition. sEMG is

a procedure that measures muscle electrical activity associated with muscle fiber con-

traction by using electrodes attached on the skin. More detail about sEMG is provided

in the chapter 2.
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Not only in cases when a user makes usual voiced speech, but also when voiceless

mouthed speech is made, sEMG-based speech recognition can support communica-

tion. Therefore, sEMG-based speech recognition may also enable tracheostomized

or ventilator-dependent individuals who have difficulty in producing voice. Actu-

ally, Fukuda et al. [19] proposed an sEMG-based Japanese speech synthesizer system,

where six Japanese phonemes (five vowels, i.e./a/, /i/, /u/, /e/, /o/, and one syllabic

nasal/n/) were recognized from the patterns of sEMG signals using a probabilistic

neural network, and then words were recognized from series of phonemes using hid-

den Markov models (HMMs). Although the recognition accuracy of continuous speech

production was lower than that of syllable-wise speech production, effective phoneme

recognition with a laryngectomee was achieved by Fukuda’s system. The results of

their study indicate that sEMG-based speech recognition has the potential to be a novel

type of speech prosthesis.

sEMG-based speech recognition has been investigated as an augmentative or al-

ternative information source not only for dysarthric patients, but also for healthy peo-

ple [14].The first study of the sEMG-based speech recognition dates back to the mid-

1980s. In 1985, Sugie et al. used three channels of sEMG and a finite automaton to

discriminate five Japanese vowels [48]. The target muscles were the digastricus, the

zygomaticus major, and the orbicularis oris. An average recognition accuracy of 64%

was achieved, and they also demonstrated a pilot real-time system. Morse et al. inves-

tigated the availability of speech information in four channels of sEMG from neck and

head [37]. Recognition accuracies of 97% and 35% was observed for the vocabularies

of 2-word and 17-word, respectively.

Over the last decade, there has been significant progress in the researches on sEMG-

based speech recognition. Encouraging performance was first reported by Chan et

al. [6], who achieved an average word accuracy of 93% on a vocabulary of the En-

glish ten digits. Linear discriminant analysis (LDA) was used as classifier in this study.

Chan also demonstrated that an HMM is applicable in sEMG-based speech recognition

in other studies [4, 5]. Application scenario in these studies was to use sEMG-based

speech recognition in a noisy environment. Jorgensen et al. proved the applicability of

sEMG signals for non-audible speech recognition [24]. They chose a scaled conjugate

gradient net as a classifier, and reported 92% word accuracy on a set of six words with

dual tree wavelet feature. In the later study, they extended the vocabulary to six words

4



usedin previous study and ten English digits and reported a recognition accuracy of

73% with support vector machine using radial basis function [23].

Since the early studies described above were performed using isolated word recog-

nition, as a result, it was difficult to undertake vocabulary expansion. Therefore, new

word addition required training a new classifier. The training of reliable acoustic mod-

els for a larger vocabulary requires breaking words into sequences of sub-word units,

such as phonemes, syllables, or etc. Jou et al. has shown that larger vocabularies of 108

words can be recognized with a word accuracy of around 70% in a single speaker setup

by using the phoneme-based acoustic models [26]. They explored various feature ex-

traction methods that represented the sEMG signals for continuous speech recognition

better. Scheme et al. also incorporated an approach based on a phoneme model [45].

In order to process the data, they used an HMM, each of which represented a phoneme

instead of a word. An 18-phoneme vocabulary, which contained words from “zero”

to “nine”, was applied. The overall word accuracy was over 94.7%. Walliczek et

al. researched sEMG-based speech recognition based on sub-word units: phoneme

or syllable [54]. HMMs with Gaussian mixture models are used as classifiers. With

a 32-word vocabulary in continuously spoken speech, phoneme model outperformed

syllable model slightly with the accuracy of 79.8% and 79.3%. In the experiment with

the vocabulary which was not included in training data, phoneme model outperformed

syllable model with the accuracy of 62.4% and 55.1%. They also developed a time

domain feature extraction method that gains significant improvement for words and

sub-word units.

Wand et al. presented an experiments on speaker independent and speaker adaptive

sEMG-based speech recognition, based on an sEMG data recorded from 14 speakers

reading sentences in audible speaking mode, in a collaboration between Carnegie Mel-

lon University, University of Pittsburgh, and Chatham University [55]. Schultz et al.

described the training of context dependent phonetic feature bundles, which further

improved recognition performance on the 101-word vocabulary, with up to 90% word

accuracy in a speaker dependent setup [46]. This result was based on a large collection

of sEMG data recorded from 78 speakers. Zhou et al. showed dramatically improved

word recognition performance increasing recognition by an average of 20% over the

approach of Schema et al., and achieved an average word classification accuracy of

98.5% [59]. The sEMG data were processed by class-specific PCA prior to feature

5



extraction, and Mel-frequency cepstral coefficients (MFCCs) were used for feature

extraction. Then, an uncorrelated linear discriminant analysis was used for dimension-

ality reduction. The resulting data were classified through an HMM classifier to obtain

the phonemic log likelihoods of the phonemes, which are mapped to corresponding

words using a word classifier (GMM).

Thus, previous studies have indicated the potential effectiveness of sEMG-based

speech recognition for both healthy people and dysarthric patients.

3. Research Purpose

Although feasibility of sEMG-based speech recognition has been shown, in order to

achieve a high recognition accuracy in sEMG-based speech recognition, it is necessary

to decide the appropriate location of the electrodes. However, in previous studies, con-

ventional disc electrodes or parallel bar electrodes were used and located empirically

according to anatomical knowledge, as shown inFig. 1.2. Because there exist rela-

tively small muscles in proximity to each other in the face or neck region, it is difficult

to avoid the influence of cross talks and innervation zones when conventional measure-

ment methods are applied. It is required to take these factors into account carefully for

deciding the electrode location.

To cope with the influence of innervation zones and crosstalks, sEMG measure-

ment using electrode grid which has multichannel is used as an effective method in the

electro-physiological research area [36]. Lapatki et al. [27–29] proposed a high den-

sity multichannel sEMG system using electrode grid to improve signal-to-noise ratio

of sEMG signals recorded from the lower facial muscles.

To avoid missing out information about speech in the sEMG measurement step,

we introduce the use of an electrode grid which consists of densely-spaced multielec-

trodes in this dissertation. Submental region is focused on as measurement site of

sEMG signals during the production of 5 vowel sounds. There are multiple muscles

in the submental region that play important roles in controlling the movements of the

mandible and tongue [2]. However, the submental region was not given much em-

phasis in previous studies, and only one or at most two channels were used in these

experiments. Their function should receive considerably more attention for speech

recognition, especially for vowel recognition.
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Figure1.2. (left) Electrode location used by Deng et al. This image is reprinted from

[15] (also used in [35]).

(right) Electrode location proposed by Jou et al. This image is reprinted from [26]

(also used in [25,31,46])

.

In this dissertation, we verify three subjects. First, we examine whether the posi-

tions of innervation zones of superficial muscles can be estimated by using electrode

grid. Second, we investigate feasibility of vowel recognition based on sEMG derived

with electrode grid. Finally, we deal with an issue caused by redundant signals derived

by electrode grid.

4. Organization of Dissertation

The remaining parts of this dissertation is organized as follows:

• Chapter 2 provides fundamental information about speech production and sEMG

measurement. These are considerably important and necessary to understand

this dissertation.

• In the chapter 3, we present sEMG system which we developed, and describe

sEMG recording procedure used in our experiment, and illustrate that the po-

sitions of innervation zones of superficial muscles can be estimated by using

electrode grid.

7



• Chapter4 shows feasibility of vowel recognition based on sEMG derived with

electrode grid.

• In the chapter 5, we deal with an issue caused by redundant signals of electrode

grid.

• We end this dissertation with the chapter 6 which concludes our work and pro-

vides suggestions for future directions.
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Chapter 2

Anatomical and Physiological Bases

Related to sEMG-based Speech

Recognition

1. Speech Production Mechanism

Human speech is produced by vocal organs presented inFig. 2.1[30]. In “source-filter

model”, speech production system is conceptualized as a combination of two parts: a

sound source and an acoustic filter. In this model, it is assumed that speech sounds are

produced by the action of a filter, the vocal tract, on a sound source.

The main energy source to provide the airflow is the lungs with the diaphragm and

breathing muscles. The diaphragm muscle and breathing muscles act in compressing

and decompressing the lungs. When speaking, the air flow is forced through the glottis

between the vocal cords and the larynx to the three main cavities of the vocal tract,

the pharynx and the oral and nasal cavities. From the oral and nasal cavities the air

flow exits through the nose and mouth, respectively. Opening between the vocal cords,

called the glottis, is the most important sound source in the vocal system. The most

important function of the vocal cord is to modulate the airflow by rapidly opening and

closing, causing sound source from which vowels and voiced consonants are produced.

[30,58].

The pharynx connects the larynx to the oral cavity. Its length can be changed

slightly by raising or lowering the larynx and the soft palate. The soft palate also
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1. Nenäontelo

2. Kova kitalaki (palatum)

3. Hammasvalli (palatum)

4. Kitapurje (velum palatum)

5. Kielen kärki

6. Kielen selkä

7. Kitakieleke (uvula)

8. Kielen tyvi

9. Nielu (pharynx)

10. Kurkun kansi (epiglottis)

11. Taskuhuuli

12. Äänihuuli (labium vocale)

13. Kurkunpää (larynx)

14. Ruokatorvi

15. Henkitorvi (trachea)

Figure2.1. Vocal organs. This image is reprinted from [30]. (1) Nasal cavity, (2) Hard

palate, (3) Alveoral ridge, (4) Soft palate (Velum), (5) Tip of the tongue (Apex), (6)

Dorsum, (7) Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal cords,

(12) Vocal cords, (13) Larynx, (14) Esophagus, and (15) Trachea.

isolates or connects the route from the nasal cavity to the pharynx [30, 58]. The oral

cavity is one of the important parts of the vocal tract. Its size, shape and acoustics can

be varied by the movements of the palate, the tongue, the lips, the cheeks and the teeth.

In particular, the tongue moves very flexibly. The tip and the edges of tongue can be

moved independently. The entire tongue can move forward, backward, upward and

downward. Therefore they allow constrictions to occur at various positions along the

vocal tract. The lip controls the size and shape of the mouth opening through which

speech sound is radiated. Unlike the oral cavity, the nasal cavity has fixed dimensions

and shape. The airflow to the nasal cavity is controlled by the soft palate [30,58].

All of the muscles related to speech is controlled by the motor cortex of the brain.
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Figure2.2. Muscles related to the tongue movement. This image is reprinted from [39].

“abd”: anterior belly of digastric, “hg”: hyoglossus, “mh”: mylohyoideus, “pbd”:

posterior belly of digastric,“sh”: stylohyoideus

Motor signals produced by the brain for the movement of the face and tongue are

transmitted through some specialized cranial nerves. During speech production, vo-

cal organs are driven by coordinated muscle activations to manipulate the vocal tract

shape and provide proper sound source. Tongue is the most complex and important

speech organ that forms vocal tract shapes for producing most of the vowels and con-

sonants. The tongue is driven by activating a set of associate muscles when producing

speech [2, 49].(Fig. 2.2 [39]). The anterior belly of the digastric, the mylohyoideus,

and the geniohyoideus act to pull the hyoid bone upward and forward, or to depress the

mandible. The anterior genioglossus is responsible for pulling the dorsum forward and

downward. The posterior genioglossus has the function of pulling the tongue root for-

ward and raising the dorsum. Thus, these muscles manipulate tongue shape, which is

relevant with the vowel production. Despite their importance in human speech commu-

nication, the physiological mechanisms of the tongue muscles are poorly understood,

or only assumed by information based on gross anatomy and a small number of muscle

electrical-physiology [2].
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2. Physiological Basis of sEMG

This chapter aims to provide fundamental information to understand the recording of

the electrical activity of muscle using surface electromyography.

2.1 Anatomy of Motor Unit

The structural unit of skeletal muscle is the muscle fiber. A muscle fiber is a thin

structure ranging from 10 to 100 microns in diameter [47]. The contraction of skeletal

muscle is controlled by the motor neurons, as shown inFig. 2.3 [66]. Each muscle

fiber can be activated by oneα-motor neuron in spinal cord. On the other hand, one

α-motor neuron can branch in up to multiple branches, each one terminating in a dif-

ferent muscle fiber. A functional unit which consists ofα-motor neuron and all fibers

innervated by it is called “motor unit” (MU). The term “endplate” refers to the junction

between a muscle fiber and the terminal of theα-motor neuron [65]. Endplates tend

to be localized near the central zone of muscles which is called “innervation zones”.

The membrane current induced in theα-motor neuron by the synaptic innervation sites

determines the firing pattern of the MU.

Figure2.3. sEMG measurment. (This image is reprinted from “EMG Website” [66].)
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2.2 Motor Unit Recruitment and Firing Frequency

In voluntary contractions, force is modulated by a combination of MU recruitment and

changes in MU activation frequency [36]. MUs are recruited in order of increasing

size of theα-motor neuron (“size principle”). It is well documented that motor unit

recruitment and firing frequency (rate coding) depend primarily on the level of force

and the speed of contraction. When low-threshold MUs are recruited, this results in a

muscle contraction characterized by low force generating capabilities and high fatigue

resistance. With recruitments for greater force and/or faster contraction, high threshold

fatigable MUs are recruited. In the intrinsic muscles of human hands, motor units

appears to be complete at relatively lower force. On the contrary, recruitments in the

biceps, brachialis, and deltoid muscles may continue until greater force is modulated. It

is demonstrated that firing rates of active MUs increase monotonically with increasing

force output.

2.3 Muscle Electrical Activity

The membrane of muscle fiber is the seat of the bioelectric phenomena which result

in sEMG signals. Key factor is dynamic voltage-dependent behavior of the mem-

brane permeability to the main ions. The semi-permeable membrane of muscle fiber is

composed of a lipid bilayer. It forms a physical barrier between intracellular and ex-

tracellular fluids, over which an ionic equilibrium is maintained. The composition of

the extracellular fluid and intracellular fluid are different, as shown inTable 2.1. These

ionic equilibrium forms a resting potential at the muscle fiber membrane, typically -80

to -90 mV. Ion pumps passively and actively control the flow of ions through the cell

membrane.

When muscle fibers become innervated, the diffusion characteristics on the muscle

fiber membrane are modified, and Na+ flows into muscle fiber. When a certain thresh-

old level is exceeded by the influx of Na+, a depolarization of the cellular membrane,

an action potential is developed. It is characterized by a quick change from -80 mV to

+30 mV. Beginning from the endplates, the action potential spreads across the muscle

fibers in both directions at a propagation speed of 2-6 m/s. The action potential leads

to a release of Ca2+ ions in the intracellular fluid. They produces a chemical response

resulting in a shortening of the contractile elements of the muscle cells [47]. This

13



monopolarelectrical burst is restored in the repolarization phase and is followed by a

hyperpolarization phase.

Table 2.1. Intracellular and Extracellular Ion Concentration for Mammalian Muscle

(mEq/L)

Ion Intracellular fluid Extracellular fluid

K+ 140 4

Na+ 14 142

Cl- 4 125

HCO-
3 8 28

2.4 sEMG Measurement Procedure

sEMG is a non-invasive technique to measure muscle electrical activity relating to

muscular contractions with electrodes attached on the skin overlying a muscle or group

of muscles. The typical equipment consists of electrodes, (preamplifier,) amplifier,

analog-to-digital converter, and computer.

The skin can be considered as the boundary between two media: body tissue that

contains source of electric field, and insulating space (air). The sources of electric

field generate two-dimensional potential distribution on the skin. sEMG comprises the

sum of the electrical contributions made by the active MUs as detected by the surface

electrodes, as shown inFig. 2.3. When surface electrodes are applied, the distance

between the current source and the detection point is significant, and the spatial low-

pass filtering effect of the volume conductor becomes relevant. The surface signals are

usually detected as a differential of the signals recorded at different electrodes. Once

the signal has been amplified by the preamplifiers if they exist, it is amplified further

by the main amplifiers. After that, the signal is filtered and may be conditioned or

processed. For example, processing may consist of rectifying, averaging, or integrat-

ing the signal. Only the raw signal may be recorded and interpreted by itself. Most

EMG data, however, usually are subjected to some type of processing. More detailed

explanations can be found in [12,47,65].
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sEMG measurement based on linear electrode array and electrode grid has pro-

posed to estimate muscle fiber conduction velocity (Fig. 2.4) and position of in-

nervation zones and to decompose sEMG signals into motor unit action potentials

[16, 33, 50, 65]. The linear electrode array and electrode grid are comprised of point

electrodes from which single or double differential signals could be extracted.Fig. 2.4

shows the propagation of the action potentials, from which muscle fiber conduction

velocity can be estimated. The information obtained from multichannel signals was

shown to be important and useful for research and clinical application.

Figure2.4. Patterns of sEMG signals derived with linear electrode array. (This image

is reprinted from “EMG Website” [66].)

2.5 Feature Extraction for sEMG Signals

sEMG signals are expected to be used as effective system input not only for the speech

recognition but also for prosthetic hand. Features commonly used for sEMG signals

are introduced in this section [36,40,41,57].
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Time domain features

Features in the time domain are generally calculated quickly, and have been widely

used in research and in clinical practice.

• Integrated EMG

Integrated EMG (IEMG) is calculated as the summation of the absolute values

of the sEMG signal amplitude. Generally, IEMG is used as an onset index to

detect the muscle activity.It can be expressed as

IEMG =
N∑

n=1

|xn|

whereN denotes the length of the segment andxn represents then-th sample in

the segment.

• Average rectified value

Average rectified value (ARV) can be calculated using the moving average of

full-wave rectified sEMG. It is an easy way for detection of the muscle activity.

It is defined as

ARV=
1
N

N∑
n=1

|xn|

• Rootmean square

Root Mean Square (RMS) is related to the constant force and non-fatiguing con-

traction. It relates to standard deviation, which can be expressed as

RMS=

√√
1
N

N∑
n=1

x2
n

• Variance

Variance (VAR) uses the power of the sEMG signal as a feature. Generally,

the variance is the mean value of the square of the deviation of that variable.

However, mean of sEMG signal is close to zero. In consequence, variance of

sEMG can be calculated by

VAR=
1

N − 1

N∑
n=1

x2
n
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• Zerocrossing

Zero crossing (ZC) is the number of times that sEMG signal crosses the zero.

In sEMG feature, the threshold condition is used to take into account the back-

ground noise. This feature provides an approximate estimation of frequency

domain properties.

• Willison Amplitude

Willison amplitude (WAMP) is the number of times that the difference between

sEMG signal amplitude among two adjacent segments that exceeds a predefined

threshold to reduce noise effects same as zero crossing. The definition is as

WAMP=
N−1∑
n=1

f (|xn − xn+1|)

f (x) =

1 i f x ≥ threshold

0 otherwise

WAMP is related to the firing of motor unit action potentials (MUAP) and the

muscle contraction level.

• Waveform length

Waveform length (WL) is the cumulative length of the waveform over the time

segment.

• Autoregressive coefficients

Autoregressive (AR) model describes each sample of sEMG signal as a linear

combination of previous samples (plus a white noise error term). The model is

basically described by the following form:

xn = −
p∑

i=1

αi xn−i + en

wherexn is a sample of the model signal,αi is AR coefficients,en is white noise

or error sequence, andp is the order of AR model.

• Cepstrum

Cepstrum of a signal is defined as the inverse Fourier transform of the logarithm
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of the magnitude of the power spectrum of the signal data. Cepstral coefficients

are given by

cn = F−1 log
∣∣∣ X( f )

∣∣∣
for each channel after time window was applied to the signals.X( f ) represents

the short-time frequency spectrum, whileF−1 indicates the inverse Fourier trans-

form. The lower Cepstral coefficients contain information about the spectral en-

velope.

Time-Frequency domain features

The purpose of feature extraction is to emphasize the important information in the

measured signals while rejecting noise and irrelevant signal change. Time-frequency

features allow accurate representation of the target physical phenomenon in a specific

frequency range. However, time-frequency representation generally requires a trans-

formation that lead to increase of computational cost.

• Short-time Fourier transform

The short-time Fourier transform (STFT) consists of a series of DTFs. STFT at

frequencym and timek can be expressed as

S T FT[k,m] =
L−1∑
i=1

x[i] g[i − k] e− j2πmi/L

whereL is the length of the sequence, andg[i] is the window function. The reso-

lution in time and frequency is lower bounded by the time-bandwidth uncertainty

principle or Heisenberg inequality.

• Mean frequency

Mean frequency (MNF) is calculated based on power spectrum. It can be ex-

pressed as

MNF =
M∑

i=1

fi Pi

/ M∑
i=1

Pi

where f j is the frequency of spectrum at frequency binj, Pj is the sEMG power

spectrum, and M is the number of frequency bins in the spectrum.
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• Medianfrequency

Median frequency (MDF) can be expressed as

MDF∑
i=1

Pi =

M∑
i=MDF

Pi =
1
2

M∑
i=1

Pi

• Wavelet transform [42]

The wavelet transform (WT) overcomes the main drawback of the STFT by vary-

ing the time-frequency aspect ratio and by producing a good frequency resolu-

tion in long time windows (low frequencies) and a good time localization at high

frequencies. Wavelet transform method is divided into two types: continuous

wavelet transform (CWT) and discrete wavelet transform (DWT). CWT is de-

fined as

CWT(τ,a) =
1
√

a

∫
x(t)Ψ

(
t − τ

a

)
dt

whereΨ(t) is the mother wavelet,a is the scale variable, andτ is the shift vari-

able. DWT is a technique that iteratively transforms an interested signal into

multi-resolution subsets of coefficients.
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Chapter 3

Proposed sEMG Recording Method

during Vowel Production

1. sEMG System Overview

1.1 Electrode Grid

In the experimental setup, we used an sEMG system developed by Hattori et al. with

few modifications made on the electrode grid [20, 64]. The electrodes which con-

sisted of silver bars in Hattori’s study were substituted with spring connector pins

(SK KOHKI Co.,Ltd., AX-12ENR-00), with each pin having a diameter of 0.8 mm,

to absorb any dynamic displacement of the attached site (Fig. 3.1). The set of elec-

trodes were arranged in an array of 8 rows by 8 columns, with the interelectrode dis-

tance (IED) set to 5.08 mm, from center to center, in both directions. To reduce skin

impedance, a voltage follower circuit was built with each electrode.

1.2 Setup for sEMG measurement

The electric potential differences between each pair of electrodes neighboring in col-

umn direction were amplified up to 66 dB with band-pass filtering between 10 to 1500

Hz. Subsequently, the electric potential differences were digitized with a 16-bit analog-

to-digital converter (National Instruments, NI USB-6255) and a laptop computer run-

ning MATLAB with its Data Acquisition Toolbox (MathWorks, 2010a). A microphone
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Figure3.1. (left) The electrode grid. The white double-headed arrow indicates the row

direction, and the gray double-headed arrow indicates the column direction.

(right) The location of the electrode grid on the submental region in lateral view.

(KNOWLES, SP0103NC3-3) was also attached in front of the electrode grid, so that

acoustic signal could be simultaneously recorded along with the sEMG signals.

2. Recording Procedure

For this experiment, six adult Japanese native speakers were recruited as participants

(two female and four male with mean age of 26.2 years. Refer toTable 3.1 for more

detail). All of the participants had no known speech impairment. In each trial, the

subject was asked to produce each of the five Japanese vowels (/a/, /i/, /u/, /e/, and/o/)

once in a random order. The task vowels were presented on a screen for 1 second with

an interval of 2 seconds between each of them as shown inFig. 3.2, and the subjects

was instructed to start vowel production at the onset of a visual presentation and stop

at the offset.
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Table 3.1. Age and sex of participants
SubjectID Age Sex

1 33 Female

2 33 Male

3 24 Male

4 23 Male

5 22 Female

6 22 Male

Figure3.2. Experimental task presentation

Except for one subject (Subject 2), all other subjects (Subject 1, 3-6) conducted

fifty trials in one day, while Subject 2 conducted fifty trials divided in half over two

days. Every time subjects wanted to take a rest, enough time was given, while the

electrode grid was removed. Though Subject 2 did not want to rest, other subjects took

three to seven rest intervals throughout the experiment.

During vowel production, the sEMG signals were recorded with the electrode grid

attached on the submental region as shown inFig. 3.1. The grid’s centerline in the

column direction and the last row were aligned with the center of the mandible and the

posterior edge of the submental triangle, respectively, by visual inspection.Fig. 3.3
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Figure3.3. Anatomy of muscles in the submental region reprinted from [39] and cor-

responding positions of the electrodes. Black dots represent the positions of the elec-

trodes. “abd”: the anterior belly of the digastric, “mh”: the mylohyoideus, “sm”: seam

of the mylohyoideus (raphe of the mylohyoideus).

shows the muscles in the relatively superficial layer of the submental region and the

corresponding positions of the electrodes. The anterior bellies of digastrics produce

the sEMG signals whose amplitudes are relatively large. Therefore, the sEMG signals

not only from the mylohyoideus but also from muscles in deeper layers, e.g. the genio-

hyoideus and the genioglossus, tend to be masked. In addition, there are innervation

zones near the center of each muscle. Although the innervation zones and cross talks

should be taken into account to avoid deterioration of the signal-to-noise ratio, it seems

to be rather difficult to find appropriate locations using conventional bipolar electrodes

whose diameters or lengths are approximately 1 cm.

As preparation, the skin on the submental region was cleaned with an alcohol swab

prior to attaching the electrode grid. The electrode grid was fixed on a tripod, and

the subject grasped the tripod’s legs, wrapped with stainless sheets, which served as

the ground reference. Both the sEMG and acoustic signals were then captured and

digitized at 16 kHz with an analog-to-digital converter.

Written informed consents were obtained from the subject prior to the experiment.

This study was approved by the institutional ethics committee of Nara Institute of

Science and Technology.

Examples of the signals coming from each vowel produced by Subject 1 are illus-
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tratedin Fig. 3.4-3.8. Fig. 3.9 and3.10 is horizontally magnified signals with the

case of vowel/o/ for 200 msec and 50 msec, respectively. The signals coming from

the anterior part seem to indicate similar patterns. Time delay caused by conduction

can be regarded as short, given a common time frame length used for a conventional

speech recognition.

Figure3.4. sEMG signals during producing vowel/a/
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Figure3.5. sEMG signals during producing vowel/i/

Figure3.6. sEMG signals during producing vowel/u/
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Figure3.7. sEMG signals during producing vowel/e/

Figure3.8. sEMG signals during producing vowel/o/
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Figure3.9. Magnified sEMG signals during producing vowel/o/ (200 msec)

Figure3.10. Magnified sEMG signals during producing vowel/o/ (50 msec)
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Fig. 3.11and3.12 are spectrograms of the case same asFig. 3.9. The latter is

calculated from the channel “Row 3-4, Column 6”. A certain degree of stationarity

is shown in these figures. The onset of the sEMG signals were precede that of the

acoustic signal, and the offset of the sEMG signals follows that of the acoustic signal.

Figure3.11. Spectrogram with the case producing vowel/o/
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Figure3.12. Magnified spectrogram with the case producing vowel/o/
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3. Estimation of Innervation Zone

Hierarchical clustering, which was conducted according to Euclidean distances of the

normalized signals, revealed that not only the anterior part but also the middle and

posterior parts were clustered. The dendrogram of this hierarchical clustering is shown

in Fig. 3.13and3.14. In addition, correlations between the representative channels

and the whole channels during production of/o/ are shown inFig. 3.15 and 3.16.

The representative channels consist of the channels between the 3rd and 4th rows in

the 6th column and between the 7th and 8th rows in the 7th column. Hereafter, these

channels are denoted as “3-4, 6” and “7-8, 7”. While the channels “3-4, 6” and “7-8,

7” have positive correlations with the surrounding channels, these two channels have

a significant negative correlation (−0.533, p < 5.0×10−291) with each other.Fig. 3.17

represents the correlations between all possible combinations of channels.

These results might be relevant with the innervation zones of the anterior bellies

of the digastrics from where the propagation of the motor unit action potentials starts

(Fig. 3.3and3.14). Thus, by using electrode grid, the position of innervation zones

can be estimated in the superficial muscles.

Figure3.13. Dendrogram of hierarchical clustering on channels. Each label denotes

the row and column of the channel, for example, “3, 6” denotes a channel between the

3rd and 4th electrodes in the row direction within the 6th column.
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Figure 3.14. Cluster and corresponding anatomical locations. The correspondence

between the cluster and the locations are represented by the colored shade. The anterior

parts, the middle ones, and posterior ones are clustered. Each of them is subdivided

into right and left.
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Figure3.15. Correlations between the signal coming from channel “3-4, 6” and those

coming from all channels of the electrode grid.

Figure3.16. Correlations between the signal coming from channel “7-8, 7” and those

coming from all channels of the electrode grid.
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Figure3.17. Correlations between all possible combinations of channels.
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Chapter 4

Vowel Recognition Experiment

1. Introduction

To investigate whether electrode grid is more effective in extracting information for

sEMG-based speech recognition than conventional electrodes, we compared the recog-

nition accuracies between two methods: One was based on signals from all channels

(hereafter,“all-channel method”) and the other was based on virtually reconstructed

single bipolar signal (“single-channel method”).

2. Data Preprocessing

The sEMG signals were filtered with an 8th order low-pass Butterworth filter having a

cut-off frequency of 500 Hz, and then downsampled to 2 kHz. The onsets and offsets

of the acoustic signals were used as reference to determine those of the sEMG signals.

The criteria applied in detecting the onsets and offsets of the acoustic signals were

based on a set of amplitude thresholds, and these signals were then visually confirmed

and corrected manually in only one onset. With the consideration of the delay between

the sEMG signals and the acoustic signals [25], the onset of the sEMG signals were

set to precede that of the acoustic signals by 150 msec, although the resting state could

also be included. As for the offsets of sEMG signals, these were set to 150 msec after

the offsets of the acoustic signals. These onsets and offsets of the sEMG signals were

used to extract data for the following feature extraction process.

34



3. Feature Extraction

To be able to compare the single-channel method with the all-channel method, bipo-

lar signals from all possible combinations of electrodes within the same column were

virtually reconstructed from original signals, by adding signals from all channels be-

tween the two selected electrodes. Two types of feature sets were used in this study:

(1) time domain features, and (2) cepstral coefficients. Features were extracted from

the windowed signals of each channel. The window length was set to 25 msec with 50

samples, while the window period was set to 12.5 msec with 25 samples.

The time domain features consisted of the average rectified value (ARV), root mean

square (RMS), zero-crossing rate of high-pass filtered signals, and the mean of the raw

signals, along with the∆ and∆∆ features of these four features. To some extent,

these features were similar to the features proposed by Jou et al. [26] except that less

contextual information was used.

The real parts of the lower 15 cepstral coefficients, including the 0th coefficients,

were used as features, along with the∆ and∆∆ features. Several researches have

shown that Mel-frequency cepstral coefficients (MFCC), which are derived from cep-

stral coefficients by applying filter bank based on the Mel-scale, can also be used as

features [15, 59]. However, there is no physiological plausibility to use MFCCs to

parameterize sEMG signals, since the Mel-filter bank is designed to approximate hu-

man auditory perceptual response to acoustic signals. In addition, if the sampling rate,

window length used in this study, and spectral features of the sEMG signals are taken

into account, then the usefulness of Mel-filter bank will be reduced. Therefore, in this

study, we employed cepstral coefficients instead of MFCC. For the all-channel method,

features from all 56 channels were concatenated. This concatenation resulted in having

more than several hundreds of dimensional features.

Dimensionality reduction was performed using linear discriminant analysis (LDA),

which is commonly used to map the data onto a lower dimensional subspace keeping

discriminative information as much as possible. The resulting final dimensions were

reduced to four in both methods.
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4. Vowel Recognition

Continuous HMM was adopted for vowel modeling, since it has been shown that the

HMM is effective for sEMG-based speech recognition as well as for acoustic speech

recognition. An HMM represents a stochastic process that takes sequential data as the

inputs, and outputs the probabilities that the data are generated by the model. For each

vowel, we used a nine state left-to-right HMM with three Gaussian mixture compo-

nents, whose covariance matrices in each state are diagonal. Expectation maximiza-

tion (EM) algorithm [13] was utilized in parameter estimation, and the vowel with the

maximum likelihood was adopted as the recognition result. Hidden Markov Model

Toolbox [38] was used to implement the HMMs in this experiment. 5-fold cross-

validations were conducted to investigate the recognition accuracies.

5. Results

The comparison between the recognition accuracies of the different channels and fea-

ture conditions are shown inFig. 4.1. For the single-channel method, the best recog-

nition accuracies between all possible electrode combinations are indicated. The all-

channel method outperformed the single-channel method. With respect to features,

using cepstral coefficients indicated higher recognition accuracies than using time

domain features. The all-channel method with cepstral coefficients achieved 85.6%

recognition accuracy for Subject 1 and 79.6% recognition accuracy for Subject 2.Ta-

ble 4.1 shows recognition accuracy of all subjects under using cepstral coefficients

from all channels. Although the recognition accuracies stay at 70% level with the sub-

jects whose speech durations were short, those of the other subjects are almost over

80%. There is a positive correlation (0.827,p < 0.05 two sided t-test) between the

mean speech durations and the recognition accuracies.
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Table 4.1. Vowel recognition accuracy
SubjectID Sex Speech duration (ms) Recognition

accuracy (%)

1 F 880± 110 85.6

2 M 1150± 88 79.6

3 M 505± 24 71.2

4 M 537± 29 72.8

5 F 1260± 88 86.0

6 M 1042± 115 85.6

Figure 4.1. Comparison of the recognition accuracies for conditions with different

features and channels used. All ch: all-channel method, Single ch: single-channel

method, Ceps: cepstral coefficients, TD: time domain features.

Fig. 4.2 depicts the differences of recognition accuracies between the used elec-

trode locations in the single-channel method, including the locations which were used

in Fig. 4.2. The top ofFig. 4.2shows the result of the case when the participant was

Subject 1 and the IED was 15.24 mm. The “Row” and “Column” labels denote the

positions where the virtual bipolar electrodes in the grid were selected. In the follow-

ing, location (i-j, k) denotes the bipolar signal between two (row, column) positions:

(i, k) and (j, k). In the top ofFig. 4.2, the recognition accuracy reaches a maximum

of 51.6%, at location (5-8, 2). However, it can be seen that (4-7, 1), (4-7, 2), and (4-7,
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3), which are neighbors of the maximum point, indicate accuracies of 38.0%, 30.8%,

and 38.4%, respectively. In some parts of the central locations in rows “2-5” or “3-6”,

the accuracies are at 20 to 30%. In the center ofFig. 4.2, the location of the highest

recognition accuracy is different from that of the top ofFig. 4.2. Yet some parts of

the central locations in the row direction still indicated accuracies in the range of 20 to

30%. In the bottom ofFig. 4.2, tendencies of Subject 2 are shown. Here, the locations

(3-5, 3) and (3-5, 6) reach the recognition accuracies of 54.0% and 53.6%, respectively.

However, the location (3-5, 7) which is a neighbor of the location (3-5, 6) indicates an

accuracy of 28.4%. In some posterior locations, the accuracies are at 20 to 30%.
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Figure 4.2. Changes of recognition accuracies with electrode locations under the

single-channel method. (top) Subject 1 with IED= 15.24 mm, (center) Subject 1

with IED = 20.32 mm, (bottom) Subject 2 with IED= 10.16 mm. The “Row” and

“Column” labels denote the rows and columns of the electrode grid from where virtual

bipolar electrodes were selected.
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Table 4.2and4.3 illustrate the confusion matrices, in the all-channel method and

cepstral coefficients of Subject 1 and 2, respectively. The rows of the tables represent

the actual spoken vowels, while the columns represent the vowels recognized by the

HMMs. In both of Subject 1 and 2, there is a relatively high tendency that vowels/a/

and/e/ cannot be discriminated from each other.Fig. 4.3-4.7shows boxplots derived

from each row, i.e. spoken vowel, of confusion matrices with respect to six subjects.

From these boxplots, it is also shown that vowels/a/and/e/are hard to be discriminated

from each other with high accuracy.

Table 4.2. Confusion matrix for the vowel recognition of Subject 1
Recognizedvowel Accuracy

/a/ /i/ /u/ /e/ /o/ (%)

/a/ 40 0 1 6 3 80

/i/ 0 47 1 2 0 94

Spoken vowel /u/ 0 1 48 0 1 96

/e/ 8 2 0 37 3 74

/o/ 3 0 1 4 42 84

Table 4.3. Confusion matrix for the vowel recognition of Subject 2
Recognizedvowel Accuracy

/a/ /i/ /u/ /e/ /o/ (%)

/a/ 39 2 0 9 0 78

/i/ 1 38 3 8 0 76

Spoken vowel /u/ 0 0 43 0 7 86

/e/ 6 3 0 38 3 76

/o/ 1 0 8 0 41 82
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Figure4.3. Recognized results of spoken vowel/a/. On each box, the central line is the

median, the asterisk is the mean, the edges of the box are the 25th and 75th percentiles,

the whiskers extend to the most extreme data points not considered outliers, and out-

liers are plotted individually by red plus sign. Two medians are significantly different

at the 5% significance level if their intervals which are represented by notches do not

overlap.
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Figure4.4. Recognized results of spoken vowel/i/.

Figure4.5. Recognized results of spoken vowel/u/.
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Figure4.6. Recognized results of spoken vowel/e/.

Figure4.7. Recognized results of spoken vowel/o/.
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6. Discussion

It has been confirmed in this experiment that the all-channel method has achieved con-

siderably higher recognition accuracies for the five Japanese vowels than the single-

channel method, although the oblique and lateral directions have not been investigated

in this study. This result indicates that using electrode grid is more effective in ex-

tracting information for sEMG-based speech recognition than using conventional elec-

trodes.

As shown inFig. 4.2, the single-channel method is influenced by the locations

of the selected electrodes. In addition, inter-individual variability is also shown in

Fig. 4.2. Therefore, when conventional disc or parallel bar electrodes are used, it

is highly important to carefully consider those locations with respect to each subject

might be required in order to achieve higher recognition accuracies. But, doing such

tests for each and every subject seems to be rather impractical. One of the reasons

for this inter-individual variability is that there are differences in anatomical structures

and muscular coordination patterns. To take into account the anatomical structure,

magnetic resonance imaging (MRI) of the lower position of the face and neck should

be useful [49].

From the confusion matrices shown byTable 4.2and4.3and the boxplots shown

by Fig. 4.3and4.6, there is a possibility that vowels/a/and/e/cannot be discriminated

with high accuracy from each other when only sEMG signals from the submental re-

gion are used. This finding is consistent with another previous study. By using three

parallel bar electrodes, Manabe et al. [32] conducted an experiment of Japanese vowel

recognition based on sEMG signals measured from the orbicularis oris, the zygomati-

cus major, and the anterior belly of the digastric during mouthed speech. However,

only the RMS values of the signals were used as features. Although there seemed

to be difficulty in vowel recognition using the RMS value from the anterior belly of

the digastric, the RMS value from the orbicularis oris could contribute significantly to

the discrimination of the vowels/a/ and /e/ (Fig. 4.8). Indeed, there is a difference

in the condition of the usual voiced speech and voiceless mouthed speech between

our experiment and that of Manabe et al. But their experiment implies that additional

measurement from the orbicularis oris can improve the recognition accuracy of our

proposed method in discriminating between vowels/a/and/e/. Moreover, consonants

should also be considered in future studies. In order to achieve it, sEMG signals from

44



Figure4.8. 3D distribution in feature space of a previous study. This image is reprinted

from [32].

other perioral muscles must be considered as well.

On the other hand, the tradeofffor the dense measurement given by an electrode

grid is that it may contain signal redundancy. It is therefore necessary to reduce this

redundancy, considering the spatial inter-individual variability as well, especially when

working with dysarthric patients. To this end, experiments must be conducted with

more subjects.

7. Conclusion

This study proposed the use of an electrode grid for Japanese vowel recognition based

on surface electromyography (sEMG). We compared the recognition accuracies of five

Japanese vowels between two methods: the all-channel method which used an elec-

trode grid, and the single-channel method which used a virtually reconstructed single

bipolar signal. The former achieved recognition accuracies of approximately 80 to
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85%,which was higher than that of the latter. This result indicates that using an elec-

trode grid is more effective in extracting information for sEMG-based speech recogni-

tion than using a conventional disc or parallel bar electrode. Furthermore, future works

on obtaining the findings for spatial inter-individual variability of sEMG signals and

reducing the redundant electrodes are warranted.
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Chapter 5

Feature Selection for Vowel

Recognition

1. Introduction

In the vowel recognition experiments in chapter 4, using the electrode grid realizes

denser measurements and brings more information about speech. However, in using

the electrode grid, new problems such as unfavorable cost increase of both device

and computation arise due to the redundancies of some signals which consequently

lead to redundant features. To alleviate this problem, we introduce a feature selection

method. We apply sparse discriminant analysis (SDA) [7–9] which was proposed by

Clemmensen et al. as a solution, and investigate how this type of feature selection

influences the accuracy of vowel recognition.

The cepstral coefficients are employed as features for this study, because the cep-

stral coefficients indicated higher recognition accuracies than the time domain features

as shown in chapter 4. The cepstral coefficients were extracted from the windowed

signals of each channel obtained from Subject 1. The real parts of the lower 15 cep-

stral coefficients (including the 0th coefficients),∆ features, and∆∆ features were used

as features. The features from all 56 channels were concatenated. This concatenation

resulted in having 2520 feature dimensions.
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2. Sparse Discriminant Analysis

Although, in our preliminary study, dimension reduction was performed using linear

discriminant analysis (LDA), in this study, we used sparse discriminant analysis (SDA)

[7–9] proposed by Clemmensen et al. instead of LDA (SDA software in MATLAB is

available from [7]). SDA can perform feature selection simultaneously with dimension

reduction by imposing sparseness constraint.

Let X denote ann × p data matrix with observations down the rows and features

in the columns, and letY denote ann× K (classes) matrix of dummy variables which

indicate belonging classes. Clemmensen et al. defined the sparse optimal scoring

criterion as

arg min
θ,β

n−1
(
∥Yθ − Xβ∥22 + λ ∥Ω

1
2β∥22 + γ ∥β∥1

)
, (5.1)

subjectto n−1 ∥Yθ∥22 = 1 , (5.2)

whereβ is ap×q matrix of parameters which leads toq components of directions,θ is

K×qmatrix of scores,λ andγ are nonnegative tuning parameters, andΩ is a symmetric

positive definite matrix. This method involves recasting the classification problem as

a regression problem by turning categorical variables into quantitative variables, via

θ. Iterative algorithm is used for finding a local minimum of the criterion (5.1) with

respect toβ andθ. For fixedθ, β j , j = 1, . . . ,q, is obtained by solving the modified

elastic net problem [60]:

β j = arg min
β j

n−1
(
∥Yθ j − Xβ j∥22 + λβT

j Ωβ j + γ ∥β j∥1
)
. (5.3)

Whenγ is large, theL1 penalty onβ j results in sparseness. For fixedβ, the criterion

becomes

θ = arg min
θ

n−1 ∥Yθ − Xβ∥22 , (5.4)

subject ton−1 ∥Yθ∥22 = 1 . (5.5)

Steps related to the equations (5.3) and (5.4) are iterated until convergence or until

a maximum number of iterations is reached. In the SDA software, the desired number

of features can be set instead ofγ.

In this study, we investigated the relationships between the recognition accuracies

and the numbers of selected features withλ set to 0, 0.01, 0.1, 1, 10, and 100. The num-
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berof componentsq was set to 4, which was equal to that of LDA in our preliminary

study.

3. Results

Fig. 5.1 shows the changes in recognition accuracies with the numbers of selected

features per component under varying value ofλ. However, in this experiment, change

in λ seems to have little influence on the recognition accuracies, especially in the range

of higher accuracies. In the chapter 4, the recognition accuracy of 85.6% was achieved

by applying LDA to all of the 2520 features, as shown inFig. 5.1by the upper dashed

line. Indeed, the LDA method outperformed the SDA method, but our main purpose

is to investigate how feature selection influences the recognition accuracy. If there is

redundancy in the obtained features, SDA based method can reduce the numbers of se-

lected features without decline in the recognition accuracy. Actually, it can be seen in

Fig. 5.1that even if the features are compressed to one fifth of the total features, recog-

nition accuracies are still kept over 80%. However, as the number of selected features

decrease from 100 to 20, the recognition accuracies decrease steeply. In the chapter 4,

we also obtained the recognition accuracies by using LDA on virtually reconstructed

bipolar single channel signals which were calculated from all possible combinations

of electrodes within the same column of electrode grid. These virtually reconstructed

signals could be equivalent to signals measured by one channel of conventional bipo-

lar electrodes. The best recognition accuracy among all of the virtually reconstructed

signals is shown to be 51.6% and is indicated by the lower dashed line inFig. 5.1.

Additionally, we investigated the numbers of selected times of features with respect

to the corresponding channels, orders of the cepstral coefficients, and the difference in

cepstral coefficients,∆ features, and∆∆ features. The results of this investigation are

shown inFig. 5.2and5.3. These results are taken from the case when the number of

selected features per component is 100 andλ is set to 0.01. InFig. 5.2, there are 28

channels, equivalent to half of all the channels, whose numbers of selected times are

0 to 4. Most of the channels from column 4 to 8 are regarded as redundant.Fig. 5.3

shows that the cepstral coefficients,∆ features, and∆∆ features whose orders are 6 or

higher are selected 4 times or less. The difference in cepstral coefficients,∆ features,

and∆∆ features has little or no influence on the numbers of selected times.
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Figure5.1. Changes of recognition accuracies with the numbers of selected features.

“LDA (all ch)” denotes the recognition accuracy obtained by using LDA on the signals

from all channels in the chapter 4. “LDA (single ch)” denotes the best recognition ac-

curacy obtained by using LDA on virtually reconstructed bipolar single channel signal

among all possible combinations of electrodes within the same column of electrode

grid.
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Figure5.2. The numbers that electrode channels were selected. “Row” and “Column”

denote the row and column of electrode grid, respectively.

4. Discussion

It was illustrated inFig. 5.1 that feature selection compressing to 100 or 200 fea-

ture dimensions can be realized while discriminative powers are kept relatively higher.

From the point of view on the appropriate numbers of channels to extract information

about speech, it was suggested fromFig. 5.1and5.2 that using more than 28 channels

were preferable and that 1 channel of conventional bipolar electrodes is insufficient

to achieve acceptable recognition accuracy. As for features, regardless of difference

in cepstral coefficients,∆ features, and∆∆ features, higher order coefficients were re-

garded as redundant. Those values can have relatively higher correlation with each

other due to the nature of the cepstral coefficients, therefore they may tend to be re-

garded as redundant. To deal with the tradeoff between cost for device and computation

and recognition accuracy, combination of dense measurement based on the electrode

grid and the feature selection method based on SDA is able to provide valuable infor-

mation as shown in this study. Redundant channels and cepstral coefficients can be

removed for the purpose to reduce device cost or computational cost.

However, the reason why the channels in column 4 to 8 inFig. 5.2 are regarded

as redundant might be due to left-right symmetry of anatomical structure.Fig. 5.4 is
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Figure5.3. The numbers that cepstral coefficients,∆ features, and∆∆ features were

selected. “Ceps”: Cepstral coefficients, “Delta”:∆ features, “2nd delta”:∆∆ features.

anatomical image of relatively superficial layer of submental region in the horizontal

sectional view. Red shaded part covers column 1 to 3 and it is roughly in accordance

with left one of the muscles called “anterior belly of the digastric”. On the other hand,

it is possible that patients with dysarthria due to paralysis may have laterality in their

sEMG signals. If that is the case, the channels regarded as redundant in this study

should not be removed for dysarthric patients. Experiments with dysarthric patients

are therefore essential in deciding appropriate electrode location for them.

5. Conclusion

This chapter investigated how feature selection influences the accuracy of vowel recog-

nition based on sEMG derived with a multichannel electrode grid. We applied SDA for

feature selection to cope with redundant signals. It was illustrated that feature selec-

tion compressing to one tenth or one twentieth of the total features could be achieved

without steep decline in recognition accuracies. In addition, the redundant channels

and features were specified by using SDA. Thus, combination of dense measurement

based on the electrode grid and the feature selection based on SDA is an effective
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Figure5.4. Relationship between selected channels and anatomical structure

approach for the researches on sEMG-based speech recognition which has not been

established very well yet.
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Chapter 6

Conclusions

1. Summary

This dissertation proposed the use of an electrode grid for Japanese vowel recognition

based on surface electromyography (sEMG). First, we confirmed that innervation zone

of anterior belly of digastic can be roughly estimated.

Next, we compared the recognition accuracies of five Japanese vowels between

two methods: the all-channel method which used an electrode grid, and the single-

channel method which used a virtually reconstructed single bipolar signal. The former

achieved recognition accuracies of approximately 80 to 85%, which was higher than

that of the latter. This result indicates that using an electrode grid is more effective in

extracting information for sEMG-based speech recognition than using a conventional

disc or parallel bar electrode.

Also, this dissertation investigated how feature selection influences the accuracy

of vowel recognition based on sEMG derived with a multichannel electrode grid. We

applied SDA for feature selection to cope with redundant signals. It was illustrated

that feature selection compressing to some extent could be achieved without steep

decline in recognition accuracies. In addition, the redundant channels and features

were specified by using SDA. Hemi-lateral side of submental region was regarded as

redundant in this dissertation.
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2. Future works

For our future work, it is necessary to explore appropriate electrode locations not only

on the submental region but also on the lower face and neck region, especially when

considering recognition of consonants. Similarly, exploring with higher dimensional

features which includes but is not limited to various time domain features, frequency

domain features, and wavelet coefficients will be significant in extracting more in-

formation about speech. Because sEMG-based speech recognition has not been es-

tablished very well yet, it seems unlikely that such explorations can be done without

including redundant data. In addition, in this scenario, there will be high dimensional

low sample size setting which will be problematic. Although LDA is more likely to

cause overfitting in the high dimensional low sample size setting, SDA has the potential

to be more effective because of its capability to reduce overfitting. Furthermore, SDA

is straightforwardly extended to sparse mixture discriminant analysis (SMDA) [8, 9]

which can deal with mixture of Gaussians. SMDA can be suitable for word recogni-

tion and continuous speech recognition. SMDA in MATLAB is also available from [7].

Thus, SDA and SMDA have great potentials to be effective tools for the researches on

sEMG-based speech recognition.

Besides, obtaining the findings for spatial inter-individual variability of sEMG sig-

nals are warranted. This spatial inter-individual variability is largely due to differ-

ence in anatomical structure and coordination pattern of muscles. To take into account

the anatomical structure, magnetic resonance imaging (MRI) of the lower position of

the face and neck should be useful [49].Fig. 6.1 shows example of MRI image of

them [1]1. Source localization [52, 53] based on sEMG signals can be also useful for

speech recognition, when the anatomical structure obtained by MRI is utilized as the

constraint.

Our actual goal is clinical application of sEMG-based speech recognition to dysarthric

patients. sEMG signals of patients with some kind of dysarthria present neurogenic

change of EMG signals [61]. To achieve high recognition accuracy with dysarthric

1TheMRI data used in this study is part of “ATR MRI data of Japanese vowel production” that were

acquired at and released from ATR Human Information Science Laboratories under “Research of Human

Communication” funded by the National Institute of Information and Communications Technology. The

use of the database and release of the results are under the license agreement with ATR-Promotions Co.

Ltd.
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Figure6.1. MRI image of vocal tract

patients, we have to consider change in firing rate and amplitude. Experiments with

dysarthric patients and accumulation of their data are necessary to investigate feasibil-

ity of sEMG-based speech recognition with dysarthric patients. Our proposed method

is also applicable as rehabilitation aid by providing feedback information derived from

sEMG signals to the patients. Since tongue is less visible compared with upper limb

or lower limb, feedback about tongue state will be more useful for rehabilitation.
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Figure 6.2. (upper left) MRI image of arm, (upper right) 3D geometry mode con-

structed from the MRI datal, (bottom) Reconstructed activities. These images are

reprinted from [53]

.
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