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Reversing Malicious Intents in Web Scripts:

from Automating Deobfuscation to Assigning Concepts∗

Gregory Blanc

Abstract

This dissertation presents program comprehension methods to infer malicious in-

tents in web application scripts. Web 2.0 applications are plagued with web-based

malware that leverage client-side scripting to exploit application and browser vulner-

abilities. Moreover, scripting allows attackers to elaborate more complex attacks. On

the other hand, they take advantage of distributed malware networks to reach to un-

suspecting victims. Victims are often lured into accessing a vulnerable domain, and

subsequently be redirected to an attack website. Web malware makes an intensive use

of redirection, cloaking and obfuscation techniques to conceal its malicious intents.

My research motivation is to reveal these intentions in order to prevent browsers

from getting exploited. Advanced countermeasures such as VM-based honeypots or

browser emulators are vulnerable to some cloaking techniques, but are particularly

lacking in usability since they rely on execution-based analysis. In fact, behavior-based

detection has been very popular lately in the domain of malware analysis, overshad-

owing other alternatives. Indeed, scripts are interpreted, thus source code is readily

available, offering the opportunity to apply static code analysis techniques.

In this dissertation, I propose a proxy-based solution to support realtime online

analysis of staged web-based malware. I attempt to statically express the malicious

intent of malware script by decomposing it in a limited number of concepts that can

be represented by a UML sequence diagram. However static analysis alone cannot

overcome the issue of deobfuscation, which is tackled using automated deduction. In

particular, leveraging the properties of the Maude rewriting framework, I provide a

sound and complete, yet terminating rewriting of obfuscated contents. This stage

is actually dependent on the success of the previous tool which extracts obfuscated

contents based on their syntactic patterns. Using a pushdown automaton, the system
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is able to match obfuscation patterns as subtrees of an abstract syntax tree representing

the original script program to analyze.

The whole system can be seen as a set of 3 modules collaborating, but it can also be

thought as independent tools, each contributing to further applications ranging from

crawling to surveying to debugging.

Keywords:

web 2.0, JavaScript, malware, obfuscation, static analysis, automated deduction, term

rewriting, program comprehension, concept assignment
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1. Introduction

Imagination is more important than

knowledge. For knowledge is limited

to all we now know and understand,

while imagination embraces the

entire world, and all there ever will

be to know and understand.

Albert Einstein

1.1 Motivation

Internet has been one of the greatest technological achievements of computer and net-

work scientists for half a century. Advancements of Internet technologies have rendered

computing ubiquitous through the pervasive networking capabilities. Internet has made

possible the old dream of “connecting people” all over the World. One meaningful in-

stance of its applications is the Social Web. And as it connects more and more people,

it provides everyone with a window to the whole World to express oneself, interac-

t/share with others and or simply discover knowledge. Most popular applications of

the Internet include web browsing, email services, Internet telephony, file sharing and

media streaming. In particular, the Web paradigm has shifted at the beginning of the

last decade, with a gradual change in both developers’ and users’ habits.

Web 2.0, as it is coined, is not an update of the Web itself, since it still relies (al-

though partly now) on the HTTP protocol for transport and HTML-based technologies

for the display of web pages. However, web contents themselves have evolved, both as

a result of user’s needs and as a result of technology advancements, feeding each other’s

development. One outstanding example of this paradigm shift is the Social Web where

users share a web-based application platform on top of which they not only commu-

nicate but achieve most of the popular services offered by the Internet. The Social

Web usually showcases recent advancements in Web research, but it also displays how

deep-rooted are its vulnerabilities. In fact, the Web never really addressed application

layer vulnerabilities as a whole and has often been left behind in the arms race against

attackers, by constantly “patching” any new hole that was discovered. In particular,

the Same-Origin Policy (SOP), which is at the heart of the Web security capabilities,

has irreducible legitimate bypasses to maintain the possibility of cross-domain com-

munications, which have never been as flamboyant as nowadays. The SOP stipulates
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that a web page from a given domain (for example, example.com) is not allowed to ac-

cess objects or properties from a web page from a different domain (notexample.com).

A strict observance of such policy would obviously make impossible applications that

thrive by communicating across domains or by mashing several web contents from

different domains into a single web application.

In recent years, vulnerabilities such as cross-site scripting, which allows an attacker

to inject malicious code that will be reflected in the user’s browser, or cross-site re-

quest forgery, which allows an attacker to force an unsuspecting user into issuing an

authorized request to a remote web page, have gained massive popularity among web

criminals. In fact, not only exploiting these vulnerabilities allows the above-mentioned

capabilities, worse, it allows an attacker to maintain a SOP bypass and build more

sophisticated attacks on top of it. Web malware or JavaScript malware designate such

malware-behaving programs that execute on top of a web page and exploits the user’s

browser local environment.

1.2 Protecting the User against Web-based Malware

The probability for a user to come across malicious contents has increased dramatically

with the advent of the Web 2.0. There are several acceptable reasons for that:

• with the popularity of modern Web applications, the scope of a single attack has

increased, and a user may not only be exposed directly to the source of an attack,

but may also be indirectly through another victim;

• with the increasing security awareness of Web companies, attacking their assets

directly has become very difficult, and attackers are more interested by quick

profit, therefore turning against users or third-party content providers, such as

advertisement providers;

• with the increasing number of novices and the lack of education, end-users have

quickly been identified as profitable targets since it is easier to monetize stolen

personal information.

Academic and industrial research has been active on client-side security issues with

the production of various tools and browser plugins that ensure the user with a safe

browsing experience:

• malware often exploits known vulnerabilities in browsers and their plugins to take

advantage of the end-user’s browser. Signature-matching provided by common
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antiviruses should normally be able to detect such attacks, or at least inform the

user that her browser is vulnerable;

• JavaScript (JS) is the de-facto standard scripting language of the Web, and is

highly utilized in developing Web malware since any browser is shipped with a

built-in JavaScript engine. With the increasing amount of JS code pushed to the

client-side, plugins to disable whole or part of the scripts running on top of a

web page are successful in preventing the execution of malicious JS programs. A

popular example is NoScript [92];

• as it is unlikely that malicious web pages would participate in the effort of “se-

curing” the Web, designing policies shared between legitimate web pages and

browsers seems achievable to filter out both suspicious domains and suspicious

requests. Such policy has been applied in RequestRodeo [80] to thwart forged

HTTP requests and should be applied soon to regulate cross-domain communi-

cation;

• more lightweight approaches exist to prevent a user from an unfortunate visit

to a suspicious web page. URL filtering usually occurs before a user browses a

web page: the URL is checked against a blacklist. Blacklisting includes Google

SafeBrowsing [60] or the Web of Trust browser plugin [143]. The process of adding

a domain to a blacklist may vary from one provider to another but the decision

if often made upon examination of the web page;

• setting a malicious attack network or a malicious web page has become quick and

easy thanks to the industrialization of attack toolkits. Such toolkit provides an

attacker with means to create an infected web page, register a domain and even

spam users to recruit victims. A proactive way to detect such pages is provided by

crawlers that browse thousands of web pages a day and analyze their contents to

determine their nature. Analysis methods used to assess the malice of a web page

are numerous and are further treated in Section 3. Additionally, there exist online

analysis platforms that provide such service directly to the user: WEPAWET [31]

and jsunpack [65] are the most well-known instances.

Current approaches described above offer satisfying solutions to some extent. In

fact, concerns have been raised at several layers including the possible evasion of a

system, the relevance of the deployment location, the lack of incentive for a user to

deploy the system and the effectiveness of the system.
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1.3 Research Issues

The ideas presented in the previous section raise a number of important research prob-

lems, which are outlined below.

Deployability Architecture is always a concern when dealing with security systems

as it is transversal to other system properties. Since it can be a vulnerability, it is

important to ensure that from the point of view of the architecture, the proposed

solution is safe. In particular, it should not suffer possible hijacking at the client-side,

or interception of information provided at the server-side. Actually, communication

with the server-side is not encouraged as a user may deal with domains that do not

offer such feature, let alone malicious ones. Also, client-side implication should be at

the extent of preserving the user-experience.

Security The security of a security system is indeed critical. Protecting the user

should not suffer any leakage of malicious contents to the user. Containment is a key

feature of such system. Manipulating JavaScript is also not really recommended since

JavaScript security is not guaranteed as developed in Section 2. Ideally, it is satisfying

to prevent its execution in favor of static approaches, but this can be hindered by

polymorphic capabilities of malicious JS code.

Reliability Related to the above property, the system should be difficult to evade,

and should prevent further damage otherwise. Reliability is often shared with third-

parties so we assume that reducing the number of stakeholders would be beneficial.

Therefore, relying on the server-side is unlikely to increase the level of security and

should be avoided. The proposed system should concentrate on weaknesses found in

state-of-the-art solutions and eliminate these as much as possible. Such issues include

obfuscation (the ability to render code unintelligible), cloaking (the ability to prevent

detection/analysis), lack of completeness. They are further described in Section 3.

Usability Often overlooked, this property is yet crucial to the user. Failure to take

it into account may lead to a malicious insider behavior where the end-user will delib-

erately choose to disable the system or ignore warnings from the system. Moreover,

security decisions are difficult to make, and without proper education, it is often bound

to failure. An acceptable solution would offer seamless enough protection in order not

to bother the end user. Not collaborating with the end-user is a drastic choice but can

be relaxed as a last resort, if the need arises.
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1.4 Contributions

This thesis discusses the design and prototype implementation of (sak mis), a client-

side system that protects against Web-based malware. It addresses the challenge of

inferring the intents of a malicious web script by bridging the syntactic representation

and the semantic representation of such script in order to associate the script constructs

with human concepts that can be classified as being benign or malicious. Such process

is often hindered by both the attacker’s side that attempts to conceal malicious intents

and the analyst’s side who fails to capture the complete expression of a malicious script.

In this thesis, we identified the causes of such drawbacks and attempt to provide

a satisfying solution, not only to these issues but also to the user who is the target of

these attacks. Obfuscation and cloaking techniques prevent the analysis of malicious

scripts. However, such techniques are not only used by attackers but also by legitimate

web sites, making these difficult to decide per se. Dynamic approaches have often been

applied to the analysis of malicious scripts with mixed results since execution involve

undesirable side-effects that cannot be easily cancelled due to obfuscation and cloaking

techniques. Also, we argue that end-users should be excluded from security decisions

since they do not have enough expertise. Finally, we criticize former solutions on their

lack of usability due to their offline analysis capability or their blocking features.

This dissertation subsequently covers 3 subjects besides the concept of intent that

we attempt to clarify in Section 5 and the architecture of the system in Section 4:

• the reliable detection of obfuscation, in particular encoding and packing schemes,

which are actually the most popular tools. Our approach differs from past string-

based and statistical methods that only decide whether a web page is obfuscated.

On the contrary, we are concerned with precisely detecting what part is obfuscated

in order to extract obfuscated contents. Our contribution attempts to ultimately

classify patterns of obfuscation based on the hierarchical structures exhibited by

decoding routines. It deals with subtree matching by incorporating algorithms

from automata theory. The prototype we developed is able to detect distinct

obfuscation encoders with a relative accuracy and also offer clustering of samples

by the patterns they express. A pattern is here a combination of obfuscation

techniques. Additionally, the automaton performs in a reasonable time frame

that is not incompatible with web browsing;

• the quick rewriting of obfuscated contents to a deobfuscated form. This is cru-

cial to our approach since sound and complete analysis of a program is only
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possible on an unobfuscated program. Concerned with JavaScript execution, we

propose its emulation instead of emulating the browser as it has been previously

done in past research. Our contribution attempts to provide sound and com-

plete deduction of an obfuscated program, seen as a set of instructions, into an

irreducible form, which is assumed to be the original program (or a semantically

equivalent program). We make use of the Maude [25] language, which is a reflec-

tive language that supports both rewriting and equational logics. We associate

Maude equational constructs with the subset of JavaScript used to write packers,

and augment such code with additional equations that rewrite JS functions and

constructs (such as loops) not present in Maude. Although the mapping is not

complete, we envision further application to the resolution of other obfuscation

techniques, such as opaque predicates. Opaque predicates are predicates of which

value is only evaluated at runtime;

• the assignment of programmatic concepts to higher-level concepts. Finally, in-

tents are revealed through the examination of the source code. We propose a

representation called intention that associates a UML representation of the sliced

decomposition of JS program with labels denoting the action carried out by the

slice. Our contribution relies on the design of a forward decomposition slicing

algorithm that can partition a program in a set of distinct objects, each pur-

porting a distinct action. The action is inferred thanks to a knowledge base of

the programming language of the analyzed script. The knowledge base classi-

fies functions and objects to higher-order concepts that denote a specific action.

An intention is therefore a combination of such actions. It is yet to decide if

an intention is malicious or benign, but we may further classify intentions based

on expert knowledge. Assigning concepts to decomposition slices has the ad-

ditional contribution of accommodating polymorphism, that is, several distinct

implementations are recognized as a same intention.

Additionally, the proposed system attempts as much as possible to provide a static

analysis. This is however not possible when dealing with deobfuscation. It also stresses

methods to offer a usable protection to the end-user.

1.5 Organization

The remainder of this dissertation presents the details of each proposal. After high-

lighting the particularity of Web 2.0 applications regarding security in Section 2, we
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motivate the present work in Section 3 by describing related issues and countermeasures

in the field of Web 2.0 security.

We outline the current proposal and present an overview of the proposed system,

named (sak mis), in Section 4, before elaborating on the concept of intention from

which this research took inspiration (Section 5).

Sections 6 and 7 tackle the subject of obfuscation and how ob asti is able to de-

tect known obfuscation patterns and quickly match these within a larger script using

pushdown automaton.

Then we detail the underlying logical background necessary to understand the

Maude rewriting system in 8 and then, in Section 9, the actual emulation-based auto-

mated deobfuscation tool named u adjet.

Finally, Section 10 details the rationale behind the concept assignment problem and

Section 11 presents mi oos, a static decomposition slicing algorithm to assign (mali-

cious) intents to script slices.

Section 12 summarizes the contributions of this dissertation and further perspectives

prompted by the results, as well as discussion of some open issues that were not covered

in the present work.
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2. Web 2.0 Security

If you think technology can solve

your security problems, then you

don’t understand the problems and

you don’t understand the technology.

Bruce Schneier

In this section, the reader will be introduced to the realm of Web 2.0 security.

We will cover past and current attacks, as well as, Rich Internet Application (RIA)

vulnerabilities and subsequent exploits tackled by the present research work, as well

as, the current countermeasures at the time of writing. For the sake of completeness,

client-side attacks will be contrasted with server-side attacks, although they are often

combined together: the exploitation of a server-side vulnerability leading to possible

harm done to the end-user.

2.1 Web-based Attacks

Information and systems security has been intimately intertwined with the evolution

of computer systems. First attacks were isolated, and directed at servers. But with the

success of modern web applications, the target has shifted to users. With the advent of

the Web 2.0, where applications push most of their code to the client-side, opportunities

have increased for an attacker to directly harm users.

2.1.1 Server-side Attacks

Originally, Web services were restricted to publishing static pages and browsing. Re-

sources were scarce and attacks would target only servers. Generally, a denial of service

(DoS) attack originating from a single machine would be sufficient to stun a server. In

1999, Trinoo was a client program that helped an attacker perform distributed DoS

(DDoS) attacks. Aside from the HTTP port (80), attackers would attempt to exploit

other service vulnerabilities (on other open ports) in order to subvert the machine host-

ing the web server. In the year 2000s, many worms, such as Code Red and Nimda,

were successful at “recruiting” nodes among vulnerable web servers.

Gradually, as the service offer evolved, attacks were distributed not only against

web servers, but also against databases (SQLSlammer) and directory services (Sasser).

Web sites then became web applications that not only publish static contents, but

also provide services to users on these contents. First, web applications were used as
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stepstones by attackers to reach their goal: the server. By spotting vulnerabilities

or loopholes in the logic of the application, attackers were able to inject and execute

arbitrary code on the server side. Common examples include:

• SQL injection (tampering with data, sensitive data disclosure or deletion, privilege

escalation, etc.);

• command injection (sensitive data disclosure, privilege escalation, denial of ser-

vice, etc.);

• remote file inclusion, also known as RFI (arbitrary code execution);

• buffer overflow and format string attacks (denial of service, arbitrary code execu-

tion, etc.);

• forced browsing and directory traversal (sensitive data disclosure).

Most of the attacks are submitted through web parameter tampering either in the URL,

the payload or the HTTP headers.

2.1.2 Client-side Attacks

Later, attackers realized that injecting code could not only subvert server resources but

could also be directed to other users of the application, at a large scale. While phishing

spam may fail in attempting to lure a user into accessing a malicious website, it has

proven more successful to have a user to first access a legitimate website and then be

redirected to a malicious one. Past injection attacks were leveraged to either include

code from malicious domains or silently redirect users to these domains. Popular attacks

include:

• cross-site scripting, which comes in three different flavors: stored, reflected and

DOM-based;

• cross frame scripting;

• HTTP request smuggling, as well as, its counterpart HTTP response splitting.

Above-mentioned techniques allow an attacker to, among other things, execute arbi-

trary code directly or by embedding code from a domain owned by the attacker; steal

sensitive data; deface the contents of an application, visited by the user, by poisoning

the cache or manipulating the Document Object Model (DOM).
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Other classes of attacks attempt at impersonating another user either by stealing

the user’s credentials, hijacking the user’s session or making the user performs actions

that will benefit the attacker:

• cross-site tracing (XST) where credentials are read thanks to TRACE, a rarely

used HTTP method;

• session sniffing where the attacker performs a man-in-the-middle attack by cap-

turing network packets;

• session fixation where an attacker force a victim to use predefined credentials;

• cross-site request forgery, also known as CSRF or XSRF, is a scheme where an

attacker gets a user to access a link or a page that will generate a request to an

application the user is logged into, leveraging the fact that the browser automati-

cally attaches authentication information to any request bound to an application

that maintains a session.

The reader can refer to the websites institutions that specialize in web application

security, such as the OpenWeb Application Security Project (OWASP) [132] or the Web

Application Security Consortium (WASC) [134] for rather complete taxonomies of the

attack landscape (the WASC Threat Classification is of particular interest). For readers

not familiar with the HTTP protocol and web-based communication technologies, you

may find relevant information, as well as, attack scenarios and other technical details

in the literature [130].

2.2 Web 2.0 Insecurity

There is no strict difference between Web 1.0 and Web 2.0 but it is universally under-

stood that Web 1.0 applications rely mainly on the HTTP protocol to download pages

in a synchronous pattern. On the other hand, Web 2.0 applications do involve abun-

dant processing on the client side through embedded scripts that will send and receive

data to the server asynchronously, without the user experiencing delays. The richness

of the browser-side processed information, and the amount of information exchanged

without the user-explicit consent, have impacted the way attacks are carried out in

Web 2.0, eventually reaching the browser. The attacks usually target a misuse in the

application processing in order to manipulate the output by designing a malicious user

input. The user, especially the user’s private information, is now the target of a large
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panel of browser-based attacks such as XSS, CSRF, phishing, etc., that were already

present in earlier Web applications, but whose potential has increased.

2.2.1 Web 2.0

Web 2.0 does not rely on any particularly recent technology, but on technologies that

have been spreading the Web since its early years for some of these. JavaScript and

XML, at the origin of the coined word AJAX (Asynchronous JavaScript with XML) [57],

were technologies designed in the mid-1990s. In fact, Web 2.0 applications did exist

prior to 2001. However, the promotion of a framework of technologies (at that time,

not coined as AJAX) has been boosted by the implementation of the XMLHttpRequest

(XHR) DOMAPI in Mozilla 1.0 in 2002. It allowed the development of web applications

that did not need to constantly reload the web page to update its content dynamically,

leading to a more user-friendly, a more interactive and fluid experience of the Web.

Web 1.0 used to be a one-way information-providing Web in which users would

browse the Web requesting contents they would download on their browser. Contents

were mostly static and maintained only by their author. At that time, the browser

architecture itself was very simple as shown in Figure 1.

On the other hand, Web 2.0 applications rely on rich Internet application frame-

works and share many participative characteristics: they are dynamic, interactive and

comparable to desktop applications, they facilitate communication, they allow collabo-

ration between users, they rely on syndication to provide contents from many different

origins and even allow web applications to interact in order to create new services, they

also make use of Web standards and achieve scalability through cloud computing.

The XHR object is instrumental in rendering the fluidness of Web 2.0 applications,

in comparison to plain HTML ones (the reader can observe the central place of the

AJAX framework in Figure 2), but also in hiding a large amount of client-server com-

munications from unsuspecting users. These communications exchange data that must

be machine-readable and therefore the two mostly used formats are XML and JSON

(JavaScript Object Notation) [34], a subset of the JavaScript programming language.

JavaScript is such an essential component of modern web applications that the

security of browsers also partly depends on it, although other components or plug-

ins should also be considered. But JavaScript has really been the “glue” between

components in recent browser instantiations.

11



B
r
o
w
s
e
r

Web 1.0

Figure 1. Simplified architecture of a Web 1.0 browser

2.2.2 JavaScript and AJAX Security

JavaScript (JS), which is the de facto standard in the AJAX implementation, is a

dynamic, duck-typed, interpreted language that runs in browsers, and also locally in

some applications, for example, PDF files [1]. It is a functional, event-driven, prototype-

oriented (not really object-oriented) language that can modify a web page through

its Document Object Model (DOM). Prototype-based languages feature a classless

object-oriented paradigm where inheritance is performed via cloning existing objects

(the so-called prototypes). JavaScript was created by Brendan Eich in the early days

of the Web. JavaScript describes the Netscape’s (now, Mozilla’s) implementation of

the language, of which standard is known as ECMAScript [41]. JavaScript features

capabilities such as loading and executing remote files or scripts, which can be seen

both as useful and harmful.

While widespread plug-in technologies such as Flash and Java can be subverted

and do much more damage in terms of range, due to built-in networking or file-access

functionalities, JavaScript is natively interpreted by most of the browsers and does not
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Figure 2. Simplified architecture of a Web 2.0-capable browser featuring the AJAX

framework

need any prior installation. From its conception, the JavaScript language does provide

some basic security mechanisms [51] such as:

• native sandboxing: client-side JavaScript does not implement utilities to have

access to local files or to perform generic networking tasks. Therefore it is rather

safe itself. Nonetheless, JavaScript language has the ability to manipulate other

Web components such as ActiveX controls or Flash programs, as well as, Java

applets, thereby relying on the security of these components. Although they may

implement sandboxes to prevent communications with external URLs, the attack

surface has now extended from the Web browser to browser plug-ins;

• same-origin policy (SOP): what is defined as origin is the combination of a pro-
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Table 1. SOP check outcomes
URL Outcome Reason

http://www.example.com/dir/page2.html Success

http://www.example.com/dir2/page.html Success

https://www.example.com/secure.html Failure Different protocol

http://www.example.com:81/dir/etc.html Failure Different port

http://test.example.com/dir/page.html Failure Different host

tocol, a URL and a port (see Table 1 for some example checks against the page

http://www.example.com/dir/page.html). Based on this triplet, an embedded

script or a XMLHttpRequest object can not access and modify documents, frames

or embedded contents that are not from the same origin. More precisely, what

matters is the origin of the document in which the script is embedded and not

the origin of the script itself. The SOP does apply to most of the Document

properties but is implemented somehow differently from one vendor to another.

The SOP prevents stealing proprietary information.

However, the SOP has been criticized for being too restrictive at times, especially

in cases where a domain owns many subdomains. A trick to allow two web pages, from

two different subdomains, to communicate is by setting the domain property of each

page to a common value with the constraint that the new domain has to be a valid

suffix of itself. An alternative method for relaxing the SOP is being standardized as the

Cross-Origin Resource Sharing [140]. This technique extends the HTTP protocol with

new headers: an Origin request header, which indicates where the cross-origin request

originates from, an Access-Control-Allow-Origin response header, which indicates

whether a resource can be shared.

A little-known feature of the JavaScript language lies in its functional and object

characteristics: functions are objects and can be overridden. Moreover, JavaScript al-

lows redefining functions after they have been declared, at runtime. This phenomenon,

known as Prototype Hijacking [40], or more colloquially JavaScript Clobbering, en-

ables a JavaScript program to intercept and modify automatically another application’s

source code [67], under the SOP. An attacker can abuse Prototype Hijacking to override

the behavior of a function, even a native one, with a malicious version of the former

while maintaining the original behavior in the eyes of the user. Clobbering functions is

usually performed in 3 steps:
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1. a reference is created to the original function

var oldFoobar = foobar;

2. a shim function is defined that performs operations to the attacker’s benefit and

subsequently calls the original function through the previously created reference.

Finally calling the original function will lure the user into believing nothing special

happened

function newFoobar(param) {

out = "== Captured Information ==\n";

out += param.contents;

out += "\n==========================";

oldFoobar(param)

}

3. the original function is clobbered to point to the new shim function

foobar = newFoobar;

Whenever, the clobbered function is called, the shim function is executed instead. In

particular, the flow of on-demand AJAX applications, where the code is loaded “on-

demand”, can be hijacked on-the-fly to the attacker’s profit.

Usually, CSRF is a blind attack in that an attacker cannot see the response of the

forged request. But, leveraging the clobbering technique explained above and the fact

that JSON is valid JavaScript, an attacker can apply a maliciously crafted constructor

to some JSON data. This attack, called JSON hijacking (but also confusingly known

as JavaScript hijacking [21]), is constructed using a CSRF request and a clobbered

function. JSON [34] is designed for data interchange by serializing objects and trans-

mitting these over a network connection. JSON objects are represented by simple data

structures and associative arrays. Since JSON is a subset of JavaScript, JSON text can
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be parsed into an object by invoking the eval() function, which results to be handy.

However, this should never be done with untrusted data because of obvious security

reasons. It is usually recommended to make use of a JSON parser that will accept

only valid JSON. On the other hand, JSON data are prone to hijacking. Typically, an

unsuspecting victim is lured into accessing a malicious web page containing two distinct

scripts:

1. one script has its src property pointing to a web page, in a domain the user is

logged into, returning a JSON array;

2. another script clobbers the Array() constructor in order to transmit the JSON

array back to the attacker’s domain.

JSON hijacking can also be carried out on JSON objects since the Object() constructor

can also be clobbered. A JSON object literal is not valid JavaScript by itself though.

Still, JSON object literal inside of parentheses are valid JavaScript [67].

2.2.3 The XMLHttpRequest Object and Related Threats

The XMLHttpRequest object was created by Mozilla as a JavaScript object interfacing

with the nsIXMLHttpRequest built in the Gecko layout engine. This Gecko interface

is an implementation of the IXMLHTTPRequest interface from Microsoft. The XHR

has been the de facto standard in asynchronous HTTP transactions. It allows sending

HTTP(S) requests to servers and loading responses into the scripting language. Ex-

change data format can be XML or plain text that can be formatted as JSON and later

evaluated in JavaScript.

Attackers have been developing more elaborated classes of attacks since the XHR

object loads the response back to its issuing script. The XHR objects does abide by

the SOP though, but has been used in attacks where an XSS vulnerability was already

present. At the time the XSS vulnerability is exploited, the attack becomes a local one

making the XHR objects usable for asynchronous HTTP control [48]. That way, the

XSS vulnerability is used as a proxy into the targeted domain as will be explained later

in this section.

Recently, the World Wide Web Consortium (W3C) has proposed to enhance the

XMLHttpRequest object with new features such as cross-origin requests [141].
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2.2.4 On JavaScript Malware and Related Threats

Typical Web 2.0 applications feature SNS (Social Network Services), wikis, blogs, media

sharing and broadcasting, webmails, online gaming, different types of mashup websites.

The specificity of such applications is indeed crucial to the processing of new classes of

attacks: the level of participation from users expands the number of injection points

while the scale of communities allows for massive and fast propagation of malware.

Additionally, cross-origin communication gives the opportunity to attackers to perform

pivot attacks where, instead of directly attacking the targeted website, they exploit a

more vulnerable domain, which performs cross-domain communication with the tar-

geted website.

As we have seen, JavaScript, and when possible using the XHR object, has the

potential to generate attacks more powerful than what we used to experience. Attacks

are stealthier and more flexible since the attack is not a blind one anymore. Espe-

cially, the XHR object allows connections to persist and give the attacker access to

the response contents. For that reason, malicious pieces of code written in JavaScript

have become more elaborated, performing more tasks, targeting a wider scope, without

disturbing the user’s experience. Some security researchers have taken a closer look

to what can be done to exploit an XSS vulnerability at its fullest [63, 66] and devel-

oped JS programs that resemble traditional malware, thus leading to the coined word

JavaScript malware. And under the name of JS malware are understood various scripts

that encompass reconnaissance, fingerprinting, authentication bruteforcing, proxying,

etc. Leveraging the diversity of JavaScript malware, it is likely that an attacker can

carry out a complete attack scenario from reconnaissance to botnet operation.

JS malware has been thoroughly surveyed by Martin Johns [79] so this section

will not detail every single attack that he described, but shall rather concentrate on

client-side JavaScript and especially XHR-based occurrences. Aside from displaying

behaviors to common malware, JS malware characteristics can be summarized as:

• stealthiness: in order to thrive, it is necessary that the victim’s browser, in partic-

ular the web page containing the malicious script, be open as long as possible (al-

though not always true). JS malware deceives both the server and the user’s vigi-

lance through the use of various techniques to conceal its activity: hidden iframes,

XHR requests (when possible), forged requests that resemble user-generated ones

and need no user’s explicit action to be authenticated;

• polymorphism: JS malware evades common signature-based detectors as well as

17



hinder the work of analysts by assuming polymorphic shapes. Common encoding

techniques are sufficient to bypass filters on the server-side. Obfuscation tech-

niques add a level of protection to malicious scripts by incorporating anti-analysis

and cloaking techniques;

• scalability: thanks to the dynamic properties of JavaScript, JS malware can scale

to constraints of the environment it is injected into. Techniques such as XSS

channel and JS clobbering provides JS malware with the ability to maintain com-

mand channels to update its set of functionalities and overwrite its own functions

to reduce its footprint. It is also able to rewrite application-defined functions to

hijack their flow.

XSS/CSRF Amplification. The XSS attack is no longer constrained to only a

single task such as stealing cookies, private information or user’s inputs but can also

make requests for resources and read the contents of the response, in a seamless manner,

with the browser automatically adding authentication information. From then, a user

initiating a single request can actually produce several requests in a sequential way, or

in parallel, and wait for the responses to trigger one or several subsequent stages.

In recent days, malware has been witnessed running upon social networks in a way

that resembles well-known Internet worms. Finding an XSS or a CSRF vulnerability

on top of a social network is sufficient indeed to launch a large-scale attack. And the

fact that XHR is constrained by the SOP is no more a problem if the whole JS malware

payload is injected within the target website. However, web-based malware only persist

on top of a browser, more precisely a user’s session and ends once the user closes the

web page. On the contrary, XSS worms mimic the typical autonomous worm behavior

of reproduction and propagation.

John Jean demonstrated the power of CSRF and XSS worms respectively on top

of the Facebook website [78]. By leveraging a couple of XSS vulnerabilities on top of

the Touch and mobile versions of the Facebook website, the author designed a false

Facebook application (to social-engineer users into accessing it), which is actually a

CSRF worm. The CSRF worm takes advantage of a CSRF vulnerability of the mobile

version of the Like button to obtain a user’s ID. The author also demonstrated a second

worm, an XSS worm leveraging an XSS vulnerability present on both Touch and mobile

versions of the Facebook website, affecting the functionality to access external pages.

These two social network worms illustrate very well the capabilities of JS malware:

performing several commands silently and automatically.
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Reconnaissance Malware. As Martin Johns defines it [79], JavaScript malware

describes attacks that abuse the browser’s capabilities to execute malicious script-code

within the victim’s local execution context. As stated earlier, the SOP prevents a

domain from arbitrarily including contents from another domain and accessing data

and properties. For the sake of allowing cross-domain communications, Johns remarks

that the SOP is relaxed for some tags, namely the <iframe>, <img> and <script> tags,

with capabilities conferred to the user that differ from one browser to another. This

loophole allows, to a certain extent, an attacker to intercept events, at the time of the

inclusion of the external domain element, as well as, the properties of the element, after

inclusion. A JS script can thereby make requests to remote contents but still, there is

no way to see the response. Grossman [63], then Hoffman [66] demonstrated what was

later denominated as the Basic Reconnaissance Attack (BRA) [81, 79]: by leveraging

the event model of JavaScript, it is possible to conduct scanning or fingerprinting tasks

at the application level, like an attacker would do at the network level.

Grossman and Niedzialkowski showed that we can push the envelope to fingerprint

the detected Web servers by requesting images that were typical of some vendors’

platforms.

Attack Proxy. As stated above, the range of attacks that can be performed on

top of a browser is varied. Once hijacked, a browser can be forced to maintain a

connection with a remote domain, and subsequently proxy more attacks. Typically,

mashup applications, which aggregate the contents of one or several applications from

different domains, provide malicious developers with the opportunity to attack other

domains through the mashup, provided there is no sufficient isolation. Attackers can

also seek to hijack external services featured in popular websites, in so-called pivot

attacks, to inject a malicious code that will be served to countless of users. Hoffman

demonstrated a type of attack where the Google Translate service was used as a proxy to

allow contents from two different domains to communicate under Google’s domain [66].

More generally, Anton Rager [116] showed that chaining two XSS vulnerabilities

was sufficient to obtain an XSS channel, which communicates with a remote controller

loaded through the second vulnerability. Manipulating the concept of iframe remote

scripting [30], Rager builds a command channel that awaits commands from his XSS

proxy tool, which handles script inclusions and command communications through 3

iframes.

Eventually, a tool allowing to build a complete Command & Control (C&C) system

was developed by Benjamin Mossé [101]. Browser-Rider is a client/server web appli-
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Figure 3. Workflow of the Browser-Rider botnet

cation that acts as a C&C for what has been dubbed an XSS botnet. Browser-Rider

is constituted of a PHP server that handles the requests issued by remote zombies,

manages payloads to be sent back, as well as the obfuscation and compression of these

payloads. Browser-Rider also features a web-based user interface that allows an attacker

to monitor her botnet. The connection with Browser-Rider is maintained thanks to the

first payload injected to the vulnerable website, which is a simple reloader.

2.3 Attacks against Browsers

Some client-side attacks are not targeting applications but rather the browser and its

associated plugins. Depending on the browser configuration, a malicious web page

can tweak the attack vector to launch itself or spare browsers not targeted by the
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specific attack, in order to prevent detection. Such behavior has been more frequently

witnessed and the term cloaking generally refers to a set of techniques deployed at

different layers to prevent disclosing malicious contents to no other than the targeted

configurations. Once a malicious web page has made sure the client it runs on is

vulnerable, it may target vulnerable assets, either the browser or any installed plugin

to infect the underlying system.

2.3.1 Drive-by Download Attacks

Many of the attacks presented in this section usually feature the download and execution

of arbitrary code. Contrary to attacks described above, drive-by download attacks

utilize JavaScript capabilities to interact with APIs or plugins in order to download a

binary malware. Drive-by download attacks leverage two major strategies [44]:

• abusing application programming interfaces (APIs): some APIs provide the possi-

bility to download files from external URLs and to write the downloaded contents

to a location of choice in the filesystem;

• exploiting vulnerabilities in browsers and plugins: by exploiting a vulnerability of

the browser or in a plugin (that shares the same address space), a malicious script

can jump into a shellcode previously loaded. The shellcode is then responsible

for the download and execution of additional malware from an external source.

These strategies heavily rely on a scripting language that can be JavaScript or VBScript.

Heap-spray The biggest challenge is to predict the location of the shellcode in mem-

ory. A common solution is to prepend the shellcode with a NOP sledge, which is a

series of no-operation instructions. Therefore, the attacker does not need to precisely

indicate the return address but only estimate a possible address within the NOP sledge.

Eventually, the execution will sled down to the shellcode. To better increase the prob-

ability of landing into the NOP sledge, attackers have been developing a technique to

literally spray the heap. Heap spraying has been widely used since 2005 in web browser

attacks: a typical script will assign copies of a string through a loop to fill large portions

of the browser’s heap memory as depicted in Figure 4. The first loop is responsible for

constructing the NOP sledge and shellcode. The second actually sprays the heap 200

times by allocating the NOP sledge and shellcode to an array. Some techniques have

been also designed to manipulate the heap to ensure the control flow will be redirected

to the sprayed heap [127].
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var nop=unescape("%u9090%u9090");

while(nop.length<=0x100000/2) {

nop+=nop;

}

nop=nop.substring(0,0x100000/2-32/2-4/2-shellcode.length-2/2);

var x=new Array();

for(var i=0;i<200;i++) {

x[i]=nop+shellcode;

}

Figure 4. Loop spraying the heap memory with a shellcode preceded by a NOP sledge

Heap spray is itself not an attack and does not exploit any vulnerability.

2.3.2 Web Cloaking

The term “cloaking” was originally employed by search engine optimization (SEO) and

applies to the process of serving “optimized” contents to the search engines, which

differ from those served to users. As stated previously, malware usually thrives by

preventing detection and going unnoticed. It is therefore necessary that a malicious

web page refrains from returning malicious contents that may get trapped by some

detectors or prompt an error on an inappropriate browser configuration. Cloaking is

therefore a set of techniques to distinguish between real browsers and automated user-

agents, as well as, between vulnerable and non-vulnerable browser configurations. A

recent survey [142] on cloaking distinguishes 4 main types of cloaking:

• repeat cloaking: distinguishes between first-time visitors and nth-time visitors

based on states stored either on the client or the server. First-timers are presented

with potentially malicious contents while user-agents that revisit the page, being

prone to be crawlers, are given a benign page;

• user-agent cloaking: User-Agent strings can provide as much information as the

browser name, version, build and rendering engine, the platform and its operating
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system, and the locale. This allows not only to easily detect search engine bots

and crawlers that publicly advertise themselves, but also to filter user-agents

more finely and adapt the contents, in particular the language. Cloaking can be

further refined to detect the presence or absence of a particular plugin and its

configuration;

• referrer cloaking: based on the Referer HTTP header, this allows to filter out

requests that did not went through a given redirection or a targeted search en-

gine. Also known as click-through cloaking, this technique, when combined with

repeat cloaking and redirections, can create one-time-use URLs to thwart security

researchers;

• IP cloaking: by far the simplest technique. This shuns blacklisted IPs, the ones

mapped to search engine or security organizations, in order to serve them benign

contents.

It is now a completely integrated feature of any web-based malware.

2.4 Countermeasures against Web Attacks

2.4.1 Validating User Inputs

Web attacks are usually prompted by arbitrary contents that have been injected to

the server side through vulnerable web pages. Therefore, a straightforward solution is

to perform validation against user-generated inputs. Validation should take place for

both request and response processing. HTML tags and undesired characters are usually

filtered out. This approach is often termed “blacklisting” and focuses on potential

threats. An attacker can however try to bypass any filters by encoding whole or part

of the payload [64].

On the other hand, developers can choose to allow a subset of characters, or enforce

other properties such as the length of a given input, according to the characteristics of

the expected input. This approach is termed “whitelisting”, and tends to be closer to

the application’s behavior, but also suffers from a higher false positive rate. Whitelisting

focuses on potential vulnerabilities and is therefore more complex to build. Blacklisting

and whitelisting are both inflexible in that they need constant update (whitelisting in

a lesser extent). But combining them often results more efficient.

With Web 2.0 applications, the task is even more complex since it is not rare to deal

with rich user input. Some applications may actually need to accept scripts or at least

XML-like tags as legitimate values. Proper validations include, among others [68]:
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• markup language validation: compliance with a scheme or a protocol as for the

structure and type of inputs. Contents may also be subject to whitelisting;

• binary file validation: similar to other type of inputs, binary file structure, size

and type of the embedded data need to be validated, possibly using whitelisting,

although unrecognized structures happen to be discarded;

• JS validation: it is not trivial to tell whether some JS code is malicious or not

since a same function can be used both in malicious and benign contexts [104];

• JSON: to address the issue of JSON hijacking presented in an earlier section, it

has been suggested that prepending an infinite for(;;) loop before the JSON

data can efficiently evade a hijacking script.

A framework to validate inputs in web applications has also been proposed in [13].

2.4.2 Security Devices

While secure development lifecycle (SDL) processes cannot be deployed, security may

rely on external audit. An alternative and a more proactive approach features the

deployment of security devices. However, since firewalls and intrusion detection/pre-

vention systems do not usually operate at the application layer, they might not be

appropriate to tackle web application security issues. On the other hand, web applica-

tion firewalls (WAFs) have been built from the grounds of the HTTP protocol. WAFs

are often seen as a temporary solution to buy time for developers to fix potential vul-

nerabilities discovered in an application. This process is called Just-in-Time Patching

(or also Virtual Patching) [119].

Overall, these countermeasures suffer common downsides, such as their inability to

provide protection against client-side attacks. Especially in the case of a DOM-based

XSS where the malicious payload does not reach the server-side, making server-side

protections are helpless.

2.4.3 XSS Defense

Its very high prevalence and the ease to detect vulnerable injection points earned cross-

site scripting spot number 2 in the 2010 edition of the OWASP Top 10 [133]. It was

already a high-profile attack back in 2007 when Jeremiah Grossman declared [62]:

XSS is the New Buffer Overflow, JavaScript Malware is the new shell

code.
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For years, XSS has gained a lot of attention from the academic community prompt-

ing several research projects to detect XSS attacks or prevent XSS vulnerabilities from

being exploited. We can classify these contributions in four main categories:

• client-side: these solutions usually analyze HTTP responses or block suspicious

HTTP requests.

• server-side: these solutions sanitize web documents to be included in HTTP re-

sponses.

• policy-based: these solutions specify application-specific policies that are enforced

on the client-side.

• vulnerability assessment: these solutions allow developers to audit their applica-

tions.

All these approaches often demonstrate good results in their evaluation, but it is

always surprising that they do not get much deployed in real-life. Aside from the obvious

impossibility of securing all the web applications in the world, client-side solutions often

suffer from certain drawbacks such as time overhead that harms the user experience.

Also, some approaches are obviously vulnerable to prototype hijacking.

2.4.4 CSRF Defense

Cross-site request forgery is another popular web attack that got particular attention

in recent years, and especially with the advent of social networks, where it is leveraged

to harvest privacy information or propagate XSS worms. This is why it deserves spot

number 5 on the OWASP Top 10 [133]. Since it is an undeniably different vulnerability

from XSS, distinct countermeasures have also been proposed.

CSRF is not as widely spread as XSS but it has some added value: it allows an

attacker to impersonate the victim without having to steal the victim’s credentials.

The attack has gained significant attention when, in September 2007, Petko Petkov

demonstrated a CSRF vulnerability in Gmail [111], Google webmail service, where an

attacker can obtain from the victim to set a specific filter to forward all past and future

mail transactions to an arbitrary email address. This attack durably installed CSRF

as a critical vulnerability in web applications as it decorrelates the will of the user

from the action of the browser. Subsequently, many proposals sought to get the user’s

agreement or infer her intention to filter out unintended requests, likely forged by a

third-party.
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We can distinguish between server-side approaches that try to harden authentication

by distrusting the browser automatic credential binding, and client-side approaches that

apply heuristics to filter out between intended and unintended requests.

Traditional server-side CSRF protection is the recommended CSRF token, that is,

an additional secret that is shared between the application and the user, which is user-

specific and attached to forms and links [124]. Most server-side protections follow more

or less this trend. An early solution was NoForge [82] that was implemented as a proxy

intercepting authenticated requests, that is, requests bearing the session ID and then

checking whether that session ID has any token associated to it. In fact, for any live

session, the proxy generates and attaches an extra token to links and forms that will

be sent back if the request is not forged.

On the other hand, client-side and browser-based solutions, being application-

agnostic, necessarily form decisions on the user’s intention. Johns and Winter [80]

were the first to propose a solution that differs from the common extra token solution

in 2006. Their local proxy solution would try to distinguish suspicious requests from

entitled requests, that is, requests initiated because of the user’s interaction with the

web page. They designed a basic policy where suspicious requests get stripped off from

authentication credentials.

Aside from technical considerations, some researchers have looked into hardening

protocols to ensure safe communications. Proposals were made to implement intended

request checking based on the Referer HTTP header, an optional header that features

the domain of origin of the request. In particular, it was one of the defense measures

proposed against login-CSRF [10], a special flavor of CSRF attack where the forged

request is actually made in the name of the attacker instead of the user.

Measures against XSS and CSRF are often specific and may fail in some particular

cases. Obviously, defending against web malware implies that previous protections fail

or that the user is in presence of a malicious website, rendering protections against XSS

or CSRF ineffective.

2.5 Countermeasures against Web Malware

The Web is made of a countless number of domains (and even domain-less servers)

that provide applications, vulnerable or not, as well as many malicious domains. There

is therefore some probability that a user will encounter, in the course of its everyday

business on the Web, malicious contents. And only visiting deemed benign websites

will not prevent a user from being tricked into phishing events or pivot attacks [61]
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where an injection attack takes place in some domain’s contents that are included into

the targeted web page. Thus, attacks targeting the user or the browser definitely need

a more specific response.

Since many threats are incumbent to the JavaScript language, a radical measure

is to disable JavaScript in web pages. But disabling JavaScript highly affects the user

experience as many web applications rely on JavaScript, so this is not a usable solution.

Browser plugins or extensions, such as the popular NoScript [92], allow a user to enable

JavaScript only on trusted web pages specified by the user. Once more, the security of

the user relies on the user’s decision to trust a web page or not.

Security decisions are critical and complex, especially for a non-expert user that may

not understand the consequences her actions may have for herself and potentially for

others. In recent years, many researchers from academia and industry have proposed

and implemented countermeasures on the client-side to prevent malicious contents from

hijacking the control flow of an application and relieve the user from making any security

decisions. To the best of our knowledge, no browser extension offers full analysis of

JavaScript programs. Indeed, most of these are execution-based and cannot be deployed

in the browser itself. Analysis platforms such as WEPAWET [31] or jsunpack [65] offer

offline processing of files or URLs provided by the user. The analysis usually takes from

seconds to minutes and features a detailed report of the found vulnerabilities. However,

this seems not usable as a safebrowsing solution and blacklisting services are privileged

since they are transparent to the user. Recent advances in client-side analysis of web

malware are not covered here but detailed later in this dissertation, in Section 11.
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3. Problem Analysis

Human instinct lags in most of the

places where cyberspace is swelling

and ramifying.

Ari Juels

Despite a late but growing interest in web malware issues, their mechanisms have

not been studied and addressed equally. Although web malware has been demon-

strated to perform like common malware [32], common countermeasures are not always

considering the different stages of an attack, eventually failing to detect or prevent

hazard [117].

In this section, will be covered the consecutive stages unfolded during a web malware

attack as well as the techniques used to evade detection. In particular, detectors often

struggle with redirection pages when not directly thwarted by cloaking techniques. On

the other hand, deobfuscation is still underestimated and many approaches cannot be

applied to the user because of their lack of timeliness. As a matter of fact, the present

proposal seeks to address these limitations.

3.1 Methodology of Web Malware

Web malware attacks usually carry out the following pattern:

1. after determining the fingerprint of the browser, an appropriate malicious script

is downloaded to the browser;

2. the script needs to be first deobfuscated prior to be executed;

3. once the original code has been recovered, its execution will first yield to some

preliminary stage in order to “land” the exploit safely;

4. upon exploitation of one or several vulnerabilities, the attack is completed.

Although, the above steps are presented sequentially, it should be understood that

these steps may be repeated several times, leading to an intricate interleaving.

3.1.1 Redirection and Cloaking

Cloaking, as explained in Section 2.3.2, attempts to fingerprint the browser’s personal-

ity, that is, the user-agent information and other installed plugins. Cloaking satisfies

two requirements of modern malware:
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Figure 5. Anatomy of a drive-by download attack

• it reduces the target range to the vulnerable subset of browser personalities,

evading possible disclosure of the ongoing attack;

• it allows tweaking the attack to the target’s environment.

Redirection is complementary to cloaking: it improves stealthiness by distributing

the malicious code across multiple web pages or origins, making a single piece of code

look innocuous. Additionally, redirection is often performed silently as a user is made to

believe she is browsing a single web page while several iframes download contents from

different domains. The victim’s browser would be consecutively led from a trap page

to a vulnerable web page, which is used as a proxy for attack and malware distribution

websites in a typical drive-by scenario (see Figure 5).

As a matter of fact, the window inside the browser does not roam from domain to

domain but rather downloads contents pointed by iframe or script inclusions. Most of
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the scripts are highly obfuscated and may not be readily executable by the browser’s

JavaScript engine.

3.1.2 Deobfuscation

Obfuscation is used to evade detection by string-matching filters and can be imple-

mented in various ways ranging from simple encoding to complex full-blown encryption

schemes (more details are provided in Section 6). As observed by Cova et al. [32], deob-

fuscation techniques often resort to dynamic code generation and execution. A single

script can usually be obfuscated through several layers of obfuscation and redirection,

that is, the script is being divided in multiple pieces, each one being independently ob-

fuscated. Although an obfuscated script will eventually get deobfuscated prior to being

executed, one should not expect that a simple execution would yield the cleartext. In

fact, even though encrypted contents are to be decoded through a routine (possibly

relying on a key), deobfuscation is further complicated through the combination of

obfuscation schemes with redirection and cloaking. Encrypted contents, the decoding

routine and the key may be available in different domains and only to specific browser

personalities.

3.1.3 Environment Preparation

This stage is specific to drive-by download attacks where the browser’s memory is

manipulated in order to hijack the browser’s execution and execute arbitrary code. In

other web malware where binary malware is not “planted”, environment preparation is

minimal or even non-existent. In cases where drive-by download attacks target memory

corruption vulnerabilities, arbitrary code (also known as shellcode) is injected into the

browser’s memory, as a first step, through legitimate string initialization operations.

Then, a vulnerability is exploited in the browser or one of its plugins to hijack the flow

of execution to the shellcode.

Other attacks that abuse API functionalities generate some objects that will be

used during exploitation such as an HTTP connection handler, a vulnerable object

that allows untrusted data to be written to the disk, and an object that has execution

privileges.

Environment preparation can be either available with the exploit code and obfus-

cated together, or the output of a distinct deobfuscation.
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3.1.4 Exploitation

The attack is complete when a vulnerability has been exploited to the benefit of the

attacker. Drive-by download attacks end when the browser is finally forced to down-

load malicious contents from a malware distribution site and install it to the victim’s

computer filesystem, or even execute it within the browser environment. On the other

hand, elaborated XSS-based malware will “plant” several scripts within the browser’s

scripting environment of the trap page and exploit the browser’s capabilities to mount

staged attacks. Exploit scripts are as varied as the attacker’s intents and even more

varied in shapes as they are polymorphic.

Web malware do not thoroughly follow all these steps but may rather recursively

repeat these steps through several layers of redirection, cloaking, obfuscation and exe-

cution. These combinations impose several constraints on detectors that, if failed to be

dealt with, will allow malware to either evade detection or even reach the client-side.

3.2 Circumventing Current Web Malware Detection

According to a technical report [117] published in July 2011, four of the most prevalent

solutions in terms of web malware detection present weaknesses that lead to partial

or total circumvention of these. Obviously, their prevalence does not presume of their

efficiency. The four solutions considered in this survey encompass a various range of

approaches and technologies as presented in Table 2. Despite the obvious downsides of

some of the solutions, they seemed to be widely used. What follows is partly a synthesis

of important results and conclusions of this survey.

3.2.1 Virtual Machine Honeypots

Virtual machine based detectors provide complete virtualization of a system that mon-

itors changes to the operating system as a whole. Such system runs as a blackbox

and can detect attacks against unknown vulnerabilities. Honeypots are however lim-

ited in their ability to precisely identify the resource that triggered an exploit or the

vulnerability that has been exploited, especially when the targeted vulnerability is not

present.

Honeypots are passive per se and attackers have taken advantage of that fact to

design attacks that actively require the user’s action to be performed. The above-

mentioned report has witnessed an increase, even though small, in the number of social

engineering attacks, that is, attacks in which an unsuspecting user is enticed into doing
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Table 2. Qualitative comparison of some web malware detectors

Criteria VM-based Emulation Reputation Antivirus

type passive active passive passive

analysis dynamic hybrid static hybrid

accuracy medium high low low

level of details low high low medium

scalability low good good medium

overhead CPU / time time n/a CPU / time

vulnerabilities

– update No Partly Yes Yes

– redirection No No Yes No

– cloaking Yes Partly No No

– obfuscation No Partly No Yes

availability offline offline online online

usability low low good medium

a sequence of actions. This method is a type of cloaking that thwart automated VM-

based detectors as it only reveals the malicious content after the user’s interaction.

Aside from that, it is important to notice that a honeypot only instantiates a given

OS with a given browser personality, which means that one should set up several

virtual machines to monitor distinct environments. Doing so further complicates the

administrator’s task as managing multiple VMs containing different combinations of

exploitable software is a tedious task.

SpyProxy [100] was one such proxy that intercepted the HTTP flow in order to

analyze the output of executing a web page. The proxy solution would sit between

a user’s browser and the Internet and execute web pages to detect any exploitation.

If the virtual machine detects an attack, the user is shown a warning message and

the web page is blocked. On the contrary, the web page is forwarded but a second

execution on the user’s browser will fetch again contents, in particular scripts. For

that matter, authors observed that their system were vulnerable to non-deterministic

execution where a displayed web page could feature only benign contents at one time,

and malicious contents another time. This obviously implies some time overhead that

can harm the user experience.
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3.2.2 Browser Emulation

Originally proposed to address the shortcoming of VM-based honeypots, browser em-

ulators take a more active look on web malware detection since they are designed to

contain and analyze their execution. Browser emulators usually provide emulation of

all basic browser functionalities, as well as, the script engine and can even instantiate

fake ActiveX objects, for example. During execution of a web page in the emulated

browser, features are extracted to detect any abnormal behavior that might indicate

a possible exploitation. This allows for precise identification of the vulnerability and

even the recovery of the chain of causality that led to the exploit, that is, the sequence

of HTTP transactions between the emulated browser and the attack sites.

However, in the case the personality of the browser does not fit the exploit’s target,

or if the targeted vulnerability is absent from the emulated environment, the malicious

web page will not be detected. Additionally, attackers also design their malicious code

using heavy obfuscation that may fail to decode itself in an emulated environment, or

leverage small quirks between browser behaviors in order to evade detection. Browser

emulators also need continuous update to provide exploitable environments.

JSAND [32], integrated to the malware analysis platform website WEPAWET [31],

is based on the HtmlUnit [15] browser emulator, a Java-based “GUI-less browser” that

embeds the Rhino [16] JavaScript engine and can impersonate both Internet Explorer

and Firefox browsers. According to the authors, the motivation for using HmtlUnit is

three-fold:

• it can simulate multiple browser personalities and rub out discrepancies between

ECMAScript implementations (JavaScript and JScript namely);

• it can simulate an arbitrary system environment and configuration by accepting

any call to ActiveX control or plugin, and loading a logging facility that will keep

track of any deeds of the given control, ultimately allowing to detect unknown

vulnerability;

• it allows to implement anti-cloaking mechanisms: more precisely, it maximizes

the code coverage by forcing the invocation of any defined function that were not

called during execution.

WEPAWET is a popular and recognized website but still has failed to detect some

obfuscating transformations in the past or has been impeded to deobfuscate some pay-

loads. As useful as it can be for security researchers and analysts, it may fail to analyze

33



malware when not providing the accurate environment expected by the attack web

page. Plus, it also implies some time overhead due to trace analysis and multiple

executions.

3.2.3 Reputation-based Detection

Reputation-based detectors are leveraging public blacklists of known malicious pages

to prevent unsuspecting users to access these. The maintenance is pretty low as it

is basically restricted to blacklisting new domains. Some novel researches have also

highlighted interested results in predicting new malicious domains by using DNS.

Since reputation is content-agnostic, it should be coupled to other methods in order

to collect domains to blacklist. Attackers have therefore relied to the mass registration

of domain names in order to circumvent blacklists. To thrive longer, attackers also set

many redirectors and it is not rare that a victim be redirected through several interme-

diary sites. Overall, domain rotation and redirection can ensure a longer exploitation

spree for attackers.

There exist many blacklisting websites and popular ones include the PhishTank [108]

initiative, the Badware Busters community [129] (sponsored by some popular Internet

stakeholders) and of course, the Google Safe Browsing [60] initiative and the Web of

Trust [143].

3.2.4 Signature-based Detection

Signature-based detectors, mostly represented by antivirus, have been available for a

long time and it is no wonder that they have also been applied to web malware detection.

The main functionality of antiviruses is to scan payloads and look for signs of malice

but their task has been thwarted by packing and obfuscation techniques. This has often

prompted antivirus vendors to flag as malicious any content that was found packed or

(heavily) obfuscated.

By definition, an antivirus needs to be kept up-to-date in order to be efficient. The

report [117] shows that attackers tend to integrate quickly newly public vulnerabilities

to their exploit kit and that obfuscation can be cited as a criterion to distinguish

malicious and benign pages. However, it does not compare malicious obfuscated and

benign obfuscated scripts, but rather points out the sophistication of recent obfuscation

schemes.

Nowadays, mainstreams computers are shipped with an antivirus as vendors antic-

ipate that users may connect to the Internet and eventually be infected online. Unfor-
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tunately, it sometimes happens that a user, frustrated with the load imposed on her

machine by the antivirus software, will simply disable the antivirus. Failure to properly

update the virus signatures is also another cause of infection, if not to be blamed on

the vendor side for not providing signature updates in time.

As evidenced by this synthesis and summarized in Table 2 above, each detector

has its field of expertise and can contribute to detection. Therefore, the Google report

concludes that combining these 4 approaches would significantly increase the detection

rate.

3.3 Issues on Redirection, Cloaking and Obfuscation

As an aspect of the continuous arms race that takes place in the realm of web appli-

cation security, attackers always try to shift security vendors’ expectations while the

latter attempt to anticipate next attack trends. Obfuscation has been for long one of

the many techniques in the attacker’s arsenal since packing has obviously paved the way

to nowadays’ obfuscating transformations. Yet, security researchers have disregarded

obfuscation as a threat though Provos et al. [115] have demonstrated that obfusca-

tion is not an indicator of malice. It is true that, in most cases, obfuscation will be

easily cancelled to reveal the script in cleartext but trends showed a growing sophisti-

cation coupled with redirection and cloaking to circumvent state-of-the-art detectors.

Obfuscation is not as trivial as it used to be and even simple encoding schemes that

rely on browser or plugin tricks have proven able to evade detection by even advanced

detectors such as WEPAWET. For example, a known anti-analysis trick features the

arguments.callee object, which returns the body of the function in where it is called.

Using this peculiar object, an attacker can encrypt a malicious script to obfuscate it and

prevent its deobfuscation whenever the contents of the function are tampered, which

usually happen when instrumented for analysis.

In general, modern obfuscation techniques can be seen as a subset of cloaking tech-

niques since they allow to filter out detectors and since decryption keys are often made

up from the concatenation of pieces of information relevant to the targeted system. For

example, some fingerprinting scripts dynamically generate a string by concatenating

version numbers of available plugins and send a GET request to the malware distri-

bution site with such string as a parameter. The malware distribution site will return

an exploit corresponding to the fingerprinted environment if available. While cloaking

reduces the attack space of attackers, its obvious goal is to ensure an attacker’s success

by evading detection. Therefore, even though some users may be spared from being
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infected, security analysts do not have tools to pursue their study and risk being left

behind in the arms race. Could this be a lesser evil?

Finally, among the three main evasion techniques discussed in this section, redi-

rection remains the oldest and simplest one. Redirection’s original purpose, as stated

previously, is to thwart blacklisting and some redirectors can be vulnerable benign

sites that are used as proxies. But with constant threats on DNS [37] and recent SSL

certificate hijacking [105], the notion of trust on the web is growing weaker.

Nonetheless, cloaking represents the greatest challenge now, as highlighted by the

Google report and future efforts should be directed to tackle this issue.

3.4 Issues on Usability of Browser Protection

On a related note, it is also questionable how usable a security solution is, furthermore

when it is intended to be deployed on the client-side. As stated previously, it is not

always desirable to make users bear the burden of making security decisions. Yet, users

might not want that security policies be imposed on them. It has often be the case

with users uninstalling antivirus software because its was interfering with their user

experience. A usable solution can be defined as one that has a minimal footprint on

user experience.

Based on qualitative criteria in Table 2, the usability of web malware detectors cited

by the Google report has been evaluated. In particular, based on the performance

overheads they impose on the user and their availability or unavailability at hand,

a general comment can be made as to their possible integration in the user’s secure

browsing experience. While emulation seems by far the best performing solution able

to detect even complex attacks, the fact that it is disconnected from the user’s control

flow is a huge disadvantage. Indeed, it is not reasonable to have a user check pages in

an emulator each time she doubts the contents of a web page, let alone several ones in

a given domain. Similarly, VM-based solutions suffer from the same drawback as their

successor. Moreover, both methods often need several passes to decide on the malice

of a given web page, which delays the user browsing experience.

On the other hand, while reputation- and signature-based methods are not as effi-

cient, they offer almost seamless integration in the user browsing experience.

Therefore, it seems important to thoroughly consider usability issues in order to

design a solution able to integrate within the end-user browsing environment, without

harming her experience. This translates into requirements for a realtime, on-the-wire

solution that does not impose any burden to the browser. The present solution attempts
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to enhance these particular points, starting from its design.

3.5 Issues on Offline Analysis and Execution-based Side-effects

To conclude with the description of the problem statement, the present proposal wishes

to stress out the opposition between static and dynamic analysis. Dynamic program

analysis accounts for most of the proposed and implemented systems presented in Sec-

tion 2. Although static code analysis is sometimes used as a complementary approach,

it is quite surprising that it has not gotten more attention given that dynamic analy-

sis reveals to be useful after several executions. Moreover, static analysis seems to be

more fit when dealing with source code, which is the case with JavaScript programs.

One may argue that dynamic analysis takes advantage of machine learning methods

to reduce the range of inputs to be tested but it still incurs side-effects inherent to

execution. In addition, since cloaking and obfuscation seem to be the trend, it is to

be feared that execution might disrupt and divert the program’s control flow. On the

contrary, static code analysis provides arbitrary path selection and analysis.

Nonetheless, cloaking remains a problem for both approaches, especially in the case

of the remote browser personality cloaking technique mentioned above. In fact, in such

case, a static tool will have no chance but to provide a given personality to the attack

website and depending on whether this personality is targeted, the response will contain

malicious contents or not. Finally, another drawback that is a consequence of execution

side-effects is the necessary containment of the said execution. This requires that the

analysis be done afterwards and then is incompatible with online processing.

This shall prevent that execution-based solutions be integrated in front of a user’s

browser for realtime protection.

3.6 Summary

State-of-the-art web attacks do not only exploit vulnerabilities but also strive to con-

ceal their malicious intents as much as possible. Recent surveys have shown that web

malware has been successful in thwarting current web malware detectors. In partic-

ular, reputation-based detectors are abused by the massive number of domains and

redirectors that characterize attack networks. While signature-based detectors are eas-

ily circumvented by the polymorphic characteristic of obfuscated malware, cloaking

techniques prevent emulation-based detectors from triggering malicious behavior. As

for VM-based detectors, they are far from being adequate since they do not detect

accurately web attacks but rather exploits at the OS level.
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An important observation is the lack of actual deployment of web malware detectors

in the browser due to the computing intensive nature of actual approaches. VM-

based and emulation-based actually incur delays because of the multiple executions

they require. Moreover, they are often deployed as offline detectors, which degrades

their usability in the scope of client-side protection.

These obstacles have prompted us to consider an alternative solution to ensure a

safe browsing experience to end users. The next section describes this solution to offer

an online, mostly execution-less and safe detector of client-side web malware.
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4. Overview of the Proposed System

Those who cannot remember the past

are condemned to repeat it.

George Santayana

The proposed system is a client-side proxy solution that sits in front of the user

and is responsible for intercepting HTTP communications. Its goal is to prevent the

exploitation of the user’s browser while accessing the World Wide Web. The proxy per-

forms three main operations, as detailed in Figure 6: prefetching of scripts and related

contents (for example, iframes, suspicious links and images), automated deobfuscation

of obfuscated scripts, and reverse engineering of the intents of a deobfuscated script.

Since the system ultimately model the intents as an object sequence diagram of the

script, the system has been named (sak mis), which stands for Static and Automated

Knowledge-based Modeling of (malicious) Intents in web Scripts.

Before detailing (sak mis) internals, we wish to form a few assumptions on which

we are basing our work:

• Web 2.0 applications provide client-side dynamic contents and often rely on com-

plex cross-domain dataflow;

• Web malware are occasionally injected into Web 2.0 applications through an

unpatched cross-site vulnerability;

• Unsuspecting users fall victim to phishing attacks or other social-engineering

based attacks on top of social networks;

• Web malware often follow four common steps (redirection and cloaking, deob-

fuscation, environment preparation, and exploitation) but not necessarily in that

order. It is important to note that the steps are not always consecutive and nec-

essarily found in that order. Additionally, there may be several iterations of such

steps;

• Redirection and cloaking techniques are performed using links present in the

original page or generated during deobfuscation;

• Obfuscated contents are necessarily going to be deobfuscated. However, deobfus-

cation may be coupled to prior or later attack steps, thwarting the hooking of

critical sinks. Critical sinks are points in the source code where data is used with
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some privilege, usually parsed and consequently executed. A common example in

the JS language is the eval() function, which evaluates strings into executable

JS code;

• Obfuscating transformations, or at least obfuscation toolkits, constitute a finite

set;

• An unobfuscated or a completely deobfuscated script does not feature any obfus-

cated contents or contents to be embedded and is directly executable as is;

• There is a finite number of commonly used APIs, although each browser ven-

dor may feature different ones. We also assume that there is a correspondence

between implementations of JavaScript and JScript. In particular, we can form

an assumption of polymorphism where a function can be implemented in several

ways using different libraries or APIs.

The workflow of (sak mis) is depicted in Figure 6 as follows:

1. (sak mis) is a proxy that intercepts HTTP requests issued by the end user and

subsequent responses returned by the server;

2. upon reception of an HTTP response, the proxy commences the prefetching stage:

3. the requested web page is parsed to detect script inclusions, links, and potential

malicious locations (iframes, images, etc.). Script contents are then retrieved

(prefetching) and inlined into the original web page;

4. if newly downloaded contents also contain links or inclusions to contents of in-

terest, prefetching is also performed on these contents. This scenario also applies

when new inclusions are uncovered after deobfuscation;

5. once prefetching is completed, the aggregated script page is sent to an external

application server;

6. the application server is responsible for automating deobfuscation: obfuscated

contents and decoding routines are extracted first. The deobfuscation stage of

the attack scenario is emulated by the server. The process is repeated in case the

deobfuscation generates new obfuscated contents;

7. once scripting contents can be directly interpreted by the machine, the decision

module applies static analysis to extract a model of the script’s intents. This
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Figure 6. Overview of the (sak mis) system to counter Web malware

model is then looked up in a knowledge base in order to infer whether it is a

model of malicious intents or not;

8. in case the script is benign, the deobfuscated script is injected back into the

original web page and served to the end user.

4.1 Requirements

The present proposal stems from the different observations made in the previous section

and attempts to satisfy the following general-purpose requirements:

1. provide realtime online analysis of JavaScript contents;

2. avoid executing JavaScript contents, as much as possible;
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3. arbitrarily fetch, as much as possible, JavaScript contents;

4. provide a safe automation of JavaScript deobfuscation;

5. isolate the user client from potentially malicious contents;

6. reduce, as much as possible, any disruption to the user experience.

The first requirement is paramount to this proposal that seeks to protect the user

while she is browsing the Web. The second requirement is also another specificity of

this proposal that seeks to reduce the footprint of JavaScript execution. The third and

fourth requirements result from the previous one: the JavaScript execution control flow

is bypassed and arbitrary actions, therefore, can and should be taken to perform anal-

ysis. The fifth and sixth requirements ensure the usability and safety of the proposed

system.

4.2 Intercepting HTTP Transactions

As a proxy, (sak mis) intercepts the network traffic. Since the focus is on the web

application layer, (sak mis) interposes between the Web and the end-user’s browser,

parsing HTTP responses and generating arbitrary HTTP requests. The proxy may

be limited against HTTPS transactions since HTTP payloads are encrypted. It is,

however, possible to delegate HTTPS processing to the proxy, leading to (sak mis)

accommodating HTTPS communication as well. Privacy should not be a concern

since no data are preserved even if the proxy has effective access to any sensitive data

contained in HTTP payloads. It should be noted that some attacks such as JSON

hijacking can actually corrupt the operation of the JavaScript engine on the client-side.

Therefore, (sak mis) having access to sensitive data contained in JavaScript (JSON

included) or to-be-embedded DOM contents is a lesser evil.

The choice of a client-side proxy solution is not insignificant and actually satisfies

two requirements of the proposal:

• protecting the user cannot be done exclusively on the server-side since intending

so would mean that every server should be made safe. It is necessary to deploy

a solution at the client-side to ensure the safety of the user browsing experience,

regardless of the browsed website;

• the browser experience is already hindered by the multiplicity of the processes

performed within the browser and it would be unreasonable to impose further
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processing overhead to the browser. A proxy acts as a delegate and dedicated

hardware can be used to support intensive processing to accelerate additional

processing overhead involved by the analysis.

The (sak mis) proxy is designed to be implemented as an ICAP[47] proxy. The

Internet Content Adaptation Protocol (ICAP) has been designed to delegate value-

added transformations to surrogate web servers in order to “adapt” web contents to the

destination users. In fact, ICAP was originally designed to be deployed on the content

provider side where it leverages the highly distributed environment. However, recent

applications comprise virus scanning and content filtering, which can be deployed,

for example, on the client-side for corporate purposes. The purpose of (sak mis) is

similar: providing JavaScript analysis of HTTP communications for a group of users.

In (sak mis), the ICAP proxy is responsible for prefetching, which is a common proxy

feature. The deobfuscation and decision stages, which are out of the scope of expertise

of the proxy, are delegated to an ICAP application server.

4.3 Countermeasures against Redirection and Cloaking

Since there is a possibility that a malicious script may be scattered and concealed

across several web pages, the prefetching stage proactively gathers contents of inter-

est from detected inclusion and link locations (3rd requirement). Here, fetching is an

arbitrary process directed to a few selected content types and not an automated se-

quential process as done by web engines. Indeed, it is ineffective to conduct analysis on

a single script, more so when the script is obfuscated using an encoding transformation

and the decoding key is absent. A few simple cloaking techniques that can thwart

execution-based analysis, by leveraging controls, do expose obfuscated codes or links

in the source code. It is, therefore, only a matter of arbitrarily following the attack

target path that allows to trigger an attack. Obviously, the system is still vulnerable

to advanced cloaking techniques to a certain extent:

• server-side cloaking, especially IP cloaking, which has been noted as the far most

resilient to anti-cloaking techniques, can not be circumvented by (sak mis). For

example, once it has been discovered that (sak mis) is operating in front of a given

IP range, nothing can prevent this IP range from being blacklisted by malware

distribution networks. However, aside from any intents of performing malware

analysis, this does work as a good deterrent;

• fingerprinting where, instead of triggering controls within the same web page,
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the browser fingerprint is sent back to the server to be processed. Here, the

fingerprint of a browser is the concatenation of several (boolean or not) tests

done to identify the type of the browser and the presence of some plugins. The

malicious code is finally included in the web page if the browser fits the targeted

profile. Although a proxy can falsely assume different browser personalities by

arbitrarily tweaking HTTP headers, knowning which personality will trigger the

attack is not apparent. It is recommended that (sak mis) be transparent to avoid

any misleading on the nature of the user-agent (5th requirement). That way, it

will not be ignored by content providers and prevent any hindrance to the user

experience. With the objective of ensuring the user’s protection, deterring attack

websites from sending malicious contents is sufficient.

Prefetching stands up as a limited, yet effective, solution against cloaking tech-

niques. There is a concern that prefetching might disrupt the user experience in mod-

ern web applications. This should be assessed through a comprehensive survey, which

is out of the scope of the present proposal.

4.4 Detecting Obfuscation

Another original feature of (sak mis) is its consideration towards the obfuscation is-

sue, in accordance with what Provos [115] concluded: that is, obfuscation does not

make a good indicator of malice since benign web pages also make use of such tech-

niques. Therefore, (sak mis) attempts to go beyond obfuscation by actually recovering

the original cleartext script and decides on its malice. The reader may question the

relevance of considering the obfuscation as an issue, since obfuscated contents need to

be deobfuscated before exploitation as outlined in the typical attack scenario (cloak-

ing and redirection, deobfuscation, environment preparation, exploitation). Yet, it is

the entanglement of these different stages in complex attacks, which spans across sev-

eral domains, that make the mere hooking of JavaScript execution being potentially

ineffective at preventing exploitation. Other side-effects include the following:

• when cloaking controls are implemented in the web page script contents, it is

possible to arbitrarily trigger the code. However, execution could possibly miss

such control and not trigger the expression of malicious contents;

• executing script contents might trigger attack contents and therefore requires

isolation, leading to the design of offline analysis platforms. Therefore, code
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reaching the end-user client is necessarily downloaded a second time (this happens

in SpyProxy [100], for example).

It is important to notice that most offline analyzers are execution-based, which supports

the present claim of a high causality between execution side-effects and isolation / offline

design.

For these reasons, applying a static approach seems advantageous over dynamic

approach, which lacks in code coverage and safety. However, obfuscation cannot be

cancelled statically in cases where the script is encoded or encrypted. This downside

stimulated the proposal to emulate the deobfuscation stage. Although several previous

research projects offered ways to detect obfuscation [89, 69] or automate deobfusca-

tion [32, 118, 36], it never provided both functionalities. The present proposal actually

describes techniques to tackle these two tasks that are later addressed in Sections 7

and 9.

In particular, Section 7 introduces project ob asti (Obfuscation and Abstract Syntax

Tree Identification), which attempts to characterize obfuscated scripts by identifying

recurring abstract syntax tree (AST) expressions of obfuscating transformations. It

has been observed that obfuscation has grown complex and has been heavily used in

web malware. Following the monetization of attacks, a real “blackmarket” has emerged

with several attack toolkits being developed with the objective to be sold. One common

feature of attack toolkits is payload obfuscation. Analysts have witnessed an important

number of similarly obfuscated contents, supposedly due to the prominence of a few

toolkits (or conversely, the lack of competitive ones). In project ob asti, we assume that

even though string randomization makes obfuscated scripts look different, they indeed

share similar structures that can be uncovered by comparing their respective AST.

Also, we assume that tools can be classified by identifying characteristic structures in

ASTs that are specific to a given tool or obfuscating transformation. Ultimately, it

may be possible to speculate on which obfuscating transformations are more recurrent

in malicious scripts, and which are in benign scripts.

4.5 Reversing Obfuscation

The second challenge is that of deobfuscation, which is akin to the one of detecting

obfuscation. Deobfuscation is the process of cancelling obfuscation (4th requirement),

that is, to simplify the code to a form that allows to infer its intent. Constrained to an

execution-less environment, it is not possible to apply most of the techniques outlined in

previous research works [32, 118]. Reversing obfuscation results impossible with purely

45



static and formal methods. Project u adjet concentrates on automating deobfuscation

through the emulation of decoding routines. In particular, emulation is done by using

deduction rules in a membership equational logic framework, namely Maude[25].

Section 9 further discusses this project and stresses actual differences between bi-

nary and scripting language obfuscations. Based on observations in cancelling binary

obfuscation, project u adjet attempted to apply similar formal methods to the issue

of deobfuscation. Failing to do so, it was deduced that execution was partly needed.

In a bid to preserve the integrity of the 2nd requirement, emulation was seen as an

acceptable trade-off. Moreover, the formalism (equational membership logic) used in

u adjet is consistent with earlier empirical trials and results in this proposal. In fact,

the basic assumption is not different from predecessors in the field: obfuscated contents

will eventually be deobfuscated to allow their execution. This can also be interpreted

as a termination property for deobfuscation in JavaScript malware. u adjet stands for

User-agent agnostic Automated Deobfuscation of JavaScript by Emulation.

4.6 Analysis of Deobfuscated Script

In the end, every module in (sak mis), apart from this one, can be regarded as a

supporting module to provide an acceptable input to analysis. The goal of (sak mis) is

indeed to provide analysis and decision of scripting malware. However, as it has been

often stated, analysis works best on unobfuscated JavaScript. mi oos, which stands

for Modeling Intentions of unObfuscated Object-oriented Scripts, deals with reversing

the intents planted by the developer in the exploit code of a web page. The models

described in Section 11 are actually hybrids of object and sequence UML diagrams,

which pertain to two distinct diagram categories: structure diagrams and behavior

diagrams respectively. However, the resulting diagram does not thoroughly follow UML

specifications and stands as a way to represent intents in a way that can be computed

and detected by machines.

The project mi oos is one of the rare occurrences of static program analysis im-

plementation to web scripting languages. It is usually regarded as more practical to

apply execution-based approaches since it supports the whole analysis cycle (fetch-

ing, deobfuscation, analysis). On the contrary, applying static analysis requires some

adjustments that threaten the 1st requirement. One of the biggest challenges is to

maintain the time overhead acceptable to the user to make (sak mis) usable.
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4.7 Recursive Characteristic of the System

On a related note, the reader may have questioned the whole flow of the (sak mis)

proxy given that malicious scripts are often obfuscated through several layers of ob-

fuscation and redirection. Direct consequences are that each deobfuscation may yield

more obfuscated or linked contents, which calls for more deobfuscation or prefecthing

respectively. This is a feature of (sak mis), even though it may have been missed in

previous tools. However, experienced analysts are well-aware that this characteristic

accounts for most of the tediousness of analyzing JavaScript malware. (sak mis) hope-

fully features key-technologies that are able to deal with recursive processing, such as

prefetching and the Maude framework itself. One point of discussion is to what extent

the tasks of prefetching and deobfuscation can be decorrelated. And therefore, how rea-

sonable and sustainable a solution it is to assign each task to a dedicated device. The

latter point of discussion is, however, left as an open question to the reader, but it can

be, with no doubt, speculated that the trade-off between hardware dedication and time

overhead might be difficult to assess, given the multiplicity of existing environments.

4.8 Summary

Based on requirements we drew from reviewing the current attack landscape and the

drawbacks of current detectors, we presented the architecture of our proposal in this

section. The three functional modules collaborate to provide a mostly execution-less

analysis of client-side JavaScript contents in order to detect any malicious intents.

The implementation design relies on an ICAP proxy that intercepts HTTP commu-

nication between the end user and the World Wide Web. The ICAP proxy delegates

part of the processing to application servers that provide specialized functions that

are out of the proxy’s areas of expertise. In particular, deciding on the malice of a

JavaScript is done on an the intentions extracted from unobfuscated JavaScript code.

Unobfuscated JavaScript code is not trivial to obtain without relying on executing

JavaScript code. To overcome this obstacle, the first two modules of the (sak mis)

proxy provide obfuscation detection and cancellation, respectively. The details of each

module, as well as their underlying background knowledge, are described in subsequent

sections after defining the concept of intention in the following section.
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5. The Concept of Intention

My primary interest is not with

computer security. I am primarily

interested in writing software that

works as intended.

Wietse Venema

The behavior of a program can be described by the relationship between the in-

put and the output of the executing program [125]. Therefore, it is possible to draw

the normal behavior profile of a program by observing possible outputs of execution.

Regardless of the implementation of such profiles, anomaly detection engines are tai-

lored to flag malicious behaviors by detecting any deviation from these normal behavior

profiles.

On the contrary, intention could be defined as an execution-less behavior in oppo-

sition to the term behavior. Since it is not possible to make correspond inputs and

outputs, intention can only be described by the syntax of the program. However, this

does not give any indication concerning the meaning of the program. In a bid to aug-

ment such approach, the present proposal draws on advances in semantics. (sak mis)

proposes to express JavaScript programs as hybrid object-sequence diagram. While

syntactic analysis can help decompose a program into a set of objects interacting with

each other, the role of each object and the flow of data between these objects cannot be

deduced without knowledge of the domain, here the programming language reference.

The approach is quite liberal and actually borrows from action semantics [102] which

has been designed with the aim to make formal semantic specifications better reflect

basic concepts of a language, rendering more accessible to developers. In action seman-

tics, the meaning of a programming language is defined by mapping program phrases to

actions, which are semantic entities that incorporate the performance of computational

behavior.

The concept of intention itself originated in philosophy and has been studied and

formalized within the well-known model of Belief-Desire-Intention (BDI) [17]. This

model was the basis of an extensive research in artificial intelligence, especially agent

theory. One of the most influential contributions to this area is the following proposition

from Cohen and Levesque [28]:

Intention is choice with commitment.
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Cohen and Levesque develop a formal theory for rational behavior that revolves around

the BDI model. Intention of an agent x to perform an action p is defined as the

persistent goal of the agent x to reach the state of believing that it will realize the

action p, which eventually it does. A persistent goal is defined as the belief that the

action p is false, that is, the action p has not been realized. As this first assumption

holds, agent x chooses worlds in which action p will be later performed. Agent x is

committed to performing action p unless it drops on the idea of performing p because he

believes either that p is achieved or that p will never be. A comprehensive explanation

of this theory is available in [28]. Throughout this dissertation, we will use both the

words intention and intent interchangeably although there is a slight nuance1.

5.1 Related Work

Among other research goals, later works in agent theory have focused on how machine

agents could mimic another agent behavior and especially what role intention can play

in the agent behavior. However, discerning intention in human agents is not trivial and

raises several issues[7]:

• what kind of information about intentions is actually available in the surface flow

of agents’ activity?

• which aspects of this structure can be detected?

• what kinds of additional information, if any, might be needed to account for

inferring intentions and purposes of agents’ activity?

• how can skills be acquired to infer intentions?

Baldwin and Baird also outlined the fact that humans, mostly adults, are able

to process continuous action (activity) streams in terms of hierarchical relations that

link smaller-level intentions with intentions at higher levels. This is quite challenging

for machines at the current state-of-the-art. Nonetheless, research work in imitation

has later showed that actually understanding intention was possible for an artificial

system. Using a learning method in which the imitator keeps track of the intentions

of the initiator, the imitator is able to reproduce a behavior after repeated trials[77].

The computational model relies on a blocks world in which goals are expressed as

relations between the blocks. Although the contextual environment is absent from their

1
Intention has a more general meaning referring to a plan someone has in mind while intent is more

specific and connotes more deliberation.
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experiment, a good imitation was achieved, in terms of goals. They did it by focusing

solely on the goal, without enforcing the spatiotemporal order of the different steps.

However, what works well for imitation in robots may not be applicable elsewhere.

When dealing with computer systems, it seems on the contrary that a particular set

of steps, ordered in space and time, is necessary to define different intentions toward

fufilling a same goal. In fact, an agent, usually human, may reconsider fulfilling a goal.

To account for that fact, successful incursions of intention can be found in computer

security literature. For example, BINDER[35] is a host-based extrusion detection soft-

ware that leverage the intention of a user to detect malware activity. The detection

engine needs no prior knowledge of the system and infers user’s intentions from the

user’s activity. Mouse and keyboard events are collected and mapped with processes’

activity. Assuming a process is likely to be active shortly after receiving user input,

processes that deviate this simple rule may be seen as anomalous and thereby not user-

intended. This is more likely to be an extrusion attempt from a malware. The system

is also able to learn from false positives and to correct the threshold time for a given

process, that is, the delay time a process should not exceed after receiving user inputs

to be considered user-intended. On a related note, some proposals to counter CSRF

attacks also partly rely on heuristics conveying the user’s intention [80, 91].

5.2 Representation of the Intent of a Developer in a Program

In the present proposal, the focus is on the developer. (sak mis) aims to uncover

the intents the developer has attached to her program. Thus, it is expected that if

an attacker has introduced malice in her program, such malicious intents should be

apparent in part of the program. Ways of concealing intents have been discussed

previously (cloaking, redirection, obfuscation).

Capturing the intents of a developer is actually one of the early stages of soft-

ware developments and the most well-known method is probably the usage of UML

diagrams. UML (Unified Modeling Language) is used for communication, that is,

capturing knowledge (semantics) about a subject and expressing knowledge (syntax)

regarding the subject [5]. It can be used complementarily along formal methods to

elaborate program specifications but UML is far more favored by developers since it

outputs visual models.

Another way a developer can convey her intention is obviously by choosing an

explicit naming policy as well as common design patterns. In object-oriented languages,

a design pattern designates a recurring programming problem and the common design
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towards a solution to this problem. A design pattern names, abstracts, and identifies

the key aspects of a common design structure that make it useful for creating a reusable

object-oriented design [56]. UML object diagrams are often used to represent design

patterns.

Later in software development, a developer can explicit further on her intent by

embedding annotations to her code for other developers to read. Comments, as they

are universally known, allow to explain complex pieces of code and have also been used

in recent programming languages for the automated generation of documentation while

being typically ignored by compiler and interpreters.

Comments are useful when several developers share the same code. However, when

they design distinct modules independently, they may not have full access to the inter-

nals of another module, and should only know how to communicate with this module.

The developer needs to know what are the expected inputs and their types, and also

what are the expected output of the module they wish to communicate with. Such

information is referred to as interface or protocol.

In this dissertation, we give a tentative definition of the concept of intention:

Definition 1. The intention of a developer in a program fulfills a programming goal

through a sequence of actions

The goal itself is semantic and specifies a human concept that can be rendered by

a valid combination of actions. Actions are defined syntactically by grouping code of a

program that collectively achieve a particular functionality.

Here, we have seen some of the many ways for a developer to express her intent and

we have, as well, attempted to give our own definition. Now we may have a look at

how another developer, with few or no prior knowledge of a program, can understand

the computational intent of a program and recover the original intent of a developer.

5.3 On Reverse Engineering

While UML diagrams are used to convey the developer’s intents into the program’s

specifications, reverse engineering is a set of techniques to recover the developer’s intents

from a given program. Reverse engineering is usually conducted to obtain missing

knowledge, ideas, and design philosophy when such information is unavailable [46].

Most common usage of reverse engineering include analyzing the output of binary

programs to design an adequate interface, and observing malware to understand how

they work. Also, it is used for decompiling and analyzing assembly of commercial
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software for purposes as well-intentioned as finding vulnerabilities or as ill-intentioned

as cloning protected functionalities.

Another way of thinking places reverse engineering in a program comprehension or

maintenance context where it is used to understand what the program is doing. This is

true for legacy programs whose code may be available but difficult to understand due to

their complexity, especially when some refactoring or extension is targeted. Although

the most accurate description of the behavior of a software is its source code, reverse

engineering techniques provide a way to extract higher-level views of the system [137].

Knowledge obtained through these reverse engineering techniques are often expressed

using the de-facto standard modeling language of UML. Common UML tools provide

a “reverse engineering” functionality that generates UML diagrams from source code

analysis.

In fact, many researchers got interested into recovering and expressing knowledge

by ways of UML diagrams from the source of object-oriented programs. Early works

attempted to detect common Gang of Four’s design patterns [56] in object-oriented

programs by building repositories of common patterns occurring in program codes and

mapping these (automatically or manually) to design patterns: the first example was

SPOOL [85]. Since class diagrams in UML express the design of the program and

sequence diagrams the behavior of the objects of the system, contributions have con-

centrated on these types of diagrams, with Reveal [94] focusing on the former. Reveal

builds class diagrams based on information provided by a parser that builds a symbol

table of the analyzed program by identifying name occurrences and definitions, and

storing such information with their context. Other class diagram extraction proposals

include [135] that combines:

• a static object diagram computation, which exploits the object-flow graph (OFG),

that is, the flow propagation to transmit information about the objects that are

created up to the fields that reference them;

• a dynamic object diagram computation based on traces obtained from test case

executions.

However, a survey [88] at that time showed that many tools failed to adequately repre-

sent design abstractions and could only produce simple class diagrams due to a sizable

semantic gap between the modeling language, UML, and the programming language.

Resulting software models fail to represent the abstract program semantics needed for

high-level comprehension, prompting the proposal of mappings [131] between UML and
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the programming language (C++) based on syntactic and semantic information of the

programming language and domain knowledge of programming conventions.

On the other hand, proposals that reverse-engineer sequence diagrams attempt to

express the behavior of the analyzed program with the static approach being more

accurate, by representing the whole set of outputs and dynamic approach being more

precise with an exact matching between a given input and a given behavior. Static

approaches for extracting sequence diagrams can be mainly divided between OFG-

based [136] and control-flow based [121]. In the former approach, the objects created

by the program and the ones accessible through program variables are inferred from

the code. Then, each call to a method is resolved in terms of the source object and

the target object involved in the message exchange. By propagating flow inside the

OFG, it is possible to statically approximate the objects created by a program and

their interactions. The latter approach maps intraprocedural flow of controls to UML

using UML extensions that defines a richer set of control-flow primitives for sequence

diagrams [107].

Dynamic approaches are often similar in that they instrument the source code to

generate different execution traces, which information is then used to build sequence

diagrams. In [39], the control-set primitives used in [136] are leveraged to combine

several basic sequence diagram into high-level sequence diagrams. In fact, a first step

generates several basic sequence diagrams through the execution of the instrumented

source code that yields a state vector before and after each message. The state vector

is a vector of variables that represent the state of the system at runtime. A similar

approach is used in Fujaba [126], a reengineering test suite where the dynamic pattern

instance recognition [145] leverages the combined fragments of UML 2.0 to combine se-

quence diagrams that consider only object interactions, yielding a program slice of the

program’s method call trace. In [18], traces are obtained by executing an instrumented

version of the source code that generates statements about methods (entry, exit, sig-

nature, target object class, identifiers, and arguments), conditions (kind of statement),

loops (kind of statement, loop condition, end of loop), and distributed information

(client remote calls, server executions).

Performing reverse engineering techniques to generate UML diagrams has been

extensively researched upon but often tend to stick to common design patterns as

defined by the Gang of Four [56] and usually fail to capture all types of patterns. In

particular, the lack of precision of static methods might not be too much of a drawback

as generated models are fuzzy, allowing to match several different implementations to

the same model, embracing polymorphism.
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5.4 Summary

Intention is a human concept that has been extensively studied in philosophy and

agent theory. It is also informally used in software science to designate the purpose of

a program.

In this section, we have explored different usages of intention in software science.

Namely, we have seen how developers communicate on the intentions their software

should fulfill by the use of standardized models. We have also discussed how the

intents of programs are recovered through reverse engineering techniques.

We advocate the idea that the intention of a program is actually the reflection of

the intention of its programmer. The intention of a program denotes a purpose it has

been programmed for and the subsequent actions taken to fulfill this purpose. Contrary

to behavior, which the expression of a program for a given input, intention is readily

available in the source code but may be obscured. One way to conceal the intentions

of a program is obfuscation, which is addressed in the next section.
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6. On Obfuscation

Uncertainty is the only certainty

there is, and knowing how to live

with insecurity is the only security.

John Allen Paulos

According to [8], the goal of program obfuscation is to make a program unintelligible

while preserving its functionality:

Definition 2. An obfuscator O is a “compiler” that takes as input a program P and

produces a new program O(P) that satisfies the two following conditions:

• (functionality) O(P) computes the same function as P

• (polynomial slowdown) the description length and running time of O(P) is at

most polynomially larger than that of P

• (unintelligible) any information that can be extracted from the text of O(P) can

be extracted from the input-output behavior of O(P). This property is also known

as the “virtual” blackbox property

It is both a way for attackers to preserve the intellectual property of their payloads

and a way for exploit kit users to prevent analyzers from learning noticeable patterns

by hindering the comprehension of a program. An acceptable obfuscator will often

produce, for a reasonable cost (in space and time), a program difficult to understand

to a human analyst and also difficult to undo by an automated deobfuscator.

In this section, we will use the following definition of an obfuscating transformation

(inspired by [29, 76]):

Definition 3. A transformation T : P → P ′ is an obfuscating transformation if it

satisfies the following property

• it is semantics-preserving: ∀P, JP ′K = JPK

and the obfuscated program P ′ exhibits the following good properties:

• it is potent: let E (P) be the complexity of P; P ′ is a potent obfuscated program

if: E (P ′) > E (P)

• it is resilient: it is difficult to reconstruct P from P ′
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• it is efficient: P ′ computes the same function as P with a reasonable time/space

overhead

While an inverse transformation may not always exist, a deobfuscator D can be

roughly defined as the semantics-preserving transformation T : P ′ → P .

In this section, we will describe related work in the domain of object-oriented pro-

gram obfuscation, as a countermeasure for developers to prevent code theft. We will

also cover the currently used obfuscating transformations often found in JavaScript

malware and briefly explain methods to cancel obfuscation, that is deobfuscation.

6.1 Taxonomy of Obfuscation Techniques

Readers not familiar with obfuscation may take a look at the comprehensive taxonomy

compiled by Collberg et al. [29]. In this survey, they operated a systematic classifi-

cation of obfuscating transformations of Java bytecode. Assuming that obfuscation is

performed as a mean of intellectual property protection, they classify several obfus-

cating transformations according to the kind of information it targets (layout, data,

control) and also assess the quality of these transformations.

6.1.1 Measures

Collberg et al. rightfully observe that, given enough time and space, an opponent is

able to deobfuscate even complex obfuscation schemes. Their classification also include

comments on how to assess the quality of the obfuscation in terms of cost added to

the processing, the resilience to deobfuscation, and the potency of the obfuscating

transformation, that is, its capacity to confuse a human analyst.

The potency measures the “confusion” added by the obfuscating transformation for

a human analyst. They propose the computation of potency based on related work in

the field of software complexity metrics. It is generally understood that the complexity

of an obfuscated program increases with the effects of one or several transformations

over a function, a class, or the entire program. Complexity metrics usually depend

on the occurrence of some constructs such as the number of predicates or the level of

nested conditionals for a function, the inheritance depth or the number of subclasses

for a class, and the length or the data structure complexity for a program. The scales

for the potency measure are 〈 low, medium, high 〉.

On the other hand, they do not elaborate much on the computation of the resilience

but stipulates it is function of the time needed to automate a deobfuscator able to ef-

fectively reduce the potency of a transformation T and the execution time and space
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required by such deobfuscator. The scales for the resilience measure are 〈 trivial, weak,

strong, full, one-way 〉. A transformation is trivial, weak, strong, full if a deobfus-

cator can crack it by a local, global, inter-procedural or inter-process static analysis,

respectively. A one-way transformation cannot be reversed.

Finally, the cost of an obfuscating transformation is the execution time/space over-

head of the obfuscated program compared to the original. The scales for the cost

measure are 〈 free (constant), cheap (linear), costly (polynomial), dear (exponential)

〉.

It should be noted that these measures are estimations. Similar to cryptographic

transformations is the interest in designing transformations that are free or cheap to

apply but dear to cancel. On the contrary, obfuscation produces an executable program.

6.1.2 Layout Transformations

Lexical transformations impact the layout of the obfuscated program. Such transfor-

mations comprise ones that are easy to apply, yet difficult or even impossible to cancel.

They include:

• identifiers scrambling: identifiers are replaced by generic or randomized identi-

fiers;

• comments removal;

• formatting removal: strips the code from any formatting (space, indentation,

etc.).

These transformations are one-way since formatting or comments can never be recov-

ered. The potency of layout transformations is overall low, but scrambling identifiers

or removing comments are more potent (medium and high, respectively) since they

contain a great deal of pragmatic information.

These transformations are often considered as surface transformations, obfuscating

the concrete syntax of the program, in comparison to deep transformations (control-flow

and data transformations) that actually modify the structure of the program [138].

6.1.3 Control Transformations

These transformations affect the control flow of the obfuscated program in terms of

aggregation, ordering or computations. An important feature that impact the resilience

of control-flow altering transformations is the presence of opaque constructs:

57



Definition 4. Opaque constructs can be divided into two distinct cases:

• A variable V is an opaque variable if it has a property q, which is known at

obfuscation time, but which is difficult to deduce for a deobfuscator

• A predicate, or boolean expression, P is opaque if its outcome is known at obfus-

cation time, but difficult to deduce for a deobfuscator

Control aggregation transformations interfere with logical computation aggregation

of instructions by splitting up programs or grouping together instructions that do not

share any logic. These transformations break the procedural abstraction of a program

but are not extremely potent per se, though their potency increase when combined.

They include:

• inlining: a method call is replaced with its own body and the method definition

is removed;

• outlining: instructions that do not necessarily share any logic are grouped to-

gether in a subroutine. This is best used with inlining;

• interleaving: code from distinct procedures are merged together into a single

procedure and an extra parameter is used to distinguish calls to each procedure;

• method cloning: a single method is replicated and each version is obfuscated using

a different transformation, giving the impression of several different methods.

Method dispatch is used to select between different versions at runtime;

• loop transformations designate a set of transformations that increase the com-

plexity of a loop by either breaking the iteration space into smaller nested blocks

(blocking), replicating the loop body one or multiple times (unrolling) or break-

ing the body of the loop into independent loops (fission). They performed better

resilience when combined.

These transformations are easy to apply and highly resilient (except for loop transfor-

mations), but not one-way since they may leave traces of the original control flow. Po-

tency of loop transformations is low compared to method inlining/outlining (medium)

while the quality of method interleaving/cloning depends on the quality of the opaque

predicates they used.

Control computation transformations tamper with control flow by inserting dead or

irrelevant code, as well as low-level code that has no equivalent at high-level in order

to hide the real control-flow. They include:
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• dead or irrelevant code insertion: predicates that increase the complexity of the

obfuscated program without really impacting the control-flow. Dead code is usu-

ally found in the branch of the predicate that is never evaluated while irrelevant

code is a predicate that always evaluate to the same value;

• loop condition extension: where a termination condition is obfuscated with irrel-

evant code;

• non-reducible flow graph conversion: when a language compiles to a virtual ma-

chine or native code that is more expressive than itself, it is possible to include

instruction sequences that have no equivalent with any source language construct

(language-breaking). For example, Java can only express structured control-flow

that will translate to a reducible flow graph while Java bytecode that results from

the compilation of Java source code, can express arbitrary control flow, which can

produce a non-reducible flow graph [2];

• programming patterns removal: this transformation replaces calls to standard

libraries or usage of well-known programming patterns by custom implementa-

tions;

• table interpretation: sections of code are are converted into a different virtual

machine code and interpreted with the corresponding virtual machine, embedded

within the obfuscated application;

• code parallelization: where multiple threads are put to contribution to run inde-

pendent sections of code.

These transformations often heavily increase the space dimension of the obfuscated

program and offer good potency and strong resilience. However, low-level code trans-

formations such as table interpretation and code parallelization are often costly. Code

insertion, loop condition extension and non-reducible flow graph conversion highly de-

pend on the quality of the employed opaque predicates.

Control ordering transformations tamper the locality of pieces of code, that is, the

physical closeness of logically related items in a program. Transformations target every

level of locality from terms within expressions to methods within classes, to classes

within files, etc. They include:

• statement order randomization: this transformation can be applied at different

level of locality to alter the order of independent statements. This is best used

combined with method inlining/outlining;
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• loop reversal.

These transformations do not obscure much of the code but are very resilient since

they are one-way. However, they are usually easy to carry out but sometimes require

the application of data dependency analysis to confirm the legality of some reorder-

ings. Conversely, data dependency analysis will be helpful, though time consuming, in

comprehending a program obfuscated using such techniques.

6.1.4 Data Transformations

Data structures are also the target of obfuscating transformations that alter their stor-

age, encoding, aggregation or ordering.

Data storage and encoding transformations make use of “unnatural” storage and

encoding of dynamic as well as static data. They include:

• encoding conversion: data is represented following a different encoding;

• variable promotion: promoting a variable from a specialized storage class to a

more general class;

• variable splitting: boolean and restricted-range variables can be split into a finite

number of variables. Subsequently, built-in operations should be replaced by

adequate operations with regards to the new representation;

• procedural conversion: static data are converted into procedures that generate

these data.

These transformations are strongly resilient since they leverage the multiplicity of in-

terpretation of a same piece of code. Resilience of these transformations often increase

with the cost involved in performing these. Encoding transformations such as encoding

conversion, variable splitting, or converting static data to procedure depend on the

complexity of the encoding function.

Data aggregation transformations erase or hide data structures used in the original

program. These transformations include merging variables, literals or classes to obscure

the code and prevent recovering the data structures. They include:

• scalar variable merging: arithmetic operations on scalar variable allow to merge

the storage of two scalar variables;
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• array restructuring: similarly, we can merge two arrays, but it is also possible to

split an array in several others, or fold an array on several dimensions, or even

flatten this array to less dimensions;

• inheritance relations alteration: the hierarchy can be modified by refactoring two

independent class as children of a common bogus class, or inserting a bogus class

into the hierarchy, or even splitting a class into two consecutive classes in the

hierarchy.

Array transformations are usually weak like loop transformations. Collberg et al. could

not capture the potency of these transformations using the metrics founds in related

work, which miss to capture the effects of structure transformations. They speculate

that these transformations deprive the analyst from pragmatic information and hence

contribute to obscure the program. On the other hand, modifying the inheritance

relations or the class hierarchy suffer from low resilience, but this resilience increases

when transformations are combined.

Data ordering transformation are simple transformations that randomize the order

of declarations in the source code, whether it is the order of variables in an array

(similar to array transformations), or the order of methods and instance variables in a

class (similar to statement reordering).

6.1.5 Primitives on Deobfuscation

Deobfuscation, which can be thought as the transformation T : P ′ → P , should be seen

as a simplification process that attempts to reveal the original intent of an obfuscated

program. In particular, due to the one-way nature of certain transformations, it is

never possible to recover the original program P .

As a matter of fact, the goal of deobfuscation is rather to cancel the effects of

obfuscating transformations. In their taxonomy [29], Collberg et al. briefly consider

some analysis techniques employed to undo obfuscating transformations. Although

lexical transformations cannot be cancelled because they are essentially one-way, they

do not contribute to obscuring the semantic structure of the program [138]. Therefore,

analysis concentrates on deep transformations that affect the structure of the obfuscated

program.

Of particular interest are opaque constructs, which are considered the most difficult

part of the deobfuscation process. Indeed, by considering that opaque constructs involve

the insertion of additional dead code, an obfuscated program can be seen as the mixture
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of the original program with dead or irrelevant code generated by the obfuscation. The

approach is two-fold, although it can be partly applied, and consists in identifying and

evaluating opaque constructs:

• opaque construct identification consists in extracting the statements computing

an opaque variable or an opaque predicate. It is suggested that pattern matching

will work for local predicates (contained in a single basic block) but this can be

easily evaded by avoiding known opaque constructs or syntactically mimicking

constructs found in the original program to add more confusion. An alternative

is the use of program slicing that allows to collect statements contributing to an

opaque value, even if they are interspersed across the program. Program slicing

can be hindered using parameter aliases or extra syntactic dependencies [76].

A third method is statistical analysis, which analyzes runtime characteristics of

instrumented obfuscated program in order to detect recurring predicate values.

This can be prevented by designing non-deterministic opaque predicates;

• opaque construct evaluation consists in optimizing code by detecting dead code to

be removed and moving code duplicates (hoisting), after propagating the opaque

values. This propagation is possible using data-flow analysis but more powerful

techniques, such as theorem proving, are suggested by the survey. Collberg notes,

however, that this can be thwarted by theorems known to be difficult to prove.

Overall, static deobfuscation is very costly and is often hindered by opaque con-

structs that are only evaluated at runtime.

These contributions from Collberg [29] and Barak [8] have been the basis for more

work in programming language and bytecode obfuscation and deobfuscation, but no

other work did a comprehensive survey of obfuscation as these ones, to the best of our

knowledge. Obfuscation is, obviously, not limited to the above methods. However, they

are not all applicable to the obfuscation of interpreted scripts in web environments.

6.2 Obfuscation of Web-based Scripts

Obfuscation has been used heavily in web malware campaigns to hide redirection pay-

load injection, thus evading automated detection by pattern matching. Redirection,

that is redirecting a user’s browser from one web page to another automatically, can

be achieved through the use of an HTTP status code of the type 3XX [50]. This mech-

anism occurs before any content is actually downloaded. On the other hand, attackers

make use of redirection to evade crawlers or fool the user by displaying what seems
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var e = eval;

hidden = e("document.getElementById(’hidden’).innerHTML");

Figure 7. Aliasing of the eval() function

an innocuous web page while malicious scripts run in the background. In that case,

redirection is achieved locally in the simplest way, by injecting an iframe, an HTML

frame, that will load contents from a remote server, potentially from a different do-

main. JavaScript is employed to hide the injected payload through a countless number

of methods described below.

A few surveys have studied the trends in obfuscating web contents using JavaScript:

Chellapilla and Maykov [20] reported on the prevalent use of obfuscation in redirec-

tion spam campaigns (to confuse web page indexing) while Craioveanu [33] presented

a survey on the server-side polymorphism or how to dynamically construct polymor-

phic malware using server-side scripting. A later contribution [70] described additional

techniques to prevent analysis of scripting malware. These surveys concur that most

obfuscation techniques witnessed in the wild are based on string manipulation and

custom encoding methods to conceal any traces of string or substring that would be

detected by common signatures.

6.2.1 Lexical Transformations

As described by Collberg, these transformations attempt to remove pragmatic informa-

tion to the user such as comments, formatting, and explicit variable names. Variable

names are often shortened or randomized. JavaScript native objects can also be re-

placed with random names in order to conceal their use to a human analyst. This

practice is called variable aliasing and can be applied several times to create dummy

variables that all point to a same location. In Figure 7, the critical function eval() is

concealed as another function.

These transformations form the bulk of JavaScript compressors or minifiers as they

are known. These programs can significantly reduce the size of a script, hence the

bandwith consumption, improving the performance of a web site [70]. These techniques

are widely used in popular web sites and therefore do not indicate malice.

63



foo = "fro";

bar = "mStr";

foobar = foo+bar;

a = String[foobar+"ingCha"+"rCode"](97);

Figure 8. Concatenating strings to invoke the fromCharCode() method

foobar = "h314i2205i2350dd2350e234n325".replace(/[0-9]/g,"");

Figure 9. Example of character substitution

6.2.2 String Manipulation

Analogous to data transformations described above for compiled languages, there is a

variety of transformations that affect the encoding and storage of literals in JavaScript,

and especially, string literals. As explained in Section 2, JavaScript has the particularity

of providing a runtime evaluation operator, named eval. eval parses an expression as

a JavaScript statement and executes it. This is one common executable sink among

some described in Section 2. In general, executable sinks use data as code, which allows

such behaviors as dynamically generating a program at runtime by concatenating string

literals and evaluating the result. Conversely, a program can then be deconstructed into

strings in order to conceal it.

The most common transformation on strings is string concatenation. It allows to

evade signature-matching by slicing a string into several pieces that seem benign and

concatenating these to retrieve the original string. Figure 8 displays an example where

a function is finally executed after recovering its name by concatenating several other

strings. On the other hand, string splitting is a way to store several strings as a single

string, which will be then split to generate the original program statements.

String literals can be further obscured by injecting garbage. Character substitution

is a technique where the original string is recovered by using the replace() to substitute

garbage characters. Figure 9 illustrates such technique on the string "hidden", which

is interspersed with numbers.

All these simple transformations are to be combined to produce better obfuscation.

They are often used together in custom encoding schemes to obfuscate long strings or

a whole program.
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s = unescape(%22te%22%20%2B%20%22st%22); // evaluates to "te" + "st"

s = eval(s); // "test"

t = "\x74\x65\x73\x74" // "test" in ISO-8859-1

u = \u0074\u0065\u0073\u0074 // "test" in Unicode

Figure 10. The string test written in different encodings

s t r = ”qndy ‘mh) ( : ” // sn ippet

s t r 2=”” ;

f o r ( i = 0 ; i < s t r . l ength ; i ++){

s t r 2=s t r 2+String . fromCharCode ( s t r . charCodeAt ( i ) ˆ 1 ) ;

} ;

eva l ( s t r 2 ) ;

Figure 11. Custom encoding based on a simple XOR

6.2.3 Encoding Schemes

In JavaScript, different character encodings can be used to make non-ASCII strings

portable. An example of some available encodings is presented in Figure 10.

Notice the use of the unescape function that recovers escaped characters. This

encoding is used to encode URLs that only accepts a limited number of characters.

The surveys on JavaScript obfuscation [20, 33, 70] also exhibit custom encoding

obfuscations. They usually produced long obfuscated strings along with a decoding

function, also known as the decoding routine to recover the original string. An exam-

ple can be found in Figure 11 where the obfuscated string is decoded using a simple

XOR operation (the numeric literal 1 can be considered the deciphering key). Other

examples are described in [33] and in particular, two implementations of symmetric

encryption that uses a mono-alphabetic substitution scheme in which every occurrence

of a particular plaintext message unit is replaced by a ciphertext unit. Within the

two exhibited schemes in Craioveanu’s article, one has the deciphering key encoded as

two permutation look-up tables located just before the deobfuscation function. While

the second scheme hides the decryption key using an additional obfuscation technique.

Implementations of popular encrypting and encoding schemes such as RSA or Base64

have been witnessed in JavaScript.

Some encoding do not process strings on a per-character basis but rather substi-

tute locations in a string by symbols. String encoding is used in packers such as the
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Dean Edwards’ packer [43]. Encoding schemes usually feature an obfuscated string

and a decoding routine as we mentioned earlier. The obfuscated string itself is not

executable, contrary to an obfuscated program and it is necessary for it to be decoded,

leading to dynamic code generation at runtime. The decoded code is often evaled in

a manner dubbed eval unfolding, that is, self-generation (using the eval construct) of

new executable code, but can be also injected to the HTML document through the

document.write function. Code injected in the HTML document is queued with other

scripting contents and will possibly be executed later. The potency of custom encoding

schemes is quite high, but the resilience may be low in the case a human analyst has

access to the decoding routine and the decoding key if it exists.

JavaScript obfuscation techniques seem to cover few obfuscating transformations

in the taxonomy of Collberg, mainly data encoding and storage ones. Indeed, as an

interpreted language2, JavaScript is limited in the range of transformations it can im-

plement. In particular, low-level constructs are not available and multi-threading is

not supported, which makes obfuscation relying on process parallelization impossible

to achieve. Complexity is increased through the combination of several transformations

to obfuscate the whole or part of a script. Additionally, the task of deobfuscation is

made even more tedious for a human analyst when a program is obfuscated through

several layers of obfuscation. Such practice prompted the development of tools to au-

tomate deobfuscation.

6.3 Reversing/Cancelling JavaScript Obfuscation

As demonstrated by Barak et al.[8] and at another level by Craioveanu[33], obfuscation

is not a problem that cannot be overcome. Collberg suggested in [29] that given enough

time and space, a determined attacker could cancel obfuscation. Barak later formally

demonstrated the impossibility of the virtual blackbox property of obfuscation. It is

simply impossible to make a program completely unintelligible. It should be conceded,

however, that deobfuscation by static analysis is difficult or even impossible in certain

cases. In particular, JavaScript obfuscation, which leverages at-runtime dynamic code

generation, is quite impervious to static examination.

Deobfuscation is, therefore, needed to increase the accuracy of analysis. For ex-

ample, although packers are an easy-to-spot occurrence, they are not necessarily an

indicator of malice since packers are also used by benign web pages. In this section,

2Just-in-Time compiling of JavaScript may actually extend the range of available obfuscating trans-

formations

66



will be covered the techniques used to deobfuscate JS code, the different tools we can

use to automate such task and finally some related researches tackling the obfuscation

of Web 2.0 active code.

6.3.1 Manual Approach

Manual methods are most of the time dynamic analysis methods that aim to reveal

the code that has been obfuscated by simply executing the suspicious code. It can

be simply done using a JS engine or debugger to execute an instrumented version of

the suspicious obfuscated script. Instrumentation, in this case, is often limited to the

hooking of critical sinks such as eval() or document.write(). A more popular method

by way of substituting executable sinks with simple print instructions in order to reveal

the malicious code once deobfuscated[104]. The JS engine should be run outside of

a browser to prevent any exploitation. JavaScript external engine implementations

such as Rhino[16] or SpiderMonkey[45] are widely used by researchers. However, these

engines are often limited by the fact they do not implement any browser context such as

the DOM or other APIs. It is not rare that a deobfuscation task halts on an unknown

variable that is in fact a reference to an object in the HTML document or an API

method. Analysts often have to declare statically the missing context in order to pursue

analysis. Obviously, manual deobfuscation is a quite time-consuming and tedious work,

and researchers often resort to self-developed tools to automate such task. Hopefully,

there exists Malzilla[128] that offers some nice functionalities in manipulating JS code

such as remote script downloading, string substitution, common encoding evaluation,

etc. Nonetheless, deobfuscation remains an interactive task where the user needs to

decide what to do next. In recent years, researchers became interested in automating

the detection and deobfuscation of obfuscated JS scripts.

6.3.2 Automated Deobfuscation

To the best of our knowledge, there is very little literature on the subject of obfuscated

JavaScript deobfuscation or simplification. Obfuscation itself is not even considered

a problem by most researchers: either it is viewed as a sign of malice and then the

obfuscated script is flagged as such and its execution is prevented; or it is considered

trivial as it is expected to deobfuscate itself during an attack, and the JS engine is

instrumented to analyze the output of evaled contents.

The former mindset is no more alive nowadays but has produced some results in

the identification of obfuscated JavaScript. While the latter concentrates on the eval
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construct to extract traces of executed snippets of code that were previously obfuscated.

Assuming obfuscation is an indicator of malice makes the detection of obfuscated

strings a sufficient criteria to block the incriminated script. Choi et al. [24] proposed

a straightforward method to distinguish obfuscated and unobfuscated strings: string

pattern analysis. They observed that obfuscated strings would differ from unobfus-

cated strings in terms of character frequency and distribution, as well as their length.

Relying on these three metrics, they designed a set of rules to cover as much obfusca-

tion patterns as possible. Interestingly, their rules were not able to capture an eval

unfolding string. An extension of Choi’s work [86] with a more thorough evaluation

exhibited interesting results, though they still conflate obfuscated scripts with mali-

cious ones. Later proposals leverage on machine learning methods in order to draw

models, as generic as possible, of obfuscated malicious scripts from large datasets. In

an approach similar to [24], Likarish et al. [89] attempted to codify visual differences

between benign and obfuscated scripts. They selected the normalized frequency of 50

JavaScript keywords and symbols as features as well as 15 other features that describe

an obfuscated script in lexical and string statistical terms. In particular, one feature

measured the percentage of human readable strings in the script, which resulted to be

one of the features most correlated to malicious (here, obfuscated) scripts along with

the scripts’ average string length, average number of characters per line, percentage of

whitespace and the use of the keyword eval. They compared different machine learning

methods in terms of performance and noted a maximum detection rate of 89.5% on

real-world data. They deplored few false positives that revealed to be packed benign

scripts. Another classification proposal [69] actually attempted to design a classifica-

tion method that they claim would be resilient to obfuscation. Using different classes

of features that describe DHTML documents in terms of native JavaScript functions

(154), HTML document level features, or even ActiveX objects, they compared several

learning methods for a maximum accuracy of 96.14% when using all feature classes.

What they call “resilience” to obfuscation, however, is actually the ability of their clas-

sifier to classify obfuscated scripts as malicious. A later statistical classifier [84] extends

the results of Zozzle [36] (explained later in this section) where abstract syntax trees

(AST) of JavaScript samples are traversed to construct features that characterize obfus-

cated JavaScript programs. Zozzle actually classifies heap-spray attacks by extracting

hierarchical features consisting of a context (branching conditional, loop, etc.) and a

variable string. Zozzle associates these features with a probability to indicate malice.

Similarly, Kaplan et al. [84] use this method to classify JS samples between obfuscated

and unobfuscated JS programs. Obviously, the features they obtain match better the
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strings that are usually witnessed in obfuscated JS programs. The results of such trans-

formations were described earlier in this section. Their features can actually span one

to several level in the AST for a low false positive rate (about 1%) and a relatively

low false negative rate (about 5%), with an overall processing time of 5 megabytes per

second. Kaplan’s approach is actually the one that is the closer to ours as it also shares

the assumption that obfuscation is not an indicator of malice. Previous proposals had

mixed results: although some perform well at detecting obfuscation, they either miss

obvious instances such as eval unfolding routines or fail to precisely extract obfuscated

strings for further deobfuscation.

On the other hand, assuming that an obfuscated script necessarily unpacks itself to

run, it is sufficient to execute the obfuscated script to the point where it will get deob-

fuscated. Since analysis is much more accurate on unobfuscated scripts [36], recent web

malware analysis frameworks rely on a deobfuscator. In Zozzle [36], a machine-learned

based classifier sort JavaScript samples based on features extracted from malicious

JavaScript code contexts. A context is a fragment of JavaScript that is passed to the

Compile function of the JavaScript engine. This function is invoked whenever eval is

called or a new script is included with an <iframe> or <script> tag. The Zozzle deob-

fuscator, which makes use of the Detours binary instrumentation library [72], intercepts

calls to the Compile function and can therefore observes code at each level of its un-

packing, just before being executed. Such deobfuscator also exists as a browser plugin

like the JavaScript Deobfuscator [110] for Firefox browsers. Alternatively, hooking of

the eval function can be carried out at the JavaScript level, instead of the engine level.

Such approach is taken by jsunpack [65], a popular JavaScript automated analysis web

site.

Such tools have been widely used by analysts and have performed relatively well

since they automate a quite time-consuming task. However, these dynamic approaches

sometimes failed against anti-analysis tricks. Also, they often need to execute the an-

alyzed sample several times (as jsunpack does) to consider multiple paths and extend

their code coverage. Moreover, relying on code instrumentation, especially the hook-

ing of critical sinks for trace collection, might be detected by anti-analysis techniques

prompting the halt of the deobfuscation stage.

6.4 Anti-analysis Techniques

Not only obfuscated scripts unfold through several layers of obfuscation but, at one

or several layers, the obfuscated code may be divided in different parts. Each part
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<s c r i p t s r c=”foo . j s ”></s c r i p t>

<s c r i p t>

b=document . getElementById (” bar ” ) . innerHTML ;

</s c r i p t>

. . .

<div id=”bar”>bar</div>

. . .

<s c r i p t>

a l e r t ( a+b ) ;

</s c r i p t>

[ f oo . j s ]

var a=”foo ” ;

Figure 12. Example of a multi-partite scripts split into script blocks and remote sources

may be obfuscated by a different transformation or encoder. The different pieces of

the obfuscated script can even be delivered from sources external to the scripting en-

vironment. That way, it is possible to conceal code that is obviously obfuscated from

a human analyst by distributing it to a linked resource, a script or an iframe inclusion,

or even having it stored within the HTML document. Deobfuscation can be further

hindered by using anti-analysis techniques that detect the analysis environment or that

constraint the execution of the obfuscated script on specific browser personalities.

6.4.1 Multi-partite Scripts

Security products often tend to analyze web pages by downloading relevant objects such

as scripts and processing each object in isolation. Howard [70] observed that the task

of deobfuscation by a security scanner is complicated when the script is split between

separate script objects since components from each object may be required for successful

detection. There are many locations where a script object can be concealed: the HTML

document, linked script files, embedded frames from remote origins but also PDF files.

In Figure 6.4.1, the contents to be alerted are split between a remote script and an

element of the HTML document. Strings concealed within the HTML document can be

recovered using the getElementById, getElementsByName or getElementsByTagName

functions. The innerHTML property actually returns the contents of an HTML element
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f unc t i on x (UW,P){

i f ( !P){P= ’[ ob fuscated data ] ’ ; }

var W;

var VM= ’ ’ ;

f o r ( var G=0;G<UW. l ength ;G+=arguments . c a l l e e . t oS t r i ng ( ) . r ep l a c e (/\ s/g , ’ ’ ) . l ength −535){

W=(P. indexOf (UW. charAt (G))&255)<<18|(P. indexOf (UW. charAt (G+1))&255)<<12|

(P. indexOf (UW. charAt (G+2))&255)<<(arguments . c a l l e e . t oS t r i ng ( ) . r ep l a c e (/\ s/g , ’ ’ ) . l ength −533) |

P. indexOf (UW. charAt (G+3))&255;VM+=String . fromCharCode ( (W&16711680)>>16 ,(W&65280)>>8,W&255);

}

eva l (VM. sub s t r i ng (0 ,VM. length−(arguments . c a l l e e . t oS t r i ng ( ) . r ep l a c e (/\ s /g , ’ ’ ) . l ength −537))) ;

}

x ( ’ [ ob fuscated data ] ’ ) ;

Figure 13. Context-dependent obfuscation using arguments.callee

(the strings contained between the element opening and closing tags).

It is important that a deobfuscator gathers enough scripting contents to conduct

analysis.

6.4.2 Opaque Constructs and Cloaking

Some obfuscating transformations benefit from an additional twist in order to thwart

automated or manual deobfuscation. In these cases, unpacking will not start if a

condition is not satisfied. To implement such anti-analysis techniques, we can make

use of opaque constructs, as defined by Collberg previously in this section.

In fact, even multi-partite scripts make use of opaque constructs. For example,

failing to analyze the “foo.js” file in Figure 6.4.1 will render the variable b opaque.

Another occurrence makes a combined use of arguments.callee() (see Figure 13), which

returns the body of the function being executed, with the location.href attribute, which

is the referrer web site from which the malicious code has been invoked. On one hand,

the arguments.callee() trick prevents an analyst from modifying the running code by

referring to the original function. On the other hand, the referrer location.href is used

as part of the decryption key in order to prevent analysis from being performed outside

of the place for which it was designed to be run, that is, the web page that called the

malicious script. This trick is effective against offline automated deobfuscators such as

WEPAWET [31] or jsunpack [65].

Such techniques are often used to distinguish real browsers from automated web

malware detection:
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var e1 = new Date ( ) ;

var x = e1 . getSeconds ( ) ;

setTimeout ( decr , 1 0 2 5 ) ;

f unct i on decr ( ) {

var e2 = new Date ( ) ;

var k = e2 . getSeconds ( ) ;

var xX = k − x ;

xorkey = 245 + xX

. . .

Figure 14. Anti-emulation technique based on the time delay to trigger the decoding

routine

Definition 5. Cloaking is a set of techniques that attempt to present different contents

depending on some specific criteria.

Cloaking targets behavioral discrepancies between real browsers and detectors. In

fact, not only does it detect an analysis environment, it can also deliver some innocuous

contents to the detector for the web page to be classified as legitimate. Most of the

time, cloaking only prevents the expression of malicious code within the script by using

an adequate opaque construct. In Figure 14, xX is an opaque variable for any anal-

ysis environments that do not emulate time delay functions for performance reasons.

Without knowing the value of xX, deobfuscation cannot be performed.

Other common missing functionalities indicative of a possible emulator are exception

handling, DOM interaction, event handling, etc. A deobfuscator should be able to

provide such functionalities or at least emulate these to evade cloaking.

6.5 Summary

In web scripting languages, the range of available obfuscating transformations is re-

stricted compared to richer languages: obfuscation tools or transformations witnessed

in the wild are usually limited to lexical transformations, string manipulation and cus-

tom encoders or packers. In fact, attackers are interested in the high potency and low

application cost of such transformation rather than their resilience.
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Deobfuscators are few and often leverage the property that obfuscated programs in

JavaScript unpack themselves to execute. Recently, more complex obfuscating transfor-

mations have demonstrated resilience to automated deobfuscation performed in emula-

tion environments. This can be explained by a lack of anticipation from deobfuscator

developers concerning the ability of obfuscated programs to defend themselves. Cloak-

ing techniques are slowing down execution-based JavaScript deobfuscators and malware

detectors that neglect the resilience of obfuscation.

In this dissertation, we take an opposite point of view in considering obfuscation

as an obstacle to the analysis of web malware. Therefore, we advocate the necessity of

prior deobfuscation to produce simplified code that will be easier to analyze and decide

upon. In the following sections, we will successively describe techniques we designed to

identify obfuscation patterns, extract obfuscated contents and deobfuscate these.
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7. Identifying Hierarchical Structures Related to Obfusca-

tion

They who can give up essential

liberty to obtain a little temporary

safety, deserve neither liberty nor

safety.

Benjamin Franklin

As stated in Section 6, obfuscation has been extensively used by attackers, but it is

not restricted to a malicious usage. In fact, developers also heavily resort to obfuscation

when they wish to protect their intellectual property or compress voluminous scripting

contents. Therefore, it would be counterproductive to consider every obfuscated script

as malicious. Moreover, some obfuscation techniques, employed by attackers, are also

used in legitimate code, and conversely, some commercial obfuscation tools, used to

protect legitimate contents, are also used to hide malicious contents [70]. Deobfuscation

is therefore required to provide malware detection without risk of false negatives.

Current solutions rely on executing obfuscated scripts without any reasoning, as-

suming the script unpacks itself before executing. However, anti-analysis techniques are

able to cloak deobfuscation and to appear legitimate in the eyes of a browser emulator.

In order to circumvent such drawbacks, we proposed to suppress any side-effect in-

volved by the execution of JavaScript (JS) code. Such design choice prevents decoding

routines from revealing their contents, which cannot be dealt with static examination

alone.

This section describes ob asti, the module responsible for detecting and extracting

obfuscated contents from analyzed web pages. We argue on the reasons that motivate

such design and the technological choices we have made such as the representation of

JS programs as abstract syntax trees (ASTs). Then, algorithms borrowed to arbology

are introduced to explain how subtree matching is performed. The accuracy of our

implementation is evaluated through a preliminary experiment on malicious samples

collected by Mitsuaki Akiyama and his team from NTT Information Sharing Platform

Laboratories. We further discuss possible extensions to increase the recall of our method

by relaxing the representation of subtrees.
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7.1 Detecting Obfuscation

In Section 6, we have briefly described some past proposals on detecting obfuscation

based on the assumption that an obfuscated program is malicious. In particular, Choi

et al. [24] concentrated on the patterns of obfuscated strings. Their metrics attempted

to capture the differences with plain text JavaScript code. If they were able to detect

some types of encoded or stored strings, they were not able to identify the decoding

routine of the eval unfolding encoder, which code is similar to legitimate JavaScript

code. Features used in classifiers described in [89] and [69] could distinguish obfuscated

samples and unobfuscated ones with a high accuracy relatively to the learning dataset.

However, these two classifiers cannot indicate which part of the code contributed to

obfuscation if the obfuscated code is mixed with legitimate code.

With the aim to extract obfuscated contents from web pages, it is important to

precisely identify where in the code are located obfuscated contents. If obfuscation

patterns are varied, we can observe that they are decrypted by decoding routines who

look similar to each other. Moreover, variable or function identifiers are not reliable

because of the heavy use of aliasing and scrambling, making string pattern or statistical

methods ineffective. On the other hand, important structures may have been preserved

in most cases in order to preserve the semantics of the obfuscation. In particular,

obfuscating transformations that encode script code as strings, make use of different

kinds of data structures to store the code. Upon deobfuscation, the decoding routine

needs to access and iterate on those structures in order to retrieve the original script

that will be evaluated.

In this dissertation, we assume that designing an efficient obfuscation (both potent

and resilient with a low obfuscation cost) is difficult. Therefore, many attackers rely

on obfuscation tools whose output guarantee a good potency in little time but which

may not be very resilient. However, by combining these tools, a better resilience can

be achieved. Still, we assume that hierarchical patterns that are characteristic of ob-

fuscated code can be found. Abstract syntax trees are able to express such hierarchical

patterns with accuracy. Our proposal is therefore two-fold here:

• to learn the hierarchical patterns of obfuscation from obfuscated samples;

• to detect hierarchical patterns, characteristic of obfuscation, in candidate samples.

Our proposal therefore focuses on encoding routines, which are prevalent in current

attacks, and not on the string feature, which highly vary from one sample to another.

Moreover, we propose to precisely identify part of the code that contribute to obfus-
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cation, instead of computing statistical features that do not give any indication on the

location of the obfuscated contents.

7.2 Overview

ob asti extracts obfuscated contents from web pages analyzed by (sak mis), provid-

ing input to the u adjet deobfuscator. Because deobfuscation can be seen as a dual

process, identification and evaluation, it is necessary to isolate parts of the JavaScript

code involved in the obfuscation process. The second part, evaluation, deals with the

simplification of the obfuscated program to a deobfuscated form, which is described in

Section 9.

ob asti takes as input a mixture of HTML and JS contexts originating from the

same web page. This mixtures comprises the contents of the original web page, plus

all linked or referred scripts and suspicious contents that are prefetched in the previous

step of our system, as described in Section 4. The extractor articulates around two

main stages (see Fig. 15):

• a learning stage: collected samples of obfuscated JS programs are transformed

into ASTs. Recurring patterns consistent with obfuscation are extracted and

added to our knowledge base;

• a detection stage: any aggregated web contents forwarded by the proxy is trans-

formed into an AST. The AST is matched with our knowledge base and matched

subtrees are subsequently extracted and fed to the deobfuscator.

As with all learning-based approaches, the accuracy of detection is dependent on the

learned models. In our proposal, learning is based on hierarchical features of obfuscated

programs that may not vary from one sample to another, given that they have been

obfuscated with the same encoder.

7.3 Obfuscating Transformations

According to previous surveys and contributions on JavaScript obfuscation [33, 70, 24,

86, 84], the most recurring obfuscating transformations are to be string manipulation

and string encoding techniques, with the latter often being a combination of the former.

Therefore, by reducing the scope of transformations to the ones in Table 3, a classifier

may be able to detect the majority of obfuscated JS programs. The list of syntactical

categories and symbols given in Table 3 is not exhaustive.
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Figure 15. Workflow of the ob asti obfuscation extractor

technique Collberg class [29] syntax

variable aliasing data storage assignments

concatenation data storage +, concat

DOM reference data aggregation getElementsById

substitution data encoding replace

basic encoding data encoding unescape

encryption static data to procedure conver-

sion

eval, fromCharCode,

arithmetic ops, loops

Table 3. Common obfuscation techniques occurring in JS malware
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Assuming attackers rely on popular attack toolkits that use the same obfuscation

tools, it can explain the recurring patterns witnessed by the above-mentioned surveys.

Given that discrepancies between two samples may arise from the use of identifier

scrambling, we can assume that the samples have similar, or even identical, syntactical

structures. By abstracting the samples at the syntactical level, we can reveal such

hierarchical similarities.

7.4 Abstract Syntax Trees in JavaScript

In our approach, we consider the abstract syntax trees (ASTs) of scripts to analyze.

An AST is a tree-based representation of a program code obtained by parsing or syn-

tactical analysis. Syntactical analysis is the process of identifying the constituents of

a statement according to the grammatical rules that define the forms of all permitted

statements [19].

Figure 16 displays a sample AST for the following sample JS program:

for(i=0;i<str.length;i++){

str2 = str2 +

String.fromCharCode(str.charCodeAt(i)^1);

str3 = str3 + str3};

eval (str2);

The loop statement contains two instructions represented by two paths stemming

from the LOOP node: one being the actual decoding using the String.fromCharCode

function and the other path being a dummy operation on an unrelated variable.

Since we are concerned with reducing the entropy of script contents for the purpose

of pattern matching, it becomes necessary to abstract the script code in order to get

rid of the randomization introduced by the identifiers and values. The AST we employ

here differs in some aspects to similar approaches [118, 36, 84].

The abstract syntax described below is based on the syntax of JavaScript. More

information can be found in ECMAScript specification [42].

Lexical tokens are represented as follows:

• whitespace, semicolons and comments are not represented.

• tokens: 3 different types to represent variables, numeric literals and string literals,

respectively.

<token> ::= <ident-name>
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LOOP

ASSIGN

body

ASSIGN

body

root

CALL

ID

left

ADD

right

ID

op

CALL

op

ACCESS

function

XOR

param

String

caller

fromCharCode

callee

CALL

op

NUM

op

ACCESS

function

ID

param

ID

caller

charCodeAt

callee

ID

left

ADD

right

ID

op

ID

op

eval

function

ID

param

Figure 16. Abstract syntax tree of a sample loop
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| <numeric>

| <string>

• variables: all identifiers are abstracted.

<ident> ::= <ident-name> "but not" <reserved>

<ident-name> ::= ID

• reserved keywords comprise all JavaScript keywords, which are reserved symbols

and cannot be used as variable names, as well as future reserved keywords and the

NULL literal and boolean values. Not all keywords are represented in our abstract

syntax. Future keywords are out of the scope here.

<reserved> ::= <keyword>

| <future-reserved>

| <null>

| <boolean>

<keyword> ::= "one of" BRANCH | BREAK | CATCH | CONTINUE | FUNCTION

| IN | LOOP | NEW | RET | THIS

| THROW | TRY | TYPEOF | VAR | WITH

BRANCH represents all conditional branching (if, switch or the ternary opera-

tor). LOOP represents all loop predicates (for, while and derivatives). Notable

omissions include else and then predicates.

• literals are discarded and replaced by generic types.

<literal> ::= <null>

| <boolean>

| <numeric>

| <string>

| <regexp>

<null> ::= NULL

<boolean> ::= BOOL

80



<numeric> ::= NUM

<string> ::= STR

<regexp> ::= REGEXP

All string and numeric literals are abstracted to generic types STR and NUM, re-

spectively. BOOL accommodates the boolean values true and false.

Expressions are represented as follows:

• primary expressions in JavaScript can be composed solely of the this keyword,

a variable, a literal, an array or an object literal, or a group of expressions.

<prim-expr> ::= THIS

| <ident>

| <literal>

| <array>

| <object>

| (<expr>)

<array> ::= ARY_LIT

<object> ::= OBJ_LIT { }

| OBJ_LIT { <property-list> }

<property-list> ::= <property>

| <property-list> , <property>

<property> ::= <property-name> : <assign-expr>

<property-name> ::= ID

| STR

| NUM

(<expr>) ::= PARENTHESIS { <expr> }

Arrays are abstracted to ARY_LIT only, with no more information on the literals

contained in the array. On the contrary, objects are containers (containing a

block) that holds zero, one or several properties. The properties are expressed in

the form of an assignment. Finally, the grouping operator ( ) is represented as

a block labeled PARENTHESIS.

• left-hand side expressions comprise constructors and function call expressions.
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<lhside-expr> ::= <new-expr>

| <call-expr>

<new-expr> ::= NEW { new-expr }

| NEW { <member-expr> , args }

<call-expr> ::= CALL { <member-expr> , args }

| CALL { <call-expr> , args }

<member-expr> ::= <prim-expr>

| <func-expr>

| ACCESS { <member-expr> , <ident-name> }

<args> ::= ( )

| ( <arg-list> )

<arg-list> ::= <assign-expr>

| <arg-list> , <assign-expr>

The ACCESS label abstracts access operators such as obj.prop or obj["prop"].

Calls to constructors or other functions can include string chains of multiple

objects and properties and sub-properties.

• function expressions include any native function ranging from eval() to String.fromCharCode().

We monitor the call of a large number of non-user-defined functions ranging from

JavaScript core functions to DOM API functions, to form submission functions,

to mathematical functions.

• postfix expressions define postfix operators:

<postfix-expr> ::= <lhside-expr>

| POSTINC { <lhside-expr> }

| POSTDEC { <lhside-expr> }

Postfix operators increment or decrement the result of an expression after evalu-

ation.

• almost every operator is represented in our abstract syntax and this include unary

operators, multiplicative operators, additive operators, bitwise shift operators,

relational operators, equality operators, binary bitwise operators, binary logical

operators and assignment operators. Every single operator (OP in what follows)
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is defined but we could consider a unique abstract operator for a whole class.

Unary operators are represented as follows:

<unary-op> ::= OP { <operand> }

Binary operators are represented as follows:

<binary-op> ::= OP { <operand> , <operand> }

Assignment operators, in particular the simple assignment (=), are represented

as follows:

<assign-op> ::= ASSIGN { <left-operand> , <right-operand> }

Operands can usually be either an expression, a literal, an identifier or an opera-

tion. In particular, left-operands are identifiers or expressions that evaluate to

a left-hand side expression.

Statements are defined as follows:

• blocks contain a list of statements. They form the hierarchical unit of our ab-

stract syntax tree. All statements belonging to the same block are represented as

subtrees stemming from the root node of this block.

<block> ::= { <stmt-list> }

<stmt-list> ::= <stmt>

| <stmt-list> <stmt>

• variable statements introduce new variables to the program.

<var-stmt> ::= VAR { <var-decl-list> }

<var-decl-list> ::= <var-decl>

| <var-decl-list> , <var-decl>

<var-decl-list> ::= ID [[= <assign-expr>]]
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Variable statements often declare several variables at once. Variables are always

assigned the undefined value at creation, but can be assigned an initial value

subsequently.

• conditional statements encompass if statements, as well as, switch statements

and ternary operators.

<cond-stmt> ::= BRANCH ( ) { <stmt-list> , <stmt-list> }

| BRANCH ( ) { <stmt-list> }

The condition is discarded and each branch (then and else) are subtrees of the

BRANCH node.

• iteration statements deal with all kinds of loops while discarding the loop condi-

tions (initialization, stop condition, update).

<loop-stmt> ::= LOOP { <stmt-list> }

<continue-stmt> ::= CONTINUE

| CONTINUE { ID }

<break-stmt> ::= BREAK

| BREAK { ID }

Statements containing continue and break keywords are optional.

• return statements redirect the control-flow outside the function where it is called.

<return-stmt> ::= RET

| RET { <expr> }

• with statements execute statements within the block as computations within an-

other object lexical environment.

<with-stmt> ::= WITH { <expr> , <stmt-list> }

• labelled statements are seldom used and are only used with continue and break

statements.
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<label-stmt> ::= LABEL { ID , <stmt-list> }

• try/catch statements allow for exception handling within JavaScript.

<try-stmt> ::= TRY { <stmt-list> , <catch-stmt> }

<catch-stmt> ::= CATCH ( ) { <stmt-list> }

Function definitions allow to declare named and anonymous functions with or with-

out parameters:

<func-decl> ::= FUNC { ID , [[<param-list> ,]] <func-body> }

<func-expr> ::= FUNC { [[ID , <param-list> ,]]

<param-list> ::= ID

| <param-list> , ID

<func-body> ::= <stmt-list>

Each JavaScript file is parsed into an abstract syntax tree that follows such specifi-

cation. A great deal of simplification has been introduced in such abstraction in order

to reduce as much as possible the generation and traversal of the AST. Patterns to learn

are therefore shorter, but may be imprecise at times. A slight twist in our approach

is that we retain some of the native objects and functions of the scripting language

whenever used in order to reinforce the semantics of the constructs.

7.5 Matching Subtrees to Detect Obfuscation

As stated earlier, considering JavaScript programs as ASTs, obfuscated contents within

a JavaScript program may represent part or whole of the program. Therefore, obfus-

cated contents can be viewed as a subtree in the program’s AST. In this dissertation,

a subtree is not to be confused with a subtree as defined in graph theory, that is, a

graph whose set of edges (or links) and vertices (or nodes) are subsets of the edges and

vertices of a given tree.

Definition 6. For a tree T, a (bottom-up) subtree T ′ consists of a node from T and

all its descendants.

The sets of nodes, N ′, and links, L′ of T ′ are subsets of the sets of nodes and links

of T , respectively: N ′ ⊆ N and L′ ⊆ L

Moreover, the order of siblings in T is preserved in T ′.

85



In this dissertation, we explore some methods to detect the presence of obfuscation

as a subtree within a JavaScript program’s AST.

7.5.1 AST Paths

Expressing subtrees is not straightforward and there is a high risk of information loss

whenever a tree is transformed into another representation. In particular, our first

attempt was to consider each path of a given AST, that is, the result of traversing an

AST from root to leaf without visiting the same node twice. Such approach is prone to

combinatorial explosion since each time a node has children, a number of paths equal

to the number of children will be generated. For example, here are some abstract paths

generated from the AST displayed in Figure 16, during a pre-order traversal, that is,

visiting the child nodes starting from the leftmost first:

LOOP->ASSIGN->ID

LOOP->ASSIGN->ADD->ID

LOOP->ASSIGN->ADD->CALL->ACCESS->String

LOOP->ASSIGN->ADD->CALL->ACCESS->fromCharCode

...

The root node has been deliberately omitted.

Detecting a common subtree is not trivial and is actually done in two steps:

• an obfuscation pattern, as represented by a subtree, is most probably the inter-

section of several abstract paths, since children are separated during traversal.

Detecting an obfuscation pattern involves detecting all abstract paths.

• an obfuscation pattern, as represented by a subtree, is not necessarily rooted to

the AST’s root, and more likely to be nested. This means that the subtree is a

subpath of an abstract path.

Manipulating such structures is costly and the ordering of the subtree can be lost,

without knowledge of the syntax. In particular, if only one occurrence of a path is

retained in order to reduce the combinatorial explosion, a program is then represented

as a set of unique abstract paths, which does not presume of the ordering of these

paths.

7.5.2 AST Fingerprinting

In a similar fashion, with the collaboration of Dr. Miyamoto from the University

of Tokyo and Mitsuaki Akiyama from NTT Information Sharing Platform Labs [99],
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we studied how to quickly detect obfuscation, and in particular, similarly obfuscated

programs. Classification of obfuscated programs is possible employing this method.

AST fingerprinting (ASTF) has originally been proposed by Chilowicz et al. [23] as

a method for plagiarism detection in computer programs.

Definition 7. A fingerprint of the subtree t rooted at node A is the tuple:

(w(t),H(t), p(t), parent(t))

where:

• w(t) is the weight of the subtree t, that is, the number of nodes in this subtree

(root node A included);

• H(t) is a hash value reflecting the structural properties of the subtree t;

• p(t) is a pointer to the root node of t in the AST, that is node A;

• parent(t) is a pointer to the parent node of t.

If the subtree has n child subtrees, t1, · · · tn, a hash value of this subtree, (H(t)), is

H(r(t) ·H(t1) · · · H(tn)) where H is a cryptographic hash function, such as SHA-1 [103]

or MD5 [120]. Note that the hash variables are calculated in bottom-up manner, that

is, leaves are calculated first.

For a given JavaScript program, a repository of ASTFs can be computed comprising

a fingerprint for each given subtree. To reduce the size of such repository, it is reduced to

unique occurrences of ASTFs. In [99], samples were clustered using a matrix approach.

By merging all ASTF repositories, a database of all unique ASTFs occurring in a

dataset is built. A sample can then be characterized by the absence or the presence

of one or several occurrences of a given ASTF. Samples are grouped around commonly

shared ASTFs.

ASTF is an interesting approach for clustering samples based on the subtrees they

include. Samples bearing signs of obfuscation can then be detected through such

method. However, generating every ASTF is time consuming, which is not appropriate

for fast detection.

7.5.3 Subtree Matching by Deterministic Pushdown Automaton

As we observed previously, it is generally a bad idea to transform the subtree structure

to a string-based structure, since there is an inevitable loss of information. However,

string matching algorithms are straightforward and cheap.
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The requirements for an obfuscation detector that can precisely extract obfuscated

contents are:

• learn obfuscation patterns;

• model patterns into something that can be matched;

• apply a matching algorithm to candidate ASTs to quickly detect the presence of

learned obfuscation patterns;

The first step is to gain knowledge about obfuscated JavaScript programs. Only

surveying literature will not give a practical view of current obfuscation techniques used

in JavaScript. Therefore, the choice of a learning-based approach seems appropriate to

provide up-to-date knowledge to our system.

The second requirement prompts the design of a model complete enough to ac-

commodate several obfuscation patterns, and compact enough to be usable. Previous

attempts have generated costly systems in terms of space and memory, and possibly

time, with some loss of information. A model able to retain the subtree structure of

learned obfuscation patterns would save space, and be more accurate.

Finally, the last requirement is related to the second. However, while it is acceptable

that learning obfuscation patterns takes a little time to compute, the technique adopted

for pattern matching should be fast to be usable in a runtime context. Essentially, it

is bound to the model chosen to represent subtrees.

Arbology [96] is such discipline that attempts to apply algorithms inspired from

string processing algorithms to tree structures. In particular, arbology makes use of

linear notations of trees such as prefix or postfix notations since trees are linearized

through any sequential algorithm. Flouri et al. [53] demonstrate some interesting prop-

erties on linear notations and especially :

Theorem 1. Given a tree t and its prefix notation pref(t), all subtrees of t in prefix

notation are the substrings of pref(t).

The reciprocal proposition is not always true.

By analogy with well-known string processing algorithms that make use of finite

state machines, Flouri et al. adopted the PDA as the model of computation for the

processing of linear notations of trees, obtained by recursive traversal.

Definition 8. A nondeterministic pushdown automaton (nondeterministic PDA) is a

seven-tuple
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M = (Q,A, G, δ, q0, Z0, F )

where:

• Q is a finite set of states

• A is an input alphabet (the same used to generate the language used in trees)

• G is a pushdown store alphabet, an alphabet specific made of symbols to used

exclusively in push and pop operations on the pushdown store

• δ is mapping from Q× (A ∪ ε)×G, the set of PDA configurations, into a set of

finite subsets of Q×G∗, the set of images by δ

• q0 ∈ Q, the initial state

• Z0 ∈ G, the initial contents of the pushdown store

• F ⊆ Q, the set of final accepting states

Algorithms to construct a subtree matching pushdown automaton (PDA) were pro-

posed in [53, 52]. In particular, they generalize an algorithm that matches all possible

subtrees of a tree in its prefix notation, to an algorithm that matches a set of given

trees within a tree. The construction of such multiple subtree matching PDA is done

in three steps:

1. construction of a PDA accepting a set of trees P = t1, t2, ..., tm in their prefix

notation;

2. construction of a nondeterministic subtree matching PDA for a set of trees P =

t1, t2, ..., tm in their prefix notation;

3. transformation of an input-driven nondeterministic PDA to an equivalent deter-

ministic PDA.

Definition 9. A pushdown automaton M = (Q,A, G, δ, q0, Z0, F ) is deterministic if it

holds:

• there is at most one allowed transition from any PDA configuration:

∀q ∈ Q, a ∈ A ∪ {ε}, Z ∈ G, |δ(q, a, Z)| ≤ 1

• an ε-transition is possible from q with Z on top, only if no other transition is

possible:

∀q ∈ Q, a ∈ A, Z ∈ G, δ(q, a, Z) = ∅ and |δ(q, ε, Z)| ≤ 1
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Contrarily to finite automata, where a well-known method exists to convert non-

deterministic finite automaton (NFA) to an equivalent deterministic finite automa-

ton (DFA) that recognizes the same language, an equivalent deterministic pushdown

automaton does not exist for some nondeterministic pushdown automata. However,

Melichar demonstrates the determinisation of input-driven pushdown automata [96],

among other classes of PDA.

Definition 10. A pushdown automaton is input-driven if each pushdown operation is

determined only by the input symbol.

JavaScript ASTs constructed following the syntax described previously satisfy the

requirements of being rooted, directed, labelled, ranked and ordered, leading to the

applicability of pushdown automata theories [96]:

• ASTs are rooted, directed and ordered as derived from parse trees that bear these

properties. (1) The root does not have any antecedent node; (2) all other nodes

have one and only one antecedent; (3) there is just one path from the root to any

node of the AST; (4) children of any node are ordered.

• Each node of the AST bears a label as described in the syntax above;

• The alphabet used in ASTs is ranked but some expressions such as function

expressions or function calls accommodate a variable number of body statements

or parameters, respectively, which leads to a varying arity, that is the number of

children of their corresponding node in the AST. This can represent a challenge

in implementation.

Confident in the ability of a pushdown automaton to address the issue of subtree

matching in JavaScript ASTs, we implemented such tool and subsequently evaluated

the accuracy of such approach.

7.6 Implementation

In the first step, we generate AST fingerprints (ASTFs) for each JS file present in

our learning dataset. Each JS file is parsed and the corresponding AST is generated

by applying the abstraction described in the previous section. The obtained AST is

then processed by a Perl script that computes its fingerprint as explained in Section

7.5.2. The output of such processing provides a list of ASTFs corresponding to the

subtrees composing the script’s AST. We assume that recurring fingerprints, among our

90



dataset samples, denote recurring subtrees. These subtrees should be the expression of

obfuscating transformations provided our dataset is composed of obfuscated JS files.

Fingerprints varying for slight variations of the code, this ensures that only invariant

subtrees are learned. However, some false negatives can occur when confronted with

“variants”, and this should be looked for manually.

Subtree selection is done manually. After clustering samples of the learning datasets

around unique occurrences of ASTFs, we merge clusters containing similar samples

(according to their concordance rate). Among the recurring ASTFs of each cluster, we

pick one or several subtrees that will form our knowledge base of obfuscation patterns.

The second step of this system is to apply principles of arbology described previ-

ously to match the obfuscation patterns we extracted from the learning dataset. We

implemented a tool to generate a deterministic subtree matching pushdown automaton

from an XML file that represents the obfuscation patterns in the form of ASTs. The

tool sequentially applies the three algorithms developed by Flouri et al [52]. The out-

put of such tool is the set of states, transitions and final states of the subtree matching

PDA.

To perform matching on prefix notation of candidate ASTs, we modified a Python

implementation of a finite state machine to make it to accommodate a stack (actually

a simple counter that adds or subtracts node arities). The program first loads the

transitions in memory and initializes the stack. Then, the JavaScript program, in

which we wish to detect obfuscation patterns, is transformed to an AST and its prefix

notation is fed to the pushdown automaton simulator. Upon matching, the matched

subtree is returned by the program.

All prototypes manipulating ASTs and computing transitions for the PDA were im-

plemented in Ruby using the johnson [9] library, a library that manipulates JavaScript

code. All prototypes computing ASTFs and similarity between sets of ASTFs were con-

tributed by Dr. Daisuke Miyamoto and implemented in Perl. The subtree matching

PDA prototype is based on a finite state machine prototype written in Python.

7.7 Experiment

The preliminary experiment evaluates jointly the ASTF and subtree matching methods

in characterizing a dataset of obfuscated JavaScript programs, in particular ones col-

lected from malicious websites. Using ASTF, we are able to discover recurring subtrees

we assume to be characteristic of obfuscating transformations. To that extent, human

knowledge is also involved. We also evaluate the accuracy and performance of subtree
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matching using a PDA on a set of subtrees relatively large compared to the dataset of

ASTs it is extracted from.

7.7.1 Dataset Description

We used URLs listed by MalwareDomainList.com (MDL) [95], a website that publishes

a large URL blacklist related to malware infected web pages. We collected HTTP

sessions on different domains on February 8th, 14th and 16th, 2011. The data collection

procedure is as follows: a client honeypot crawls all the URLs on the list and detects

malicious ones. The honeypot’s environment runs Internet Explorer 6.0 on a Windows

XP SP2 platform [3], software versions known to include exploitable vulnerabilities.

Vulnerable versions of Adobe Reader, Flash Player, JRE, WinZip, and QuickTime plug-

ins were also installed on the system. During the anti-Malware engineering WorkShop

(MWS) [74], this dataset has been distributed to academic and industrial researchers

for research promotion.

Additionally, we added another dataset comprised of JS files from randomly chosen

25 domains among Alexa Top 100 [4]. This dataset serves mostly the role of control

set.

7.7.2 Evaluation

In this preliminary experiment, we evaluated the precision of our methods by attempt-

ing to identify, in a dataset of obfuscated scripts, obfuscating transformations learned

in a previous dataset. As suggested here, we applied the two techniques in Sections

7.5.2 and 7.5.3 at two distinct stages. We assume obfuscation patterns may be re-

curring among samples from a dataset of obfuscated scripts. Moreover, hierarchical

syntactic structures of these scripts may be similar. A classification is therefore pos-

sible. Obviously, learning methods also suffer from limitations: we cannot guarantee

the completeness of a dataset, and any error in the selection of relevant patterns of

obfuscation will impact the accuracy of the system. We will see how it affected our

results and discussed the reasons and the perspectives.

Using ASTFs, we calculated the concordance rate between every pair of files in the

learning dataset (Day 1 (February 8th) of the MWS dataset). From these concordance

rates, we were able to regroup samples, including duplicates, in 16 clusters as shown in

Figure 17. From each cluster, we manually picked one or several subtrees based on the

recurrence of its corresponding ASTF and some additional criteria:

• we excluded subtrees rooted at the root of an AST, as it is not a proper subtree;
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• we excluded subtrees of which ASTF weight (the size of the subtree) is less than

7;

• we excluded subtrees of which ASTF weight is more than 150, in order to reduce

the number of transitions of the automaton to be built;

• we tried to pick one subtree for a given cluster when the set was made up of

non-duplicates and the subtree was the most recurring one among samples;

• we tried to pick several subtrees when no subtree were outstandingly recurring in

a cluster. 2 or 3 subtrees would be taken based on their location in the AST or

on their length.

Important to the performance of the PDA is not the number of subtrees it accepts,

but the length of the subtrees. Longer subtrees reduce the number of false positives

but increase the time overhead. During the learning stage, we extracted 32 recurring

subtrees representing invariant parts of or a whole obfuscation technique from the 16

clusters. These 32 subtrees were as small as 7 nodes and as big as 127 nodes. Building

the subtree matching pushdown automaton generated 37,730 transitions.
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Figure 17. Day 1 samples clustered by Ward’s method based on their ASTF distribution
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For every testing dataset, we extracted scripting contents from HTML contents

through HTTP transaction filtering and aggregation of scripts. The scripts obtained

were then transformed into ASTs of which prefix notation was subsequently fed to the

PDA. Results are displayed in separate Tables 4, 5 and 6 for the Day 2, Day 3 and

Alexa 25 datasets, respectively.

In each table, we expressed the learned subtrees on two lines. Subtree ID indi-

cates one of the 32 individual subtrees that expresses part or a whole obfuscating

transformation. Obfuscation ID (from A to P) indicates one of the 16 obfuscating

transformations around which we clustered samples of the learning dataset. We fur-

ther regrouped matched samples according to the subtrees that were matched. We

call obfuscation pattern, or simply pattern, the combination of 1 or several obfuscating

transformations. Over the 3 testing datasets (Day 2 and 3, Alex 25), we identified 19

different obfuscation patterns (pattern ID 1 to 19). For each pattern we discovered in

the testing phase, we counted the number of matched samples. In particular, we can

observe that some patterns are exclusive to one day or the other: patterns 6, 11 and

12 for Day 2 (see Table 4); patterns 16, 17 and 18 for Day 3 (see Table 5). Obviously,

the domains visited are different but this can also indicate that new tools were used to

generate these obfuscated scripts.
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obfuscation ID A B C D E F G H I J K L M N O P

1 X 8

2 X X 7

3 X X 11

4 X 4

5 X X X 2

6 X 1

7 X X 1

8 X X 2

9 X X X 2

10 X X X 1

11 X X X 2

12 X X 1

13 X 11

14 X 1

15 X X 1

Table 4. Matched samples of Day 2 dataset clustered by obfuscation patterns
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In Day 2 dataset (see Table 4), 55 samples out of 82 were found to contain subtrees

we learned, displaying 15 different obfuscation patterns. Patterns do not correspond

to a single obfuscating transformation or tool but may also be the combination of

several obfuscation techniques. Indeed, obfuscation techniques perform better when

combined, and obfuscated programs are themselves altered through several layers of

obfuscation. Therefore, a program may be obfuscated once using one technique, and

further modified through another transformation. A program may also be obfuscated

by several techniques targeting distinct parts of the program as it is the case for the

pattern 11, which combines obfuscation techniques G and L. It is also possible to detect

unknown encoding techniques. In fact, by splitting an obfuscation technique in several

parts represented by distinct subtrees, it may be possible to detect reused parts of an

encoding routine in another obfuscation technique. For example, pattern 10 shows a

case where two subtrees of obfuscation technique B and one subtree of M are combined

into a new encoder. As for negative samples, it is important to distinguish cases where

files were incomplete (around 5 samples), which prevented detection, from samples

of which obfuscating transformation was previously unknown, that is, was not learnt

during the learning stage. After investigation, 17 of the negative samples are false

negatives representing 12 obfuscation techniques that were not present in the learning

dataset. Finally, 5 samples were true negatives, samples from legitimate websites that

were wrongly mixed in the malicious samples dataset. Since there were no false positive,

we only computed the recall: true positives
true positives+false negatives = 0.76.
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obfuscation ID A B C D E F G H I J K L M N O P

1 X 9

2 X X 9

3 X X 11

4 X 8

5 X X X 1

7 X X 1

8 X X 2

9 X X X 2

10 X X X 1

13 X 6

14 X 1

15 X X 1

16 X X 46

17 X X 1

18 X X 1

Table 5. Matched samples of Day 3 dataset clustered by obfuscation patterns
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The Day 3 dataset (see Table 5) had 100 samples out of 116 that contained around

15 different obfuscation patterns. The samples in Day 3 dataset share many similarities

with the Day 2 datasets and only a few new patterns were found. Similarly, among

the negative samples, 4 were found not to contain a decoding routine, which is our

target, therefore preventing detection. 12 samples did not return any match as the

6 obfuscation patterns they displayed were not in the learning dataset. The recall is

therefore of 0.89.
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obfuscation ID A B C D E F G H I J K L M N O P

13 X 18

19 X 1

Table 6. Matched samples of the Alexa 25 dataset clustered by obfuscation patterns

dataset nbr of samples matched not matched tp tn fp fn precision recall accuracy

Day 2 82 55 27(5) 55 5 0 22(5) 100% 76.3% 83.3%

Day 3 116 100 16(4) 100 0 0 16(4) 100% 89.2% 89.2%

D2 + D3 198 155 43(9) 155 5 0 38(9) 100% 84.2% 84.6%

Alexa 25 148 19 129 8 129 11 0 42.1% 100% 92.5%

All 346 174 172(9) 163 134 11 38(9) 93.6% 84.9% 88.1%

Table 7. Recapitulative table of the preliminary experiment
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As a way to control the accuracy of the identification, we also tested the Alexa

dataset (see Table 6) that contained both unobfuscated and obfuscated benign samples

and it resulted that 19 samples were detected as obfuscated out of 148. And among

these 19 matched samples, 18 displayed the same pattern. After further investigation,

it resulted that 8 of these files were compressed and did display some obfuscation. The

true negative rate is therefore 0.92. This does not contradict our goal, which is to detect

and extract obfuscated contents, whatever the intent is. Indeed, the intent, malicious or

not, is not predictable from the sole obfuscated script itself and needs further analysis

after deobfuscation.

Overall, identifying trees has been quite accurate (88%) on the testing and control

datasets. Day 2 comprised JS samples quite different from the learning dataset that

was much more similar to Day 3 dataset. Table 7 summarizes the numerical results

(figures between parentheses were not counted as they represent incomplete samples).

Samples matched in Alexa 25 dataset express the fact that the obfuscation type L

may not be relevant (7 nodes, the smallest subtree of the learning set) while the ob-

fuscating transformation denoted by the pattern ID 19 only relies on a single subtree

(partial matching of obfuscation type E). In fact, much more credit should be given to

obfuscating transformations involving every subtree of a given obfuscation ID.

On the other hand, pattern IDs also give some insights on the accuracy of our

manual feature selection. Partial matching of obfuscating transformation, where one

subtree is left out, may indicate that this particular subtree may not be relevant to the

corresponding obfuscation ID. Some subtrees were also never matched, which indicate

that they are not indicators of obfuscation or that they just did not occur in testing

datasets. On the contrary, subtrees occurring in the control dataset might either indi-

cate that a learned obfuscating transformation has been detected or that the subtree

is actually not an indicator of obfuscation.

7.7.3 Performance

Considering the high number of transitions, it was expected that the process may take

time and it is a challenge to design the smallest and most expressive set of subtrees able

to characterize obfuscating transformations of a given dataset. We ran our automaton

on top of a Mac OS X platform with a Dual-Core Intel Xeon (2 x 2.66GHz) with

8GB of DDR2 RAM. The script is written in Python and is far from being optimized.

Nonetheless, the script processed the 82 samples from Day 2 with an average time of

243ms, the 116 of Day 3 in 244ms in average and the Alexa dataset containing 148
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samples in 38.44 seconds, which represents an average processing time of nearly 260ms.

As expected, the Alexa dataset, containing much bigger JavaScript files, took a greater

time to be processed by the PDA but still remains in an acceptable range. Nonetheless,

the PDA can scale with a large number of subtrees to be matched provided we limit

their size.

7.8 Discussion

7.8.1 Other Obfuscating Transformations

Although the techniques described in this section are applicable to a large list of

transformations, it better captures the hierarchical structures displayed in current

widespread encoders and packers. Other types of transformations may also display

characteristic structures but with a higher false positive probability. For example,

opaque predicates may not be distinguished from legitimate control branching in the

actual AST representation since control branchings are stripped off from the condition

statement. Another example is variable aliasing, which is not very potent per se, but

can result in a large amount of unnecessary code. These two examples are definitely

better addressed through different techniques more in relation with the next step of

deobfuscation. Detecting these transformations is actually more difficult in that they

resemble legitimate code, syntactically speaking, which makes AST-based detection

ineffective.

7.8.2 Irrelevant Code

One problem inherent to obfuscated programs is the presence of irrelevant code in the

form of dummy instructions, that is, instructions that do not affect the true flow of

execution but rather are here to misdirect an analyst. It affects both vertical (in-

sertion of intermediate nodes) and horizontal (insertion of sibling nodes or subtrees)

distances. However, since our PDA uses prefix notations, it simplifies the insertion

of dummy instructions to the insertion of dummy symbols in a prefix notation string.

One proposal we can make to tackle vertical insertion of dummy nodes relies on the

principles of automata theory. Our PDA is governed by transition rules generated from

learned subtrees. If we upgrade each state’s transitions with a transition function that

accommodates unexpected input symbols to remain on the same state, as would do an

exception clause in a regular expression, we can achieve a more flexible subtree match-

ing. Nonetheless, this transition function cannot accept infinite input words and we
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would need to define a limit.

On the other hand, horizontal insertions can introduce a whole subtree, or even

several subtrees that are irrelevant to the program’s control flow. It becomes necessary

to ignore whole subtrees from the subtree matching procedure, which may not be

scalable. Using induced subtrees, instead of bottom-up subtrees, can reduce the impact

of the insertion of whole branches in subtrees of interest. In fact, our proposed method

lacks flexibility since it is an exact match. In particular, bottom-up subtrees, as defined

in [22], are subtrees comprising all descendants of a given node in a tree. Such subtree

represents a whole block in a program and it is not possible to arbitrarily select only

some instructions in the block, if they are not consecutive. If the dummy instructions

are regrouped at the end of the block, they can be ignored by truncating the prefix

notation of the subtree.

Figure 18 shows a bottom-up subtree of the example AST presented in Figure 16.

This bottom-up subtree represents the first instruction of a loop body. While it is

possible to truncate this subtree, it is not possible to represent partial paths, that

is, representing other instructions of this block in a bottom-up subtree, requires each

instruction to be completely represented, starting from the first instruction. With

induced subtrees [22], that is, subtrees stemming from a given node, from which leaf

nodes are arbitrarily removed, it is possible to ignore part of the code, and preserve tree

structures that are really specific of an obfuscating transformation. We can represent

one or several paths, truncated or not, stemming from a given node. Figure 19 shows

an induced subtree of the example AST in Figure 16. This subtree represents two

non-consecutive truncated instructions from a loop body block.

Pruning a subtree involves cutting one or several paths from the root node of the

subtree, or cutting the remaining of a path starting from a given node. This can be

done at random, but may likely be more efficient if we have identified invariant nodes of

an obfuscation pattern. The obfuscation pattern can thereby be reduced to its invariant

nodes.

An additional proposal to fight against the discrepancies between slight variations

of AST-based subtrees is to consider simplifying the AST at some point. Kamizono

et al. [83] who experimented with abstract syntax trees in a similar approach to ours,

noticed as well the lack of flexibility of the AST. In particular, they compared ASTs

of slightly different samples and remarked that the resulting ASTs differed from a

small amount of nodes. The obfuscation technique used in both samples was the same

decoding routine but one of the two used an additional parameter. We speculate that

a more data-flow sensitive representation should cover up for such differences. As a
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Figure 18. Bottom-up subtree of the example eval unfolding
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matter of fact, by deriving abstract semantic graphs (ASGs) from ASTs, it is possible

to rearrange ASTs. However, the actual AST representation has some limitations

against such rearrangements since function parameters are discarded.

7.8.3 Feature Selection

As for subtree selection, there were cases where representative subtrees were not ob-

vious, so we had to arbitrarily agree on some rules as listed in Section 7.7.2. In the

method we presented, subtrees were selected from some unique samples after cluster-

ing samples according to their ASTFs. We speculate co-clustering could have been

used to identify fingerprints from recurring subtrees. In fact, we also considered us-

ing an automated tool to achieve such daunting task: Varro [93] is an open-source

tool able to discover frequently occurring subtrees in a set of trees. Varro introduces

condensed canonically ordered trees for efficiently discovering frequently recurring un-

ordered subtrees. Though it minimizes memory use so that moderately large treebanks

are tractable on commonly available hardware, the worst case memory performance is

O(nm) where n is the number of vertices in the treebank and m is the largest frequent

subtree found in it. Because of these drawbacks, it resulted unsuitable to efficiently

process programming language-based treebanks.

An appropriate feature selection able to automatically extract subtree invariants is

still a challenge in this research.

7.9 Summary

Related works in obfuscation detection concentrated on string heuristic features or sta-

tistical features of obfuscated strings with more or less success. Previous work usually

targeted encryption or encoding schemes where some patterns are recurring. How-

ever, by combining these transformations with less potent techniques such as variable

aliasing, it is possible to thwart statistical features.

In order to cancel the effects of string randomization, we propose to concentrate

on hierarchical structures of obfuscated code. This approach rather targets decoding

routines than the obfuscated strings but allows to precisely extract code that will be

used during the deobfuscation stage.

Abstract syntax tree is a representation that abstracts out variable and function

names that are the target of string aliasing while preserving the structure of the pro-

gram. Detecting an obfuscating transformation is then seen as detecting the presence

of characteristic subtrees, representing the given obfuscation, in a program’s AST.
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In this section, we successfully applied abstract syntax tree methods to scripting

languages, allowing us to cluster similar obfuscated contents regardless of the origi-

nal code being encoded, and regardless of string measures. Learning is an adaptive

approach but necessitates continuous update. Our subtree matching system has been

able to quickly classify samples based on the type of obfuscating transformations the

sample implements. We also demonstrated there were some trends in co-occurrence of

some obfuscating transformations to encode different parts in a code, and its variation

over time. The small number of combinations discovered let us speculate that a few

automated tools are used to generate most of the samples we collected.

Our approach suffers from some limitations, the main one being the low flexibility

of the representation used. Bottom-up subtree can only accommodate exactly identi-

cal subtrees and may generate false negatives. It also suffers from common drawbacks

inherent to learning systems, namely the necessity of frequent updates of the patterns

to match, and the influence of the learning dataset on the learned patterns. Especially

in web security, due to the transience (also known as shortlivedness) of malicious web

pages, it is difficult to obtain comprehensive datasets of malicious web pages. Addi-

tionally, the sophistication of cloaking techniques has also hindered the collection and

the sharing of malicious samples datasets.

Finally, an appropriate subtree selection still needs to be implemented to reduce

false positives. This is left as future work though we started tackling this issue using

co-clustering techniques based on ASTFs. We may benefit from larger datasets, but

this also implies more tedious dataset processing and analysis.

Precisely extracting obfuscated contents is essential to the deobfuscation stage since

it reduces the amount of code to be processed. The two next sections describe our

attempts to emulate the deobfuscation stage and automate this processing.
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8. Automated Deduction

Mathematical reasoning may be

regarded rather schematically as the

exercise of a combination of two

facilities, which we may call intuition

and ingenuity.

Alan Turing

Deobfuscation, in particular considering opaque predicates, can be seen as a dual

process of identification and evaluation of obfuscated contents that contribute to the

concealment of the original code [29]. In the actual context of source code analy-

sis, deobfuscation is a simplification process that can benefit from code optimization

techniques such as control-flow graph reduction, dead code removal, constant value

propagation and folding, as well as other heuristics. In this dissertation, we are in-

terested in automating such process in order to provide realtime deobfuscation to our

proposed system.

Binary obfuscation is well documented in literature and former approaches to au-

tomated deduction of binary program deobfuscation has attracted our attention. With

the aim to develop automated reasoning approach in our proposal, we review here some

notions important to the comprehension of equational reasoning and rewriting systems.

8.1 First-order Logic

Reasoning is a human ability to make inferences [114], associated with cognition, the

faculty to process information and apply knowledge. Automated reasoning is the area

of computer science dedicated to produce computer systems that automate the process

of reasoning. The goal of such discipline was originally to mechanize different forms

of reasoning, but it has been often associated to deductive reasoning as practiced in

mathematics and formal logic. In fact, it is best seen as [114]:

Providing an algorithmic description to a formal calculus so that it can be

implemented on a computer to prove theorems.

The choice of the deduction calculus or logic is dependent on the problem domain,

that is, the class of problems to solve. They are many options, the simplest one being

propositional logic3 from which other logics derive. In particular, first-order logic is
3Propositional logic will not be detailed here but the reader can refer to any introductory literature

to formal logic.
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distinguished from propositional logic by its use of terms, predicates and quantifiers.

What follows is a brief reminder on first-order logic. First-order logic deals not only

with facts, as propositional logic does, but also with objects and relations. The objects

are denoted using terms.

Definition 11. Let L be a language of first-order logic. L is defined by the triplet

(C,F ,P) where:

• C is the set of individual constants

• F is the set of function symbols, each with an arity ≥ 1

• P is the set of predicate symbols, each with an arity ≥ 1, including the equality

predicate noted =

A term of L is either:

• a variable x ∈ V (V is the fixed infinite set of symbols called variables)

• a constant c ∈ C

• a functional relation f(t1, ..., tn) where f ∈ F is an n-ary function and t1, ..., tn

are terms of L

A ground term is a variable-free term.

Predicates are applied to terms to form atomic formulas or atoms:

Definition 12. If p ∈ P is a predicate and t1, ..., tn are terms of L, then:

p(t1, ..., tn) is a formula of L.

Additionally, the combination of formulas, using logical connectives, is also a for-

mula.

Logical connectives include ∨ (disjunction), ∧ (conjunction), ¬ (negation), ⇒ (im-

plication) and ⇔ (equivalence). Quantifiers are the universal quantification noted ∀

and the existential quantification noted ∃.

The facts are represented by sentences.

Definition 13. A sentence is either:

• an atom

• a formula using connectives
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• a closed formula (to which it may also mostly refers in some conventions)

A formula is closed if it contains no free variables.

A free variable is a variable that is not bound by a quantifier. For example, in the

following, y is bound while x is free:

∃y p(x, y)

Having established what a language and a sentence are in first-order logic, we can

introduce the notion of theory. A theory is a set of sentences in a formal language.

Definition 14. A theory T in first-order logic is the pair (L,Γ) where Γ is a set of

sentences of L, called axioms.

Theorems derive from axioms, or other theorems, by rules of deduction or demon-

strated by a proof. Unlike theorems, axioms are accepted without proofs.

8.2 Equational Logic

A common ground for mathematicians and logicians, equational reasoning is deemed

the simplest and most powerful formal method [106]. It has also garnered interest from

computer scientists: functional programs are essentially sets of equations (typically

with higher-order functions) and the execution of such programs is then some kind of

equational reasoning [113]. A set of equations is also called an equational system.

Definition 15. An equation is an expression of the form:

s = t where s and t are terms.

An equational system E is a theory in equational logic of the form (L,Γ) with L a

first-order logic language with no predicates except = and Γ a set of equations of L.

Reasoning from a set of equations derives new equations from the existing equations

and axioms of E. These new equations are formed by replacing occurrences of a given

term s by another term t following an equality s = t. s = t is therefore a justification

for the reasoning step that led from the original equation to the new equation. Such

replacement is called substitution.

Definition 16. Let L = (C,F ,P) be a language of first-order logic and T the set of

terms of L, a substitution of L is a total function σ : V → T

If v1, ..., vn are variables of V and t1, ..., tn are expressions of T , then a substitution

σ is a set of mappings {v1|t1, ..., vn|t1} between variables and expressions.

The application of σ to an expression Ei of L is written Eiσ and is defined recur-

sively by:
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• if x ∈ V, xσ = σ(x)

• if c ∈ C, cσ = c

• if f ∈ F an n-ary function and t1, ..., tn are terms of L, f(t1, ..., tn)σ = f(t1σ, ..., tnσ)

• if p ∈ P an n-ary predicate and t1, ..., tn are terms of L, p(t1, ..., tn)σ = p(t1σ, ..., tnσ)

• if A and B are formulas of L, (6 A)σ = 6 (Aσ) and (A ⇒ B)σ = (Aσ ⇒ Bσ)

Additionally, we define matching for s and t terms of L, and A and B formulas of

L:

• s matches t if there is a substitution σ of L such that s = tσ

• A matches B if there is a substitution σ of L such that A = Bσ

• if s matches t then s is an instance of the pattern t

An instance of an expression Ei, noted Eiσ is therefore received from Ei by simul-

taneously replacing all occurrences of vi by the respective ti for 1 ≤ i ≤ n. A sequence

of instances with their justification, that is the substitution, is a chain of equational

reasoning. In particular, if for a set of expressions {E1, ..., En}, there is a substitution

σ such as:

E1σ = ... = Enσ

then σ is called a unifier.

Definition 17. for s and t terms of L and A and B formulas of L,

s and t unify if there is a substitution σ of L such that sσ = tσ.

Similarly, A and B unify if there is a substitution σ of L such that Aσ = Bσ.

The unifying substitution is called a unifier.

Additionally, a most general unifier (mgu) of s and t is a unifier σ such that, if

there is unifier σ′ of s and t, then there is a substitution τ such that, for all x ∈ V:

xσ′ = (xσ)τ .

In an equational theory T = (L,Γ), the fundamental rules of inference are substi-

tution and replacement:

• if T |= s = t (s = t is true in T or, T satisfies the equation s = t), then

T |= sσ = tσ for every substitution σ of L

• if T |= s = t, then T |= u = u′ where u′ is obtained by replacing one occurrence

of s in u by t
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This is enough to reasoning, that is deriving logical consequences of an equational

system. However, this is inefficient since we do not know how to choose the substitu-

tions. It becomes necessary to find restrictions of these inference rules that are still

capable of deriving all equational consequences of an equational system [113].

8.3 Rewriting Systems

The central idea of term rewriting systems (TRS) is to orient an equation s = t into

a rule s → t indicating that instances of s may be replaced by instances of t, but not

vice-versa [113].

Definition 18. A term rewriting system of L is a set R of rewrite rules of L.

A rewrite rule of L is a directed equation s → t of L such that all variables of t are

contained in s.

Applying a rewrite rule s → t to a term u is done in two steps. First, an occurrence

of a term v is found in u that matches s. Then, by noting the matching substitution

σ, a term u′ is obtained by replacing the occurrence of v in u by tσ. The result of the

application of the rewrite rule s → t to the term u is therefore the term u′.

A rewrite system R defines a rewriting relation or reduction relation →R⊆ T × T

as the smallest relation containing R closed under substitution and replacement:

• if s →R t, then sσ →R tσ for every substitution σ of L;

• if s →R t, then u →R u′ where u’ is obtained by replacing one occurrence of s in

u by t.

Additionally, we define the following closures for the rewriting relation →R:

• →∗
R, the reflexive-transitive closure, that is the smallest reflexive and transitive

reduction relation that contains →R;

• ↔R, the symmetric closure, that is the smallest symmetric reduction relation

that contains →R;

• ↔∗
R, the reflexive-symmetric-transitive closure, that is the smallest reflexive, sym-

metric and transitive reduction relation that contains →R.

For two terms s and t, s →∗
R t means that there is finite number, even null, of rewrites

from s to t. s ↔R s means that the terms s and t can be rewritten to each other.
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Similarly, s ↔∗
R s means that the terms s and t can be rewritten to each other in a

finite number of steps.

A derivation for the rewrite →R is a sequence of the form t1 →R ... →R tn. A

term t is then said reducible if there is a term u such that t →R u; otherwise it is said

irreducible. When a term cannot be rewritten (or reduced) anymore, it has reached a

normal form:

Definition 19. A term s of L is in normal form, relative to R, if there is no term t

such that s →R t

Additionally, t is a normal form of s relative to R if s →∗
R t and t is in normal

form, relative to R.

8.3.1 Properties

Rewriting systems, as any logical systems, may satisfy properties of soundness and

completeness. A term rewriting system is sound with respect to its equational theory if

for all pair of terms (s, t), the rule s →R t implies that the theory satisfies the equation

s = t. Similarly, a term rewriting system is said complete with respect to its theory for

all pair of terms (s, t), if the fact that the theory satisfies the equation s = t implies a

reflexive-symmetric-transitive closure for the reduction relation on the set of terms.

A rewriting system also has specific properties:

• it is Church-Rosser if and only if:

∀s, t ∈ L, s ↔∗
R t ⇔ ∃u, s →∗

R u and t →∗
R u

• it is confluent if and only if:

∀s, t, u ∈ L, u →∗
R s and u →∗

R t ⇒ ∃v, s →∗
R v and t →∗

R v

• it is noetherian or finitely terminating if and only if there is no infinite chain of

reductions t1 →R t2 →R ...

• it is normalizing if and only if every term has a normal form

• it is convergent if and only if it is both terminating and confluent

8.3.2 Theorems

Here, we state some known theorems. Their demonstration is out of the scope of this

dissertation.
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Theorem 2. A term rewriting system R is Church-Rosser if and only if it is confluent.

Actually, the above equivalence can be extended to semi-confluence:

Definition 20. A relation R is semi-confluent if and only if:

∀s, t, u ∈ L, u →R s and u →∗
R t ⇒ ∃v, s →∗

R v and t →∗
R v

The above theorem has the following corollary [6]: if →R is confluent and s ↔∗
R t

then

1. s →∗
R t holds if t is in normal form and,

2. s = t if both s and t are in normal form.

From that corollary, it goes on that: if →R is confluent, then the normal form of a

term of L exists.

Since every term has at least one normal form if →R is normalizing, it follows that:

if →R is confluent and normalizing, every term has a unique normal form.

Proving properties of confluence, termination or normalization are well-studied top-

ics in the field of rewriting systems. In the remaining of this section, we introduce

Maude, a reflexive language that supports both an equational logic and a rewriting

logic.

8.4 Maude as a Rewriting Framework

Maude is a declarative language based on rewriting logic, which has its underlying

equational logic as a parameter. A Maude program is a logical theory, and a Maude

computation is a logical deduction using the axioms specified in the theory [26]. Maude

provides two classes of modules, namely functional modules included in a broader class

of system modules. This inclusion reflects the sublogic inclusion in which membership

equational logic is embedded in rewriting logic [26].

In the remainder of this section, we will only cover functional modules and their

underlying logic, membership equational logic. System modules are also of interest,

but are not covered in this dissertation since we did not developed further on this class

of modules, although we feel the present dissertation can be extended using arbitrary

rewrite rules implemented in rewriting theories.

8.4.1 Equational Membership Logic

Maude functional modules are based on an extension of order-sorted equational logic

called membership equational logic. This means that terms in equational systems do

114



not belong to a single set but to distinct sorts, which are analogous to object types

in programming languages. These sorts are ordered, that is, there exist an ordering

relation between sorts, with subsetting and supersetting relations. Sorts are further

regrouped under kinds at a more abstract level. For example, the kind Number can

apply to a term. But it may be proven that a term inhabits specific sorts like Nat for

a natural number, or Int for an integer.

A signature Ω in membership equational logic is a triple (K,Σ,Π) where (K,Σ)

is a K-kinded signature (where K is a set of sorts) and Π is a restricted signature

of predicates, so that Π only consists of unary predicates. A theory in membership

equational theory is a pair (Ω,Γ) where Ω is a signature in membership equational

logic, and Γ is set of sentences on the signature. In [27], Clavel et al. stipulate that

atomic formulas in membership equational logic are either equations or sort membership

assertions of the form t : s where the term t has kind k and s belongs to a sort Sk.

General sentences are Horn clauses on these atomic formulas, quantified by finite sets

of K-kinded variables. That is, they are either conditional equations of the form:

(∀X) t = t′ if (
∧

i ui = vi) ∧ (
∧

i wj : sj)

or membership axioms of the form:

(∀X) t : s if (
∧

i ui = vi) ∧ (
∧

i wj : sj)

In [97], Meseguer demonstrates the equivalence of membership equational logic with

many-sorted Horn logic with equality. He derives from this equivalence that all results

for many-sorted Horn logic with equality hold true for membership equational logic, as

a sublogic of the former. In particular, he states that since soundness and completeness

of the rules of deduction has been proven for order-sorted Horn logic with equality, and

since many-sorted Horn logic with equality is a special case of the former, then an

immediate corollary is the soundness and completeness of usual rules of deduction for

a theory (Ω,Γ) in membership equational logic:

• reflexivity: Γ ⊢Ω t = t

• symmetry: Γ ⊢Ω t = t′ → Γ ⊢Ω t′ = t

• transitivity: Γ ⊢Ω t = t′ and Γ ⊢Ω t′ = t′′ → Γ ⊢Ω t = t′′

• congruence: Γ ⊢Ω t1 = t′1 and ... and Γ ⊢Ω tn = t′n

→ Γ ⊢Ω f(t1, ..., tn) = f(t′1, ..., t
′
n)

• membership: Γ ⊢Ω t = t′ and Γ ⊢Ω t : s → Γ ⊢Ω t′ : s

• modus ponens
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Theorem 3 (Soundness and Completeness). For any atomic sentence ϕ,

Γ ⊢Ω ϕ ⇔ Γ |=Ω ϕ

More detailed explanations on membership equational logic can be found in [27]

and [14].

8.4.2 Functional Modules

Functional modules are equational theories in membership equational logic with data

types and operations on them. As stated previously, Maude’s equational modules are

based on membership equational logic, and therefore supports multiple sorts, subsort

relations, as well as, operator overloading and assertions of membership in a sort. In

Maude, functional modules are declared as follows:

fmod <ModuleName> is <DeclarationsAndStatements> endfm

Declarations include the importation of other modules and the specification of sorts,

operators and variables to be used in the functional module. While statements are a

list of (conditional) equations and membership axioms.

Sorts are declared using the keyword sort followed by one or several sorts, in no

particular order, and ending with a point. An optional subsort declaration specifies the

(partial) order of subsorts if any, in the form:

sort Zero Nat .

subsort Zero < Nat .

The declaration of operators feature zero, one or several sorts in input and a single

sort for the output. Several operators sharing the same signature can be declared at

once using the ops keyword:

op zero : -> Zero .

op s_ : Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

Variables are declared using the keyword var in association with a sort. Several

variables of the same sort can be declared altogether using the keyword vars:

var Z : Zero .

vars I J K : Nat .
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Computation in a functional module is accomplished by using the equations as

rewrite rules until a canonical, or normal, form is found. The equations must therefore

satisfy the requirements of being Church-Rosser (that is, confluent), terminating and

sort-decreasing. This guarantees that reductions using these equations will lead to a

unique canonical form, and that this canonical form will be assigned a sort that is

smaller than any other sort in this functional module.

Statements can be distinguished between unconditional and conditional statements.

Unconditional equations are declared using the keyword eq:

eq <Term-1> = <Term-2> [<StatementAttributes>]

Both terms must have the same kind. Additionally, any variable appearing in the

right-hand term must also appear in the left-hand term, in order for the equation to be

executable. This requirement is actually relaxed for conditional equations as we will

see below. Equations can generally be specified in three different ways [26]:

1. in the above-mentioned style, in which they are assumed to be executable as

simplification rules from left to right;

2. in the above-mentioned style, but with the [nonexec] attribute, making the

equation non executable, and therefore not subject to executability requirements;

3. as equational attributes of specific operators.

In fact, an operator can be declared with an attribute telling Maude that it satis-

fies a certain property, such as associativity (using [assoc]) or commutativity (using

[comm]). Such attribute should not be expressed as an equation in the specification,

because it would be redundant if declared along the equational attribute itself, or if

declared alone as an equation, it would alter the specification’s operational semantics.

A simple example is declaring the commutativity attribute as an equation, which yields

a non-terminating chain of equational simplifications.

Unconditional membership axioms are declared using the keyword mb:

mb <Term> : <Sort> [<StatementAttributes>]

They specify that a term has a given sort. As equations, they optionally have statement

attributes.

Conditional equations and membership axioms differ from unconditional ones by

the presence of one or a conjunction of equational conditions in the right-hand of the

equation (where /\ represents the logical connective ∧):
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ceq <Term-1> = <Term-2>

if <EqCondition-1> /\ ... /\ <EqCondition-n>

[<StatementAttributes>]

cmb <Term> : <Sort>

if <EqCondition-1> /\ ... /\ <EqCondition-n>

[<StatementAttributes>]

These equational conditions are constituted of individual equations and memberships,

of which concrete syntax is either of the following three variants:

1. ordinary equations t = t’. These equations are operationally interpreted as

usual, that is, for the given substitution σ, tσ and t′σ are both reduced to their

canonical form and compared for equality;

2. matching equations t := t’. These equations are mathematically interpreted as

ordinary equations but are operationally treated in a special way, and therefore

must satisfy special requirements. Variables in the term t do not necessarily ap-

pear in the left-hand side of the conditional equation and are actually instantiated

when executing the equation by matching the term t with the canonical form of

the term t’. t must be a pattern in order to decide equality. A term t is a

pattern with respect to its functional module, if for any well-formed substitution

σ, such that, for each variable x in its domain, the term xσ is in canonical form

with respect to the equations of the functional module, tσ is also in canonical

form;

3. abbreviated Boolean equations of the form t with t a term in the kind [Bool],

abbreviating the equation t = true. These equations are just a special case of

ordinary equations.

8.4.3 Properties of Functional Modules

Functional modules are equational theories of the form (Σ, E∪A) in membership equa-

tional logic, with E the set of (conditional) equations and membership axioms specified

as statements, and A the equations specified as equational attributes in operators (as

seen above). Ground terms in the signature Σ form a Σ-algebra TΣ. The initial model

for the theory is the Σ-algebra defined by the equivalence classes of ground terms mod-

ulo E∪A, denoted TΣ/E∪A. By adding a set of variables X as constants to the signature
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Σ, we define a term algebra TΣ(X) where now the terms may have variables inX. Given

a set of variables X, each having a given kind, a substitution is a kind-preserving func-

tion σ : X → TΣ. Such substitutions may be used to represent assignments of terms in

TΣ to variables in X. It is demonstrated [26] that such substitutions can be extended

to homomorphic functions on terms of the form σ : TΣ(X) → TΣ, also denoted sub-

stitution. Given a term t ∈ TΣ(X), corresponding to the left-hand side of an oriented

equation, and a subject ground term u ∈ TΣ, we say that t matches u if there is a

substitution σ such that t and u are syntactically equals. A term t rewrites a term t′

using a Σ-equation of the form l = r if there is a subterm of t, at a given position,

which is matched by l, and t′ is obtained by replacing the matched subterm in t. This

step of equational simplification is denoted by t →E t′ where the possible equations for

rewriting are chosen from E. Let →∗
E be the reflexive-transitive closure of →E .

A set of equations E is confluent when any two rewritings of a term can always be

unified by further rewriting:

if t →∗
E t1 and t →∗

E t2, then ∃t′ such that t1 →∗
E t′ and t2 →∗

E t′.

A set of equations E is terminating when there is no infinite sequence of rewriting

steps:

t0 →E t1 →E t2 →E ...

If E is both confluent and terminating, a term t can be reduced to a unique canonical

form.

The last important property is the one of sort-decreasingness, that is, given a con-

fluent and terminating set of equations E, the canonical form obtained by simplifying

a term t by the equations of E should have the least sort possible among the sorts of

all the terms equivalent to it by the equations of E. Additionally, it should be possi-

ble to compute this least sort from the canonical form itself, using only the operator

declarations and the membership axioms.

8.4.4 The Reduction Command

reduce is the rewriting command of the functional modules that causes the specified

term to be reduced using the equations and membership axioms in the given module:

reduce {in <Module> :} <Term> .

8.5 Summary

Maude is a declarative language that supports both equational and rewriting logic. In

this section, we were particularly interested in functional modules that are based on
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membership equational logic.

Membership equational logic is a type of equational logic that is an extension of

order-sorted equational logic, and is also equivalent to many-sorted Horn logic with

equality. To understand basic notions of rewriting, substitution, matching and unifica-

tion, we reviewed notions on equational logic, as well as first-order logic.

Maude functional modules are equational theories in which computation (also known

as reduction) is accomplished by using equations as rewrite rules until a canonical form

is found. This is possible if the set of equations is confluent and terminating, as we

have seen.

By considering a program as a set of equations, we assume it is possible to determine

a reduction of the program to a normal form, provided the program is confluent and

terminates. The next section discusses our attempt to apply such reasoning to the

unpacking of encoding schemes, which are bound to deobfuscate, revealing the original

unobfuscated program.
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9. Automated Deobfuscation of Script Contents using Rewriting-

based Emulation

Avoiding danger is no safer in the

long run than outright exposure. Life

is either a daring adventure, or

nothing.

Helen Keller

As noted in Section 6, obfuscation is reversible, given enough space and time [29].

Web malware usually features obfuscated JavaScript programs that will eventually un-

pack during a deobfuscation stage, according to Cova et al. [32]. We further observed

in Section 7 that most JavaScript obfuscation tools are encoders (or packers) that rely

on the dynamic generation of additional code. Assuming obfuscated contents eventu-

ally unpack themselves, state-of-the-art analysis environments provide instrumented

browser emulation that hooks the execution of JavaScript to extract deobfuscated

JavaScript code for analysis purpose.

Despite the popularity of such approach, it has been suffering from a few common

drawbacks. In particular, emulating a browser does not only require to provide a

realistic environment including a window and a document, but also may require to

instantiate several browser personalities. A personality is the combination of a specific

browser version and a set of specific plugins. Rajab et al. [117] pointed out the difficulty

for an administrator to maintain such system. Additionally, anti-analysis techniques

have evolved [70] making emulators to fail against sophisticated cloaking techniques.

As seen in Sections 2 and 6, attacks are varied and all obfuscation techniques do not

rely on code unfolding or encoding schemes but may rather combine simple techniques

to interleave deobfuscation and exploitation stages. To increase code coverage over dy-

namic approaches, we advocate the implementation of an execution-less deobfuscation

approach. Indeed, deobfuscation is needed since obfuscated code is rarely decidable.

In this section, we mainly consider encoding schemes that are, in most cases, bound

to deobfuscate. By considering deobfuscation as a terminating process, we can safely

assume that it will yield a deobfuscated program, which is a simplified form of the ob-

fuscated program. We will subsequently describe our reasoning approach on encoding

schemes and how to implement deobfuscation using the Maude language as a way to

emulate packed programs.
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9.1 Deobfuscation

Evaluation of obfuscated contents is difficult to achieve using only static examina-

tion of code. For this reason, current web malware detectors employ execution-based

approaches. While they rightfully consider obfuscated contents as undecidable, they

assume that packed contents are bound to deobfuscate. Proposals such as Zozzle [36]

elicit an instrumentation of critical sinks, similar to what is done in the JavaScript De-

obfuscator [110], following the methods developed by Nazario [104]. Current proposals

implement instrumented browser emulation environments where the eval function is

hooked to reveal the code being executed.

While this approach works globally well, we may disagree on some points:

• execution may fail to capture malicious code on a single pass when predicates

force the execution to take an irrelevant path. In fact, dynamic approaches are

often criticized for their lack of code coverage;

• browser emulators are based on JavaScript engines and are therefore prone to

vulnerabilities inherent to the engine. Depending on the degree of containment,

such execution may not be safe;

• instrumented environments hook the eval function but some obfuscation tech-

niques do not rely on such function to conceal malicious intents. Such transfor-

mations have the potential to evade analysis environments that employ statistical

or learning methods to classify scripting malware.

From its inception, our research has been inspired to reverse the malicious intents

of obfuscated scripts with an approach different from what has been achieved so far,

especially on two specific points: (1) apply static methods as much as possible; (2)

consider obfuscation as not decidable. As presented in Sections 2 and 3, current web

malware detectors only apply one or the other, but never both. However, deobfuscation

is difficult to achieve with static methods only. However, Collberg et al. suggest that

it may be partly possible in [29]: they speculate that partial evaluation may be applied

to simplify obfuscated programs. In a similar fashion, we propose to interpret the code

of the decoding routine of a JS packer. While emulation of the JS language can be

achieved through dedicated APIs of another language, we decided to explore a much

formal approach.

By considering a program as a set of equations, we attempt to deduce its outcome

through simplification. This is a simple and straightforward approach that relies on

deduction.

122



Conversion 

to equations

Automated

Deduction

Obfuscated

contents

Deobfuscated

script

Set of equations

u_adjet

Figure 20. Workflow of the u adjet deobfuscator

9.2 Overview

u adjet is a deobfuscator that relies on the Maude rewriting framework to emulate the

instructions of an obfuscated JS program. Provided we have extracted instructions

relevant to obfuscation, u adjet performs the conversion of instructions to equations

parsable by Maude. Maude will then provide rewrite these equations to produce a

simplified version of the JS program (see Fig. 20).

Similar to current approaches, we first concentrate on encoding/packing schemes,

which presently represent the majority of obfuscated contents. However, automated

deduction is obviously not restricted to a subset of obfuscation techniques. Encoding

schemes are merely considered as a proof-of-concept here to introduce a novel approach

to the automation of deobfuscation.

In particular, encoding schemes can be seen as a special case where obfuscation

and deobfuscation coexist. In fact, the deobfuscation part modifies (here, rewrites) the

obfuscated part. Our intuition is that by mechanizing the deobfuscation part, we can

automate this process and simply introduce the obfuscated part as input to the system,

in order to produce deobfuscated code.

Algorithm 1 gives a more detailed description of the processing that takes place

just after prefetching. Once the employed obfuscation scheme has been detected (by

ob asti), the obfuscated contents are extracted and the deciphering routine is con-

verted into a Maude functional module. Upon deobfuscation, an additional step verifies
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Algorithm 1 Automated deduction of script instructions

1: obfstring, decroutine = extract(script)

2: decroutine = functionalize(decroutine)

3: fmod.decls,fmod.stmts = convert(decroutine)

4: output = Maude.reduce(fmod,obfstring)

5: if output contains links then

6: output += prefetch(links)

7: end if

8: if output is obfuscated then

9: script = output

10: repeat from line 1

11: end if

whether deobfuscation is still needed.

An advantage of Maude is that it employs term-indexing techniques to achieve

high speeds of rewriting[123]. However, most JavaScript encoding schemes employ

an imperative style of programming, in particular using loops. It requires additional

processing to transform a JS program to a functional one. The conversion of JS code

to Maude functional modules is further detailed in the next section.

9.3 Automated Deduction using Maude

We were suggested to use Maude[25], a rewriting framework based on membership

equational logic. In [98], Meseguer observed that equational and rewriting logics were

suited to specify the four different program styles that result from the cartesian product

{imperative, declarative} × {sequential, concurrent} where:

• imperative programs, described as “involving commands changing the state of the

machine to perform a task”, are opposed to declarative programs, which “give a

mathematical axiomatization of a problem (as opposed to low-level instructions

on how to solve it)”;

• sequential programs, which run “sequentially” and “for each input yield an answer

or loop”, are opposed to concurrent programs, which run “in parallel” and may

“yield many different answers, or no answer at all, in the sense of being reactive

systems constantly reacting with their environment”.
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In particular, Meseguer notes that equational logic is very well suited to give executable

axiomatizations of imperative sequential languages and refer the reader to [58] for

further details on how to reason on such programs using equational logic.

Actually, he demonstrates the use of functional modules in Maude[25] for the axiom-

atization of declarative sequential programs. As a matter of fact, the declarative aspect

of Maude is appropriate and such declarations should therefore be reflected in impera-

tive programs if we wish to use functional modules for their axiomatization. JavaScript

is actually a special case itself since it is a multi-paradigm language: in particular, it

supports functional programming style, which is a kind of declarative programming

style. As we have seen in Section 8, functional modules satisfy the membership equa-

tional logic, therefore equations must be confluent, terminating and sort-decreasing.

9.3.1 Obfuscation as a Subset of JavaScript

Our goal is to express decoding routines as rewrite rules to simplify the obfuscated

string, which represents the packed program. We expect the rewriting framework, here

Maude, to perform the simplification process, hopefully yielding a canonical form of the

packed program, which would be deobfuscated (see Fig. 21). Although JavaScript is

imperative, and mostly sequential as a programming language (as it is not a concurrent

one per se), we can reason on it in terms of equations since it also supports functional

programming. However, JavaScript is dynamically typed, which may be an obstacle

for producing the declarative part of a functional module. On the contrary, generating

the statements seems to be straightforward (see Alg. 1).

As stated previously, we are not attempting to specify JavaScript as a whole but

only obfuscated programs. Moreover, we presently restrict the scope of obfuscated

programs to those that are encoded using an encoder/packer style of obfuscation. This

particular obfuscation technique is the most popular and displays a common pattern

including a decoding routine, and an obfuscated string on which the decoding routine

is applied. In this case, the reduce command is applied to the obfuscated string, which

will be reduced using the equations of the decoding routine. This is analogous to the

emulation of the said decoding routine.

9.3.2 Axiomatizing JavaScript Packers in Maude

To axiomatize JavaScript code, and especially the subset of functions used in packers,

we leverage the functional properties of JavaScript. Indeed, functional programs are

well-suited to reasoning and have some interesting properties. In particular, imperative
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Figure 21. Decomposition of a packed program and conversion of the decoding routine

programs have side-effects during execution since they change the program state [71], as

we noted earlier. As a matter of fact, imperative programs lack referential transparency

since the behavior of a program is not only function of the input (as it is with functional

programs) but also function of the state of the executing program. Other characteristics

of functional programs are [11]:

• closures and higher-order functions: closures designate the inner functions (func-

tions defined within a function) with a free variable binded to the outer function;

higher-order functions can take other functions as arguments or even return func-

tions as output argument.

These two constructs actually allow to modularize programs in an elegant way;

• recursion: in functional programming, recursion is used as a control flow mecha-

nism.
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In order to leverage Maude’s equational logic to deduce the outcome of a JS decoding

routine, it is therefore necessary to convert the JS decoding routine to a functional

equivalent.

Here, we describe a summary algorithm to deal with simple JavaScript programs

(the functionalize function in Algorithm 1): The algorithm is still a tentative to

Algorithm 2 Conversion from imperative to functional JavaScript

1: vars = []

2: p′ = recursionalize(p)

3: for each instruction i in p′ do

4: if i is a function call then

5: i′ = closure(i)

6: v = i.vars

7: if v in vars then

8: i′ is closed in the last function using v

9: else

10: vars.push(v)

11: end if

12: end if

13: end for

14: VARS = vars

15: EQNS = p′.i′

provide a conversion for all JS programs, but can be restricted only to the conversion

of loops to recursive functions for decoding functions of common JS packers.

Functional modules are thereby used to emulate deobfuscation: variables and ob-

jects are mapped to sorts in Maude, instructions are emulated through equations. Com-

putation is realized by using these equations as rewrite rules applied to the obfuscated

strings, until a canonical form is found, that is, the deobfuscated script. Rewrite rules

define transitions from one state to another, prompting the deduction of the resulting

state from the initial state by reduction. Such logical framework allows the generation

of concrete semantics from concrete input, but based on formal operations.

More concretely, we describe how to evaluate such programs in Maude in the re-

mainder of this section.

As for sorts, it is possible to include all sorts, regardless of the ones actually used in

the program. All variables declared, as well as undeclared, should be declared using the
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keyword var, followed by an appropriate identifier in uppercase and an appropriate sort,

that is the variable type. Such type may be opaque. The closed functions we generated

using Algorithm 2 should be declared as operators and control flow is performed by

conditional equations. All variables occurring in a function are reflected in the sort

signature of the operator. As with variables, some types may not be known before

execution.

Types of JavaScript have some equivalent in Maude sorts, along with the predefined

operators:

• Boolean variables are expressed using the Bool sort and the functional modules

TRUTH-VALUE that instantiates the values true and false, and TRUTH that de-

clares operators for equalities and inequalities as well as a complete branching

control construct if_then_else_fi where the underscores are placeholders for

terms;

• Numeric variables can be expressed through a number of sorts but we privilege the

INT functional module that declares the sorts Int and NzInt (for non-zero inte-

gers). Int extends the Nat sort representing natural numbers with a unary minus

operator. It provides all sorts of operators to compute arithmetical operations on

integers, as well as bitwise operations and tests;

• Floating-point numbers can be represented using the sort Float and the mod-

ule FLOAT, which provides all the functions used in JavaScript such as ceil or

floor. Additionally, Float provides trigonometric operators usually defined by

the object Math in JavaScript;

• String literals also benefit from a predefined String sort declared in the STRING

functional module. It supports the substring operation (substr), the string length

operation (length), string concatenations (_+_), conversions between ASCII code

and characters (ascii and char) but no advanced regular expression manipula-

tion such as provided by the JavaScript function replace.

Although, it is possible to extend Maude functional modules in order to support a

better emulation of JavaScript capabilities, we may be still constrained in some ways,

especially when dealing with regular expressions. Additionally, the declarative style of

Maude needs some further adaptations of the JavaScript code being emulated. These

adaptations as well as the processing of regular expressions are treated in a preprocess-

ing and postprocessing stages detailed later.
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output := default

for (counter := init; counter > stop; update(counter))

output := f(counter)

Figure 22. Pseudo-code of a loop performing the function f()

function f(counter):

if counter = stop then

return default

else

return f(update(counter))

Figure 23. Pseudo-code of a recursive function f()

9.3.3 Loop Conversion

Decoding routines usually make use of loops to repeat their processing on the string

they decode. Conversion to functional programming requires that loops be transformed

to recursive functions.

Since u adjet “translates” JavaScript instructions to Maude equations, preprocess-

ing tasks include the transformation of any loop (as depicted in Figure 22) to a recursive

function (as depicted in Figure 23).

The transformation from a loop to a recursive function is a trivial algorithm that

takes as input a function f() (applied to an initial value default) iterated within a

loop that runs from an initial value init to a final value stop, the pace being defined

by the function update. The resulting recursive function f() has a default condition

decided by the value of stop and recurs on values paced by the function update().

This recursive function is first called on an initial value init.

Maude functional modules allow to express the recursion by using conditional equa-

tions with one case being the stop condition and the other the actual processing.

9.3.4 Postprocessing

The translation is challenging to automate for the reason that translating the decoding

routine to a functional module operator requires the knowledge of the number and type

of all variables that are used in the decoding routine. Not only should be provided the

type of the input variables as well as the output, but also the type of each variable
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participating to the process of the decoding routine. Similarly, these variables are also

translated within the functional module and should be named and typed accordingly. It

is actually the dynamic typing characteristic of JavaScript that constitutes a challenge

here where the type of a variable may not be known in advance. However, this case

may often happen when the variable is defined from a value originating from outside

the script, which may be resolved prior to deobfuscation thanks to prefetching or re-

solving DOM-embedded contents. As stipulated above, some preprocessing are needed

prior to emulating the deobfuscation of obfuscated contents. In particular, Algorithm

1 mentions a function extract responsible for extracting the obfuscated strings and

the decoding routine from the script contents. This function corresponds to the pro-

cessing of ob asti which goal is to detect obfuscation patterns and extract the related

instructions from the script code. As we stated in Section 7, not only is it convenient to

detect recurring patterns of obfuscation, but it is also possible to design a deobfuscation

method that may be faster than executing the decoding routine, by ignoring irrelevant

code for example. Therefore, against the actual obstacles of converting JavaScript code

into functional module, we argue that given a specific obfuscation pattern, we can de-

sign a specific Maude functional module to handle this pattern, with the appropriate

declarations of variables and sorts.

On the other hand, Algorithm 1 also indicates that links may be generated after

processing, prompting the prefetch function. This function is responsible for com-

manding the (sak mis) proxy to request the pages from the generated links and inline

the script contents of the response back to the script being processed.

9.4 Example

Here, we present an example of the application of u adjet to a simple malicious JavaScript

sample to demonstrate its feasibility and its accuracy.

This example (see Fig. 24) is a simple eval unfolding featuring a single loop that

deciphers an obfuscated string via XOR operations. The script is included into an

HTML file that displays a 404 error page to an unsuspecting user.

The proposed system first extracts the script contents, that is, the instructions

comprised between the <script> tags, and parses the contents. The parse tree is

analyzed to detect the obfuscation scheme. Here, the obfuscation scheme uses a loop to

process the obfuscated string. This loop is converted to a recursive function whose body

is the aforementioned string processing script. The Maude system readily provides a

predefined functional module that defines the string data type as well as operators
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<html>

<t i t l e>404 Not Found</ t i t l e>

</head><body>

<h1>Not Found</h1>

<p>The reques ted URL / index . php was

not found on th i s s e r v e r .</p>

<p>Addi t i ona l l y , a 404 Not Found

e r r o r was encountered whi le t r y i ng to use

an ErrorDocument to handle the r eques t .</p>

<hr>

</body></html><script l anguage=JavaScr ipt>

s t r = ”qndy ‘mh) ( : ” // the ob fuscated s t r i n g i s

// abbrev i ated f o r the purpose o f b r ev i ty

s t r 2=”” ; f o r ( i = 0 ; i < s t r . l ength ; i ++){

s t r 2=s t r 2+String . fromCharCode ( s t r . charCodeAt ( i ) ˆ 1 ) ; } ;

eva l ( s t r 2 );</ script></html>

Figure 24. Original HTML code

fmod TEST i s

p r o t e c t i ng INT .

p r o t e c t i ng STRING .

op t e s t : Int Str ing Str ing −> Str ing .

var I : Int .

vars S1 S2 : Str ing .

ceq t e s t ( I , S1 , S2 ) = S2 i f l ength ( S1 ) <= I .

ceq t e s t ( I , S1 , S2 ) = t e s t ( ( I + 1) , S1 , S2 )

+ char ( a s c i i ( subs tr ( S1 , ( l ength ( S1 ) − I − 1 ) , 1 ) ) xor 1)

i f I < l ength ( S1 ) .

endfm

Figure 25. Maude functional module

to manipulate string objects: the fromCharCode() function is mapped to Maude’s

char operator, which converts an ASCII code to the corresponding character; the

charCodeAt() function is emulated by the combination of two basic operators, ascii,

the inverse of char, and substr, the substring operator. The result of the conversion

to a Maude functional module is displayed in Figure 25. The workflow of the recursion

is realized through conditional equations. The obfuscated string str as well as the

empty string str2 are inputs to the Maude system and are going to be rewritten by

the functional module we generate (Fig. 25).
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9.5 Discussion

9.5.1 Performance

In our approach, we wish to maximize code coverage by adopting a rather static ap-

proach for script analysis. This needs prior deobfuscation of analyzed samples. This

preprocessing stage surely incurs some delay but emulating the deobfuscation stage

using the Maude framework may alleviate the time overhead. Indeed, our approach

features some time-saving points to minimize the delay to a certain extent:

• the prefetching stage anticipates the fact that several snippets of code will be

gradually downloaded to the client-side;

• we expect the conversion stage between script contents and Maude functional

modules to be fast as we are mapping script objects to Maude predefined data

types and operators (although the loop transformation implies an additional delay

as we have seen);

• the Maude rewriting system performs relatively well compared to time spent

loading rich Web applications: it demonstrated processing time not exceeding

100 milliseconds for the few samples we tested on an Intel Core 2 Duo platform

(2.5GHz) with 4GB of memory running the Maude 2.5 engine.

The time overhead does not take into account several intermediate processing such

as conversion time between JS instructions and Maude functional modules, and only

rewrites a single obfuscation. We are aware that this result needs to be confirmed

through extensive implementation and testing.

9.5.2 Termination

Another issue is the termination of the deobfuscation process. While Maude func-

tional modules should satisfy the requirements of being Church-Rosser and preferably

terminating, JavaScript programs can not guarantee termination. We assume that de-

obfuscation in the case of JS programs is necessarily terminating in order to provide

executable JS code. However, we can imagine an attacker trying to carry out a denial

of service on u adjet by crafting an infinite loop in the deobfuscation stage. If this is

the case, we can think of two ways to prevent a denial of service. Either, we check for

a trivial infinite loop during the loop to recursion transformation, or we set a recursion

limit to prevent an infinite loop.
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9.5.3 Other Obfuscation Techniques

As we have seen in Section 6, there are numerous obfuscation techniques besides cus-

tom encoding/packing. Most of the simple techniques such as string concatenation or

variable aliasing may be simplified using Maude. One big challenge in obfuscation and

cloaking techniques is the opaque predicate issue. When an opaque predicate is repre-

sented by a difficult theorem, it may be possible to prove it using Maude. In general,

we speculate that Maude can resolve the problem of opaque predicates, which would

help simplify obfuscated programs by removing irrelevant code.

For other obfuscation techniques, the actual challenges is to isolate functions, gener-

ate closures for these and links these through their bounded variables, building higher-

order functions. The tentative algorithm we showed (Alg. 2 is a starting point to

formalize the conversion of JS code to functional equivalent in order to apply equa-

tional reasoning on obfuscated JS.

By specifying rules, we may design deobfuscation techniques for different classes of

obfuscation. We think that more research can be done in applying rewriting logic using

Maude system modules.

9.6 Summary

(sak mis) relies on a deobfuscation module to provide unobfuscated code for analysis.

With the constraint of avoiding direct JavaScript execution, we took on automating the

emulation of JavaScript instructions involved in the deobfuscation stage of web attacks.

We proposed to perform automated deduction using a rewriting logic framework.

Maude rewriting framework, based on membership equational logic, offers sound and

complete rules of deduction [97]. The richness of this framework provides an executable

environment for most of object-oriented programming languages such as web scripting

languages. Additionally, the Maude system has also been hailed for its good time

performance [123], which our proof-of-concept also demonstrated. However, the declar-

ative style of Maude hinders the one-to-one mapping between script languages such as

JavaScript and Maude language.

There are still challenges left to completely automate deobfuscation. In particular,

quantifying the time overhead of a multi-staged deobfuscation. With its integration

within (sak mis), the u adjet deobfuscator may suffer from additional time delays. It

will be necessary to spot potential bottlenecks in the system where improvements can

be achieved.

Hopefully, the output of the module should be the canonical form of the deobfus-
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cation stage, that is, a code equivalent to the original code that was obfuscated. That

way, analysis can be safely performed to reverse the intents present in the original

attack code. The theoretical background that permits to associate intents, or human

concepts, to the syntactic pieces of deobfuscated code will be described in next section.
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10. On Program Comprehension

Every program has (at least) two

purposes: the one for which it was

written and another for which it

wasn’t.

Alan J. Perlis

Program Comprehension is a domain of computer science that focuses on source

code maintenance methods and theories. It is necessary to facilitate maintenance,

reengineering, code reuse, documentation, reverse engineering, extension of existing

software systems, etc. [75].

This discipline aims to explain a program, its structure, its behavior, its effects on

operational context and relationships to its application domain [12].

10.1 The Concept Assignment Problem

Based on the source code, it is always possible to extract tokens from parsing, but this

is somehow limited in its expression, in particular qualitatively. In fact, a human being

will struggle to understand a program if the terms used are not human-oriented. To

achieve this level of expression involves a great deal of knowledge of the application

domain.

Parsing source code yields formal, mostly structural and syntactic features, which

are adequate for machine-based automated treatment. This allows to represent com-

putational intents at a low-level of abstraction, close to the source code. Biggerstaff et

al. [12] outlines the recognition of programming-oriented concepts through parsing.

On the other hand, human-oriented concepts are expressed more informally, in

terms that may be ambiguous. Expressing computational intent is therefore a complex

process involving analysis, experimentation, inference and semantic mapping between

domain concepts and operations expressed on literals and data structures.

Lastly, binding the two worlds of concepts, that is, discovering human-oriented con-

cepts and assigning them to their realizations within a specific program is the concept

assignment problem [12].

Biggerstaff et al. further elaborated that there were no algorithm or set of inference

rules for recognizing human-oriented concepts. Another issue is that it appears there

is a paradigm shift between the two worlds of concepts in the kind of features used for

recognition, as well as, the nature of the processing required:
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• programming-oriented concepts are expressed in terms of formal feature or by

ways of deduction on those features;

• recognizing human-oriented concepts is more like a “decryption” problem since a

priori knowledge is needed to infer ambiguous tokens (natural language tokens).

Biggerstaff et al. have proposed a suite of tools, DESIRE (DESign Information

Recovery Environment), to support an intelligent agent (a human being) in strategies

to assign concepts to portions of codes. They identify two main tasks:

• identify entities and relationships based on formal information, as well as some

informal information such as grouping and association clues;

• assign these entities to known (or newly discovered) domain concepts leveraging

on domain knowledge.

DESIRE has been used in several scenarios that bootstrap program comprehension

either based on suggestive data names, patterns of relationships (regarding the abstract

architecture or framework of the program) or the user’s experience.

Biggerstaff et al. have concluded that concept assignment is a difficult problem

and that neither recognition, nor assignment can be completely automated. Partial

automation is possible but this problem necessarily relies on an a priori knowledge

base that comprises a great deal of information on the application domain and typical

program architectures.

10.2 Concept Recognition and Program Slicing

Reverse engineering is the process of extracting knowledge or design blueprints from

anything man-made [46]. Reversing techniques are often used by security vendors

to trace every step a malicious program takes and assess the damage it could cause.

With compiler-generated code, it is often difficult to determine the developer’s original

intentions. Although it may be easier to recover the true intents of the source code, it

is generally expressed at a low-level of abstraction, usually syntactic as we have seen

previously.

Concept recognition, as defined by Biggerstaff et al. [12], uses a finite set of pattern

templates to recognize concept signatures. Simplest and most elemental patterns are

recognized first before being integrated into larger-grained, composite concepts. Pars-

ing, as a process of tokenizing source code instructions, is considered a degenerate case

of concept recognition.
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Discovering concepts is not trivial and as the above description suggests, it needs to

be bootstrapped in some way. Experiences with software debugging led Mark Weiser to

observe that a large computer program is better understood when broken into smaller

pieces [144]. Program decomposition was a sanctioned practice for program design,

back in the 1970s. Weiser proposed another complementary method, program slicing,

that would be applied a posteriori to the written code, instead of during design stage.

Originally a program slice is an executable subset of a program comprised of instructions

relevant to a given criterion. The slicing criterion is generally a pair (< i ,V >) where

i is the number of the statement at which to observe and V is the set of variables to

observe. The program slice would generally include any statement that has an effect on

the value of the observed variables at statement i . Slices should satisfy two properties:

• the slice should have been obtained from the original program by statement dele-

tion;

• the slice should preserve the behavior of the original program, as observed through

the window of the slicing criterion.

Before and after Weiser generalized program slicing, many different algorithms have

been proposed to approximate slices based on dataflow analysis, which allows to find

pieces of code that influence a particular behavior [144]. Although finding the minimal

slice is deemed a difficult problem [38], a comprehensive survey on program slicing

methods [148] indicates that non-executable slices are often smaller, and thus more

helpful to program comprehension. The same survey goes further on by observing that

program comprehension, among other applications, only needs non-executable slices.

One particular method [109], based on Program Dependence Graph (PDG) [49], has

been proposed by Ottenstein and Ottenstein to compute a program slice, for a given

variable, as simply the set of statements that influence the value of this variable. This

method finds a slice by walking back the PDG and performs in linear time.

Common slicing methods usually require a starting statement to perform slicing.

On the contrary, decomposition slices [55] are a set of program slices that capture all

relevant computations involving a given variable, leading to a “direct” decomposition

of a program into two (or more) components. A decomposition slice for a variable v

is therefore the union of the program slice for v at all points that output v and at the

last statement of the program.

Not every variable in a program is outputted at a statement, making the decompo-

sition slice as proposed by Gallagher and Lyle [55] inaccurate for such cases. Based on
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the observation, Icuma et al. [73] proposed to define a decomposition slice for a variable

v as the union of program slices for v at the statements that define a value to v , that is,

assertions to v and inputs on v . Interestingly, this new decomposition slicing method

can make use of PDG, constructing a slice in linear time.

10.3 Program Categorization

There are indeed a few works on text categorization that have explored source code

classification issues such as [139]. But to the best of our knowledge, there is only one

work [90] on categorizing web scripts, in particular JavaScript programs. The authors

actually indicate the lack of contributions in this field as a motivation to their work.

Along their survey, they made several observations:

• programming languages are generally designed to be open-ended and largely task-

agnostic;

• unlike natural language texts, program source code is unambiguous to the com-

piler and has exact syntactic structures;

• syntactic information and some language-specific semantic information, could be

important and useful for classification.

Similar to [139], Lu and Kan examined potential categories for JavaScript program:

they decided to adopt the 54 categories used by a popular JavaScript programming

tutorial website. However, they regret that the categories are developer-oriented and

not consumer-centric. They also deplore the shortness of provided programs used for

categorization, since these are sample programs.

Therefore, they proposed to perform categorization on JavaScript functional units,

rather than on the entire page’s scripts. A functional unit, or simply unit, is defined as

a JavaScript instance, combined with all of (potentially) called subprocedures. Based

on these automatically extracted units, Lu and Kan proposed 33 discrete categories

based on functionality.

They perform categorization using several different approaches on functional unit

tokens:

• syntactic analysis based language tokens that distinguish expression operators,

URLs, HTML tags, etc. These are counted and use as syntactic features;

• code metrics comprising classic complexity metrics as well as structural similarity

count and builtin function count;
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• code reusing edit distance;

• DOM-related program comprehension features generated by both static and dy-

namic analysis.

They tested their methods on 1.7 million web pages from over 11000 distinct servers.

Their study confirm that a large part of scripts from their corpus were copies or sim-

ple modifications. While text categorization baseline performs well, program analysis

features greatly improved the performance.

10.4 Summary

Since static analysis is best performed on source code, we strived so far to provide

readable code. In such state, reversing intentions should be a straightforward task.

State-of-the-art code analysis methods have a potential to extract useful information

from the source code that can help decide on the malice of a program. In particular,

we are interested in abstracting a program to concepts understandable to humans, not

only to the benefit of human analysts but to map the multiplicity of implementations

to a same intention.

The theory of concept assignment takes interest in detecting independent pieces of

code that perform a distinct function, and associating these to a human concept. Con-

cept assignment benefits from advances in program analysis and has integrated some

existing tools to achieve its goal. In particular, program slicing and program depen-

dence graph are two such techniques that provide a modular view of programs on which

we can base our decomposition. There were promising results in the decomposition of

JavaScript code and the categorization of code excerpts in Lu and Kan’s proposal [90].

However, these results are not applicable in our case since these work concentrated on

consumer-centric categories, and such perspective differs from ours. Additionally, their

features only accommodate a subset of JavaScript functionalities, namely, interactions

with the Document Object Model.

Our purpose necessitates an alternative decomposition of programs that are closer

to the developer’s design. More details on how concept assignment is implemented in

mi oos are given in the following section.
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11. Knowledge-based Static Intentional Analysis of Unob-

fuscated JavaScript Code

Those who stand for nothing fall for

anything.

Alexander Hamilton

In order to capture the intentions of an unobfuscated program without relying on the

semantics of the variable naming/aliasing, which suffers from string randomization, we

propose to better rely on the functionalities demonstrated by the code of the program

through the clustering of pieces of that code around programming objects.

In this section, we cover the two main steps to express the computational intents

of a program in order to decide on the malice of such program: program slicing and

object categorization.

11.1 Motivation

Modeling intentions of a program is not quite like capturing its behavior since we are

not interested in the actual execution outputs of the analyzed program but rather into

the operations that are actually present in its source code. This approach allows an

analyzer to prevent execution side-effects, particularly, parameterized execution where

only a part of the code is executed. This results in a partial expression of the code

that can be harmful. Here, intentions are modelizations of what the code intends

to do, or rather what it is intended for. This is a straightforward view of the code

that expresses the code’s true nature. It is based on the object-oriented paradigm,

common to many languages used in web programming, and in particular, client-side

web scripting languages such as JavaScript, VBScript or ActionScript. As the subject

of our case study, and because of its importance in the AJAX framework as well as its

frequent use in Web-based malware, we chose JavaScript to illustrate our point.

As a reminder, JavaScript is a prototype-based scripting language that bears the

property of being a duck-typed, functional language. As a matter of fact, both func-

tional and object-oriented decomposition are eligible for JavaScript (as well as for

JScript, Microsoft’s variant and ActionScript, both being based on ECMAScript) but

not for VBScript. We stated earlier in Section 10 that this research aims to model

analyzed scripts as objects interacting, in order to infer what are the script’s main

functionalities.
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11.2 Related Works on Web Script Analysis

Protecting the client-side, in particular the browser, from getting exploited by client-

side web malware has risen as the best solution to ensure a safe browsing experience

to the user. Indeed, since it is not possible to protect every web server in the world,

not to mention attacker-owned domains, there is always a possibility that a user ends

up visiting a web page containing malicious scripts. As outlined in Section 2, there are

actually a few ways to prevent exploitation, the most straightforward being simply to

disable JavaScript. But these approaches either lack in usability or in performance. In

this section, we will cover many efforts towards designing browser-based solutions or ex-

tensions, as well as, preliminary researches similar to ours. One significant contribution

will be featured for each category.

11.2.1 Machine Learning Based

Cujo [118] is one of the last example of machine-based learning web malware detectors.

Cujo specializes in detecting drive-by download attacks by learning lexical features

(static analysis) and execution traces (dynamic analysis). Authors of Cujo observe

that current countermeasures suffer from either of two shortcomings: some approaches

are too specific (for example, detecting only heap-spray) while more general approaches

induce a performance overhead too prohibitive to be usable.

Cujo is a proxy-based solution that extracts generic features, in this case sequence

of q words (noted q-grams), from both static and dynamic analyses, generating uni-

fied reports. Cujo uses Support Vector Machines (SVM) to build a hyperplane that

separates two vector classes representing contiguous reports (similarity is calculated on

q-gram mapping) of benign web scripts on one hand and malicious ones on the other

hand. Cujo offers additional explanation to the detection patterns by reporting on how

much a feature participate into detection. The combination of both analysis types also

offer additional resilience to Cujo since a malware should attempt to circumvent both

analyses to evade Cujo.

Cujo outperforms current anti-virus products and enables detecting 94% of the

drive-by downloads with few false alarms and a median run-time of 500 ms per web

page, which is hardly perceived by the user.

These figures actually represent a sizable indicator to assess the performance of our

own detector.
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11.2.2 Emulation Based

JSAND [32] is an emulator-based JS analyzer embedded in WEPAWET [31] that fo-

cuses on vulnerabilities exploited in browser plugins and ActiveX controls. JSAND au-

thors have observed that web attacks often perform four typical stages: redirection and

cloaking, deobfuscation, environment preparation and exploitation. Therefore, JSAND

builds models for anomaly detection based on ten features characterizing events oc-

curring during these four stages. Among these ten features, those characterizing later

stages are deemed necessary since an attack does not occur without environment prepa-

ration and exploitation, while the former stages provide useful features that are not

required to perform an attack but allow an attacker to hide malicious code from detec-

tors.

JSAND is implemented using HtmlUnit [15], which allows to emulate a browser

environment and assume several browser personalities, as well as arbitrary system en-

vironments and configurations. Additionally, JSAND enhances HtmlUnit with anti-

cloaking techniques such as a forced-execution model that detects which functions of

the script were not invoked at runtime, and subsequently call these. JSAND also pro-

vides an exploit analysis functionality that is able to classify exploits using a naive

Bayesian classifier. JSAND outperforms antiviruses and honeypots but may be evaded

using fingerprinting techniques, as described in Section 3.

11.2.3 Abstract Syntax Based

Zozzle [36] is an in-browser mostly static JS malware detector. Zozzle attempts to

improve on past proposals on four points:

1. accelerate detection for the sake of usability (in a browser);

2. overcome the issue of obfuscation for static analyzers;

3. lower the false positive rate to prevent harming the user experience on benign

websites;

4. offer runtime analysis to overcome transience issues that plague URL-based de-

tectors.

Zozzle satisfies its first requirement by its localization as part of the browser’s

JavaScript engine, it is run at parsing time, greatly improving its time analysis and

therefore imposing little time overhead to the user. Its hooking into the JavaScript
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engine also permits Zozzle to address the issue of obfuscation as it has direct access to

the final, expanded version of the JavaScript code.

Zozzle has an extremely low false positive rate of 0.0003% thanks to its highly

precise detector trained on deobfuscated JavaScript code. In fact, Zozzle cannot deal

with obfuscated JavaScript, but the training phase is done on JavaScript code that has

been previously deobfuscated by an “augmented” browser that extracts and collects

fragments of JavaScript. The Zozzle deobfuscator collects information about which

context leads to other code contexts. Once contexts have been labeled (benign or

malicious), features indicative of benign or malicious intents are extracted by leveraging

the hierarchical structure of the JavaScript AST. Features consist of two parts: a

context (loop, condition, etc.) and a text (a substring of the AST node). To improve

performance, feature extraction is restricted to specific AST nodes: expressions and

variable declarations. It is further improved by keeping only the most contributing

features. The machine learning method employed in Zozzle is a Bayesian classifier that

distinguishes benign and malicious JavaScript programs.

11.2.4 Symbolic Execution Based

Rozzle [87] proposes to address the issue of cloaking, as outlined by [117], that is, finger-

printing techniques used to limit exploit triggering to targeted environments only, and

thus preventing possible detection. Cloaking also allows to evade automated crawlers.

As Rajab et al. [117] pointed out, cloaking techniques hinder the processing of every

type of web malware detector. In particular, for emulators that have the potential to

impersonate every type of browser personality, every type of system environment, it

becomes a tedious task for an administrator to maintain all browser/system instances.

As for Rozzle, it claims to successfully replace multiple VM instances in a browser with

no runtime overhead.

Rozzle aims to fulfill 3 major objectives concerning multiple execution of malicious

JavaScript:

• lower the overhead of detection-driven execution of multiple malware paths;

• improve the effectiveness of detectors;

• lower the CPU and memory overhead.

Rozzle is an enhancement or amplification technology, designed to improve the

efficacy of both static and runtime malware detection. Rozzle augments the semantics
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of a regular JS interpreter by introducing additional statements in the execution that

corresponds to symbolically executed paths. A later stage sees Rozzle concretizing

output statements for symbolic values according to a concretization policy. This allows

Rozzle to reflect multiple program outcomes in a single modified execution. Main

challenges of Rozzle concern the symbolic values, which are maintained on the heap:

looping on a symbolic value, DOM interaction, limiting the heap size, etc.

Rozzle has been successfully implemented in Chakra, the Internet Explorer 9 JavaScript

execution engine and exhibits detection performance far better than past static or dy-

namic detectors, since its multiple execution allows to eventually match the environ-

ment targeted by an attack.

11.3 Inferring Intentions to Detect Web Malware

In this dissertation, we take a radically different approach to the above-mentioned

related work. Consistent to the requirements enunciated in Section 4, we propose a

novel way to represent malicious intents concealed in Web malware. In particular, we

are interested in formalizing such intents rather than interpreting an observed behavior

through the scope of statistics or heuristics. As a matter of fact, most of the approaches

described above rely on execution traces that allow to capture some behavioral features

of the program. While execution-based approaches impose some delay to the analysis,

we are more concerned by the incomplete view it may give. By analogy, execution-based

analysis behaves like a blackbox, and behaviors observed at the output are functions

of the input. While this is totally acceptable in cases where we do not have access to

the code, we want to point out that, at this stage of analysis (after deobfuscation),

the source code of the malicious script is available. Inferring intention is therefore a

whitebox analysis on the script source code.

A second characteristic of intention is its abstract representation. Using program

comprehension methods introduced in Section 10, we attempt to associate program-

matic constructs, at the syntactic level, to human concepts, at the semantic level. The

representation we employ here is the widely used UML diagram specification. In partic-

ular, we leverage information produced during analysis to model objects and transitions

of the program. The resulting UML diagram is not standard and is actually a hybrid

of the sequence and the object diagram specifications.

Finally, our approach also abides by the concept of semantic unification that seeks

out to determine whether two terms share the same meaning [112]. Concretely, two

implementations of a same program are considered to bear the same intention and
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Figure 26. Sample program clustered following slicing.

should then be modeled with the same representation. Concept assignment actually

prones a fuzzy modeling where many programmatic concepts can be assigned to a same

human concept.

We detail our approach in the remainder of this section.

11.4 Program Slicing

mi oos accepts JavaScript code that has been previously deobfuscated by u adjet and

applies a static code analysis whose goal is to express the computational intents of the

JS program. This is done thanks to two combined approaches: program slicing and

object categorization (or concept assignment).

As stated in Section 2, dynamic approaches are usually applied to the analysis

of dynamic scripts. Contrary to these previous works, we propose a static approach

based on principles of whitebox reverse engineering. Since we have access to the source

code, there is no need for a traces analysis. Compilation techniques are seldom consid-
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ered since scripting languages are interpreted, though contrary to compiled programs,

scripts are readily readable. Based on these observations, we borrowed some ideas from

program analysis to design a straightforward program slicing algorithm based on data

flow analysis. This is unlike previous slicing proposals based on control-flow analysis

on Java programs[122].

The algorithm is detailed in Algorithm 3 and is a block-based forward flow tracing

technique. It parses the script from the entry point of a block to its exit point, state-

ment by statement. The notations used in Algorithm 3 are the ones used in [144]: V

designates the set of variables of a statement, DEFn the set of variable defined at a

statement, REFn the ones referred at this statement. The program is gradually de-

composed into several object-based slices as it is browsed: for each statement, if an

unknown object is found, that is, a variable is being defined, a new object cluster (a

slice) is created to store subsequently affected statements by the instance variable. If

instead, the variable is referred, there might be a cluster existing for this object, and

thus the statement is stored in this one. Obviously, several variables can be involved

in a single statement, and the statement is concurrently added to each variable’s clus-

ter. This would later denotes an interaction between these objects. At the end, most

of the instructions are present in as many slices as there are independent object in-

stances. These slices are sets of script statements that do not fully comply to Weiser’s

definition[144]. In particular, we do not consider control statements: both branches

are just seen as sequential statements instead of parallel ones. Thus this may lead to a

behavior different from the original program. Since, we are interested by the intention

of the program, regardless on the branch taken, we only group (cluster) instructions

related to a same object. Figure 26 gives an image of such clustering around 3 identified

objects in our sample program, which is a typical drive-by download attack.

Another step is to find interactions between the object clusters. These interactions

are actually flow transitions between objects and can be easily found by intersecting

slices of the respective objects. The intersection is the set of statements where the

dataflow of the program is passed from one object to another. The interaction is a

directed edge and direction is decided on the nature of the operation in the statement.

Deciding on the nature of a statement, and overall, of the object cluster is based on

semantically classifying the language’s core functions, objects, APIs and their methods.

In the end, we obtain an abstract view of the script that can be rendered as a UML

sequence diagram.

The model we obtain describes the interactions of the different objects constituting

the program. For abstract as it can be, it gives a pretty accurate view of the activities
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Algorithm 3 Forward minimal program slicing
slices = []

for n ∈ statements do

for v ∈ Vs do

if v ∈ DEFs then

s = slice.new(v)

s.add(n)

slices.add(s)

end if

if v ∈ REFs then

s = slices.getSlice(v)

s.add(n)

end if

end for

end for

for s ∈ slices do

v = slices.getIndex(s)

s.label = v.category

labels = []

for f ∈ FUNCs do

labels.add(s.label, f.category)

end for

if labels.length = 1 then

s.label = labels[0]

end if

end for

carried out by the program. As the readers might question, it is obvious that such model

does not directly indicate the malicious or benign nature of a script. Decision should

be made by an expert, through supervised learning as discussed in Section 11.6.1.

11.5 Object Categorization

This represents a critical step in our system since it has to do with knowledge. It is not

distinct from slicing since it actually characterizes the objects extracted during program

slicing. Indeed, at parsing time of each statement, it is possible to retrieve the category

of an object or function from a reference. Core and API functions would be looked up

in a reference, and information on the kind of function as well as its data flow direction

would be returned. From the example in Figure 26, the SaveToFile() function is

labeled as filesystem access function. If labels, retrieved from methods invoked by the

object (here, the slice criterion), are semantically different, then the label of the object

itself will be used. From the example in Figure 26, the type of asq is msxml2.XMLHTTP

and is labeled as an HTTP access object. The sequence diagram is then annotated
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Figure 27. A resulting sequence diagram.

with the category labels for each object, as shown in Figure 27. The ender object,

which is an object instantiator, is omitted as it is to be incorporated in each of the

other objects.

An advantage of categorizing objects and labeling them is to further group two

or several objects having the same role. This further reduces the size of the output

model and can circumvent issues arising from the creation of duplicated objects in the

program.

11.6 Discussion

This research experiences with some design choices that are seldom implemented. These

design choices can be reduced to two distinct aspects that are often debated: (1)

functional versus object-oriented; (2) dynamic versus static. This is not the purpose of

this project to fuel the debate and we would rather elaborate on the merits and demerits

of our own approach. Therefore, we chose to offer here, as a discussion, indicators of

the feasibility and performance of our approach.

11.6.1 Learning and Comparing Models

In order to provide decision support, it is necessary that the models be comparable. In

a further perspective of deciding on the nature, malicious or benign, of an unobfuscated
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script, we need to gather knowledge on malicious and benign models of scripts. These

two activities are indivisible and the solution rely on the ability to find a proper model

representation.

Learning can be done using supervised learning methods where a human expert will

classify learned models between malicious and benign. However, if an expert is needed,

it is also possible to build an ontology of malicious script activities. These activities

would then be illustrated by object-oriented models that will be used for comparison

purposes.

Comparison may not be costly as the abstraction of the object-oriented model may

reduce the number of entities to be compared. We expect that some flexibility should

be introduced when comparing the transitions between two or more objects. Some

Markov models can also be used to predict the transitions between objects and the

probability of co-occurrence of a type of objects with another type of objects, in both

benign and malicious scripts. One potential drawback of our method is the possibly

low number of entities, which might render the model undecidable. Additional features

might therefore be needed to motivate a decision.

In this project, we propose to adopt the UML sequence diagram as a way to nat-

urally express the output of our analysis. These sequence diagrams are however very

abstract to represent the slices, but are tractable for the representation of several object

entities within a large program. Moreover, once objects have been labeled, there is no

more need to know the contents of the slice. Attempts to classify and compare UML

diagrams has also been proposed. Notably, since UML class diagrams are often used to

represent design patterns, there have been attempts to formalize the expression of such

models[54] for the automatic generation of the specifications of solutions to popular de-

sign patterns. As a more related example to our project, Wendehals and Orso[146] have

proposed a method to recognize behavioral patterns using sequence diagrams for reverse

engineering purposes. They argued that extracting class diagrams was not sufficient to

fully comprehend a program being reversed, and that a more dynamic approach was

needed. Behavioral patterns are compared by transforming the sequence diagrams to

finite automata. Converting sequence diagrams to finite automata can be beneficial to

our approach. Additionally, many diagrams can be represented by a single automaton.

Finally, deciding on the malice of a script’s intentions necessitates to classify once

more models that are deemed malicious and the ones deemed benign by an expert.

Models being generic, we expect their number to be relatively small. Models that are

hard to decide may be decidable by complementing the decision process with some

heuristics. A study on the decidability of the concept of intention seems interesting
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and is left as future work.

11.6.2 Implementation and Performance

With an abstract model featuring a small number of entities, we expect the comparison

stage to be quick, provided that we dispose of sufficient knowledge. The major time

overhead is obviously incumbent to the processing of our algorithm. Unfortunately,

time performance drawn from Ruby script executions cannot indicate how mi oos may

perform. Since mi oos performs after parsing, it is possible to interpose it, that is, to

implement the algorithm at parsing time, which would save a non negligible amount of

time. Such implementation have produced interesting results in past proposals such as

Zozzle [36]. Therefore, we can expect some excellent performance here comparable to

Zozzle (around 500ms).

11.7 Summary

Contrary to most related research work, we advocate the analysis of web malware

through a static approach. More, we are applying in this research an alternative model

to represent the intentions of a program.

Past research work usually concentrate on building statistical or heuristic models

by learning features extracted from great amounts of data collected for extensive period

of times. At best, static features are used to complement dynamic features in drawing

a more accurate model. On the other hand, to complement detection of web malware,

latest proposals attempt to thwart state-of-the-art techniques employed by attackers,

such as cloaking. There is actually perspectives to develop novel solutions on the basis

of future advances in symbolic execution.

In this section, we have proposed a slicing algorithm that allows to statically de-

compose a program into minimal object-oriented slices. These slices do not satisfy

the definition of Weiser, but they form unitary pieces of code that instantiate a single

concept. The model obtained from such decomposition can be further simplified by

grouping similar concepts that may have been purposely split by the attacker. Each

concept or group of concepts can then be associated to a human concept based on the

objects or methods it comprises. Provided, the modeled program is unobfuscated, the

intents of a developer are clearly expressed as a sequence or combination of concepts.

Yet, it is difficult to decide whether the intents are malicious or not. By learning intents

that are malicious and those that are benign, it is possible to classify the intentional

model of a program from known ones. Additionally, this can be complemented by
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heuristic features of possible malicious or benign behaviour, as well as, the input from

alternative detectors such as signature-based (for any shellcodes) or reputation-based

(for any URLs) to increase accuracy.
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12. Conclusion

Experience is what you get when you

didn’t get what you wanted.

Randy Pausch

The Last Lecture

12.1 Discussion and Summary of Contributions

Intent or intention are abstract concepts that originate from agent theory and philos-

ophy. Though the two words denote a slight nuance, they both express that someone

has something in mind, a plan: a goal (intent) with a course of actions (intention).

Our definition conveniently blends the two definitions into one as a way to formalize

the intent(ions) a developer puts in a program she writes.

Such expression is not unusual in software engineering where the intents of the de-

veloper can be conveyed through the realization of specification documents or the rep-

resentation by models. In particular, we have discussed how the intents of a developer

can be represented by using UML diagrams to express some concepts understandable

by other developers or non-developers.

On the other hand, we have also discussed how an attacker can conceal malicious

intentions in her program by using obfuscation. We have seen that these intentions

are blurred syntactically or at a higher level, but that the semantics of the program

must remain. Precisely, we propose to formalize intentions to bridge the syntactic

and semantic representation of a program, and infer what is the program’s original

functionality.

In this dissertation, our domain of application is the security of the client-side in

web 2.0 transactions. In particular, we have made a large review of security issues of

the web browser and related technologies. We have argued that although JavaScript

constitutes an important technological cornerstone of modern web applications, espe-

cially on the client-side, it is also its main vulnerability. This duality actually affects

the design of usable solutions to counter web-based attacks as we have witnessed with

the “practical” impossibility of disabling JavaScript. And unless modern web appli-

cations shift to another technology to provide client-side processing to web browsers,

constraining or monitoring the execution of JavaScript programs will remain an issue

for web 2.0 applications and clients.

In fact, we have also ruled out the relevance of deploying security countermeasures
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on the server-side since it is not reliable. Indeed, such approach would also be constrain-

ing for the end-user since it would restrict her web experience to domains that subscribe

to a security policy. We therefore advocated that web security countermeasures should

be deployed preferably on the client-side to ensure a safe browsing experience. Inci-

dentally, in parallel to our efforts, we have witnessed a shift in academic research to

concentrate on the client-side, in these last 5 years. Still, the challenge of protecting the

end-user has remained a goal difficult to attain, given the scarce computing resources

in comparison to massive datacenters deployed in this era of cloud computing. As a

matter of fact, analyzing JavaScript in the browser is a computing-intensive task, given

that the browser should also provide HTTP/HTML processing.

That is why this dissertation also proposes to alleviate the browser from processing

overloads by delegating the analysis to an external dedicated proxy. This position is not

novel in terms of architecture but satisfies our requirements in terms of containment

and usability: delegating the process has the dual advantage of freeing resources for the

browser, preserving the quality of the user experience, and prevents any failure that

would endanger the user if the analysis was performed in the browser.

This thesis presents research, in the area of program analysis and comprehension,

that shows how intentions of a program can be formalized and used to express what

a program is doing. We particularly focus on decomposing a program into unitary

blocks that each express a particular functionality and how these blocks are combined

to carry out a specific intention. A main obstacle to the inference of such intentions

is their obfuscation using program transformations that target several layers of the

source code: namely, the layout, the data and the control-flow. Moreover, some of the

transformations are extremely resilient in that they are one-way, which means that the

original program may never be recovered. Based on past results documented in the

references attached to the present dissertation, we argue that while we may not recover

the original program, it is still possible to recover a semantically-equivalent program.

Such process, called deobfuscation, can be seen as dual: first, it is necessary to identify

what is obfuscated; second, obfuscated contents should be evaluated to simplify the

code.

To illustrate and validate these approaches, we investigated, in this thesis, three

problems corresponding to three functionalities provided by our proposed system:

• Section 7 presents an alternative approach to obfuscation detection in JS pro-

grams that contrasts with current string-based and statistical approaches. As

stated above, this is the first part of the dual deobfuscation process. The aim is
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to precisely detect parts of the JavaScript program that are obfuscated in order

to extract these for further processing. Based on the observation that obfuscation

generates polymorphic code, we conclude that a more abstract measure of obfus-

cation was needed. In particular, we were inspired to use abstract syntax trees

(ASTs) since we noticed that two programs obfuscated with the same obfuscation

tool has similar, or even identical, abstract syntax structure.

Related work, in the field of web malware analysis, have stressed the prevalence

of encoding/packing schemes in currently used obfuscation techniques. Encoding

schemes display a two-part pattern with a decoding routine and an obfuscated

string on which the decoding routine is applied to unpack the original script.

Given its prevalence, we have been concentrating on detecting such patterns using

abstract syntax trees. In particular, to fulfill the extraction goal of our approach,

we needed to precisely detect the subtree in the AST that is characteristic of the

obfuscation pattern.

By incorporating knowledge from a newly founded discipline named arbology,

whose subject is the design of algorithms able to efficiently process tree structures,

we implemented a pushdown automaton able to exactly match subtrees we have

previously learned. The downside of this approach is its lack of flexibility leading

to the classification of nearly-similar subtrees as negatives. We speculate that by

extending the approach to accept induced subtrees expressing invariants between

subtree variants, instead of bottom-up subtrees, we would be able to reduce the

rate of false negatives;

• Section 9 presents a novel approach to JavaScript deobfuscation that does not

rely on hooking the dynamic generation of additional code. Contrary to past

proposals in web malware detection, we do not consider that obfuscated will

seamlessly deobfuscate every time. Cloaking techniques witnessed in recent attack

cases have been able to evade execution-based deobfuscation. There are several

reasons that make dynamic detectors to fail on cloaked scripts, and in particular

the side-effects of execution: values generated during execution may be captured

by a specific predicate in the code that will either halt deobfuscation or trigger

the generation of a benign code, eventually preventing detection.

Additionally, static examination does not suffice to decide on the malice of an ob-

fuscated script. This motivated us to find ways to cancel the obfuscation and allow

our system to decide on the original source code, as most related approaches do.
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In particular, related work operate by emulating the browsing environment and

integrating modified versions of JavaScript engines. Since we do not assume the

security of JavaScript, we proposed the radical approach to emulate JavaScript,

or at least the subset of JavaScript used in obfuscation techniques. We further

restrict our preliminary work to the emulation of encoding schemes.

With no prior work on execution-less JavaScript deobfuscation on which we could

relate, we attempted to formalize the emulation of a decoding routine on the ob-

fuscated string, as the rewriting of this obfuscated string through the decoding

routine. This is akin to equational reasoning where a term can be reduced using

equations belonging to an equational system. We were subsequently suggested to

use the Maude language to axiomatize the process of unpacking of a JavaScript

obfuscated string. In this special case of obfuscation, we are quite confident that

the decoding routine will terminate yielding the original script that was obfus-

cated. We speculate on the extension of such reasoning on other obfuscation

techniques we have reviewed in related work. In particular, Maude provides an-

other class of modules, system modules, that embeds rewriting logic that provides

the possibility to design arbitrary rules for rewriting;

• Section 11 presents an alternative approach to JavaScript categorization that at-

tempts to associate programmatic concepts to more higher-level concepts, with

the ultimate goal to distinguish benign intentions and malicious intentions. Web

malware classification traditionally classifies execution traces using statistical,

and more recently hierarchical features. Therefore variants that share the same

intention but implemented differently may end classified in distinct classes. Addi-

tionally, a new variant (that displays a new implementation) of a known intention

may evade detection.

Using concept assignment, we propose that programs, implemented using differ-

ent functions but holding the same intention, be represented with a unique model.

This model is a labeled diagram built on the decomposition of the program into

unitary objects that express a distinct functionality. We have designed a forward

decomposition minimal and lightweight slicing algorithm to that end. A knowl-

edge base that categorize objects and functions of a language into conceptual

categories should allow for the labeling of the sliced objects. The final result is

a hybrid object-sequence diagram that can than therefore be shared with human

and machine agents. Moreover, we discuss the possible comparison and matching

of models using a finite automaton as suggested in related work. We speculate

155



that this concept of intention can be extended to other languages, at least in the

domain of client-side web security, but further to higher-order systems.

12.2 Avenues for Future Work

A number of refinements and extensions of the applications of the work presented in

this dissertation are conceivable, as we already suggested in the corresponding sections.

The method to detect subtrees characteristic of obfuscation patterns may be refined

by replacing the model of representation, the prefixed bottom-up subtree, by an induced

subtree. However, arbology is based on properties of the prefix notation of bottom-

up subtrees and therefore the application of a pushdown automaton to the model of

induced subtrees may not produce the expected results. Therefore, further investigation

is necessary to settle on this application. In the case, good properties of the prefix

notation would not hold for the induced subtree, more investigation would be needed

to come up with an alternative model of computation.

On a related note, we were also unable to come up with a feature selection to

automatically learn subtrees that were recurring in a set of ASTs, provided the subtrees

are hierarchical patterns of obfuscation. This last supposition is also debatable, and

further extends the investigation to a method able to detect obfuscated strings and

its related decoding routine. Capitalizing on related work in obfuscation detection, we

would be able to detect obfuscated strings, but the extraction of this string and its

related decoding routine would require tokenizing the script and analyzing each token

individually (rejecting possible small ones). Once found, program slicing can be applied

with the obfuscated string identifier as criterion, in order to detect all related statements

in the script. This may or may not have the additional advantage of removing irrelevant

code, depending on the nesting of the obfuscated string within the decoding routine.

The deobfuscation method we proposed only targets encoding schemes, which is

the most prevalent obfuscating transformation in JavaScript. Other obfuscating trans-

formations are not actually handled by our deobfuscator. However, the equational

reasoning approach is promising, provided we can efficiently express obfuscated scripts

as sets of equations. Moreover, in order to ensure good properties of confluence and

termination, and therefore yield a canonical form, we may design specific rewrite rules

using system modules that will ensure the above-mentioned properties. It is still early

to tell whether this approach will be successful, but early results we obtained on a

special case calls for generalization.

It is also interesting to see how we can make use of a rewriting system like Maude
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to handle parallel instances of a same decoding routine, in particular to the rewriting

of different versions of an obfuscated string. Doing so would benefit the evasion of

cloaking techniques by parallelizing the computation of concurrent instances of a same

obfuscated program, as it was already proposed using symbolic execution. In fact,

Maude is used as an interpreter here and we can therefore attempt to apply compila-

tion/optimization approaches. More precisely, a JavaScript compiler based on Maude

can be envisioned as an insightful proof-of-concept.

Developing deobfuscation methods may also help to understand obfuscation of script

contents. Our approach can be generalized to the survey of JavaScript obfuscation

and the monitoring of trends, in order to forecast future obfuscation patterns. Of

course, it will allow to have a view of currently-deployed obfuscation patterns: which

obfuscation patterns are mostly found in malicious scripts, what is the probability of co-

occurrence of one technique with another, an estimation of the number of obfuscation

tools actually used, etc. Another interesting insight, and also a good discussion point,

is the possibility to observe the gradual shift of obfuscation techniques used by malware

to obfuscation techniques mostly used by benign JS programs, or even unobfuscated JS

program patterns. It was actually speculated by Rajab et al. [117] that attackers will

be confronted with a dilemma in trading off heavy obfuscation with detection evasion.

Such estimations obviously require either of two things: large and up-to-date datasets,

or a crawler able to evade cloaking techniques.

We speculate on the possibility to generalize the inference of intents for higher-order

systems. Doing so will alleviate the need for mutual policy agreement, and will enhance

model checking. Analysis of a system based on its intentions would generate a model

of the actual functionalities embedded in the system, which can allow one to decide on

the malice of such model. A first hint to such generalization is the trivial extension

of intention models to other object-oriented programming languages. Indeed, program

developed in these languages can be potentially decomposed using program slicing.

A relevant debatable point is the decidability of intention, whether some intention is

malicious or not. We have shown that intentions can be deduced but that they may not

indicate actual malice. However, we can complement the analysis with other features

such as URLs being used, the amont of memory being allocated, etc.

There is actually a particular issue with the proposed system: the heterogeneity of

models used to represent the program along the different computational steps. Unifying

the representation can be done along the refinement of the concept of intention, or as a

gradual transformation of the intention model of an obfuscated program to the one of

an unobfuscated program, and then, to the one of the higher-level concepts exhibited
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by the unobfuscated program.

On a more general level, we may discuss the future of Web malware. There are

actually tangible signs that JavaScript will still be prevalent in the years to come. On

one hand, JavaScript has been the de-facto standard of client-side computation for

some years, due not only to the presence of a builtin engine within common popular

browsers, but also to due to the continuous development from vendors. As a mat-

ter of fact, JavaScript has gotten faster over the years, with now optimized versions

of compilers that produce JavaScript bytecode. Such compilers may also suffer from

vulnerabilities. A testament to the growing popularity of JavaScript is the existence

of numerous instances of programming languages that use JavaScript as an intermedi-

ate language, such as Objective-J for Objective-C, Quby for Ruby, or Parenscript for

Common Lisp. On the other hand, JavaScript is also plebiscited by the new HTML

specification, HTML 5. Recent applications making use of heavy JavaScript program-

ming merge new HTML 5 capabilities such as Canvas in order to produce sophisticated

graphics or stunningly beautiful in-browser games, without relying on Flash or any

other plugin. Obviously, future research will also need to concentrate on the network

and cross-domain communication capabilities offered by HTML 5 and the ability of

JavaScript to manipulate these to fulfill malicious intentions. An alternative scripting

language being intensively developed by Google is the Dart language [59]. However,

for compatibility purposes, Dart is provided with a compiler that compiles Dart to

JavaScript.

A long-term prediction of future web technologies is difficult but efforts to advance

a Web 3.0 (advocated by Tim Berners-Lee himself) as the Semantic Web has long

been fueled by many contributions under the Semantic Web initiative [147]. It extends

the network of hyperlinked human-readable web pages by inserting machine-readable

metadata about pages and how they relate to each other. We can speculate that such

metadata can be useful to the inference of intentions, by making the association of pro-

gramming constructs with human concepts easier to achieve. It extends the network of

hyperlinked human-readable web pages by inserting machine-readable metadata about

pages and how they relate to each other. We can speculate that such metadata can

be useful to the inference of intentions, by making the association of programming

constructs with human concepts easier to achieve. Additionally, the Semantic Web ini-

tiative also concentrates on the development of ontologies. Given the fact that known

Web malware vulnerabilities are referenced in vulnerabilities databases, we may be

able to generate intention models from the descriptions of common exploits. Inten-

tions being expressed as UML diagrams, which are universally used, it is also easy to
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share. Moreover, human concepts are expressed as labels that can be translatd in many

languages.

Finally, we have purposedly excluded the user from any decision-making in our ap-

proach. We are aware of the actual lack of web security education nowadays, which is

particularly demonstrated in recent social network attacks. In fact, the user is often

considered a vulnerability in many risk management approaches. Therefore, it is neces-

sary to raise awareness among web users. Intention modeling that makes use of human

concepts may be used to communicate on the malice of scripting contents present in

web pages.
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