
NAIST-IS-DD661014

Doctoral Dissertation

Statistical and Graph-based Approaches
to Small Sample and High Dimensional Data

Ikumi Suzuki

March 16, 2012

Department of Information Science
Graduate School of Information Science
Nara Institute of Science and Technology



A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Ikumi Suzuki

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Kazushi Ikeda (Co-supervisor)
Professor Masashi Shimbo (Co-supervisor)



Statistical and Graph-based Approaches
to Small Sample and High Dimensional Data∗

Ikumi Suzuki

Abstract

In recent years, machine learning has become a popular tool for analyzing various
types of data. The goal of machine learning is to construct a model from existing data
to make predictions for new data. To build (or select) accurate predictive models, two
aspects of data must be verified: (1) Is the amount of training data large enough to
predict unseen test data? (2) When the data is represented by a vector, is the number
of dimensions small enough not to be affected by so-called “curse of dimensionality”?
If any of these is violated, learning a predictive model becomes much harder, but these
are not necessarily satisfied in real situations. This thesis deals with how to alleviate
the problems incurred in such situations. For issue (1), we address the task of selecting
a predictive model using a small number of training samples. In particular, we focus
on developing a cancer diagnosis system that requires an accurate prediction from
gene expression profiling (microarray) data. We propose a “min-max” model selection
method based on the bootstrap resampling to obtain a reliable classifier. We show that
our method is less susceptible to variation in the assessment of the occurrence data,
indicating the effectiveness of risk-averse as a model selection criterion. For issue (2),
we focus on a problem related to the high dimensionality of the data called hubness
phenomenon, which was discovered only recently. We show the family of kernels
based on the graph Laplacian is less prone to make hubs when used as a similarity
measure. We found that these kernels indeed reduce hubness phenomemon in some
cases, and in these cases they work well in ranking and classification tasks. This result
suggests that the amount of hubs, which can be readily computed in an unsupervised
fashion, can be a yardstick of whether Laplacian-based kernels work effectively for a
given data.

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD661014, March 16, 2012.
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少数サンプルと高次元データへの
確率とグラフに基づくアプローチ∗

鈴木　郁美

内容梗概

近年，機械学習は，さまざまな種類のデータの解析に使われている．機械学習
の目的は，新しいデータに対する予測を行うために，既存データを用いてモデル
を構築することである．精度の高いモデルを構築（あるいは選択）するためには，
訓練データを以下の二つの観点から調べ，対策を立てる必要がある．(1)訓練デー
タは，どんなテストデータの予測にも十分対応できるだけの数が集められている
か？(2)訓練データがベクトル値で表現されている場合，その次元数は「次元の呪
い」の影響を受ける程に大きくないか？(1)に関して本研究で取り上げる問題は，
訓練サンプル数の小さい場合の予測モデルの選択である．実際例として，正確な
予測が求められる，遺伝子発現プロファイル（マイクロアレイデータ）による癌
の診断に注目した．癌など病気の診断に用いる遺伝子発現量プロファイルは，得
られるサンプル数が限られるために，実用化には判別器の信頼性が問題になる．
交差検定によって複数の判別器の性能を評価し,その評価が最大となる判別器を
選ぶことが行われてきた. 本研究では,テスト性能の分散を考慮することで,悪い
判別器が得られるリスクを回避してモデル選択を行うmin-max法を提案する．提
案手法がデータ出現の偏りに起因した性能評価のばらつきに影響を受けにくく,
リスク回避型のモデル選択基準として有効であることを示す. (2)に関して，デー
タの高次元性に関わる問題を扱う．最近，新しい「次元の呪い」として，「ハブ
の出現」が報告された．本研究では，通勤時間カーネルを始めとするラプラシア
ンベースのカーネルを類似度がハブを抑制できる可能性がある性質を持つことを
示す．実験から，ラプラシアンカーネルは常にではないがハブを抑えることがわ
かった. ハブが減少したデータセットでは，分類精度も向上した．このことから，
教師なしで測れるハブの出現度合いを調べることにより，与えられたデータセッ
トに対するラプラシアンカーネルの有効性を予め評価できると考えられる.

∗奈良先端科学技術大学院大学情報科学研究科情報科学専攻博士論文, NAIST-IS-DD661014,
2012年 3月 16日.
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Chapter 1

Introduction

1.1 Background
In recent years, machine learning techniques have been applied to various data anal-

ysis, such as building a prediction model or data mining. For example, in the field of
natural language processing, document classification (or document categorization) is
the task of assigning a document to one or more classes or categories, and machine
learning is used to automate classification. In image processing, there is a large vol-
ume of research in identifying a person from his/her fingerprints/veins/iris, diagnosing
diseases from x-ray images, and recognizing handwritten characters. For time-series
data, such as variation of blood pressure, monthly river flow and daily share price of
stocks, constructing statistical models is important to predict future values. To this end,
machine learning techniques have been applied, not only in the field of engineering but
also in medicine, biological science, and economics.

The purpose of (supervised) learning is to construct a model to predict test sam-
ples from training samples. To build high-performance models in practical settings,
however, we recognize two issues.

(1) Are there enough training samples to predict test samples?

(2) When a sample is represented in a form of a feature vector, is the vector dimen-
sion not too high to be affected by curse of dimensionality?



1.2 Contribution
This thesis addresses the issue (1) by selecting a predictive model for small number

of training samples. As a practical example, we focus on developing a cancer diagnosis
system that requires an accurate prediction from gene expression profiling (microarray)
data. Recently, microarray-based cancer diagnosis systems have been increasingly de-
veloped. However, cost reduction and reliability assurance of such diagnosis systems
are still remaing problems in real clinical scenes. To reduce the cost, we need a su-
pervised classifier involving the smallest number of genes, as long as the classifier is
sufficiently reliable. To achieve a reliable classifier, we should assess candidate classi-
fiers and select the best one. In the selection process of the best classifier, however, the
assessment criterion must involve a large variance because of limited number of sam-
ples and non-negligible observation noise. Therefore, even if a classifier with a very
small number of genes exhibited the smallest leave-one-out cross-validation (LOO) er-
ror rate, it would not necessarily be reliable because classifiers based on a small number
of genes tend to show a large variance. We propose a robust model selection criterion,
the min-max criterion, based on a resampling bootstrap simulation to assess the vari-
ance of estimation of classification error rates. We applied our assessment framework
to four published real gene expression datasets and one synthetic dataset. We found
that a state of-the-art procedure, weighted voting classifiers with LOO criterion, had a
non-negligible risk of selecting extremely poor classifiers and, on the other hand, that
the new min-max criterion could eliminate that risk. These finding suggests that our
criterion presents a safer procedure to design a practical cancer diagnosis system.

To address the issue (2), we focus on the hubness phenomenon, which is a prob-
lem related to the high dimensionality of the data, and is only recently discovered by
Radovanović et al. A “hub” is an object closely surrounded by, or very similar to, many
other objects in the dataset. Recent studies by Radovanović et al. have indicated that
in high dimensional spaces, objects close to the data centroid tend to become hubs. We
show that the family of kernels based on the graph Laplacian makes all objects in the
dataset equally similar to the centroid, and thus they are expected to make less hubs
when used as a similarity measure. We investigate this hypothesis using both synthetic
and real-world data. It turns out that these kernels suppress hubs in some cases but
not always, and the results seem to be affected by the size of the data—a factor not
discussed previously. However, for the datasets in which hubs are indeed reduced by
the Laplacian-based kernels, these kernels work well in classification and information
retrieval tasks. This result suggests that the amount of hubs, which can be readily

2



computed in an unsupervised fashion, can be a yardstick of whether Laplacian-based
kernels work effectively for a given data.

1.3 Structure of the Thesis
To deal with the problem of high-dimensional data, Laplacian-based kernels are

studied. As preliminary work, in Chapter 2, we experimentally show that a Laplacian-
based kernel, specifically, the Laplacian diffusion kernel depreciates pivotal vertices
having many links to surrounding vertices. In Chapter 3, we investigate the effect of
Laplacian-based kernels on the recently-reported hubness phenomenon, which is a new
type of curse of dimensionality that affects high-dimensional dataset.

To overcome the problem of small sample-size data, in Chapter 4, a robust model
selection method is proposed for cancer diagnosis.

In Chapter 5, we conclude this thesis.
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Chapter 2

A Graph-based Approach for
Biomedical Thesaurus Expansion

2.1 Introduction
Biomedical thesauri using controlled vocabularies are a fundamental resource for

information retrieval from biomedical literature. One successful example is the MeSH
thesaurus1 administrated by the National Library of Medicine (NLM). This thesaurus
absorbs into its hierarchical structure the synonymous variations of PubMed2 search
queries, so that MeSH terms appearing in a query are augmented to include all the
descendants of original query terms, making search results more comprehensive.

In parallel with the progress of biomedical research and development, new biomed-
ical terms are constantly appearing. Hence the addition of new terms to current the-
sauri is an important task and indeed human specialists update the MeSH thesaurus
annually by hand. In this chapter, we aim to build a system that supports human judg-
ment regarding where to add a new term in a thesaurus. Using a large scale corpus
of biomedical articles, we construct a graph whose vertices correspond to biomedical
terms occurring in the corpus. We then compute the similarity scores between existing
thesaurus terms and new terms by employing the Laplacian diffusion kernel matrix
calculation. Finally, existing terms are ranked according to their similarity scores with
a new term. We consider that such systems help editors map new terms to a thesaurus
(e.g., editors can attach or insert a new term near the top ranked terms in the thesaurus
tree structure).

1http://www.nlm.nih.gov/mesh/
2http://www.ncbi.nlm.nih.gov/pubmed/



Previous work [24] shows that cosine similarity works well for synonym acquisi-
tion, a task related to thesaurus expansion. This technique represents a term as a fea-
ture vector whose elements are values of feature functions determined using contexts
surrounding the term in the corpus. The cosine similarity is the cosine of the angle
between two vectors.

Our research is motivated by a concern regarding the application of cosine similar-
ity to thesaurus expansion. New terms (i.e., targets to add to the thesaurus) can be
considered to occur in narrower contexts in a corpus because they are newcomers in
biomedical text. In the annual MeSH update for the 2009 version3, more than 70% of
newly added terms were attached as leaf nodes in the thesaurus tree structure, indicat-
ing that the majority of new terms had more specific senses.

On the other hand, general terms express broader concepts that reside near the top
level of the thesaurus hierarchy, and thus occur in a variety of contexts in the corpus.
As a result, general terms are likely to share contextual information with new terms,
resulting in higher cosine similarity values by chance. When attempting to add highly
specific terms to a thesaurus, a system that inherently returns general terms with high
ranks is not beneficial, but this situation appears to be common in practice.

In order to adapt to this situation, we explore an approach using the Laplacian of a
graph to represent a biomedical thesaurus structure. In our graph, general terms are
equal to pivotal vertices that have many links to surrounding vertices. The problematic
phenomena of topic drift [4] caused by pivotal vertices are well known in link analysis.
Fortunately, it is reported that the approach based on graph Laplacian successfully
solves the problem in tasks such as co-citation analysis, collaborative recommendation,
and word sense disambiguation [12, 16, 32]. We therefore expect the approach to be
advantageous also for thesaurus expansion, and attempt to confirm this supposition in
this chapter.

2.2 Related work
There have been several studies for synonym acquisition, which is a task related

to thesaurus expansion. Hagiwara et al. [24] attempt to use cosine similarity to find
effective acquisition features by investigating what contextual information (e.g., word
proximity or dependency between words) is useful in experimentation. They also ap-
ply Probabilistic Latent Semantic Indexing (PLSI) techniques to cope with data sparse-

3http://www.nlm.nih.gov/mesh/newd.html
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ness problems caused by using word surface information as features [23]. Apart from
feature selection and smoothing, Hagiwara [22] focuses on discriminating between
similar and dissimilar word pairs by employing Support Vector Machines (SVMs),
and Shimizu et al. [41] apply a method to tune feature weights as parameters of the
Mahalanobis distance.

The above researchers focus solely on the distributional hypothesis [26], which
states that similar terms occur in similar contexts. In contrast, the work of Blondel
et al. [6] is similar to our own in that it takes into account graph structure. Vertices
corresponding to terms are connected with directed links when they have a particular
relation, for example in a dictionary when one appears in the definition of another.
Using graph structure, Blondel et al. propose an algorithm that can be regarded as a
generalization of Kleinberg’s HITS for synonym acquisition.

Both synonym acquisition and thesaurus expansion aim to rank terms according
to their associated similarity scores calculated for a query term, but the tasks differ
importantly in evaluation. No canonical criteria are available with respect to what
extent two terms can be presupposed to be synonymous in a synonym acquisition task.
In contrast, in a thesaurus expansion task, the thesaurus being expanded inherently
gives canonical relationships or distances between terms. For this reason, we evaluate
performance of tested methods by examining whether a set of ranked terms obtained
from each method successfully includes terms that actually reside in the neighborhood
of a query term in the thesaurus.

2.3 Laplacian-based Kernels for Graph Vertices
We present a brief review of Laplacian-based kernels.
Let G be an undirected graph with n vertices, and let A be its adjacency matrix.

The edges of G may have positive weights representing the degree of similarity be-
tween vertices. In this case, A is an affinity matrix holding the edge weights as its
components. The (combinatorial) Laplacian L of G is an n×n matrix defined as

L = D−A, (2.1)

where D is a diagonal matrix with diagonals [D]ii = ∑ j[A]i j. L is positive semidefinite
and has n orthogonal eigenvectors ui and n corresponding eigenvalues λi. We assume
that the indices for eigenvalues/eigenvectors are arranged in ascending order of eigen-

7



values, λ1 ≤ λ2 ≤ ·· · ≤ λn. A well-known property of L is that λ1 = 0 and u1 = 1 (a
vector of all 1’s).

2.3.1 Laplacian-based Kernels

In machine learning community, graph Laplacian has been used as the building block
of various kernels defining inner products between vertices. Below are the most popu-
lar of such Laplacian-based kernels.

The commute-time kernels [40]

LCT = L+ (pseudo-inverse of L), (2.2)

Regularized Laplacian [10, 42]

LRL = (I+βL)−1 (2.3)

=
∞

∑
k=0

β k(−L)k

= I +β (−L)+β 2(−L)2 +β 3(−L)3 + · · · ,

(Laplacian) diffusion kernels [33]

LDF = exp(−βL) (2.4)

=
∞

∑
k=0

(
β
k!

)k(−L)k

= I +β (−L)+
β 2

2!
(−L)2 +

β 3

3!
(−L)3 + · · · ,

where β (≥ 0) is a parameter of the regularized Laplacian and the (Laplacian) diffusion
kernels. Note that while we do not discuss them in this thesis, variations of these
kernels exist which use the normalized Laplacian L = D−1/2LD−1/2 [11] in place of
L in their definition.

2.3.2 Transformation of Laplacian-based Kernels

The Laplacian-based kernels introduced in section 2.3.1 can be interpreted as trans-
formations of Laplacian L through eigenvalue regularlization [42]. To be precise, all

8



the Laplacian-based kernels above (henceforth denoted by K) can be decomposed as
follows, using n pairs of eigenvalues and eigenvectors {(λi,ui)} (i = 1, . . . ,n) of L.

K =
n

∑
i=1

r(λi)uiuT
i , (2.5)

where r : [0,∞)→ [0,∞) is a regularization operator, which characterizes each Laplacian-
based kernel. For the three kernels above,
The commute-time kernels

r(λ ) =

{
0, λ = 0;
1/λ λ 6= 0,

(2.6)

Regularized Laplacian
r(λ ) = 1/(1+βλ ), (2.7)

(Laplacian) diffusion kernels

r(λ ) = exp(−βλ ). (2.8)

As Eq. (2.5) shows, Laplacian-based kernels have the same eigenvectors as Lapla-
cian L. Their eigenvalues, on the other hand, are transformed by function r( ·). To
suppress the contribution of large λ ’s, r( ·) is in general a non-increasing function.

In the rest of the thesis, we focus on the commute-time kernels LCT and the reg-
ularized Laplacian LRL. Laplacian diffusion kernels LDF show properties similar to
LRL.

2.3.3 Regularized Laplacian and parameter β

In this chapter, the Laplacian kernels are employed as similarity measures, so that
the off-diagonal elements of the regularized Laplacian matrix LRL and the commute-
time kernel matrix LCT are used. The diagonal elements are not used since it is self
similarity.

Notice that as parameter β of the regularized Laplacian approaches to zero, the off-
diagonal elements of the regularized Laplacian become proportional to those of the
original adjacency matrix, and as parameter β of the regularized Laplacian tends to
infinity, the off-diagonal elements of the regularized Laplacian become proportional to
those of the commute-time kernels matrix LCT
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The case of large β

According to the form of Eq. 2.5, the regularized Laplacian matrix LRL is written as

LRL =
N

∑
i=1

1
1+βλi

uiuT
i . (2.9)

When parameter β takes large enough value, this Eq. 2.9 is then written as,

LRL = u1uT
1 +

N

∑
i=2

1
1+βλi

uiuT
i

≈ u1uT
1 +

1
β

N

∑
i=2

1
λi

uiuT
i (βλ2 � 1), (2.10)

note that λ1 = 0.
Also the commute-time kernel matrix LCT is written in the form of Eq. 2.5,

LCT =
N

∑
i=2

1
λi

uiuT
i .

Substituting this into Eq. 2.10, we obtain

LRL ≈ u1uT
1 +

1
β

LCT (βλ2 � 1). (2.11)

Note that u1 = [1, . . . ,1]T , therefore all components of u1uT
1 are 1. Therefore, as value

of β increases, the regularized Laplacian matrix LRL becomes a matrix such that a con-
stant value is added to the commute-time kernel matrix LCT multiplied by a constant.

The case of small β

The regularized Laplacian matrix LRL is expressed as a power series shown in
Eq. (2.3) when βλN < 1. When β is close to 0, latter part than square terms can
be ignored, so that the regularized Laplacian matrix LRL can be approximated as

LRL ≈ I+β (−L) = I−βD+βA (β � 1). (2.12)

The diagonal matrices I and D do not affect the off-diagonal elements of the simi-
larity matrix and hence do not affect k-nearest neighbor lists either. Therefore, when
parameter β is close enough to 0, k-nearest neighbor list based on the regularized
Laplacian matrix LRL becomes that of an original adjacency matrix A.
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(d) Similarity measure with COS and 2-step Laplacian ( (- L)  ) for query  with vertices  and  
2

( , )

( , )

COS

→  = 0.1

→  = 0.2

2-step Laplacian ( (- L)   ) 

( → → ) + ( → → ) = (-0.03) + (-0.01) = -0.04

( → → ) + ( → → ) = (-0.06) + (-0.08) = -0.14

2

( , ) denotes a pair of vartices to be concerned. →  indicates an arc between two vertices

K

Figure 2.1: A small example of COS and LDK calculation. Given a graph with an
adjacency matrix A in panel (a), −L and LDK are calculated as shown in panel (b) and
(c), respectively. Panel (d) shows self-loop effects on traversing the graph Laplacian
with 2 steps.

2.4 Method
In this section, we describe two ways to measure similarity between biomedical

terms, namely (1) cosine similarity (COS) and (2) the Laplacian diffusion kernel based
similarity (LDK). We exemplify the difference using a small example.

Suppose that there are N types of biomedical terms occurring in a given corpus. For
each termn (n = 1, . . . ,N), we develop a feature vector vn whose elements are values
of feature functions determined upon contexts surrounding the term in the corpus. We
then compute the normalized feature vector zn by vn/‖vn‖. The cosine similarity be-
tween termi and term j is equal to the inner product of the normalized feature vectors
zi and z j, that is, zi · z j.

We then construct a graph, each of whose vertices corresponds to a biomedical term,
and the weight on a link connecting vertices i and j is equal to zi · z j. The matrix A
whose (i, j)-element takes the value of COS for termi and term j, zi · z j, is called the
adjacency matrix of the graph. We illustrate an example of a graph and its adjacency
matrix in Figure 2.1(a).

We then compare the two similarity measures, COS and LDK, respectively given
by the elements of matrices A and LDF, by examining a small example displayed in
Figure 2.1. In Figure 2.1(a), we observe that the COS score for a pair of vertices (a, c)
is larger than that for vertices (a, b). On the other hand, Figure 2.1(c) shows that the

11



LDK score for (a, c) becomes smaller than the score for (a, b). Likewise, while the
COS score for (c, a) is larger than that for (c, d), the LDK score for (c, a) turns out to
be smaller than that for (c, d).

In order to examine what causes the difference between COS and LDK, notice that
LDF consists of (−L)k whose (i, j)-element can be considered as a path score travers-
ing from the i to the j vertex with k-steps. Accordingly, LDK especially discounts the
path scores via pivotal vertices. As an example in Figure 2.1(d), we focus on “2-step
Laplacian” (−L)2 that is one of the components of LDF. There, we notice that the
(−L)2 scores for (a, b) and (a, c) are all negative. Also the absolute value of the score
for (a, c) is larger than that for (a, b). This is because the weight on the self-loop of
vertex c has a larger negative weight than that on vertex b.

Recall that L is defined as D−A. The weight of the self-loop in L is calculated as the
sum of the weights on all links except the self-loop in A. As a result, a pivotal vertex
that shares many links with other vertices, such as the vertex c in Figure 2.1(b), tends
to have a larger negative weight on the self-loop in −L. This implies that LDK tends
to depreciate pivotal vertices. In the following sections, we examine the implications
of this tendency using real biomedical data.

2.5 Experiment
The experiment presented in this section has two objectives. First, to confirm whether

the Laplacian diffusion kernel depreciates pivotal vertices on a graph constructed from
a biomedical corpus, and second, to simulate the performance of the Laplacian diffu-
sion kernel and cosine similarity in thesaurus expansion.

2.5.1 Setup

We used the GENIA biomedical corpus4 consisting of 1,999 MEDLINE abstracts,
along with the MeSH thesaurus. The thesaurus comprised 62,932 tokens and 2,701
types of MeSH terms we identified in GENIA. Of the 2,701 term types, 500 were
selected as query terms (i.e., pseudo target terms to add to MeSH) upon the conditions
that: (1) a query term resided as a unique node in the MeSH thesaurus tree structure
(i.e., did not have multiple meanings); and (2) the unique node was a leaf node. We set

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi
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Figure 2.2: Comparison between COS and LDK; the number of links attached to the
top ranked vertices.

uniqueness as a condition because word sense disambiguation is not a task dealt with
in this work, and we limited to leaf nodes because most of the newly added terms for
the 2009 version of MeSH were attached as leaf nodes in the thesaurus tree structure.

For each of 62,932 tokens, we extracted content words appearing in a sentence
around the token. Content words were defined as all non function words (i.e. nouns,
verbs, adjectives and adverbs). The content words for all tokens of a single type were
collapsed into a single pool and considered as term features. After applying tf-idf
weighting, we obtained a feature vector for each of the 2,701 MeSH terms appearing
in GENIA.

We then constructed a graph with 2,701 vertices, and calculated both cosine sim-
ilarity (COS) and the Laplacian diffusion kernel matrix based similarity (LDK)5 as
described in the previous section. Finally, for each of the 500 query terms, 2,700 terms
(excluding the query term itself) were ranked according to their similarity scores with
the original term.

5We set β = 0.01.
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Figure 2.3: Comparison between COS and LDK; Precision and recall curves in simu-
lating thesaurus expansion.

2.5.2 Results

In order to confirm that LDK does not prefer pivotal vertices in comparison with
COS, we compare the number of links to their top-ranked vertices, as shown in Figure
2.2. A point in the figure corresponds to a query term, and the vertical and horizontal
axes denote the number of links attached to vertices selected by COS and LDK re-
spectively. If a point lies above the diagonal (dotted line), it means that LDK selects a
vertex having fewer links compared to COS. We omit points lying on the diagonal for
brevity and highlight the fact that very few points in the figure lie below the diagonal.
It follows that LDK has a tendency to depreciate pivotal vertices, which is consistent
with our finding in the previous section.

Next we evaluate the performance of COS and LDK in simulating thesaurus expan-
sion. Recall that the pseudo query terms we are adding to MeSH are already MeSH
terms with known sets of neighboring terms. We therefore are interested in how many
of those neighboring terms are successfully included in the set of top r ranked terms:
the more, the better. Neighbor terms include the parent and siblings of a query term in
the thesaurus tree structure. We use averaged precision, recall and F1-score over query
terms as evaluation measures. For each query we calculate precision as the fraction
of top r ranked terms that are neighbors, and recall as the fraction of neighbor terms
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Table 2.1: Comparison between COS and LDK; Precision (P), recall (R), and F1-score
(F). Numerals in brackets denote top r ranked terms concerned.

(r) P R F
COS (1) 0.069 0.033 0.041
LDK (1) 0.061 0.023 0.033
COS (10) 0.025 0.098 0.036
LDK (10) 0.025 0.106 0.038
COS (20) 0.017 0.136 0.027
LDK (20) 0.017 0.146 0.029
COS (50) 0.010 0.181 0.018
LDK (50) 0.010 0.193 0.018

that are in top r ranks. Figure 2.3 and Table 2.1 show the results. While COS achieves
higher performance around the top few ranks, LDK outperforms COS in recall (i.e.,
LDK successfully picks up more relevant terms than COS) when we consider ranks
greater than around 20, indicating that the two approaches are complementary.

2.6 Conclusion
This chapter investigated the effect of employing a Laplacian diffusion kernel matrix

for the task of determining the correct neighboring terms of a new term being added
to a thesaurus. We confirmed that the method depreciates pivotal vertices on a graph,
and showed that it does pick up more relevant terms, exhibited as higher recall values,
than cosine similarity in a simulation study.

LDK does not significantly improve upon COS in this work. One possible reason is
that the GENIA corpus were collected using only three MeSH terms,“human”, “blood
cells”, and “transcription factors” from MEDLINE abstracts, and therefore the terms in
the corpus are highly connected with one another in the graph. Future work includes
examining LDK performance with the whole MEDLINE articles with which the in-
duced term graph becomes more sparse. Another concern is that neither approach
reliably predicts the correct neighboring MeSH terms. To this end, feature weight tun-
ing or feature engineering, such as limiting context words (features) to nominals or
using a stopword list, might be an effective way to improve the performances.
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2.7 Summary
The addition of new terms to biomedical thesauri is important for keeping pace

with new research. In the context of a thesaurus expansion task, we investigate the
property of Laplacian diffusion kernel matrices that depreciate pivotal vertices having
many links to surrounding vertices. We confirm that this property can be seen on
the Laplacian matrix of a graph that we construct from the GENIA corpus (a subset
of MEDLINE abstracts) and simulate thesaurus expansion by employing either the
Laplacian diffusion kernel matrix, or the adjacency matrix (i.e., cosine similarity), to
determine the correct position for new biomedical terms being added to the MeSH
thesaurus. Whilst results do not show the desired precision, our approach is shown to
be complementary to calculation of cosine similarity between thesaurus terms and we
recognize directions for future work.
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Chapter 3

Effectiveness of Laplacian-based
Kernels in Hub Reduction

3.1 Introduction
In recent studies, Radovanović et al. investigated hubs that emerge in high dimen-

sional space [37, 38]. A hub is an object similar (or close) to many other objects in a
dataset. Radovanović et al. observed that hub objects emerge as dimension increases,
for a number of common similarity or distance measures. They also made a notable
finding that the objects closer (more similar) to the data mean, or centroid, tend to
become hubs.

Hub objects emerge even in space of moderately high dimension (e.g., 50-dimensions),
whereas systems for real data analysis, such as those for natural language processing,
often deal with more than one million features (dimensions).

As Radovanović et al. have pointed out, hubs impair the accuracy of k-nearest neigh-
bor (k-nn) classification. In k-nn classification, the label of a test object is predicted
by the (weighted) majority voting of the k-nn objects whose labels are known. If test
objects follow the same distribution as that of the objects in the dataset, hubs in the
dataset should frequently appear in the k-nn list for test objects as well. As a result,
hub objects pose strong bias on the predicted labels, causing the classification results
to be inaccurate. As we will discuss in a later section, hubs also impair information
retrieval, and the label propagation methods for semi-supervised classification.

In this thesis, we examine if Laplacian-based kernels, such as the commute-time
kernels [40] and the regularized Laplacian [10, 42], are effective for reducing hubs. We
explore Laplacian-based kernels because in the implicit feature space induced by these



kernels, the inner product with the centroid is uniform for every object in the dataset;
thus, no objects are closer to the centroid. According to Radovanović et al., objects
close to the centroid become hubs, and we expect these kernels are more robust to
the hubness phenomenon. We empirically examine if Laplacian-based kernels reduce
hubs and consequently improve the performance of information retrieval as well as
multi-class and multi-label k-nearest neighbor classification.

3.2 Hubs in High Dimensional Space
High dimensionality causes various problems that go under the name of curse of

dimensionality. The most well-known “curse” includes overfitting [27, 5] and distance
concentration [3, 17].

The “emergence of hubs” is a new type of the curse which has been discovered only
recently [37]. This phenomenon particularly affects methods based on nearest neigh-
bor search, i.e., those which list objects similar (or near) to a query object according to
a certain similarity (or distance) measure. In a high dimensional space, some objects
become hubs, which are the objects that occur in the nearest neighbor list of many
objects. Since hubs nearly always included in the search result irrespective of query
objects, such objects render search results less meaningful.

We can check whether or not hubs exist in a dataset by counting the number of
times that each object x appears in the k-nearest neighbor list of other objects. Let this
number be Nk(x). If hubs exist in the dataset, the distribution of Nk should skew to the
right (provided that k � n, where n is the number of the objects).

Now we illustrate the emergence of hubs using synthetic data. Following [37], we
generate a dataset of 500 objects, each of which is a d-dimensional binary vector.
For each dimension i = 1, . . . ,d, we first sample a real number from the log-normal
distribution with mean 5 and variance 1, and compute its rounded integer ni. Then
we choose ni objects (vectors) out of 500 uniformly at random, and assign 1 to their
ith component. After 500 d-dimensional binary vectors are generated in this way, we
measure their pairwise similarity by the cosine of the angle between them.

The histograms of N10 frequency for two datasets with different dimensions d (d =
10,50) are shown in the top panels of Figure 3.1. We can see objects with extremely
large N10 values (e.g., the point at N10 = 60) in the top right panel (50-dimensional
data), while no such points can be seen for 10-dimensional data.

18



F
re

q
u
e
n
c
y

S
im

ila
ri
ty

 t
o
 c

e
n
tr

o
id

S
im

ila
ri
ty

 t
o
 c

e
n
tr

o
id

F
re

q
u
e
n
c
y

0 5 10 15 20 25
0

10

20

30

40

50

0

20

40

60

80

0 20 40 60 70

0 20 40 60 70

0.6

0.5

0.4

0.3

0.2
0 5 10 15 20 25

0.8

0.7

0.6

0.5

0.4

0.3

0.2

d=10

N10

d=50

N10

N10 N10

Figure 3.1: Top panels: Histograms of N10 frequency for two synthetic datasets in low
(d = 10) and high (d = 50) dimensional feature spaces. Bottom panels: Scatter plots
of the N10 value of an object against its similarity to the centroid. Each dot corresponds
to a data object.
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Another important finding by Radovanović et al. is that in high dimensional spaces,
objects similar (or close) to the data mean (centroid) tend to become hubs. We can
verify this with the dataset of 50-dimensional vectors above. The bottom panels of
Figure 3.1 are the scatter plots of N10 values of the data objects against their cosine
similarity to the centroid. For d = 50 (high-dimensional data; bottom-right), N10 values
show a strong correlation with the similarity to the centroid, whereas for d = 10 (low-
dimensional data; bottom-left), the correlation is much weaker.

3.3 The Hubness Phenomenon and Laplacian-based Ker-
nels

If objects close to the data centroid tend to become hubs, a possible direction to
their reduction should be to seek a similarity (or distance) measure which evaluates all
objects equally similar to (or distant from) the centroid. We show that the Laplacian-
based kernels indeed give measures which meet this requirement.

3.3.1 Centroid in the kernel-induced feature space

Suppose we have n data objects, X = {xi} (i = 1, . . . ,n) in a vector space D. We are
also given a kernel K, which, for now, is not necessarily the Laplacian-based kernels
introduced above.

Let F be the implicit feature space induced by kernel K, and φ(·) be its associated
feature mapping; i.e., a mapping of an object in D to its image in F. Abusing notation,
we also denote by K its n×n Gram matrix computed for the dataset. Thus, component
[K]i j of matrix K is the inner product of φ(xi) and φ(x j) in F, or,

[K]i j = 〈φ(xi),φ(x j)〉.

And the data centroid in the feature space F, which we denote by φ , is given by

φ =
1
n

n

∑
i=1

φ(xi).

Note that φ differs from the data centroid in the original vector space D, and, in general,
from its image in F, because φ(·) can be non-linear.
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Now the inner product between φ(xi) and the data centroid φ in F is

〈φ(xi),φ〉 = 〈φ(xi),
1
n

n

∑
j=1

φ(x j)〉 =
1
n

n

∑
j=1

〈φ(xi),φ(x j)〉

=
1
n

n

∑
j=1

[K]i j =
1
n
[K1]i. (3.1)

Thus, it is the mean of the inner products between the ith object and all objects in the
dataset, taken in the feature space induced by K. The last two equalities show that this
quantity can be calculated simply by taking the mean of the ith row of the Gram matrix
K.

3.3.2 Laplacian-based kernels and similarity to the centroid

We now restrict K to Laplacian-based kernels, i.e., those which can be expressed as
in Eq. (2.5). We show that Laplacian-based kernels define similarity measures which
make the data centroid equally similar to all objects in the dataset.

Because Laplacian-based kernels assume that the data is represented as a graph, we
treat the vector dataset X as a fully-connected graph. In this graph, data objects xi

corresponds to vertices, and edge weights are given by the pairwise similarity of ob-
jects measured in the original vector space D.1 In other words, the weighted adjacency
matrix A of this fully-connected graph is given by the all-pairs similarity matrix for the
dataset computed in D. There may be many ways to measure similarity, but we only re-
quire that the similarity score be non-negative and symmetric; hence [A]i j = [A] ji ≥ 0
for all i, j. Given such an A, we compute the graph Laplacian and then a Laplacian-
based kernel K, e.g., using one of Eqs. (2.2)– (2.4).

Now, recall that the Laplacian-based kernels share the same eigenvectors as the
Laplacian L from which they are computed, but the eigenvalues are transformed by
r(·); see Eq. (2.5). In particular, for the smallest eigenvalue λ1 of L and its correspond-
ing eigenvector u1, it holds that Ku1 = r(λ1)u1. And since u1 = 1 and λ1 = 0, we
have

K1 = r(0)1. (3.2)

1If a distance measure is given instead of similarity, we assume it is converted to a similarity in a
standard way, e.g., by taking its reciprocal, or by using a Gaussian kernel.
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By Eq. (3.1), the left-hand side of this equation becomes

K1 = n

〈φ(x1),φ〉
...

〈φ(xn),φ〉

 . (3.3)

On the other hand, the right-hand side of Eq. (3.2) is a constant vector whose com-
ponents are all equal. It follows that all the components in Eq. (3.3) are equal. In other
words,

〈φ(x1),φ〉 = 〈φ(x2),φ〉 = · · · = 〈φ(xn),φ〉

Thus, in the feature space induced by K, the inner products between the centroid and
all object in the dataset are equal.

Remark The above property holds only if the components (inner products in the
feature space) of Laplacian-based kernels K are used as they are as similarity scores.
That is, the similarity to the centroid may not be uniform if the closeness of objects is
measured by distance in F, i.e., via

d(xi,x j)F = ([K]ii +[K] j j −2[K]i j)1/2. (3.4)

We will show in later experiments that using distance in the feature space of Laplacian-
based kernels in fact promotes hubs, and is always a bad idea.

According to Radovanović et al., objects close (or similar) to the centroid become
hubs. As shown above, Laplacian-based kernels provide a similarity measure which
makes data objects equally similar to the centroid. For this reason, we can expect them
to suppress emergence of hubs.

3.4 Experiments
We apply Laplacian-based kernels to real and synthetic datasets to see whether hubs

are reduced by these kernels.

3.4.1 Synthetic data

First, as an illustration, we apply the commute-time kernels on the same 50-dimensional
dataset we used previously to plot Figure 3.1. Figure 3.2(a) shows the histograms of
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Figure 3.2: Histograms of N10 frequency for the synthetic 50-dimensional dataset of
Figure 3.1: (a) commute-time kernels and (b) cosine similarity.

N10 frequency for the commute-time kernels. For ease of comparison, (b) duplicates
the top-right panel of Figure 3.1, which plots the histogram for cosine similarity. We
see that with the commute-time kernels, no objects exhibit extremely large N10 values.
Hence, the kernel has worked as expected for this dataset, and mitigated the hubness
phenomenon.

3.4.2 Real data

For real data, we examine not only whether hubs are reduced by Laplacian-based
kernels, but also whether they contribute to improve accuracy in tasks that uses these
datasets. We consider three tasks: (1) ranking (information retrieval), (2) multi-class
classification, and (3) multi-label classification. These tasks are chosen because they
require fine-grained similarity measures to distinguish individual data objects, which
are not necessary for a simple task such as binary classification.

Ranking task

We rank biomedical terms in the MeSH thesaurus2, to simulate mapping a new term
onto the thesaurus. For each term in MeSH, we rank other terms by the similarity

2http://www.nlm.nih.gov/mesh/2009/introduction/introduction.html
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of contexts in which they appear, collected from abstracts in MEDLINE 20093. The
baseline measure evaluates the context similarity of terms by the cosine between “bag-
of-words” feature vectors, which consist of the frequency of words occurring in the
neighborhood of the terms in the corpus. We then compare this cosine similarity with
the regularized Laplacian and commute-time kernels computed from the cosine simi-
larity matrix.

In this task, a similarity measure is deemed better if it ranks terms located near
the query term in the MeSH thesaurus tree higher in the ranking for the query term.
Because different query terms have different nearby terms in the MeSH tree, the simi-
larity measure is required to return distinct rankings for each query term. If hub objects
(terms) exist that tend to take higher positions in many rankings, they are considered
to be harmful.

In this experiment, we make four datasets, each of which corresponds to the set of
terms under the top categories A, B, C, and D of the MeSH tree.

Multi-class classification

For multi-class classification, we use two document classification datasets: Reuters-
524, and TDT2-305. A document in these datasets is classified into one of 52 and 30
categories, respectively. For Reuters-52, we used the default training-test data split
accompanying the dataset. For TDT2-30, we randomly split the data into halves. For
these tasks, we classify test documents by k-nearest neighbor (knn) classification. The
similarity measures used with knn are the cosine between bag-of-words feature vec-
tors of documents, and the regularized Laplacian and commute-time kernels from the
cosine similarity. Parameter k is chosen by cross validation using training data.

We also employ Naive-Bayes classifier (NB) for multi-class classification, as another
baseline.

It is worth noting the large number of categories in the datasets (52 and 30). This
makes difficult the application of support vector machines and other high-performance
classifiers for binary classification.

3We limited the abstracts to those published in year 2000 or later.
4http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html
5http://www.zjucadcg.cn/dengcai/Data/TextData.html
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Multi-label classification

In multi-label classification tasks, a document may be associated with one or more
categories. For these tasks, we use the Enron and the Bibtex datasets6. The classifi-
cation procedure follows that of multi-class classification, with one exception that we
use the ML-knn algorithm [51] in place of knn classification.

The number of unique assignment of category combination to an object is 753 in
Enron, and 2856 in Bibtex, which are again extremely large.

Evaluation metrics

For all tasks, we compare cosine similarity (Cos) with the regularized Laplacian
(LRL) and commute-time kernels (LCT), in terms of the degree of hub emergence and
the task performance.

Following Radovanović et al. [37], we evaluate the degree of hubness by the skew-
ness of the N10 distribution, which is defined as

SN10 =
E[N10 −µN10]

3

σ3
N10

,

where E[ · ] is the expectation operator, and µN10 and σ2
N10

are the mean and the variance
of the N10 distribution, respectively. Larger skewness indicates a stronger emergence
of hubs in the data.

We evaluate the performance of the ranking tasks by the highest rank of terms that
are the “family members” of a query term. Here, the family members of a term is its
parent, children or siblings in the MeSH tree. Because these are the terms that are
close to the query in terms of meaning, a sensible similarity measure should rank them
higher than other terms in the ranking list for the query term. Hence, for the ranking
tasks, smaller this metric, the better. The results are averaged over all terms (queries)
in the MeSH tree.

For the multi-class classification we calculate the accuracy predicting the correct
category that a test document belongs to (larger the better), and for the multi-label
classification we count the number of disagreement between the correct categories and
the predicted ones for each test document (smaller the better), and then averaged over
test documents as well.

6http://mulan.sourceforge.net/index.html
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Results

Experimental results are shown in Table 3.1. As we show in section 2.3.3 that the
off-diagonal elements of the regularized Laplacian (LRL) matrix become proportional
to those of cosine similarity (Cos) matrix as β approaches to 0, and to those of the
commute-time kernels (LCT) as β tends to infinity. For this reason, we place the results
for LRL between those of Cos and LCT in Table 3.1.

In the ranking task with MeSH categories A–D, LRL and LCT lower skewness com-
pared to Cos, and simultaneously improve the performance (the ‘Rank’ row showing
the averaged highest rank of family terms). Note that a smaller rank shows a better
performance. This trend is observed through all categories A–D.

In multi-class classification tasks with Reuters-52 and TDT2-30 datasets, both datasets
show high skewness with cosine similarity (Cos), with an especially high skewness
value in Reuters-52.

In contrast, skewness in Reuters-52 decreases as the parameter β of LRL is increased,
indicating the reduction of hubness. Performance (accuracy) is also improved with the
increase of β . For this dataset, the commute-time kernels also outperforms the naive
Bayes (NB) classifier. With TDT2-30, however, skewness drops but then goes up as
parameter β is increased. The accuracy remains nearly constant, which tells us that
Laplacian-based kernels are not effective for this dataset.

In multi-label classification tasks, the Enron dataset shows high skewness with co-
sine similarity (Cos). The skewness decreases as parameter β increases with the
Laplacian-based kernels and for the commute-time kernels. That is, hubs are reduced
with the Laplacian-based kernels. As the skewness decreases, the performance (dis-
agreement) improves. For the Bibtex dataset, however, skewness of the Laplacian-
based kernels is higher than that of cosine similarity. The performance (disagreement)
remains more or less identical to that of Cos, only slightly worse.

In Table 3.1, we also show the results of using commute-time distance in column
‘LCT dist’, which is the distance in the feature space of the commute-time kernels
LCT, computed with Eq. (3.4). For all datasets, the extremely high skewness and poor
performance of ‘LCT dist’ suggest that commute-time distance in fact promotes hubs,
and is not a good idea to use with knn classification.
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Figure 3.3: Skewness of N10 distributions are represented in contour plots, using syn-
thetic sparse vector datasets generated with various number of objects and feature di-
mensions (+ mark corresponds to a dataset). The panel (a) and (b) show skewness of
cosine similarity and the commute-time kernels, respectively, and the panel (c) shows
the difference of skewness between cosine similarity and the commute-time kernels.

3.5 Discussion

3.5.1 Using skewness for parameter tuning

The experimental results in the previous section showed that, contrary to our ex-
pectation, Laplacian-based kernels do not always reduce hubs. Skewness, which is
an indicator of hubness, decreased in the MeSH datasets in ranking tasks, Reuters-52
dataset in multi-class classification and Enron dataset in multi-label classification. It
did not decrease in Bibtex and TDT2-30 datasets.

However, when the skewness was indeed decreased with Laplacian-based kernels,
the task performance was also improved. Moreover, the kernel that gives the smallest
skewness value attained the best task performance, or was very close to the best. This
result suggests a way to choose kernels, and to automatically tune parameters of the
regularized Laplacian, by using the skewness as an indicator of kernel performance.

3.5.2 Hubness phenomenon and dataset size on synthetic data

Let us now discuss hubness from the viewpoint of dataset size (the number of ob-
jects), the point not investigated by Radovanović et al., as well as dimensions (the
number of features), in simulation studies using synthetic datasets. Here, we generate
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Figure 3.4: Skewness of N10 distributions are represented in contour plots, using syn-
thetic dense vector datasets generated with various number of objects and feature di-
mensions (+ mark corresponds to a dataset). The panel (a) and (b) show skewness of
cosine similarity and the commute-time kernels, respectively, and the panel (c) shows
the difference of skewness between cosine similarity and the commute-time kernels.

two types of synthetic data: sparse vector data and dense vector data. We will see that
the Laplacian-based kernels reduce hubness in some combinations of dataset size and
dimension for sparse data, but do not suppress hubness for dense data at all.

Sparse vector data

We create synthetic datasets of sparse vectors in the same process as we generated
Figures 3.1 and 3.2. In these figures, the number of objects n was 500, and the dimen-
sion d was 10 or 50. In this section, we vary the number of objects n, between 100
through 8000, and the number of features d between 100 to 10000. Then, n× n of
cosine similarity matrix is calculated with the n objects of d dimensional vectors. We
then compute (as the representative of the Laplacian-based kernels) the commute-time
kernels matrix, just as we did previously.

Using cosine similarity and the commute-time kernels as similarity measures, we
obtain skewness of N10 distribution. We use averaged skewness over 10 times repeti-
tion of each combination of n and d.

Figure 3.3 shows contour plots of skewness: (a) cosine similarity, (b) the commute-
time kernels LCT and (c) difference between cosine similarity and the commute-time
kernels: (Cos - LCT). Vertical axis shows the number of objects n and horizontal axis
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shows the number of features (dimension) d.
From the Figure 3.3, we observe the following. First, in the case of cosine simi-

larity shown in panel (a) of Figure 3.3, emergence of hubs depends not only feature
dimension (that Radovanović reported) but also number of objects. And comparing
panel (a) and (b), the commute-time kernels (panel (b)) shows smaller value of skew-
ness in more area (for various number of object and feature dimensions) than that of
cosine similarity (panel (a)). Second, from panel (c), by converting cosine similarity
matrix into the commute-time kernels, skewness is reduced in various number of ob-
jects and dimensions, however, when datasets consist of large number of objects in
lower dimensions, such as n > 5000,d < 1000, skewness increases and hubs emerge
more than when using cosine similarity. We assume this may be related to the increase
of skewness with Bibtex dataset in which the number of objects is 7395 and features is
1836.

Dense vector data

We create synthetic datasets consisting of n objects as d dimensional dense vectors,
the components of which are generated from the uniform distribution between 0 and 1.
Then, in the same way for the experiments using sparse vectors, n×n cosine similarity
matrix is constructed by calculating pairwise cosine similarity between n vectors, and
the commute-time kernel is computed from the cosine similarity matrix by using it as
an adjacency matrix. For each similarity measure (i. e., the cosine similarity matrix
and the commute-time kernel) skewness of N10 distribution is calculated. We vary the
number of objects n within a range from 100 to 8000, and the number of features d from
100 to 10000. For each combination of n and d, we generate 10 datasets independently,
and the averaged skewness over them is plotted in the counter maps as Figure 3.4.

We see from the contour maps skewness stays unchanged between the cosine simi-
larity and the commute-time kernel, in contrast to the experiments using sparse vectors.

Moreover, as for the skewness of cosine similarity, there is a difference seen between
the two counter maps for sparse and dense datasets; For dense data, skewness becomes
larger as the number of objects increases almost independently of dimensions, while,
for sparse data, skewness becomes larger in combinations of a higher dimension and a
moderate number of objects.

We would like to make clear the mechanisms behind these findings but we leave
them for future work.
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Table 3.2: A list of real dataset used for investigating hubness.

Dataset Task #classes #samples #features
MeSH A Thesaurus mapping - 833 274,064
MeSH B Thesaurus mapping - 2,098 228,522
MeSH C Thesaurus mapping - 1,347 200,339
MeSH D Thesaurus mapping - 1,961 212,614
line WSD (word sense disambiguation) 6 4,146 8,009
interest WSD (word sense disambiguation) 6 2,368 3,689
Reuters-transcribed Document classification 10 201 3,863
MovieLens Collaborative filtering - 943 1,682
20newsgroup(train) Document classification 20 11,293 54,580
Reuters(all train sample) Document classification 52 6,532 16,145
Reuters(earn and acq) Document classification 2 4,436 11,947
Reuters(earn) - 1 2,840 7,722

3.5.3 Hubness phenomenon and dataset size on real data

In section 3.5.2, we discussed hubness from the viewpoint of dataset size (the num-
ber of objects), with synthetic datasets. In this section, we continue the discussion with
real datasets.

We examined skewness on various real datasets. The information of datasets is listed
in Table 3.2, and other miscellaneous information is as follows.

• MeSH : MeSH datasets consist of biomedical terms stored in the MeSH the-
saurus, which we used for thesaurus mapping tasks in section 2.5.

• WSD : The two datasets “line” and “interest” are the sets of ambiguous words in
different contexts. These are used in the past Senseval workshop for word sense
disambiguation, and are obtained from Ted Pedersen’s web page (http://www.d.umn.edu/ tped-
erse/data.html).

• Reuters-transcribed : Reuters-transcribed is a document dataset which is an-
notated with predefined class labels, and is used for a classification task. The
dataset is obtained from UCI machine learning repository
http://archive.ics.uci.edu/ml/datasets/Reuters+Transcribed+Subset.
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• MovieLens : MovieLens is a collection of movie ratings. It is a famous bench-
mark dataset for collaborative filtering, which recommend movies based on the
ratings. We use the dataset following Fouss et al. [16].

• 20newsgroup : 20newsgroup is a collection of newspaper articles annotated
with 20 class labels, and it is a widely used benchmark dataset for classifica-
tion tasks. We use the preprocessed one obtained from http://web.ist.utl.pt/ acar-
doso/datasets/.

• Reuters : Reuters is also a collection of newspaper articles annotated with class
labels. We used the preprocessed dataset obtained from http://web.ist.utl.pt/ ac-
ardoso/datasets/.

For each dataset, skewness is measured by cosine similarity (Cos), the regularized
Laplacian LRL and the commute-time kernels LCT. The results are shown in Table 3.3,
Figure 3.5 (MeSH datasets) Figure 3.7 (Reuters) and Figure 3.6 (20newsgroup).

The results show that for most of the datasets hubs are reduced by the Laplacian-
based kernels. However, there are cases that hubs are amplified conversely. For ex-
ample, in case using all samples (11,293) of 20newsgroup dataset, skewness of N10

distribution becomes larger as β of the regularized Laplacian LRL grows, and becomes
the largest when using the commute-time kernels LCT (see Table 3.3).

To examine the effect of the number of samples on hubs (skewness of Nk distribu-
tion), we randomly select (200, 500, 1000 and 5000) samples from the 20newsgroup
dataset and measure skewness using each similarity measures (cosine similarity, the
Regularized Laplacian LRL and the commute-time kernels LCT). The skewness is av-
eraged over 10 times repetition for each sample size. The results are shown in Table 3.3
and Figure 3.6. From the results, we see that the number of samples affect the skew-
ness of N10 distribution when using the regularized Laplacian with large β and the
commute-time kernels. In short, when the number of samples is larger, the skewness
of N10 distribution becomes larger using the Laplacian-based kernels.

Also, we evaluated the effect of hubs on task performances. The performances are
measured for MeSH, 20newsgroup and Reuters datasets. As for the evaluation metrics,
we follow the one described in section 3.4.2. The results are shown in Table 3.4.
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Remarks on evaluation method

As we described in previous section 2.3.3, as the β of the regularized Laplacian LRL

approaches to infinity, the off-diagonal elements of LRL becomes proportional to those
of the commute-time kernels matrix LCT. Hence the skewness and the performance
of the regularized Laplacian LRL tend to be those of the commute-time kernels matrix
LCT. However, as shown in Figure 3.6 (a) - (c), the accuracy of the regularized Lapla-
cian with large β drops suddenly without matching that of the commute-time kernels
LCT. This tendency is obvious when k of knn is large (that is k = 20 in Figure 3.6
(a) - (c)). This is due to the following reason. Recall that Laplacian-based kernels are
written in the form of Eq. (2.5), and the eigenvalue is defined in Eq. (2.7). Combining
those equations,

LRL =
n

∑
i=1

1
1+λiβ

uiuT
i (3.5)

=
1

1+λ1β
u1uT

1 +
1

1+λ2β
u2uT

2 + · · ·+ 1
1+λnβ

unuT
n

= u1uT
1 +

1
1+λ2β

u2uT
2 + · · ·+ 1

1+λnβ
unuT

n

∝ u1uT
1 +

1
λ2

u2uT
2 + · · ·+ 1

λn
unuT

n (β → ∞).

When the parameter β approaches to infinity, the eigenvalue 1
1+λβ tends to be 1

λ which
is the eigenvalue of the commute-time kernels described in Eq. (2.6). This also proves
the statement “as the β of LRL approaches to infinity, the off-diagonal elements of LRL

becomes proportional to those of LCT”.
Meanwhile, combining Eq. (2.5) and Eq. (2.6), the commute-time kernels is written

as

LCT =
n

∑
i=1

1
λi

uiuT
i (3.6)

=
1
λ1

u1uT
1 +

1
λ2

u2uT
2 + · · ·+ 1

λn
unuT

n

= 0 ·u1uT
1 +

1
λ2

u2uT
2 + · · ·+ 1

λn
unuT

n .

By definition, 1
λ1

= 0 so that the first term 1
λ1

u1uT
1 becomes 0. As the β of the regu-

larized Laplacian approaches to infinity, the eigenvalues become approximately those
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of the commute-time kernels. However the first term in Eq. (3.5) does not disappeared
even when β approaches to infinity.

This first term which differentiates Eq. (2.7) from (2.6) makes the inconsistency on
the performance (i.e., the accuracy of the regularized Laplacian with large β drops
suddenly without matching that of the commute-time kernels) shown in Figure 3.6 (a)
– (c) especially when k is large.

We evaluated the task performance of 20newsgroup using the knn classification, and
the label of test sample is decided by voting the similarity score of knn training samples
to corresponding classes. The class obtained the highest score assigned as estimated
class for the test sample.

With the regularized Laplacian, each term in Eq. (2.7) becomes proportional to the
terms of the commute-time kernel in Eq. (2.6). However the regularized Laplacian
has more value than the commute-time kernels for the first term, because the first term
of the commute-time kernel is 0.

When voting the similarity scores calculated by the regularized Laplacian and the
commute-time kernels, the class voted by more samples tends to obtain more scores
with the Regularized Laplacian than the commute-time kernels.
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3.5.4 Can we make skewness smaller by removing hub objects?

We have discussed in this chapter that the Laplacian-based kernels have potentiali-
ties to decrease skewness of N10 distribution, or to suppress hubness. However, consid-
ering that it takes time to compute the kernels when increasing the number of objects,
it seems a good idea simply removing hub objects (i.e., the object whose N10 is large)
from dataset. Here, we examine whether or not the simple method has an effect on
reducing hubness using both synthetic and real datasets.

As for a synthetic dataset, following the way described in section 3.2, we generate
2000 objects as binary sparse vectors in 500 dimensions, and for a real dataset, we use
the MeSH C dataset again (1347 objects as sparse feature vectors in 200339 dimen-
sions) that we used in section 3.4.2. We calculate similarities between objects by the
cosine of their vectors, and use them to compute skewness of N10 distribution.

Table 3.5 shows changes of skewness parallel to the number of objects removed
from dataset in descending order of N10, and skewness using a Laplacian-bases kernel
(commute-time kernel LCT) as a reference. We see from the result that the simple
method that removes hub objects from dataset does not decrease skewness comparable
to the Laplacian-based kernels, even after many objects are removed. In conclusion,
removing hub objects cannot suppress hubness more than employing the Laplacian-
based kernels.

3.5.5 Commute-time distance

Laplacian-based kernels are sometimes used to compute distance, through the trans-
lation of Eq. (3.4). In particular, the distance computed from the commute-time kernels
(commute-time distance) has a nice interpretation that it is proportional to the expected
number of steps a random walk has to take to go from one vertex to another vertex
for the first time and then coming back. However, Fouss et al. [16] report that the
commute-time distance was less effective in a collaborative filtering task than the in-
ner products given by the commute-time kernels.

Our experimental results agree with their report; using commute-time distance dete-
riorated the performance in all the experiments we conducted.

Regarding commute-time distance, von Luxburg et al. [47] reported that as the
number of objects in the database increases, k-nearest neighbor lists become analogous
for all objects. That is, regardless of the query, the same objects appear in k-nearest
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neighbor list. This phenomenon is observed in all datasets used in our experiment; i.e.,
we see strong correlation between the number of objects and the skewness.

3.5.6 Other Similarity Measure Making the Centroid Equally Sim-
ilar to All Samples

In Section 3.3, we argued that the Laplacian-based kernels evaluates all objects
equally similar to the centroid. This is because the Laplacian-based kernels have an
eigenvector of all 1’s (section 3.3). When a similarity matrix has an eigenvector of
all 1’s, the similarity matrix provides a similarity measure which makes data objects
equally similar to the centroid.

Besides Laplacian-based kernels, there is other way to make a similarity matrix with
an eigenvector of all 1’s. In this section, we use such a similarity measure which makes
data objects equally similar to the centroid, centered cosine similarity.

Centered cosine similarity The cosine similarity between the i-th object and j-th
object is the inner product of their feature vectors whose length is normalized to 1.
Centered feature vector is obtained by taking the difference of the normalized feature
vector and the centroid vector. The centered cosine similarity between i and j-th object
is the inner product of their centered feature vectors. We denote cosine similarity
matrix as A and the centered cosine similarity matrix as Acent.

When the normalized feature vector x1, . . . ,xn is given, then the centroid vector x is

x =
1
n ∑

i
xi. (3.7)

The similarity given by the centering cosine similarity between i and j-th object is

[Acent]i j = 〈xi −x,x j −x〉. (3.8)

Table 3.6 shows the results of hubness and classification accuracy with Reuters-52
dataset. The experiment follows the same procedure with the one described in section
3.4.2. The hubness is measured by skewness of N10. The result shows that the centering
cosine similarity reduces the skewness and improves the classification accuracy. This
result implies that not only the Laplacian-based kernels but also the similarity measures
which make data objects equally similar to the centroid have a potential to reduce hubs.
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3.6 Conclusion
In this chapter, we have investigated whether Laplacian-based kernels such as the

commute-time kernels and regularized Laplacian effectively reduce hubs in high-dimensional
data. They worked well in ranking and classification tasks (multi-class and multi-label
classification), but in some tasks and datasets, they did not lead to performance im-
provement.

However, whenever these kernels indeed reduced skewness, the kernel that achieves
the smallest skewness performed best or close to the best among all the kernels tested.
This result suggests that skewness could be used as a yardstick of kernel performance.
Note that because skewness can be computed without any label information, its evalu-
ation can be done in an unsupervised manner.

We also found that when Laplacian-based kernels are used, it is almost always better
to use the Gram matrix as it is as the similarity matrix, than to translate them into the
distance in the feature space, both in terms of skewness of N10 distribution as well as
the resulting accuracy. A similar experimental result has been reported that commute-
time distance were less effective than simply using the components of the commute-
time kernels as similarity scores [16]. We suspect that this is also due to the hubness
phenomenon.
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Table 3.4: Performance

# samples kNN Cos LCT LRL

Dataset/λβ 0.01 0.1 0.5 0.999 10 100 1000
MeSH A 819 14.667 13.684 14.651 14.538 14.234 13.934 13.376 13.640 13.676
MeSH B 1995 42.561 38.531 42.553 42.431 41.976 41.564 39.384 38.559 38.544
MeSH C 1259 42.011 37.396 41.993 41.792 41.176 40.633 38.667 37.736 37.439
MeSH D 1678 118.98 105.73 118.94 118.69 117.47 116.38 110.41 106.57 105.86

20newsgroup 200 1 0.4965 0.4865 0.4965 0.4985 0.497 0.4935 0.4955 0.4885 0.4865
2 0.4965 0.4865 0.4965 0.4985 0.4965 0.4935 0.4955 0.4885 0.4865
3 0.517 0.5065 0.5175 0.519 0.5185 0.5225 0.524 0.5095 0.508
4 0.535 0.5315 0.5355 0.538 0.5415 0.5455 0.5455 0.546 0.5455
5 0.5415 0.54 0.5425 0.544 0.547 0.551 0.5495 0.549 0.55

10 0.5655 0.559 0.5655 0.567 0.574 0.5775 0.573 0.5555 0.5525
20 0.5705 0.563 0.57 0.5695 0.5675 0.569 0.557 0.532 0.5315

20newsgroup 500 1 0.589 0.5468 0.5892 0.5896 0.5874 0.5882 0.5666 0.5502 0.5478
2 0.589 0.5468 0.5892 0.5896 0.5874 0.5882 0.5666 0.5502 0.548
3 0.6136 0.576 0.6134 0.6148 0.6134 0.6158 0.6004 0.584 0.5786
4 0.637 0.6024 0.6374 0.6384 0.638 0.639 0.6266 0.6094 0.6062
5 0.645 0.621 0.6452 0.6466 0.6472 0.652 0.6428 0.63 0.6276

10 0.6724 0.6614 0.6722 0.6732 0.6774 0.6744 0.671 0.661 0.6578
20 0.683 0.6804 0.6838 0.6846 0.6854 0.6888 0.6928 0.6802 0.6756

20newsgroup 1000 1 0.6586 0.6003 0.6584 0.6587 0.6575 0.6563 0.6362 0.6095 0.6014
2 0.6586 0.6003 0.6584 0.6587 0.6575 0.6563 0.6361 0.6095 0.6015
3 0.6816 0.6331 0.6815 0.6819 0.6828 0.6827 0.6656 0.644 0.6373
4 0.6978 0.6603 0.6981 0.6988 0.7006 0.7012 0.6868 0.6684 0.6626
5 0.7056 0.6759 0.7056 0.7067 0.7085 0.7093 0.6991 0.6838 0.6787

10 0.7349 0.7141 0.7352 0.7351 0.7385 0.7402 0.7306 0.7196 0.713
20 0.7487 0.7397 0.7481 0.7494 0.7532 0.7548 0.7545 0.7397 0.7294

20newsgroup 5000 1 0.81178 0.72144 0.81144 0.81054 0.80878 0.80662 0.77412 0.7349 0.72316
2 0.8118 0.72156 0.81146 0.81054 0.80874 0.80666 0.7741 0.73486 0.7231
3 0.8181 0.75632 0.81772 0.8171 0.81682 0.81512 0.79304 0.7655 0.7582
4 0.82374 0.77348 0.82336 0.82356 0.82274 0.82174 0.8033 0.78058 0.77472
5 0.82616 0.78246 0.82582 0.82608 0.82544 0.82392 0.809 0.78794 0.7805

10 0.83274 0.80772 0.83234 0.83264 0.83178 0.83164 0.82348 0.80686 0.79696
20 0.83538 0.82224 0.83516 0.83562 0.836 0.83554 0.8309 0.8159 0.80328

20newsgroup 11293 1 0.87568 0.77127 0.87506 0.87506 0.87426 0.87258 0.84043 0.7881 0.77313
2 0.87568 0.77110 0.87497 0.87497 0.87452 0.87249 0.84017 0.78960 0.77313
3 0.87718 0.80652 0.87656 0.87585 0.87506 0.87532 0.85354 0.82131 0.81094
4 0.87931 0.82210 0.87931 0.87966 0.87895 0.87789 0.85770 0.83220 0.82316
5 0.87665 0.83060 0.87647 0.87638 0.87674 0.87630 0.86071 0.83786 0.82742

10 0.8724 0.84477 0.87178 0.87116 0.87160 0.87098 0.86168 0.84486 0.83388
20 0.8694 0.85602 0.86895 0.86912 0.87019 0.87036 0.86275 0.84743 0.83220

Reuters 2classes 4436 1 0.86000 0.78787 0.86046 0.86069 0.86159 0.86069 0.82484 0.82484 0.78787
2 0.86001 0.78787 0.86046 0.86069 0.86159 0.86069 0.82484 0.82484 0.78810
3 0.87399 0.83070 0.87421 0.87759 0.88458 0.88593 0.87038 0.87038 0.84806
4 0.88233 0.84152 0.88300 0.88503 0.88841 0.89202 0.88075 0.88075 0.85122
5 0.89112 0.85685 0.89112 0.89427 0.90126 0.90712 0.89811 0.89811 0.88052

10 0.90735 0.89923 0.90825 0.91141 0.92493 0.93034 0.92944 0.92944 0.91208
20 0.91546 0.92628 0.91569 0.91952 0.93372 0.94116 0.94815 0.94815 0.93733

Reuters 6532 1 0.83772 0.74587 0.83665 0.8368 0.83389 0.83022 0.79409 0.75566 0.74709
2 0.83788 0.74648 0.83680 0.83680 0.83405 0.83068 0.79378 0.75566 0.74724
3 0.85041 0.79424 0.85012 0.85028 0.85135 0.85257 0.83374 0.80925 0.80588
4 0.85824 0.81292 0.85808 0.85884 0.86283 0.86314 0.84752 0.82425 0.81782
5 0.86712 0.82655 0.8665 0.86911 0.87002 0.87232 0.86084 0.84216 0.83742

10 0.87952 0.86359 0.87998 0.88166 0.8861 0.8884 0.88962 0.87247 0.86926
20 0.88273 0.88380 0.88319 0.88579 0.89329 0.8974 0.89651 0.88472 0.88181
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Figure 3.5: Skewness and performance (highest averaged rank (smaller is better)) of
MeSH datasets. The black axis corresponds to skewness and the red to performance.
The horizontal axis shows the type of similarity (from left to right: cosine similar-
ity, the regularized Laplacian with λβ = 10−6 through 108, and the commute-time
kernels).
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(a) 200 samples
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(c) 5000 samples

Figure 3.6: Skewness of the 20newsgroup dataset with varying sample size (200, 500,
1000, 5000 ranomly chosen samples, and all 11293 samples). Panels (a) - (c) respec-
tively show the performance (classification accuracy) of knn classifiers with various k
for 200, 1000, and 5000 sample datasets. We omit 500 and 11293 samples because
they are similar to 1000 and 5000 samples. The black axis corresponds to skewness
and the red to performance. The horizontal axis shows the type of similarity (from left
to right: cosine similarity, the regularized Laplacian with λβ = 10−6 through 108, and
the commute-time kernels).
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Figure 3.7: Skewness and performance results for Reuters datasets. In the panel (a),
samples belonging to the most frequent two classes in training data are used. In the
panel (b), all training samples are used. The black axis corresponds to skewness and
the red to performance. The horizontal axis shows the type of similarity (from left to
right: cosine similarity, the regularized Laplacian with λβ = 10−6 through 108, and
the commute-time kernels).

Table 3.5: Changes of skewness parallel to the number of objects removed from dataset
in descending order of N10. The last column shows skewness using a Laplacian-bases
kernel (commute-time kernel LCT).

# Removed objects 0 10 20 30 40 50 LCT

Synthetic data 4.4695 2.1983 1.9667 1.8049 1.6633 1.5587 1.3172
Real data (MeSH C) 7.3111 3.9659 3.4792 3.4117 2.6508 2.6798 1.2154

Table 3.6: The results of hubness and classification accuracy with Reuters-52 dataset
by using centering cosine similarity (Cent-Cos). As reference, we also show the results
of cosine similarity (Cos) and the commute-time kernels (LCT).

Similarity measure Cos Cent-Cos LCT

Skewness 14.815 11.0373 6.9341
Accuracy 84.7% 88.9% 90.0%
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Chapter 4

A Robust Model Selection for
Classification of Microarrays

4.1 Introduction
Microarray technology [9] has been applied to compare gene expression profiles in

cancer tissue samples with different prognoses, and its power to predict cancer progno-
sis has been demonstrated for several types of cancers [1, 29, 36]. There are, however,
two problems in expanding the use of the microarray-based prediction systems in real
clinical scenes, namely, observation cost and reliability [14].

In order to reduce the observation cost in clinical scenes, mini-chip microarrays,
including hundreds of spots, were developed [36, 30]. Namely, after a predictor is
constructed based on a supervised analysis with a full dataset taken by a full microarray
system using thousands or tens of thousands of spots, the predictor is implemented with
a mini-chip microarray. Note that, for designing an effective mini-chip, the number of
genes to be spotted in a chip should be as small as possible because the cost per chip
is approximately proportional to the number of spots in the chip. The cost per chip
includes the cost of manufacturing the chip, the running cost of observation, and the
mass of the clinical specimen used in the chip for each patient. The mass of the clinical
specimen required for each patient is proportional to the size of the chip, which can be
reduced if the number of spots in the chip is small and if the density of spots in the chip
is high. In addition, each gene can be multiply spotted to gain reliable measurements
by reducing the cost with small number of genes.

To achieve reliability of the predictor, a well known trade-off problem is that we
should select as a large number of informative genes and a small number of non-



informative genes as possible. Namely, putting the observation cost aside, we need
to reduce the number of genes. On the other hand, too a small number of genes can
lead significant loss of prediction accuracy. Thus, in the supervised analysis process,
our goal should be stated that as reliable predictor based on as few genes as possible.

In general, supervised analyses include the following three processes:

• a gene selection process,

• a supervised learning process that constructs a predictor based on a labeled set
of expression data of the selected genes, and

• an assessment process of the constructed candidate predictors.

There have been many options proposed for the first two processes, and comparisons
of their combinations were made from the viewpoint of prediction errors on test data
sets, namely generalization performances [15, 34]. In the present study, we use the
following two procedures, as proposed by [39]:

• Weighted voting (WV) classifier [20] with gene selection based on absolute t-
score (T-WV)

• Linear kernel support vector machine (SVM) [45] with recursive elimination of
genes that had the smallest contribution to current classification performance
(R-SVM)[52].

These procedures construct multiple candidate predictors corresponding to various
numbers of genes included in the predictors. Since their prediction performances for
independent test data sets depend on the number of genes, the assessment process is
crucial.

In the assessment process, the prediction performance of each candidate predictor is
estimated based on the training data, and good estimation is obtained by reducing the
estimation bias and the variance. Since the true performance on independent unknown
data in the future is unknown, we should select the best predictor with less biased and
smaller variance in the estimated performance. In general, the bias-variance trade-off
problem is inherent to all statistical models used for prediction, especially in the classi-
fication framework [18, 7]. For prognosis prediction by microarray, several past studies
focused on reducing the estimation biases of the prediction error rates in determining
the best model [35, 46, 49] because inclusion of biases could lead to over-estimation
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of the classification performance of the proposed system. The cross-validation (CV)
technique is used widely for predicting true classification error rate in unknown sam-
ples that are not included in either the training or the test sample sets. Among the CV
methods, the leave-one-out technique (LOO) is often used because of its small bias
[35]. These studies, however, did not pay much attention to the variances of estimated
classification error rates.

The estimated variances in the assessment process are extremely important for prac-
tical applications. Even if a classifier has sufficiently low error rate if it exhibits large
variance in prediction, the classifier runs a high risk of having a large actual error rate
when it’s applied to unknown test samples [8]. The LOO criterion sometimes selects
a classifier involving a very small number of genes, or even a single gene. Although
the single-gene classifier might fit the “as few genes as possible” criterion, classifiers
involving more redundant genes tend to exhibit lower noise and provide stronger ev-
idence with respect to prognosis [30]. Recently, several papers proposed methods
which considered the estimated error rate variances [8, 19, 50, 31], and also unsuper-
vised methods [13, 25] which tried to minimize the variance of the model by looking
at stability of the signatures without seeing directly the class labels. However, there
has been no comparison from the viewpoint of mini-chip design, namely, a reliable
predictor based on as few genes as possible.

In the present chapter, we consider both the bias and the variance of performance
estimation in order to achieve a reliable predictor. We applied a bootstrap sampling
method to estimate the distribution of possible error rates, with bias and variance, and
proposed a min-max criterion to obtain a stable classifier. We conducted a simulation
study that revealed that the min-max criterion tended to select better candidate predic-
tors than the LOO criterion, especially when the number of samples is small. Then,
we compared the two typical supervised analysis procedures, T-WV and R-SVM, and
found that the T-WV achieves reliable predictors with a small number of genes, which
indicated that the T-WV with min-max criterion was more desirable to our purpose,
namely, a reliable predictor with as few genes as possible.
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4.2 Methods

4.2.1 Notations

Let xi = (xi1, . . . ,xiM) be a vector of the M-dimensional gene expression profile of the
i-th sample, and let yi be a binary class label yi ∈ {−1,1} representing the binary status
of the i-th sample, for example, tumor or non-tumor. The numbers of samples in the
negative (yi = −1) and positive (yi = 1) classes are denoted as nn and np, respectively.
Suppose that we have a dataset D = {di | i = 1, . . . ,N}, including N samples, where
di = (xi,yi) is a pair of input (expression) and output (class label) of the i-th sample.
By applying a supervised machine learning method to the dataset D, we construct a
discriminant function h(x | D) such that we predict a label ŷ(x′) for a new input x′ by

ŷ(x′) =

{
1 if h(x′ | D) ≥ 0

−1 if h(x′ | D) < 0.
(4.1)

4.2.2 T-WV method

The WV method is a typical example of a supervised machine learning method that
employs the top k significant genes. Since the significance of the j-th gene is defined
according to the following t-score, the entire procedure is referred to as the T-WV
method,

t j =
x̄p j − x̄n j√

1/np +1/nn S j
, (4.2)

where x̄p j and x̄n j are the average expression levels of the j-th gene within training
samples labeled 1 and −1, respectively, and S2

j is the pooled within-class variance of
the j-th gene,

S2
j =

∑i:yi=−1(xi j − x̄n j)2 +∑i:yi=1(xi j − x̄p j)2

nn +np −2
. (4.3)

The genes are ranked according to the absolute value of |t j|, and the top-ranked k genes
are selected as significant genes so that the set of these genes is denoted as Ck. The
discriminant function obtained by the T-WV method is then constructed as

hk(x | D) =
1
k ∑

j∈Ck

t j(x j − x̄ j), (4.4)
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where x̄ j ≡ 1
N ∑N

j xi j is the average expression level of the j-th gene in the training
samples.

In the discriminant function hk, the difference between the j-th gene expression and
its average is weighted by its significance, that is, the t-score. Note that the function hk

depends on the number k of significant genes, and thus we need to set k appropriately.

4.2.3 R-SVM method

The R-SVM is another typical example of a supervised machine learning method,
which was developed to select important genes for SVM classification [52]. An R code
package is publicly available at http://www.hsph.harvard.edu/bioinfocore/R-SVM.html.
The discriminant function of a linear SVM is defined as

hk(x′ | D) = (w · x′)+b =
N

∑
i=1

αiyi(xi · x′)+b, (4.5)

where x′ is a new input expression vector and xi is the i-th sample expression vector in
the training dataset. αi and b are parameters to be determined so that training dataset
with different labels are classified with the largest margin. x · x′ = ∑M

j=1 x jx′j denotes
the inner product. Each element of w, w j, is defined as

w j =
n

∑
i=1

αiyixi j, (4.6)

the absolute value |w j| of which represents the significance weight of the jth gene in
the current discriminant function.

As in the T-WV method, the classification performance of the SVM also depends
on gene subset selection. The R-SVM applies a recursive feature elimination (RFE)
procedure [21]. In the RFE, less significant genes in the current discriminant function
are recursively eliminated, and the next discriminant function is constructed based on
the new smaller set of genes. Consequently, a sequence of discriminant functions based
on decreasing numbers of genes is constructed. Thus, the prediction performance of
each discriminant function hk depends only on the number k of significant genes, which
leads to the same problem as in the T-WV, i.e., setting an appropriate number k. In the
following section, we describe a common way to set the number of genes in both the
T-WV and R-SVM.
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4.2.4 LOO model selection

The above mentioned procedures, T-WV and R-SVM, produce many candidate clas-
sifiers, from which we should select the best candidate by an assessment process. Al-
though the true performance of a classifier should be measured by classification accu-
racy on an unknown dataset in the future, we should estimate performance using the
dataset obtained in the assessment process. Note that we refer to each candidate in the
assessment process as a model because we assess a model that includes all procedures
used to construct a classifier rather than directly assessing the classifier. In T-WV and
R-SVM, a model corresponds to the number of significant genes included in the model.

The LOO procedure has been widely used to estimate, or predict, the true future
performance of a classifier. In LOO, a classifier h is built using each leave-one-out
dataset D−i, i = 1, ...,N, that is, the i-th sample di is selected as a validation sample
from the dataset D, and its classification performance is assessed using the validation
sample. After the assessments for d1, . . . ,dN , the LOO error rate of the classifier h,
GLOO(h | D), is calculated as the averaged error rate

GLOO(h | D) =
1
N

N

∑
i=1

I(yih(xi | D−i) < 0), (4.7)

where I(R) denotes the indicator function that takes a value of one if condition R holds,
and is otherwise zero. When we select the number k of significant genes by

hLOO
k = argmin

k
GLOO(hk | D), (4.8)

this model selection procedure is referred to as the LOO criterion.

4.2.5 Resampling bootstrap method

The error rates used to estimate the LOO procedure are known to be nearly unbi-
ased. [35] compared estimated generalization error rates among different resampling
methods and showed that LOO had the smallest bias for a simulation dataset and a
real microarray dataset. However, LOO has a tendency to include large variance, de-
spite its small biasness [28], because classifiers constructed based on the leave-one-out
datasets, D−i, are quite similar to each other. The large variance of the error rate esti-
mation leads to a high risk of selecting a classifier of which the ’true’ performance is
poor for unknown samples, and the risk becomes higher as the number of candidates
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becomes larger. When we assess the performance of many candidate classifiers with
large variances, it frequently happens that some of the candidates have remarkably low
error rates, even if their true performance is not so good. This is the same problem as
that seen in overfitting, which was originally found in parametric learning by applying
too many parameters. Therefore, it is important to reduce the estimation variance in
order to obtain a robust classifier.

We applied a bootstrap method to obtain a distribution of LOO error rates that simu-
lated the possible variation of the dataset. We generated bootstrap datasets {D∗b | b =
1, . . . ,B}, in which each bootstrap dataset is defined as

D∗b = {d∗b
r = (x∗b

r ,y∗b
r ) | r = 1, . . . ,N −1}, (4.9)

where d∗b
r is randomly sampled with replacements from the LOO dataset D−i. The

single validation sample di is evaluated by classifiers that were trained by different
datasets D∗b, which lead to a set of LOO error rates: GLOO(h∗1

k | D∗1),GLOO(h∗2
k |

D∗2), . . . ,GLOO(h∗B
k |D∗B), where h∗b

k ,b = 1, . . . ,B, is given by Eq. (4.4) after replacing
the dataset D with the bootstrap dataset D∗b. This set of LOO error rates is considered
to be a distribution of GLOO and provides a guideline to determine the number of genes
to be used in the T-WV classifier.

4.2.6 Min-max model selection

Using the simulated distribution of LOO error rates, {GLOO(h∗b
k | D∗b)}B

b=1, we de-
fined a risk score, called a min-max criterion,

GBOOT(hk | D) = Per95
({

GLOO

(
h∗b

k | D∗b
)}B

b=1

)
, (4.10)

where ‘Per95’ is the 95th percentile of the set of values. Based on this risk score, an
appropriate model (i.e., the number of genes, k) is selected as

hBOOT
k = argmin

k
{GBOOT(hk | D)}. (4.11)

We considered the 95th percentile with the number of bootstrap B = 100 as a repre-
sentative of the highest error rates that would be possible with each model, i.e., the
number of genes. We did not adopt the standard variation of the error rates because the
distribution has an asymmetric nature and we were interested in the risk of selecting a
worse model.

49



In the present study, this model is referred to as the “min-max” selection criterion
because we minimized the risk of selecting a model for which the expected prediction
error rate was the maximum in the distribution of possibilities. This min-max model
selection likely refuses classifiers for which the estimated error rates are distributed
with a large variance, even if LOO shows the lowest error rate from a single dataset.
Therefore, the min-max criterion reduces the instability stemming from the variation
of possible datasets that could be obtained by random sampling from a large pool of
samples.

In other words, the min-max criterion assumes an underlying game between an ana-
lyzer and nature. A dataset is given by nature, and a model is selected by an analyzer.
In order for the analyzer to achieve stability, one good idea is to minimize risk (Eq.
(4.11)), which stems from the possibility that nature could provide a bad situation (and
hence the classifier has been overtrained) (Eq. (4.10)).

The number 95 of the percentile and number of bootstrap B = 100 were determined
arbitrarily, but there were following reasons. In determining these numbers, there are
tradeoffs among computation time, estimation variance of the percentile point and pre-
ciseness as a representative of highest error rate:

• The computation time costs proportionally to the number of bootstrap.

• Estimation variance is a monotonic function of both the percentile number and
the number of bootstrap. Namely, the variance becomes larger if the percentile
number is further from 50 and if the number of bootstrap is smaller.

• The criterion should be a representative of possible highest error rates in an ar-
bitrary asymmetric shape of distribution of bootstrap samples.

We did not select the 50th percentile because of the last reason above, namely, we
attempt to obtain a safe classifier rather than those showing good performance on av-
erage. Although the 99th percentile is a precise representative of highest error rates,
we did not select it because it relied on 1% of bootstrap samples, and will therefore
lead to high variance with small B. The estimation variance of the percentiles of boot-
strap error rate can be calculated as a standard deviation of order statistics if original
distribution is known. In Table 4.1, the standard deviations (SDs) of percentile esti-
mation with assuming a standard normal distribution as an original distribution. Note
that these SDs are proportional to the SD of original distribution, and that, although
the original distribution should not be normal in reality, the above represents well the
scale of the SDs.
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Table 4.1: Estimated standard deviations of bootstrap percentiles. Bold type is the
setting which we selected.

B = 100 B = 500 B = 1000
99th 0.315 0.171 0.120
95th 0.216 0.095 0.067
90th 0.172 0.077 0.054
50th 0.125 0.056 0.040

4.3 Results

4.3.1 Results for real datasets

We demonstrated our method using four published real gene expression profile datasets:

• Breast cancer
[44] investigated gene expression microarray data of approximately 5,000 genes
for 78+19 breast cancer tissue samples. The samples were classified into fa-
vorable and unfavorable samples; namely, recurrence free survival in five years
and recurrence in five years were observed, respectively. They trained super-
vised classifiers by using 78 samples (34 favorable and 44 unfavorable samples),
which we call training samples, and tested by using 19 independent samples (7
favorable and 12 unfavorable samples), which we call test samples. The same re-
search group also provided a larger data set which consists of 295 samples [43].
Among the 295 samples, 32 samples was appeared in training dataset [44] and
10 samples were censored in five years, and hence, we used 253 (192 favorable
and 61 unfavorable) samples for another test dataset.

• Colon cancer
The colon cancer dataset [2] contains microarray expression data of 2,000 genes
for 62 colon tissues. Among the 62 tissue samples, 40 and 22 samples were
labeled as “tumor” and “normal,” respectively.

• Neuroblastoma (NBL)
The NBL dataset [36] consists of the microarray expression data of 5,180 genes
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Figure 4.1: Assessed result on breast cancer dataset. The left and right panels show
the results based on the T-WV and R-SVM methods, respectively. The estimated 90%
interval of classifier performance (gray area), min-max criterion (solid line on the top
of gray area), LOO error rate (dashed line), 3-fold-CV error rate (dotted line) are plot-
ted with respect to different numbers of genes. Vertical lines indicate the numbers of
genes selected by LOO, the min-max and 3-fold-CV criteria.

for 136 patients (samples). Among the 136 samples, 25 and 102 samples were la-
beled as “favorable” and “unfavorable” patients, respectively, according to their
status at 24 months after diagnosis. The remaining nine samples of unknown
status at 24 months after diagnosis were omitted.

• Breast cancer Affymetrix (Affymetrix)
[48] analysed 286 breast cancer patients with Affymetrix chip harboring 22283
genes. Among the 286 patients, 183 and 93 samples were called favorable and
unfavorable, respectively, and 10 samples were censored in five years. Although
the Affymetrix dataset is based on breast cancer, we did not consider relationship
between the Affymetrix dataset and the breast cancer dataset because they have
fairly different natures in distribution, which is not a scope of the chapter.

For each of the above four datasets, we trained T-WV and R-SVM classifiers with
various numbers of genes by using training samples, and assessed the classifiers by
LOO, 3-, 5-, 10-fold-CV, and min-max criteria. In the case of breast cancer dataset
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Figure 4.2: Assessed result on colon cancer dataset. See figure 4.1 caption for legend.
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Table 4.2: Test error rate of breast cancer with LOO, min-max and k-fold CV assessed
by 19 and 253 test samples.

T-WV R-SVM
Selected num-
ber of genes

Test error
rate of 19
samples

Test error rate
of 253 sam-
ples

Selected num-
ber of genes

Test error
rate of 19
samples

Test error rate
of 253 sam-
ples

LOO 1 0.2105 0.4862 376 0.4737 0.4664
min-max 590 0.1578 0.2925 4,833 0.4211 0.3992
3-fold 5 0.3158 0.3992 4,833 0.4211 0.3992
5-fold 2 0.2632 0.4071 626 0.6316 0.5217
10-fold 1 0.2105 0.4862 376 0.4737 0.4664

with large numbers of test samples [44, 43], we also assessed the classifiers in the test
samples.

Figure 4.1 shows the result of the breast cancer dataset. In the left panel, the esti-
mated error rates of the T-WV classifier are shown for different numbers of genes, k;
where the error rates are estimated by LOO (dash line) and 3-fold-CV (dot line), and
the 90% interval of LOO error rate (gray area) with 95th percentile, which represents
the risk score GBOOT (solid line at the top of the 90% interval), are estimated by re-
sampling bootstrap method. The LOO error rate profile reached the lowest value with
a small number of genes, namely k = 1, and hence k = 1 is selected as the best number
of genes with the LOO criterion. On the other hand, the 90% interval of the bootstrap
distribution at k = 1 exhibits a large variance in the error rate, and the 95th percentile
error rate is over the chance level 0.5, which indicates large risk of falling into a poor
predictor under the chance level. Also, the LOO error rate at k = 1 lies under the 5th
percentile and the 3-fold-CV error rate, which reveals that the lowest LOO error rate
at k = 1 is likely achieved by chance. The min-max criterion, i.e. the 95th percentile,
selected a larger number of genes, k = 590. Although the LOO error rate and the 90%
interval at k = 590 showed higher error rate than LOO at k = 1, the classifier of k = 590
has lower risk to take a poor predictor than that of k = 1. 3-fold-CV selects a classifier
with k = 5 which has less variance than LOO in the 90 % interval.

In the right panel of Figure 4.1, a similar comparison is shown between LOO, 3-
fold-CV, and min-max criteria with the R-SVM classifier. The LOO criterion showed
an instability which is similar to that of T-WV, and the lowest LOO error rate at k = 376
seemed to be achieved by chance. All criteria selected larger numbers of genes than
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Figure 4.4: Assessed result on breast cancer affymetrix dataset. See figure 4.1 caption
for legend.

the T-WV classifier.
In Table 4.2, test error rates of the selected predictors are assessed by using two

test datasets with 19 and 253 samples, where five criteria (LOO, min-max, 3-, 5-, and
10-fold-CV) with two classifiers ( T-WV and R-SVM) are compared. While min-max
outperformed the other criteria, LOO and k-fold-CV, about both 19 and 253 test sam-
ples, LOO exhibits poor performance with 19 test samples and worse with 253 test
samples whose test error rate is nearly the chance level. Intuitively, this result points
out a defect of LOO against the risk of takeing a poor classifier, which is already pre-
dicted by the 90% interval in Figure 1. By considering variance, 3-fold-CV achieved
better performance in test error rates than LOO, but less than min-max. T-WV tended
to exhibit smaller error rate than R-SVM with smaller numbers of genes, although we
cannot insist supremacy of the T-WV based on this single example.

Test error rates on 253 samples seemed significantly worse than the error rates on 19
samples and several reasons were considered:

• The 19 samples might include many those samples which were easy to be clas-
sified.

• The number of samples 19 was too small to reproduce the error rate in low
variance,
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• The test data of 253 samples were gathered from different populations from those
for the 78 training data and 19 test data.

• The microarray measurement system was somewhat different between those
used for observing test data of 253 samples and the 78 and 19 samples.

We should note that the above reasons are the cases which we should consider in order
to design mini-chip based on training datasets. The last reason, different microarray
system, was not likely the case with this breast cancer dataset, however, it will likely
be the case with mini-chip which should be designed based on the other full-size chips.

We compared three criteria, LOO, min-max, and 3-fold-CV, with two classifiers T-
WV and R-SVM on the other three datasets: colon cancer, neuroblastoma (NBL), and
breast cancer Affymetrix in Figures 4.2, 4.3, and 4.4, respectively. From the compari-
son between the Figures 4.2, 4.3, and 4.4, we observe the following tendencies:

• Although the error rates estimated by LOO fluctuate as the number of genes
increases, they are mostly kept within the 90% interval. This suggests that the
LOO estimation for each number of genes originally includes a large variance
and the variance is captured by the estimated 90% interval.

• In contrast to the fluctuating LOO error rate profile with respect to the numbers
of genes, the profile of the 95th percentile (GBOOT) exhibites a smoother curve.
This suggests a more stable nature of the min-max criterion than the LOO cri-
terion. The k-fold-CV shows the characteristics of median value, and hence has
smoother effects, however, it is not enough to assess the risk of classifier since
the error rate distributions show asymmetric nature.

• The 90% confidence intervals tends to be wider when the numbers of genes are
smaller, k < 5, which indicates that discriminant models based on too few genes
is risky, therefore, when we apply the LOO criterion, we occasionally take high
risk to consider a model with a small number of genes. On the other hand, the
95th percentile tends to indicate higher error rate for a smaller numbers of genes
k < 5 than for a larger numbers of genes k > 5. Thus, the min-max criterion
based on the 95th percentile avoids risky models with very small numbers of
genes, and so min-max is expected to achieve better models with lower error
rate.
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• For datasets with larger sample size, the 90% interval tends to be narrower. In
the neuroblastoma (NBL) dataset, the number of samples is almost twice as large
as that in the colon cancer dataset, which leads to a narrower confidence interval.

• In R-SVM as well as T-WV, LOO shows a fluctuating curve and min-max is a
smoother curve with minimized risk. Hence, the min-max criterion is expected
to be a better model selection than by the LOO criterion for R-SVM.

• The best performances of R-SVM are similar to those of T-WV with larger num-
bers of genes than the T-WV. Thus, T-WV which involves a smaller number of
genes is suitable for practical clinical applications, which is consistent with a
previous finding[39].

• The confidence intervals for R-SVM tends to be narrower than those for T-WV,
which indicates that the SVM achieved a large margin classifier that is more
stable with respect to observation noise within the margin, as compared to that
for T-WV.

Even though we are not interested in classifiers with a large number of genes, say k >

1000, this finding is important for some applications other than mini-chip construction.
Note that R-SVM often predicted the labels with unique answer (e.g. 1 for all samples)
in small number of genes which led to narrower confidence interval. In this case, the
narrower confidence interval doesn’t assure stable predictions with the small number
of genes.

4.3.2 Simulation study on synthetic dataset

In the previous section, we tested our procedure on some real datasets, however,
true models were unknown and the numbers of samples were limited except for breast
cancer dataset, which prevented strong evidence for the predominance of the proposed
criterion from being obtained. To assess the performances of the proposed min-max
criterion, we conducted a simulation study based on a sufficient number of artificial
test samples, which were difficult to achieve in real cases.

We randomly generated expression profiles of 2,000 genes, where 30 out of the
2,000 genes were differentially expressed (DE) between two classes of samples and
the others were not differentially expressed (non DE). For non DE genes, expression
levels were generated from a normal distribution with mean zero, N(0,1), and for DE
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Figure 4.5: Setting of the simulation experiment.

genes, the expression levels of samples with positive and negative class labels were
generated from N(µ,1) and N(−µ,1), respectively, where we set µ = 0.5 for all DE
genes. According to the above process, we generated synthetic datasets of 20 to 150
samples for training, and 1,000 samples for testing, where the numbers of samples with
the two class labels were set to be equal.

The proposed simulation scheme is illustrated in Figure 4.5. For each training
dataset, the candidate classifiers involving various numbers of genes were trained and
assessed, and the best numbers of genes were selected by the LOO and the min-max
criteria, where the number B of the bootstrap in the min-max procedure was set at 100.
The performance of the finally selected classifier was then assessed by a test dataset
with 1,000 samples. We repeated this process with a randomly generated training
dataset and assessed the corresponding test error rates by using a test dataset of 1,000
samples. The distributions of the test error rates were compared between different
conditions.

We designed the above setting in order to clarify how the min-max criterion im-
proves the model selection. The number of test datasets was set sufficiently large and
is commonly used for various settings of the other features in order to reduce the vari-
ance of error rates that stemmed from random sampling of the test dataset. The number
of DE genes, 30, and the strength of differential expression, µ = 0.5, were determined
in order to examine typical situations that arose in realistic cases. We omitted other
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features of datasets that may arise in realistic cases, for example, variations in the
number of DE genes, strength µ , and the proportion of numbers of positive and neg-
ative samples, because they had no significant effect in our preliminary experiments.
We also omitted correlations of gene expression patterns between DE genes because
such correlations would not affect either T-WV or R-SVM.

Table 4.3: Test error rate of simulation dataset

Number of training samples Selection criterion Mean Standard deviation
20 LOO 0.241 0.077

min-max 0.210 0.064
50 LOO 0.042 0.024

min-max 0.026 0.012
100 LOO 0.015 0.013

min-max 0.006 0.003
150 LOO 0.012 0.010

min-max 0.004 0.002

Figure 4.6 shows the distributions of test error rates of the T-WV classifiers selected
by two criteria, LOO and min-max, with 20, 50, 100 and 150 training samples. There
are certain levels of variance for both criteria, and the variance is larger for smaller
numbers of samples. Frequently, either LOO or the min-max outperforms the other.
However, LOO sometimes shows much worse results than min-max, as indicated by
the cloud of points in the bottom-right area of each panel in Figure 4.6. Note that the
number of test samples, 1,000, is large enough so that there is no significant increase
in sampling variance. Table 4.3 shows the means and standard deviations of test error
rates of the classifiers selected by LOO and min-max. Through 20 - 150 training
samples, min-max outperforms LOO in terms of smaller means and standard deviations
of test error rates.

We showed the intersection sets of the genes selected in the model and the real DE
genes with respect to the number of genes in the model in Figure 4.8-4.11. In the
Figure 4.8 to 4.11, the top panels of each figure show test error rate plotted against
the number of genes selected in LOO (left) and min-max (right). The bottom panels
shows the number of DE genes included in the selected number of genes with two
selection criteria, LOO (left) and min-max (right). It showed that min-max included
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Figure 4.6: Distribution of test error rates of T-WV. The vertical and horizontal axes
denote the test error rates of classifiers selected by the min-max and LOO criteria,
respectively. The results from 100 trials of random sampling of 20, 50, 100 and 150
samples are shown in the four panels.
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Figure 4.7: Distribution of test error rates of R-SVM. The vertical and horizontal axes
denote the test error rates of classifiers selected by the min-max and LOO criteria,
respectively. The results from 50 trials of random sampling of 20, 50, and 100 samples
are shown in the three panels.

more DE genes with 50 to 150 training samples. While min-max avoided to select the
number of genes which showed good error rate by chance, LOO tends to select very
few number of genes or large number of genes fortuitously. As the number of training
samples increased, the means and the variance of test error rate become smaller and
the number of DE genes included in the selected number of genes approach to the true
number of DE genes, 30. Even the number of training samples increase, however, test
error rate of LOO showed larger variance than min-max caused by fortuitous number
of gene selection.

Figure 4.7 showes the distributions of test error rates of R-SVM classifiers selected
by LOO and min-max with 20, 50, and 100 training samples. We ploted the results of
50 trials, which is a half of the number of trials, 100, for T-WV, and we did not calcu-
lated the case of 150 samples because of computational costs of boostrap simulation
for R-SVM. Similar tendency to that of T-WV is observed in the cases of 50 and 100
samples. In the case of 20 samples, label prediction error rates are near the chance
level 0.5 and there was no difference shown between the LOO and min-max criteria.

4.4 Concluding remarks
In the present study, we investigated gene subset selection methods in order to design

a low cost mini-chip microarray for diagnosis of cancers by gene expression profiles,
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Figure 4.8: 20 samples. The vertical axes for all figures show the number of genes
selected in a model. The horizontal axes for the top two figures denote test error of
selected model and for the bottom two figures denote the number of DE genes included
in a model.
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Figure 4.9: 50 samples
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Figure 4.10: 100 samples
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Figure 4.11: 150 samples
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which required a reliable predictor with as small number of genes as possible. We
investigated the resampling bootstrap distribution of classification error rates for su-
pervised microarray classification problems and proposed a novel min-max criterion
that was based on a simulated distribution of classification error rates.

In numerical comparisons on real and simulation datasets, we showed the stable na-
ture of the min-max criterion in comparison to the state-of-the-art criterion. We also
showed that the conventional LOO estimation of error rates resulted in large variances,
consequently, the LOO criterion of model selection had a risk of choosing inappropri-
ate classifiers that would exhibit extremely poor test error rates.

We compared two different supervised analysis procedures, T-WV and R-SVM, and
concluded that the T-WV is suitable for mini-chip design. Although the mean and
variance of the best performances, i.e. error rates, were not significantly different
between T-WV and R-SVM, the best performances were achieved by smaller number
of genes for T-WV than those for R-SVM. Thus, we recommend T-WV with min-max
criterion in total.

For future studies, theoretical justification for our recommendation will be impor-
tant. Although we compared two state-of-the-art methods, T-WV and R-SVM, there
is room to develop a novel supervised classification method with smaller number of
genes that incorporates the requirements of smaller expected error rate and smaller
expected variance of the error rate for designing a mini-chip.

4.5 Summary
In order to design a low-cost minichip microarray for clinical application of a can-

cer diagnosis system, we need a supervised classifier involving the smallest number of
genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier,
we should assess candidates classifiers and select the best candidate. In the selection
process of the best classifier, however, the assessment criterion must involve large vari-
ance because the number of samples is limited and observation noise is not negligible.
Therefore, even if a classifier with a very small number of genes exhibited the small-
est leave-one-out (LOO) error, the classifier would not necessarily be reliable because
classifiers based on a small number of genes tend to show large variance.

We proposed a model selection criterion, the min-max criterion, based on a resam-
pling bootstrap simulation to assess the variance of estimation of classification errors.
We applied two state-of-the-art classifiers for microarray analysis, weighted voting
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with t-statistics (T-WV) and a support vector machine with recursive feature elimi-
nation (R-SVM), to real and synthetic datasets and found that the conventional LOO
criterion for WV classifiers had a non-negligible risk of selecting extremely poor clas-
sifiers and that the new min-max criterion could eliminate the risk. We also compared
the T-WV and R-SVM, and showed that T-WV with the min-max criterion achieved
the smallest error rate, which was equal to the best error rate by the R-SVM, with a
smaller number of genes.
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Chapter 5

Conclusions

We stated in Chapter 1, that we need to check the following two aspects of data,
in order to build accurate predictive models in machine learning: (1) If the data is
represented by a vector, is the number of dimensions small enough not to be affected
by the so-called “curse of dimensionality”? (2) Is the amount of training data large
enough to predict unseen test data?

For the issue addressed in (1), we investigated the case when a data object is repre-
sented as a high dimensional feature vector. In Chapter 3, we built a hypothesis that the
Laplacian-based kernels reduce hubs following the report of Radovanović et al., which
insisted that objects which are closer to the centroid become hubs in high dimensional
spaces. We saw in the experiments in section 3.4 the hypothesis is true in some cases,
but not always. However, when hubs are reduced by using the Laplacian-based ker-
nels, the performance improves for tasks such as information retrieval, multi-class and
multi-label classification.

The issue addressed for (2) in this thesis, we focused on the case where only small
number of samples are available, yet, desired to obtain robust classifiers based on su-
pervised learning techniques. The analysis of microarray gene expression data for
cancer diagnosis is one of such cases. In Chapter 4, we investigated gene subset se-
lection methods in order to design a low cost mini-chip microarray for diagnosis of
cancers by gene expression profiles, which required a reliable predictor with as small
number of genes as possible. We investigated the re-sampling bootstrap distribution
of classification error rates and proposed a novel min-max criterion that was based
on a simulated distribution of classification error rates. In the experiments on real as
well as synthetic datasets, we showed that the min-max criterion made more stable re-
sults in comparison to the conventional LOO criterion. We also showed that the LOO



method for estimating error rates resulted in large variances, hence, the LOO criterion
for model selection had a risk of choosing inappropriate classifiers that would exhibit
extremely poor error rates for test data.

70



71

Bibliography

[1] A. A. Alizadeh, M. B. Eisen, E. E. Davis, et al. Distinct types of diffuse large B-
cell lymphoma identified by gene expression profiling. Nature, 403(6769):503–
511, 2000.

[2] U. Alon, N. Barkai, D. A. Notterman, et al. Broad patterns of gene expres-
sion revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proceedings of the National Academy of Sciences of the
United States of America, 96(12):6745–6750, 1999.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest
neighbor” meaningful? In Proceedings of the 7th International Conference on
Database Theory (ICDT ’99), pages 217–235. Springer, 1999.

[4] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a
hyperlinked environment. In Proc. of SIGIR-98, pages 104–111, 1998.

[5] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[6] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren. A mea-
sure of similarity between graph vertices: Applications to synonym extraction
and web searching. SIAM Rev., 46(4):647–666, 2004.

[7] Y. L. Borgne. Bias variance trade-off characterization in a classification. what
differences with regression? Technical report, ULB, 2005.

[8] U. M. Braga-Neto and E. Dougherty. Is cross-validation valid for small-sample
microarray classification? Bioinformatics, 20(3):374–380, 2004.

[9] P. O. Brown and D. Botstein. Exploring the new world of the genome with DNA
microarrays. Nature Genetics, 21:33–37, 1999.



[10] P. Y. Chebotarev and E. V. Shamis. The matrix-forest theorem and measuring
relations in small social groups. Automation and Remote Control, 58(9):1505–
1514, 1997.

[11] F. R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics 92. American Mathematical Society, 1997.

[12] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

[13] C. A. Davis, F. Gerick, V. Hintermair, et al. Reliable gene signatures for mi-
croarray classification: assessment of stability and performance. Bioinformatics,
22(19):2356–2363, 2006.

[14] S. Draghici, P. Khatri, A. C. Eklund, et al. Reliability and reproducibility issues
in DNA microarray measurements. Trends in Genetics, 22:101–109, 2006.

[15] S. Dudoit, J. Fridlyand, and T. Speed. Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
Statistical Association, 97(457):77–87, 2002.

[16] F. Fouss, L. Yen, A. Pirotte, and M. Saerens. An experimental investigation of
graph kernels on a collaborative recommendation task. In Proceedings of the
Sixth International Conference on Data Mining (ICDM ’06), pages 863–868,
2006.

[17] D. François, V. Wertz, and M. Verleysen. The concentration of fractional dis-
tances. IEEE Transactions on Knowledge and Data Engineering, 19:873–886,
2007.

[18] J. H. Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality.
Data Mining Knowledge Discovery, 1(1):55–77, 1997.

[19] W. J. Fu, C. R. J, and S. Wang. Estimating misclassification error with small
samples via bootstrap cross-validation. Bioinformatics, 21(9):1979–1986, 2005.

[20] T. Golub, D. Slonim, P. Tamayo, et al. Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring. Science,
286(5439):531–537, 1999.

72



[21] I. Guyon, J. Weston, S. Barnhill, et al. Gene selection for cancer classification
using support vector machines. Machine Learning, 46(1):389–422, 2002.

[22] M. Hagiwara. A supervised learning approach to automatic synonym identifi-
cation based on distributional features. In Proc. of the ACL-08: HLT Student
Research Workshop, pages 1–6, 2008.

[23] M. Hagiwara, Y. Ogawa, and K. Toyama. PLSI utilization for automatic thesaurus
construction. In Proc. of IJCNLP-05, pages 334–345, 2005.

[24] M. Hagiwara, Y. Ogawa, and K. Toyama. Selection of effective contextual infor-
mation for automatic synonym acquisition. In Proc. of COLING/ACL-06, pages
353–360, 2006.

[25] B. Haibe-Kains, C. Desmedt, S. Loi, et al. Computational Intelligence in Clinical
Oncology: Lessons Learned from an Analysis of a Clinical Study, volume 122.
Springer-Verlag Berlin/Heidelberg, 2008.

[26] Z. Harris. Distributional structure. The Philosophy of Linguistics, pages 26–47,
1985.

[27] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York, NY, USA, 2001.

[28] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer, New York, 2001.

[29] N. Iizuka, M. Oka, H. Yamada-Okabe, et al. Oligonucleotide microarray for pre-
diction of early intrahepatic recurrence of hepatocellular carcinoma after curative
resection. Lancet, 361:923–929, 2003.

[30] J. Jaeger and R. Spang. Selecting normalization genes for small diagnostic mi-
croarrays. BMC Bioinformatics, 7:388, 2006.

[31] W. Jiang, S. Varma, and R. Simon. Calculating confidence intervals for predic-
tion error in microarray classification using resampling. tatistical Applications in
Genetics and Molecular Biology, 7, 2008.

[32] M. Komachi, T. Kudo, M. Shimbo, and Y. Matsumoto. Graph-based analysis
of semantic drift in Espresso-like bootstrapping algorithms. In Proceedings of

73



the 2008 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’08), pages 1011–1020, 2008.

[33] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
input spaces. In Proceedings of the 19th International Conference on Machine
Learning (ICML ’02), 2002.

[34] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and
multiclass classification methods for tissue classification based on gene expres-
sion. Bioinformatics, 20(15):2429–2437, 2004.

[35] A. M. Molinaro, R. Simon, and R. M. Pfeiffer. Prediction error estimation: a
comparison of resampling methods. Bioinformatics, 21(15):3301–3307, 2005.

[36] M. Ohira, S. Oba, Y. Nakamura, et al. Expression profiling using a tumor-specific
cDNA microarray predicts the prognosis of intermediate risk neuroblastomas.
Cancer Cell, 7:337–350, 2005.
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