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Alan de Souza Rodrigues 

 

 

Abstract 

 

Humans can learn to select actions from scratch, by trial-and-error, or by using knowledge 

from previous experiences. Also, a thoughtful deliberative strategy can be used for 

planning of future behaviors, whereas a reactive strategy for selection of learned 

sensory-motor mappings. Reinforcement Learning (RL), a computational theory of 

adaptive optimal control, proposes two formal methods for action selection: Model-Free 

(MF) uses action values to predict future rewards based on current states and available 

actions and Model-Based (MB) uses a forward model by mental simulation to predict 

future states reached by hypothetical actions. It has been suggested that humans might use 

MF and MB strategies which are implemented locally by distinct brain areas or in neural 

networks linking the prefrontal cortex, basal-ganglia and cerebellum. The goal of this 

thesis is to investigate whether and how humans use multiple RL action selection 

strategies, and where in the brain they are implemented.  

 

We hypothesized based on RL a parallel model for action selection and learning from 

reward and trial-and-error. When knowledge of the task dynamics is unavailable, a MF 

valued-based method is used for exploration and learning predictions of future rewards 

from sensory states and actions. If an internal model exists, a MB forward method is 

implemented by mental simulation to predict future states reached by hypothetical actions. 

After repeated experiences, a MF memory-based method is employed for fast selection of 

actions found successful for a given sequence of sensory states.  

 

This hypothesis was experimentally tested as human subjects performed a ‘grid-sailing 

task’ and learned to move a cursor from a start position to a target goal with the shortest 

finger movement sequence by button pressing. Performance feedback was provided as a 

reward score at the trial end. Subjects extensively learned action sequences for fixed 
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key-mappings (KM) and start-goal (SG) sets in a training session and were later tested 

under three task conditions: a) Condition 1, new KM, b) Condition 2, learned KM, and c) 

Condition 3, learned KM-SG sets, practiced in the training session. The response start 

time was manipulated by introducing a delay period of about 4~6s preceding the response 

start go signal in half of the trials. 

 

Behavior analysis revealed distinct performance profiles  in the test session: a) exploratory, 

variable and slow learning in Condition 1 due to the use of the new KM; b) fast learning 

and high reward score especially in trials with the delay period in Condition 2 as subjects 

could use the learned KM, c) accurate performance with fast sequence execution in 

Condition 3 which required the learned KM-SG sets in the training session. These results 

suggest that a value-based exploratory method was used in Condition 1; a model-based 

planning method in Condition 2 and the memory-based habitual method in Condition 3. 

 

The fMRI analysis of the brain signals during the delay period preceding movement 

execution revealed predominant activity by the use of: a) value-based method in 

Condition 1 in the medial orbital frontal cortex, ventromedial striatum and left 

cerebellum; b) model-based method in Condition 2 in the dorsolateral prefrontal cortex, 

dorsomedial striatum and right cerebellum, and c) memory-based method in Condition 3 

in the supplementary motor area, right dorsolateral striatum and right anterior cerebellum. 

 

We could demonstrate by the behavior analysis that humans use multiple action selection 

strategies depending on their experiences with a given task, existence of an accurate 

internal model and available time for thinking and use of the model. The fMRI results 

showed that an action selection method is implemented in the brain by interaction of 

multiple brain areas, such as networks linking the prefrontal cortex, the basal -ganglia and 

cerebellum, and not locally as had been previously speculated. What computational 

operations these brain regions play in mental simulation, planning and preparation of 

future behaviors and how they are disrupted in psychiatric conditions is still a problem to 

be elucidated. 

 

 

Keywords: 

reinforcement learning, model-free, model-based, action selection, sequence learning, prefrontal 

cortex, basal ganglia, cerebellum  

.*Doctoral Dissertation, Division of Applied Informatics, Graduate School of Information Science, Nara Institute 

of Science and Technology, NAIST-IS-DD0861212, September 14, 2011. 
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強化学習理論に基づく 意思決定戦略における前頭前野－大脳基底核－小脳

系神経回路の計算論的機能に関する研究 

 

アレン デ ソウザ ホドリゲス  

 

 

Abstract 

 

 ヒトは，試行錯誤で，または過去の経験に基づいて，行動を一から決定・学習すること

ができる．また，ヒトは，既知の感覚－運動変換に基づいて反射的な行動戦略をとる一方

で，熟考した複雑な戦略で，将来の行動を計画することができる．適応制御のための学習

理論である強化学習  (Reinforcement Learning: RL) は，ふたつの行動戦略を提案している．

一方はモデルフリー  (Model-Free: MF) で，将来の報酬を現在の状態における各行動の価値

から予測する．他方はモデルベース  (Model-Based: MB) で，例えばメンタルシミュレーシ

ョンによって，行動に基づく状態遷移を順モデルから推定する．これまで，ヒトは，MF・

MB両方の戦略を用いることが出来ると提案されてきた．また，MF・MB戦略は，脳の異な

る領域に局所的に実装されていると考えられてきた． 本論文では，この並列的な強化学習

戦略を，ヒトがどのように用いているのかを調べる．また，各戦略が，脳のどこで実装さ

れているかを調べる．  

 

 本研究で私達は，以下のように，行動選択には，複数の強化学習戦略が並列的・段階的

に関与すると仮定した．まず，課題に対する知識が不足しているとき，ヒトは，MF戦略の

価値依存的戦略  (Value-based method) で，状態・行動から報酬を予測し，探索的に行動を

決定する．次に，課題の内部モデルがあるとき，ヒトは，メンタルシミュレーションで，

行動に基づく状態遷移を順モデルで推定する．さらに，同一の課題を繰り返し経験した後

では，ヒトは，MF戦略の記憶依存的戦略  (Memory-based method) で，状態に適した行動を，

すばやく決定する．  

 

 私達は，この仮説を，格子探索課題  (Grid-sailing task) 遂行中のヒト被験者の行動から実

験的に検証した．同課題で，被験者は，指でボタンを押し，コンピュータ上のカーソルを

動かした．被験者は，格子世界で，スタート位置からゴール位置までを最短でむすぶ指運

動系列を学習した．各試行の最後に，被験者の行動，すなわち，指運動系列のフィードバ

ックとして，報酬を提示した．訓練セッションで，被験者は，指運動‐カーソル移動関係  
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(key-mappings: KM) とスタート‐ゴール位置  (Start-goal set: SG) を，特定の組み合わせで

学習した．訓練セッション後，被験者の行動を，以下の3つのテスト条件で調べた：a) 条

件1，新規KM－新規SG；b) 条件2，学習済みKM－新規SG；c) 条件3，学習済みKM－学習

済みSG．全試行中半数の試行では，指運動開始を指示する視覚刺激の前に，4~6秒の遅延

時間を設定した．遅延時間ありとなしの試行で，被験者の反応時間を計測・比較した．  

  

 被験者の行動を解析した結果，3つのテスト条件で異なる行動が見られた：a) 新規KMを

用いた条件1では，探索に基づくゆるやかな学習が見られた．b) 学習済みKMを用いた条件

2，特に遅延時間ありの試行では，すばやい学習と高い報酬量が見られた． c) 学習済みの

KM-SGを直接用いた条件3では，正確な行動とすばやい指運動系列が見られた．これらの

結果は，条件1，条件2，条件3でそれぞれ，被験者がValue-based method，Model-based planning 

method，Memory-based habituation method を用いていたことを示唆する．   

 

 指運動開始前の遅延時間で，課題中の脳活動を機能的磁気共鳴画像法  (functional 

Magnetic Resonance Imaging: fMRI) で測定した結果，a) 条件1のValue-based methodでは，内

側眼窩前頭皮質，腹内側線条体，左小脳，b) 条件2の  Model-based methodでは，背外側前

頭前野，背内側線条体，右小脳，c) 条件3のMemory-based methodでは，補足運動野，右背

外側線条体，右前小脳が，それぞれ顕著に活動したことがわかった．  

 

 行動解析の結果，ヒトは，課題依存的に複数の行動戦略，すなわち，Value-based method，

Model-based planning method，Memory-based habituation methodを使い分けることを，本研究

は示唆した．また，fMRIの解析結果，これらの行動戦略は，前頭前野－大脳基底核－小脳

系神経回路を含んだ複数の脳領野で実装されていることを示唆した．従来，行動戦略は，

脳の各領野に局所的に実装されていると考えられており，本研究の結果とは異なる．今後，

本研究で同定した神経回路網が，行動予測の準備・予測・メンタルシミュレーションのど

の段階・計算理論に関与するのか，また，精神病でどのように阻害されるのかを検証する．  

 

 

 

 

キーワード: 

強化学習，モデルフリー戦略，モデルベース戦略，行動選択， 系列学習，前頭前野，大脳

基底核，小脳  

.*奈良先端科学技術大学院大学  情報科学研究科  システム情報学領域  博士論文 , NAIST-IS-DD0861212, 

2011年9月14日 . 
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CHAPTER 1 

 

 

Introduction 

 

 

Humans and other vertebrates (mammals, birds, fishes) share the amazing capability, 

evolutionarily acquired, to continuously learn new motor and cognitive behaviors 

(Skinner, 1984; Skinner, 1975; Alcock, 2001; Bekoff, 2002). This ability, present from 

birth to advanced age, ceases only with death. Another common feature shared among 

different species is the existence of a central nervous system (Herculano-Houzel, 2009; 

Barton, 2006; Barton and Harvey, 2000; Roth and Dicke, 2005, Sultan, 2002) and/or of a 

peripheral nervous system that innervates their whole bodies (Murakami and Tanaka, 

2011; Burish et al., 2010). 

 

The human brain is highly complex and large when compared with the brains of non-

human primates (Whiting et al, 2003; Ramnani, 2006) and it is estimated to contain 

about 100 billion (10
11

) neurons (Pakkenberg, 1988, Herculano-Houzel and Lent, 2005). 

The brain of a bird is much smaller yet, it retains neural structures that resemble those of 

a human brain. The total number of neurons in a songbird brain is about 20 millions 

(2x10
7
). The insect nervous system is restricted to only a few hundred or a few thousand 
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cells. The nematode worm Caenorhabditis elegans (C. elegans) has just 302 neurons 

(Felix, et al, 2010). 

 

Regardless of the number of neurons in a nervous system, some species are able to learn 

new behaviors and to retrieve and execute learned ones. Therefore, these species possess 

common learning and memory mechanisms capable of identifying information arriving 

from the outside world, generate a response or a sequence of responses, store those 

responses if considered important and retrieve them for execution when encountering the 

same situation. 

 

Learning, memory and retrieval, however, are not be the best evolutionary solutions for 

survival in a dynamically changing and uncertain world. Humans evolved and organized 

in social networks either by attachment/emotional bonds or by social rules and 

conventions. We became able to understand the intentions and desires of others in our 

surrounding and for that we developed complex communication skills by gestures, 

speech, writing, dancing and arts. Most importantly, humans became able to imagine and 

contemplate the future, to think ahead, make decisions, simulate and evaluate the 

consequences of one's own actions as well as the outcomes achieved by others' behaviors 

(Yoshida and Ishii, 2006; ; Gusnard et al, 2001; Bar, 2007; Addis et al, 2007). 

 

In a world in constant change, where people make decisions but immediately change 

their minds, it would be almost impossible to live a good social life without the ability to 

make plans and imagine what is going on inside others' mind. How has the brain found a 
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solution to this problem? How were we, humans, able to add to our fundamental learning 

and memory abilities, one more process, that of planning, prediction and imagination? 

 

The human brain got larger with evolution (Haug, 1987; Andersen et al, 1992). The brain 

region whose total area most prominently enlarged is the prefrontal cortex. The human 

prefrontal cortex is about two or three times the size of that of a chimpanzee and even 

several times larger than the brain of new world monkeys (Whiting and Barton, 2003). 

The lateral hemispheres of the cerebellum cerebellum paralleled a similar enlargement as 

that of PFC, in a much larger proportion (Lange, 1975), though. The cerebellum lateral 

lobules, Crus 1 and Crus 2, expanded dramatically and almost doubled the size of the 

cerebellar cortex (Ramnani, 2006, Llinas and Hilmman, 1969; Dow and Moruzzi, 1958). 

New anatomical connections were made with the enlargement of several brain areas. 

Reciprocal anatomical connections between the PFC, the basal ganglia and have been 

discovered only in the last 20 years with the development of novel neuronal fiber tracing 

methods (Alexander et al, 1986; Bostan and Strick, 2010). 

 

Imaging experiments with humans and lesion and neurophysiological recording studies 

in monkeys have shown the involvement of PFC neurons in higher order cognitive 

processes such as planning sequences of motor actions and events (Shima et al, 2007; 

Ninokura, 2003), spatial memory tasks (Goldman-Rakic et al, 1990; Funahashi et al, 

1991, Funahashi et al, 1992), problem-solving (Mushiake et al, 2009), planning final 

target goals (Saito et al, 2005, Mushiake et al, 2006), prediction of action outcomes 

(Glascher et al, 2010), mental simulation and imagining the future (Simon and Daw, 

2011; Szpunar et al, 2007) and control of social behavior (Wood, 2006; Beer et al, 2006). 
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These results also point out that the basal ganglia and cerebellar hemispheres play roles 

in higher cognitive processes since these regions receive input from and send output back 

to the prefrontal cortex. Although the participation of the prefrontal cortex in cognitive 

and social processes has been well investigated, the role of basal ganglia and the 

cerebellum is still in under intense scrutiny. 

 

Evolution, therefore, has shaped the brain with built-in functions for learning and 

memory. Social pressures and environmental demands requiring flexibility and quick 

adaptation of behavior led humans to acquire the capability for planning and simulation 

by using more elaborate cognitive processes. The results of neurophysiological and 

imaging experiments imply that the prefrontal cortex might be the neural substrate that 

allows humans to realize planning and prediction. This capacity for planning and 

simulation of future events might have been optimized with the enlargement of several 

brain areas as well as the anatomical connections, including those linking the prefrontal 

cortex, basal ganglia and cerebellum. 

 

The basic processes of how humans learn new motor behaviors, store and retrieve motor 

memories or engage in complex planning processes for making action choices is well 

documented. Nevertheless, the actual strategies used for action selection under different 

contexts and levels of experience is still an open problem. Patients with neurological and 

psychiatric disorders, such as Parkinson's disease, cerebral palsy and developmental 

coordination disorder, are highly impaired in learning and planning motor behaviors 

(Muslimovic et al, 2007; Hutton et al, 1998; Sugden and Chambers, 2005), solving 

executive and memory tasks (Patniyot, 2011; Bralet et al, 2008), and engage in social 
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and communicative behaviors (Koegel and Koegel, 1990; Koegel et al, 1992; Carr and 

Durant, 1985; Kanner et al, 1972). Therefore, the clarification of the mechanisms used 

for action selection and their neural correlates is essential for the development of 

therapeutical interventions, such as for schizophrenia, Parkinson's disease and 

developmental disorders, including autism and cerebral palsy. 

 

 

1.1. Motivation and Scope of this Thesis 

 

 

The goal of this thesis is to understand whether and how humans use prediction models 

for action selection and learning, and what brain networks implement such strategies. It 

is known that the acquisition of new motor behaviors goes through a series of stage-wise 

transitions (Fitts and Posner, 1968; Ackerman, 1988; Adams, 1971) . Initially, long 

response time is needed for action selection and for that humans use higher-order 

cognitive and attentional processes to understand the task dynamics and to map which 

action to take to get which outcome. After some experiences and the formation of model 

of the environment, humans become able to use these learned representations for 

planning and simulating the consequences of candidate actions. Finally, after long-term 

experience and repeated practice, action selection becomes automatic and fast, and 

requires the less cognitive effort. This view implies that humans might utilize multiple 

action selection strategies in learning depending on their level of experience with a task. 
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Interestingly, the problem of action selection in decision making situations might parallel 

that of action selection in motor learning. Two main strategies for choosing actions are 

frequently reported in the decision making literature. A thoughtful, deliberative strategy 

is used for planning goal-directed behaviors by simulating state transitions and the 

consequences of hypothetical actions, whereas a reactive, habitual strategy is used for 

selection of well-learned sensory-motor mappings, such as in stimulus-response 

association learning. The deliberative and reactive decision making strategies correspond, 

to some extent, to the intermediate and advanced motor learning stages, respectively.  

 

Reinforcement learning (RL, Sutton and Barto, 1998; Doya, 2007), a computational 

theory of adaptive optimal control, has attracted the attention of DM researchers and has 

proved powerful in providing normative descriptions of how humans (Tanaka, et al, 

2005; Glascher et al, 2009; Wunderlich et al, 2009) and animals (Ito and Doya, 2009; 

Seo et al, 2009) select and learn actions. RL proposes two methods for action selection, 

model-free (MF) and model-based (MB), that resemble the reactive and deliberative 

strategies used by humans for motor learning and decision making.  

 

The model-free method updates a policy using action value functions that predict future 

rewards based on current sensory input states and available actions by trial-and-error 

from actual exploratory experiences. In situations where the environment suddenly 

changes, the policy must be updated based on the difference of the predicted and actual 

delivered rewards. The model-based method employs an internal forward model, 

assuming that it has been previously acquired, to predict the future state reached by a 

hypothetical action or multi-step actions, and uses the results of this simulation to 
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evaluate states and actions, and to selecting an action for execution based on its goodness. 

A model-based method is helpful not only for on-line action planning, but also for off-

line learning of a policy from limited experiences (Doya, 2007). Success of using a 

model-based method depends, however, on the model accuracy, working memory 

capacity, time available for computation and the action search depth and width. 

 

Action selection in DM and ML might be guided by the same or, at least, common 

mental processes. The theory of RL provides formal descriptions of what selection 

strategies humans use in decision making and learning. However, it is still unclear 

whether and how humans use MF and MB RL strategies, the factors that influence and 

arbitrate the use of one strategy instead of the other, and what brain mechanisms are 

predominantly involved in implementing them. 

 

We explore these different topics under different approaches in this thesis: 

 

I) Behavioral Studies 

Behavioral experiments were conducted to investigate whether and how humans use 

prediction models for action selection. Subjects were asked to play a computer game, the 

'grid-sailing task', and perform sequential finger key-presses to move a cursor from its 

start position to a target goal. A cursor was associated with a three-motion direction key-

mapping rule and subjects started off the task without knowing it. Subjects, therefore, 

had to learn it by trial-and-error as a reward score was provided as performance feedback 

at the trial end. A delay period of about 6 seconds preceded the go signal for action 

execution in half of the trials, whereas in the other half, responses should start 
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immediately after cue presentation. The task was designed to share an interface between 

ML and DM paradigms, where action selection could be implemented by strategies 

common to both fields. A training session was administered on day 1 and subjects 

extensively learned fixed sets of action sequences. After a one-night sleep subjects 

performed the main experiment under three task conditions which had the purpose to 

mimic and break apart the multiple action learning stages. Subjects' behavior data was 

analyzed under the approach of reinforcement learning (RL, Sutton and Barto, 1998; 

Doya, 2007), a computational theory of adaptive optimal control that is used to explain 

how humans learn actions by trial-and-error and available teaching signals, such as food 

rewards, money or verbal instructions. 

 

II) Brain Imaging Experiment 

A functional Magnetic Resonance Imaging (fMRI) experiment was carried out in order 

to investigate the brain networks activated as subjects performed the grid-sailing task 

under different experimental conditions. This analysis aimed at identifying the brain 

activity for the main trial events, namely: the delay period, the execution period and the 

reward score feedback period. This approach allowed us to separate the main cognitive 

processes that subjects engaged for planning and simulation of action sequences during 

the delay period from the motor-related processes involved in the action execution period, 

as well as the performance feedback-related processing during the reward period. Further 

analysis included the region of interest (ROI) method with a primary focus on the 

percent signal change in the activity of specific brain regions such as the PFC, BG and 

CB. 
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1.2. Outline of the Thesis 

 

 

This thesis is organized as follows. In Chapter 2, a brief review of the literature describe 

the classical and contemporary theories of action selection and learning, the neural 

mechanisms involved in learning and open issues in the understanding of human motor 

behavior. Chapter 3 describes the preliminary behavioral results of an behavior 

experiment providing evidence that humans use a model-based action selection strategy 

for planning multistep actions. Based on these results we proposed a RL three-system 

parallel for action selection and learning that is able to explain why stage-wise transitions 

are observed in motor learning. Chapter 4 expands the results presented in Chapter 3 

with a new task design and the results of fMRI data analysis. First, the experimental task 

design was modified in order to make it methodologically and statistically sound. The 

major change was the random assignment of subjects to one of three groups. And second, 

the task was performed inside the fMRI scanner allowing the recording and acquisition 

of brain signals during task execution. Finally, in Chapter 5 we summarize the main 

achievements and contributions presented in this thesis, and point out the future 

directions of this work. 
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CHAPTER 2 

 

 

Action Learning: Behavior and Neural Control 

 

 

2.1. Classical Theories of Motor learning 

 

 

Humans and other animals have an extraordinary capability to learning new motor 

actions, to flexibly adjusting and adapting previously learned ones as well as retrieving 

old and recent motor memories imprinted in their brains. Nature and evolution  endowed 

humans with built-in biological functions to learn and retrieve motor memories and other 

representations of the external world stored in the nervous system.  

 

Learning functions come to work early in infancy and are expressed as newborn babies 

learn to control their bodies for reaching (Konzack and Dichgans, 1997; Rochat and 

Goubet, 1995; Thelen et al., 1993; Hofsten, 1984), crawling (Goldfield, 1989; Adolph, 

Vereijken and Denny, 1998), walking (Adolph, 1997; Gesell, 19439), communicate by 

language and imitate facial expressions (Fogel and Thelen, 1987; Meltzof and Moore, 

1997) as well as understanding the physical properties of the world (Baillargeon, Spelke 

and Wasserman, 1985; Spelke et al., 1992; Thelen et al., 2001) and the outcomes that can 

be achieved by their own actions (Angulo-Kinzler; 2001). Later with development and 
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growth, humans learn culturally imposed motor behaviors, such as riding a bicycle, 

swimming, playing sports and musical instruments, writing, driving a car, etc. The 

mental and behavioral aspects of how humans learn new motor and cognitive behaviors, 

from infancy to late adulthood, have been extensively investigated for more than 100 

years (James, 1914; Thorndike, 1911, 1921; McGraw, 1932; Adams, 1987; Thelen and 

Smith, 1994). 

 

One old and recurrent topic that still captures much of the attention of researchers 

investigating human behavior is the phenomenon of stage transitions in motor learning. 

Famous psychologist William James (1890; 1914) was one of the first to suggest that the 

learning process takes place as a series of stage transitions in mental and behavioral 

performance. James emphasized the role of conscious and unconscious processes for 

behavioral control. In his view, when humans face a novel learning situation a conscious 

system takes behavior control through attentional mechanisms. On the other hand, an 

unconscious automatic system assumes control after continuous and repeated practice of 

the same task and behavior. 

 

This very same problem of stage transition in motor learning was later pursued by 

contemporary researchers investigating different human behaviors and under multiple 

theoretical umbrellas (McGeoch, 1931; Fitts, 1964; Fitts and Posner, 1967; Adams, 

1971; Schimidt, 1975; Adams and Bray, 1970; Gibson, 1969; Gibson, 1979; Newell, 

1985; Ackerman, 1988; Gentile, 1972). Table 1 summarizes the features of the theories 

which are relevant for the purview of this thesis. 
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AUTHOR THEORY EXPERIENCE STAGES IN ACTION SELECTION  
Fitts (1964) 

Fitts and 

Posner (1968) 

Transition of cognitive 

processes in motor  

learning 

Verbal-

Cognitive 

Use attention to 

establish the 

proper cognitive 

task set, sensory 

input and 

candidate actions 

Associative 

Anticipation of 

sensory inputs and 

associated action 

and outcomes 

Autonomous 

Performance 

becomes automatic, 

attentionless, fast 

and error-free 

Ackerman 

(1989) 

Transition of cognitive 

processes in perceptual 

learning 

Cognitive 

Attentional 

demands for 

reasoning, spatial 

orientation, 

understand rules 

and strategies 

Associative 

Acquisition of 

perceptual speed 

for quick response 

generation using 

vision or memory 

Autonomous 

Association of 

perceptual-motor 

abilities 

Newell (1985) Learning to control 

and coordinate the 

multiple body 

segments 

Novice 

Multiple joint-

movements and 

co-contraction of 

muscles 

Advanced 

Increased 

adaptability and 

reduced muscle 

co-contraction 

Specialized 

Movements are 

energetically 

efficient and well 

coordinated in 

space-time 

Hikosaka et 

al .(1999) 

Coordinate 

representation in 

sequential procedural 

learning 

S-R formation 

Formation of 

sensory-motor 

mappings based 

on single action 

single sensory 

input 

Spatial 

Coordinates 

Formation of 

bonds linking 

actions using 

visuo-spatial 

coordinates 

Motor 

Coordinates 

Use of a motor-

based system after 

repeated practice of 

the same sequence 

Savelsbergh et 

al. (2001) 

Hierarchical 

acquisition of complex 

behaviors from 

elementary action 

blocks 

Simple Actions 

Association of an 

action to a single 

sensory input and 

context 

Multiple Actions 

Association of an 

action to multiple 

sensory inputs and 

binding 

Generalization 

Flexible adaptation 

of learned actions 

to multiple contexts 

Gentile (1972) Manipulation of task 

difficulty to facilitate 

the learning-teaching 

process 

Simple Task 

Acquisition of the 

representation of movement 

patterns in simple 

environments 

Complex Task 

Adaptation of learned 

movement patterns in 

multiple and complex 

environments 

Adams (1969) Learning as error 

reduction by problem-

solving and mental 

model formation  

Verbal-Motor 

Use of over/covert speech to 

understand and acquire a 

representation of the task 

Motor 

A nearly perfect 

representation of the 

movement is achieved and 

performance gets fast  

James (1914) Behavior control based 

on conscious and 

unconscious processes 

Conscious 

Use of attentional process to 

guide learning and 

understanding of the task 

Unconscious 

Cognitive/motor behavior 

becomes habitual  

 

Table 1. Theoretical models of stages in action learning. The sequence of stages moves 

from left to right. Some theories propose the existence of at least three stages whereas 

others propose two main processes based on the initial and advanced characteristics of 

behavior performance. Other theories which are important for the work developed in this 

thesis will be touched upon in later sections. 
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2.1.1. The Fitts-Posner Three-stage Theory of Action Learning 

 

At this moment, two of these classical theories deserve attention, the cognitive theory 

proposed by Fitts (1964) and Fitts and Posner (1967) and the error reduction theory 

based on reinforcement feedback advocated by Adams (1969). In the Fitts (1964) and 

Fitts and Posner (1967) theory, motor learning occurs in three stages and the cognitive 

processes used throughout learning are based mainly on the attentional demands and the 

subject experience with the task. In an early initial phase, humans first try to understand 

the task and the goals which are to be achieved. Therefore, in this phase it is important to 

establish a proper cognitive set which will be used during the task and that require high 

amounts of attention. The cognitive task set might be composed of the task rules, the task 

goals, the predominant sensory information and the actions that can be performed to 

achieve the goals. Since humans are still learning what can be done and how to solve the 

task, the performance in this initial phase is marked by a large number of errors and slow 

action selection and movement execution. The duration of this phase is dependent on the 

task complexity. 

 

The learning processes moves on to the intermediate phase after the formation and 

acquisition of the cognitive task set. In the intermediate phase, humans become able to 

use the cognitive task set to make stronger stimulus-response (SR) associations by 

anticipating what action should be executed given that specific sensory information will 

appear. Attention still plays an important role in this phase, but the number of errors in 

performance decreases as humans become able to select proper actions with higher 

frequency. In the late phase of action learning human performance becomes automatic 
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with fast execution after repeated practice of the same actions. Different from the initial 

and intermediate phase when actions were selected based on external information, in the 

late phase actions are selected from internal memory representations, becoming less 

dependent on visual and attentional processes (Figure 1A). 
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Figure 1. Schematic view of stage transition in motor learning and action selection 

probability distribution as a function of experience. 

(A) Hypothetical depiction of performance accuracy improvement with learning based 

on the theories summarized in Table 1. The color gradient represents the multiple 

learning stages and transition across stages: initial (orange), intermediate (blue) and late 

(magenta). The black line assumes a linear but finite improvement in performance. 

(B) Representation of Adams's (1971) theory on weak and strong action representations . 

The orange and magenta lines represent the memory trace for the same action with 

different selection probabilities through experience. The black line represents the 

perceptual trace with an initial low and noisy representation and high and accurate 

representation of the motor behavior after robust learning. 

 

 

Although Fitts and Posner proposed the existence of an intermediate stage as humans 

learn to select actions, their idea is that the initial and intermediate stages share the same 
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cognitive processes. Consequently, their theory is in line with that of James (1890; 1914) 

and their proposal is that an attentional system is involved in controlling behavior in the 

initial and intermediate stages of learning, whereas an automatic system controls the 

performance of extensively practiced actions. 

 

 

2.1.2. Adams’s Reinforcement Learning Theory 

 

In a 1971  Journal of Motor Behavior paper entitled “A closed-loop theory of motor 

learning”, Adams proposed a learning theory to explain how humans might use 

reinforcements or punishments to learn motor actions. The theory came up as an 

opposing force to the influential works by Karl Lashley on internally guided movements 

(1951, 1917, 1948). One differential aspect between Lashley’s and Adams’s works is the 

type of motor behavior to be executed. Although Lashley’s works consider learning an 

important process, the theory itself can be applied to the internal generation of any motor 

program initially triggered by a feedforward mechanism and which continues to be run 

by internal control processes. The theory also applies for the execution of sequential 

behaviors and decision making processes. On the other hand, Adams’s theory tries to 

explain how graded slow movements will acquire a stable and stereotypical pattern as a 

function of practice, and how the movement pattern can be transformed by performance 

feedback. 

 

Using engineering and mathematical concepts not explicitly described in the paper, 

Adam’s proposed a 2-state 2-stage learning theory based on probability distribution for 
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action selection, formation of beliefs and reduction of uncertainty (Figure 1B). The 2-

stage learning side of the theory proposes that in the initial stage of learning performance 

is controlled by a hybrid verbal-motor system where a verbal and motor systems work 

concurrently, but the verbal system takes predominant control. Later with experience, the 

late stage, the motor system assumes control and the verbal system is important mainly 

in cases where the task requires some sort of updating of the learned actions. 

 

Adams (1971) considered action learning as a problem-solving process and argued that 

in such situations humans use either overt or covert speech in order to understand the 

task structure. In his view, the use of overt speech is part of an attentional mechanism. 

Therefore, speech and attention are essential factors in the early stage of learning. The 

late stage of learning in Adams concept is not different from previous proposals. Motor 

behavior becomes automatic or habitual after repeated practice and a memory of the 

movement pattern is stored somewhere in the nervous system. With experience, humans 

tend to make less use of verbal processes and actions can be executed with higher spatio-

temporal precision, accuracy and speed. 

 

A significant advance to the study of motor learning was Adams’s proposal of an error 

correction mechanism as the 2-state part of his theory. Previous theories (James, 1890; 

McGeoch, 1931; Fitts and Posner, 1968) made important contributions by identifying 

changes in motor performance which were likely to be accompanied by changes in 

mental cognitive processes and set the path for contemporary research on motor learning 

with the use of advanced brain imaging methods, such as functional Magnetic Resonance 

Imaging (fMRI). However, these very same theories paid scant attention to the 
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mechanisms guiding learning and failed to explain how performance improves from trial 

to trial.  

 

In Adam’s 2-state learning theory, the error correction mechanism is composed by a 

perceptual trace and a memory trace (Figure 2). The memory trace is responsible for 

processes related to action generation such as retrieval, selection and execution. The 

perceptual trace is loaded after the memory trace chooses an action and is responsible to 

provide a measure of the goodness of that action by recognizing the quality of the 

movement performance by its error deviance from what was initially expected. Therefore, 

the error correction signal for the next movement results from the mismatch, that is, the 

difference between the actual motor performance and expected performance computed 

by the perceptual trace. 

 

MEMORY TRACE

(Action Memory)

PERCEPTUAL TRACE

(Reference Mechanism)

action update signal

Action Selection

Action Execution

response produced feedback

efference copy
Recognition

Comparator

 

Figure 2. Schematic visualization of the 2-state theory of error reduction by 

reinforcement as proposed by Adams (1971). The memory trace is responsible for the 

storage of the motor repertoire, the selection and execution of actions. Once an action has 

been selected, an efference copy of the expected movement is loaded in the perceptual 

trace and this information is used as a reference to which the response produced feedback 
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should be compared to. If a mismatch between the expected and actual movement is 

found, the perceptual trace updates its representation and sends an error update signal for 

correction of the movement in the next future event. 

 

 

Adams (1968, 1971, 1977) and his coworkers (Adams and Bray, 1970; Adams, Marshall 

and Bray, 1971) emphasized the use of this error correction system by studying how 

human subjects corrected error in well-learned motor behaviors, such as paired- 

associated verbal and arm positioning tasks. This situation raised strong criticism 

(Schmidt, 1975), since no details were provided on how the perceptual and memory 

traces would work for the learning of novel actions. However, Adams (1971) assumed 

that the perceptual and memory traces could be built up from scratch in the case of new 

learning. In the case of the memory trace, action selection probabilities are very sparse in 

the initial stages of learning, but the selection probability of an appropriate action and 

movement pattern increases with experience and the memory representation gets stronger. 

The same applies for the perceptual trace which is initially noisy and of little help for 

error reduction but it eventually learns a model for error correction from experience by 

trial-and-error (Figure 1B). 

 

 

2.2. Neural Mechanism of Motor Learning 

 

 

The extensive investigation of the motor learning processes and analysis of behavioral 

performance by the pioneers of the field paved the way to understand the brain 
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mechanisms that are involved in the different learning stages. Technological advances 

with the development of fMRI and positron emission tomography (PET) allowed 

researchers to scan the whole brain and record the neural activity as humans learn motor 

tasks (Jenkins et al., 1994; Jueptner et al., 1997a, 1997b; Toni et al., 1998; Grafton, 

Hazeltine and Ivry, 2002; Floyer-Lea and Matthews, 2004; Leherecy et al., 2005; Doyon 

et al., 1996; Doyon et al, 2002; Sakai et al., 1998; Jubault and Koechlin, 2007). 

 

In addition, neuroanatomical and electrophysiological studies with animals, including 

monkeys and rodents, have also contributed to understand the cortico-cortical and 

cortico-subcortical roles in behavior (Saito et al., 2005; Miyachi et al., 1997; Lu, 

Hikosaka and Miyachi, 1998; Ljungberg, Apicella and Schultz, 1992; Barnes et al., 

2005). The purview of this section is to provide an overview of the neural mechanisms of 

human motor learning and the similar processes that might be conserved in monkeys and 

rodents. 

 

 

2.2.1. Neural Mechanisms of Motor Learning in Humans 

 

The use of fMRI and PET has played an important role in the understanding of the brain 

mechanisms that are predominantly activated as humans learn new motor behaviors. In 

this section, the focus will be the problem of sequential procedural learning. Lashley 

(1951) was the first research to address the problem of sequencing motor and cognitive 

behaviors. Sequential motor behaviors include playing the piano, type writing, or any 

sequence of discrete or continuous movement patterns, whereas cognitive behavior 
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involve thinking, reasoning, langue, speech, etc. 

 

Passingham and his colleagues (Jenkins et al., 1994; Jueptner et al., 1997a, 1997b; Toni 

et al., 1998) are among the first researchers to investigate sequential motor learning by 

humans. As many classical motor learning theories agree on the existence of initial and 

late stages in learning their principal contribution was to establish and differentiate the 

brain mechanisms that predominantly are activated in these stages as humans learned 

sequential finger movements. 

 

In a series of experiments using PET, they tested humans subjects performing action 

sequences under several task conditions: new learning of sequences, attention to the next 

move and execution of well-learned sequences (Jueptner et al., 1997a, 1997b; Toni et al, 

2002; Jenkins, 1994; Toni et al., 1998). The results of these experiments showed that 

distinct neural networks were predominantly activated during different stages of motor 

learning. Passingham's group found that certain brain areas are highly active in the initial 

learning of new motor sequences, including the dorsolateral prefrontal cortex (DLPFC), 

the anterior cingulate cortex (ACC), anterior part of the basal ganglia (BG), especially 

the head of the caudate nucleus and anterior part of the putamen. On the other hand, the 

analysis of the brain activity associated with the performance of well-learned automatic 

finger sequences showed that mainly the posterior supplementary motor area (SMA), 

posterior premotor cortex, posterior parietal cortex (PC), and posterior putamen were 

active (Figure 3). 
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Figure 3. Schematic representation of the differential activity of multiple brain areas 

throughout learning. The orange line represents the activity of brain areas (on the right) 

that are highly active in the initial stage of learning but whose activity decrease with 

long-term experience; the magenta line represents the activity of brain areas which show 

an initial low activity profile which then gets stronger as the performance becomes 

automatic. Scheme based on Passingham's works. 

 

 

An interesting finding in these experiments is that the areas that are highly active in the 

initial stage of learning decrease their activities as learning progresses, while brain areas 

that show low level of activity in the initial period of learning increase their activities 

after repeated practice and achievement of automatic behavior. These results also suggest 

that human behavior might be under the control of distinct neural networks, a cognitive 

network for the learning and planning of motor behaviors, and a motor network for 

implementing well-learned motor actions. 
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2.2.2. Neural Mechanisms of Motor Learning in Monkeys 

 

Anatomical lesions and single neuron electrophysiological recording studies have also 

been successfully applied to establish with higher validity the biological mechanisms of 

motor learning. In another famous series of experiments on motor sequence learning with 

monkeys and humans, Hikosaka and his colleagues (Rand et al., 1998; Rand et al., 2000; 

Sakai, Kitaguchi and Hikosaka, 2003; Sakai, Hikosaka and Nakamura, 2004; Hikosaka, 

et al., 1995; Hikosaka et al., 1999; Hikosaka et al., 2002; Nakamura, Sakai and Hikosaka, 

1998; Miyachi et al., 1997) have found that causing reversible lesions by injection of 

muscimol into distinct brain areas impairs the learning of new motor sequences and 

retrieval of well-learned ones. 

 

Hikosaka’s group investigated how lesions in the SMA and BG affected monkeys 

behavior while performing a sequential finger movement task. Muscimol injections were 

applied in separate experiments in the anterior and posterior parts of the BG and SMA. 

This separation was based on anatomical connections that the BG make with prefrontal 

areas including the SMA and DLPFC. The posterior BG receives its main cortical 

afferents from the posterior region of the SMA, whereas the main afferent inputs on the 

anterior BG arrive from the anterior region of the SMA, called preSMA, and from the 

DLPFC. 

 

When muscimol injections were applied to the anterior BG or the preSMA, monkeys had 

a great impairment in the learning of new finger motor sequences. On the other hand, 

lesions made in the posterior BG or in the SMA caused detrimental effects in the 
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performance of motor sequences that had been extensively learned before lesions. 

Electrophysiological recordings of single neurons supported the results of these lesion 

experiments. Neurons the preSMA and anterior BG showed preferred activity when 

monkeys performed new movement sequences, while neurons in the SMA and posterior 

BG showed higher activity if monkeys executed old motor sequences (Figure 4). 
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Figure 4. Schematic representation of the networks linking part of the prefrontal cortex, 

the supplementary motor area (SMA), with the BG. The anterior part of the SMA, the 

preSMA is connected with the anterior part of the BG, antBG, and together are important 

in the learning of new motor sequences. The posterior SMA, properSMA, sends fibers to 

the posterior BG, posBG, and participate in the implementation and execution of well-

learned motor sequence memories. Adapted from Hikosaka et al., 1999. 
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2.3. Parallel Anatomical Neural Networks for Behavior 

Control 

 

 

The results of the imaging studies with humans and those of the lesion and single neuron 

electrophysiological recordings with monkeys suggesting that multiple neural networks 

control behavior in different learning situations are strongly supported by 

neuroanatomical evidence showing parallel segregated closed-loops linking cortical and 

subcortical brain areas with recirprocal connections (Alexander et al., 1986; Alexander 

and Chutcher, 1990; Bostan, Dum and Strick, 2010; Kelly and Strick, 2003; Haber, 

2003; Selemon and Goldman-Rakik, 1985; Eblen and Graybiel, 1995; Flaherty and 

Graybiel, 1993; Middleton and Strick, 2000; Glickstein and Doron, 2008; Dum, Li and 

Strick, 2002; Ramnani, 2006; Akkal, Dum and Strick, 2007; Nakano et al., 2000) 

 

In a seminal paper Alexander, DeLong and Strick (1986) proposed a theory on the 

existence of parallel segregated loops linking cortical and subcortical areas. In that paper, 

emphasis was given to the bidirectional fiber connections linking the prefrontal cortex 

(PFC) with the basal ganglia (BG). In subsequent studies, the use of a novel technique 

based on anterograde and retrograde transneuronal virus herpes transportation, the same 

group demonstrated that parallel pathways connections linking the PFC to the cerebellum 

(CB, Dum and Strick, 2003) and more recently evidenced has been found showing 

anatomical connections between the CB and BG (Hoshi et al., 2005). These multiple 

pathways are likely to be involved in the processing of distinct types of information, such 
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as motivational, emotional, cognitive and executive functions as well as motor control, 

including somatotopic representations. 

 

Alexander et al., (1986) suggested the existence of five main parallel segregated PFC-

BG circuits. The details of these circuits are illustrated in Figure 5. The connections 

linking the PFC with the BG are arranged as a gradient distributed in anterior-posterior 

and medial-lateral directions and reach the striatum, the input regions of the BG, the 

caudate nucleus and putamen (Alexander et al., 1986; Haber, 2003; Frankle, Laruelle and 

Haber, 2006; Selemon and Goldman-Rakic, 1985; Selemon and Goldman-Rakic, 1988). 

 

The ventral part of the PFC, the medial orbitofrontal cortex (MOFC) and anterior 

cingulate cortex (ACC), projects to the ventral striatum (nucleus accumbens, NAc) and 

to the anterior and medial areas of the head of the caudate nucleus and anterior putamen. 

The dorsolateral prefrontal cortex (DLPFC) projects mostly to the anterior BG and 

middle of the caudate nucleus. The motor cortex, including the SMA, preSMA, primary 

motor cortex (M1), somatosensory cortex and posterior parietal cortex (PPC) project 

mainly to the posterior part do the putamen and the tail of the caudate. The newly found 

organization of the neural anatomical connections demonstrated by these studies 

implicate the participation of the BG in non-motor cognitive behaviors and changed the 

previous dominant view of its involvement in motor control. 
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Figure 5. Schematic representation of the five PFC-BG circuits as initially proposed by 

Alexander et al., (1986). 

(A). Distinct regions of PFC that have bidirectional connections with the BG. 

(B). Detailed view of the five parallel PFC-BG closed-loops. The top layer represents the 

structures in the cerebral cortex; the second layer shows the input structures of the 

striatum; the third layer represents the output structures of the striatum and the fourth 

layer represents the connections back to the cerebral cortex through the thalamus. 

DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; SMA, 

supplementary motor area; FEF, frontal eye field; LOFC, lateral orbitofrontal cortex; VS, 

ventral striatum; vmCAU, ventromedial caudate; dmCAU, dorsomedial caudate; PUT, 
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putamen; VP, ventral pallidum; GPi, globus pallidus internal segment; SNr, substantia 

nigra pars reticulata; MD, mediodorsal nucleus; VA, ventro anterior nucleus; VL, 

ventrolateral nucleus. 

 

 

Another important feature of the BG system is its prominent connections with the 

dopaminergic system which is composed of the ventral tegmental areas (VTA) and 

substantia nigra pars compacta (SNc; Haber, 2003). Dopamine (DA) is a neuromodulator 

known to have important roles in instrumental learning by associating a motor behavior 

with an expected reward that follows an action execution and in other learning and 

memory processes. It also plays roles in other motivational aspects such as guiding 

attention to salient events or novel stimulus information in the environment (Dommett et 

al, 2005; Redgrave and Gurney, 2006). It has been suggested that higher concentration of 

dopamine in the BG and cerebral cortex strengths emotional processes such as making 

bonds between a mother and child (Bartels and Zeki, 2004) and romantic love (Fisher, 

Aron and Brown, 2006; Bartels and Zeki, 2000). 

 

Through a series of anatomical studies, Haber and colleagues (Fudge and Haber, 2000; 

Haber, Fudge and McFarland, 2000; Haber et al., 2006; Lynd-Balta and Haber, 1994a, 

1994b, 1994c) found out that distinct regions of the dopaminergic systems make 

bidirectional spiral-like connections with distinct areas of the BG. The VTA sends to and 

receives connections mostly from the ventral striatum including the nucleus accumbens 

(NAc) and anterior and ventral parts of the caudate nucleus (head of the caudate) and 

putamen. The SNc can be subdived into two tiers, namely: the densocellular and the cell 

columns. The SNc densocellular ventral tier projects to and receives inputs from the 

dorsomedial striatum and the cell columns tier sends fiber to and receives from the 
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posterior striatum (Figure 6). An interesting aspect of these dopaminergic connections to 

the striatum is that the anterior BG also projects back not only to the VTA but also to the 

SNc densocellular tier, and the dorsomedial BG projects back not only to the SNc 

densocellular tier but also to the cell columns tier. Haber (2003) suggested that this 

spiral-like connection is a mechanism that the motivational system (medial orbitofrontal 

cortex and VTA) can exert influence on the cognitive system (DLPFC and dorsomedial 

BG). The same holds for the cognitive system which can modulate the functions of the 

motor pathway (SMA and posterior BG). 

 

Strick and his group (Akkal, Dum and Strick, 2007; Dum, Li and Strick, 2002; Dum and 

Strick, 2003; Kelly and Strick, 2003;  for an insightful review on the PFC-CB 

connections and functions see Ramnani, 2006) also found distinct bidirectional fiber 

connections linking areas of the PFC to the cerebellum (CB). The DLPFC sends fiber 

connections to and receive from the lateral hemispheres of the CB, including areas Crus 

1 and Crus 2. On the other hand, the primary motor cortex sends to and receives fiber 

connections from the anterior inferior posterior regions of the CB. These results 

demonstrate that the CB and BG are in a position to influence both motor and higher 

order cognitive processes. The precise functions that these different modules, PFC, CB 

and BG, play together in motor and cognitive information processing, such as learning 

and memory, are still unclear. However, that are many indications that the BG might be 

important for instrumental and reinforcement learning (Graybiel et al., 1994; Horvitz, 

2009; Doya, 2007), the CB in storage of motor memories and internal models of the 

environment and body (Kawato, 1999; Wolpert and Kawato, 1998) and the PFC in 
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working memory, reasoning, mental simulation and prediction of future events (Doya, 

1999; Samejima and Doya, 2007; Glascher et al., 2010). 
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Figure 6. Topographical connections linking the PFC-BG-DA system. The BG (center of 

the brain) is represented as a color gradient representing the predominant input 

connections they receive from and send back to the PFC. The spiral connections linking 

the DA system with the BG provide a way that information between multiple segregated 

closed-loop connections between the PFC and BG can be integrated. VTA, ventral 

tegmental area; SNc, substantia nigra pars compacta; SMA, supplementary motor area; 

DLPFC, dorsolateral prefrontal cortex; MOFC, medial orbitofrontal cortex. 
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2.4. Contemporary Theories of Action Selection and 

Learning 

 

 

The pioneers in the study of motor behavior have been highly influential by providing 

the results of elegant experiments showing the fine details of changes in motor 

performance as humans learn novel motor actions. They also synthesized these results in 

an attempt to propose theories capable to explain the several cognitive and motor 

processes involved in learning in general. These prevailing ideas, including the stage-

wise thinking of motor learning, set the path for contemporary researchers who could use 

new technologies to investigate the changes in brain processes as learning takes place.  

 

Recently, contemporary researchers started to use computational models in order to 

understand in a more accurate manner what information is important for the generation 

of motor commands, the computational architecture responsible for information 

processing, the methods used for action selection and motor control as well as the 

associated brain mechanisms. These computational approaches have also been used to 

explain how the normal neural and psychological mechanisms of cognition and motor 

control are impaired in neurological and psychiatric conditions (Blakemore, Wolpert and 

Frith, 2002; Frith, Blakemore and Wolpert, 2000).  

 

This section will provide a brief overview of the prominent computational theories of 

motor control and learning, including Reinforcement Learning (RL), how these theories 

have been helpful in the understanding the constituent components of normal and 
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disturbed control processes as well as their related counterparts in the brain. 

 

The use of computational approaches to the study of motor behavior has been helpful in 

understanding the main components and information processing requirements for the 

generation of motor outputs and control of movement execution. Wolpert and Flanagan 

(2010) have proposed that these components can be classified into four groups: efficient 

gathering of sensory information, making a model of the environment and task, 

establishment of a control strategy, higher-level skill acquisition. An outline of these 

components will be described below. 

 

Efficient gathering of information is related to learning how to extract task-relevant 

sensory information. This information extraction is dependent on the sensory modality 

the information access the central nervous system, such as visual, haptic, auditory, etc. 

The generation of a motor response might also be influenced by the sequence of sensory 

events. In a predictable and well-learned environment, humans become able to anticipate 

a sensory event and prepare a motor response even when the sensory information is still 

unavailable. On the other hand, in complex task with unpredictable and uncertainty 

features, performance might be subject to the minimization of the uncertainty as humans 

acquire search strategies in order to focus their attention on relevant and important 

sensory information. 

 

Learning a model of the task, on the other hand, refers to the different structural 

properties that change from one task to the other. For instance, playing soccer requires 

running, dribbling, passing and kicking a ball, whereas swimming requires learning of 
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head side movements for breathing, constant synchronization of legs and arms and 

turning by submerging and a later emerging on the water surface. On the other hand, 

other tasks share similar structures and very often subtle adaptations should be necessary. 

For instance, a larger racket is need for playing tennis whereas smaller racket is needed 

for playing badminton. However, these two sport modalities differ on the size of the 

court and height of the net in the middle of the court. Therefore, spatial adjustments and 

force control mechanism have to be modulated for dislocation within the large and small 

spaces, and for controlling the racket, respectively. 

 

A predictive strategy for motor control is one among many other methods. The 

prediction model can be used for the generation of motor commands in anticipation of 

sensory events. A class of predictive models, called forward model, can be used by 

mental simulation for the prediction of future states reached by hypothetical actions. 

These models can generate fictive states and actions, evaluate the goodness of taking one 

action but not the other, predictive the future states if a given action is chosen for 

execution and the anticipation of possible and sudden sensory outcomes that might 

results from the execution of a motor behavior or other sources of changes in the 

environment. 

 

In more recent works using computational motor control approaches, the three 

components described above have been expanded to explain other cognitive processes 

such as decision making and social interaction. It has been suggested that forward 

models might be used in social interactions, such as the prediction of the outcomes of the 

behaviors of others. These predictions might be influenced by the sensory information 
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coming from the body gestures, speeches or sequence of sensory inputs combined from a 

single agent of multiple agents interacting in an active or passive manner. Also, a recent 

theory of motor control has incorporated the feedback generated from motor actions as 

an important aspect for improvement and efficient generation of motor commands 

(Todorov, 2004). This theory, called optimal feedback control, defines the motor 

behaviors have a cost and the goal is to reduce this cost and saving of energy. In the 

initial stage of learning, the cost might be very high given the task novelty and absence 

of parameters for the optimal generation of movements. With experience, however, 

humans learn to reduce the errors in the movement execution. An important aspect of 

this theory is that, error correction should happen only for those aspects of the movement 

that are deleterious to the task. 

 

Doya (1999, 2000) proposed that three main classes of learning algorithms might be 

implemented in the human brain depending on the types of feedback signals used for 

error correction: unsupervised learning, supervised learning and reinforcement learning. 

In unsupervised learning, no feedback is provided, but only a set of input sensory data 

and the goal of the system is to learn the statistical properties of the input and construct a 

map of the sensory input with possible output signals. In supervised learning an error 

vector is provided and corrections and updates are made to the input-output mapping. 

Reinforcement learning uses a scalar evaluative reward signal to map states to actions. 

The goal a reinforcement learning agent is to maximize the maximum long-term 

expected reward. Doya (1999, 2000) suggested that these learning algorithms might be 

implemented in distinct brain regions: unsupervised learning in the cerebral cortex, 

supervised learning in the cerebellum and reinforcement learning in the basal ganglia. 
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2.5. Unsolved Problems in Action Selection and Learning 

 

 

It is well accepted that the learning process might occur as a transition from an initial 

erratic and slow performance stage to an advance fast and accurate performance stage. 

However, there has been some evidence suggesting that an intermediate 

planning/predictive stage might follow the early learning stage (Hikosaka et al., 1999; 

Flanagan et al., 2003; Savelsbergh et al., 2001; Fitts and Posner, 1969). These studies 

suggest that the initial learning stage might important for the acquisition of the structure 

and model of the task, including the predominant sensory input, the available actions and 

possible outcomes. Other somatosensory-motor processes are also part of the initial stage, 

such as learning to control a limb a sequence of fingers. In addition, learning itself might 

be driven by emotional/motivational factors that keep the agent engaged at solving the 

task. 

 

As learning proceeds and enters the intermediate stage, the model acquired initially can 

now be used in a more efficient manner for planning, mental simulation, and prediction 

of future sensory states, motor outcomes, and evaluation of the goodness performing an 

action of multistep actions. If the task requires the acquisition of stereotypical 

movements with fixed kinetic, kinematic and speed profile patterns, then learning 

proceeds to an advanced learning stage. It is not clear, however, whether this sequence of 

learning stages occurs as a serial process in which the next comes to take cover behavior 

control only after the preceding learning process or whether the multiple learning 

processes operate in parallel. 
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Another problem in motor learning is related to the phenomenon of transfer of learning 

(TL). Theories of TL suggest that knowledge acquired in past learning situations can be 

used to guide and speed up learning in other decision making or other learning situations. 

TL of learning is classically subdivided in two main types: task-based or knowledge-

based. Task-based TL is related to the execution of the same motor response under 

different situations, such as reaching for a glass of beer or reaching for a cup of coffee. 

Knowledge-based TL refers to the use of previously acquired knowledge for the 

generation of novel motor responses. A problem with TL theories is the assumption that 

once a motor or knowledge representation is acquired and stored in the brain, the 

mechanisms initially used for their learning are no more required. This contradicts recent 

studies showing that the use of knowledge representation, such as chess rules, re-engages 

areas associated with learning and planning, even when the task does not require learning 

or formation of stereotypical motor responses.  

 

The early human brain imaging studies focused mostly at identifying the brain regions 

that were predominantly activated in distinct learning stages. These studies, however, 

failed to identify what functions or computational operations the brain regions play for 

learning, planning or generation of reactive habitual behaviors. Recently, with the 

introduction and design of experiments following RL learning principles, is has been 

possible to map basic computational processes to certain brain regions. For instance, it is 

now know that the dopaminergic neurons the SNc might compute the difference between 

the expected reward outcome and predicted reward outcome, a computational process 

called TD-learning. However, there have been suggestions that more elaborated action 

selection strategies, such as Model-Free (MF) and Model-Based (MB) might be utilized 
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by humans and have a neural correlate in the brain. In addition, recent work (Shadmehr 

and Krakauer, 2008) has proposed a computational architecture that can generate motor 

behaviors by implementing complex action selection strategies or simple reactive 

behaviors. There has been, however, no direct test of these hypothesis and it is not clear 

whether such computational processes are actually carried out in the human brain. 

 

Lesions to a specific brain area can cause damage to a specific cognitive process. For 

instance, if the hippocampus is lesioned, humans become unable to make new memories 

and if the posterior region of the BG is removed, a deficit in the retrieval of learned 

motor behaviors is observed. On the other hand, lesions to other brain areas can also 

cause similar impairments in making or retrieval of memories. Therefore, it is not known 

whether the brain mechanisms involved in action selection are implemented locally by a 

single brain area or in neural networks composed of multiple interconnected of 

segregated brain areas. 

 

Another intriguing and still unresolved issue is the amount, type or set of information 

that a certain brain region needs to carry out efficient operation. Also, it is not know 

what the actual computational process a brain region uses for information processing. 

Since many brain regions interact in parallel closed-loops but also interact with each 

other through feedback integrative loops, the direction of information flow from one 

region to the other, and which region and under which circumstances starts the 

processing of information is still to be elucidated. 
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CHAPTER 3 

 

 

Evidence for Model-based Action Planning in a 

Sequential Finger Movement Task 

 

 

3.1. Introduction 

 

 

Humans and other animals have an amazing capability of flexibly and adaptively 

selecting actions according to dynamically changing task demands and environments. 

Novel motor behaviors can be learned from scratch by trial-and-error or by utilizing 

knowledge from past experiences that facilitate or speed up action acquisition. 

 

In Reinforcement Learning (RL), a computational theory of adaptive optimal control 

(Sutton & Barto, 1998; Doya, 2007), two methods for action selection and learning have 

been proposed: model-free (MF) and model-based (MB) methods. In the model-free 

method, the evaluation of states and actions and according action policy are learned by 

trial-and-error from actual exploratory experiences. On the other hand, in the model-

based method, an internal model that predicts the results of hypothetical actions is given 
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or learned, and then use the consequences of the simulated hypothetical actions for 

evaluating states and actions and for selecting an action. The aim of this study was to 

investigate whether and when human subjects use model-free and model-based methods 

in learning sequential motor behaviors and to elucidate how those learning methods are 

realized in the brain. 

 

Classical theories of motor skill learning had put forward stage-wise transitions of motor 

behaviors and cognitive operations behind them (Fitts & Posner, 1967; Adams, 1971; 

Newell, 1985; Ackerman, 1988). Fitts and Posner (1967) proposed a serial three-stage 

model of motor learning based on simple discrete and rhythmic target reaching tasks. In 

this model, learning proceeds from an early cognitive/attentional stage where 

relationships between environmental cues and the control and regulation of movements 

are learned. In an intermediate associative stage, the learned cue-action relations are used 

to plan, refine and anticipate an action consequence. Finally in the late autonomous stage, 

movement performance becomes automatic with minimal attentional control. However, 

these classical theories cannot explain the mechanisms leading to stage transition, neither 

the cognitive operations nor the neural correlates operating as learning goes on. 

 

A solution to this open debate has been put forward by Hikosaka and colleagues 

(Hikosaka et al., 1999; Hikosaka et al., 2002) in a series of elegant sequential finger 

movement studies using extensive psychophysical and electrophysiological recordings in 

monkeys and brain imaging techniques with humans. It was shown that distinct brain 

regions become preferentially activated in specific stages of learning. The anterior 

cortico-basal ganglia network linking the left dorsolateral prefrontal cortex (DLPFC), the 
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pre-supplementary motor area (pre-SMA) and the anterior basal ganglia (BG) was more 

active in the learning of new action sequences, whereas the posterior cortico-basal 

ganglia network including the proper-SMA, the primary motor cortex (M1), and the 

posterior BG and parietal cortex (PC) was activated when well-learned action sequences 

were performed. 

 

These results were successfully replicated in a computational study (Nakahara, Doya & 

Hikosaka, 2001) which confirmed the previous suggestions that the anterior network 

learns faster by using visuo-spatial coordinates and that the posterior network learns 

slowly but forms robust memories using body-based motor coordinates. The authors 

concluded that different controllers, realized by distinct brain regions, are responsible for 

the organization of human behavior in different contexts. 

 

Recent neuroanatomical studies found the existence of multiple parallel segregated loop 

channels through the prefrontal cortex, the parietal cortex, the basal ganglia and 

cerebellum (Alexander, DeLong and Strick 1986; Middleton and Strick, 1994, 2000; 

Haber, 2003) and that these loops process different types of information related to 

cognitive, emotional and skeleto-motor functions providing further support to the view 

that the brain contains multiple controllers. 

 

Based on a large body of anatomical, physiological, and computational studies, Doya 

(1999, 2000) proposed that the cerebral cortex, the cerebellum and the basal ganglia can 

be conceptualized as structures specialized for implementing unsupervised, supervised 

and reinforcement learning algorithms, respectively, and hypothesized that a global 
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network combining the cortico-cerebellar loop and the cortico-basal ganglia loop can 

realize model-based reinforcement learning using internal models learned by supervised 

learning in the cerebellum. 

 

Albeit increasing evidence on the existence of distributed controllers in the brain, there 

has been little effort and no direct test of whether and how humans utilize different 

control strategies for action selection, and where in the brain they are implemented. In 

this paper, we hypothesize on the existence of multiple control networks in the brain that 

learn concurrently using different learning strategies, and that these distinct networks 

take dominant role in motor control depending on the progress of learning, extent of 

experience and prior knowledge, leading to apparently stage-wise transitions in the 

learning of novel motor behaviors. 

 

More specifically, we consider two model-free and one model-based reinforcement 

learning strategies as candidate algorithms in the learning of action selection. There are 

two main subtypes in model-free reinforcement learning algorithms: those based on the 

action-value function, such as Q-learning (Watkins and Dayan, 1992) and SARSA, and 

those based on direct action policy representation, such as actor-critic and policy gradient. 

In the action-value based methods, the action policy (or control law) is given implicitly 

from the action value function Q(s,a), which estimates the subsequent rewards by taking 

an action a at a state s. In the direct policy-based methods, the action policy P(a|s) is 

memorized and gradually updated based on the difference of the predicted and actual 

rewards. The direct policy-based methods have the virtue of robust performance and 

simple real-time computation once an appropriate policy has been learned, albeit often 
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slower learning. The model-based method assumes that an internal model that predicts 

the resulting next state s’ of a hypothetical action a at a sate s has been acquired and an 

action is selected by internal simulation of potentially multiple steps of actions. 

Assuming that the internal model is correct and the rewarding state is known, a model-

based method allows learning from small number of actual actions, despite need for 

more time and working memory load for real-time operation. 

 

In order to test behaviorally whether these different methods are used under what 

condition and to elucidate by functional brain imaging where in the brain they are 

implemented, we developed a new task paradigm called grid-sailing task and carried out 

an experiment with 16 human subjects. In this task, a subject performs sequential finger 

movements to move a cursor from a start position to a goal position on a 5x5 grid 

environment. The cursor can move to only three of eight neighbor grids so that reaching 

from the start to the goal often requires zig-zag movements, like in sail boat navigation. 

The subjects did not know the mapping between the three keys and three movement 

directions, which we call the key mappping (KM), so that they had to learn appropriate 

sequential finger movement from the scratch in order to maximize the score given 

according to the steps required to reach the goal. 

 

We now elaborate on how concurrent learning by such model-free and model-based 

algorithms can result in stage-wise manifestation of different control behaviors (Figure 

1). In the initial stage of learning, as the subject do not have an internal model for 

predicting the result of an action, so that only model-based algorithms cannot be used. 

Among model-free algorithms, action value-based learning is likely to take a dominant 
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role by increasing the value of state-action pairs that lead to successful goal reaching. In 

the intermediate stage, as the subjects acquire the internal model, the model-based 

algorithm should take a dominant role in guiding the actions, despite the need of more 

time for internal simulation. Finally, in the late learning stage in a fully predictable 

environment, the learned policy of model-free algorithm would play a major role as it 

requires less computation in real time, allowing quick and efficient execution of motor 

responses. 

 

We assume a mechanism for selecting or combining the outputs of the multiple learning 

algorithms depending on their extent of learning, for example, by multiplicative 

integration of action selection probabilities. Note that how quickly the model-based 

algorithm can become usable is task-dependent; in tasks in which the result of an action 

is easily predictable, model-based algorithm may be used from an early stage while in 

some tasks model-based algorithm is not practical. 

 

In order to reproduce the subject’s behaviors and brain activity at different learning 

stages during a limited scanning time, each subject was pre-trained with particular 

combinations of key maps and start-goal positions and performed the task under three 

different conditions. In condition I, subjects used a new key map, in which we expect the 

use of the model-free, action value-based algorithm. In condition II, subjects used pre-

learned key maps for new start-goal positions, in which we expect the use of a model-

based algorithm, if enough time for internal simulation is provided. In condition III, 

subjects used pre-learned combinations of key maps and start-goal positions, in which 

we expect the use of learned policy of a model-free algorithm paradigm. 



43 

 

 

Figure 1. Schematic representation of a three-stage-three-system model for action 

selection and learning. 

(A) Learning stages according to RL.  

(B) RL algorithms for action selection and learning. The horizontal arrows represent the 

parallelism of the systems. The broken arrows the different represent the stage-wise 

transition in learning and the selection strategies predominantly employed in each stage. 

(C) Expected performance under the control of each learning system. The black lines 

indicate the expected performance in trials with a delay period, and the gray lines 

indicate the expected performance (performance in delay start, black line, and immediate 

start conditions, gray line). 
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3.2 Methods 

 

 

3.2.1 Participants 

 

Sixteen healthy right-handed subjects (4 female; age 21-39, 26 ± 5 yrs), non-musicians, 

with normal or corrected to normal (by contact lenses) vision participated in this study. 

Subjects gave written informed consent and the experiment was approved by the ethics 

and safety committee of Advanced Telecommunications Research Institute International 

(ATR). Subjects received payment for their participation in this study. 

 

 

3.2.2 Apparatus 

 

In the training session, subjects comfortably sat at a table approximately 60 cm from the 

computer monitor. A regular desk keyboard was used for finger key-pressing. Subjects 

used the right index, middle, and ring fingers and pressed the ‘v’, ‘b’, and ‘n’ keyboard 

buttons, respectively (Figure 2A). Stimulus generation and behavioral data recording 

were done by custom-made programs written in MATLAB (version 7.0), using 

Psychophysics Toolbox functions (PTB-3). The test session was performed inside the 

fMRI scanner (3T Siemens, Magnetom Trio). A response optic button box was used 

obeying the same order of finger-key association (described above). Subjects received a 
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short practice to get accustomed to the button box before entering the fMRI scanner. In 

this paper we report only the behavioral results. 

 

 

3.2.3 Task Procedures 

 

Subjects were given verbal instruction of the task rules before the training session 

commenced, and received short verbal feedback orientation during the first training trials. 

The computer displayed the 5x5 grid (10 cm x 10 cm) with a red fixation cross (FC) on 

top of the grid center square matching the monitor center position. A trial started with the 

simultaneous presentation of a pair of start-goal (SG) positions, and a cursor (black 

triangle) which appeared on top of the start position. The color of the start position 

specified the start time condition: if the color was green, subjects were instructed to 

immediately start responding by performing key presses, while a red color indicated a 

delayed start condition when subjects had withhold key presses until go cue was signaled 

by the color change from red to green after a delay of 4 to 6 seconds. The color of the 

goal position was always blue. After the go signal, either for immediate of delay start 

trials, subjects had a maximum response time of 6 seconds, which was not explicitly 

taught to the subjects. During the response period, subjects had to execute sequential 

finger key presses to move the cursor from its initial start position to the goal position. 

Immediate visual feedback of cursor motion was provided after a button had been 

pressed. When the cursor was on the edge or corner of the grid, pressing of certain keys 

could result in an invalid move out of the grid. In such a case the cursor remained at the 

same position, and its color blinked to indicate that an impossible action had just been 
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performed. At the end of a trial, performance feedback information was displayed for 2 

seconds and the next trial started after an inter-trial interval (ITI) of 3 to 5 seconds. 

Figure 2E shows a schematic representation of the sequence of trial events. 

 

 

Figure 2. Task design and sequence of trial events. 

(A) Button box and corresponding finger of the right hand. 

(B) Key-Mappings (KM). Each KM is associated with a three-motion direction rule, and 

the numbers indicate the cursor motions and respective fingers. 

(C) Start-Goal (SG) pairs. The start position is indicated by the dark gray color square, 

and the goal position by the light gray color square. 

(D) KM-SG sets in the training and test sessions (Condition I: dotted gray lines; 

Condition II: black lines; Condition III: dashed gray lines). The KM-SG sets (dashed 

arrows) in the training session were used to provide subjects with more experience in 

finding all possible motion directions associated with each cursor KM. 

(E) Representation of a sequence of trial events. ITI: intertrial interval. 
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A single trial had three possible endings according to a subject’s performance in the 

response period: a) successful trial with performance of an optimal action sequences 

(OAS, shortest path to goal); b) successful trial with performance of non-optimal action 

sequences (NOAS); c) error trial when subjects could not reach a target goal within the 

maximum response period. 

 

A point system was used as reward: 100 points for an OAS; a discount of -5 points for 

each excessive key-press in NOAS trials, and 0 (zero) point in error trials. Performance 

feedback was displayed on top of the grid at the end of a trial. In successful trials, a 

number appearing above the FC indicated the number of key-presses executed and the 

one below the FC the total reward acquired for the current trial. In error trials a letter ‘X’ 

appeared above the FC to indicate time-over and a number ‘0’ (zero) appeared below the 

FC to indicate no points were acquired. 

 

 

3.2.4. Experimental Design 

 

Three different cursors were used in this study. Each cursor had its acute angle turned to 

a different direction (90º, 180º, 270º) and was assigned to one of three different key maps. 

In this study, we used three distinct key-maps (KM: KM1, KM2, KM3, Figure 2B), 

which were indicated by different shapes of the cursors (triangles with different spatial 

acute angle orientation). A KM was associated to a three-move directions rule which 

subjects had to learn by trial-and-error. 
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An implicit KM rule associated the index finger with the motion direction assigned to the 

acute angle of each cursor. Also, five differing start-goal pairs (SG1, SG2, SG3, SG4, 

and SG5, Figure 2C) were prepared and arbitrarily combined to one of the three KMs to 

form KM-SG sets. The optimal sequence length varied for each KM-SG set, though we 

tried to set the optimal length to six moves long. In general, there were several OAS for a 

single KM-SG set. However, in order to avoid performance variability and to observe 

learning-related performance improvements, we asked subjects to learn a single OAS for 

each KM-SG set, and to perform as fast and accurately as possible. 

 

We had subjects perform one training session and one test session in two consecutive 

days with one night sleep interval between them. Both training and test sessions were 

further divided into two trial blocks with a 5-minute rest interval. In the training session 

four different KM-SG sets (KM1-SG1, KM1-SG4, KM2-SG2, KM2-SG5, Figure 2D) 

were chosen for learning, and each was practiced for a total of 40 trials (20 trials per 

training block: 10 immediate start and 10 delayed start trials). 

 

In the test session nine different combinations of KM-SG1 sets were used, which 

consequently defined the three task conditions depending on the familiarity in the 

training session: Condition I: a new key-map (KM3) was introduced so that subjects had 

to learn both the new KM rule and appropriate action sequences from scratch. Condition 

II: the key-maps used in the training session (KM1, KM2) were combined with new 

pairs of SG positions to form new KM-SG sets (KM1-SG2, KM1-SG3, KM2-SG1, 

KM2-SG3) so that subjects had to only learn new action sequences. Condition III: KM-

SG sets used in the training session (KM1-SG1, KM2-SG2) were retested and subjects 
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had to execute the previously well-learned action sequences. A single KM-SG set was 

practiced for a total 20 trials (10 trials per test block: 5 immediate start and 5 delay start 

trials). 

 

These task conditions were intended to mimic and to separately asses the three different 

stages of motor sequence learning depicted in Figure 1 during the same scanning session. 

Each trial block consisted of repetition of two rounds of trials with different SG-KM sets 

(four in training and nine in testing sessions), first in the immediate response start 

condition and then in the delay response start condition. The order of SG-KM sets was 

randomized in each round of trials. 

 

 

3.2.5 Behavioral Analysis 

 

The following behavioral performance variables were chosen for analysis: a) reward 

score – number of points acquired for each trial; b) number of moves (NM) – number of 

key-presses executed to reach the target goal; c) reaction time (RT) – time from go signal 

to execution of first key-press; d) execution time (ET) – time from first key-press to 

execution of last key-press. Successful and error trials were included in the analysis of 

the reward variable, but only successful trials were analyzed for the other performance 

measures. 

 

A series of Wilcoxon signed rank tests was performed on the four behavioral 

performance measures in the training session to test for learning-related improvements 
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within and between practice blocks and to test the effect of start time condition on 

behavioral performance. The performance variables (reward score, number of moves, RT 

and ET) in the test session were subjected separately to a series of 3 x 2 x 2 (Test 

Conditions x Start Time Condition x Test Block) multi-way analyses of variance 

(ANOVA) with repeated measures, and an additional series of multiple comparison 

procedures and Tukey’s post hoc comparisons to find for significant differences between 

pairs of levels within a factor. A one-way ANOVA was carried out to identify possible 

effects of KM-SG set on subjects’ performance. The statistical analysis was performed in 

MATLAB (version 7.0) using statistical toolbox. 

 

 

3.3. Results 

 

 

3.3.1. Behavioral Results in the Training Session 

 

Figure 3 summarizes the time course of the subjects’ average performance during the 

training session. The four behavioral performance measures in the immediate (gray lines) 

and delay start (black lines) conditions are shown for the two KM-SG sets retested in the 

test session (KM1-SG1, KM2-SG2). The average reward score increased gradually 

(Figure 3A) as the number of movements to reach the goal position decreased toward the 

optimum of six key-presses (Figure 3B). The average reaction time was significantly 

shorter (p<.001) in the delayed start condition than in the immediate start condition 

(Figure 3C). 
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Figure 3. Trial-by-trial time course of performance improvement in the training session. 

(A) Reward score. Only the performance of the KM-SG sets retested in the test session is 

displayed in this figure. The vertical black line divides the performance of training 

blocks 1 and block 2. Error bars represent standard errors. 

(B) Number of moves to reach the target goal. The horizontal line represents the length 

(six moves long) of the optimal sequence for each KM-SG set. 

(C) Reaction Time. This is the interval time between the presentation of the go signal 

and the onset of the first key-press during the execution period. 

(D) Execution time. This is a measure of the time interval between the onset of the first 

and last key-presses. 

 

 

There was an intriguing increase in the reaction time under the immediate start condition 

in the middle of the training session. We compared the reaction time in three phases 
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found that the reaction time in the intermediate phase was significantly longer than in the 

initial phase  (p<.05, Wilcoxon signed-rank test). This suggests that subjects tended to 

think more before acting in the immediate start condition in the middle stage of learning. 

The execution time, measured as the time interval from onset of the first key press to the 

last key press, also followed a gradual decrease as learning took place, implying the 

formation of sequential action chunks (Figure 3D). 

 

 

3.3.2. Behavioral Results in the Test Session 

 

3.3.2.1. Optimal Action Sequence Pathways 

 

Figure 4 shows examples action sequences learned by two representative subjects. The 

task could be solved by multiple optimal pathways leading to the goal position. However, 

subjects were instructed to learn one single optimal action sequence for each KM-SG set. 

The action sequences were calculated as the ones with the same order of finger key-

presses (e.g. ring, middle, middle, middle, index, ring) and which subjects performed 

with the highest frequency throughout the experiment. As can be observed in Figure 4, 

subjects learned different optimal action sequences for the same KM-SG set, but in some 

cases they learned the same action sequence. 
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KM3-SG1 KM3-SG2 KM3-SG3

KM2-SG1 KM2-SG2 KM2-SG3

KM1-SG1 KM1-SG2 KM1-SG3

 

Figure 4. Examples of cursor movement paths learned by two representative subjects for 

all KM-SG sets used in the test session. Subject 06 (dotted lines), and subject 12 

(continuous lines). 

 

 

3.3.2.2. Reward Score 

 

Figure 5 (top row) shows the trial-by-trial time course of the reward score averaged over 

all subjects in each task condition. In Condition I, although a new key-map (KM3) was 

introduced, the performance was unexpectedly better than that found in the training 
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session (see Figure 3A). These results suggest that there was considerable generalization 

while using a new key-map, probably due to problem solving skills acquired during the 

training session, when the task was completely new. In Condition II, the use of pre-

learned key-maps for new start-goal positions, subjects performed better under the delay 

start, although the time-course of the reward score was surprisingly lower than that of 

Condition I, the reason for which will be discussed below. In Condition III, the retest of 

the pre-learned KM-SG sets, the performance was almost highly accurate. Significant 

statistical effects were revealed for Test Conditions, F(2,2877) = 83.58, p<.0001, Start 

Time Condition, F(1,2878) = 25.8, p<.0001, and Test Block, F(1,2878) = 36.87, p<.0001. 

A significant two-way interaction also emerged for Test Condition x Start Time 

Condition, F(2,2877) = 3.89, p =.02, Test Condition x Test Block, F(2,2877) = 7.61, p 

<.001, and Start Time Condition x Test Block, F(1,2878) = 5.13, p=.02. No significant 

three-way interactions were observed. 

 

We investigated the extent of the beneficial effect of delay start by computing the reward 

gain, defined as the difference in the reward score between delay and immediate start 

trials. The results demonstrated that there the reward gain was significantly greater in 

Condition II than in the other two conditions (one-way ANOVA, p < .001, Figure 6).  
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Figure 5. Trial-by-trial time course of average performance for the task Conditions I, II, 

and III in the test session. 

(A) Reward score. 

(B) Number of moves to reach the target goal. 

(C) Reaction time. Time interval between the go signal and the onset of first key-press in 

the execution period. 

(D) Execution time. Time interval between the onset of the first and last key-presses in 

the execution period. Error bars represent standard errors. The vertical black line divides 

the performance of test blocks 1 and 2. The horizontal black in B represents the length of 

the optimal actions sequences 
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Tukey’s Post hoc comparisons of the means revealed that subjects' performed was higher 

when a response started after a delay period (M = 87.4, SE = 1.9) than when it had to be 

started immediately (M = 80.82, SE = 4.7). In addition, the ANOVA estimated 

coefficients showed that the reward gain under the delay start condition was larger for 

Test Condition II (c: 2.3 points) than for Test Condition I (c: -1.3 points) and Test 

Condition III (c: -1 points). A one-way ANOVA showed that there was significant 

difference in the performance among the different KM-SG sets F(8,2871) = 42.76, 

p<.001, revealing that the sets in Condition 1 had the highest reward score, and that the 

KM1-SG3 set (M = 56, SE = 5.53) in Condition II had the lowest group performance, 

suggesting that some intrinsic level of difficulty for action sequence learning was 

associated with certain KM-SG sets. 

 

 

3.3.2.3. Number of Moves 

 

Figure 5 (second row) shows the number of moves in successful trials. Note that in 

Condition I, the optimal number of moves were 6 (KM3-SG1), 5 (KM3-SG2), and 7 

(KM3-SG3). No significant effect was observed for Test Conditions. There was a 

significant effect of start time condition, F(1,2473) = 8.2, p < .005, and Test Blocks, 

F(1,2473) = 14.39, p<.001. No two-way or three-way ANOVA interactions were 

observed. 
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3.3.2.4. Reaction Time 

 

Figure 5 (third row) shows the reaction time, from go signal to onset of the first key 

press. Subjects responded faster under the delayed start condition, F(1,2462) = 1828.53, 

p<.001. An overall faster RT was also observed for Task Condition III, F(1,2462) = 6.32, 

p<.001. The one-way ANOVA revealed that subjects took longer to start a response for 

KM2-SG1 set (M = 1.1 secs, SE = 0.9) in Condition II. 

 

 

 

 

Figure 6. Reward gain computed as the difference, collapsed over the two trial blocks, of 

average reward in delayed and immediate start trials for the three task Conditions. Error 

bars represent standard errors. 
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3.3.2.5. Execution Time 

 

The execution time was significantly affected by the Task Conditions, F(2,2445) = 41.94, 

p <.001 and Start Time Condition, F(1,2446) = 56.35, p <.001 (Figure 5, bottom row). 

The ET significantly decreased between Test Blocks, F(1,2446) = 63.64, p <.001, as 

learning went on. A significant two-way interaction between Test Condition x Test 

Block was found, F(2,2445) = 4.32, p <.05. Among the nine KM-SG sets, KM1-SG3 (in 

Condition II) had significantly longer ET (M = 2.71, SE = 0.75). 

 

 

3.4. Discussion 

 

 

In light of Reinforcement Learning (RL) theory, we predicted that subjects would utilize 

distinct RL action selection strategies based on the degree of experience and the time 

available for control. In the very early stage of learning a new task, subjects would use a 

model-free RL strategy, such as the action value-based learning. As knowledge of the 

task setting is acquired, the use of a model-based RL strategy would be the most 

appropriate, such as planning by the forward model, provided that there is enough time 

for the increased cognitive load. After extensive training, subjects would utilize a model-

free, memory-based strategy to reproduce pre-learned action sequences. 
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In order to test this hypothesis and investigate the neural implementation of the 

computational processes, we developed a new behavioral paradigm called ‘grid-sailing 

task’, in which subjects were requested to execute sequential finger movements to move 

a cursor from its start position to a goal position. In order to simultaneously reproduce 

distinct learning stages during a single experimental session, subjects were requested to 

perform the task under three test conditions: Condition I: learning new action sequences 

with a new key-map; Condition II: use of learned key-maps to learn new action 

sequences, and Condition III: reproduce well-learned action sequences with well-learned 

key-maps. The time available for planning was manipulated by introducing two start 

time conditions, immediate or delay. 

 

In the training session with two fixed KM-SG sets, the subjects’ performance in the 

reward, the number of moves, and the execution time improved gradually (Figure 3 A, B, 

D). On the other hand, we found a significant increase in the reaction time in the 

immediate start condition in the intermediate stage of learning, which could be the result 

of the usage of model-based planning by the forward model learned up to this stage. 

 

In the test session, subjects’ performance in Condition I using the newly introduced KM3 

(Figure 5, left column) was unexpectedly better than that in the training session. This 

suggests that there was a considerable effect of generalization even with the use of a new 

key-map. This would include the general acquaintance with the task, such as any 

heuristics in finding a right path. Furthermore, we had adopted an implicit rule in the 

key-maps such that the index finger key press resulted in a cursor movement to the 

direction of the acute angle of the triangle and the middle and ring finger key presses 



60 

corresponded to the movements in the clock-wise directions (see Figure 2B). This 

constraint was introduced to make the task easy to learn during a limited duration of the 

test session, but in fact it may have facilitated learning of the newly introduced key-map. 

In particular, the KM3 was a simple 90° anti-clock wise rotation of KM1, which may 

have allowed subjects to quickly acquire the state transition model for the new KM3. 

 

The performance in the Condition II, when subjects used previously learned key-maps, 

was unexpectedly worse than in the Condition I. A possible reasons for this intriguing 

result is that the particular combination of KM1-SG3 in Condition II required complex 

paths with self-crossing, with subjects’ performances were especially worse in this 

setting. Counter-balancing of distribution of different KM-SG sets to different task 

conditions among subjects are desired in the future experiments. Despite this deviation 

from our prior expectation, we observed a significantly improved performance in delayed 

start condition compared to immediate start condition in the Condition II than in 

Conditions I and III (Figure 6). Subjects could benefit from the additional time from the 

task presentation to the start of the movement especially in Condition II. The most likely 

reason for this is that the subjects utilized the pre-learned state transition models of KM1 

and KM2 for planning of multi-steps paths to reach a new goal position in Condition II. 

In Condition I, with newly introduced KM3, subjects could not plan any particular path, 

at least in the early stage of learning. In Condition III, on the other hand, the optimal 

paths were already memorized so that a good performance could be achieved without a 

delay start. 

 



61 

The idea of parallel learning systems has received much attention recently and several 

models have been proposed, for example, systems that learn by using visual- and body-

based coordinates (Hikosaka et al., 1999), a fast-learning-fast-forgetting and slow-

learning-robust-memory systems (Smith, Ghazizadeh and Shadmehr, 2006; Lee and 

Schweighofer, 2009), implicit-explicit or declarative-procedural learning systems (Keele 

et al., 2003). An important issue is how the brain arbitrates among several control 

systems to guide behavior, although a few models have been proposed (Bapi and Doya, 

2001; Daw et al., 2005; Shah and Barto, 2009). 

 

 

3.5. Conclusion 

 

 

Based on RL theory, we proposed that parallel and distinct action selection strategies, 

Model-free RL, Model-based RL, and recall of learned policy, are predominantly 

implemented at each learning stage. In order to test this hypothesis, we developed a 

novel grid-sailing task, which is simple but calls for non-trivial planning of action 

sequences. Our finding of the improved performance under delayed start condition 

particularly when the subjects used pre-trained key-maps supports our hypothesis that 

humans use model-based strategy if they are given enough time for planning. The 

finding that the subjects did not gain from the additional time after extended training also 

supports the hypothesis that subjects use simple recall of a learned policy. As a next step, 

we are testing which RL learning algorithms, including model-free and model-based, fit 
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the subjects’ choice sequence data to further clarify what strategy subjects used at which 

learning stage, and the brain mechanisms that implement such strategies. 
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CHAPTER 4 

 

 

Multiple Prediction Models for Action Selection in 

Prefrontal-Basal Ganglia and Cerebellar Networks 

 

 

4.1. Introduction 

 

 

4.1.1. Action Learning in Motor Learning 

 

Humans can learn to select actions from scratch, by trial-and-error, or by using 

knowledge from past experiences. After repeated practice, action selection may rely on 

predictive mechanisms, such as retrieval of motor memories from well established 

sensory-motor mappings, or the construction and use of internal models of the dynamics 

of newly encountered environments. 

 

In classical theories of motor behavior, there is a dominant view that action learning 

manifests itself in a stage-wise manner (Ackerman, 1988; Adams, 1971; James, 1914) 

through the operation of a serial transition mechanism. Fitts and Posner (1967), for 

example, have proposed a three-stage action learning model: an early 

cognitive/attentional stage where actions are selected on a quasi-random basis to explore 
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and understand the environment-action relationships; an intermediate associative stage 

characterized by action planning and possibly prediction of action outcome, and an 

autonomous stage when habits are formed and can readily be performed. 

 

 

4.1.2. Classical View of Brain Mechanisms in Motor Learning 

 

Regarding the brain mechanisms, the classical view was of a simple transition of control 

from cortical to subcortical structures (Sherrington, 1906; Ashby, Turner and Horvitz, 

2010). However, although such behavioral changes are well accepted, this classical 

stage-wise thinking cannot accommodate the recent increasing number of computational 

(Nakahara et al, 2001), neuroanatomical (Alexander et al, 1986; Haber, 2003), behavioral 

(Jueptner et al, 1997; Hikosaka et al, 1995) and electrophysiological and imaging studies 

(Hikosaka et al, 1999) providing evidence that humans and animals might utilize parallel 

instead of serial mechanisms for action selection and that the brain contains multiple 

parallel systems specialized for different types of information processing. 

 

 

4.1.3. Working Hypothesis 

 

The working hypothesis in this thesis is that the brain contains multiple parallel 

controllers for action selection, with different state and action representations and whose 

dominant role is a function of an individual experience and context-dependent; these 

controllers simultaneously implement different computations, by distinct action selection 
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algorithms, on the same or different input and generate multiple output signals that might 

interact to produce optimal action selection. 

 

In our previous work (Fermin et al, 2010) we assumed a mechanism for selecting and 

combining the outputs of the multiple learning algorithms depending their learning 

experience by multiplicative integration of action selection probabilities. To test this 

hypothesis we borrowed concepts of transfer of learning (Shea and Morgan, 1979; 

Duncan, 1953; Barnett and Ceci, 2002; Doane et al., 1995; Woodward, 1943) in concert 

with Reinforcement Learning (RL, Taylor, 2009), a computational theory of adaptive 

optimal control with strong background on biological and psychological processes 

(Sutton and Barto, 1998). 

 

 

4.1.4. Reinforcement Learning and Action Selection 

 

RL has played an important role in understanding the processes of action selection and 

learning in humans (Sutton & Barto, 1998) and other animals such as rats (Daw, et al, 

2005), monkeys (Hikosaka et al, 2002), and birds (Doya and Sejnowski, 1999). RL 

proposes two methods for action selection that, model-free and model-based, resemble 

the way humans learn. 

 

The model-free method uses action value functions and a policy, learned by trial-and-

error from actual exploratory experiences, to predict future rewards based on current 

sensory input states and available actions. In situations where the environment changes, 
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the policy must be updated based on the difference of the predicted and actual rewards. 

The model-based method employs an internal forward model, assuming that it has been 

previously acquired, to predict the future state reached by a hypothetical discrete action 

or multi-step actions, and uses the results of this mental simulation to evaluate states and 

actions, and to selecting an action for execution based on its goodness. A model-based 

method is helpful not only for on-line action planning, but also for off-line learning such 

as in mental training, by enabling action learning and problem solving even in actual 

time-limited experience (Doya, 2007). Success of using a model-based method depends, 

however, on the model accuracy, working memory capacity, time available for 

computation and the action search depth. 

 

 

4.1.5. Transfer of Learning and Action Selection 

 

Transfer of learning is concerned with the application and exploitation of prior 

experience (e.g. motor skills, abstract knowledge) acquired in one situation to another 

learning or problem solving situation (Lee & Magill, 1983). An essential characteristic of 

transfer is its capability to facilitate and boost the speed of learning a new task. In 

transfer of learning an initial bias such as the reuse of learned action values, state values 

or a reward function (Taylor, 2009) is provided, although an update of these priors might 

be necessary. Consequently, transfer of learning bypasses an initial learning stage for 

there is no need to re-learn the common features shared by two tasks, a process called 

savings. 
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4.1.6. Testing Reinforcement Learning and Transfer of Learning 

 

How can we conciliate concepts of transfer of learning and the RL algorithms with the 

stage-wise manifestation of action selection learning and our hypothesis of parallel 

action selection systems? 

 

We designed a task paradigm by which we should be able to break apart the different 

learning stages, and accordingly, assess the performance of the multiple parallel action 

selection systems separately, and the brain mechanisms involved in their implementation. 

For that purpose, we had human subjects perform a grid-sailing task, inside the fMRI 

scanner, under three task conditions that mimicked different levels of experience in 

action selection such as action selection learning from scratch (condition 1), by transfer 

of learning (condition 2), and selection of habitual actions (condition 3), each task was 

theoretically equivalent to one of three action learning stages as proposed by Fitts and 

Posner (1969) and more recently by Hikosaka et al. (1999). 

 

In the grid-sailing task, subjects had to move a cursor, associated to a three-move 

direction key mapping rule, from its start position to a goal position by performing a 

sequence of finger movements. In condition 1, subjects had to learn new action 

sequences with an unknown key mapping; in condition 2, subjects used learned key 

mappings to learn new action sequences, and in condition 3 subjects performed well-

learned action sequences. 
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4.1.7. General Hypothesis for Action Selection and Brain Mechanisms 

 

We have previously hypothesized that humans implement different computations and 

algorithms depending on their level of experience with a given task and environment 

(Fermin et al., 2010; Doya, 1999). In the absence of an internal model able to predict an 

action outcome (condition 1), a model-free action value-based algorithm is likely to take 

the dominant role in the initial stage of learning by increasing the value of state-action 

pairs that maximize the cumulative reward. As learning goes on and an internal model of 

the task is established (condition 2), a model-based algorithm would take over control 

and play a dominant role in directing action generation regardless of the computational 

cost and need of more time for internal simulation. As learning proceeds to a late stage 

after repeated practice and the environment becomes fully predictable (condition 3), a 

major role in action selection would be played by the learned policy of model-free 

algorithm as it requires less computation in real time, allowing prompt preparation and 

efficient execution of an action response. Figure 1 shows the main behavioral 

characteristics as learning starts from scratch, the RL computational strategies that might 

be used in different action learning stages and the expected behavioral performances 

under different task manipulations. The details of these task conditions are described in 

the following sections. 

 

We also sought for the neural mechanisms likely to implement model-free and model-

based methods. It has been proposed that the dorsolateral striatum implements a model-

free strategy, and the dorsolateral prefrontal cortex implements the model-based method 

(Daw et al, 2005). On the other hand, Doya (1999) has proposed that such methods can 
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be implemented by a combination of output signals of parallel circuit networks linking 

the cerebral cortex, the basal ganglia and cerebellum. 
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Figure 1. Schematic representation of RL action selection strategies and predicted 

performance under different task manipulations. 

(A) Main behavioral learning characteristics according to RL. 

(B) RL algorithms for action selection and learning. The horizontal continuous line 

arrows represent the parallelism of the systems. The broken arrows represent the 

different the stage transition in learning and respective action selection methods. 

(C) Expected performance under the control of each learning system. The colored dotted 

lines represent the expected performance under the immediate start condition and the 

continuous line the performance starting after the delay period. As a measure of accuracy, 

an 80% average reward score was taken as the learning threshold. Therefore, we 

expected a faster reaching of the learning threshold in Condition 2 under the delay start 

trials than in Condition 1. For the speed performance, a faster reaction time was expected 

for trials starting after the delay period than in trials with an immediate start. In addition, 

reaction time should be shorter in Condition 3 under both star time conditions than the 

reaction time in Condition 1 and Condition 2. An fMRI experiment was carried out to 

identify the brain areas predominantly activated while subjects performed each of the 

three task conditions. 
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4.2. Materials and Methods 

 

 

4.2.1. Participants 

 

Eighteen healthy right-handed dominant subjects (4 female; age 21-39, 26 ± 5 yrs), non-

musicians, with normal or corrected to normal (by contact lenses) vision participated in 

this study. All subjects were screened for a history of psychiatric, neurological problems, 

or drug use at the time of the experiment. Subjects gave written informed consent and the 

experiment was approved by the ethics and safety committee of the Advanced 

Telecommunications Research Institute International (ATR). A fixed payment was made 

to subjects for their participation in this study. Due to technical fMRI pre-processing 

problems, we report the imaging results of only 16 subjects. 

 

 

4.2.2. Apparatus 

 

In the training session, performed outside the fMRI scanner, subjects comfortably sat at a 

table approximately 40-50 cm from the computer monitor. A regular desktop computer 

keyboard was used for finger key-pressing. Subjects used the index, middle, and ring 

fingers of the right hand to press the ‘v’, ‘b’, and ‘n’ keyboard buttons, respectively. 

Stimulus generation and behavioral data recording were done by custom-made programs 

written in MATLAB (version 7.0), using Psychophysics Toolbox functions (PTB-3). The 

test session was performed inside the fMRI scanner and the task was displayed through 
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an imaging projector on a mirror inside the scanner mounted on top of the head coil. A 

fMRI compatible response optic button box was used obeying the same finger-key 

association used in the training session. 

 

 

4.2.3. Behavioral Task Paradigm 

 

We designed a "grid-sailing task" whose goal was to move a cursor from its start position 

to a target goal position by performing a sequence of finger movements through the 

shortest pathway. Subjects were given oral instruction of the task rules before the 

training session began, and received a short verbal feedback orientation during the first 

training trials to assure they had fully understood how to play the task. 

 

The task trial started with the computer displaying for 3~5 seconds a 5x5 grid (10 cm x 

10 cm) environment with a red fixation cross (FC) on top of the center square matching 

the monitor center position (Figure 1A). This initial trial event corresponded to the inter-

trial interval (ITI) period. Next, a pair of start-goal (SG) positions was simultaneously 

displayed together with a cursor (black triangle) which appeared on top of the start 

position. 

 

The color of the start position specified the time to start a response: immediate start 

(green color) – subjects were instructed to start responding immediately; delay start (red 

color) – subjects had to withhold a response during a delay of 4~6 seconds, and wait for 

the go signal indicated by the switching of color of the start position from red to green. 
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The color of all target goal positions was always blue. After the go signal subjects had a 

maximum response time of 6 seconds, of which they were not explicitly informed. 

During the response period, a sequence of finger key presses had to be performed to 

move the cursor from its initial start position to the goal position. Immediate visual 

feedback of cursor motion was provided after a button had been pressed. Any key-press 

leading the cursor to cross out the grid boundaries was not allowed and was indicated by 

a rapid blink of the cursor which remained at the same position. 

 

A single trial had three possible endings depending on the subject’s performance: a) 

successful trial with the execution of an optimal action sequence (shortest path to goal); 

b) successful trial with the execution of a suboptimal action sequence (longer path); c) 

error trial with a failure to reach a goal position due to response period time over. 

Subjects received performance feedback, displayed for 2 seconds at the trial end, and 

contained information with the number of key-presses, displayed on top of the square 

above the FC and the reward score acquired at the current trial, and displayed on top of 

the square below the FC. 

 

A point system was used as reward for teaching subjects an optimal action sequence: 100 

points for the execution of an optimal action sequence; a discount of -5 (minus 5) points 

for each excessive key-press when a suboptimal action sequence was executed and 0 

(zero) point in error trials. Error trials were signaled by a letter ‘X’ displayed above the 

FC to indicate time over. 
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Figure 2. Grid-Sailing Task and Experiment Design. 

(A) Key-mappings (KM) and respective fingers (I: index; M: middle; R: ring). The 

arrows indicate the three directions of motion depending on the current position of the 

cursor. 

(B) Pairs of start-goal (SG) positions. Start position (red) and goal position (blue). 

(C) KM-SG sets assigned for practice in the training and test sessions for each group of 

subjects. Colored arrows in the training session: magenta – KM-SG sets chosen for retest 

in the test session, black – extra KM-SG sets for training. Colored arrows in the test 

session: orange – KM-SG sets in Condition 1, blue – KM-SG sets in Condition 2, 

magenta – KM-SG sets in Condition 3. 

(D) Sequence of task flow. The task started with the presentation of a 5x5 grid and a 

fixation cross (FC) for 3-5s. Next, a pair of SG positions was displayed with a cursor 
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(triangle), associated to one KM, on top of the start position. When the color of the start 

position was red it indicated a delay period of 4-6s and the color switching to green 

indicated the go signal and start of the response period which lasted for 6s. Subjects' task 

was to execute a sequence of finger movements and to reach the goal by finding the 

shortest pathway. Performance feedback (2s) containing the number of moves (above 

FC) and reward score (below FC) was provided at the trial end. 

 

 

4.2.4. Task Design 

 

Three cursors, all triangle shaped, were used in this experiment, each had its acute angle 

turned into a spatial direction (90º, 180º, 270º) and was assigned to one of three different 

key-maps (KM, Figure 1B),which were associated to a three-move direction rule. Also, 

five differing fixed pairs of start-goal positions (Figure 1C) were prepared and arbitrarily 

combined to one of the three KMs to form KM-SG sets used in the training and test 

sessions (Figure 1D). 

 

Subjects started off the task not know neither KMs nor action sequences and had to learn 

by trial-and-error. A target goal position could be reached by multiple optimal action 

sequences. However, in order to measure learning-related behavioral changes, subjects 

were instructed to learn a single optimal action sequence for each KM-SG set, and to 

perform as fast and accurately as possible. No constraints were imposed on a sequence to 

be learned, and subjects were free to learn the action sequence they felt most comfortable 

performing. 

 

We had subjects perform one training session and one test session on different and 

consecutive days, with one night sleep interval between sessions. Training and test 



75 

sessions were further divided into three and two trial blocks, respectively, separated by a 

5 minute rest interval. Subjects were randomly assigned to one of three groups and 

remained in the same group in the two experimental sessions. 

 

For each group in the training session we arbitrarily selected two KMs and each was 

combined with two different SG pairs. Therefore, subjects had to learn from scratch the 

two KMs and four different action sequences, one for each KM-SG set. A KM-SG set 

was practiced for 60 trials (20 trials per training block: 10 immediate start and 10 delay 

start trials). Each of the four KM-SG sets was performed once in a block of four 

randomly generated trials with each block alternating between immediate and delay start, 

and the first block of four trials being immediate start. 

 

In the test session subjects performed the grid-sailing task, inside the fMRI scanner, 

under three task conditions: Condition 1 – new KM: the KM not used in the training 

session was introduced and combined with three SG pairs, so that subjects had to learn 

both the new KM and an action sequence for each newly KM-SG set. Condition 2 – 

learned KMs: the KMs learned in the training session were combined with different SG 

pairs, and subjects essentially had to retrieve the appropriate KM rule and use it for 

planning and learning of new action sequences. Condition 3 – learned KM-SG sets: two 

of the four KM-SG sets practiced in the training session were chosen for retest in the test 

session. 

 

A single KM-SG set was practiced for a total 20 trials (10 trials per trial block: 5 

immediate start and 5 delay start trials). In total, subjects performed nine different KM-
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SG sets in the training session: three KM-SG sets in task condition 1, four KM-SG sets 

in task condition 2, and two KM-SG sets in task condition 3. Similar to the training 

session, the task was performed in blocks of nine randomly generated trials, with 

alternation of the start time every nine trials, and the first block of nine trials set to 

immediate start. The task conditions were intended to mimic distinct levels of experience 

in action selection which might particularly depend on the implementation of specific 

action selection methods.  

 

Subjects performed a short version (6 immediate and 6 delay start trials) of the same task 

practiced on the previous day in the training session right before the start of the fMRI 

scanning in order to assure they still remembered the task procedures, and more 

importantly, the action sequences learned for each KM-SG set. At the end of this short 

pre-fMRI practice, subjects received explicit instruction regarding the introduction of 

different task conditions that they had to perform inside the fMRI scanner. 

 

 

4.2.5. Analysis of Behavioral Data 

 

We analyzed the following behavioral performance variables: a) reward score – number 

of points acquired in a trial; b) number of moves – number of key-presses executed to 

reach the target goal; c) reaction time (RT) – time elapse from go signal to onset of the 

first key-press; d) execution time (ET) – time from onset of the first key-press to the 

execution of the last key-press. The behavioral measures in the training and test sessions 

were separately subjected to a series of n-way ANOVA with repeated measures 
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including the factors: Group, Task Condition, Trial Block, and Start Time Condition. 

The statistical analysis also included multiple comparison procedures and Tukey’s post 

hoc tests to seek for significant differences between pairs of levels within a factor. 

 

 

4.2.6. fMRI Data Acquisition 

 

Scanning took place at the Brain Activity Imaging Center, Kyoto. Detailed anatomical 

data were collected using a multiplanar rapidly acquired gradient echo (MP-RAGE) 

sequence. T2*-weighted echo planar images (EPIs) with blood oxygen level dependent 

(BOLD) contrast were acquired on a Siemens Tesla 3 Magnet Trio MRI scanner (TR: 

2000 ms, TE: 23 ms, FOV: 192 mm, flip angle: 80°). Thirty coronal oblique slices (3 x 3 

x 5 mm) were acquired parallel to the plane containing the anterior and posterior 

commissures (AC-PC plane) after prescribing slice position based on automatic 

measurements of rotation, translation and tilt of the structural images relative to an 

average image. The fMRI session was split into two runs, each lasting approximately 22 

min, with the number of volumes depending on the subjects’ performance. 

 

 

4.2.7. Analysis of the fMRI Data 

 

Statistical parametric mapping (SPM) with SPM8 software (Wellcome Trust Centre for 

Neuroimaging, UCL) was used to preprocess all fMRI data, which included correction 

for slice time acquisition, spatial realignment of all volumes to the first image, spatial 
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normalization using regressor parameters estimated by the unified segmentation process 

with voxel size resampled to 3 x 3 x 3 mm, and smoothed using a Gaussian kernel with 

an isotropic full width at half maximum of 8 mm. A high-pass temporal filtering with a 

cutoff of 128 s was applied to remove low-frequency drifts in signal, and global changes 

were removed by proportional scaling. Statistical analysis was conducted using a general 

linear model and a set of boxcar functions on three events (ITI, Response Period and 

Reward delivery) of the immediate start trials and on four events (ITI, Delay, Response 

Period and Reward delivery) of the delay start trials. Subject-specific design matrices 

were created using the above trial events for each of the tree task conditions, including a 

nuisance partition containing the head motion regression parameters estimated in the 

realignment procedure. 

 

A series of contrast images were generated for each subject by using a subtraction 

approach and were subsequently taken to a second-level for a random effects group 

analysis using one-sample T tests. We were primarily interested in the specific effect of 

task condition on the delay-related period activity, and all areas of interest are reported at 

p<0.001, p<0.005, and p<0.01 (uncorrected; see results section for details). A region of 

interest analysis (ROI) was carried out using Marsbar and neuro-anatomically defined 

mask images generated using the Pickatlas Toolbox and the Anatomy Toolbox. The 

mask image for the basal ganglia ROI analysis contained the caudate nucleus and 

putamen, and the graphs were plotted using the Multicolor Toolbox. 
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4.3. Results  

 

 

4.3.1. Behavior in the Training Session 

 

4.3.1.1. Reward Score 

 

Figure 2 summarizes the group average performance during the training session, where 

only the behavior data of the KM-SG sets retested in the test session of all three groups 

was pooled together for analysis. A three-way ANOVA found a main effect of training 

group on the reward score, F(2,2142)=19, p < 0.001, and a post hoc comparison using 

the Tukey's test indicated that the mean reward score for group 2 (M = 83.02, SE = 2.87) 

was significantly different than the group 1 (M = 73.3, SE = 3.27) and group 3 (M = 

72.98, SE = 3.6), and no significant difference was observed between group 1 and group 

3. There was also a main effect of start time on subjects' behavior, F(1,2142)=33, p < 

0.001. This effect showed that a subject could increase a reward score and consequently 

reach the goal position more effectively when a response started after a delay than when 

it had to be started immediately.  

 

There were significant performance improvements across trial blocks, F(2,2142)=216, p 

< 0.001, suggesting that the total average reward gradually increased (Figure 3A) as 

subjects learned he KM rule associated to each cursor, and optimal action sequences 

leading to the goal position. Finally, there was an interaction between training group and 

start time, F(2,2142)=4.5, p ≤ 0.01, training group and trial block, F(4,2142)=10.92, p ≤ 
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0.01, start time and trial block, F(2,2142)=5.72, p ≤ 0.005, but no interaction effects were 

found for training group x start time x trial block at p < 0.05. Although group differences 

were observed in the training session, the analysis of subjects' behavior in the short 

practice, right before the start of the fMRI session, revealed that these group differences 

completely disappeared with a one night sleep interval. Similar learning-related 

improvements in performance were found for the number of moves (figure 3D), reaction 

time (figure 3E), and execution time (figure 3F). 

 

 

 

Figure 3. Behavior Performance in the Training Session and Acquisition of Sequential 

Motor Memories 

(A) Mean reward score. The reward score was averaged in blocks of every 5 trials across 

subjects. The same procedure was applied to the other behavioral measures. 

(B) Percentage of trials with successful goal reach. In this analysis optimal and non-

optimal goal reach trials were analyzed. All subjects reached the learning criteria of 80% 

successful performance. 
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(C) Percentage of trials with optimal goal reach. Only the trials in which subjects 

performed an optimal action sequence was analyzed. 

(D) Mean over-step. This is a measure of the number of moves that exceeded the optimal 

sequence length. 

(E) Mean reaction time (ms). A significant increase in the reaction time was found 

between trials 6 and 15 (p < 0.01) under the immediate start condition. 

(F) Mean execution time (ms). No significant difference was found in the performances 

under the immediate and delay start conditions. 

 

 

 

4.3.1.2. Reaction Time 

 

The three-way ANOVA with repeated measures showed a significant effect of training 

group, F(2,2139)=69.9, p < 0.001, start time, F(2,2139)=1451.32, p < 0.001, trial block, 

F(2,2139)=6.07, p < 0.005, training group and start time, F(2,2139)=14.32, p < 0.001, 

training group and trial block, F(2,2139)=9.92, p < 0.001, and training group * start time 

* trial block, F(2,2139)=3.81, p < 0.005. The post hoc test revealed that the overall 

reaction time in training group 3 (M = 1.22, SE = 0.09) was longer than the reaction time 

of training groups 1 (M = 0.92, SE = 0.07) and 2 (M = 0.91, SE = 0.02), but no 

significant difference between training group 1 and 2. We also found a significant 

increase in the reaction time under the immediate start condition during the first part of 

the training session, but which subsequently decreased as learning progressed (Figure 

3E). 
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4.3.1.3. Execution Time 

 

A significant effect was found for training group, F(2,2139)=57.76, p < 0.001, trial block, 

F(2,2139)=471.62, p < 0.001, and a two-way interaction effect for training group and 

trial block, F(2,2139)=10.38 (Figure 3F). The post hoc test revealed that the overall 

execution time was significantly different among the three training groups with group 1 

having longer execution time (M = 2.92, SE = 0.04) than group 2 (M = 2.22, SE = 0.04) 

and group 3(M = 2.53, SE = 0.04). 

 

 

4.3.1.4. Number of Key-Presses to Reach a Goal 

 

The three-way ANOVA with repeated measures showed a significant effect of training 

group, F(2,2142)=84.03, p < 0.001, trial block, F(2,2142)=91.17, p < 0.001, a two-way 

interaction effect for training group and start time, F(2,2142)=5.63, p < 0.005, and 

training group and trial block, F(2,2142)=4.37, p < 0.001. No other significant 

interaction effects were found. The post hoc analysis using the Tukey’s test revealed that 

the number of moves to reach the goal position was significantly larger in group 1 (M = 

7.66, SE = 0.07) than in group 2 (M = 6.33, SE = 0.07) and group 3 (M = 6.52, SE = 

0.07), but there was no significant difference between groups 2 and 3 (Figure 3D). 
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4.3.2. Behavior in the Test Session 

 

4.3.2.1. Reward Score 

 

We merged the data of all subjects from the three groups and carried out the statistical 

analysis with the null hypothesis of no significant differences in the reward score 

performance among the three task conditions. A three-way ANOVA with repeated 

measures found a main effect of task condition F(2,3228)=181.94, p < 0.001, start time 

F(1,3228)=121,13, p < 0.001, and trial block F(1,3228)=126.6, p < 0.001. Significant 

interaction effects were also found for task condition and star time F(2,3228)=17.24, p < 

0.001, task condition and trial block F(2,3228)=25.99 p < 0.001, start time and trial block 

F(1,3228)=10.81, p = 0.001. A significant three-way interaction for test condition x start 

time condition x trial block, was also found F(2,3228)=3.42, p = 0.0328. 

 

Figure 4A shows the trial-by-trial time course of the average reward score for the three 

task conditions. As a measure of speed of learning an 80% performance accuracy as the 

average reward score was used. The learning threshold was achieved by subjects in 

Condition 1 under the delay start time condition only in the 7th trial and performance 

was still oscillating in the following practice trials. On the other hand, the learning 

threshold was achieved faster in the 3rd trial by subjects in Condition 2. The learning 

threshold was reached by subjects in Condition 1 and Condition 2 under the immediate 

start condition only in the last trial of the task. The reward score performance in 

Condition 3 remained above the learning threshold throughout the experiment. 
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A post-hoc analysis for data dredging was carried out using the Tukey's honestly 

significant difference test to seek for significant differences between pairs of data. This 

analysis revealed a significant difference in the reward score between Condition 1 (M = 

64.03, SE = 1.1) and Condition 2 (M = 72.21, SE = 0.96), < 0.001, Condition 1 and 

Condition 3 (M = 96.73, SE = 1.3), p < 0.001, and Condition 2 and Condition 3, p < 

0.001. The post hoc analysis revealed a significant increase across trial blocks in the 

reward score of Condition 1 in immediate start trials, F(1,538)=48.41, p < 0.001 and 

delay start trials, F(1,538)=26.19, p < 0.001. Similar result was found in Condition 2 in 

immediate start trials, F(1,718)=91.06, p < 0.001 and delay start trials, F(1,718)=32.78, p 

< 0.001. The post-hoc test failed to identify any changes in reward score performance in 

Condition 3 in immediate start trials, F(1,354)=0.003, p = 0.9995 and delay start trials, 

F(1,354)=0.22, p = 0.6417 (Figure 4B). 

 

We investigated the effect of the immediate and delay response start on the subject's 

ability to plan and execute action sequences. The post hoc test showed a significant 

effect of response start time for Condition 1 (immediate start: M = 55.52, SE = 2.63; 

delay start: M = 72.53, SE = 2.26), p < 0.001, and for Condition 2 (immediate start: M = 

60.56, SE = 2.57; delay start: M = 84.02, SE = 2.08), p < 0.001. We also found a 

significant effect of response start time on the reward score of Condition 3 (immediate 

start: M = 94, SE = 1.22; delay start: M = 98, SE = 0.85), p < 0.001. No significant 

difference was found in the reward score between Condition 1 and Condition 2 under the 

immediate response start, p = 0.0578. However a significant difference was found for 

trials under the delay start response, p < 0.001 (Figure 4C). 
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To further investigate the extent of the beneficial effect of delay response start on 

improvements in the reward score, we analyzed the reward gain, defined as the 

difference between the reward score of the delay and the immediate start trials for each 

of the three task conditions. The reward gain was first computed individually and then 

taken to a group analysis using a two-way ANOVA with test condition and trial block as 

factors. This analysis revealed a significant effect of test condition, F(2,1560)=18.23, p < 

0.001, and trial block, F(1,1560)=20.64, p < 0.001 and a significant two-way interaction, 

F(2,1560)=4.36, p = 0.0129. The post hoc analysis also revealed a significantly larger 

reward gain in Condition 2 than in Condition 1 (p < 0.05) and this difference was larger 

in the first trial block (p < 0.01; Figure 4D) . 

Figure 4. Reward Score Performance in the fMRI Session 
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(A) Mean reward score. Trial-by-trial time course average of the reward score across 

subjects. An 80% performance accuracy was used as a learning threshold similar as in 

the training session. 

(B) Reward gain by delay start. The reward gain was computed as the difference in the 

reward score between the delay and immediate start trials. This analysis showed that the 

reward score was significantly high in Condition 2 than in Condition 1 in the first half of 

the experiment. 

(C) Percent reward score by trial type: error trials; suboptimal goal reach trials and 

optimal goal reach trials. There was a larger number of error trials in Condition 1 than in 

Condition 2 and a larger number of optimal goal reach trials in Condition 2 than in 

Condition 1. 

(D) Cumulative reward score. 

The legend for (C) and (D) are the same as in (A). 

 

 

In a subsequent analysis, we classified the trials in three types based on the success in 

goal reaching: a) error goal reach - subjects failed to reach the goal; b) suboptimal goal 

reach - goal was reached by performing excessive finger movements, and c) optimal goal 

reach - goal was reached by performing an optimal action sequence. We checked the 

trial-by-trial time course and the frequency of occurrence of one of these trial types. 

Figure 5A shows the percentage of error goal reach trials and shows a fast decrease in 

error trials in Condition 2 in delay response start trials and a slow decrease in error trials 

in Condition 1. On the other hand, there was a slow and comparable decrease in error 

trials under the immediate response start in both Condition 1 and Condition 2. Figure 5B 

shows the percent of suboptimal goal reach trials. In Figure 5C we show the percent of 

optimal goal reach. In this graph, it can be seen that there was a fast increase in the 

number of optimal trials in Condition 2 under the delay response start, whereas the 

percent of optimal goal reach trials in Condition 1 was very low from the first trial and 

reach the same performance level of Condition 2 only in the 7th trial. Figure 5D shows 

the overall percent of the different trial types for each task condition. Subjects had more 
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error goal reach trials in Condition 1 than in Condition 2. On the contrary, Condition 2 

had a larger number of optimal goal reach trials than in Condition 1. Figure 3E shows the 

cumulative reward score. 

 

 

Figure 5. Analysis of performance by classification of trial types. 

(A) Percent of error goal reach trials. In these trials subjects failed to reach the goal 

position. 

(B) Percent of suboptimal goal reach trials. These are the trials in which subjects reached 

the goal position by performing excessive finger movements. 

(C) Percent of optimal goal reach. In these trials subjects always reached the goal 

position by performing optimal (shortest paths) sequences of finger movements. 

(D) Cumulative reward score. 
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We also analyzed the variability in the reward score by calculating the mean absolute 

deviation (MAD) for each subject and task condition, and entered this data into a group 

analysis using a three-way ANOVA with repeated measures. This analysis revealed a 

significant effect of test condition, F(2,48)=130.44, p < 0.001, start time, F(1,48)=29.86, 

p < 0.001, test block, F(1,48)=34.93, p < 0.001, and a two-way interaction for test 

condition and trial block, F(2,48)=5.1, p < 0.01. The post hoc analysis indicated that 

there was higher variability in the reward score of Condition 1 (M = 36.66, SE = 1.34) 

than in Condition 2 (30.39, SE 1.23) and Condition 3 (M = 8.23, SE = 1.13). 

 

 

4.3.2.2. Reaction Time 

 

The three-way ANOVA with repeated measures found a main effect of task condition, 

F(2,3228)=72.85, p < 0.001, start time, F(1,3228)=2265.14, p < 0.001, and trial block, 

F(1,3228)=24.12, p < 0.001, and for a two-way interaction between task condition and 

start time, F(1,3228)=16.34, p < 0.001, on the reaction time. No significant interaction 

interactions were found for test condition and test block, F(1,3228)=2.8, p = 0.061, start 

time and trial block, F(1,3228)=0.4, p = 0.526, and test condition x start time x trial 

block, F(1,3228)=1.1, p = 0.332. The post hoc analysis revealed no significant 

differences in the overall reaction time between Condition 1 (M = 1.349, SE = 0.021) 

and Condition 2 (M = 1.383, SE = 0.018), p > 0.05. The reaction time in Condition 3 was 

shorter than the reaction time in the other two conditions (M = 1.014, SE = 0.026), p < 

0.001 (Figure 6A). 
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Figure 6. Reaction time performance. 

(A) Reaction time including all trial types. The top and lower dotted lines represent the 

overall average reaction time of Condition 3. 

(B) Reaction time including only the optimal goal reach trials. The top and lower dotted 

lines represent the overall average reaction time of the optimal goal reach trials in 

Condition 3. 

 

 

A first-order polynomial function was used to perform a regression analysis and seek for 

any linear changes (increase of decrease) in the reaction time performance data. In this 

analysis only the reaction time of the optimal goal reach trials were used for linear 

regression. This analysis failed to identify any significant decrease in subjects' reaction 

time performance in Condition 1 in the immediate (r = 0.12, p = 0.75) and delay response 

start (r = 0.26, p = 0.46). However, we were able to find a significant decrease in the 
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reaction in Condition 2 under both immediate (r = 0.74, p < 0.01) and delay response 

starts (r = 0.85, p < 0.001, Figure 6B). No significant linear correlation was found in 

Condition 3 under the immediate (r = 0.002, p = 0.99) and delay response starts (r = 0.18, 

p = 0.6). 

 

4.3.2.3. Execution Time 

 

Figure 7A show the average execution time with all trial types included and figure 7B 

shows the average execution of the optimal goal reach trials. The three-way ANOVA 

with repeated measures found a main effect of task condition, F(2,3221)=265.24 p < 

0.001, a nearly significant effect of start time, F(1,3221)=4.69, p < 0.05, and trial block, 

F(1,3221)=203.65, p < 0.001, and for a two-way interaction effect between task 

condition and trial block, F(1,3221)=13.23, p < 0.001. Condition 1 had an overall longer 

execution time (M = 3.137, SE = 0.035) than condition 2 (M = 2.961, SE 0.030), and 

condition 3 (M = 1.912, SE = 0.043). 

 

A MAD analysis was used to seek for performance variability in the execution time 

using the same procedures as described in the analysis of reward score. The three-way 

ANOVA with repeated measure revealed a significant effect on the variability in the 

execution time by test condition, F(2,48)=102.91, p < 0.001, start time, F(1,48)=35.61, p 

< 0.001, trial block, F(1,48)=10.62, p < 0.005, a significant two-way interaction for test 

condition and start time, F(2,3221)=11.29, p < 0.001, and test condition and trial block, 

F(2,48)=16.23, p < 0.001. No other two- or three-way interaction effects were found. The 

post hoc analysis showed that the variability in execution time was much higher in 
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condition 1 (M = 1.07, SE = 0.02) than in condition 2 (M = 0.95, SE = 0.02) and 

condition 3 (M = 0.63, SE = 0.02). 

Figure 7. Execution time performance. 

(A) Execution time including all trial types. The speed threshold (black dotted line) is the 

overall average reaction time of the delay response start trials in Condition 3. 

(B) Execution time including only the optimal goal reach trials. The speed threshold 

(black dotted line) is the overall average reaction time of the optimal goal reach delay 

response start trials in Condition 3. 

 

4.3.2.4. Number of Key-Presses to Reach a Goal 

 

We carried a three-way ANOVA with repeated measures on the number of moves that 

subjects performed to reach a goal position in each task condition (Figure 8). We found a 
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main effect of task condition, F(2,3220) = 87.11 p < 0.001, start time, F(1,3220) = 9.42, 

p < 0.005, and trial block, F(1,3220)=5.73, p < 0.05, and for a two-way interaction effect 

between task condition and start time, F(1,3220) = 3.64, p < 0.05, and for start time and 

trial block, F(1,3220) = 4.95, p < 0.05. No other two-way of three-way interaction effects 

were found. The post hoc analysis indicated that the average number of steps in 

condition 1 (M = 7.503, SE = 0.068) was larger than in condition 2 (M = 7.2, SE = 

0.059) and in condition 3 (M = 6.1, SE = 0.083). 

 

 

Figure 8. Number of moves. The number of moves was analyzed as the decrease in the 

number of extra finger button presses until performance reached the optimal number of 

moves to goal. The y-axis 0 value indicates a performance with no extra finger 

movements. 

 

A MAD analysis was performed using the same procedures as described above. The 

three-way ANOVA with repeated measure revealed a significant effect of test condition, 

F(2,48)=171.9, p < 0.001, trial block, F(1,48)=4.65, p < 0.05, and a two-way interaction 

for test condition and trial block, F(2,48)=8.71, p < 0.01. No other two- or three-way 

interaction effects were found. The post hoc analysis showed that the variability in the 
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number of moves was higher in condition 1 (M = 2.01, SE = 0.06) than in condition 2 (M 

= 1.75, SE = 0.05) and condition 3 (M = 0.55, SE = 0.03). 

 

 

4.4. fMRI Results 

 

 

4.4.1. Delay-period Brain Activity in Condition 1 (New KM) and Condition 

2 (Learned KM) vs. Condition 3 (Learned KM-SG sets) 

 

 

Our main interest was in identifying how the different task conditions differentially 

modulated the BOLD fMRI signals from subjects during the delay period (4~6 seconds) 

of a trial, and to find out whether distinct neural networks were engaged in planning, 

selection and generation of motor responses. We evaluated subjects’ elicited delay period 

BOLD signal from the entire test session, collapsed across the two scan runs and 

separately for each task condition. A subtraction analysis was performed using the delay 

period BOLD signal of Condition 3 as the control task to identify the areas that were 

significantly more active in Condition 1 (Condition 1 – Condition 3) and in Condition 2 

(Condition 2 – Condition 3). 

 

This analysis revealed a similar pattern of activation in brain areas in Condition 1 (Figure 

9A) and Condition 2 (Figure 9B). Subtle differences, however, could be observed in a 

larger extension and spread of those activations in Condition 2 than in Condition 1 in 
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areas such as the dorsolateral prefrontal cortex bilaterally, ventral premotor cortex, 

lateral and dorsal premotor cortex, the basal ganglia, and left posterior cerebellum (see 

Table 1 for a complete list of activated brain regions). Significant differential activity 

was observed in the left anterior cerebellum in Condition 1, and the left posterior 

cerebellum in Condition 2. 
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Figure 9. Delay-Period Activity in Condition 1 and Condition 2 After Subtraction of 

Condition 3 

(A) Delay-period activity in Condition 1 (Condition 1 > Condition 3). 

(B) Delay-period activity in Condition 2 (Condition 2 > Condition 3). 

(C) ROI analysis using a mask image of the basal ganglia (caudate and putamen) 

extracted the activated voxels during the delay period for Condition 1 and Condition 2, 

as shown in (A) and (B), respectively. The basal ganglia activation in Condition 2 (blue 

color) extended from ventral to dorsomedial regions , whereas the activation in 

Condition 1 (orange color) was restricted to the ventromedial regional. 
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(D) ROI analysis, as described in (C), using a mask image of the cerebellum (restricted 

to areas Crus 1 and Crus 2). The extent of activation in the lateral hemispheres of the 

cerebellum was larger in Condition 2 than in Condition 1. 

 

 

A ROI analysis on the basal ganglia showed a pattern of activation comparable to that 

observed in the cerebral cortex, the peak of activation in Condition 2 (Figure 9C) was on 

the left hemisphere (x = -12, y = 11, z = 1) and the activation extended in a rostro-caudal 

direction, from the more ventral to mid-dorsolateral caudate nucleus and putamen (voxel 

cluster size of whole ROI = 443), and the peak activation in Condition 1 (Figure 9D) was 

on the right hemisphere (x = 18, y = 11, z = 1) and located more ventro-medially 

including the caudate head and anterior putamen (voxel cluster size of whole ROI = 167). 

 

 

4.4.2. Delay-Period Brain Activity for Condition 1 (New KM) vs. Condition 

2 (Learned KM) 

 

In the previous analysis we showed the presence of subtle differences in the regional 

patterns of brain activations for condition 1 and condition 2 during the delay period, 

which might be an indication of the existence of possible functional specificity operating 

for each task condition. Therefore, we conducted a subtraction analysis (condition 1 – 

condition 2; condition 2 – condition 1) to seek for areas whose activation were 

exclusively restricted to each of these two task conditions. 

 

We found that condition 1 (Figure 10A) and condition 2 (Figure 10B) differentially 

relied on two distinct patterns of functional brain activity. Condition 1 primarily 
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activated the ventro-medial orbital frontal cortex, the somatosensory cortex, inferior 

parietal lobule, occipital cortex, and the posterior cerebellum, whereas areas activated in 

Condition 2 included the left dorsolateral prefrontal cortex, ventral premotor cortex 

bilaterally, right inferior temporal gyrus, left posterior cerebellum and a mid-dorsal 

region in the basal ganglia (caudate body). A ROI analysis identified two distinct clusters 

in the basal ganglia (Figure 10C), one in a ventro-medial region (peak: x = -12, y = 20, z 

= -5) in Condition 1, and the other in a mid-dorsal region (caudate body, peak: x = 9, y = 

2, z = 16) in Condition 2. 
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Figure 10. Delay-Specific in Condition 1 and Condition 2 

(A) Delay-period activation after the subtraction Condition 1 > Condition 2 revealed that 

the areas activated in Condition 1 included mainly the medial orbital frontal cortex, the 

dorsal premotor cortex, the somatosensory and inferior parietal cortex. The areas 
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activated in Condition 2 after the subtraction of Condition 1 included the dorsolateral 

prefrontal cortex, ventrolateral premotor cortex, pre-supplementary motor area and 

superior parietal cortex. 

(B) The mutual subtraction of the delay-period activity between Condition 1 and 

Condition 2 revealed separate sites of activation in the basal ganglia. Condition 1 

activated mainly the anterior pole and ventromedial region, whereas the dorsomedial 

caudate nucleus was activated in Condition 2. 

(C) The mutual subtraction also showed the activation of distinct regions in the 

cerebellum. The left lateral region of Crus 1 was activated in Condition 1 while the right 

Crus 2 with activation extending from the vermis to the lateral part was activated in 

Condition 2. 

 

 

 

4.4.3. Delay-Period Brain Activity in Condition 3 

 

We were also interested in the neural mechanisms associated with the automatic, habit-

like performance of task condition 3, and for that purpose, a further analysis was 

conducted to investigate the fMRI signal during the delay period using a series of simple 

subtractions (Condition 3 – Condition 1, Condition 3 – Condition 2) and two-way 

subtractions (Condition 3 – [Condition 1 + Condition 2]). This analysis allowed us to 

confirm the consistency of the results previously reported (see Figure 4) when condition 

3 delay period activity was used as a baseline control and to see whether other brain 

regions also were specifically activated when subjects performed the condition 3 (Figure 

11). 
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Figure 11. Brain activity related to retrieval of motor memories 

Activation in Condition 3 during the delay period after a two-way subtraction (Condition 

3 - [Condition 1 + Condition 2]. There was activation in the  

 

 

The analysis revealed that there was a common pattern of brain activation, across the 

three types of subtractions implemented, in the superior medial frontal gyrus, middle 

temporal gyrus, angular gyrus, anterior cingulate, and putamen (Figure 11). In the results 

presented in Figure 9, the delay period activity was used as a control task. Interestingly, 

when the delay-period activity of Condition 3 is compared with the baseline, the brain 

areas that are significantly activated include the supplementary motor area, lateral 

premotor cortex, primary motor cortex, somatosensory cortex, precuneus, anterior and 

posterior motor cerebellum and posterior putamen (Figure 12). 
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Figure 12. Delay-period activity in Condition 3 vs. baseline. 

The subtraction of delay-period activity in Condition 3 > baseline revealed a pattern of 

brain activation that included mainly sensory-motor areas involved in storage and 

implementation of habitual, automatic motor behaviors: supplementary motor area, 

lateral premotor cortex, primary motor cortex, somatosensory cortex, precuneus, 

posterior putamen (dorsolateral striatum) and anterior and posterior motor cerebellum. 

 

 

We also conducted the same type of two-way subtractions for conditions 1 and 2, and 

found a clear separation of areas active for each condition. In condition 1 the activation 

was restricted to the premotor cortex (BA 6), right inferior operculum, inferior parietal 

gyrus (BA 40), precuneus (BA 7) bilaterally, and left ventral striatum, while in condition 

2 the active areas were the dorsolateral prefrontal cortex (BA 46), left premotor cortex 
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(BA 6, BA 9), left supplementary motor area, posterior cerebellum, caudate body, 

internal globus pallidus, and middle occipital gyrus. 

 

A ROI analysis on the basal ganglia using this two-way subtraction method for the three 

task conditions revealed a gradient of activation that seemed dependent on the level of 

experience, where a more ventral striatum was activated in condition 1, a mid-dorsal 

region (centered on the caudate body) was activated in condition 2, and in condition 3 a 

dorsolateral region (putamen) was active. The single subject contrast images from the 

two-way subtraction were entered in a conjunction analysis, so that we could fully 

demonstrate that the three task conditions elicited activation in distinct networks. The 

results of the conjunction analysis showed that no regions were commonly activated 

among the three task conditions. 

 

 

4.5. Discussion 

 

 

In this study, we had human subjects perform a grid-sailing task to learn key mappings 

and action sequences to move a cursor from its start position to a target goal position. 

After one day training and one night sleep interval, subjects were tested under three task 

conditions that, depending on their familiarity with the key mappings, mimicked 

different levels of experience in action selection. 
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The analysis of subjects' behavior in the training session showed significant learning-

related improvements with a gradual increase in the reward score and decreases in the 

number of moves performed to reach a goal position, in the reaction time and execution 

time. Although significant differences were found among training groups for specific 

behavioral measures, however, such differences completely disappeared with a one-night 

sleep interval as indicated by the analysis of the reward score during the pre-fMRI short 

practice. These results confirmed that subjects successfully learned the task, and the 

formation and consolidation of automatic, habit-like action sequences (Hikosaka et al, 

1995; Adams, 1971). 

 

Behavior analysis in the test session revealed distinct performance profiles for each task 

condition. Significant learning-related changes were found in conditions 1 and 2 but not 

in condition 3. The highest variability in all performance measures was found in 

condition 1, which also was associated with the lowest reward score, longest execution 

time, and larger number of moves. These results are in accordance with the motor 

learning literature suggesting that novel action learning is characterized by the use of 

exploratory behaviors to capture the dynamics of the interaction between actions and the 

environment, consequently leading to an initial low performance and high variability in 

behavior (Gabriele, 1981; Hall, 1990; Hyman, 1993). 

 

The results also provide evidence to our hypothesis that, in the absence of an internal 

model to plan and predict an action outcome, humans utilize a model-free action value-

based strategy for action selection. The long execution time can be explained by the large 

number of moves, by a longer time to generate the next action, and also by the necessity 
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to receive visual feedback of cursor motion to establish associations between finger 

movement and cursor motion direction. Interestingly, the increased reaction time in the 

immediate start in the first trial block might be an indication that the internal model of 

the new key mapping was under construction. 

 

Behavioral performance in task condition 2 was characterized by a boosted learning with 

a fast increase in the reward score, especially when the response started after a delay, 

which indicates a beneficial effect of this extra time on the planning of future action 

sequences. We also found that the reward gain was greatest in condition 2, which was 

correlated with the highest probability of performance of optimal action sequences even 

from the very first trial of the experiment. In addition, the overall performance in 

condition 2 was significantly more consistent and less variable than in condition 1. 

 

The beneficial effect of a delay period on motor performance is well known, for example, 

in a classical study, Sheridan (1989) tested human subjects performing stereotypical 

sequences of arm-hand movements under several start time and advance information 

conditions, and found that speed and quality of performance improved when the response 

started after several seconds, or when information indicating the motor sequence to be 

performed was given in advance. The main difference between Sheridan’s paradigm and 

our condition 2, however, is that in our experiment subjects started off the task knowing 

only the key mapping rules and cursors, but not the correct action sequences, which had 

to be learned on the fly during the fMRI scanning. Although the actual action responses 

were unknown, our results showed that subjects could successfully utilize the available 

internal model of the pre-learned key mappings to plan future action sequences. These 
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results are in agreement with our hypothesis that given the availability of time for 

computation and the existence of an internal model, human subjects can implement a 

model-based forward model strategy by mental simulation to predict and evaluate state 

transitions and hypothetical actions, and to select those actions that are most likely to 

lead to successful outcomes. 

 

In task condition 3, subjects performed action sequences, after the passage of a one-night 

sleep interval, which had been well-learned on the previous day in the training session. 

We found that performance in condition 3 had the highest reward score, which was 

unaffected by the response start time, and a fast reaction time and execution time. There 

were no significant learning- or performance-related improvements in this condition. 

Although the action sequences have been practiced for just one day and retested on the 

following day, it might be difficult to assume they already were in a habitual mode. 

However, given the high reward score performance, the fast execution and low 

variability, the results provide support to our hypothesis that an automatic sequential 

motor memory process in the form of a learned policy of model-free algorithm guided 

the reproduction of the learned action sequences. 

 

The behavioral results suggest that in condition 1, characterized by exploratory behavior, 

subjects may have utilized an action value-based model-free strategy for action selection; 

in condition 2 the boosted learning and large reward gain in delay start trials suggest the 

use of a model-based forward model strategy for prediction, evaluation and selection of 

actions, and the high performance in condition 3 indicates the use of a motor memory 

policy of model-free algorithm to reproduce learned action sequences. 
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The fMRI imaging data also showed that each of these task conditions associated action 

selection strategies had a counter part in the brain mechanisms implementing them. 

Condition 1 activated a network linking mainly the orbitofrontal cortex and anterior 

ventral striatum, whereas the dorsolateral prefrontal cortex, ventral premotor cortex, mid-

dorsal striatum and lateral cerebellum were activated in condition 2, and the superior 

medial, middle temporal gyrus and dorsolateral striatum were activated in condition 3. 

 

 

4.5.1 Related Sequence Learning Studies 

 

Our study was the first to use a behavioral task that tried to explicitly separate the 

cognitive processes, expected to be predominantly engaged during the delay period 

(4~6s), from the movement execution period after the start go signal. We cannot rule out, 

however, that abstract motor information was used during the delay period, since the 

internal model, represented by the key-mapping rule, was associated with the movement 

of specific right hand fingers as well as the motion direction of a cursor. Other studies, 

on the other hand, have investigated the process of sequence learning and related brain 

structures using fMRI and PET by experiments in which subjects had to learn online by 

movement execution and trial-and-error the correct finger sequence. 

 

The first behavioral paradigm for investigating sequence learning was based on the serial 

reaction time (SRT) task. In this paradigm subjects are informed that one of four parallel 

horizontally arranged stimuli will turn on and they have to press the corresponding 

button (such as index, middle, ring and little fingers). The lights sequentially turn on for 
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a period of about 60s, but unknown to subjects, the lights follow a predetermined 

sequence of eight moves. Some of the subjects eventually learn the hidden sequence and 

decrease the reaction time for button pressing. Other subjects never find or cannot report 

the hidden sequence at the end of the experiment, although their performances measured 

by the reaction time also improves, that is, button press becomes faster but still 

significantly slower than the subjects who explicit learn the sequence. 

 

Interestingly, the areas activated in group of explicit learners during the initial learning 

stage is similar to those activated in our experiments in Condition 1 and Condition 2, 

including the ventromedial prefrontal cortex, dorsolateral prefrontal cortex, 

supplementary motor area and lateral cerebellar lobes. The areas activated in the group of 

implicit learners include mainly sensory-motor related areas, the supplementary motor 

area, primary motor cortex and posterior cingulate and parietal cortex. This pattern of 

activity is in line with the results found in our Condition 3 (learned KM-SG sets) which 

had predominant activation in the supplementary motor area, primary motor cortex, 

precuneus, dorsolateral striatum (posterior putamen) and anterior and posterior motor 

cerebellum. 

 

These results suggest that explicit learning requires the use of brain areas responsible for 

the control of goal-directed motor learning which subsequently might lead to better 

improvements in motor performance, whereas the areas activated in implicit learning are 

involved mainly in automatic or reactive motor processes that require no learning 

although motor improvements may still occur. The use of SRT tasks, however, cannot 

clearly separate planning and motor processes since there is no explicit delay before 
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movement execution and subjects do not need to use abstract rules of other cognitive 

processes for sequence generation. Another difference with our study is that a SRT task 

does not require learning by trial-and-error since the appropriate motor response are 

determined in advance by the experimenter. 

 

The works by Hikosaka and Passigham are the ones that share one important feature with 

our study, the learning by trial-and-error using a reinforcement learning paradigm. In 

Hikosaka et al (1999) 2x5 task, monkeys and humans have to push in the correct 

sequence one of 10 buttons, arranged in a button pad of 4x4 LEDs. The buttons turn on 

to indicate the go signal and if a button is pressed incorrectly, all buttons turn off and the 

sequence has to start from the beginning with no delay. In this task the visual signal 

works as reinforcement feedback. The works by Passingham follow the same learning 

paradigm but auditory feedback is used instead of a visual signals. 

 

In such reinforcement learning paradigms, subjects have to actively search the correct 

sequence of finger movements, therefore, exploration and memory of the correct 

movements must be kept in mind, as well as corrections to the wrong movements and 

anticipation of next movements. Subjects are put in a real problem-solving learning task. 

These experiments have found a group of brain areas is predominantly activated in the 

initial cognitive goal-directed learning period including the dorsolateral prefrontal cortex, 

pre-supplementary motor area, posterior parietal cortex, anterior basal ganglia and lateral 

cerebellum. The activity in these areas decrease with advanced practice and another 

group of areas become predominantly active when performance reaches an 

automatic/habitual level: supplementary motor area, lateral premotor cortex, precuneus, 
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anterior cerebellum and posterior putamen. These were the first studies to explicitly 

show that different neural circuits take over behavioral control in different learning 

stages. These results were supported by Hikosaka's lesion studies with monkeys (see 

Chapter 2 for details). A difference Hikosaka's an d Passingham's studies with the task 

reported in this thesis is absence of an explicit delay period for advance response 

preparation, and the brain activity is averaged over periods that include many actual 

finger movements. 

 

Mushiake et al. (2001) have performed a fMRI experiment with humans using a path 

planning task in which subjects had to use specific rules, indicated by the cursor color, to 

plan a sequence of finger movements to move a cursor from its start position to a target 

goal. The task is very similar to the one presented here and starts the presentation of the 

start-goal positions and the cursor (with a color indicating the appropriate rule) followed 

by a delay period of 6 seconds. Therefore, by using this task Mushiake and colleagues 

were able to explicitly identify the brain areas activated for planning of movements 

ahead. However, subjects were highly trained to perform this task which also required 

the planning of quite short movement sequences, only 3 steps to goal. Consequently, 

very little activity was found in brain areas related to high-order cognitive functions and 

sequential planning, such as the dorsolateral prefrontal cortex. Instead, what these 

researchers found was a pattern of brain activity that resembled the one identified in our 

task Condition 3. The areas activated during the delay period were the supplementary 

motor area, superior parietal and precuneus and anterior cerebellum. Therefore, in this 

case, the task elicited activity mainly in sensory-motor areas even to the planning of new 

but short easy movement sequences. In our task we could clearly test subjects' capacity 
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of learning, planning and generate reactive behaviors by testing them under task 

conditions that required different levels of experience. In Mushiake's study, the task 

might have been too easy to force subjects to use more complex cognitive processes for 

planning a sequence of movements. 

 

The present study was not concerned with the mechanisms involved in the temporal and 

sequential organization of motor behaviors. Tanji and his colleagues (Ninokura, 

Mushiake and Tanji, 2003; Mushiake et al, 2006; Mushiake et al, 2009; Saito et al, 2005; 

Shima et al, 2007, Tanji and Shima, 1994; Tanji, Shima and Mushiake, 1996; Tanji and 

Hoshi, 2001; Tanji, 2001) using similar maze-navigation or three-turn wrist movement 

tasks have been able to identify some basic neural mechanisms for planning and 

sequencing of hand movements. In the navigation task requiring path planning for 

different start-goal positions and in trials where certain possible maze paths were 

blocked with obstacles, activity in the dorsolateral prefrontal cortex correlated with the 

planning and representation of immediate and final behavioral goals (Ninokura) as well 

as multiple steps of future events (Mushiake et al, 2006). On the other hand, neurons in 

the supplementary motor area were found to code for single hand movements or specific 

transitions between movement sequences (Tanji, 2001; Tanji and Shima, 1994; Shima et 

al, 2007). These results are in agreement with the findings of other studies with monkeys 

(Fujii and Graybiel, 2003) which identified that the activity some neurons in the 

prefrontal cortex code sequence boundaries, that is, the start and end of a motor sequence. 

Similar results were obtained by Xin and Costa (2010) who found that nigrostriatal 

neurons code for the start/stop of motor sequences. Jubault, Ody and Koechlin (2007) 

and Koechlin and Jubault (2006) also found, using fMRI with humans, that the activity 
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in the ventrolateral prefrontal cortex (Broca's area) codes the start and end of sequences, 

whereas the activity in the posterior parietal cortex codes the transition within elements 

of a sequence. 

 

 

4.5.2. Reinforcement Learning Paradigms for Learning, Planning and 

Habitual Behaviors 

 

We have designed our grid-sailing task and analyzed the behavioral and brain imaging 

data in light of Reinforcement Learning (RL) theory and its possible biological 

implementations in the human brain (Sutton and Barto, 1998; Doya, 2007; Daw, Niv and 

Dayan, 2005; Montague et al, 1996; Ito and Doya, 2011). In this section I will discuss 

the results presented in this thesis with other studies which used RL or other 

computational methods to model subjects' behaviors and the computational roles played 

by distinct brain regions. 

 

In one of such works Yoshida and Ishii (2007) have conducted an elegant experiment 

and used a sophisticated computational model to analyze subjects' sequential decisions. 

These authors developed a navigation task for which subjects were shown only once the 

target goal in a 7 x 7 grid environment. After the disappearance of the grid, subjects 

could only navigate towards the goal if they correctly estimated the current position 

based on 3D scenes indicating their possible locations in the grid maze. A Hidden 

Markov Model (HMM) was created to estimate by using Bayesian inference subjects' 

internal cognitive processes based on their choice history. The task itself is a difficult 

problem to solve but subjects eventually became proficient at finding the optimal path to 



110 

goal. In addition, a unique pair of start (unknown) and goal positions was tested for every 

trial, therefore, the task did not require the learning or acquisition of stereotypical 

behaviors such as in our task Condition 3 (learned KM-SG set). The authors found that 

dorsolateral prefrontal cortex, the anterior cingulate cortex, the posterior parietal cortex 

and the anterior basal ganglia correlated with the planning of the forthcoming decision. 

The regression analysis using parameters of the HMM identified the medial prefrontal 

cortex as responsible for estimation of current estate within the maze. 

 

These results provide support to our findings in task Condition 2 (learned KM new SG) 

which showed that similar brain areas were activated when subjects were had the chance 

to use the learned KM during the delay period to plan ahead a sequence of movements to 

reach a goal position. In that regard, in Wako-Ishii task subjects could use the 3D scene 

diagram to estimate their current state and plan the next action in the same way that our 

subjects could use the learned KM to plan a sequence of finger movement given their 

initial state at the grid. In their experiment, subjects became faster at finding the goal 

position after repeated experiences even for new start-goal positions, which might 

indicate that subjects could successfully implement some sort of model-based forward 

planning, such as in our task Condition 2, by using the 3D scene diagrams. A difference 

in their task compared with ours is the absence of a delay period, except for a short 

period of about 2s that their subjects had to make a the next decision. In addition, similar 

to other sequence learning paradigms, the brain activity was averaged over a long period 

which included several cognitive and motor processes, and therefore, brain areas other 

than those found in our results also showed up in their findings. 
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Glascher et al. (2010) have devised a tree-search two-choice probabilistic task in order to 

understand what possible reinforcement learning computations might be implemented by 

distinct cortical and subcortical regions for decision making. These authors speculated 

that the brain might utilize two types of prediction errors, one for state prediction and the 

other for reward prediction. State prediction error concerns the prediction of which state 

is expected to be achieved given the current state, whereas reward prediction error is the 

difference between the actual and expected reward for a given state. Glascher and his 

colleagues found that the activity in the dorsolateral prefrontal cortex best correlated with 

a state prediction error function, and the ventral striatum activity correlated with 

computing the reward prediction error. In our study we have not yet analyzed what 

computational functions each of the elements in the prefrontal-basal ganglia and 

cerebellar networks play in the process of learning, planning and generation of automatic 

behaviors. However, the results found by Glascher et al (2010) provide substantial 

support for our hypothesis that the dorsolateral prefrontal cortex might implement some 

kind of state prediction and state transition computations. It is not clear, however, how 

this region computes state prediction error, whether locally or in coordination with other 

brain areas, including the basal ganglia. 

 

We have to far discussed the possible role of the dorsolateral prefrontal cortex in 

planning of future events, such as reaching a final target goal or prediction of the next 

state given the current sensory state and available actions. The literature linking different 

parts of the prefrontal cortex in higher-order cognitive processes is now well-established 

from the view point of cognition (see Chapter 2). However, the computational roles 
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played by these regions for planning, as well as for learning or the control of habitual 

actions is still an open issue. 
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Chapter 5 

 

 

Conclusions 

 

 

We could demonstrate that humans use multiple action selection strategies depending on 

their experiences, existence of an appropriate model for the task and available time for 

thinking. The fMRI results also showed that the use of distinct strategies for action 

selection relied predominantly on the activity of specific neural networks including the 

prefrontal cortex, basal ganglia and cerebellum. With the use of the concept of transfer of 

learning and our assumption that the cognitive processes engaged in transfer are similar 

to those happening in an intermediate stage of learning, we were able for the first time to 

break apart the different stages of learning, and testing these stages separately under 

different task conditions. 

 

We also demonstrated the common principles involved in action learning and decision 

making, where the initial stage of motor learning corresponds to learning to make 

decisions from scratch, the intermediate stage of learning corresponds to the use of 

thoughtful deliberative model-based strategies for planning future behaviors, including 

the estimation of state transitions and covert multistep behaviors, and the advanced stage 

of motor learning correspond to the selection of well-known stimulus-response 

associations. 
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Evolution has shaped the human brain with multiple action selection strategies so that 

optimal behavior can be achieved in multitasking situations. In a situation where a model 

of the environment is present, it is not necessary to relearn the same model every time 

the same situation is encountered. Therefore, we bypass the initial stage of learning. The 

same applies for the actions that have been well-mapped to a given situation. It's enough 

to retrieve the motor memory and perform the action. The use of this kind of memory 

system of the brain frees the other remaining action selection systems for engagement if 

the situation requires the combination of habitual actions, and the generation of more 

cognitive controlled actions. 

 

 

5.1. Summary of Contributions 

 

 

The results of the two behavioral experiments and those of the fMRI study allowed us to 

make the following contributions: 

 

 

I) Evidence on the use of model-based strategy for action selection. 

The behavior results of the experiment described in Chapter 3 demonstrated that subjects 

used a model-based strategy for planning sequences of finger movements. The evidence 

confirming our hypothesis was provided with the large reward gain by the delay start in 

task condition 2. This means that subjects could make use of previously learned KM 

during the delay period plan and prepare an action sequence by mental simulation. 



115 

II) Action selection ability is experience-dependent. 

In the second behavioral experiment, presented in Chapter 3, the task design was 

modified to make it methodologically and statistically valid. Subjects were tested in the 

main experiment under three task conditions, such as learning from scratch (Condition 1), 

action planning with the existence of prior knowledge (Condition 2) and 

automatic/habitual actions (Condition 3). We found distinct performance profiles under 

each task condition, a slow and variable exploratory performance in Condition 1, boosted 

performance and larger reward gain in Condition 2, and a fast and accurate performance 

in Condition 3. These results suggest that different action selection strategies were used 

for solving these multiple tasks. 

 

III) A cascade parallel model for action selection and learning. 

Base on the behavioral results, we proposed a model for action selection and learning 

using concepts from reinforcement learning theory. The cascade parallel model 

composed of three systems is able to explain why stage-wise transitions are observed in 

motor learning. Since the three systems operate in parallel, their engagement in learning 

is conditional to several task factors, such as task difficulty, experience with the task and 

existence of internal models or necessity of acquisition of the task dynamics. 

 

IV) Multiple models for action selection. 

Based on the results in (II) we proposed formal methods for action selection based on the 

theory of reinforcement learning, namely: a value-based method is used for exploration 

and acquisition of the task dynamics, a model-based method is used when the model of 

the task dynamics is available for planning, simulation and prediction of action outcomes 
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and state transitions, and a memory-based method is used for the quick selection of well-

learned sensory-motor mappings such as habitual actions. 

 

V) Shared principles for action selection in motor learning and decision making. 

The grid-sailing task was designed to provide an interface and test the problem of action 

selection in decision making and motor learning paradigms. We assumed that the 

different task conditions (Condition 1, Condition 2, and Condition 3) provided this 

interface by breaking apart the different motor learning stages (early, intermediate and 

late), which also mimicked different levels of experience in action selection and decision 

making (unknown/novel task, thoughtful purposive action planning, habitual/reactive ). 

 

VI) Time is essential for the realization of model-based strategies. 

A drawback in the implementation of model-based strategy is that it is timing consuming, 

its success depends on the model accuracy and memory load. In actual daily life humans 

face many situations requiring an immediate response which sometimes turns out to be 

bad even though we knew the outcome could have been better if given more time. In the 

grid-sailing task we introduced a delay period for planning that preceded the go signal, 

and demonstrated that performance was boosted especially when subjects had previous 

experience with the task and could use that experience for successfully planning action 

sequences (Condition 2). These results have education and therapeutical applications. 

Because of the lack of experience, students many times need more time to process and 

get familiar with new information provided by the teachers. The same applies for 

patients going through cognitive therapies or physical rehabilitation. 
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VII) Multiple prediction models for action selection are present in prefrontal-basal 

ganglia and cerebellar networks. 

The analysis of the fMRI data time locked to the brain activity during the delay period 

showed that distinct neural networks were active as subjects performed the different 

tasks. In Condition 1, when behavior was exploratory and variable, which mimicked the 

initial stage of motor learning, and used an action-valued based strategy for action 

selection, the medial orbitofrontal cortex and ventromedial striatum were preferentially 

active. On the other hand, the boosted learning by the use of a planning model-based 

strategy in Condition 2 predominantly elicited activity in the dorsolateral prefrontal 

cortex, dorsomedial striatum and right lateral cerebellum. Finally, the use of a memory-

based method for the fast selection and implementation of habitual/automatic actions in 

Condition 3 was associated with activity in the supplementary motor area and posterior 

dorsolateral striatum. These results are supported by anatomical studies showing 

reciprocal connections between the medial orbitofrontal cortex and ventromedial 

striatum, the dorsolateral prefrontal cortex and dorsomedial striatum, and dorsolateral 

prefrontal cortex and lateral cerebellum, and the connections between the supplementary 

motor are and dorsolateral striatum. Thus, the results provide evidence that these three 

parallel neural networks are likely the neural substrates for implementing distinct 

reinforcement learning action selection strategies under different task requirements, such 

as for learning by exploration, by planning or simulation, and the selection of habitual 

motor memories. 
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5.2. Future Directions 

 

 

The behavioral and fMRI results presented in this thesis were able to shed light several 

important topics for the problem of action selection in learning and decision making 

contexts. However, several behavioral, computational and neuroscience problems still 

need to be elucidated. 

 

I) What are the processes involved in the acquisition of a model of the task 

dynamics? 

It is always a difficult problem for humans and animals to implement a behavior policy 

in a novel, completely unknown task. The task, therefore, should be learned from scratch 

by exploration and trial-and-error if a reward signal is available to evaluate the overt 

motor behavior. However, it is not know what mental processes are involved in such 

exploratory knowledge-free learning situations, nor how and what information is picked 

up from the environment and assembled together to form a model of the task.  

 

II) What are the internal mechanisms and brain architectures for planning and 

mental simulation? 

In many learning or decision making situations humans can make use of previous 

experiences to better perform at the task at hand. The quality of the performance also 

depends on the model accuracy. For example, an experienced chess master is able to 

anticipate several moves ahead depending on the current board move made by his 

opponent. What are the mental strategies that allow humans to contemplate the future 
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and fictive situations, plan a sequence of responses and keep these responses in memory 

in the right order for later execution, simulate and anticipate the behavior of others, and 

evaluate the consequences of candidate actions? A remarkable feature of patients with 

schizophrenia, for instance, is the disturbance in their capacity to organize their thoughts 

in a meaningful manner leading hallucinations and delusional thoughts. Hence, 

understanding the normal mechanisms in mental simulation, its architecture and 

component parts that implement it is essential for developing alternative therapies for 

patients with neurological and developmental disorders. 

 

III) Where in the brain are motor memories stored? 

This is an old, but still highly controversial problem in human motor behavior. One 

possible reason is that experimentalists use very different tasks to assess motor memory 

formation and its counterpart brain mechanism. Another reason is the use of different 

methods for analysis of brain data. Finally, there is a debate of whether memories are 

stored in single brain regions or it is shared by distributed large-scale networks. 

 

IV) Where in the brain are the internal models stored? 

Similar to the problem of where in the brain motor memories are stored, there has been 

no formal test to find how and where internal models of task dynamics and environments 

are formed and stored. Internal models can be more complex than motor memories and 

made up of multiple pieces including perceptual, sensorial and somato-motor 

representations. Finding the precise location of where internal models are stored in the 

brain is a hard problem to be solved since these representations are highly distributed in 

the nervous system. Instead of local representation, it is more likely that a neural network 
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models might best explain where internal models are stored and how they are used for 

production of cognitive and motor outputs. 

 

V) How does stage transition and switching of strategies occur? 

The behavioral results and our proposed cascade model presented in this thesis suggest 

that the stage-wise transitions observed in human motor learning can be explained by a 

switching to an action selection strategy that is most adequate at given period of the 

learning process.  humans use distinct action selection strategies. Our results also suggest 

the use of distinct selection methods in decision making. Nevertheless, it is not clear 

what factors influence how and when action selection switching takes place. In addition, 

as the multiple selection methods operate in parallel, it is not known which system 

preferentially generates the decision output.  

 

VI) How to the multiple cortico-subcortical network loops communicate and share 

information? 

We have shown that one of three distinct prefrontal-basal ganglia and cerebellar neural 

networks was predominantly active for a task condition. These results are supported by a 

neuroanatomical theory (Alexander et al, 1986) that suggests the brain is organized in 

parallel segregated network loops. This theory, however, fails to explain how these 

multiple parallel loops communicate and share information, which is essential to allow 

flexible switching to an action selection strategy to take over behavioral control. 
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