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Statistical Analysis of Optimization Algorithms∗

Hiroyuki Funaya

Abstract

　Mathematical algorithms have been performing important roles in the mod-

ern society; optimization to find the best solution to mathematical problems,

classification to find groups in observations, and statistical analysis to find an

underlying regularities in various phenomena in the nature. Inspite of the great

results that these algorithms have been yielding, their mathematical mechanisms

have yet to be so well studied. In this dissertation, three subjects are studied:

a genetic algorithm, an SVM with forgetting factor, and neural spike sequences.

For genetic algorithms, we propose a new analytical method from a network point

of view. First the genetic algorithm is formulated as a netowrk with nodes repre-

senting generations connected by two genetic operations: crossover and mutation.

Then, its characterstic path length is derived mathematically. For support vec-

tor machines, a forgetting factor is proposed and the asymptotic generalization

ability is derived for a simple linearly separable problem. The learning curve

is mathematically derived for two types of forgetting factors: exponential and

factorial forgetting factors. It is proved that the learning curve of factorial for-

getting factors converges to zero in the asymptotic state. At last, for the analysis

on neuron spike sequences, information geometrical method is employed to clas-

sify neurons in cortical areas. The interspike intervals of a spike sequence of a

neuron is modeled as a gamma process with a time-variant spike rate, and a semi-

parametric estimation problem is forumulated for the parameters and is solved

using an information geometrical method to derive the optimal estimators from

a statistical viewpoint.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD861017, February 20, 2011.
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最適化アルゴリズムの統計的解析∗

船谷 浩之

内容梗概

数理的アルゴリズムは現代社会に多大な貢献をしている。最適化アルゴリズム
は、数理的に定式化された問題に対し最も良い解決法を求めるアルゴリズムであ
る。また、クラス分けアルゴリズムは、ある観測に対し、どの点がどのグループ
に属するかを学習し、予測するアルゴリズムである。また自然界のデータに対し
背後に潜む規則性を見つける為に、統計処理が盛んに行われて、有用な結果が多
数報告されている。しかし、これらのアルゴリズムが、数理的になぜ、いい結果
をだすか、という事に関してはあまり知られていない。本博士論文では、最適化
アルゴリズムとして遺伝的アルゴリズム、クラス分けアルゴリズムとして SVM,

そして自然現象として神経スパイク系列を取り上げ、それぞれ数理的、統計的に
解析を行った。
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1. Introduction

Mathematical algorithms have been performing important roles in the modern

society; optimization to find the best solution to mathematical problems, classifi-

cation to find groups in observations, and statistical analysis to find an underlying

regularities in various phenomena in the nature. In spite of the great results that

these algorithms have been yielding, their mathematical mechanisms have yet to

be so well studied. In other words, little is known about how and why it works

so flexibly in many applications. In this dissertation, three subjects are analyzed:

a genetic algorithm, an SVM with forgetting factor, and neural spike sequences.

For genetic algorithms, we propose a new analytical method from a network point

of view. First the genetic algorithm is formulated as a network with nodes repre-

senting generations connected by two genetic operations: crossover and mutation.

Then, its characteristic path length is derived mathematically. For support vec-

tor machines, a forgetting factor is proposed and the asymptotic generalization

ability is derived. At last, for the analysis on spike sequences, information geo-

metrical method is employed to classify neurons in cortical areas. Actually, GA

is a good quasi-optimizer; it provides good solutions in realistic time in many

situations, provided that the experimenter sets fair conditions in advance. In

short, GA works through three stages: selection, reproduction, and termination.

Of all these stages, what is mainly controlling the algorithm is the reproduction

stage, in which results called “individuals” produce next generations with two op-

erations: mutation and crossover. Although some studies have been carried out

to reveal the mathematical meaning of these operators, Little is known so far.

In particular, there has been no accounts for the functional relationship between

these two.

GAs are analyzed from a network point of view. A GA is regarded as a

network where each node and each edge respectively represent a population and

the possibility of transition through mutation and crossover. The concept of

characteristic path length (CPL) is employed, and it is one of the most popular

criteria in the theory of small-world networks?? defined as the average shortest

path length (SPL) between a pair of populations. We analytically derive the CPL

in the two following cases: (a) We simply count the minimum number of necessary

operations from a population to another, and (b) we generalize the discussion by

1



introducing the concept of weights to the edges which represent the transition

probabilities of the corresponding operations. As a result, in the case of (a),

the crossover operation shortens the CPL linearly with the length of individuals.

In the case of (b), the minimum value of the CPL is found, but the crossover

operation does not necessarily shorten the CPL depending on the probability of

the mutation.

Genetic Algorithms are difficult to be analyzed because they are meta-algorithms

that solve general problems in an indirect way. They map the original spaces into

genetic spaces where normal metrics are no longer valid. However, more problem-

specific algorithms such as support vector machines (SVMs) for classification are

still difficult to analyze.

Second, support vector machines (SVMs), which are considered to be some of

the most successful learning classifiers in the last decades [8–11], are analyzed.

Since original SVM treats all its examples equally, it cannot be applied to time-

varying environments. What makes the situation more difficult is that standard

quadratic programming (QP) technique applied in SVM becomes infeasible for

large data sets, and training an SVM requires solving a QP problem with a

number of coefficients equal to the number of training examples.

One method to cope with these difficulties is an on-line approach, where only

part of the training examples are selected [12] [13]. In this approach it is important

to decide the number of examples (generally based on some heuristics) and there

exists a limitation: it is not possible to set the weights of the examples freely. In

other words, each example has only zero or one as its weight.

We can overcome this limitation by introducing forgetting factors [14] like the

RLS algorithms for adaptive filters [15], which naturally puts non-integer weights

on examples to select the filter coefficients. Although many variants of forgetting

factors for an RLS algorithm have been proposed [16], those fundamentally use

exponentially weighted forgetting factors such as λt as its weights, where λ de-

notes a forgetting factor and t denotes a time index. In this dissertation this is

called exponential forgetting factor.

Although the idea of a forgetting factor is convenient for a time-varying prob-

lem, the cost function introduced in previous work [14] was just the sum of squares

followed by the Tikhonov regularization, where the inequalities for margin max-

2



imization were replaced with the corresponding equations. Hence, the proposed

algorithm has lost the convenient properties of SVMs such as sparse solutions.

Therefore, the forgetting factor to SVMs is introduced in this study in a more

natural way.

As the last subject of this dissertation, we study neural spike sequences using

information geometry. The characteristics of neurons in cortical areas have been

the subject of recent discussion in the literature. In particular, there has been

discussions on the statistical properties of the inter-spike intervals(ISIs) of spike

sequences such as the coefficient of variation, Cv; the skewness coefficient, Sk;

the correlation coefficient of consecutive intervals, COR; and the local variation,

Lv. In particular, Shinomoto et al. have shown that the local variation with a

refractory period, LV R, can almost classify the functions of neurons without any

other information.

From the viewpoint of statistical modeling, ISIs can be modeled as gamma

processes with a variable rate but a fixed shape parameter. Since gamma distribu-

tions form a two-dimensional e-flat manifold S from the information-geometrical

viewpoint, the problem of estimating the shape parameter results in a semi-

parametric estimation. These theoretical methods can be applied to estimate the

refractory period in LV R, which has heuristically been determined to date.

We classify neurons by first introducing new statistical measures of spike se-

quences and their properties, and formulating the problem of ISIs classification as

a semi-parametric estimation, and at last deriving statistically optimal estimators

for semi-parametric models.

The outline of this dissertation is as follows: In Sect.2, GAs are analyzed from

the network viewpoint. In Sect.3, asymptotic generalization errors of SVMs with

forgetting factor are analyzed. In Sect.4, an information-geometrical method is

developed for classifying neurons in cortical areas. Sect.5 concludes this disser-

tation.

3



2. Network analysis of Genetic Algorithms

2.1 Genetic Algorithms

2.1.1 Basic Procedure

In this section, the basic procedures of genral GAs are presented. First, some

technical terms are defined for the following sections.

An “Individuals” is a candidate of the optimal solution of a GA. Each indi-

vidual is converted from the original problem space into what is called “genetic

space” usually represented by series of bit-arrays. A set of individuals is called

“population”, and throughout the process of a GA, basically one population is

evolved to find a quasi-optimal solution.

Here is the basic procedure of a GA:

1. Initialization Many individuals are generated to form the initial population.

In the most basic setting, they are randomly generated.

2. Selection A certain proportion of individuals are selected from the current

population, on the basis of a fitness function defined in advance. The solu-

tions with higher degree of fitness are more likely to be selected. According

to Darwinism, the fitness function is also called an “environment”, and the

power from the environment to terminate the weaker individuals is called

“selection pressure.”

3. Reproduction In the next step, the new generation is spawned using the

genetic operators; crossover and/or mutation.

The genetic operators are employed to spawn the new generation in the

following way; with the mutation operation, some bits of an individual are

selected arbitrarily in both number and position and flipped, from 0 to 1

or 1 to zero. The crossover operation swaps a group of bits between two

individuals, as shown Fig. 1. The main difference between these two is that

the mutation operation works only on one individual, while the crossover

operation works on two of them.

4. Finalization Step 2. and 3. are repeated until a termination condition is

fulfilled. Common terminating conditions are, for example,

4
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Figure 1. Genetic operators; mutation and crossover

• a solution is found that satisfies some minimum criteria, or

• a fixed number of generations are generated

2.1.2 Effectiveness of Crossover

The main purpose of this study is to clarify the difference between the crossover

and the mutation, based on a mathematically measurable metric. In this subsec-

tion, the effectiveness of the crossover operation is discussed mainly by comparing

it with the mutation operation. The method to asses the role of the crossover

operation is to examine a network property of GAs. In the following discussion,

“mutation/crossover operation” is just denoted as “mutation/crossover”.

For any optimization problems, GAs with only mutations usually require an

infinite time to find the optimal solution ??. Shortly to say, this is because a

mutation operation is virtually a random walk in the problem spaces.

On the other hand, a crossover operation swaps blocks of bits. That is, it

is observed that crossovers seem to make “shortcuts” in the structure of the

transition network of a GA. To mathematically formulate this observation and

evaluate how much a crossover shortens the transition network, we introduce a

network analysis in the next section.

Note that this network analysis is free from problem-specific properties differ-

ent from other approaches. For example, the theory of fitness landscape [6] is well

studied on many kinds of problems, but it does not describe the GA’s quickness

to find quasi-optimal solutions generally since fitness landscape, or the shapes of

fitness functions varies depending on the problems and the parameter settings of

GAs as well as coding of information in an individual.
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2.2 Network Analysis

Network analysis has recently attracted much attention as a novel method to

analyze complex phenomena. The most prominent property of this approach is

the what is called “small world”, which initially motivated this study because it

is expected that a GA which has the small-world property takes a shorter time to

find a quasi-optimal solution. In the following the famous small-world experiment

by Stanley Milgram is briefly introduced. Then, the small-world network model

invented firstly by Watts and Strogatz [5] is introduced to show how two genetic

operators correspond to the small-world property

2.2.1 Small-world experiment

The small-world experiment was conducted by Stanley Milgram examining the

average path length for social networks of the people in the United States [7]. The

research was surprising in that it revealed that human society is a small-world

network characterized by the path lengths that is shorter than expected. The

procedure of this experiment is briefly written as follows:

1. Milgram chose some individuals in the U.S. cities and set them the start

and end points:

2. Information packets were initially sent to randomly selected individuals.

They included letters, which detailed the stud’s purpose, and basic infor-

mation about a target contact person:

3. Upon receiving the invitation to participate, the recipient was asked whether

he or she personally knew the contact person described in the letter. If so,

the person was to forward the letter directly to that person:

4. In the more likely case that the person did not personally know the target,

then the person was to think of a friend or relative they know personally

that is more likely to know the target:

5. When and if the package eventually reached the target person, the re-

searchers could count the number of times it had been forwarded from

person to person.

6



The result is, 64 of the letters eventually did reach the target contact. Among

these chains, the average path length fell around 5.5 or six, very smaller than we

think.

2.2.2 Characteristic Path Length

A CPL is defined for a network, as the shortest path length (SPL) between two

nodes averaged over all possible pairs. In general, the networks with a same

number of nodes are compared with this criterion because it is obvious that the

networks with small number of nodes has relatively smaller CPLs compared to

those with large number of nodes. So this criterion shows also how the nodes are

connected, which is our interest in the analysis of GAs.

2.2.3 Small-world network model

Adding or 
rewiring edges

regular network small world network

Figure 2. Small-world network model

To see the connectivity in a small-world network, the small-world model is

introduced. This model begins with a regular lattice. Then we add some of

random links. This operation reduces the diameter. It is surprising that the

diameter reduces dynamically in spite of adding only a small number of links.

(Fig. 2). This phenomenon implies that the both weak and strong connections are

necessary for the small-world property. Now, let us consider the GAs. GAs have

similar structures to the small-world network in that the crossover corresponds

7



to the weak connection and the mutation corresponds to the strong connection.

Hence, under the assumption that a GA with a smaller CPL takes a shorter time

to find a solution, one can study how the two basic genetic operations in GAs,

crossover and mutation, affect the CPL.

In the rest of this dissertation, a GA network is defined, and then its CPL is

derived in purely mathematical way.

2.3 Networks of GAs

In this section, the networks of GAs are defined. The simplest case is considered

so that the calculation is possible; each individual consists of a binary sequence of

length L. That is, there are 2L individuals, which form a population as a whole.

It is assumed that each population has only two individuals at first and more

general cases is discussed later. Then, the cardinality of the different populations

becomes

N ≡ 1

2
(22L + 2L) (1)

= 2L−1(2L + 1), (2)

since the duplication of the same kinds of populations has to be excluded. When

the generation evolves, individuals are modified only by one of the two basic

genetic operations, one-point crossover or one-bit mutation. Note that any fitness

function is not asssumed because the main purpose of this study is to focus on

the basic networking structure of the GA.

In one GA, the lengths of all the indivisdual are assumed to be identical,

and it is denoted by L. Then, the GA network consisted of those individuals is

denoted by GL. The number of populations are denoted by N , which means GA

network GL has N nodes. Two nodes are linked by an edge if and only if one of

the two nodes can be changed to each other only with a one-point crossover or a

one-bit mutation operation (Fig. 3)

If a network consist of only the edges from mutation and we consider no

combination of genes, it is a lattice of the 2L-dimensional hypercube because

an individual is an L-bit sequence and a population consists of two individuals.

Therefore, the path-length of any two distinct nodes is the same as the Manhattan

8
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Figure 3. A part of GL; the network of a genetic algorithm

distance, that is, L on average. If we consider some combinations of genes, the

path-length is expected to be a little smaller than L, as is described below.

In the GA network consisted of the crossover and mutation, an edge corre-

sponding to the crossover is considered to be a shortcut in the network because

multiple bits are changed at once. It is likely that these shortcuts enable a GA

to find a quasi-optimal solution in a shorter time than it is expected, without the

explosion of the number of possible transitions. The purpose of this study is to

quantitatively evaluate how these shortcuts shorten the CPL.

2.4 Characteristic Path Length

In this section, we derive the CPL of a GA network. The derivation is achieved

by counting the number of necessary operations from the initial population to

the optimal population.

In many cases of the network analysis, the CPLs are calculated from the

empirical data collected. Differently, the CPL of the GA network can be derived

analytically due to its simple structure. First, the properties of the crossover

and mutation are inspected, and then the idea to derive the shortest path length

(SPL) between arbitrary two populations is explained. The CPLs are calculated

under the following two different conditions; one network consists of only the

edges of mutations and the other consists of also the edges of crossovers.

2.4.1 Properties of crossover and mutation

In the GA network GL, its genetic operations, the mutation and crossover, sim-

plify the calculation process of the CPL. Before going into detail, additional terms
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are defined as shown in Fig. 4: “Population” denotes a set of individuals; there

are only two individuals in this study. “Pair of populations” denotes literally a

pair of populations, one of which is called the original population and the other

is called the destination population. “Locus” means a position in a bit sequence,

1 to 7 in this example. “Pattern of loci” denotes four bits lined vertically in a

pair of populations. The patterns of loci play an important role in calculating

the CPL.

For example, Fig. 5 shows the patterns of loci. There are 24 = 16 patterns

and they are classified into four types, denoted as T1, T2, T3, T4, T
′
4 respectively,

based on how two populations can be matched by genetic operations:

Type 1 All four genes have the same alphabet.

Type 2 The two genes of a population are the same but the two genes of the

other population are different.

Type 3 The two genes of each population are the same but the two populations

have different alphabets.

Type 4 Each population has two different genes. That is, the genes at the locus

are 0110, 1001, 0101 or 1010. The former two are termed Type 4-1 while

the others Type 4-2.

We will call T1, T2 and T3 the patterns of mutation and call T4 and T
′
4 the patterns

of crossover.

0 1 0 0 1 0 0
1 0 1 1 0 0 1

1 0 0 0 1 1 0
1 1 1 0 0 1 1

locus 

1 2 3 4 5 6 7

pattern of locus

crossover point

original population

individual

 desitination population

Figure 4. Pair of populations and terms
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0 1
1 0
1 0
0 1

1 0
0 1
1 0
0 1

0 1
0 1
0 1
0 1

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 0 0 1 0 1 1 0

0 1
0 1
1 0
1 0

pattern of mutation

no need for mutations matched by one crossover

matched by one mutation

matched by two mutations

pattern of crossover"patterns of mutation" "patterns of crossover"

Figure 5. pattern of loci

Note that the crossover never changes the type of a locus only because they

are defined so, and the mutation works bit-wise. Instead, the patterns belonging

to Type 1, 2 and 3 respectively change zero, one and two bits. Moreover, each

operation is independent from any other operations and never affects other part

of the patterns. Hence, the SPL of two nodes is the sum of the above and the

SPL of the two shorter nodes consisting of only the patterns of Type 4. Such

properties are collected in the following theorems.

Theorem 1 Mutation operation do not affect other loci.

Proof Mutation operation works bit-wise.

Theorem 2 Crossover operation do not change the number of necessary muta-

tions in the patterns of mutation.

Proof Crossover operation cannot change the type of a locus.

Theorem 3 Crossover operations always costs lower than mutation operations.

Proof One crossover operation can match two bits at a time.

11



2.4.2 SPL for only mutation

Now, the SPL of the GA network with only mutations is derived. To do this, let

us consider a concrete example shown in Fig. 6 where L = 3. The SPL in this

case is 0 if making an appropriate combination of pairs: {go1 gd2} and {go2 gd1}.
In this manner, optimal way of “pairing” genes can be found. In this example,

0 0 0

1 1 1

1 1 1

0 0 0

1 2 3

Figure 6. The SPL is zero if taking the good pair.

the SPL is zero if an appropriate combination of pairs is taken, but there are

better combinations even when the SPL is more than one. Hence, there are

two problems of deriving the SPL: First, finding an optimal pairing for arbitrary

two populations, and second, calculating the SPL for appropriately paired set of

populations.

The key to solving these problems is to focus on the patterns of loci, especially

T4 and T ′
4. On the patterns of mutation, T1, T2 and T3, how to make pairs does

not affect the SPL since the necessary number of mutations is constant to any

way of pairings, 0 for T1 and so on. Now, in a pair of populations, let the numbers

of T1, T2, T3, T4 and T
′
4 be denoted by l1, l2, l3, l4 and l

′
4 respectively, then we have

ν1 = 0 · l1 + l2 + 2l3 = l2 + 2l3. (3)

where ν1 is the necessary number of mutations for T1, T2 and T3.

On the other hand, on the patterns of crossover, the number of necessary

mutations differs to the way of pairings. Now, we denote the way of pairings such

as {go1 gd1} and {go1 gd2} as P1, and denote the way of pairings such as {go1 gd2}
and {go2 gd1} as P2. Then, the number of necessary mutations of T4 is 0 when

P1 but is 2 when P2. T ′
4 is vice versa. So the SPL for T4 and T ′

4 is

s2 = 2min{l4, l′4} (4)

12



That is, if the number of T4 is greater than that of T ′
4, the pairing P1 is better,

and if not, the pairing P2 is better.

Consequently, the SPL of the network with only mutation is

ν = ν1 + ν2

= l2 + 2l3 + 2min{l4, l′4}. (5)

2.4.3 CPL for only mutation

Next, we calculate the expectation of the SPL which is expressed as

E[ν] = E[ν1] + E[ν2]

= E[l2] + 2E[l3] + 2E[min{l4, l′4}], (6)

where E[·] denote the expectation on all the pairs of the populations. The first

two arguments in (6) are very simple because the expectation of the length of a

pattern of locus in L loci is L/16; T2 has 8 patterns and T3 has 2 patterns, so

E[ν1] = E[l2] + 2E[l3]

=

(
1 · 8

16
+ 2 · 2

16

)
L =

3

4
L. (7)

To calculate E[min{l4, l′4}], let us think about a Bernoulli trial with L trials and

success probability p = 1/8. Then we can assume l4 and l′4 as random variables

of the success times, which follow the same binomial distribution B(L, p). Fur-

thermore, we can approximate the binomial distribution B(L, p) with the normal

distribution N (Lp, Lp(1− p)) if L is rather large. So we can say that both l4 and

l′4 follow the normal distribution

N
(
L

8
,
7L

64

)
(8)

approximately. Now we write µ = L/8 and σ2 = 7L/64, then the cumulative

distribution function of the random variable Z = min{l4, l′4} is

Prob(Z ≤ z) = 1−
2∏

i=1

Prob(l4 > z),

13



so the probability distribution function is

Prob(Z = z) =
d

dz
Prob(Z ≥ z)

=
d

dz

2∏
i=1

∫ ∞

z

1√
2πσ2

y

e
− (y−µy)2

2σ2
y dy

=
d

dz

(∫ ∞

z

1√
2πσ2

y

e
− (y−µy)2

2σ2
y dy

)2

=
1√
2πσ2

y

e
− (z−µy)2

2σ2
y Φ̃

(
z − µy√

2σ2
y

)
,

where Φ̃(z) it the complementary error function defined as

Φ̃(z) =
2√
π

∫ ∞

z

e−t2dt.

Now we have

E[min{l4, l′4}] = E[Z], (9)

and from (6), (7) and (9), we have the CPL

E[s] =
3

4
L+ 2E[Z]. (10)

2.4.4 SPL for both operations

In this section, we think about the network which has both edges from mutation

and crossover. The SPL ν̃ is the sum of the minimum necessary number of

mutations in patterns of mutation, denoted by ν̃1 and that of crossover, denoted

by ν̃2. We have

ν̃1 = l2 + 2l3 (11)

from (3). ν̃2 can be calculated using the following procedure, as shown in Fig. 7.

1. Extract all the patterns of crossover from L patterns and denote it by T4,

T4 = {T4T ′
4T4T4T

′
4} for example. Now the length of T4 is l4 + l′4 and for

convenience, let T4 and T ′
4 be denoted by 0̂ and 1̂ respectively.

2. Take (l4 + l′4 − 1)-bit XOR bit-wise between T4 and 1-bit shifted T4 and

denote it by Xod.

14



1 bit shiftxor

Figure 7. How to calculate the SPL of two nodes consisting of the loci of Type 4

3. Count the number of 1s in Xod.

For example, when T4 = {T4T4T ′
4T4T

′
4T

′
4T4}, l4 = 7 and ν̃2 = 3.

Finally, the SPL is expressed as follows,

ν̃ = ν̃1 + ν̃2. (12)

2.4.5 CPL for both operations

The CPL ˜̃ν is the expectation of (12) about all the pairs of populations.

˜̃ν = E[ν̃1 + ν̃2] (13)

= E[ν̃1] + E[ν̃2], (14)

where E[·] is the expectation.

E[ν̃1] is equal to E[ν1], so we have

E[ν̃1] =
3

4
L (15)

from (7).

We can also calculate E[ν̃2] by considering all the pairs. See Fig. 7 again.

First, the expectation of l4 is L/4 since the number of T4 and T ′
4 is 4 out of 16

patterns of loci, as shown in Fig. 5. The length of Xod, denoted lx, cannot be

defined when l4 = 1 and is l4 − 1 otherwise. So,

E[lx] =
L

4
−

{
1−

(
3

4

)L
}
. (16)
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Then, when we sum up the number of 0̂ and that of 1̂ in Xod for all the pairs,

they are exactly equal because the number of 0 and 1 are equal. That is, the half

of the number of T4 and T ′
4 is the number of crossovers. So, we have

E[ν̃2] =
1

2
E[lx] =

L

8
− 1

2

{
1−

(
3

4

)L
}
. (17)

Finally, from (14), (15) and (17), we have the CPL

E[ν̃] =
7

8
L− 1

2

{
1−

(
3

4

)L
}
. (18)

2.4.6 Discussion

In Fig. 8, the CPLs calculated above are shown. The line “no combination” shows

the expectation of the hamming distance between 2L-bit binary strings, that is

L. The CPL of the network with only mutation operations is approximately

expressed as (10), because E[Z] and ν̃ is intractable. Instead, the following can

be used:
7

8
<
ν̃

ν
< 1. (19)

Since ν is smaller than L, the expectation of the hamming distance between

2L-bits and ν̃ is exactly expressed as (18).

This case is the same as the case in which all the weights are assumed to be

1. To improve this approach, probabilistic weights are introduced to the edges in

the next section.

2.5 Edge Weights Expressing Transition Probability

2.5.1 Weight on an edge and transition probability

So far, we saw how crossover shortens the CPL by simply counting the necessary

operations from the initial population to the other population. This means that

each edges has the same weight value 1 if individuals on the edge are connected

with either operations. However, each operator in GAs have probability which

represents the possibility of the transition. So we introduce a weight express-

ing transition probability to each edges. If two populations are connected with
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Figure 8. The CPLs when n = 2

probability p, it is natural in this study to define the weight of their edge as

w = − log2 p, (20)

since the sum of the weights corresponds to the negative log of the probability of

state-transition from an end-node to the other.

For convenience, we assume that a population changes by mutation with prob-

ability µ or by crossover with probability 1 − µ. This means that the weight of

edges from of mutation and crossover are expressed as

wm(µ) = − log2
µ

2L
(21)

wc(µ, k) = − log2
k(1− µ)

L− 1
(22)

respectively, since each population has 2L bits and has L − 1 crossover points,

where k is the number of loci of type T1, T2 and T3 which exists between loci of

type T4, T
′
4: Not one crossover points change a population to a certain population.

Figure 9 show the case of k = 7.

2.5.2 Crossover is not always stronger than mutation

Introducing probabilistic weights to the edges in a GA network makes Theorem

3 invalid. That is, there exists such µ as crossover is not more efficient than

17



7 candidates for the same crossover

Figure 9. There are several “same” crossover points.

mutation. So, at what µ mutation beats crossover? In fact, when the probability

of one mutation is same as the probability of one crossover, that is

µ1

2L
=
k(1− µ1)

L− 1
⇔ µ1 =

2L

4L− 1
≃ 2

3
, (23)

where L ≫ 1, then the cost to match the two populations by mutation is the

same as that by crossover in some cases such as {T4T ′
4T4}. and the condition

(23) is satisfied, the cost to match the two populations are same whether we use

crossover or mutation.

Let us consider the case of a larger µ, where two mutations becomes the same

cost as one crossover. This leads a more general condition(
µ̃

2L

)2

=
k(1− µ̃)

L− 1
⇔ µ̃ ≃ 1. (24)

where k is the number of mutations which is equal to one crossover in terms of

transition probability. Actually we can ignore the case of k ≥ 2 when L≫ 1.

2.5.3 Derivation of the CPL

Firstly, we consider the case that crossover is always stronger than mutation, that

is 0 < µ ≤ µ1, then derive the mean SPL between them. The CPL with mutation

can be derived in the same way as 7,

E[âod] = −3

4
L log

µ

2L
. (25)

The CPL with crossover is also derived by considering CPL at each k. If we

select a link of crossover randomly, the probabilities of k = κ at that point is
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1
4

(
3
4

)κ
, so the expectation of weight of crossover links is calculated as follows,

E[wc(µ, k)] = −1

4

L∑
k=0

(
3

4

)k

log
k(1− µ)

L− 1

= −1

4
log

(1− µ)

L− 1

L∑
k=0

(
3

4

)k

− 1

4

L∑
k=0

(
3

4

)k

log k

≃ − log
(1− µ)

L− 1
− γ(L), (26)

where

γ(L) ≡ 1

4

L∑
k=0

(
3

4

)k

log k (27)

and γ is not dependant on µ. So by substituting weights, that is 1, in (18) with

(26) and disregard the small arguments, we get

E[ãod] ≃
L

8

{
− log

(1− µ)

L− 1
− γ(L)

}
. (28)

Finally, with (25) and (28), We get

Cc1(µ) ≃ E[âod] + E[ãod]

= L

(
−3

4
log

µ

2L
− 1

8
log

1− u

L− 1

)
− L

8
γ(L), (29)

where Cc1(µ) is the CPL on 0 ≤ µ ≤ µ1.

Next, we examine µ1 < µ ≤ 1. When increasing µ from µ = µ1, crossovers

are taken place by mutations in ascending order of k. At the situation µ = µ1,

one crossover has same weight as one mutation; {T4(T3T2)T ′
4(T3T2)T4} is a good

example for this case. In addition, we assume that all crossovers are taken place

by mutations at µk > µ1. This assumption do not change the CPL significantly

since the number of crossovers as k = κ decays exponentially as k increases.

Hence it comes the matter how many crossovers are successive in the popu-

lations. For example, loci {T4(T1T0)T ′
4(T3T2)T4} have two successive crossovers.

We can calculate the number of such successive crossovers in a similar way to

calculate the number of crossovers. That is, we get the number by taking (l− 2)-

bit XOR between Xod and 1-bit shifted Xod and count the number of 0 (Fig. 10).

Note that such loci as {T4T ′
4T4T

′
4} has three successive crossovers, but only two
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succesive crossovers

shift & xor

shift & xor

Figure 10. How to calculate the number of successive crossovers

right or left crossovers can be taken place by four mutations because remaining

part can’t be matched by only one mutation. In other words, only even num-

ber of crossovers can be taken place by mutations. Additionally, four or more

successive crossovers are rare compared to only two successive crossovers, so we

may think about only two successive crossovers. Approximately, the number of

only two successive crossovers are expected to be approximately half part of all

crossovers since the number of T4 and the number of T ′
4 are the same. So the

CPLs on µ1 < µ ≤ 1 are calculated as follows,

Cc2(µ) ≃ −L
(
3

4
+

1

8
· 1
2

)
log

µ

2L

−L
(
1

8
· 1
2

)
log

1− u

L− 1
− L

8
γ(L). (30)

Note that when µ = 1, all crossovers are taken place by mutations and Cm(1) =

Cc(1) is satisfied. We can see apparently

Cc(1) = L log 2L. (31)

2.5.4 Discussion

Fig. 11 shows Cc(µ) and Cm(µ) vs. µ when L = 50. We can see that the CPL of

the network of only mutation and that of the network of also crossover have the

same value when µ = 1 and Cc1(µ) = Cm when µ = 0.41. µ̃ is 27/28, which is

given by differentiating (30) with µ and setting the answer to 0. The CPLs are

monotone decreasing for almost all of µ, the probability of mutations. In other

words, the crossover operation make the CPL longer in the network to which the

weight introduced.
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Figure 11. µ vs. C(µ); L = 50

2.6 Conclusions

Our main contribution of this study is the derivation of the CPLs of a GA net-

work of N = 2 under some diffierent conditions. When all the weights of edges

are equal to 1, the crossover operation surely shortens the CPL linearly with the

length of the individuals. But when each edge has the weight expressing transi-

tion probability, the crossover operation does not necessarily shortens the CPL.

Instead, the CPL are monotonically decreasing for µ ≤ 27/28.

It is obvious that the GA does not necessarily work best at µ = 27/28. This

means that the effectiveness of searching does not seem to directly correspond

to the CPLs. In summary, we found out the simple mathematical relationship

between the CPL and the genetic operations. In future work, we consider in case

of n > 2. and find out better criteria for further analysis of GAs.
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3. Statistical properties of support vector ma-

chines with forgetting factor

3.1 Introduction

A support vector machine (SVM) is one of the most successful learning classi-

fiers in decades [8–11]. Since the original SVM treats all the examples equally, it

cannot be applied to time-varying environments. Furthermore, since training an

SVM requires a quadratic programming (QP) problem with a number of coeffi-

cients equal to the number of training examples, standard QP techniques become

infeasible for large data sets.

One method to cope with these difficulties is an on-line approach, where some

of the training examples are discarded [12] [13] [22] [23]. In this approach we can

only decide the number of examples (by using heuristics) but cannot freely set

the weight of each example. In other words, the weights of examples can only

assume values of zero or one.

We can relax this regulation by introducing a forgetting factor [14] like in RLS

algorithms for adaptive filters [15], which naturally assigns non-integer weights

to examples, to select the filter coefficients. Although many variants of forgetting

factors for an RLS algorithm have been proposed [16], they fundamentally use

an exponentially decaying forgetting factor, that is, each example has λ as its

weight, where λ (0 < λ < 1) denotes a forgetting factor and t ∈ N denotes the

time when they are generated. We named this an exponential forgetting factor

(EFF) and analyzed it in a simple case in the previous work [21].

We first chose an exponential forgetting factor simply because it is often used

in the signal-processing literature. It did work in terms of adaptation to time-

varying problems in a simple case, but the asymptotic averaged generalization

error (AGE) did not converge to zero. We can choose an EFF so that the averaged

generalization error is arbitrarily small, but it is still better to consider a forgetting

factor to assure convergence. Hence, we introduce a factorial forgetting factor

(FFF) to the same problem and prove that its averaged generalization error goes

to zero as the number of examples increases to infinity in the same simple case as

was considered in the previous work [21]. The outline of this paper is the following:
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In section 3.2, we formulate the SVM with forgetting factor (SVM-FF) for both

an EFF and FFF in detail. This algorithm, based on the ν-SVM [17], has a good

geometrical property with which we can analyze a simple problem introduced

in section 3.3. We derive the generalization performance of the algorithm in

the asymptotic state in section 3.4. The validation with computer simulations

is presented in section 3.6. Finally, we present conclusions and discussions in

section 4.7.

3.2 SVM with Forgetting Factor

3.2.1 Exponential Forgetting Factor (EFF)

An SVM is originally formulated as a learning machine which maps input vectors

to the corresponding feature vectors and classifies them with the optimal hyper-

plane in terms of margin [18]. However, we employ the linear kernel (which has

the feature space identical to the input space) and the ν-SVM with homogeneous

hyperplanes (which has a little different criterion from the margin-maximization).

These make the analysis of the algorithm possible as was done in [19] for analyzing

the soft-margin effect.

Given a set of N examples (xi, yi), i = 1, 2, . . . , N , where xi is an input

and yi is the corresponding label, the ν-SVM with homogeneous hyperplanes is

formulated as

min
w,ξi,β

1

2
∥w∥2 + C

N∑
i=1

ξi − β

s.t. w′f i ≥ β − ξi, ξi ≥ 0, (32)

where w is the normal vector of a hyperplane wTx = 0, ξi are slack variables for

soft margins, C is a constant determining the softness and f i ≡ xiyi [17,19].

In the RLS algorithm for adaptive filters, the squared error at each time decays

exponentially, that is, the sum of the squared errors at time N is defined as

N∑
i=0

λN−ie2i , (33)

where ei denotes the error of the example i and 0 < λ < 1 is a constant called the

forgetting factor. We introduce this idea to the ν-SVM and give an exponentially

23



decaying weight to the slack variables. Then, the SVM with forgetting factor

(SVM-FF) is formulated as

min
w,ξi,β

1

2
∥w∥2 + C

N∑
i=1

λN−iξi − β

s.t. w′f i ≥ β − ξi, ξi ≥ 0. (34)

The dual problem of (34) is easily derived as

min
αi

1

2
∥w∥2

s.t. w =
N∑
i=1

αif i, 0 ≤ αi ≤ CλN−i,
N∑
i=1

αi = 1, (35)

where αi are the Lagrange multipliers.

Note that the cost function of RLS-SVM algorithm [14] is

min
w,ξi,β

1

2
∥w∥2 + C

N∑
i=1

λN−iξ2i , (36)

which has the squared slack variables. This reduces the problem to a linear

equation, not QP. Our FF can be introduced to the original SVM too in the same

manner.

3.2.2 Factorial Forgetting Factor

The asymptotic convergence of AGE cannot be assured for even a linear separable

problem. For that reason, we replace the EFF with a factorial forgetting factor

(FFF), 1/(N − i+ 1), so that the square sum of the FF diverges and the simple

sum of the FF converges. In a similar way as the EFF’s case, we can derive the

dual problem as

min
αi

1

2
∥w∥2

s.t. w =
N∑
i=1

αif i, 0 ≤ αi ≤
C

(N − i+ 1)
,

N∑
i=1

αi = 1. (37)
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3.3 Problem Statement

3.3.1 Geometry of SVM-FF

The cost function to be minimized in (35) is the norm of the weight vector w.

Hence, let us consider the constraints w should satisfy. The minimum convex

set containing all the given points is called the convex hull of the points. The

conditions that any αi is nonnegative and that their sum is unity lead to the fact

that the weight vector w is included in the convex hull of {f i}Ni=1. The additional

condition that each αi has an upper bound C/(N − i+1) reduces the area where

w can exist. We call the area determined by (35) the reduced convex hull.

Bennett and Bredensteiner [20] first pointed out the relationship between the

ν-SVM solution and the reduced convex hull (RCH), where two RCHs appear

since they considered inhomogeneous separating hyperplanes, as simply shown in

Fig. 13 where two convex hulls are just lines. Ikeda and Aoishi [19] added the

assumption of homogeneous hyperplanes and showed that the ν-SVM solution is

the point nearest to the origin in the RCH. Thanks to this simple geometrical

picture, the effect of the soft margin parameter was quantitatively elucidated,

where the upper bound of any αi is C (Fig. 12).

In the case of SVM-FF, each αi has different upper bounds CλN−i for each

i. However, the method for deriving the AGE in [19] can also be applied to this

case as will be presented in the next subsection.

3.3.2 Problem Formulation

Now we analyze the SVM-FF by using a simple problem, which is almost the

same one described in [19]. We assume that N inputs, xi, i = 1, . . . , N , with class

labels, yi ∈ {−1,+1}, are independently generated from two classes (a positive

one and a negative one) with equal probability, which are linearly separable by a

hyperplane xTw + b = 0. We also assume that the distribution of each class is

arbitrary except that two classes are uniformly and identically distributed around

the separating hyperplane. Fig. 13 shows a one-dimensional problem linearly

separable at the origin. Homogeneous re-notation, xi = (xT
i , 1)

T,wi = (wT
i , b)

T

is convenient from a geometrical and mathematical point of view, which is referred

to as “lifting-up” (Fig. 14) [19].
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(b) C=4/5

(c) C=1/2 (d) C=2/5

(a) C=1

O O

OO

Figure 12. Points closest to the origin O of the convex hull (the dashed line)

and the reduced convex hull (the solid line, (a)C = 1, (b)C = 4/5, (c) C = 1/2,

(d)C = 2/5) of examples are shown as ◦.

Because f i = xiyi, the f i are all in the positive side (Fig. 15). The f i form

a convex hull in the case of hard margin, whereas they form a reduced convex

hull in the case of soft margin and forgetting factor. Geometrically, it is obvious

that the generalization error of the SVM appears ∥θϵ∥ in the right figure of the

Fig. 3.3.2, assuming that the generalization error is small. Hence, we can calculate

the generalization error by deriving the distribution of θ.

Furthermore, we modify the problem utilizing sparseness. Since the solution

of an SVM is sparse, the examples far from the separating hyperplane do not cor-

respond to solutions with high probability. Hence we map both distributions to

a uniformly distributed semicircle (Fig. 3.3.2). Now the problem has been mod-

ified as follows: We assume that N inputs, xi, i = 1, . . . , N , are independently

uniformly chosen from Sm, where Sm is an m-dimensional unit sphere. Then, the
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Figure 13. Simple one-dimensional problem which is linearly separable at the

origin. There are two “convex hulls” (two lines) and the hyperplane is just a

point on the origin.

1

O

separating hyperplane

Figure 14. Lifting-up: Re-notated xi are displayed homogeneously in the two-

dimentional plane.

vectors f i = yixi, i = 1, . . . , N , are uniformly distributed in Sm
+ where:

yi = sgn(w∗′ ,xi), (38)

sgn(s) =

{
+1, if s ≥ 0,

−1, otherwise,
(39)

Sm
+ = {f |w∗′f ≥ 0,f ∈ Sm}. (40)

In this case, the probability that an estimate ŵ mis-predicts the output of a new

input x, which is called the generalization error or the prediction error, is written

as θ/π, where θ is the angle between ŵ and w∗. The average generalization error

is defined as the probability that an estimate ŵ mis-predicts the output of a new

input, averaged over given examples. In the following sections, we derive the

average generalization error of the SVM with FF for the one-dimensional case

(m = 1) in the asymptotic limit of N → ∞.

In the case of one-dimensional space, the nearest point to the origin in the
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Figure 15. All f i, shown with ◦ or •, are in the right-hand side of the plane and

form a convex hull with C = 1 or a reduced convex hull with C = 1/3 (both

colored in gray). The QP is equal to find the closest point w∗ in the (reduced)

convex hull from the origin.

reduced convex hull of the examples is the midpoint of the two points, fLand fR,

each of which is the nearest to the horizontal axis. If we know the distributions

of the angles θL and θR of fLand fR, we can derive the average generalization

error since the SVM solution ŵ is written as ŵ = (fL + fR)/2. Then, the

average generalization error is written as the average of θε/π = |θL − θR|/2π. We

can assume that the solutions, θL and θR, follow the same distribution because

the examples are uniformly distributed. Hence, we consider only the left half

of the semicircle (the second quadrant in Fig. 17). Here, let us denote by θi

(i = 1, . . . , N) the angle with the ith nearest example from the left edge named L

(Fig. 3.3.2), denote the Lagrangian multipliers for θi by αi and denote forgetting

factors by Fi ∈ {λN−ti , 1/(N−ti+1)} where ti(i = 1, · · · , N) is the time when the

i-th example is generated. Then, the solutions in the left half under constraints

are obtained by solving the optimization problem:
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Figure 16. f i are mapped to the uniform distribution on the semicircle. The

semicircle will be rotated for the latter explanation (Fig. 17).

min
α

θL =
N∑
i=1

αiθi (41)

s.t. 0 ≤ αi ≤ CFi, (42)
ℓ∑

i=1

αi = 1, θi ≤ θi+1. (43)

The solutions of the problem (41) can be written as:

θL =
ℓ−1∑
i=1

CFiθi + (1−
ℓ−1∑
i=1

CFi)θℓ, (44)

where n is the number of support vectors with non-zero αi. By solving (41)–(43),

we have:

αi =


CFi, if 1 ≤ i ≤ n− 1,

1−
n−1∑
i=1

CFi, if i = n,

0, otherwise

(45)
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This solution is obtained easily because SVs can be taken from the smallest angle

since the simple problem is one-dimensional. The examples which have positive

αi (1 ≤ i ≤ n) as weights are called support vectors (SVs).

3.4 Statistical Properties of SVM-FF

3.4.1 Typical Learning Curve of Different SVMs

Before entering the analysis, we review the typical properties of learning curves of

several SVMs. In the original SVM and the ν-SVM, as the number of examples

increases, the generalization error decreases and converges to zero in the noise-free

case. However, it is not trivial in the case of the SVM-FF. In the case of EFF,

the θL goes to a certain steady state as a distribution due to the following two

equivalent reasons: (1) The number of support vectors increases by the influence

of EFF (suppose almost all of αi are nearly 0 when N is large) and (2) each αi

exponentially decrease as N increases. Hence, the generalization error does not

converge to zero. On the contrary, θL converges to zero in the FFF case, which

means that its learning curve also converges to zero in probability.

In the Fig. 19, we can see that the learning curve of EFF converges to a

constant value, depending on the magnitude of the EFF, whereas other learning

curves seem to converge to zero. The learning curve of SVMs with FFF is slower

than that of EFF, but the both AGEs decrease as the number of examples grows.

This property is fairly good, because the learning curve converges to zero without

losing the ability of adapting to time-varying problems.

Figure 17. f i’s mapped to the semicircle.
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Figure 18. The left-hand side of the circle. The θi are placed starting from the

example which is nearest to the point L. The center of the SVs is denoted as θL.

We revise the previous work on the analysis of the SVMs with exponential

forgetting factor [21]. In that work, we assumed the independence among the

angles of ordered examples, where the angles with higher indexes contained the

angles with all smaller indexes. Instead, following the original work [19], we

assume that no angles θi contain each other, as shown in figure 3.3.2, which

makes the analysis more simple and yields better results especially for the case

of factorial forgetting factor.

First we derive the probability distribution of the left center of SVs, θL, for

any size of sample data N . Because the θL and θR follow the same distribution,

then we can straightforwardly derive the AGE of θ. Since the derivation processes

of averaged generalization errors for exponential and factorial forgetting factors

are similar, we will derive the formula in a generalized manner by denoting both

forgetting factors as Fi ∈ {λti , 1/ti} for simplicity. Note that Fi depend on ti but

independent from i. Since the ith smallest angle, denoted by θi, is independent

of the forgetting factor λti , the mean of the product of the two variables can be

written as

E[Fiθi] = E[Fi]E[θi]. (46)

Hence, the mean of θL is derived as

E [θL] = E

[
n−1∑
i=1

CFi

]
E [θi] + E

[
(1−

n−1∑
i=1

CFi)

]
E [θn] .

(47)

31



10 20 50 100 200 500 1000

0.
00

2
0.

01
0

0.
05

0
0.

20
0

Number of Data

M
AG

E 
 (o

ve
r 2

23
10

 e
pi

so
de

s)
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

factorial
exponential
soft
hard

Figure 19. Typical learning curves of four types of SVMs: hard margin SVM, soft

margin SVM (C = 1), SVM with exponential forgetting factor (C = 1, λ = 0.9),

and SVM with factorial forgetting factor (C = 1). The horizontal axes shows the

number of samples and the vertical axes shows averaged generalization error over

20000 episodes, each of which is log scaled.

Now let us replace the coefficients of the second term by just Fi since the second

term of (47) itself is considered to be small compared to the whole θL, so we have:

θL ≃
n∑

i=1

CFiθi (48)

Furthermore, since θi =
∑i

j=1 ηj, the expectation of θL is

θL = C
n∑

i=1

ℓ−i+1∑
j=1

Fjηj, (49)
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and its variance is

V [θL] (50)

= C2V

[
n∑

i=1

ℓ−i+1∑
j=1

Fjηi

]
(51)

= C2

n∑
i=1

(
V

[
ℓ−i+1∑
j=1

Fj

]
+ E2

[
ℓ−i+1∑
j=1

Fj

])
×
(
V [ηi] + E2 [ηi]

)
(52)

−
n∑

i=1

ℓ−i+1∑
j=1

(ℓ− i+ 1)2E2 [Fj]E2 [ηi] .

For both exponential and factorial forgetting cases, all the SVs are very small

compared to π, so that all the ηi follow the identical distribution to that of η1.

The distribution of η1 can be obtained by considering the probability of all the

other samples falling into the area [η1, π], which is

Prob[Θ ≤ η1] = 1−
(
1− θL

π

)N

. (53)

Differentiating (53) with respect to θL gives the distribution

p(ηi) =
N

π

(
1− θL

π

)N

, (54)

which is asymptotically the same as the exponential distribution with parameter

λ = N/π for infinitely large N . Hence we have

E [ηi] =
π

N
(55)

V [ηi] =
π2

N2
, (56)

which simplifies (52) to be

V [θL] =
C2ℓ3π2

3N2

(
2V [Fj] + E2 [Fj]

)
(57)

The terms V
[∑ℓ−i+1

j=1 Fj

]
and E2

[∑ℓ−i+1
j=1 Fj

]
have different values for expo-

nential and factorial cases, so that we handle these differently.
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3.4.2 AGE of exponential forgetting factor

We now turn to the calculations of averaged generalization error for each Fti . In

the case of exponential forgetting factor, recalling that λ is some constant and ti

are a randomly permutated sequence of {1, 2, · · · , n}, the mean and the variance

of λti are

E [Fj] = E[λti ] =
1

N(1− λ)
(58)

V [Fj] = V
[
λti
]

=
1

N

∑
i=0

(
λti − 1

N(1− λ)

)2

≃ 1

N

N∑
i=0

λ2ti (for large N)

=
1

N(1− λ2)
. (59)

By substituting (58) and (59) into (57) and considering that the number of SVs,

ℓ, is approximated as N(1− λ) (or N(1− λ)/2 for left- and right-hand sides), we

have

V [θL] =
C2π2(1− λ)2

24

(
1 +

2(1− λ)

1− λ2

)
. (60)

Here, θL and θR asymptotically follow a Gaussian distribution because they are

the sum of infinite identical random variables. Hence we need only the variances

of θL and θR to obtain the normalized generalization error, which was already

calculated in (60). That is:

E[|θe|] =
∫ ∞

−∞
x N (x|0, 2V [θL])dx =

√
2V [θL]

π
, (61)

where θe denotes the generalization error and N (x|0, 2V [θL]) denotes a Gaussian

distribution.

We can derive a concrete form of the AGE for the EFF by substituting (60)

into (61), but that is not necessary here. However, we should note that the AGE

for the EFF does not converge to zero unless λ = 1 because (60) shows that the

variance of both left and right-hand centers of the SVs do not converge to zero.
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3.5 AGE on factorial forgetting factor

In a similar way to the case of the EFF, we can derive the AGE for the factorial

forgetting factor (FFF) . In the equation (60),

E [Fj] =
1

N

N∑
k=1

1

k
≃ logN

N
(62)

V [Fj] =
1

N

N∑
k=1

(
1

k
− logN

N

)2

≃ 1

N

(
1− (logN)2

N

)
, (63)

with the approximation
∑N

k=1 1/k ≃ logN . Now we know the concrete form of

the approximated AGE for the FFF, by using (61), (62) and (63),

E [|θe|] ≃ C

√
π

4(logN)3

(
s2 −

(logN)2

N

)
, (64)

where s2 =
∑N

i=1 1/i
2, which converges to a constant value when N → ∞. (64)

shows that the order of the AGE follows O(1/(logN)3/2), which is much slower

than both hard-margin SVMs and soft-margin SVMs, but it is a fair deficit con-

sidering the ability to adapt to time-varying problems.

3.5.1 Other Forgetting Factors

We can consider more generalized types of forgetting factors. As can be seen,

the result (57) does not depend on the shapes of forgetting factors, so we can

derive AGEs for arbitrary forms of forgetting factors. For example, we can think

of t−α
i (α ≥ 1) as a generalizalized form of 1/ti, whose AGE can be instantly

obtained by calculating its expectation and variance and using (61), in the same

way as we did in this study. This will accelerate the convergence of the algorithm,

but on the other hand it will be less sensitive to variations over time. Practically,

one can trade off between the sensitivity to time and the convergence rate.
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3.6 Computer Simulations

In order to confirm the validity of the theory derived above, we carried out com-

puter simulations. We employed the one-dimentional simple problem described in

section 2, and solved it by using SVMs with the FFF. We created 10842 episodes,

in each of which QP problems were solved at 20 points of sample size at equal

intervals along a log scale. At last we took the average of all the resulting gener-

alization errors at each horizontal point over all episodes.

The code was written in R, a statistical programming language, with the

“kernlab” package which provides the interior point method to solve QP problems.

The theoretical and experimental learning curves are compared in Fig. 20.

The circles show the experimental learning curve and the solid line shows the

theoretical result derived at (64). The two learning curves match better in the

range of larger sample sizes (around 104) than in the range of smaller sample sizes

(around 102). Simulations on over 104 are computationally infeasible because

solving a QP problem requires polynomial computational time.

3.7 Conclusions and Discussions

An SVM with factorial forgetting factor has been revised so that it has zero gen-

eralization error in the asymptotic state. Our asymptotic theory on its averaged

generalization error in the simple noiseless case shows that the generalization er-

ror of the proposed method goes to zero when the number of examples goes to

infinity, differently from an SVM with exponential forgetting factor.
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Figure 20. The learning curve of SVMs with factorial forgetting factor. The

horizontal and vertical axes show the number of examples and the velocity of

the generalization errors, both in log plot, respectively. The sample points are

averaged over 10842 episodes generated in a parallel manner.
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4. Information geometry in neural spike sequences

4.1 Inter sipike sequences of cortical neurons

The characteristics of neurons in cortical areas have been the subject of recent dis-

cussion in the literature. In particular, there has been discussion on the statistical

properties of the interspike intervals (ISIs) of spike sequences such as the coef-

ficient of variation, CV , the skewness coefficient, SK , the correlation coefficient

of consecutive intervals, COR, and the local variation, LV [24–28]. In particular,

Shinomoto et al. [29] have shown that the local variation with a refractory period,

LV R, can almost classify the functions of neurons without any other information.

From the viewpoint of statistical modeling, ISIs can be modeled as a gamma

process with a variable rate but a fixed shape parameter [28, 30]. Since gamma

distributions form a two-dimensional e-flat manifold S from the information-

geometrical viewpoint [31–33], the problem of estimating the shape parameter

results in a semiparametric estimation [34, 35]. These theoretical methods also

apply to estimate the refractory period in LV R, which has heuristically been

determined to date.

The rest of this paper is organized as follows: Some statistical measures of

spike sequences and their properties are introduced in Section 2. Section 3 for-

mulates the problem of ISIs as a semiparametric estimation and Section 4 briefly

introduces the information geometry for semiparametric models. The solution of

the problem is given in Section 5 and Section 6 confirms the results by computer

simulations. Section 7 concludes with some discussion.

4.2 Statistical Measures for ISIs

When a spike sequence is given and its N ISIs are written as T1, T2, . . . , TN , the

CV and SK measures are defined as the standard deviation of the ISIs divided by

the mean of the ISIs and the skewness of the ISI distribution, respectively. That
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is,

CV =
1

T̄

√√√√ 1

N − 1

N∑
n=1

(Tn − T̄ )2, (65)

SK =

1

N − 1

∑N
n=1(Tn − T̄ )3(

1

N − 1

∑N
n=1(Tn − T̄ )2

)3/2
, (66)

where

T̄ =
1

N

N∑
n=1

Tn. (67)

The CV measure expresses the regularity: It takes a low value for a regular

spike sequence, one for a sequence of infinite length generated by a fixed Poisson

process, and a large value when the process is time-dependent. The SK measure

shows the asymmetry of a sequence: It can be either positive or negative, but

it takes two for a sequence of infinite length generated by a stationary Poisson

process. However, since they are based on the mean t̄ of the ISIs, CV or SK will

become large when the spike rate is globally modulated, even though the spike

sequence is locally quasi-regular [24, 36]. As a result, they are not suitable for

classifying particular neurons such as those found in cortical areas that change

their spike rate drastically in a waiting-period task, for example.

To overcome this problem, Shinomoto et al. [28] proposed the LV measure,

defined as

LV =
1

N − 1

N−1∑
n=1

3(Tn − Tn+1)
2

(Tn + Tn+1)2
, (68)

where the factor 3 is taken so that the expectation of LV becomes one when the

sequence obeys a stationary Poisson process. Since the LV measure reflects the

stepwise variability of ISIs and does not compare ISIs with different spike rates,

LV can assume a small value, even for a sequence with a time-variant spike rate.

They confirmed that CV undergoes a large change but LV does not for a sequence

generated by a time-dependent Poisson process [36].
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Recently, Shinomoto et al. [29] proposed a variant of LV called LV R, that

explicitly includes an absolute refractory period R for each neuron, where the

value is common to all neurons. That is,

LV R =
1

N − 1

N−1∑
n=1

3(Tn − Tn+1)
2

(Tn + Tn+1 − 2R)2
, (69)

where the refractory period R is determined heuristically from the given data.

LV R is shown to classify the functions of neurons in other words, the value of

LV R.

4.3 Statistical Model of Interspike Intervals

In the literature, ISIs are modeled as a gamma process with a variable rate and

a fixed shape parameter. Although the rate can fluctuate continuously, it can

be simplified by assuming that the rate parameter is fixed between two spikes.

Then, an interspike interval T independently obeys a gamma distribution with a

rate ξ(l) and shape parameter κ,

q(T ; ξ(l), κ) =
(ξ(l)κ)κ

Γ(κ)
T κ−1 exp

[
−ξ(l)κT

]
, (70)

where l runs from 1 to N .

As for LV R, the absolute refractory period R slightly modifies (70) to

q(T ; ξ(l), κ, R)

=
(ξ(l)κ)κ

Γ(κ)
(T −R)κ−1 exp

[
−ξ(l)κ(T −R)

]
. (71)

This is assumed in the existing models that R has a constant value of zero. So,

we consider (71) in the following.

From (71), the probability distribution of a spike sequence is written as

p({T};κ,R, k(ξ)) =
∫ N∏

l=1

q(Tl, ξ
(l), κ, R)k(ξ(l))dξ(l). (72)

This is called a semiparametric model, where two kinds of parameters appear:

One is a finite number of parameters of interest, κ and R, and the other is a

nuisance parameter, k, which has an infinite degrees of freedom. In other words,

estimating the shape parameter κ and the refractory period R is formulated as a

semiparametric estimation [34].
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4.4 Information Geometry for Semiparametric Models

We generalize (72) by assuming thatm observations, {T (l)} ≡ {T (l)
1 , . . . , T

(l)
m }, are

given for each ξ(l), where ξ(l) is generated from an unknown probability density

k(ξ). That is, the distribution of the ISIs in the lth set is described as

p({T (l)}; ξ(l), κ, R) =
m∏
i=1

q(T
(l)
i ; ξ(l), κ, R) (73)

and that of the sequence is

p({T};κ,R, k(ξ)) =
∫ N/m∏

l=1

q({T (l)}, ξ(l), κ, R)k(ξ(l))dξ(l). (74)

A semiparametric estimation is known to be solvable using the estimating

function method [37, 38], where the estimator is the solution of the estimating

equation,

N/m∑
l=1

m∑
i=1

f(T
(l)
i , κ, R) = 0, (75)

where f(T ;κ,R) is an estimating function that satisfies

Eκ,R,k[f(T ;κ,R)] = 0 (76)

for any κ, R and k. Here Eκ,R,k denotes the expectation with respect to the

distribution

p(T ;κ,R, k) =

∫
p(T ; ξ, κ, R)k(ξ)dξ. (77)

How can we find good estimating functions? The information geometry [31,

32], which sheds light on a various fields of information science, gives a basic

theory for estimating functions. Amari and Kawanabe [39] show the conditions

under which estimating functions exist, how large the set of estimating functions

is, and what estimating function is optimal.

We give an intuitive explanation for the theory of estimating functions (see

Section 3 of Miura et al. [35] and its references for details). Note that in the
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present paper, the same notation is employed and the superscripts (l) have been

omitted for ξ(l) and T
(l)
i in the following analysis.

In short, an estimating function extracts the component orthogonal to the

nuisance parameters, that includes the elements of the parameters of interest and

has no other elements. See Fig. 1, for example, where Fi shows the space in which

the information on the parameters of interest is included, Fn shows the space of

the nuisance parameters, and Fa shows the orthogonal complement to Fi ⊕ Fn.

Since no assumptions are given for the nuisance parameters, the elements of the

estimate in the direction of Fn are of no use. In other words, consideration needs

to be made of the space orthogonal to Fn. Hence, we denote by Fe the space where

the elements of Fn are removed from Fi. The estimating functions are included

in Fe ⊕ Fa so that they are not affected by nuisance parameters. Obviously, Fa

has no information on the parameters of interest. This means that Fe itself is the

optimal space, where the optimal estimating function is included.

Fi

Fn

Fa

Fe

Figure 21. Illustration of estimating functions.

Using the Amari and Kawanabe method, Miura et al. [35] proved that there

does not exist any estimating function when m = 1 and derived the optimal

estimating function when m > 1, which leads to the optimal estimator of κ,

irrespective of ξ(l). Their estimator has the minimum variance for estimating κ

as long as the ISIs obey gamma distributions.
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4.5 Estimating Functions for Interspike Intervals

Using the theory in the previous section, we derive the optimal estimating func-

tion for κ and R in a purely mathematical manner, where the refractory period R

is common and constant but unknown, following the analysis in Miura et al. [35].

Substituting (71), (73) is written as

m∏
i=1

q(Ti; ξ, κ, R) = exp [ξ · s({T}, κ)

+r({T}, κ, R)− ψ(κ,R, ξ)] , (78)

where

s({T}, κ) = −κ
m∑
i=1

Ti, (79)

r({T}, κ, R) = (κ− 1)
m∑
i=1

log(Ti −R), (80)

ψ(κ,R, ξ) = −mκ log(ξκ) +m log Γ(κ)−mξκR. (81)

Amari and Kawanabe show that the optimal estimating functions for κ and R

are given by

uIκ({T}, κ, R) = uκ − E[uκ|s] (82)

=
m∑
i=1

log(Ti −R)−mE[log(T1 −R)|s], (83)

uIR({T}, κ, R) = uR − E[uR|s] (84)

= (1− κ)
m∑
i=1

1

Ti −R

−m(1− κ)E

[
1

T1 −R

∣∣s] , (85)

where uIκ and uIR are defined so that they are orthogonal to any function of s,

as seen in (82) and (84). The marginal distribution of s and the conditional

expectation in the last term of (83) are given in Appendix of Miura et al. [35] as
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being

p(s) =∫
δ

[
s+ κ

m∑
i=1

Ti

]
m∏
i=1

q(Ti; ξ, κ, R)dTik(ξ)dξ (86)

=

∫ m−1∏
i=1

B(iκ, κ)
(
− s

κ
−mR

)mκ−1 (ξκ)mκ

Γ(κ)m

· exp[ξs+ ξκmR]
k(ξ)

κ
dξ, (87)

E[log(T1 −R)|s] =
∫

log(T1 −R)δ

[
s+ κ

m∑
i=1

Ti

]
m∏
i=1

q(Ti; ξ, κ, R)dTik(ξ)dξ
1

p(s)
(88)

= log
[
− s

κ
−mR

]
− ϕ(mκ) + ϕ(κ), (89)

where δ is the Dirac delta function and ϕ(κ) is the digamma function defined as

ϕ(κ) =
Γ′(κ)

Γ(κ)
. (90)

Similarly, we can derive the conditional expectation in the last term of (85) as

E

[
1

T1 −R

∣∣s] = ∫ 1

T1 −R
δ

[
s+ κ

m∑
i=1

Ti

]
m∏
i=1

q(Ti; ξ, κ, R)dTik(ξ)dξ
1

p(s)
(91)

=
1

− s

κ
−mR

(
1− mκ− κ

κ− 1

)
. (92)

44



In total, the optimal estimating functions are written as

uIκ({T}, κ, R) =
m∑
i=1

log(Ti −R)

−m log
m∑
i=1

(Ti −R) +mϕ(mκ)−mϕ(κ), (93)

uIR({T}, κ, R) = (1− κ)
m∑
i=1

1

Ti −R

− m(1− κ)∑m
i=1(Ti −R)

(
1− mκ− κ

κ− 1

)
. (94)

Using the estimating functions above, the estimators of κ and R are the

solution of the estimating equations,

N∑
l=1

uIκ({T (l)}, κ, R) = 0, (95)

N∑
l=1

uIR({T (l)}, κ, R) = 0. (96)

4.6 Computer Simulations

To confirm the validity of the theoretical analysis given above, computer simula-

tions were carried out. In each experiment, κ, R, m and ξ are fixed at 0.5, 0.2, 3

and 11, respectively.

Fig. 2 shows the estimated κ and R determined by the optimal estimating

functions derived above as a function of the number N of observations, where the

solid and dashed lines denote the averages of estimated κ and R over 1000 trials

and each error bar shows the standard deviation. We can see that the values of

κ and R converge to the true values, 0.5 and 0.2, with decreasing deviations, as

N increases.

Next, we compared the estimate error of κ of our method to those of the

conventional method by Miura et al. with R = 0.2 (the true value) and with

R = 0 (the conventional model). Obviously, the former gives the lower bound

of the estimate error in this framework. In Fig. 3 the solid, dashed and dotted

1The estimator does not depend on ξ, and we can assume a constant value.
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Figure 22. κ and R of the proposed method versus N .

lines describe the root-mean-square errors of our method, the lower bound and

the conventional model, respectively. We can see that the proposed method has

a comparable error to the lower bound and smaller than the conventional model

even when examples are few.
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Figure 23. Comparison of the estimated errors of κ.
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4.7 Conclusions

In this section, we discuss the statistical models of ISIs. When a spike sequence of

a neuron obeys a gamma process with a time-variant spike rate, the information

geometry gives the optimal estimating function from the statistical viewpoint.

The method is also applicable to the modified model which has an absolute re-

fractory period, and successfully estimate not only the shape parameter but also

the refractory period.

As shown in [34], LV is an approximated estimator of the regularity, and so

must be LV R. Since LV R is a strong tool for neuron classification [29], our method

will replace LV R in the field in the near future.

5. Conclusion

We studied three subjects: genetic algorithms, SVMs with forgetting factors, and

neural spike sequences.

In Sect.2, GAs are analyzed from a network point of view based on the as-

sumption that the shorter the CPL is, the more effectively a GA can find desirable

solutions. The main contribution of this study is the derivation of the CPLs of

a genetic network of L = 2 under both conditions of equal weights and different

weights, where weights represent transition probabilities. When all the weights

of edges are set to 1, the crossover operation surely shortens the CPL linearly

with the length of the individuals. In the case in which each edge might have a

different weight, the crossover operation does not necessarily shorten the CPL.

Instead, the CPL is monotonically decreasing where µ ≤ 27/28. It is obvious

that a GA does not necessarily work best at µ = 27/28. This means that the

effectiveness of the process of searching does not seem to directly correspond to

its CPL.

In Sect.3, SVMs with forgetting factors have been proposed and analyzed

in an asymptotic manner. In the case of an exponential forgetting factor, the

proposed asymptotic theory on its generalization error in the simple noiseless

case shows that the proposed method has a non-zero lower bound in the average

generalization error, differently from the conventional SVMs or the RLS algorithm

for adaptive filters, where errors decrease in the order of O(1/N). The main
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problem of SVMs with exponential forgetting factors is that this approach never

allows generalization errors to converge to zero even for the proposed simple

problem. This difficulty is overcome by introducing a factorial forgetting factor.

In the case of the factorial forgetting factor, the generalization errors converges

to zero at the cost of slower convergence rate. That is because the sum of the for-

getting factors diverges to infinity when the number of examples goes to infinity.

The convergence rate is calculated mathematically and it is O(1/(logN)(3/2)),

which is slower than the rate in the of an exponential forgetting factor, O(1/N),

but it is a fair cost to pay for the quality of convergence.

In Sect.4, the statistical models of interspike intervals are developed. When

a spike sequence of a neuron obeys a gamma process with a time-variant spike

rate, the information geometry gives the optimal estimating function from the

statistical viewpoint. The method is also applicable to the modified model which

has an absolute refractory period, and successfully estimates not only the shape

parameter but also the refractory period.
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