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Probabilistic Logic Approach to
Event Structure Analysis∗

Katsumasa Yoshikawa

Abstract

This thesis describes a probabilistic approach to event structure analysis, a task of
extracting events, arguments and their relations. An event refers to a change of state
that constitutes a story in a document. Events play important roles in natural language
documents. This thesis attempts to analyze such narrative events by combining hu-
mans’ linguistic knowledge with probabilistic information from annotated corpora.

We focus our effort on constructing new analyzers using one of the most popular
probabilistic logic frameworks: Markov Logic. Markov Logic is a combination of first
order logic and Markov Networks. First order logic can efficiently implement humans’
linguistic knowledges. Markov Networks allow us to exploit various features acquired
from large corpora.

The biggest advantage of Markov Logic is that it can treat multiple decision simul-
taneously. In real world data, relations depend on each other in various ways. Suppose
we want to identify the relations between predicate and their arguments in a sentence.
Identification often fails if we only consider a pair of predicate-argument individually
because these predicate-argument relations are often syntactically and semantically
dependent of each other. We attempt to deal with such dependencies by describing
humans’ linguistic knowledge as Markov Logic formulae.

Our target task is relation extraction about events that behave as verb. In particular,
we tackle the following three relation extraction tasks.

First, we perform predicate-argument relation extraction on Japanese newswire cor-
pus. In this task, our method considers all words in a sentence and find the most
possible assignments of predicate-argument. We also make qualitative analysis and
confirm the effectiveness of our method.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0961024, September 22, 2011.
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Our second task is that event-argument relation extraction on biomedical corpus. We
introduce coreference relations to extract event-argument relations. Transition rules
with coreference relations allow us to extract event-argument relations crossing over
sentence boundaries.

Third, we tackle temporal relation identification in which we identify temporal or-
ders of events, time expressions, and document creation time. We implement logical
constraints of temporal relations in Markov Logic and our model finds the optimal
solutions in a document.

Our contributions are not limited to the performance improvements in particular
tasks. Events and arguments which we focus on are important elements in a docu-
ments. Therefore, our work makes a nice foothold towards automatic understanding of
documents.

Keywords:

markovl logic, semantic role labeling, event extraction, temporal relation identifica-
tion, coreference resolution, transition rule
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確率的論理による事象構造解析∗

吉川克正

内容梗概

本稿では確率的論理を利用した事象構造の解析を行い，事象と項及びその関係
の抽出について述べる．事象とは，文書中における物語を構成する “状態変化”を
表す表現である．この事象表現が自然言語の文書において，重要な役割を果たす
ことはよく知られている．本研究では，このような事象表現に対する解析を，人
間の持つ言語学的知識とコーパスからの統計情報の組み合わせにより行うことを
目的とする．
本研究で扱う確率的論理は，マルコフ論理と呼ばれ，広く利用されている枠組
みである．マルコフ論理は一階述語論理とマルコフネットワークを組み合わせた
枠組みであるため，一階述語論理により人間の持つ言語知識を効率的に実装する
とともに，マルコフネットワークにより，コーパスから様々な素性を学習して利
用することができる．本研究ではこのマルコフ論理によって自然言語処理におけ
る三つのタスクを扱い，人間の言語知識とコーパスからの学習を効果的に組み合
わせるモデルを提案する．
マルコフ論理による最大の利点は，複数の決定を同時に行える点である．現実
のデータでは，データ間に様々な依存関係が考えられる．例えば，一つの文内に
複数の述語とそれに対応する項が存在する場合，ただ一つの述語-項の組み合わ
せだけに着目しても正しい解を得られないことが多くある．なぜなら，同一文内
に存在する述語-項関係には互いに依存関係があるからである．本研究の目的は，
このような依存関係を人間の知識に基づく論理式により捉えることで，様々な自
然言語処理のタスクにおいてより効果的なモデルを構築することにある．
本稿で扱うタスクはいずれも事象に関する関係抽出である．事象の中でも，特
に動詞として働くものを中心に考え，三つの関係抽出タスクを行っている．
まず一つ目は日本語の新聞記事における述語-項関係抽出である．文内全ての単
語を同時に考慮して文全体で最適な述語-項関係を捉えるモデルを構築している．
またこのタスクでは定量的な評価だけでなく，定性的な評価にも力を入れた．

∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-IS-DD0961024,
2011年 9月 22日.
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二つ目は医学生物学文書における事象-項関係抽出である．このタスクにおけ
る重要な点として，医学生物学文書という限定的な分野ではあるものの，共参照
関係を事象-項関係抽出に利用することに成功したことが挙げられる．その結果，
文境界を越えるような事象-項関係も扱うことができるようになっている．
三つ目は，時間順序関係推定と呼ばれ，事象表現，時間表現，文書作成日時に関
してその時間的な順序を推定する問題である．時間的関係に対する大域的な論理
制約を導入することで，文書全体における論理的整合性を向上させる試みである．
本研究の貢献は個々のタスクにおける性能の向上に止まらない．なぜなら本研
究で扱う事象や項は，文書において主要な役割を果たす要素であるため，その関
係を効果的に扱える方法を提案できたことは，文書理解において重要な足がかり
を得たことに他ならないからである．

キーワード

マルコフロジック, 述語項構造解析, 事象抽出, 時間的順序関係推定, 共参照解析,
推移律
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Chapter 1

Introduction

1.1 Background and Motivation
Events and their arguments take important roles in natural language documents.

Constructing effective analyzers for event structure is one of the significant tasks in
Natural Language Processing (NLP). However, event structure analysis requires to
take into account complex relations based on deep semantic knowledge. It it difficult
for such tasks to apply automatic approach by machine learning. Machine learning
approach has actually achieved good performance on a variety of tasks in NLP. In syn-
tactic analysis, local information often find a correct answer. For Part-of-Speech (POS)
tagging we can infer a correct tag of each token with only local information around the
target tokens. However, some tasks require not only local but also global information
to resolve. For example, in semantic role labeling that we need to predict a relation
between verbs and their semantic arguments, some relations between verbs and their
arguments depend on each other. In order to consider such dependencies, we need to
make several decisions, jointly. But the predominant approaches to NLP are based on
local classifiers and cannot jointly handle several decisions.

In addition, machine learning approach can collect a great number of features from
large corpora and exploit them for decisions but a few pieces of humans’ knowledges
often overcome the vast features. Ideally, we would like to exploit both probabilis-
tic models acquired from corpora and effective humans’ knowledge. In recent years,
probabilistic logic approach has come into active because it allows us to apply both
merits of probabilistic models and humans’ knowledges.



Figure 1.1: Events and Arguments in a Document

1.2 Research Goal
In this thesis, we describe probabilistic logic approach for event structure analysis.

We focus our effort on relations about events and their arguments. Analysing events
and their arguments contributes to understand document. Figure 1.1 shows an article
which has events (e.g. ‘取調べ (interrogation)’, ‘逮捕 (arrest)’) and arguments (e.g.
‘当局 (authority)’, ‘A氏 (Mr. A)’). All the relations we extracted from the article in
Figure 1.1 are illustrated in Figure 1.2.

The relations in Figure 1.2 are divided into three types:

event-event temporal relation, causal relation (e.g., “拘留 (detain)” is AFTER “送検
(turn over)”)

event-argument semantic role (e.g., “A氏 (Mr. A)” is the Wo case (Accusative) of “
取調べ (interrogation)”)

argument-argument anaphora relation, coreference relation (e.g., “A氏 (Mr. A)” is
coreferent to “A容疑者 (Suspect)”).

2



Figure 1.2: Events, arguments, and their relations extracted from Figure 1.1

In addition, we aim to propose new methods to extract these types of relations by
logical constraints based on humans’ linguistic knowledge. We apply probabilistic
logic approaches for this purpose.

From another point of view, our objective is proposing new methods which give us
a new foothold in document understanding. Needless to mention, an ultimate goal of
NLP is automatic document understanding. As shown in Figure 1.2, events and ar-
guments construct sequences called event chain and anaphoric chain. These chains
depict the main story of the document and should contribute to understanding docu-
ments. As our future work we will exploit these chains for the applications such as
document summarization, machine translation, and so on.
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Figure 1.3: Target Relations

1.3 Probabilistic Logic
Probabilistic Logic is one of the Statistical Relational Learning frameworks which

integrate probabilistic models and relational representations. In this thesis, we will
exploit a particular probabilistic logic framework: Markov Logic (Richardson and
Domingos, 2006) which combines Markov Network and First Order Logic. Markov
Logic allows us to represent humans’ linguistic knowledge by first order logic formu-
lae and acquire the proper confidences of the formulae by learning from corpus.

Markov Logic is one of the declarative approaches to structured prediction. Struc-
tured prediction usually requires us to consider learning and inference techniques for
structured domains in an application-dependent fashion. Because Markov Logic pro-
vides us strong learning and inference algorithms in an application-independent man-
ner, we can focus on model constructions for our tasks.

Markov Logic approach has already achieved state-of-the-art results in various NLP
tasks such as Entity Resolution (Singla and Domingos, 2006), Information Extrac-
tion (Poon and Domingos, 2007), and Semantic Role Labeling (Meza-Ruiz and Riedel,
2009a). We explorer new areas to apply Markov Logic approach by finding effective
global constraints based on humans’ linguistic knowledges.

1.4 Tasks
Again, our target relations in this thesis are the three types: event-event (E-E), event-

argument (E-A), and argument-argument (A-A). We choose the particular relations for
each type and illustrate them in Figure 1.3 which can be regarded as an abstract of
Figure 1.2.
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In Figure 1.3, we have temporal relation as event-event relation, semantic role for
event-argument, and coreference relation as argument-argument. For these three types
of relations we target the three tasks of relation extraction as follows.

Japanese Event-Argument Relation Extraction

Japanese event-argument relation extraction is a task extracting events (predicates),
their argument, and relations (case roles) between them. The case roles are Ga, Wo and
Ni. This work deeply focus on event-argument (E-A) relation.

Most previous work builds separated classifiers corresponding to each case role and
independently identified the PA relations, neglecting dependencies (constraints) be-
tween two or more PA relations. We propose a method which collectively extracts PA
relations by optimizing all argument candidates in a sentence. Our method can jointly
consider dependency between multiple PA relations and find the most probable combi-
nation of events and their arguments in a sentence. In addition, our model involves new
constraints to avoid considering inappropriate candidates for arguments and identify
correct PA relations effectively. Compared to the state-of-the-art, our method achieves
competitive results without large-scale data.

Biomedical Event-Argument Relation Extraction with Coreference Relation

Biomedical event extraction is a task similar task to Japanese Event-Argument re-
lation extraction. But bio-events, which occur in biomedical documents, have some
distinctive characteristics. Arguments of an event may be not only noun that denote
physical objects such as protein names but also other events. Role labels are Theme
and Cause. Though recent work has neglected coreference information, we identify
coreference relations and propose an approach that exploits them for extracting event-
argument relations. We consider this work as a collaboration between relations of
event-argument (E-A) and argument-argument (A-A).

This approach has two advantages: it can extract a large number of valuable E-
A relations based on the concept of salience in discourse; it enables us to identify
E-A relations over sentence boundaries (cross-links) using transitivity of coreference
relations.
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Temporal Relation Identification (Temporal Ordering)

Temporal relation identification is a task identifying temporal orders of events or
temporal expressions. Though relation labels are mainly BEFORE, AFTER, and OVER-
LAP, we have some minor labels BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER,
and VAGUE. In this task, we mainly focus on the relation type of event-event (E-E).

Recent work on temporal relation identification has focused on three types of re-
lations between events: temporal relations between an event and a time expression,
between a pair of events and between an event and the document creation time. These
types of relations have mostly been identified in isolation by event pairwise compar-
ison. However, this approach neglects logical constraints between temporal relations
of different types that we believe to be helpful. We therefore propose a Markov Logic
approach that jointly identifies relations of all three relation types simultaneously.

1.5 Thesis Overview
The remainder of this thesis is organized as follows:

Chapter 2: Event Structure and Related Work This chapter mentions the defini-
tion of events and explain the differences of events we target in the three tasks. We also
introduce the related work for various event structure.

Chapter 3: Preliminaries This chapter describes preliminary techniques for event
structure analysis. We make a brief introduction of local classifiers –Support Vector
Machines, Log-linear models, and Markov Logic as a probabilistic logic framework.
We mainly focus on Markov Logic and introduce the definition, learning and infer-
ence algorithms we selected. The proposed Markov Logic Networks for each task are
described in Chapters 4, 5, and 6, respectively.

Chapter 4: Japanese Predicate-Argument Relation Extraction This chapter de-
picts extracting Japanese predicate-argument relation with Markov Logic. We apply
our method to Japanese newswire texts and add more qualitative analysis.
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Chapter 5: Biomedical Event Extraction We propose coreference based approach
for biomedical event extraction. Our work is the first research to exploit coreference
relations in biomedical event extraction.

Chapter 6: Temporal Relation Identification In this chapter, we tackle temporal
relation identification with Markov Logic. Our novel approach is a global optimization
considering multiple temporal relations simultaneously.

Chapter 7: Conclusion This chapter summarizes this thesis and discusses the direc-
tion of future work.
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Chapter 2

Event Structure and Related Work

In this chapter, we first define the terms, event, predicate, and argument for the three
tasks. Then, we describe the concept of event mainly focusing on the differences in the
three tasks we target.

2.1 Definition
The term event refers to a change of state (of situation, of a form of behavior) –

the transition from one state to another, usually with reference to a character (agent or
patient) or a group of characters. Such characters are called arguments. Predicate is
the most important event which is played by verb or adverb. For instance, the following
sentence have a predicate and its arguments, an agent and a patient.

HeAGT visitedPRED KyotoPAT

(AGT= agent, PRED= predicate, PAT= patient)

The concept of event has become prominent in recent work on narratology. Event
is generally used to help define narrativity in terms of the sequentiality inherent to the
narrated story. The sequentiality involves changes of state in the represented world
and therefore implies the presence of temporality time, which is a constitutive aspect
of narration and distinguishes it from other form of discourse such as description or
argumentation. Accordingly, such narrative events represent a chronologically ordered
sequence of states (Hühn, 2011).



Table 2.1: The Three Types of Events
Type Sub-type Example
Japanese-event predicate 行った (went),訪問する (visit),歩く (walk)

event-noun 影響 (influence),運転 (driving),交渉 (negotiation)
bio-event bind, phosphorylation, up-regulation, adipocyte differentiation
temporal-event visited, run, my thesis defense, the giant earthquake

2.2 Differences in Tasks
In Table 2.1, we summarize the three types of events, Japanese-events, bio-events,

and temporal-events.
Japanese Event-Argument Relation Extraction (Chapter 4) deals with events, argu-

ments and the relations between them. We focus on the analysis of verbal and adverbial
events so called predicates as typical event expressions. Predicates have arguments
which represent entities that are involved in the activity of predicates such as agent
or patient. Note, predicate-argument structures are often called semantic-role and the
analysis of them is called semantic role labeling. The task in Chapter 4 is a notable
instantiation of extracting such arguments.

For example, the sentence

Taro
太郎はNOM

to school
学校へ DAT

went
行ったPRED

(Taro went to school.)

(NOM=nominative, DAT=dative, PRED=predicate)

has a predicate –“行った (went)” and its arguments –“太郎は (Taro)” and “学校へ (to
school)” as Ga (Nominative) and Ni (Dative cases), respectively. Though verbs and
adverbs play important parts of predicate-argument structures and we actually focus
on predicates, there are NPs which have similar structure to predicate-argument. Such
NPs are called event-nouns. An example sentence for event-noun is

this
この

trade
貿易

deficit
赤字はNOM

our country’s
我が国の

competitiveness
競争力にDAT

influence
影響をevent

affect
及ぼす

(The trade deficit affects our country’s competitiveness.)

in which “影響 (influence)” is an event-noun with two arguments. Such event-nouns
are more difficult to extract their arguments than predicates (Komachi et al., 2007).

10



Japanese event-argument structure for predicates and event-nouns have been annotated
in Kyoto Text Corpus (Kawahara et al., 2002) and NAIST Text Corpus (Iida et al.,
2007). The annotations of predicate-argument structure in the two corpora are different
in dealing with syntactic case alteration. Usually, syntactic cases such as Ga or Wo
directly describe the argument labels (semantic-roles). However, an issue arises in
alteration of syntactic cases by syntactic transformations such as passivization and
causativization. In the following sentence, we show an example of causativization
with syntactic cases.1

(1)
Hanako
花子が　

Taro
太郎に　

apple
リンゴを　

eat
食べさせる

Hanako-NOM　 Taro-DAT　 apple-ACC　 eat-CAUSATIVIZED

(Hanako helps Taro eat an apple.)

One way of annotating these predicate-argument structure is

(2) { PRED=食べさせる (eat-causative), NOM=花子 (Hanako), DAT=太郎 (Taro),
ACC=リンゴ (apple)}.

This annotation completely follows the syntactic cases and is called surface case an-
notation.

An alternative way of annotation is that first we transform the causativized predicate
(e.g. 食べさせる) to base form (食べる) then identify its arguments. This way is called
deep (or logical) case annotation. We show deep case annotation of (1) as,

(3) { PRED=食べる (eat), NOM=太郎 (Taro), ACC=リンゴ (apple), EX-NOM=花
子 (Hanako) }.

where predicate is not “食べさせる” but “食べる” and the Nominative argument be-
comes Taro. While Kyoto Text Corpus selected surface case annotation for annotating
predicate-argument structure, NAIST Text Corpus utilized deep case annotation for
annotating predicate-argument structure.

Moreover, though NAIST Text Corpus is annotated only three major cases, Nomina-
tive, Accusative, and Dative, Kyoto Text Corpus has some more cases such as Ablative
and Instrumental.

Again, in this task, we define verbal and adverbial events as predicates. In addition,
we define the set of predicates and event-nouns as just events.

1The syntactic cases are just syntactic relations and different from predicate-argument structure
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In English, predicate-argument structures for verbs are defined in FrameNet (Baker
et al., 1998) and PropBank (Palmer et al., 2005). FrameNet is primarily a lexico-
graphical project which aims to group words into semantic classes so-called frames,
representations for prototypical situations or states. Each frame provides its set of
predicate-argument structures (semantic roles). PropBank has the more practical aim
than FrameNet which is to obtain a complete predicate-argument structure annotation
of the Penn TreeBank (Marcus et al., 1994). The more detailed of the differences be-
tween FrameNet and PropBank is shown in (Ellsworth et al., 2004). For event-noun,
Meyers et al. (2004) built the NomBank corpus. Recently, Gerber and Chai (2010)
constructed annotations of event-nouns for more difficult cases than NomBank.

Note, English predicate-argument structure analysis, case-frame dictionaries in which
predicates proper frames to select their arguments are defined. That is, we can choose
a sense for each predicate. Because acceptable argument roles differ for each predi-
cate sense, case-frame dictionaries help extract predicate-argument. On the other hand,
predicate-argument annotations in Japanese do not have internal case-frame dictionary
corresponding to the annotations. Instead, we usually exploits external dictionaries
such as Nihongo-Goi-Taikei (Ikehara et al., 1997) or KUCF (Kawahara and Kurohashi,
2006a). Thus, there remains some ambiguities in predicate sense.

Since structure analysis of Japanese event-nouns are challenging task, in Chapter 4,
we only focus on predicates – verbal and adverbial events.

Chapter 5 – Biomedical Event Extraction – describes another story of event-argument
structure. In biomedical corpus such as GENIA Event Corpus (GEC) (Kim et al.,
2008), bio-events have distinctive event structures.2

The main task of biomedical event extraction is to find molecular events which in-
volve these entities as their primary participants, themes and cause. These two types
of arguments are different from entities in general domains. Instead of general named
entities (e.g. PERSON and ORGANIZATION), bio-events take named entities of the
protein, gene and RNA types as their arguments. In addition, biomedical corpus has
large numbers of nominal events and an event can take the other events as arguments.
Bio-events have event-types defined based on Gene Ontology which is a project aim-
ing at standardizing the representation of gene attributes across species and databases.3

In terms of event-argument structure, event-type can be regarded as a similar idea to
case-frame which decide acceptable arguments for each event. We show an example

2Note that the bio-events in this thesis are limited events annotated in GEC.
3http://www.geneontology.org/
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sentence of Figure 5.2 as follows:

TPA
Pos reg

[induction]
event

Pos reg
[increases]

event
the

Binding
[binding]

event
of [AP-1 factors]

protein
to [this element]

protein
.

which has three events “induction”, “increases”, and “binding” and two proteins “AP-1
factors” and ‘this element”. Each event has an event-type such as Positive Regulation
and Binding. As stated before, the roles between events and their arguments are two
types, theme and cause. This example sentence is in BioNLP’09 (Kim et al., 2009) in
which we analyze event-argument structure we stated above. Event-argument structure
of bio-event is domain specific but the variety of proteins and nominal events make
analysis difficult.

In Chapter 6 we focus on the aspect of chronological order of events. Different
from the other two tasks in Chapters 4 and 5, the problem we target is not extract-
ing the attributes of who or what for events but the information when they happen.
Since an event is a change of state, generally all events have temporal information.
Here, we call events with temporal information temporal-events. Temporal-events
do not necessarily have arguments such as agents or patients. In addition to predi-
cates and event-noun of the above, temporal-events include much more varieties of
nominal events. Many historical occurrence should become temporal-events. For ex-
ample, “the giant earthquake”, “World War II ” can be temporal-events because they
have temporal information when they occur. We have popular temporal tagged corpus
TimeBank (Pustejovsky et al., 2003a) and TempEval (Verhagen et al., 2007). In them,
there are several types of temporal relations such as relations between event and time
expression (e.g. July 7th) or relations between two events. Temporal relation identi-
fication is a task to identify these relations (temporal order) based on 13 or 6 classes
(e.g. Before, Overlap).

Note that, in this section, we explicitly describe each type of events such as “Japanese-
event” and “bio-events” but, in the remainder of this thesis, we call them just events.

2.3 Related Work for Event
In this section, we make a brief introduction of related work. We describe researches

related to the three types of relations in Figure 1.3 or Markov Logic approach. The
detailed approach or results will be described in each of Chapters 4, 5, and 6.
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First, in Japanese Predicate-Argument Structure (PAS) analysis, Taira et al. (2008)
and Imamura et al. (2009) tackled PAS extraction on the NAIST Text Corpus. While
Imamura et.al., focused on verbal and adverbial predicates, Taira et.al., included event-
noun in their targets. Both works have their points: Taira’s model is strong in da-
tive cases and Imamura’s work got outperformed results in nominative and accusative
cases. For extraction of predicate-argument relations over sentence boundaries, there
is much room for improvement. Markov Logic approach to extract Japanese PAS has
not proposed yet.

Second, in biomedical event extraction, we mention the works in BioNLP’09 Shared
Task (Kim et al., 2009) which is one of the most popular shared tasks for biomedical
event extraction. In this shared task, 24 teams submitted final results. BioNLP’09 has
three tasks but most teams tried only Task 1 –extracting basic event structure. Björne et
al. (2009) won the competition using very simple method with SVM classifiers. Riedel
et al. (2009) proposed a novel Markov Logic approach to biomedical event extraction.
On the data of BioNLP’09, Poon and Vanderwende (2010) proposed a new Markov
Logic model by implementing the features (Björne et al., 2009) used and achieved
competitive results with Björne et.al. Our model for this task is also applying Markov
Logic but we involves coreference informations.

Thirdly, let us focus on temporal relations. Temporal relations are traditionally de-
fined as 13 types by Allen’s temporal logic (Allen, 1983). Pustejovsky et al. (2003b)
built a temporal annotation format called TimeML. TimeML has the formats to an-
notate event expressions, temporal expressions, and temporal relations. The format
for temporal relations are 11 types based on Allen’s temporal logic. TimeBank Cor-
pus (Pustejovsky et al., 2003a) is the most popular corpus with temporal annotations
which is annotated by TimeML format. Boguraev and Ando (2005) first proposed a
machine learning approach to temporal relation identification on TimeBank Corpus.
After the TimeBank Corpus, same as biomedical event extraction, shared tasks are
held. TempEval shared task,4 TempEval-2,5 and TempEval-3 6 are held in 2007, 2010,
and 2011, respectively. The data for these shared tasks were newly constructed. Tem-
poral relations in TempEvals are simplified 6 types. Though many approaches were
proposed in TempEvals, global features were not exploited enough.

4http://www.timeml.org/tempeval/
5http://www.timeml.org/tempeval2/
6http://www.cs.york.ac.uk/semeval/proposal-1.html
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Chapter 3

Preliminaries

This section describes the prelimnaries of our work. It is a brief introduction of
machine learning techniques and probabilistic logic framework.

3.1 Support Vector Machines
Support Vector Machines (SVMs) are supervised machine learning models for bi-

nary classification proposed by Vapnik (1995).
Given a set of training example D =

{
(xi, yi)|xi ∈ Rd, yi ∈ {−1, 1}, 1 ≤ i ≤ n

}
,

suppose the following hyperplane:

w · x + b = 0, w ∈ Rd, b ∈ R, (3.1)

which separates the training data into two classes such that

yi(w · xi + b) − 1 ≥ 0. (3.2)

Though there are many possible hyperplanes (Figure 3.1(a)), SVMs find the opti-
mal hyperplane that maximizes the margin (Figure 3.1(b)). Such a hyperplane has the
minimum expected test errors and can be solved by quadratic programming. The in-
equality 3.2 must hold for the nearest examples. Those nearest examples form two
margin-boundary hyperplanes formed by the nearest examples of positive and nega-
tive, respectively. Let λ be the distance between two margin-boundary hyperplanes,
and x̄ be a vector on the margin-boundary hyperplane formed by the nearest negative
examples. Then, the following equations hold:



(a) Possible Separating Hyperplanes (b) Optimal Separating Hyperplane

Figure 3.1: Maximizing the Margin of Support Vector Machine

−1 × (x̄ · w + b) − 1 = 0 (3.3)

1 × ((x̄ + λw/|w|) · w + b) − 1 = 0 (3.4)

The margin is the half of the distance λ and computed as

λ

2
=

1
|w| (3.5)

Thus, maximizing the margin is equivalent to minimizing the norm of w. This problem
is simply formulated as:

min
1
2
|w|2, (3.6)

s.t. ∀i, yi(w · xi + b) − 1 ≥ 0

which represents hard-margin SVMs where the given data is linearly separable.
On the other hand, soft-margin SVMs introduces the so-called slack variables which

enables the linearly non-separable problem to be solved. This problem is formulated
as

min
1
2
|w|2 +C

∑
i

ξi, (3.7)

s.t. ∀i, yi(w · xi + b) − 1 + ξ ≥ 0.

∀i, ξi ≥ 0
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where ξi(∀i) are slack variables and C is a user-given constant. The intuition behind
this formulation is that as few examples as possible are allowed to penetrate into the
margin or event into the other side of the hyperplane. The parameter C controls the
trade-off between the margin and the size of the slack variables. C is a penalty factor
which allows us to trade off training error and model complexity. A small value for
C will increase the number of training errors, while a large C will lead to a behavior
similar to that of a hard-margin SVM.

Given a test example x, its label y is decided by the sign of the discriminant function
f (x):

f (x) = w · x + b (3.8)

y = sgn( f (x)). (3.9)

Another way of deal with linearly non-separable cases is kernel method. In the ker-
nel method, feature vectors are mapped into a higher dimensional space by a nonlinear
function Φ(x) and linearly separated there. Since all examples still appear in forms of
inner products, what we have to do is just calculating the inner product of two exam-
ples in the higher dimensional space. Those values may be calculated in Rd without
mapping into the higher dimensional space by the following function K(xi, x j),

K(xi, x j) = Φ(xi) · Φ(x j) (3.10)

The functions that conduct such calculation are called kernel functions. For example,
a popular kernel function called polynomial kernel is represented as:

K(xi, x j) = (xi · x j + 1)l (3.11)

which virtually maps the original input space into a higher dimensional space where
all combinations of up to d features are taken into account.

We can also solve multi-class problems as a variation of SVM (Hastie and Tib-
shirani, 1998; Weston and Watkins, 1998). In Figure 3.2, we illustrate two simple
heuristic strategies for dealing a multi-class classification by SVMs.

One vs Rest classification (Figure 3.2(a)) creates N classifiers for N-class classifica-
tion task. As the figure, if there are three classes (A,B,and C), we need three classifiers.
We classify them independently and decide the most confident class as the answer for
a data to classify. In order to measure the confidence of classes, we compare the dis-
tances from the hyperplanes of each class.
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(a) One vs Rest classification (b) Pairwise classification

Figure 3.2: Multi-class Support Vector Machine

Pairwise classification (Figure 3.2(b)) requires NC2 classifiers for N-class classifica-
tion tasks. After solving each classifier separately, we decide an answer by majority
voting for a data.

Although these two strategies work well for our task, we exploit a more sophisti-
cated package; S V Mstruct.1 It supports multi-class mode and its performance is gener-
ally better than One vs Rest and Pairwise because of the global optimization to multi
parameters. In our experiment, we use only this package and do not consider heuris-
tic methods any more. SVMs have achieved high performance in various tasks. We
consider the approach using SVMs as baseline methods for each task.

3.2 Log-Linear Model
Log-Linear Model (LLM) has been popular and widely used in NLP classification

tasks (Berger et al., 1996; Ratnaparkhi, 1998; Smith, 2004). Log-linear models assign
conditional probabilities to observation/label pairs (x, y) ∈ X × Y,

P(y|x) =
exp
(
w · f (x, y)

)
∑

y′∈Y exp
(
w · f (x, y′)

) (3.12)

where w is a weight vector and f (x, y) is a function that maps pairs (x, y) to a feature
vector. The ith feature value is given by fi(x, y) and the corresponding ith weight

1http://svmlight.joachims.org/svm_struct.html
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value is represented as wi. Given training examplesD = {(x1, y′1), . . . , (xn, y′n)}, we can
estimate maximum likelihood of such a model by solving the following optimization
problem.

w∗ML = arg max
w

n∏
i=1

P(y′i |xi)

= arg max
w

n∑
i=1

log P(y′i |xi) (3.13)

Commonly maximizing conditional log-likelihood often causes parameters overfitting
if we do not have enough training examples for many parameters. In order to allevi-
ate parameters overffiting , Equation 3.13 is added regularization term r(w) for each
feature:

w∗MAP = arg max
w

n∑
i=1

log P(y′i |xi) −C · r(w) (3.14)

where C is a tuning parameter: under low C models tend to fit data and high C strength-
ens the effect of the regularization.

There are two popular regularization ways called L1 and L2. L1 regularization uses
r(w) =

∑n
i=1 |wi|. L2 regularization exploits r(w) =

∑n
i=1 w2

i . Note that applying
Laplacian and Gaussian distributions to prior distribution correspond to L1 and L2

regularizations, respectively. We now optimize the posterior probability P(D,w) =
P(D|w)P(w) and it is called maximum a posteriori (MAP) estimation.

This objective functions represented as Equations 3.13 and 3.14 are concave and can
therefore be optimized using numerical optimization procedures such as L-BFGS (Liu
et al., 1989) or conjugate gradient (Hestenes and Stiefel, 1952; Daumé III, 2004).

3.3 Markov Logic
Markov Logic was proposed by Richardson and Domingos (2006) as a powerful

framework for Statistical Relational Learning (SRL) (Ng and Subrahmanian, 1992;
Koller, 1999).

SRL is a newly emerging research area from the requests to deal with real-world
data more precisely and efficiently. In general, real-world datasets have characteristics
of both uncertainty and complex relational structure. Statistical learning focuses on
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the former and relational learning on the latter. SRL is at the intersection of statisti-
cal learning and relational learning, namely it has the power of both. Because of its
flexibility, SRL has grown rapidly in recent years in various fields.

Markov Logic is an expressive representation of SRL that generalizes both full first-
order logic and Markov networks (Richardson and Domingos, 2006; Domingos and
Lowd, 2009). Markov Logic is often called probabilistic logic or weighted logic,
because it is a combinational framework of probabilistic model and logical formula.
Markov Logic successfully works several tasks such as Entity Resolutions (Singla and
Domingos, 2006), Information Extraction (Poon and Domingos, 2007), and Web data
mining (Wu and Weld, 2008). Riedel and Meza-Ruiz (2008; Meza-Ruiz and Riedel
(2009a) successfully used MLNs for semantic role labeling.

In the following subsections, we make a brief introduction of First Order Logic and
Markov Networks, and then describe Markov Logic, its definition and algorithms of
learning and inference.

3.3.1 First Order Logic

A first-order knowledge base (KB) is a set of formulae in first order logic (Gene-
sereth and Nilsson, 1987). Formulae includes four types of symbols: predicate, func-
tion, constant, and variable. In this section, we sometimes call predicates logical pred-
icates in order to distinguish them to linguistic ones.

(logical) predicate represents relations among objects in the domain or attributes of
objects (e.g. See, Visit, Talkative)

function represents mappings from tuples of objects to objects (e.g. MotherOf )

constant represents objects in the domain of interest (e.g., people: Taro, Hanako,
place: Tokyo, Library, etc.)

variable ranges over the objects in the domain (e.g., people: X, Y, place: A, B)

Variables and constants are typed such as people or place, in which case variables
range over objects of the corresponding types. That is, variable X, Y might range over
people (e.g., Taro, Hanako).

Arbitrary expression representing an object in the domain is called term which can
be a constant a variable, or a function applied to a tuple of terms (e.g., Taro, X, Moth-
erOf(X,Y)). An atomic formula or atom is a logical predicate symbol applied to a tuple
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of terms (e.g. S ee(Taro,MotherO f (Hanako))). Formulae are recursively constructed
from atomic formulae using logical connectives and quantifiers. If F1 and F2 are for-
mulae, the following are also formulae:

• (¬F1) which is true iff F1 is false (negation)

• (F1 ∧ F2) which is true iff both F1 and F2 are true (conjunction)

• (F1 ∨ F2) which is true iff F1 or F2 is true (disjunction)

• (F1 ⇒ F2) which is true iff F1 is false or F2 is true (implication)

• (F1 ⇔ F2) which is true iff F1 and F2 have same truth value (equivalence)

• (∀x.F1) which is true iff F1 is true for every object x in the domain (universal
quantification)

• (∃x.F1) which is true iff F1 is true for at least one object x in the domain (exis-
tential quantification)

A positive literal is an atomic formula; a negative literal is negated atomic formula.
A ground term is a term containing no variable (instantiated with constants). A ground
atom or ground logical predicate is an atomic formula all of whose arguments are
ground terms. A grounding is an element grounded from first-order materials (predi-
cate, formula, Markov network, etc.) in which all predicates contain no variable. For
instance, a grounding of a formula is a ground atom. A possible world assigns a truth
value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which the formula is true.
The basic inference problem in first order logic is to determine whether a knowledge
base (KB) entails a formula F. That is if F is true in all worlds where KB is true
(KB |= F).

Knowledge bases are often constructed using a restricted subset of first order logic
with more desirable properties because inference in first-order logic is only semi-
decidable. The most widely used restriction is to Horn clauses, which are clauses
containing at most one positive literal. The Prolog programming language is based on
Horn clause logic (Lloyd, 1987). Prolog programs can be learned from databases by
searching for Horn clauses that (approximately) hold in the data; this is studied in the
field of inductive logic programming (Lavrac and Dzeroski, 1994).
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3.3.2 Markov Networks

Formally, a Markov Network (Markov random field) can be defined as follows:

Definition 2.1 A Markov Network M is a pair (G,Φ) where

• G is an undirected graph (Y, E) where the vertices Y = (Yi)i are a family of
random variables and each edge (Yi,Y j) represents a correlation between Yi and
Y j.

• Φ is a set of non-negative potential functions (φk)k where k is the kth clique in G
and φk has k as its domain.

Let y{k} be the state of the kth clique (i.e., the state of the variables that appear in that
clique). The joint distribution represented by a Markov Network is given by

P(Y = y) =
1
Z

∏
k

φk(y{k}) (3.15)

where Z is a normalization constant (the so-called partition function):

Z =
∑
y∈Y

∏
k

φk(y{k}) (3.16)

Dividing by Z guarantees that summing over all possible assignments yields 1.
Markov Networks are often conveniently represented as log-linear models we stated

in Section 3.2, with each clique potential replaced by an exponentiated weighted sum
of features of the state, leading to

P(Y = y) =
1
Z

exp

∑
i

wi fi(y)

 (3.17)

where each fi is a real valued f eature function over y and wi is its associated weight.
In this thesis, we will focus on binary features, fi(y) ∈ {0, 1}. This representation is
exponential in the size of the cliques. However, in most cases feature functions will
only consider a few subcomponents of all possible cliques.

Inference in Markov Networks is #P-complete (Roth, 1996). The most widely used
method for approximate inference in Markov Networks is Markov Chain Monte Carlo
(MCMC) (Gilks and Spiegelhalter, 1996), and in particular Gibbs sampling, which
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proceeds by sampling each variable in turn given its Markov blanket.2 Marginal prob-
abilities are computed by counting over these samples; conditional probabilities are
computed by running the Gibbs sampler with the conditioning variables clamped to
their given values. The details of MAP inference and learning algorithms are covered
by the next subsection.

3.3.3 Definition of Markov Logic

Markov Logic combines first order logic and Markov networks. A traditional first
order knowledge base (KB) can be seen as a set of hard constraints on the set of possi-
ble worlds: if a world violates even one formula, the world is impossible.

The basic idea of Markov Logic is to soften these too strong constraints: when
a world violates one formula in the KB, it is less probable with some penalty. The
remarkable point is that the penalized world is only less probable but does not have
zero probability.

Thus Markov Logic describes a knowledge base as a set of weighted formulae (or
first order features). This set of weighted formulae is referred to as a Markov Logic
Network (MLN) and defines a log-linear probability distribution over possible worlds.

DEFINITION A Markov Logic Network L is a set of pairs (φi,wi), where φi is
a formula in first-order logic and wi is a real number. Together with a finite set of
constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each logical pred-
icate appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature f for each possible grounding of each formula φi in L.

f φi
c (y) =

1 if |=y φi[c]

0 otherwise
(3.18)

where φi[c] is the ground formula we create by replacing each free variable in φi

with the corresponding set of constants c and recursively expanding each exis-
tential quantification with a corresponding disjunction and each universal quan-
tification with a corresponding conjunction. The value of this feature is 1 if the

2The Markov blanket of a node is simply the nodes’ neighbors in the graph.
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ground formula is true, and 0 otherwise. The weight of the feature is wi associ-
ated with φi in L.

An MLN can be viewed as a template for constructing Markov Networks. Given
different sets of constants, it will produce different networks. We call each of these
networks a Ground Markov Network to distinguish it from the first order MLN. From
the Definition and Equations 3.15-3.17, the probability distribution over possible world
y specified by the ground Markov Network ML,C is given by

P(Y = y) =
1
Z

exp

∑
i

wini(y)

 = 1
Z

exp

∑
j

w jg j(y)

 (3.19)

where ni(y) is the number of true groundings of φi in y, g j(y) corresponds to a ground
clause and works as a binary feature of fi(y) in Equation 3.17. Therefore, g j(y) = 1 if
the jth ground clause is true in the data and 0 otherwise.

More precisely, suppose M = {φi,wi} be a Markov Logic Network again, then Equa-
tion 3.19 is represented as

P(Y = y) =
1
Z

exp

 ∑
(φi,wi)∈M

wi ·
∑
c∈Cφi

f φi
c (y)

 (3.20)

where Cφi contains all constants of the free variables in φi. f φi
c is a feature function that

returns 1 if in the possible world y the ground formula we get by replacing the free
variables in φi with the constants in c is true, and 0 otherwise.

A possible world becomes more likely the more groundings of formulae with pos-
itive weight are true and the more groundings with negative weight are false. More
precisely, assume that there are two possible worlds y1 and y2 that only differ in one
grounding of one formula φi with weight wi which holds in y1 but does not hold in
y2. Then the probability of the possible world y1 is exp(wi) times higher than the
probability of y2.

Finally, let us see a famous example of small Markov Logic Network (MLN). Ta-
ble 3.1 is an MLN example taken from (Richardson and Domingos, 2006). The first
and second columns of this table show a simple knowledge base and its conversion to
clausal form. Note that, these formulae may be typically true in the real world but not
always true. In most domains it is very difficult to come up with non-trivial formulae
that are always true, and such formula capture only a fraction of the relevant knowl-
edge. Thus, despite its expressiveness, pure first-order logic has limited applicability
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Table 3.1: Example of a first-order knowledge base and corresponding MLN Fr() is
short for Friends(), Sm() for Smokes(), and Ca() for Cancer()

First-Order Logic Clausal Form Weight
”Smoking causes cancer.”
∀xSm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5
”If two people are friends and one
smokes, then so does the other.”
∀x∀yFr(x,y) ∧ Sm(x)⇒ Sm(y) ¬Fr(x,y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

Figure 3.3: Graphical Structure of MLN in Table 3.1

to practical AI problems. But, MLN has the third column, weight of each formula
which corresponds to Markov network.

Figure 3.3 shows a graphical structure of a ground Markov Network, which is con-
structed by applying constants A and B to the MLN in Table 3.1. Each node in this
graph is a ground atom. There is an edges between each pair of nodes (predicates) iff
there is at least one grounding of one formula in which the two ground atoms appear
together. MLN can now be used to infer the probability that “A and B are friends given
their smoking habits”, the probability that “B has cancer given his friendship with A
and whether she has cancer”, etc.

3.3.4 Inference of Markov Logic

Markov Logic applies characteristic methods for inference. The inference of Markov
Logic Networks (MLNs) is finding the most probable state of the world given ev-
idences and this is known as MAP inference. In MLNs, this inference becomes a
problem to find the truth assignment that maximizes the sum of weights of satisfied
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clauses. We are given a MLN M and given ground atoms (xP(c))p∈O,c∈C for a set of ob-
served predicates O, and a set of constraints C. What to solve is to find the set of hidden
ground atoms ŷ ∈ YH,C for a set of remaining logical predicates H with maximum a
posteriori (MAP) probability

ŷ = arg max
y∈YH ,C

P(y|x) = arg max
y∈YH ,C

s(y, x) (3.21)

where
s(y, x) =

∑
(φ,w)∈M

w
∑
c∈Cφ

f φc (y, x) (3.22)

is considered as a linear scoring function that evaluates the goodness of a problem
solution pair (x, y).

MaxWalkSAT

In order to solve this problem, the original method of MLNs inference was MaxWalk-
SAT (MWS) (Richardson and Domingos, 2006). It is a weighted variant of the Walk-
SAT (Selman et al., 1993). WalkSAT is a local search algorithm to solve boolean
satisfiability problems. However, MLNs inference requires to take care of weighted
clauses, MWS evaluates the cost of unsatisfied clauses with their weights based on
Equation 3.22.

We show the flow of MWS in Algorithm 1. It starts by assigning a random state to
all ground atoms and get forwards by repeatedly picking a random unsatisfied ground
clause. MWS has two kinds of steps in the later processes. The random step is ran-
domly picking an unsatisfied ground atom in the selected unsatisfied clause with a
probability q. The greedy step is choosing the ground atom which gets the largest in-
crease of s(x, y). After a ground atom is selected, then flipped the state 1 or 0. These
processes are repeated until the fixed number of flips is reached.

Though MWS has been successfully used for various weighted satisfiability prob-
lems, the inference with MWS can be inaccurate because of using an approximate
Random Walk method.

Integer Linear Programming

Integer Linear Programming (ILP) has been used for several MAP inference tasks (Roth
and tau. Yih, 2005; Riedel and Clarke, 2006; Clarke and Lapata, 2007). In contrast to
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Algorithm 1 MaxWalkSAT (M, nrestarts, n f lips)
Require: A Markov Network M with set of clausal features, the number of restarts

nrestarts and the number of flips n f lips

1: r ← 0
2: while r ≤ nrestarts do
3: y← random
4: i← 0
5: while i ≤ n f lips do
6: c← randomUnsatis f iedClause(M, y)
7: u← random(0, 1)
8: if u < p then
9: for a′ ∈ c do

10: sa′ ← deltaS core(M, a′, y)
11: end for
12: a← maxa′∈c sa′

13: else
14: a← randomVariable(c)
15: end if
16: ya ← 1 − ya

17: i← i + 1
18: end while
19: r ← r + 1
20: end while
21: return y

MWS, it can solve the MAP problem exactly: if an ILP solver terminates, the returned
assignment will be the true optimal solution. However, the disadvantage of ILP-based
inference are memory and runtime requirements. For larger problems applying ILP
often becomes infeasible.

Though ILP solvers can be implemented in several ways, we deal with them as black
boxes. We choose a free ILP solver and do not explain how it finds optimal solutions
for ILP problems. This is one of the advantages that treat a MAP problem as an ILP
problem because it helps to solve complex MAP tasks with minimal engineering effort.

An Integer Linear Program (Winston and Venkataramanan, 2003) solves a con-
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strained optimization problem as follows:

arg max
x∈Nn

cTx (3.23)

∀i ∈ {1, . . . ,m} : αi
Tx ≤ βi

where c ∈ Rn is a cost vector and the αi ∈ Rn and βi construct a linear inequality
constraints. ILP problem has various variation but the ILP problem we are interested
in is 0-1 (Boolean) Linear Programs in which variables x take values only 0 or 1. In
other words,

arg max
x∈{0,1}n

cTx (3.24)

∀i ∈ {1, . . . ,m} : αi
Tx ≤ βi .

We can map MAP inference problem to this type of ILP problem based on Riedel’s
work (Riedel, 2008). This is a mapping for binary Markov Networks represented with
log-linear features. Here we see log-linear representation of the MAP problem:

arg max
y

1
Z

exp

∑
i

fi(y, x) · θi
 (3.25)

where y is a binary vector and every fi is a binary feature function over y represented
as a propositional formula such as

f1(y, x) =

1 if¬y1 ∨ x1

0 otherwise
(3.26)

Let us start by replacing each feature function application fi(y, x) in equation 3.25
with a binary auxiliary variable λi and constrain fi(y, x) and λi to be equal. This leads
to the optimization problem

arg max
y

∑
i

θiλi (3.27)

s.t. λi = fi(y, x), i = 1, . . . , n

with linear objective function under a set of constraints.
In order to turn this into an ILP, we need to transform each equality constraint into

a set of linear constraints over y and the auxiliary variables (λi)i. The constraint λi =

fi(y, x) can be transformed to linear constraint as follows:
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1. Mapping each constraint to a logical equivalence of the auxiliary variable and
the logical formula, the feature is based on, such as

λ1 ⇔ ¬y1 ∨ x1 (3.28)

2. Replacing the xi variables by their values in x (i.e. either true or false), leading
to formulae such as

λ1 ⇔ ¬y1 ∨ f alse (3.29)

3. Transforming the logical equivalence into Conjunctive Normal Form (while elim-
inating disjunctions that are always true and literals that are always false), as in

(¬λ1 ∨ ¬y1) ∧ (λ1 ∨ y1) (3.30)

4. Replacing each disjunction by a linear constraint (Williams, 1999), for example

−1 · λ1 − 1 · y1 ≥ −1 (3.31)

1 · λ1 + 1 · y1 ≥ 1

Using this representation the number of variables can be reduced significantly. If n
is the number of binary variables and m is the number of features, this mapping creates
n + m binary variables, one for each node and one for each feature. Thus even if the
number of nodes included in potential/feature is high, the number of ILP variables
remains low because there is exactly one ILP variable for each feature. For example,
even in the case of a clique with 30 binary variables, we only need one variable to
represent the value of the potential.

Cutting Plane Inference

Riedel (2008) proposed another efficient inference method named Cutting Plane In-
ference (CPI). The algorithm of CPI is a variant of the Cutting Plane approach from
Operations Research (Dantzig et al., 1954). The advantage of Cutting Plane approach
is that it is able to solve large scale constrained optimisation problems by only consid-
ering a subset of constraints. Since many NLP works use so many features, running
inference by using the full groundings of a MLNs can often be slow and the output of it
can be inaccurate when using MaxWalkSAT. Actually CPI addresses these problems.
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Instead of searching for unsatisfied constraints, CPI searches for the ground formu-
lae not maximally satisfied in the world y′. In other words, for each formula φ and a
given (y′, x), CPI is looking for all tuples, S eparate(φ,w, y, x) ⊆ Cφ, for which

w · f φc (y′, x) < max
y∈YH ,C

w · f φc (y, x) (3.32)

In the terminology of the Cutting Plane approach, this step is regarded as separation:
it finds a set of constraints that separates feasible solutions from infeasible solutions.
It can help to separate possible worlds with high score from those with low score.

CPI defines a partial grounding G = (Gφ)(φ,w) ∈ M with Gφ ⊆ Cφ that maps each
formula φi to a set of tuples grounded it with. A partial groundings induces a partial
score

sG(y, x) =
∑

(φ,w)∈M

w
∑
c∈Gφ

f φc (y, x). (3.33)

The flow of CPI is described in Algorithm 2. In each iteration i, CPI checks and
updates a partial grounding Gi. Initially G0 is filled with a small number of groundings.
Usually, G0 has all groundings of formulae which only contain one hidden predicate.
In this case maximising sG0 is easy because the hidden variables do not interact and
often gives a very good first guess.

In step 5, CPI finds a solution y that maximises the partial score sGi−1 . To find this
solution, CPI needs a base solver. ILP solver3 is the default option because of its
exactness, effectiveness, and declarative nature.

In steps 9 and 10, it finds the ground formulae which are not maximally satisfied in
the current solution y and add them to the current partial grounding. It terminates if no
more new ground formulae are found or a maximum number of iterations is reached.
This process calculates one solution y in each iteration. The final result is the solution
y with highest score.

In general, event structure analysis requires to consider many possible candidates of
event and arguments simultaneously. Therefore, the analysis is computationally very
hard and the speeding up by CPI is an essential technique to build our Markov Logic
models. We exploit an Markov Logic Engine which implements CPI and apply this
algorithm to the each task we tackle in Chapters 4, 5, and 6.

3http://www.cs.sunysb.edu/ algorith/implement/lpsolve/implement.shtml
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Algorithm 2 Cutting Plane Inference(M,G0, x)
1: i← 0
2: y′ ← 0
3: repeat
4: i← i + 1
5: y← solve(Gi−1, x)
6: if s(x, y) > s(x, y′) then
7: y′ ← y
8: end if
9: for each(φ,w) ∈ M do

10: Gi ← Gi−1 ∪ S eparate(φ,w, x, y)
11: end for
12: until Gi = Gi−1 or i > maxIterations
13: return y′

3.3.5 Discriminative Weight Learning of Markov Logic

In MLNs, the method of learning weight discriminatively is proposed in (Singla and
Domingos, 2005). In many applications, we know a priori; which predicates will be
evidence and which ones will be queried. The goal of training is to correctly predict
the latter given the former. If we define evidence atoms as X and query atoms as Y,
the conditional likelihood of Y given X is

P(Y = y|X = x) =
1
Zx

exp

∑
i

wini(x, y)

 = 1
Zx

exp

∑
j

w jg j(x, y)

 (3.34)

where φY is the set of all MLN clauses with at least one grounding involving a query
atom, ni(x, y) is the number of true groundings of the ith clause involving query atoms.
GY is the set of ground clauses in ML,C, and gi(x, y) = 1 if the jth ground clause is true
and 0 otherwise. The gradient of the conditional log-likelihood (CLL) is

∂

∂wi
log P(Y = y|X = x) = ni(x, y) −

∑
y′

Pw(Y = y′|X = x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (3.35)

Computing the expected counts Ew[ni(x, y)] is intractable but they can be approximated
by the counts ni(x, y∗w) in the MAP state y∗w(x) (i.e., the most probable state of y given
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x). If most of the probability mass of Pw(y|x) is concentrated around y∗w(x). Hence,
computing the CLL now requires only MAP inference to find y∗w(x). If the training data
is broken up into separate examples, an MAP inference per example is performed. This
approach was initially proposed by Collins (2002) and called structured perceptron
algorithm. In MLNs, MaxWalkSAT or ILP with CPI deals with the MAP inference, as
we mentioned in Section 3.3.4.

Perceptron is one of the online learning algorithms. Online learning updates weight
parameters w in instance-by-instance manner. For every instance i in the dataset, we
perform the following two steps:

1. we perform MAP inference to find the best hidden solution ŷ given the current
parameter w and the observation x;

2. we compare solution ŷ with the gold solution yt and update weights w based on
this comparison.

A very simple way to update the weights w of a linear discriminative function w ·
Φ(x, y) is perceptron update rule (Collins, 2002)

wi+1 = wi + τ(Φ(x, yt) − Φ(x, ŷ)) (3.36)

where τ is a parameter which controls the learning rate. If ŷ = yt, then no update is
performed. On the other hand, if ŷ , yt then the weight vector is moved further in the
direction of the true feature vector f(x, yt) and further away from the guessed feature
f(x, ŷ).

Instead of perceptron, we can exploit arbitrary algorithms of online learning. For
weight learning of MLNs, Riedel (2008) used margin infused relaxation algorithm
(MIRA) (Crammer and Singer, 2003) instead of structured perceptron algorithm. MIRA
is a modified version of perceptron by considering large margin and MIRA generally
performs better than perceptron algorithm. Below is a supplement explanation about
MIRA.

MIRA updates weight vector w as follows:

min ‖wi+1 − wi‖ (3.37)

s.t. wi+1Φ(x, yt) − wi+1Φ(x, ŷ) ≥ L(yt, ŷ) ∀ŷ , yt

where wi is the current parameter vector and wi+1 is the updated parameter vector.
That is, Equation 3.37 means that, in each iteration i, the score of the correct assign-
ment must exceed the score of an incorrect assignment by (user-defined) loss function
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L(yi, ŷ) The loss function could, for example, be the number of wrong label in a tem-
poral relation identification task. In comparison to many other training methods (such
as optimizing the conditional likelihood), the advantage of online learning algorithms
is relatively low computational cost with effective MAP inference methods.
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Chapter 4

Japanese Event-Argument Relation
Extraction

4.1 Introduction
Event-argument relation extraction is one of the challenging problems in Natural

Language Processing. The analysis extracts semantic information such as “who did
what to whom”, which is often useful to various applications like information extrac-
tion, document summarization, and machine translation. We focus on verbal and ad-
verbal events called predicates (not logical predicates) and analyze predicate-argument
(PA) structures.

Predicate-argument relation extraction is often called semantic role labeling. In En-
glish, it has been researched on large corpora such as FrameNet (Fillmore et al., 2001)
and PropBank (Palmer et al., 2005). Japanese PA relation extraction is a kind of seman-
tic role labeling but an argument is often called case. A typical example of Japanese
PA relation is shown in Figure 4.1.

In this example, “行った (went)” is a predicate and there are two arguments for the
predicate, that is, a nominative case role (ga) is “彼 (He)” and a dative case role (ni) is
“図書館 (library)”.

In Japanese, PA annotated corpora such as Kyoto Text Corpus (Kawahara et al.,
2002) and NAIST Text Corpus (Iida et al., 2007) have been developed and utilized.1

Taira et al. (2008) and Imamura et al. (2009) tackled PA relation extraction on NAIST
Text Corpus. They created three separated models corresponding to each of the case;

1Kyoto Text Corpus is annotated with surface cases and NAIST Text Corpus is annotated with deep
cases



Figure 4.1: Example of Japanese Predicate-Argument Structure

ga (Nominative), wo (Accusative), and ni (Dative). Especially, Imamura et al. achieved
high performance by exploiting selectional preference features extracted from large-
scale unlabelled corpora.

Instead of exploiting large-scale corpora, we utilize important dependencies between
one PA relation and another in the same sentence. In order to use such dependencies
as global constraints, we apply a Markov Logic approach to Japanese PA relation ex-
traction. In recent years, in English semantic role labeling, a Markov Logic model
has achieved one of the state-of-the-art results (Meza-Ruiz and Riedel, 2009a). With
global constraints between multiple PA relations, a Markov Logic model can avoid
inconsistencies between several PA relations and improve performance of extraction.

In addition, we introduce new global constraints to effectively delete inappropriate
argument candidates which are unrelated to PA relations. We consider that extraction
of PA relations and deletion of the other phrases are two sides of the same coin. We
jointly perform such extraction and deletion with Markov Logic.

Through our experiments, we report the effectiveness of the Markov Logic approach
to Japanese PA relation extraction in detail. We show that our model with global con-
straints outperforms the model without them. Comparison with previous work shows
that our Markov Logic approach achieves competitive results without selectional pref-
erence features obtained from large-scale unlabelled data. In qualitative analysis, we
find that our global model resolves some difficult cases such as PA relations in relative
clauses.

We summarize our main contributions in this chapter:

1. We expand a Markov Logic approach for Japanese PA relation extraction adding
new global constraints to avoid considering phrases unrelated to PA relations

36



2. Through our quantitative and qualitative evaluation, we demonstrate that our
global approach resolves some difficult cases and achieves competitive results
compared with the state-of-the-art.

4.2 Background
The data we used in this work is from NAIST Text Corpus (NTC) (Iida et al., 2007).

NTC is based on the same text as Kyoto Text Corpus (Kawahara et al., 2002), which
contains 38,384 sentences from 2,929 news articles.2 The annotation in NTC has
the three case roles: “ga (Nominative)”, “wo (Accusative)”, and “ni (Dative)”. The
predicate-argument annotation in NTC is based on deep cases and is more difficult to
analyze than the surface case annotations which Kyoto Text Corpus employs. Note
that Kyoto Text Corpus includes morphological information, base phrase segmenta-
tion, and syntactic dependency structure. We can merge these annotation from Kyoto
Text Corpus and deep case annotation from NTC.

There are two main previous work with NTC. First, Taira et al. (2008) researched
extraction of PA relations by SVM classifiers and decision lists. Their approach fo-
cused on not only verbal predicates but also nominal predicates. Secondly, Imamura et
al. (2009) combined a Maximum Entropy model and a language model learned from
large-scale corpora and achieved the state-of-the-art results.

Both Taira et al. and Imamura et al. created an independent model for each of
the cases ga, wo, and ni (the left box in Figure 4.2). So, their models neglect the
dependencies between cases. For example, the method in previous work produces
“NP2” for both ga and ni cases. Though it is unlikely that the same noun phrase
occupies two argument positions of a predicate, it is possible with their models.

However, our Markov Logic approach creates a joint model for the three cases and
finds the most probable assignments taking into consideration the dependency between
them. As a result, our model can prevent such an unlikely result (See the right box in
Figure 4.2).

Moreover, in contrast to Imamura’s work, our method does not exploit large-scale
corpora. They depended on their language model derived from large-scale corpora to
decide the selectional preference between a predicate and an argument. On the other
hand, we handle the problem by global optimization in a sentence without using large-
scale corpora.

2These articles are from a Japanese newspaper, “Mainichi Shinbun”
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Figure 4.2: Difference between Previous Work and Our Method to Japanese PA Rela-
tion Extraction

On Kyoto Text Corpus, Kawahara and Kurohashi (2006b) proposed a probabilistic
model for surface case structure analysis. In addition, there are some researches of
automatic case-frame acquisition incoorprating large-scale data (Sasano et al., 2004;
Kawahara and Kurohashi, 2004; Kawahara and Kurohashi, 2006a; Sasano et al., 2009;
Kawahara and Kurohashi, 2010). However, in this thesis, we focus on deep-case stru-
cure analysis on NAIST Text Corpus without unlabeled data.

In the CoNLL Shared Task 2009 (Hajič et al., 2009), a competition of multilingual
semantic role labeling was held and Japanese was one of the target languages. In the
shared task, Meza-Ruiz and Riedel (2009b) proposed a joint approach with Markov
Logic. They also reported their Markov Logic approach for English semantic role la-
beling in detail (Meza-Ruiz and Riedel, 2009a). Their method divided the problem into
four subtasks: predicate identification, argument identification, sense disambiguation,
and role labeling. The subtasks are solved jointly.3 We adapt their model to Japanese
PA relation extraction. In order to compare with Taira et al. (2008) and Imamura et
al. (2009), we perform only argument identification and role labeling. Note that the

3Note, in the CoNLL 2009 Shared Task, predicate identification is not necessary. So, they used the
CoNLL 2008 Shared Task data in this work.
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Japanese annotation of CoNLL Shared Task 2009 was also based on surface case and
easier than that in NTC. Our Markov Logic model is novel as a Japanese PA relation
extractor for deep case annotation.

4.3 Proposed Method
This section describes our proposed method. We propose Markov Logic model for

Japanese PA relation extraction. Different from the other tasks in Chapters 5 and 6,
we will not propose SVM pipeline model because previous work (Taira et al., 2008)
already proposed it.

We will describe our proposed Markov Logic Network (MLN) in detail. First, let
us define logical predicates for our MLN. Note, in order to distinguish predicates –
verbal and adverbial events– from logical predicates, we sometimes call them linguistic
predicates. The three Hidden predicates are listed in Table 4.1.

Table 4.1: Hidden Predicates for Japanese Predicate-Argument Relation Extraction
logical predicate definition

isArg(i) Bunsetsu i is an argument
delete(i) Bunsetsu i is deleted

role(i, j, r) Bunsetsu i has an argument j with role r

Note that Japanese dependency parsing is based on bunsetsu units, which are similar
in concept to English base phrases. In order to exploit information parsed in this way,
we handle all logical predicates by bunsetsu phrases (not words).

The hidden predicates model the decisions we need to make: whether a bunsetsu
phrase i is an argument of some (linguistic) predicates (argument identification); whether
a bunsetsu phrase i is deleted (phrase deletion); whether a bunsetsu phrase j is an ar-
gument of the predicate i with semantic role r (role labeling).

Here the first two types of decision can be modeled through unary logical predicates
isArg(a) and delete(i), while the other type can be represented by a ternary logical
predicate role(p, a, r). Because we do not know their information at test time, we call
them hidden.

Our Markov Logic approach is based on English semantic role labeling with Markov
Logic as proposed by Meza-Ruiz and Riedel (2009a). As mentioned earlier, they di-
vided the problem into four subtasks and defined five hidden predicates (isPredicate,
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Table 4.2: Observed Predicates for Japanese PA Relation Extraction
logical predicate description example

word(i,w) Bunsetsu i has word form w 行った (went),彼 (he)
stem(i, s) Bunsetsu i has stem s 行く (go)
pos(i, p) Bunsetsu i has POS tag p (coarse-

grained)
名詞 (noun)

dpos(i, p) Bunsetsu i has POS tag p (fine-grained) 名詞-一般 (noun-general)
ne(i, n) Bunsetsu i has named entity tag n (from

NE tagger)
PERSON，LOCATION

kana(i, k) Bunsetsu i has kana (Romanization) k itta, kare
isPred(i) Bunsetsu i is a predicate True or False
numeric(i) Bunsetsu i has a number character True or False
de f inite(i) Bunsetsu i contains the article corre-

sponding to DEFINITE “the”, such as
“sore” or “sono”

True or False

demonstrative(i) Bunsetsu i contains the article corre-
sponding to DEMONSTRATIVE “this”
or “that”, such as “kono” or “ano”

True or False

particle(i) Bunsetsu has a particle such as
“wa”,“ga”,“wo”, “ni”

True or False

goiCate(i, g) Bunsetsu i has lexical category tag g in
Nihongo Goi Taikei (Ikehara et al., 1997)

スポーツ (sport), 女性 (fe-
male)

goiMatch(i, j, r) Bunsetsu phrases i and j satisfy the se-
lectional restriction for r in Nihongo Goi
Taikei

True or False

dep(i, j, d) Dependency label between i and j is d True or False
path(i, j, l) Syntactic path between i and j is l ↑↓ (sibling), ↑↑ (ancestor)

isArgument, hasRole, role, and sense). In order to be comparable with the previous
work in Japanese PA relation extraction (Taira et al., 2008; Imamura et al., 2009), we
deal with only argument identification and role labeling in our research. Therefore, we
define only the three hidden predicates in Table 4.1.

In addition to the hidden predicates, we define observed logical predicates repre-
senting information at test time. For example, in our case we could introduce a logical
predicate word(i,w) which indicates that a phrase i has the word form w. We list the
all observed predicates in Table 4.2.

With our logical predicates defined, we can now go on to incorporate our intuition
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Table 4.3: Global Formulae of isArg and role for Japanese PA Relation Extraction
Formula Description
isArg(a)⇒ ∃p.∃r.role(p, a, r) Every argument must relate to at least one

predicate
role(p, a, r)⇒ isArg(a) If a plays the role r for p, then a has to be

an argument
role(p, a, r1) ∧ r1 , r2 ⇒ ¬role(p, a, r2) There is exactly one case role between a

predicate and an argument

about the task using weighted first-order logic formulae. In the following we will
explain the formulae of our proposed MLN. Sections 4.3.1 and 4.3.2 describe our local
and global formulae, respectively. Section 4.3.3 mentions the formulae for deletion.

4.3.1 Local Formulae

We say that a formula is local if its groundings relate any number of observed ground
predicates to exactly one hidden ground predicate. Local formulae are defined with
some observed predicates from Table 4.2 and a hidden predicate from Table 4.1.

The local formulae for isArg and delete capture the relation of the bunsetsu phrases
with their lexical and syntactic properties (simple phrase property). The formula de-
scribing a local property of word form is

word(a,+w)⇒ isArg(a) (4.1)

which implies that a bunsetsu a is an argument with a weight that depends on the word
form. Note, the + notation indicates that the MLN contains one instance of the rule,
with a separate weight, for each assignment of the variables with a plus sign.

The local formulae for role represent properties between two bunsetsu phrases (linked
phrases property). For example, the following formula

ne(a,+n) ∧ dep(p, a,+d)⇒ role(p, a,+r) (4.2)

denotes a local property of named entity and syntactic dependency.
As in Formula (4.2), some observed predicates (goiMatch, dep, and path) in Table

4.2 construct formulae using other observed predicates in this table.
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First-order logical formulae such as Formulae (4.1) and (4.2) become the feature
templates of MLN. Each template produces several instantiations. An example of a
template instantiation based on Figure 4.1 is

ne(1, PERS ON) ∧ dep(4, 1, “D”)⇒ role(4, 1, “ga”) (4.3)

which is a typical expansion from Formula (4.2).
Moreover, as shown in Table 4.2, goiMatch implements a selectional restriction fea-

ture. Nihongo Goi Taikei (Ikehara et al., 1997) is a Japanese Thesaurus which covers
constraints between the predicates and arguments. goiMatch is utilized as follows:

goiMatch(p, a, r)⇐ role(p, a, r). (4.4)

Selectional restriction is a constraint which examines the validity of an argument for
a predicate. For example, we have the follwing sentence,

John
ジョンは

1
　

X
Xを

2
　

ate
食べた

3
(John ate a X.)

where a variable X is arbitrary words (nouns). Here we want to evaluate the selectional
restriction between “食べた (ate)” and “Xを (X)”. Such restriction is

goiMatch(3, 2, “wo”)⇐ role(3, 2, “wo”) (4.5)

which examine the selectional restriction of Wo-case (Accusative).
If X takes “車 (car)”, Formula 4.5 becomes false because “車を食べた (ate a car)” is

curious and selectional restriction in Nihongo Goi Taikei is not satisfied. On the other
hand, if X takes “リンゴ (apple)”, Formula 4.5 can be true.

4.3.2 Global Formulae

The intuition behind the previous formulae can also be captured using a local clas-
sifier.4 However, Markov Logic also allows us to say more:

isArg (a)⇒ ∃p.∃r.role(p, a, r) (4.6)

4Consider a log-linear binary classifier with a “PERS ON” feature: here for every phrase i the deci-
sion “i is an argument” becomes more likely with a higher weight for this feature.
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Figure 4.3: Example of Japanese PA Relation with Instrumental Case

In this formula, we made a statement about more global properties of a PA relation
extraction that cannot be captured with local classifiers. This formula ensures the
consistency between (linguistic) predicate and argument, that is, arguments belong
to at least one predicate. This type of rule forms the core idea of our global model.

Global formulae involve two or more atoms of hidden predicates and enable us
to jointly deal with argument identification, phrase deletion, and role labeling. With
global formulae, our MLN considers not only a single decision at a time but also han-
dles several decisions, simultaneously. Our global formulae for argument identification
and role labeling are shown in Table 4.3.

The formulae in Table 4.3 are hard constraints which enforce consistency between
the hidden predicates. In MLN, formulae of hard constraint are defined as special
formulae with infinite weights. A possible world which violates hard constraints is
never chosen as a correct answer. For example, Formula (4.6) is such a global formula.
Another formula ensuring the consistency between role and isArg is

role(p, a, r)⇒ isArg (a) (4.7)

which indicates “If a phrase a plays the role r for p, then a must be an argument”.
The last global formula

role(p, a, r1) ∧ r1 , r2 ⇒ ¬role(p, a, r2) (4.8)

implies that there is only one case role between a linguistic predicate p and an argument
a. Formula (4.8) enables us to prevent the contradiction shown in Figure 4.2.

4.3.3 Deletion Formulae

The main idea of our deletion is to delete bunsetsu phrases which are unrelated to
PA relations and to help extract correct arguments. Extraction of correct arguments
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and deletion of non-arguments are two sides of the same idea. An example is shown
in Figure 4.3. We have a main verb “行った (went)” as a linguistic predicate and there
are five argument candidates for it. We want to extract correct arguments, “彼は (He)”
for ga-case and “図書館 (library)” for ni-case among the five candidates. Here, if we
can remove an instrumental case, “母の新しい車で (by mother’s new car)”, extracting
the correct arguments becomes much easier.

Notably, our significant contribution is doing this deletion processes with extrac-
tion of PA relations, simultaneously. Deleting too many bunsetsu phrases often hurts
the recall because it often deletes correct arguments. We call this phenomena over-
deletion. Performing extraction and deletion by one joint model prevents over-deletion
and improves the performance of PA relation extraction.

Local Deletion Formulae

Deletion formulae are also divided into local and global. However, local formu-
lae implement the same properties for isArg we mentioned in Section 4.3.1. As an
exception, a characteristic local formula is

dep(i, j,+d) ∧ isPred( j)⇒ ¬delete(i). (4.9)

which implies the PA relations with syntactic dependencies are not deleted. It imple-
ments the fact that PA relations often have syntactic dependency relations. Actually,
we can find that dependency relations are dominant in Table 4.5 and Formula (4.9)
contributes to improve performance.

However, the local formulae address the deletion of a single bunsetsu phrase and we
cannot expect a large improvement by adding delete. The main contributions of delete
come from the global deletion formulae.

Global Deletion Formulae

The global formulae for delete have the three hard and one soft constraints. We
show the global formulae in Table 4.4. The first three formulae in this table show the
hard constraints which ensure the consistency between delete and the other two hidden
predicates (isArg and role). The most important formula of them is

delete(i)⇒ ¬isArg(i) (4.10)
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Figure 4.4: Deletion of Instrumental Case in Japanese PA

Table 4.4: Global Deletion Formulae for Japanese PA Relation Extraction
Formula Description

isArg(a)⇒ ¬delete(a) If a is an argument then it is not deleted.
delete(i)⇒ ¬isArg(i) If a bunsetsu i is deleted then it is not an

argument.
role(p, a, r)⇒ ¬delete(p)∧¬delete(a) If a is an argument of p with the role r

then neither p nor a is deleted.
word(h,+w) ∧ pos(h,+p) ∧
dep(h,m,+d)∧ delete(h)⇒ delete(m)

If a head phrase h is deleted with word
w and POS p then a child phrase m is
deleted.

which implies that the deleted phrase does not become an argument.
The last formula in Table 4.4 is defined as a soft constraint:

word(h,+w) ∧ pos(h,+p) ∧ dep(h,m,+d)

∧delete(h)⇒ delete(m) (4.11)

which denotes “if a head phrase h is removed, then the child phrases m should be
deleted”. This formula does not always hold but the remaining uncertainty with regard
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to this formula is captured by a weight trained from corpora. This constraint imple-
ments the important deletion concept as we mentioned earlier.

Considering the example in Figure 4.3, Formula (4.11) is grounded as,

word(4, “車で”) ∧ pos(4,NOUN+PARTICLE)

∧dep(4, 2, “D”) ∧ delete(4)⇒ delete(2) (4.12)

which implies that “if ‘車で (by car)’ is removed, ‘母の (mother’s)’ should be also
removed”. Figure 4.4 shows the dependency parsed tree extracted from the sentence
in Figure 4.3. The subtree under “車で (by car)” should be deleted by Formula (4.12).

Note that Japanese dependency parsing usually targets only unlabeled parsing. Al-
most all labels are “D”.5 Therefore, we exploit the word and pos of head bunsetsu
phrases as a substitution. In Japanese, word form and POS implicitly give us infor-
mation similar to dependency labels. However, if we exploit our method in English,
labeled information such as probj or amod should be helpful to train proper weights
for Formula (4.11).

4.4 Experimental Setup
Our experimental setting is based on previous work (Taira et al., 2008; Imamura et

al., 2009) which was performed on NAIST Text Corpus.
Taira et.al. exploited local classifiers with Support Vector Machines (SVMs). Ima-

mura et.al. applied a Log-Linear Model (Maximum Entropy method) as classifiers and
used a large scale unlabeled data. In general, predicate-argument structure analysis
includes identifying bunsetsus of predicates (predicate identification). However, both
Taira et.al. and Imamura et.al., performed PA relation extraction given bunsetsus of
predicates. Accordingly, we also follow their setting and do not perform predicate
identification.

Let us summarize our used data and tools. The data used, NAIST Text Corpus
version 1.4β, has news articles and editorials. As training examples, we use articles
published from January 1st to January 11th and editorials from January to August. As
development data, we use articles published on January 12th and 13th and editorials
in September. For evaluation, we use articles dated January 14th to 17th and editorials
dated October to December. This way to split the data is same as Taira et al. (2008).
We show the statistics of the evaluation data in Table 4.5.

5We sometimes have “P”, “A”, and “I” labels but it is not enough to model our deletion idea.
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Table 4.5: Statistics in Evaluation Data (Test Set of NAIST Text Corpus)
ga wo ni

Dep. 13,086 5,192 3,645
Zero-Intra 4,556 376 231
Total 17,642 5,568 3,876

As seen in this table, “ga-case” is dominant. PA relations which have syntactic
dependency relations (Dep.) are much more common than zero-anaphoric PA rela-
tions (Zero-Intra). Note that we target only PA relations which occur in a sentence
(intra-sentential PA relations). The joint approach using Markov Logic is computa-
tionally hard even if it targets only intra-sentential PA relations. Therefore, extraction
of inter-sentential PA relations which are crossing sentence boundaries is intractable.
Moreover, our approach finds the most optimized PA assignments in a whole sentence.
To keep consistency in a sentence, we delete the sentences which have inter-sentential
PA relations.

For extracting features, we exploit the annotation of Kyoto Text Corpus as the POS
and the syntactic dependency of bunsetsu phrases. We perform named entity tagging
using CaboCha.6 Based on Taira’s work, we introduce selectional restriction features
from a Japanese Thesaurus, Nihongo Goi Taikei (Ikehara et al., 1997). Learning and
inference algorithms for our joint model are provided by Markov thebeast, a Markov
Logic engine tailored for NLP applications.

4.5 Experimental Results

4.5.1 Impact of Global Formulae

First, let us show the comparison between the models with/without global con-
straints in Table 4.6. Global is the model with global constraints and Local is without
them. Note that the local and global formulae of deletion are also included in Lo-
cal and Global, respectively. Table 4.6 shows Precision (P), Recall (R), and F1-value
(F) of each hidden predicate. We can find that Global yielded clear improvements
for all hidden predicates. These improvements are statistically significant.7 These re-

6http://chasen.org/˜taku/software/cabocha/
7ρ < 0.01, McNemar’s test 2-tailed
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Table 4.6: Local vs Global of Japanese PA Relation Extraction
Local Global

P R F P R F

isArg 79.2 71.4 75.1 94.6 84.2 89.1
delete 86.6 90.4 88.4 94.3 97.9 96.1
role 86.3 72.5 78.8 85.5 77.7 81.4

Table 4.7: Effect of Hidden Predicate Removal in Japanese PA Relation Extraction
Predicate Removed P R F

No removal (Global) 85.5 77.7 81.4
-isArg 84.8 77.9 81.2
-delete 85.3 76.8 80.8

-isArg-delete (Local) 86.3 72.5 78.8

Table 4.8: Runtime of Japanese Event Argument Relation Extraction (sec.)
Local Global

Train 5792.5 8684.2
Test 1009.3 1165.1

sults suggest that the three target subtasks (argument identification, phrase deletion,
and role labeling) can cooperate with each other. For PA relation extraction (role), the
recall was mainly improved (the value in bold type).

We perform a simple analysis of hidden predicate removal. For each hidden predi-
cate, a model was trained with that predicate removed and all other predicates retained.
For PA relation extraction (role), Table 4.7 shows the model performance with removal
of the isArg and delete predicates.

The removal of delete drops the model performance larger than that of isArg. While
the removal of isArg drops the precision and saves the recall, the removal of delete
works the other way around.

Let us show the runtimes of our models. Table 4.8 shows the runtimes for our Local
and Global models. We take the averages over three times running for training and
testing. In general, the inferences with global constraints are more complex than those
without them and such complex inferences increase runtimes of training and testing.
Actually, our Global model takes more time than Local model both in training and
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Table 4.9: Comparison to the State-of-the-Art for Japanese PA Relation Extraction
(F1)

Local Global [Taira, 2008] [Imamura, 2009]
ga wo ni ga wo ni ga wo ni ga wo ni

Dep. 85.7 91.2 79.5 88.8 91.3 79.7 75.6 88.2 89.5 87.0 93.9 80.8
Zero-Intra 42.1 7.3 0.0 54.1 10.3 0.0 30.2 11.4 3.7 50.0 30.8 0.0

testing. For the runtime comparison between Markov Logic approach and the other
approaches, we will show some results in Chapter 5 and 6.

4.5.2 Comparison to the State-of-the-art

Next, we evaluate the results of PA relation extraction (role) by each case, “ga (Nom-
inative)”, “wo (Accusative)”, and “ni (Dative)” in Table 4.9. All scores in the table are
F1-value. Our Global model is more advantageous in “Zero-Intra” than Local model.
Especially, in ga-case of Zero-Intra the score jumped from 42.1pt to 54.1pt (+12pt).
Again, with global constraints, our global model finds the most probable state in the
sentence. It is often difficult to extract Zero-Intra PA relations with only local features
because syntactic dependencies between them are weak. Therefore, our global con-
straints contribute to finding correct assignments of PA relations and we got a large
improvement in Zero-Intra.

Let us compare our results with the state-of-the-art (Taira et al., 2008; Imamura et
al., 2009). In Table 4.9, we show the best scores in bold types for each case. For ga-
case, our model, Global, outperformed the others. On the other hand, for wo-case and
ni-case, our results were relatively lower than them. Because our approach deals with
the all three cases by one joint model and ga-case is dominant in the data, it extracts
more numbers of ga-case than the others. However, ga-case is often the most important
for PA relation extraction and sometimes called indispensable case. Our method can
extract such important information better than previous work. Although our model did
not exploit large-scale corpora, our results are competitive to the results of Imamura et
al. (2009).

4.6 Discussion
In this section, we will mainly discuss the qualitative aspect of our results.
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(this)
この

1

(reason)
ため

2
，

(Gray Wolf)
灰色狼の

3

(revival in the US)
米復活を

4

(plan)
進める

5

(FWS)
魚類野生動物局が

6

(in Canada)
カナダで

7
(capture)
捕獲した

8

(wild)
野性の

9

(twelve wolves)
十二匹を

10

(transport by air)
空輸
11

．

(Form this reason, FWS which plans to revive Gray Wolf in the US captured
twelve wolves in Canada and transported them by air.)

In the above sentence, we have three predicates (gray boxed) and three arguments
(underlined). The relations between predicates and arguments are complex with rela-
tive clause and often cause misunderstandings.

About this sentence, our Local model output:{
role(5, 6, ga), role(5, 4,wo), role(8, 6, ga),

role(11, 2, ga), role(11, 10,wo)
}

It did not output wo-case of “捕獲した (capture)”. Because we do not have case-
frame dictionary in NTC, our models did not know that “捕獲した” usually requires
wo-case (Accusative).

Another error is underlined that ga-case of “空輸 (transport by air)” is identified as
“ため (reason)”, because “ため” is only a phrase dependent on “空輸”.

On the other hand, Global improved the errors as{
role(5, 6, ga), role(5, 4,wo), role(8, 6, ga),

role(8, 10,wo), role(11, 6, ga), role(11, 10,wo)
}
.

By global optimization in a sentence, our Global model overcame the lack of se-
mantic features and successfully identified “十二匹を” as wo-case of “捕獲した”.
This PA relation is in a relative clause and often hard to identify. Though Abekawa
and Okumura (2005) resolved Japanese PA relations in relative clauses by exploiting
large-scale corpora, our Markov Logic approach handles this problem by global opti-
mization. Moreover, in global model,

{
delete(1), delete(2), delete(7)

}
are also output

and “この” and “ため” did not become argument candidates. As a result, “魚類野性
動物局が” was correctly selected as a ga-case of “空輸”.
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4.7 Summary
In this chapter, we proposed a new Markov Logic approach for Japanese predicate-

argument (PA) relation extraction. Our model exploited global constraints between
multiple PA relations and introduced phrase deletion. Our global constraints success-
fully improved the performance of PA relation extraction. In comparison to the state-
of-the-art, our approach achieved competitive results with no large-scale data.

As a future direction, incorporating large-scare unlabelled data should be effective.
Selectional preference features from large-scale corpora are expected to improve the
performance for extracting wo-case and ni-case.

In related to our deletion approach, the state-of-the-art techniques of sentence com-
pression are worth to be considered. It might be interesting to evaluate our approach in
sentence compression tasks. Adding sentence compression might make the PA relation
extractor more efficient and allow us to extract inter-sentential PA relations, too.
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Chapter 5

Biomedical Event Extraction

5.1 Introduction
The increasing amount of biomedical texts results from high throughput experi-

ments. This situation demands the automatic extraction of useful information from
these texts by Natural Language Processing techniques. One of the more recent in-
formation extraction tasks is biomedical event extraction. With the introduction of the
GENIA Event Corpus (Kim et al., 2008) and the BioNLP’09 shared task data (Kim
et al., 2009), a set of documents annotated with events and their arguments, various
approaches for event extraction have been proposed (Björne et al., 2009; Buyko et al.,
2009; Poon and Vanderwende, 2010).

Previous work has considered the problem on a per-sentence basis and neglected in-
formation from other sentences in the same document. These information are possibly
important to understand the document. In particular, no previous work has considered
using coreference information to improve event extraction. Here we propose a new
approach to extract event-argument (E-A) relations that uses coreference information.

Our approach is built on two main ideas:

1. extracting coreferent arguments based on salience in discourse

2. predicting arguments over sentence boundaries with the help of a substitutability
relation.

First, noun phrases (NPs) that corefer with other NPs have an implicit significance
in discourse structures based on Centering Theory (Grosz et al., 1995). Significant



Figure 5.1: Cross-Sentence Event-Argument Relation Extraction in a Biomedical Doc-
ument

entities are highly likely to be mentioned multiple times. We call this kind of signifi-
cance ”salience in discourse.” Salience in discourse is a useful criterion for measuring
the importance of entity mentions, and this criterion gives our E-A relation extrac-
tors a higher chance to extract arguments which are coreferent with other mentions.
When considering discourse structure, arguments which are coreferent to something
(e.g. “The region” in Figure 5.1) also have higher salience in discourse. They are
hence more likely to be arguments of other events mentioned in the document. Using
this information helps us to identify the correct arguments for candidate events and
increases the likelihood of extracting arguments with antecedents corresponding to the
Arrow (A) in Figure 5.1. Note that identifying coreferent arguments is not just im-
portant to improve the F1 score of event-argument relation extraction: assuming that
salience in discourse indicates the novel information the author wants to convey, these
are the arguments we should extract at any cost.

Secondly, substitutability is a property of event-argument relations such that the rela-
tion between an event and its argument is substitutability across coreference relations.
It enables us to extract cross-sentence mentions as arguments of events. Previous work
on this task has primarily focused on identifying event-arguments within a sentence.
However cross-sentence event-argument relations are common, for example see Figure
5.1. It illustrates an example of E-A relation extraction including cross-sentence E-A.
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In the sentence S2, we have “inducible” as an event to be identified. When identifying
intra-sentence arguments in S2, we obtain “The region” as Theme and “both interfer-
ons” as Cause. However, in this example, “The region” is not optimal as a Theme
because “The region” is coreferent to “The IRF-2 promoter region” in S1. Thus, the
true Theme of “inducible” is “The IRF-2 promoter region” as this phrase is more in-
formative as an argument. In this case, “The region” is just an anaphor of the true
argument. The idea of substitutability entails that if “The region” is a Theme of “in-
ducible” and “The region” is coreferent to “The IRF-2...”, then “The IRF-2...” is also a
Theme of “inducible”. It allows us to extract cross-sentence E-A relations such as the
Arrow (C) in Figure 5.1.

We propose two models which implement these ideas to extract event-argument (E-
A) relations involving coreference information. One is based on local classification
with SVM, and another is based on a joint Markov Logic Network (MLN). To remain
efficient, and akin to existing approaches, both look for events on a per-sentence basis.
However, in contrast to previous work, our models consider as candidate arguments not
only the tokens of the current sentence, but also all tokens in the previous sentences
that are identified as antecedents of some tokens in the current sentence.

5.2 Background

Figure 5.2: An Example of Biomedical Event Extraction

5.2.1 Task Definition

Event extraction on biomedical text involves three sub-tasks; identification of event
trigger words; classification of event types; extraction of the arguments of the identified
events (E-A). Figure 5.2 shows an example of event extraction. In this example, we
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have three event triggers: “induction”, “increases”, and “binding”. The correspond-
ing event types are Positive regulation (Pos reg) for “induction” and “increases”, and
Binding for “binding”. In Figure 5.2, “increases” has two arguments; “induction” and
“binding”. The roles we have to identify fall into two classes: “Theme” and “Cause”.
In the case of our example the roles of the two arguments of “increases” are Cause and
Theme, respectively.

Note that a large number of nominal events can be found in biomedical corpora. For
example, in Figure 5.2 the arguments of “increases” are both nominal events. Such
events which are arguments of other events are often hard to identify.

5.2.2 Biomedical Corpora for Event Extraction

There are two major corpora for biomedical event extraction: The GENIA Event
Corpus (GEC) (Kim et al., 2008), and the data of the BioNLP’09 shared task.1 The
latter is in fact derived from the GEC. There are some important differences between
them.

event type GEC has fine-grained event type annotations (35 classes), while BioNLP’09
data focuses on only 9 event subclasses.

non-event argument BioNLP’09 data does not differentiate between protein, gene
and RNA, while the GEC corpus does.

coreference annotation Both GEC and BioNLP’09 corpora provide coreference
annotations related to event extraction. However, in the case of the BioNLP’09 data
coreference information primarily concerns protein names and abbreviations that fol-
low in parenthesis. The GEC, on the other hand, provides proper cross-sentence coref-
erence. Moreover, the sheer number of coreference annotations is much larger. Björne
et al. (Björne et al., 2009) also mentioned that coreference relations could be helpful
for cross-sentence E-A extraction but the coreference annotation necesary to train a
coreference resolver is not present in BioNLP’09 data.

For our work we choose the GEC, primarily because of the amount and quality of
coreference information it provides. This allows us to train a coreference resolver, as
well as testing our hypothesis when gold coreference annotations are available. The

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
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second reason to prefer GEC over the BioNLP’09 corpus is its fine-grained annotation.
We believe that this setting is more realistic.

5.2.3 Issues of Previous Work

Various approaches have been proposed for event-argument relation extraction on
biomedical text. However, even the current state-of-the-art does not exploit corefer-
ence relations and focuses exclusively on intra-sentence E-A extraction.

BioNLP’09 has three tasks 1, 2, and 3. Task 1 is core event extraction and manda-
tory. Our work also focuses on Task 1. For example, Björne et al. achieved the best
results for Task 1 in the BioNLP’09 competition (Björne et al., 2009). However, they
neglected all cross-sentence E-A. They also reported that they did try to detect cross-
sentence arguments directly without the use of coreference. This approach did not lead
to a reasonable performance increase.

In BioNLP’09, Riedel et al. proposed a joint Markov Logic Network to tackle
the task (Riedel et al., 2009). Their system makes use of global features and con-
straints, and performs event trigger and argument detection jointly. Poon and Van-
derwende (Poon and Vanderwende, 2010) also applied Markov Logic and achieved
competitive performance to the state-of-the-art result of Björne (Björne et al., 2009).
However, in both cases no cross-sentence information is exploited.

To summarize, so far there has been no research within biomedical event extraction
which exploits coreference relations and tackles cross-sentence E-A relation extrac-
tion. By contrast, for predicate-argument relation extraction in a Japanese newswire
text corpus,2 Taira et al. do consider cross-sentence E-A extraction (Taira et al., 2008).
However, they directly extract cross-sentence links without considering coreference
relations. Moreover, their approach is based on a pipeline of SVM classifiers, and their
performance on cross-sentence E-A extraction was generally low (Low 20s% F1).

5.2.4 The Direction of Our Work

We present a new approach that exploits coreference information for E-A relation
extraction. Moreover, in contrast to previous work on the BioNLP’09 shared task
we apply our models in a more realistic setting. Instead of relying on gold protein

2http://cl.naist.jp/nldata/corpus/
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annotations, we use a Named Entity tagger; and instead of focusing on the coarse-
grained annotation of the BioNLP task, we work with the GEC corpus and its fine-
grained ontology.

From now on, for brevity, we refer to cross-sentence event-argument relations as
“cross-links” and intra-sentence event-argument relations as “intra-links”.

We propose two coreference-based models. One is an SVM based model that ex-
tracts intra-links first and then cross-links as a post-processing step. The other is a joint
model defined with Markov Logic that jointly extracts intra-links and cross-links and
allows us to model salience of discourse in a principled manner.

5.3 Methods
We have two ideas for incorporating coreference information into E-A relation ex-

traction,

• Extracting valuable E-A relations based on “salience in discourse”

• Predicting cross-links by using “substitutability” including coreference relations

Salience in discourse is the idea of considering how important the occurring mentions
are. We exploit it as a likelihood of arguments of events. substitutability is a property
of event-argument relations such that the relation between an event and its argument
is substitutable across coreference relations. It enables us to identify the E-A relations
over sentence boundaries. According to these ideas, we propose two approaches. One
is a pipeline model based on SVM classifiers, and the other is a joint model based
Markov Logic Network.

5.3.1 SVM Pipeline Model

In our pipeline model we apply the SVM model proposed by (Björne et al., 2009).
Their original model first extracts events and event types with a multi-class SVM (1st
phase). Then it identifies the relations between all event-protein and event-event pairs
by another multi-class SVM (2nd phase). Note that in our setting, the 1st phase clas-
sifies event types into 36 classes (35 types + “Not-Event”). Moreover, while protein
annotations were given in the BioNLP’09 shared task, for the GEC we extract them
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using an NE tagger. The features we used for the 1st and 2nd phases are summarized
in the first and the second columns of Table 5.2, respectively.

After identifying intra-links, the pipeline model deterministically attaches, for each
intra-sentence argument of an event, all antecedents inside/outside the current sen-
tence. We implement substitutability as a post-processing step. However, it is difficult
for the SVM pipeline to implement the idea of salience in discourse. We believe that
a Markov Logic model is preferable in this case. We utilize linear kernel as kernel
function of SVMs.

5.3.2 MLN Joint Model

Because of the time and space complexities, it is difficult to construct Markov Logic
Networks for joint E-A relation extraction and coreference resolution across a com-
plete document. Hence we follow two strategies: (1) restriction of argument candi-
dates based on coreference relations; (2) construction of a joint model which collec-
tively identifies intra-links and cross-links. Restricting argument candidates helps us
to construct a very compact yet still effective model. A joint model enables us to
simultaneously extract intra-links and cross-links and contributes to the performance
improvement. In addition, we will see that this setup still allows us to implement the
idea of salience in discourse with global formulae in Markov Logic.

Predicate Definition Our joint model is based on the model proposed by Riedel et al.
(2009). We first define the predicates of the proposed Markov Logic Network (MLN).
There are three hidden predicates corresponding to what the target information we
want to extract (Table 5.1).

Table 5.1: Hidden Predicates of Biomedical Event Extraction
role(i, j, r) token i has an argument j with role r

event(i) token i is an event
eventType(i, t) token i is an event with type t

In this work, role is the primary hidden predicate since it represents event-argument
relations.

Next we define observed predicates representing information that is available at both
train and test time. We define core f er(i, j), which indicates that token i is coreferent to
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Table 5.2: Used Local Features for SVM Pipeline and MLN Joint of Biomedical Event
Extraction

Description
SVM 1st phase

event & eventType
SVM 2nd phase

role (E-A) MLN predicate
Word Form X X word(i,w)
Part-of-Speech X X pos(i, p)
Word Stem X X stem(i, s)
Named Entity Tag X X ne(i, n)
Chunk Tag X X chunk(i, c)
In Event Dictionary X X dict(i, d)
Has Capital Letter X X capital(i)
Has Numeric Characters X X numeric(i)
Has Punctuation Characters X X punc(i)
Character Bigram X bigram(i, bi)
Character Trigram X trigram(i, tri)
Dependency label X X dep(i, j, d)
Labeled dependency path be-
tween tokens

X path(i, j, pt)

Unlabeled dependency path be-
tween tokens

X pathNL(i, j, pt)

Least common ancester of de-
pendency path

X lca(i, j, L)

token j (they are in the same entity cluster). core f er(i, j) obviously plays an important
role in our coreference-based joint model. We list the remaining observed predicates
in the last column of Table 5.2.

Our MLN is composed of several weighted formulae that we divide into two classes.
The first class contains local formulae for event, eventType, and role. We say that a
formula is local if it considers only one single hidden ground atoms. The formulae in
the second class are global: they involve two or more atoms of hidden predicates. In
our case they consider event, eventType, and role atoms simultaneously.

Basic Local Formulae Our local features are based on features employed in previous
work (Björne et al., 2009; Riedel et al., 2009) and listed in Table 5.2. We exploit two
types of formula representation: “simple token property” and “link tokens property”
defined by (Riedel et al., 2009).

The first type of local formulae describes properties of only one token and such
properties are represented by the predicates in the first section of Table 5.2. The second
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Table 5.3: Basic Global Formulae of Biomedical Event Extraction
Formula Description
event(i)⇒ ∃t.eventType(i, t) If there is an event there should be an event type
eventType(i, t)⇒ event(i) If there is an event type there should be an event
role(i, j, r)⇒ event(i) If j plays the role r for i then i has to be an event
event(i)⇒ ∃ j.role(i, j,Theme) Every event relates to need at least one argument.

Table 5.4: Coreference Formulae of Biomedical Event Extraction
Symbol Name Formula Description
(SiD) Salience in Dis-

course
core f er( j, k) ⇒ ∃i.role(i, j, r) ∧
event(i)

If a token j is coreferent to an-
other token k, there is at least
one event related to token j

(Sub) Substitutability role(i, j, r) ∧ core f er( j, k) ⇒
role(i, k, r)

If j plays the role r for i and j is
coreferent to k then k also plays
the role r for i

(FC) Feature Copy core f er( j, k) ∧ F(k,+ f ) ⇒
role(i, j, r)

If j is coreferent to k and k has
feature f then j plays the role r
for i

type of local formulae represents properties of token pairs and linked tokens property
predicates (dep, path, pathNL, and lca) in the second section of Table 5.2.

Basic Global Formulae Our global formulae are designed to enforce consistency
between the three hidden predicates and are shown in Table 5.3. Riedel et al. (Riedel
et al., 2009) presented more global formulae for their model. However, some of these
do not work well for our task setting on the GENIA Event Corpus. We obtain the best
results by only using global formulae for ensuring consistency of the hidden predicates.

5.3.3 Involving Coreference Information

We explain our coreference-based approaches using the example in Figure 5.1. First,
the two intra-links in S2 are represented by role(13, 11,Theme) – Arrow (A) and
role(13, 15,Cause) – Arrow (D). Note, in these terms, phrasal arguments are driven
by anchor tokens which are the ROOT tokes on dependency subtrees of the phrases.
The coreference relation is represented by corefer(11, 4) – Bold Line (B). Finally, the
cross-link is represented by role(13, 4,Theme) – Arrow (C).
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With the example in Figure 5.1, we explain the two main concepts : Salience in
Discourse (SiD) and substitutability (Sub). We also present an additional idea, Feature
Copy (FC).

Salience in Discourse The entities mentioned over and over again are important in
discourse and accordingly highly likely to be arguments of some events. In order to
implement this idea of salience in discourse, we add the Formula (SiD), shown in
the first row of Table 5.4. Formula (SiD) requires that if a token j is coreferent to
another token k, there is at least one event related to token j. Our model with Formula
(SiD) prefers coreferent arguments and aggressively connects them with events. Note
that our coreference resolver always extracts coreference relations which are related to
events, since coreference annotations in GEC are always related to events.

Substitutability Another main concept is “substitutability”, which is important for
intra/cross-link extraction.

As mentioned earlier, the SVM pipeline enforces substitutability as a post-processing
step.

For the MLN joint model, let us consider the example of Figure 5.1 again.

role(13, 11,Theme) ∧ corefer(11, 4)⇒ role(13, 4,Theme)

This formula denotes that, if an event “inducible” has “The region” as a Theme and
“The region” is coreferent to “The IRF-2 promoter region”, then “The IRF-2 pro-
moter region” is also a Theme of “inducible”. The three atoms, role(13, 11,Theme),
corefer(11, 4), and role(13, 4,Theme) in this formula correspond respectively to the
three Arrows (A), (B), and (C) in Figure 5.1. This formula is generalized as Formula
(Sub) shown in the second row of Table 5.4.

The merit of using Formula (Sub) is that we can take care of cross-links by only
solving intra-links and using the associated coreference relations. The only candidate
arguments of cross-links are the arguments which are coreferent to intra-sentence men-
tions (antecedents).

The improvement due to Formula (Sub) depends on the accuracy of the intra-link
role(i, j, r) and coreference relation corefer( j, k) atoms. Clearly, this accuracy depends
partially on the effectiveness of Formula (SiD) above. It should also be clear that the
improvement due to Formula (SiD) is also affected by Formula (Sub) because Sub
impacts the condition ∃i.role(i, j, r) in Formula (SiD). Thus, the formulae representing
Salience in Discourse and substitutability interact with each other.
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Feature Copy We make additional use of coreference information through “Feature
Copy”. The main idea is to supplement the features of an anaphor by adding the fea-
tures of its antecedent. According to the example of Figure 5.1, the formula,

corefer(11, 4) ∧ word(4, “IRF-2”)⇒ role(13, 11,Theme)

describes a word feature “IRF-2” to the anaphor “The region” in S2. Here word(i,w)
represents a feature that the child token of the token i on the dependency subtree is
word w. To be exact, this formula allows us to employ additional features of the an-
tecedent to solve the link role(13, 11,Theme). This formula is generalized as Formula
(FC) in the last row of Table 5.4. In Formula (FC), F denotes the predicates which
represent basic features such as word, POS, and NE tags of the tokens. Formula (FC)
copies the features of cross-sentence arguments (antecedents) to intra-sentence argu-
ments (anaphors). Feature Copy is not a novel idea but it helps improve performance.
For the SVM pipeline model we add equivalent features.

5.3.4 Coreference Resolution

In our work, we introduce a simple coreference resolver based on a pairwise coref-
erence model (Soon et al., 2001). It employs a binary classifier which classifies all
possible pairs of noun phrases into “corefer” or “do not corefer”. Popular external
resources like WordNet often do not work well in the biomedical domain. Hence, our
resolver identifies coreference relations using only basic features such as word form,
POS, and NE tag. We use SVM-struct for learning and testing the binary classifiers. In
this model, negative examples often overwhelm positive ones, and we therefore select
a value over 10000 for the C-parameter. We achieve 59.1 pairwise F1 on GENIA Event
Corpus evaluating 5-fold cross validation.

There is some previous work on coreference resolution for biomedical domains (Yang
et al., 2004; Su et al., 2008). They constructed original coreference annotations for
learning and testing. Their models use much richer features for machine learning clas-
sifiers and their systems achieve better results with around 70 F1. However, owing to
the differences of the data used, it is difficult to directly compare their results with ours.
Moreover, using the richer feature they propose, we would likely see improvements in
our system as well. Finally, we confirm that there is enough room for improvement by
also evaluating with gold coreference annotations.
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Note that we optimize our resolver for event extraction because our event extractors
require high precision results from coreference resolution. For the SVM model, coref-
erence resolution errors directly hurt performance. For MLN model, noisy results from
coreference resolution often disturb the coreference formulae when learning weights.
We noticed that the weights of coreference formulae remain small when the corefer-
ence resolution results have less than 70 precision and our MLN event extractor rarely
obtains cross-sentence event-argument relations as a result. Some features and string
distance metrics may enable us to better balance precision and recall, but we attach
greater importance to precision. As a result, our high precision resolver achieves over
90 for precision but lower than 50 for recall.

5.4 Experimental Setup
Let us summarise the data and tools we employ. The data for our experiments is the

GENIA Event Corpus (GEC) (Kim et al., 2008). For feature generation, we employ
the following tools. POS and NE tagging are performed with the GENIA Tagger,3

for dependency path features we apply the Charniak-Johnson reranking parser with
a Self-Training parsing model,4 This model is optimized for biomedical parsing and
achieves 84.3pt F1 on GENIA corpus (McClosky and Charniak, 2008). We convert
the parsed results to dependency tree using the pennconverter tool.5 Learning and
inference algorithms for joint model are provided by Markov thebeast (Riedel, 2008),
a Markov Logic engine tailored for NLP applications. Our pipeline model employs
SVM-struct6 both in learning and testing. As we mentioned in the previous section, for
coreference resolution, we also employ SVM-struct for binary classification.

Figure 5.3 shows the structure of our experimental setup. Our experiments perform
the following steps. (1) First we perform preprocessing (tagging and parsing). (2) Then
we perform coreference resolution for all the documents and generate lists of token
pairs that are coreferent to each other. (3) Finally, we train the event extractors: SVM
pipeline (SVM) and MLN joint (MLN) involving coreference relations. We evaluate
all systems using 5-fold cross validation on GEC.

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
4http://www.cs.brown.edu/˜dmcc/biomedical.html
5http://nlp.cs.lth.se/software/treebank_converter/
6http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html
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Figure 5.3: Experimental Setup of Biomedical Event Extractor

Table 5.5: Results of Biomedical Event Extraction (F1)
System Coreference event eventType role

(a) SVM NONE 77.0 67.8 52.3 ( 0.0)
(b) SVM SYS 77.0 67.8 53.6 (+1.3)
(b′) SVM GOLD 77.0 67.8 55.4 (+3.1)
(c) MLN NONE 80.5 70.6 51.7 ( 0.0)
(g) MLN SYS 80.8 70.8 53.8 (+2.1)
(g′) MLN GOLD 81.2 70.8 56.7 (+5.0)

5.5 Experimental Results
In the following we will first show the results of our models for event extraction

with/without coreference information. We will then present more detailed results con-
cerning E-A relation extraction.

5.5.1 Impact of Coreference Based Approach

We begin by showing the SVM and MLN results for event extraction in Table 5.5.
We present F1-values of event, eventType, and role (E-A relation) extraction. The three
columns (event, eventType, and role) in Table 5.5 correspond to the hidden predicates
in Table 5.1.

Let us consider rows (a)-(b) and (c)-(g). They compare the SVM and MLN ap-
proaches with and without the use of coreference information. The column “Corefer”
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Table 5.6: Three Types of Biomedical Event-Argument (EA) Structure
Type Description Edge in Figure 5.1

Cross E-A relations crossing sentence boundaries
(cross-link)

Arrow (C)

W-ANT Intra-sententence E-As (intra-link) with an-
tecedents

Arrow (A)

Normal Neither Cross nor W-ANT Arrow (D)

indicates how the coreference information is used: “NONE”– without coreference;
“SYS”– with coreference resolver; “GOLD”– with gold coreference annotations.

We note that adding coreference information leads to 1.3 point F1 improvement for
the SVM pipeline, and 2.1 point improvement for MLN joint. Both improvements are
statistically significant (ρ < 0.01, McNemar’s test 2-tailed). With gold coreference
information, systems (b′) and (g′) clearly achieve more significant improvements.

Let us move on to the comparisons between SVM pipeline and MLN joint models.
For event and eventType we compare row (b) with row (g) and observe that the MLN
outperforms the SVM. This is to be contrasted with results for the BioNLP‘09 shared
task, where the SVM model (Björne et al., 2009) outperformed the MLN (Riedel et
al., 2009). This contrast may stem from the fact that GEC events are more difficult
to extract due to a large number of event types and lack of gold protein annotations,
and hence local models are more likely to make mistakes that global consistency con-
straints can rule out.

For role extractions (E-A relation), SVM pipeline and MLN joint show comparable
results, at least when not using coreference relations. However, when coreference
information is taken into account, the MLN profits more. In fact, with gold coreference
annotations, the MLN outperforms the SVM pipeline by a 1.3 point margin.

5.5.2 Detailed Results for Event-Argument Relation Extraction

Table 5.6 shows the three types of E-A relations we evaluate in detail.
They correspond to the arrows (A), (C), and (D) in Figure 5.1, respectively. We

show the detailed results of E-A relation extraction in Table 5.7. All scores shown in
the table are F1-values.
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Table 5.7: Results of Biomedical E-A Relation Extraction (F1)
System Corefer Cross W-ANT Normal

(a) SVM NONE 0.0 56.0 53.6
(b) SVM SYS 27.9 57.0 54.3
(b′) SVM GOLD 54.1 57.3 55.4
(c) MLN NONE 0.0 49.8 ( 0.0) 53.2
(d) MLN FC 0.0 51.5 (+1.7) 53.7
(e) MLN FC+SiD 0.0 54.6 (+4.8) 53.3
(f) MLN FC+Sub 36.7 51.7 (+1.9) 53.7
(g) MLN FC+SiD+Sub 39.3 56.5 (+6.7) 54.3
(g′) MLN GOLD 69.7 66.7 (+16.9) 55.3

SVM pipeline Model

The first part of Table 5.7 shows the results of the SVM pipeline with/without coref-
erence relations. Systems (a), (b) and (b′) correspond to the first three rows in Table
5.5, respectively. We note that the SVM pipeline manages to extract cross-links with an
F1 score of 27.9 points with coreference information from the resolver. The third low
in Table 5.7 shows the results of the system with gold coreference which is extended
from System (b). With gold coreference, the SVM pipeline achieves 54.1 points for
“Cross”. However, the improvement we get for “W-ANT” relations is small since the
SVM pipeline model employs only Feature Copy and Substitutability concepts. In
particular, it cannot directly exploit Salience in Discourse as a feature.

MLN joint Model

How does coreference help our MLN approach? To answer this question, the sec-
ond part of Table 5.7 shows the results of the following six systems. The row (c)
corresponds to the fourth row of Table 5.5 and shows results for the system that does
not exploit any coreference information. Systems (d)-(g) include Formula (FC). In the
sixth (e) and the seventh (f) rows, we show the scores of MLN joint with Formula
(SiD) and Formula (Sub), respectively. Our full joint model with both (SiD) and (Sub)
formulae comes in the eighth row (g). System (g′) is an extended system from System
(g) with gold coreference information.

By comparing Systems (d)(e)(f) with System (c), we note that Feature Copy (FC),
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Salience in Discourse (SiD), and Substitutability (Sub) formulae all successfully ex-
ploit coreference information. For “W-ANT”, Systems (d) and (e) outperform System
(c), which establishes that both Feature Copy and Salience in Discourse are sensible
additions to an MLN E-A extractor. On the other hand, for “Cross (cross-link)”, Sys-
tem (f) extracts cross-sentence E-A relations, which demonstrates that Substitutability
is important, too. Next, for cross-link, our full system (g) achieved 39.3 points F1
score and outperformed System (c) with 6.7 points margin for “W-ANT”. The further
improvements with gold coreference are shown by our full system (g′). It achieved
69.7 points for “Cross” and improved System (c) by 16.9 points margin for “W-ANT”.

SVM Pipeline vs MLN Joint

The final evaluation compares SVM pipeline and MLN joint models. Let us con-
sider Table 5.7 again. When comparing System (a) with System (c), we notice that the
SVM pipeline (a) outperforms the MLN joint model in “W-ANT” without coreference
information. However, when comparing Systems (b) and (g) (using coreference infor-
mation by the resolver), MLN result is very competitive for “W-ANT” and 11.4 points
better for “Cross”.

Furthermore, with gold coreference, the MLN joint (System (g′) outperforms the
SVM pipeline (System (b′)) both in “Cross” and “W-ANT” by a 15.6 points margin
and a 9.4 points margin, respectively. This demonstrates that our MLN model will
further improve extraction of cross-links and intra-links with antecedents if we have a
better coreference resolver. Note that the MLN model has advantages over the SVM
model especially when higher recall is required. We have 2, 124 links of “Cross” and
2, 748 of “W-ANT” for the evaluation of Table 5.7. MLN model-System (g′) finds
1, 236 correct “Cross” and 1, 778 correct “W-ANT” links. The SVM model-System
(b′) finds only 833 correct links for “Cross” and 1, 149 for “W-ANT”.

Table 5.8 shows the runtime comparison between SVM pipeline and MLN joint
models. SVM pipeline and MLN joint models for calculating the runtimes correspond
to Systems (b) and (g) in Table 5.5, respectively. Again, we take the averages over
three times running for training and testing. SVM pipeline model has two phases
but the total runtimes of the 1st and 2nd phases are much shorter than those of MLN
joint model. In biomedical domain, a sentence has more tokens than that in general
domains. Global optimization in such a long sentence accordingly requires long time.
However, the runtime depends on the problem we want to solve. We has another results
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Table 5.8: Runtime Comparison between SVM Pipeline vs MLN Joint in Biomedical
Event Extraction (sec.)

SVM 1st phase SVM 2nd phase MLN

Train 1376.8 1277.4 7040.1
Test 21.2 22.1 1008.8

in Chapter 6.

5.6 Discussion
For lack of technical knowledge of biomedicine, it is difficult for us to analyze our

results qualitatively. Instead of qualitative analysis, we briefly discuss some reasons of
our results in this section.

The main topic is why our MLN joint model outperformed SVM pipeline? We
consider that the reason for these results are two crucial differences between the SVM
and MLN models:

• With Formula (SiD) in Table 5.4, MLN joint has more chances to extract “W-
ANT” relations. It also effects the first term of Formula (T). By contrast, the
SVM pipeline cannot easily model the notion of salience in discourse and the
effect from coreference is weak.

• Formula (Sub) of MLN is defined as a soft constraint. Hence, other formulae
may reject a suggested cross-link from Formula (Sub). The SVM pipeline de-
terministically identifies cross-links and is hence more prone to errors in the
intra-sentence E-A extraction.

Finally, the potential for further improvement through a coreference-based approach
is limited by the performance on intra-links extraction. Moreover, we also observe
that the 20% of cross-links are cases of zero-anaphora. Here the utility of coreference
information is naturally limited, and our Formula (Sub) cannot come into effect due to
missing corefer( j, k) atoms.
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5.7 Summary
In this chapter we presented a novel approach to biomedical event extraction with the

help of coreference relations. Our approach incorporates coreference relations through
the concepts of salience in discourse and substitutability. The coreferent arguments
we focused on are generally valuable for document understanding in terms of dis-
course structure and they should be extracted at all cost. We proposed two models:
SVM pipeline and MLN joint. Both improved the attachments of intra-sentence and
cross-sentence related to coreference relations. Furthermore, we confirmed that im-
provements of coreference resolution lead to the higher performance of event-argument
relation extraction.

However, potential for further improvement through a coreference-based approach
is limited by the performance of intra-sentence links and zero-anaphora cases. To over-
come these problems, we need to construct a collective approach that works on the full
document. Specifically, we should construct a joint model of coreference resolution
and event extraction considering all tokens in a document based on the idea of Narra-
tive Schemas (Chambers and Jurafsky, 2009). If we take into account all tokens in a
document at the same time, we can consider various relations between events (event
chains) through anaphoric chains. But to implement such a joint model in Markov
Logic, we will have to cope with the time and space complexities that arise in such a
setting.
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Chapter 6

Temporal Relation Identification

6.1 Introduction
This section describe a work on extracting event-event relation. We focus our effort

on temporal relation as a typical example of event-event relations. The extraction of
temporal relation is called temporal relation identification or temporal ordering. Tem-
poral relation identification involves the prediction of temporal order between events
and/or time expressions mentioned in text, as well as the relation between events in a
document and the time at which the document was created.

Before we describe the details of temporal relation identification, we define the two
main elements of this analysis, time expressions (TEs) and events. TEs are words or
phrases which have obvious temporal information such as “today”, “July 4th”, and
“two months ago.” Events are words or phrases which have indirect temporal informa-
tion. Most of the events are expressed by verbs or verbals such as “happen”, “driving”
and “the earthquake”.

Time and event expression analysis is regarded as an essential phase for understand-
ing documents in semantic level, because temporal information often provides very
important clues to identify semantic relations like causal relations. In the following
example, there is strong interaction between temporal and causal relations.

“In March 11th, she was injured her legs and went to a hospital, because a
giant earthquake occurred and she was caught up in a building collapse.”

We map events and time expressions in the example sentence on Figure 6.1. People
easily understand that “giant earthquake” and “building collapse” caused before “her



Figure 6.1: Events and time expressions mapping on a timeline

injury”. And “her injury” results from “building collapse”. But it is difficult for a ma-
chine learning system to identify such temporal ordering. The system, which does not
know which events caused first, can not answer a simple question “What happened af-
ter the earthquake?” Thus, temporal information can be an essential point of document
understanding.

In general, time normalization is a task coming after temporal relation identification.
It maps all events and TEs to the real timeline. In the TERN-2004 Evaluation Work-
shop,1 several time normalization techniques were proposed. However, the target of
the workshop was only TEs. As an advanced task, it is necessary to map not only time
but also events to the timeline.

As the first step of time and event expression analysis, in temporal relation iden-
tification task we identify the temporal order between two time and/or event expres-
sions. This can be defined as a classification task with temporal relation labels based
on Allen’s time interval logic (Allen, 1983).

With the introduction of the TimeBank corpus (Pustejovsky et al., 2003a), a set of
documents annotated with temporal information, it became possible to apply machine
learning to temporal ordering (Boguraev and Ando, 2005; Mani et al., 2006). These
tasks have been regarded as essential for complete document understanding and are
useful for a wide range of NLP applications such as question answering and machine
translation.

1TERN-2004 Evaluation Workshop – Time Expression Recognition and Normalization: http://
timex2.mitre.org/tern.html
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Most of these approaches follow a simple schema: they learn classifiers that predict
the temporal order of a given event pair based on a set of the pair’s of features. This
approach is local in the sense that only a single temporal relation is considered at a
time.

Learning to predict temporal relations in this isolated manner has at least two ad-
vantages over any approach that considers several temporal relations jointly. First, it
allows us to use off-the-shelf machine learning software that, up until now, has been
mostly focused on the case of local classifiers. Second, it is computationally very
efficient both in terms of training and testing.

However, the local approach has an inherent drawback: it can lead to solutions that
violate logical constraints we know to hold for any sets of temporal relations. For
example, by classifying temporal relations in isolation we may predict that event X
happened before, and event Y after, the time of document creation, but also that event X
happened after event Y—a clear contradiction in terms of temporal logic. This logical
constraint is illustrated in Figure 6.2.

In order to repair the contradictions that the local classifier predicts, Chambers and
Jurafsky (2008b) proposed a global framework based on Integer Linear Programming
(ILP). They showed that large improvements can be achieved by explicitly incorporat-
ing temporal constraints.

We proposed two approaches: one is a SVM pipeline model which solves a temporal
relation exploiting the other relations as global features; the other is an MLN joint
model which simultaneously solves several temporal relations with global constraints.
The both approaches we propose in this thesis are similar in spirit to that of Chambers
and Jurafsky: we seek to improve the accuracy of temporal relation identification by
predicting relations in a more global manner. However, while they focused only on the
temporal relations between events mentioned in a document, we also jointly predict
the temporal order between events and time expressions, and between events and the
document creation time.

The joint model also differs in another important aspect from the approach of Cham-
bers and Jurafsky. Instead of combining the output of a set of local classifiers using
ILP, we approach the problem of joint temporal relation identification using Markov
Logic (Richardson and Domingos, 2006). In this framework global correlations can be
readily captured through the addition of weighted first order logic formulae.

Using Markov Logic instead of an ILP-based approach has at least two advantages.
First, it allows us to easily capture non-deterministic (soft) rules that tend to hold be-
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tween temporal relations but do not have to. 2 For example, if event A happens before
B, and B overlaps with C, then there is a good chance that A also happens before C,
but this is not guaranteed.

Second, the amount of engineering required to build our system is similar to the
efforts required for using an off-the-shelf classifier: we only need to define features (in
terms of formulae) and provide input data in the correct format. 3 In particular, we do
not need to manually construct ILPs for each document we encounter. Moreover, we
can exploit and compare advanced methods of global inference and learning, as long as
they are implemented in our Markov Logic interpreter of choice. Hence, in our future
work we can focus entirely on temporal relations, as opposed to inference or learning
techniques for machine learning.

We evaluate our approach using the data of the “TempEval” challenge held at the
SemEval 2007 Workshop (Verhagen et al., 2007). This challenge involved three tasks
corresponding to three types of temporal relations: between events and time expres-
sions in a sentence (Task A), between events of a document and the document creation
time (Task B), and between events in two consecutive sentences (Task C).

Our findings show that by incorporating global features or constraints that hold be-
tween temporal relations predicted in Tasks A, B and C, the accuracy for all three tasks
can be improved significantly. In comparison to other participants of the “TempEval”
challenge our approach is very competitive: for two out of the three tasks we achieve
the best results reported so far, by a margin of at least 2%.4 Only for Task B we were
unable to reach the performance of a rule-based entry to the challenge. However, we
do perform better than all pure machine learning-based entries.

6.2 Background
Temporal relation identification aims to predict the temporal order of events and/or

time expressions in documents, as well as their relations to the document creation time
(DCT). For example, consider the following (slightly simplified) sentence of Section
6.1.

2It is clearly possible to incorporate weighted constraints into ILPs, but how to learn the correspond-
ing weights is not obvious.

3This is not to say that picking the right formulae in Markov Logic, or features for local classification,
is always easy.

4To be slightly more precise: for Task C we achieve this margin only for “strict” scoring—see
sections 6.4 and 6.5 for more details.
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With the introduction of the TimeBank corpus (Pustejovsky et al., 2003),
machine learning approaches to temporal ordering became possible.

Here we have to predict that the “Machine learning becoming possible” event hap-
pened AFTER the “introduction of the TimeBank corpus” event, and that it has a tem-
poral OVERLAP with the year 2003. Moreover, we need to determine that both events
happened BEFORE the time this document was created.

Most previous work on temporal relation identification (Boguraev and Ando, 2005;
Mani et al., 2006; Chambers and Jurafsky, 2008b) is based on the TimeBank corpus.
The temporal relations in the Timebank corpus are divided into 11 classes; 10 of them
are defined by the following 5 relations and their inverse: BEFORE, IBEFORE (imme-
diately before), BEGINS, ENDS, INCLUDES; the remaining one is SIMULTANEOUS.
Such temporal annotations are based on Allen’s time interval logic (Allen, 1983). Allen
divided temporal relations between two time intervals into 13 classes. But Timebank
omitted the two of them which are not shown in English texts.

In order to drive forward research on temporal relation identification, the SemEval
2007 shared task (Verhagen et al., 2007) (TempEval) included the following three
tasks.

TASK A Temporal relations between events and time expressions that occur within
the same sentence.

TASK B Temporal relations between the Document Creation Time (DCT) and events.

TASK C Temporal relations between the main events of adjacent sentences.5

To simplify matters, in the TempEval data, the classes of temporal relations were re-
duced from the original 11 to 6: BEFORE, OVERLAP, AFTER, BEFORE-OR-OVERLAP,
OVERLAP-OR-AFTER, and VAGUE.

In this work we are focusing on the three tasks of TempEval, and our running hy-
pothesis is that they should be tackled jointly. That is, instead of solving each task
separately, we want to exploit the result of one task to the other tasks or to learn a
single probabilistic model for all three tasks. This allows us to incorporate transition
rules of temporal consistency that should hold across tasks. For example, if an event
X happens before DCT, and another event Y after DCT, then surely X should have
happened before Y. We illustrate this type of transition rule in Figure 6.2.

5The main event of a sentence is expressed by its syntactically dominant verb.
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Figure 6.2: Example of Transition Rule for Temporal Relation Identification

Note that the correct temporal ordering of events and time expressions can be contro-
versial. For instance, consider the example sentence again. Here one could argue that
“the introduction of the TimeBank” may OVERLAP with “Machine learning becom-
ing possible” because “introduction” can be understood as a process that is not finished
with the release of the data but also includes later advertisements and announcements.
This is reflected by the low inter-annotator agreement score of 72% on Tasks A and B,
and 68% on Task C.

6.3 Methods
For the temporal relation identification tasks, we propose two approaches: SVM

pipeline model with temporal relation paths; MLN joint model with global constraints
of temporal closure. Both models exploit transition rules which are inference rules
from the ordering property of time. An example of such rules is illustrated in Figure
6.2. The transition rule represented in Figure 6.2 is

(X be f ore DCT) ∧ (Y a f ter DCT)⇒ (X be f ore Y) (6.1)

which means if X happens before DCT and Y happends after DCT, then X happens
before Y.

In order to represent the structures of transition rules, we define predicates (relation
names) corresponding to edges of TempEval task chart. Let us describe the temporal
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Figure 6.3: Relation Names with TempEval Tasks

relations in Figure 6.3. We describe the three relations (hidden predicates) correspond-
ing to Tasks A, B, and C in Table 6.1.

Table 6.1: Hidden Predicates for Temporal Relation Identification
Task Relation (predicate) description

(A) relE2T (e, t, r) temporal relation r between an event e and a time
expression t

(B) relDCT (e, r) temporal relation r between an event e and DCT
(C) relE2E(e1, e2, r) temporal relation r between two events of the same

sentence, an event e1 and another e2

N/A relT2T (t1, t2, r) temporal relation r between two time expressions
t1 and t2

N/A dctOrder(t, r) temporal relation r between a time expressions t
and DCT

For Task (A), relE2T (e, t, r) represents a temporal relation between an event e and
temporal relation t is r. For Task (B), relDCT (e, r) represents a temporal relation
between an event e and a document creation time is r. For Task (C), relE2E(e1, e2, r)
represents a temporal relation between two events e1 and e2 is r.
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Figure 6.4: Temporal Relation Path for Task A

TempEval data contains two more types of temporal relations which are not sup-
posed to be predicted: relT2T which represents a temporal relation between two time
expressions; dctOrder which denotes a temporal relation between a time expression
and a fixed DCT.

We explain the details of the two methods in the two following subsections.

6.3.1 SVM Pipeline Model

SVM pipeline model independently solves each three task but it exploits global path
features. In this method, we presume that the complexity ordering of the three Tem-
pEval tasks is as follows: B < A < C. TempEval’s final results (Verhagen et al., 2007)
certainly show this order. In addition, we verified that by creating local classifiers for
each task. Hence, we utilize the results of easier tasks for relatively difficult tasks:
using the result of Task B for Task A and the results of Tasks A and B for Task C.

We propose Temporal Relation Paths which are composed of sequences of relation
labels. Since the relation labels of Tasks A and B are easier to identify than those of
Task C, the paths can become good clues to solve a more difficult task that is hard to
solve only with static features.

More specifically, we explore the following relation paths (Figures 6.4, 6.5, 6.6,
6.7(a), and 6.7(b)).

Figure 6.4 shows the path for Task A (dctOrder − (DCT ) − relDCT ). The relDCT,
a relation between EVENT1 and DCT, comes from results of Task B. We can acquire
the dctOrder label by simply comparing both values of the TIMEX3 tags and deciding
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Figure 6.5: Path 1 for Task C Figure 6.6: Path 2 for Task C

(a) Path 3a (b) Path 3b

Figure 6.7: Temporal Relation Paths 3 for Task C

BEFORE, AFTER, or OVERLAP. As a result, this path is composed of three nodes
including DCT (e.g., AFTER-(DCT)-AFTER).

Path 1 for Task C (Figure 6.5) uses the results of Task B directly and is composed of
only the relations between DCT and the events (relDCT − (DCT )− relDCT ; “DCT” is
not a value but just a label). Introduction of Path 1 aims to use the “tense” information
of the two target events. If the two target events are finite verbs and have the tense
information, the accuracy of two relations on the Path 1 becomes precise. In such a
case, the Path 1 will work very well.

In practice, the exact value of DCT is sometimes unavailable. However, Path 1
doesn’t use the value of DCT. What we need is not the exact value of DCT but the
relation between DCT and an event estimated by Task B. Paraphrasingly, we can use
DCT as a pivot event without value.

Path 2 (Figure 6.6) uses the results of Task A and the relation between two time
expressions (relE2T − relT2T − relE2T ). Introduction of Path 2 is mainly for the
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nominal events which do not have the tense information. We estimate the relation
between the target event and the neighbouring time expression by Task A. The relation
between TIME1 and TIME2 could be a very good clue for identifying the relation
between the two main events that are anchoring on those time expressions. Path 2 is
made of three label nodes (e.g., AFTER-OVERLAP-AFTER).

Paths 3a and 3b (Figure 6.7(a)(b)) use the both results of Tasks A and B (3a: relE2T−
dctOrder − (DCT )− relDCT , 3b: relDCT − (DCT )− dctOrder − relE2T ). Paths 3ab
(Paths 3a and 3b) are intermediate between Path 1 and 2. Introduction of those paths
are for identification of the relations between a finite verb and a nominal event. They
are made of three label nodes (e.g., AFTER-OVERLAP-(DCT)-OVERLAP). These
relation paths are the core of our first proposed method.

There are two reasons why we use the temporal relation paths as features instead
of defining the strict transition rules and temporal closures as constraints. Temporal
relation paths handle much more cases, including such cases that the strict transition
rules cannot. Because a relation path is just a sequence of the relation labels used as
a feature, we can always use it, whether it satisfies temporal closure or not. In other
words, temporal relation paths can provide partial clues for the cases that the strict
transition rules do not work well.

Another reason stems from the characteristics of the TempEval relation labels. A
GUI tool called TANGO6 has functions dealing with inference rules. But there are
only six temporal relations in TempEval: “BEFORE,” “BEFORE-OR-OVERLAP,”
“OVERLAP,” “OVERLAP-OR-AFTER,” “AFTER,” and “VAGUE.” The six relations
are coarser than Allen’s 13 temporal relations. Strict inference rules such as “(a BE-
FORE b and b BEFORE c)⇒ (a BEFORE c)” are limited on a 6 x 6 relation matrix.
Most inference rules such as “(a BEFORE-OR-OVERLAP b and b BEFORE-OR-
OVERLAP c) ⇒ (a {BEFORE, BEFORE-OR-OVERLAP, OVERLAP} c)” are not
strict inference rules but narrowing rules. When using the result of the inferenced
(narrowed) rules as features, we cannot include how the narrowing results are derived.
Therefore, instead of making use of the results of the inference rules, we introduce
the relation path features that are composed of the relations sequences of the inference
steps. Actually in our experiments, this worked well on the TempEval data.

The other features we use for learning SVM classifiers are listed in the center col-
umn of Table 6.2. We divided them into two types: base features which are directly
obtainable from the corpus (TempEval data); extended features which can be obtained

6http://www.timeml.org/site/tango/tool.html
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Table 6.2: Used Features for Temporal Relation Identification
SVM Pipeline MLN Joint

Task A Task B Task C Task A Task B Task C

EVENT-word X X X X
EVENT-POS X X X X
EVENT-stem X X X X
EVENT-aspect X X X X X X
EVENT-tense X X X X X X
EVENT-class X X X X X X
EVENT-polarity X X X X
TIMEX3-word X X
TIMEX3-POS X X
TIMEX3-value X X
TIMEX3-type X X
TIMEX3-TemporalFunction X
TIMEX3-FunctionInDocument X
TIMEX3-anchorTimeID X
TIMEX3-DCT order X X X
positional order X X
in/outside X X
unigram(word) X X X X
unigram(POS) X X X X
bigram(word) X X
bigram(POS) X X X
trigram(word) X X
trigram(POS) X X X X
Dependency-word X X X X X X
Dependency-POS X X X X X
Dependency-Path X

Temporal Relation Path X X
Joint Formula X X X

through pre-processing. Here we mention the features we used in detail.
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Base Features

Base features mainly cover the local information of time and event expressions.

EVENT expressions EVENT tags for event expressions have the following attributes:
words (EVENT-word) (e.g., ‘played’, ‘exercise’), aspect (EVENT-aspect) (e.g., ‘PRO-
GRESSIVE’, etc.), polarity (EVENT-polarity) (e.g., ‘POSITIVE’ or ‘NEGATIVE’),
POS (EVENT-POS), stem (EVENT-stem), class (EVENT-class) (e.g., ‘OCCUR-
RENCE’, ‘REPORTING’, etc.), and tense (EVENT-tense) (e.g., ‘PAST’, ‘PRESENT’,
etc.) Tasks A and C use all of them. For Task B, we checked the effective features using
the development set and only adopted class, tense and aspect.

TIME expressions TIMEX3 tags for time expressions have the following attributes:
words (TIMEX3-word), value (TIMEX3-value), POS (TIMEX3-POS), type (TIMEX3-
type) (e.g., ‘DATE’ ‘TIME’, etc.), TemporalFunction (TIMEX3-TemporalFunction)
(e.g., ‘true’ or ‘false’, etc.), FunctionInDocument (TIMEX3-FunctionInDocument)
(e.g., ‘CREATION TIME’, ‘EXPIRATION TIME’, etc.), and anchorTimeID (TIMEX3-
anchorTimeID) (Time ID of the related time expression.) As in the case of EVENT,
we used all of them for Task A. For Task B, the targets are only DCT and event ex-
pressions. So we focus on the time expressions that are in the target sentences and
include the temporal order with DCT (TIMEX3-DCT order) (BEFORE, OVERLAP,
or AFTER) as features. For Task C, we do not include any TIME informations.

Others For Task A, we used additional features because the task takes expressions
only in the same sentences as the targets. We include the positional order of target
expressions in the sentences (positional order) (not the temporal order but which ex-
pression comes first in the sentences). We also add word and POS unigrams based on
the relative positions with the two expressions (in/outside): between them or outside
of them. We used not only target time and event expressions but also time expres-
sions in neighbor sentences. Unigrams, bigrams and trigrams of words and POS in
the neighboring sentences are included for Task A and Task C (unigram(word), uni-
gram(pos), bigram(word), bigram(pos), trigram(word), and trigram(pos)). While
explaining so many base features, we basically used as much information as possible.
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(a) DepTree Position Labels (b) DepTree Position Labels (example)

Figure 6.8: Dependency Tree Position Labels

Extended Features

There are two main types of extended features: dependency relation labels with POS
and joint relational features.

POS and dependency relation information The dependency information of the tar-
get sentences provides quite effective features, especially for Task A. We include the
specific features concerning the positions where the time and event expressions appear
in the dependency tree of the target sentence.

Figure 6.8 illustrates the dependency tree position labels. In this figure, we consider
exercised as a current expression “CUR” and 90 days as a target expression “TAR”.
In the dependency trees, for a word above the current (target) expression, we put an
“ANC (ancestor)” label. For a word below the current (target), we label it with a “DES
(descendant).” For a word that shares the same parent with the current (target), we label
it with “SIB (sibling)” on the word. We also define “PAR (parent)” and “CHILD” but
they are just specific cases of “ANC” and “DES.”

The words in the same sentence with dependency tree positions and POS labels are
used as features for Tasks A, B, and C (Dependency-word, Dependency-POS). For
Task A, the relative position between target events and times on the dependency tree is
also used as a feature (Dependency-Path).

Global Feature The last two columns in Table 6.2 represent global features. For
SVM pipeline global features are above mentioned temporal relation paths (Figures
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6.5, 6.6, and 6.7). For MLN joint they become joint formulae implementing global
constraints of transition rules. The joint formulae will be presented in the next section.

6.3.2 MLN Joint Model

As stated before, our Markov Logic Model aims to jointly tackle Tasks A, B and C
of the TempEval challenge. In this section we introduce the Markov Logic Network
we designed for this goal.

Again, we have three hidden predicates, corresponding to Tasks A, B, and C: relE2T(e, t, r)
represents the temporal relation of class r between an event e and a time expres-
sion t; relDCT(e, r) denotes the temporal relation r between an event e and DCT;
relE2E(e1, e2, r) represents the relation r between two events of the adjacent sentences,
e1 and e2. Hidden predicates are summarized in Table 6.1.

Our observed predicates reflect information we were given (such as the words of a
sentence), and additional information we extracted from the corpus (such as POS tags
and parse trees). Note that the TempEval data also contained temporal relations that
were not supposed to be predicted. These relations are represented using two observed
predicates: relT2T(t1, t2, r) for the relation r between two time expressions t1 and
t2; dctOrder(t, r) for the relation r between a time expression t and a fixed DCT. An
illustration of all temporal predicates, both hidden and observed, can be seen in Figure
6.3.

Local Formula

Our MLN is composed of several weighted formulae that we divide into two classes.
The first class contains local formulae for the Tasks A, B and C. We say that a formula
is local if it only considers the hidden temporal relation of a single event-event, event-
time or event-DCT pair. The formulae in the second class are global: they involve two
or more temporal relations at the same time, and consider Tasks A, B and C simulta-
neously.

The local formulae are based on features employed in previous work (Cheng et al.,
2007; Bethard and Martin, 2007) and are listed in the right column of Table 6.2. What
follows is a simple example in order to illustrate how we implement each feature as a
formula (or set of formulae).
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Table 6.3: Joint Formulae for Global Temporal Relation Identifier
Task Formula

A→ B dctOrder(t,R1) ∧ relE2T(e, t,R2)⇒ relDCT(e,R3)
B→ A dctOrder(t,R1) ∧ relDCT(e,R2)⇒ relE2T(e, t,R3)
B→ C relDCT(e1,R1) ∧ relDCT(e2,R2)⇒ relE2E(e1, e2,R3)

B,C → B relDCT(e1,R1) ∧ relE2E(e1, e2,R2)⇒ relDCT(e2,R3)
A→ C relE2T(e1, t1,R1) ∧ relT2T(t1, t2,R2) ∧ relE2T(e2, t2,R3)⇒ relE2E(e1, e2,R4)

A,C → A relE2T(e2, t2,R1) ∧ relT2T(t1, t2,R2) ∧ relE2E(e1, e2,R3)⇒ relE2T(e1, t1,R4)

Consider the tense-feature for Task C. For this feature we first introduce a predicate
tense(e, t) that denotes the tense t for an event e. Then we add a set of formulae such
as

tense(e1, tns1) ∧ tense(e2, tns2)⇒ relE2E(e1, e2, r). (6.2)

where e1 and e2 are variables for events, tns1 and tns2 are tense variables, and r is a
temporal relation between e1 and e2.

For all possible combinations of tenses and temporal relations, Formula 6.2 is in-
stantiated.7 One of such instances is

tense(E32, past) ∧ tense(E33, future)⇒ relE2E(E32, E23, before) (6.3)

which represents a simple tense rule: an event with past tense occurs before the event
with future tense. Actually this formula should acquired a high weight value.

Global Formula

Our global formulae are designed to enforce consistency between the three hidden
predicates (and the two observed temporal predicates we mentioned earlier). They are
based on the transition rules we briefly stated in Section 6.2.

Table 6.3 shows the set of formula templates we use to generate the global formu-
lae. Here each template produces several instantiations. One example of a template
instantiation is the following formula.

dctOrder(t1, before) ∧ relDCT(e1, after)⇒ relE2T(e1, t1, after) (6.4a)

7This type of “template-based” formulae generation can be performed automatically by the Markov
Logic Engine.
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Figure 6.9: Temporal Transition Rule for Global Constraint 1

This formula is an expansion of the formula template in the second row of Table 6.3.
We illustrate the three predicates of Formula 6.4a in Figure 6.9. Note that it utilizes
the results of Task B to solve Task A.

Formula 6.4a should always hold8, and hence we could easily implement it as a
hard constraint in an ILP-based framework. However, some transition rules are less
determinstic and should rather be taken as “rules of thumb”. For example, formula
6.4b is a rule which we expect to hold often, but not always.

dctOrder(t1, before) ∧ relDCT(e1, overlap)⇒ relE2T(e1, t1, after) (6.4b)

For the predicates of Formula 6.4b we also illustrate them in Figure 6.10. Fortunately,
this type of soft rule poses no problem for Markov Logic: after training, Formula 6.4b
will simply have a lower weight than Formula 6.4a. By contrast, in a “Local Classifier
+ ILP”-based approach as followed by Chambers and Jurafsky (2008b) it is less clear
how to proceed in the case of soft rules. Surely it is possible to incorporate weighted
constraints into ILPs, but how to learn the corresponding weights is not obvious.

8However, due to inconsistent annotations one will find violations of this rule in the TempEval data.
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Figure 6.10: Temporal Transition Rule for Global Constraint 2

Table 6.4: Numbers of Labeled Relations for All Tasks in TempEval
TRAIN DEV TEST TOTAL

Task A 1359 131 169 1659
Task B 2330 227 331 2888
Task C 1597 147 258 2002

6.4 Experimental Setup
With our experiments we want to answer two questions: (1) does jointly tackling

Tasks A, B, and C help to increase overall accuracy of temporal relation identification?
(2) How does our approach compare to state-of-the-art results? In the following we
will present the experimental set-up we chose to answer these questions.

In our experiments we use the test and training sets provided by the TempEval shared
task. We further split the original training data into a training and a development set,
used for optimizing parameters and formulae. For brevity we will refer to the training,
development and test set as TRAIN, DEV and TEST, respectively. The numbers of
temporal relations in TRAIN, DEV, and TEST are summarized in Table 6.4.

For feature generation we use the following tools.9 POS tagging is performed with

9Since the TempEval trial has no restriction on pre-processing such as syntactic parsing, most par-
ticipants used some sort of parsers.
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TnT ver2.2;10 for our dependency-based features we use MaltParser 1.0.0.11 For infer-
ence in our models we use Cutting Plane Inference (Riedel, 2008) with ILP as a base
solver. This type of inference is exact and often very fast because it avoids instantiation
of the complete Markov Network. For learning we apply one-best MIRA (Crammer
and Singer, 2003) with Cutting Plane Inference to find the current model guess. Both
training and inference algorithms are provided by Markov thebeast,12 a Markov Logic
interpreter tailored for NLP applications.

Note that there are several ways to manually optimize the set of formulae to use.
One way is to pick a task and then choose formulae that increase the accuracy for this
task on DEV. However, our primary goal is to improve the performance of all the tasks
together. Hence we choose formulae with respect to the total score over all three tasks.
We will refer to this type of optimization as “averaged optimization”. The total scores
of the all three tasks are defined as follows:

Ca +Cb +Cc

Ga +Gb +Gc

where Ca, Cb, and Cc are the number of the correctly identified labels in each task,
and Ga, Gb, and Gc are the numbers of gold labels of each task. Our system necessar-
ily outputs one label to one relational link to identify. Therefore, for all our results,
precision, recall, and F-measure are the exact same value.

For evaluation, TempEval proposed the two scoring schemes: “strict” and “relaxed”.
For strict scoring we give full credit if the relations match, and no credit if they do not
match. On the other hand, relaxed scoring gives credit for a relation according to
Table 6.5. For example, if a system picks the relation “AFTER” that should have been
“BEFORE” according to the gold label, it gets neither “strict” nor “relaxed” credit.
But if the system assigns “B-O (BEFORE-OR-OVERLAP)” to the relation, it gets a
0.5 “relaxed” score (and still no “strict” score).

6.5 Experimental Results
In the following we will first present our comparison of the local and global model.

We will then go on to put our results into context and compare them to the state-of-
the-art.

10http://www.coli.uni-saarland.de/˜thorsten/tnt/
11http://w3.msi.vxu.se/˜nivre/research/MaltParser.html
12http://code.google.com/p/thebeast/
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Table 6.5: Evaluation Weights for Relaxed
Scoring in TempEval

B O A B-O O-A V
B 1 0 0 0.5 0 0.33
O 0 1 0 0.5 0.5 0.33
A 0 0 1 0 0.5 0.33

B-O 0.5 0.5 0 1 0.5 0.67
O-A 0 0.5 0.5 0.5 1 0.67

V 0.33 0.33 0.33 0.67 0.67 1
B: BEFORE O: OVERLAP
A: AFTER B-O: BEFORE-OR-OVERLAP

O-A: OVERLAP-OR-AFTER V: VAGUE

Table 6.6: Results on TEST Set in TempEval Task
model task Local Global

strict relaxed strict relaxed

SVM Pipeline Task A 0.598 0.654 0.627 0.682
Task B 0.758 0.775 0.758 0.775
Task C 0.539 0.601 0.562 0.622
All 0.648 0.689 0.662 0.702

MLN Joint Task A 0.621 0.669 0.645 0.687
Task B 0.737 0.753 0.758 0.777
Task C 0.531 0.599 0.566 0.632
All 0.641 0.682 0.668 0.708

6.5.1 Impact of Global Formulae

First, let us show the results on TEST in Table 6.6. You will find two columns,
“Global” and “Local”, showing scores achieved with and without global features or
joint formulae, respectively. Clearly, the global models scores are higher than the local
scores for all three tasks. This is also reflected by the last row of Table 6.6. Here
we see that we have improved the averaged performance across the three tasks by
approximately1.5% for SVM pipeline and 2.5% for MLN joint (ρ < 0.01, McNemar’s
test 2-tailed). Note that with 3.5% the improvements are particularly large for Task C
of MLN joint. Comparing our two models with each other, MLN joint outperformed
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Table 6.7: Runtime Comparison between SVM Pipeline vs MLN Joint in TempEval
Task (sec.)

SVM Task A SVM Task B SVM Task C MLN

Train 163.3 80.0 107.1 43.3
Test 0.9 0.4 0.3 16.6

Table 6.8: Results with 10-fold Cross Validation for All in TempEval Task
Local Global

model strict relaxed strict relaxed

SVM Pipeline 0.668 0.704 0.677 0.718
MLN Joint 0.667 0.707 0.689 0.727

SVM pipeline.
About the runtime comparison, we show the runtimes of SVM pipeline and MLN

joint models in Table 6.7. The values in this table are calculated for “Global” models
of SVM pipeline and MLN joint and they are averaged over three times running. SVM
pipeline has a model for each task and we need to train it independently. In addition,
fortunately, Tempeval data is smaller than the data for the previous two tasks. So, in
this task, our MLN joint model quickly find the optimal solution and faster than SVM
pipeline model at training time.

The TempEval test set is relatively small (see Table 6.4). Hence it is not clear how
well our results would generalize in practice. To overcome this issue, we also evaluated
the local and global models using 10-fold cross validation on the training data (TRAIN
+ DEV) and made sure the statistical significance. The corresponding results can be
seen in Table 6.8. Note that the general picture remains: performances for the total
scores of the three tasks are improved, and the the score is improved only slightly less
than for the TEST results. However, the improvements for total scores are statistically
significant (ρ < 10−8, McNemar’s test, 2-tailed).

To summarize, we have shown that by tightly connecting tasks A, B and C, we
can improve temporal relation identification significantly. But are we just improving
a weak baseline, or can joint modelling help to reach or improve the state-of-the-art
results? We will try to answer this question in the next section.
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Table 6.9: Comparison with Other Systems in TempEval
Task A Task B Task C

strict relaxed strict relaxed strict relaxed

TempEval Best 0.62 0.64 0.80 0.81 0.55 0.64
TempEval Average 0.56 0.59 0.74 0.75 0.51 0.58
CU-TMP 0.61 0.63 0.75 0.76 0.54 0.58
MLN Local Model 0.62 0.67 0.74 0.75 0.53 0.60
MLN Global Model 0.65 0.69 0.76 0.78 0.57 0.63
MLN Global Model
(Task-Adjusted)

(0.66) (0.70) (0.76) (0.79) (0.58) (0.64)

6.5.2 Comparison to the State-of-the-art

In this section we compare our results with the state-of-the-art results in TempEval.
Since the performance of MLN joint is better than those of SVM pipeline, we choose
the scores of MLN joint to represent our results.

In order to put our results into context, Table 6.9 shows them along those of other
TempEval participants. In the first row, TempEval Best gives the best scores of Tem-
pEval for each task. Note that all but the strict scores of Task C are achieved by
WVALI (Puscasu, 2007), a hybrid system that combines machine learning and hand-
coded rules. In the second row we see the TempEval average scores of all six partici-
pants in TempEval. The third row shows the results of CU-TMP (Bethard and Martin,
2007), an SVM-based system that achieved the second highest scores in TempEval for
all three tasks. CU-TMP is of interest because it is the best pure Machine-Learning-
based approach so far.

The scores of our local and global model come in the fourth and fifth row, respec-
tively. The last row in the table shows task-adjusted scores. Here we essentially de-
signed and applied three global MLNs, each one tailored and optimized for a different
task. Note that the task-adjusted scores are always about 1% higher than those of the
single global model.

Let us discuss the results of Table 6.9 in detail. We see that for task A, our global
model improves an already strong local model to reach the best results both for strict
scores (with a 3% points margin) and relaxed scores (with a 5% points margin).

For Task C we see a similar picture: here adding global constraints helped to reach
the best strict scores, again by a wide margin. We also achieve competitive relaxed

91



scores which are in close range to the TempEval best results.
Only for task B our results cannot reach the best TempEval scores. While we per-

form slightly better than the second-best system (CU-TMP), and hence report the best
scores among all pure Machine-Learning based approaches, we cannot quite compete
with WVALI.

6.6 Discussion
Let us discuss some further characteristics and advantages of our approach. First,

notice that global formulae not only improve strict but also relaxed scores for all
tasks. This suggests that we produce more ambiguous labels (such as BEFORE-OR-
OVERLAP) in cases where the local model has been overconfident (and wrongly chose
BEFORE or OVERLAP), and hence make less “fatal errors”. Intuitively this makes
sense: global consistency is easier to achieve if our labels remain ambiguous. For ex-
ample, a solution that labels every relation as VAGUE is globally consistent (but not
very informative).

Secondly, one could argue that our solution to joint temporal relation identification
is too complicated. Instead of performing global inference, one could simply arrange
local classifiers for the tasks into a pipeline. In fact, this has been done by Bethard
and Martin (2007): they first solve task B and then use this information as features for
Tasks A and C. While they do report improvements (0.7% on Task A, and about 0.5%
on Task C), generally these improvements do not seem as significant as ours. What is
more, by design their approach can not improve the first stage (Task B) of the pipeline.

On the same note, we also argue that our approach does not require more implemen-
tation efforts than a pipeline. Essentially we only have to provide features (in the form
of formulae) to the Markov Logic Engine, just as we have to provide for a SVM or
MaxEnt classifier.

Next, we show an example of our global model’s improvement. Let us see a docu-
ment with temporal annotations.

1 The o f f i c i a l <EVENT e i d="e290" maineven t="YES" c l a s s="
REPORTING" a s p e c t="NONE" t e n s e="PRESENT" p o l a r i t y="POS" s tem=
"add" pos="VERB">adds< /EVENT> , though , t h a t a t t h e same t ime ,

we t h i n k he i s someone who i s c a p a b l e o f r a t i o n a l judgmen t s
when i t comes t o power .

2
3 And when he f i n d s some th ing u n p r o f i t a b l e , t h e n one can <EVENT

e i d="e300" maineven t="YES" c l a s s="PERCEPTION" a s p e c t="NONE"
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Figure 6.11: Success Example of Global Constraints in Temporal Relation Identifica-
tion

t e n s e="NONE" p o l a r i t y="POS" s tem="see" pos="VERB"> s e e< /EVENT>
c e r t a i n accommodat ions . "

4
5 <TLINK relatedToTime=" t 397 " eventID="e290" task="B" lid=" l 5 3 "
relType="BEFORE"/>

6
7 <TLINK relatedToTime=" t 397 " eventID="e300" task="B" lid=" l 5 5 "
relType="OVERLAP"/>

8
9 <TLINK eventID="e290" task="C" lid=" l 2 2 " relType="OVERLAP"
relatedToEvent="e300"/>

We have three target relations between e290 and DCT; e300 and DCT; e290 and e300
as shown in Figure 6.11

Now let us focus on “relE2E(e290, e300, X) (relation between e290 and e300)”
which belongs to Task C. Our local model without global constraints identified it as
“after” by mistake.

On the other hand, our global model yielded the transition rule,

relDCT (e290, be f ore) ∧ relDCT (e300, overlap)

⇒ ¬relE2E(e290, e300, a f ter) (6.5)

which means “the relation between e290 and e300 is ambiguous, but at least “after”
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is incorrect”. This constraint is illustrated in Figure 6.11. Due to this constraint, our
global model successfully identified the target “X” as the correct label “overlap”.

Finally, it became more clear to us that there are problems inherent to this task
and dataset that we cannot (or only partially) solve using global methods. First, there
are inconsistencies in the training data that often mislead the learner as reflected by
the low inter-annotator agreement – 72% for Tasks A and B, 68% for Task C. This
problem applies to learning of local and global formulae/features alike.

Second, the training tagged data is relatively small (1659 for Task A, 2888 for B,
2002 for C). Obviously, this makes learning of reliable parameters more difficult, par-
ticularly when data is as noisy as in our case. Third, the temporal relations in the
TempEval dataset only directly connect a small subset of events. This makes global
formulae less effective.13

6.7 Summary
In this chapter we presented a novel approach to temporal relation identification.

Instead of using local classifiers to predict temporal order in a pairwise fashion, our
approach uses Markov Logic to incorporate both local features and global transition
rules between temporal relations.

We have focused on transition rules between temporal relations of the three Tem-
pEval subtasks: temporal ordering of events, of events and time expressions, and of
events and the document creation time. Our results have shown that global transition
rules lead to significantly higher accuracy for all three tasks. Moreover, our global
Markov Logic model achieves the highest scores reported so far for two of three tasks,
and very competitive results for the remaining one.

While temporal transition rules can also be captured with an Integer Linear Pro-
gramming approach (Chambers and Jurafsky, 2008b), Markov Logic has at least two
advantages. First, handling of “rules of thumb” between less specific temporal rela-
tions (such as OVERLAP or VAGUE) is straightforward—we simply let the Markov
Logic Engine learn weights for these rules. Second, there is less engineering overhead
for us to perform, because we do not need to generate ILPs for each document.

However, potential for further improvements through global approaches seems to be
limited by the sparseness and inconsistency of the data. To overcome this problem,

13See (Chambers and Jurafsky, 2008b) for a detailed discussion of this problem, and a possible solu-
tion for it.
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it is effective to use external or untagged data along with methods for unsupervised
learning in Markov Logic (Poon and Domingos, 2008).

Another direction of future work is multilingual temporal ordering such as TempEval-
214 which has challenging temporal ordering tasks in five languages. Here we expect
that while lexical and syntax-based features may be quite language dependent, global
transition rules should hold across languages.

14http://www.timeml.org/tempeval2/
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Chapter 7

Conclusion

7.1 Summary
This thesis has explored probabilistic logic approach to event structure analysis.

Probabilistic logic approach allows us to combine humans’ linguistic knowledges and
statistical information acquired from corpora. We selected Markov Logic as one of
probabilistic logic frameworks. Markov Logic is a framework which combines first
order logic and Markov networks. With Markov Logic we can represent humans’
knowledge by first-order logic and learning the validity of the formulae from corpora.

Events and their structures play important roles in natural language documents. Es-
pecially we focused our effort on event-argument structure analysis.

In Chapter 4, we targeted Japanese predicate-argument structure. Predicates are ver-
bal and adverbial events and have arguments with semantic roles. Japanese predicates
mainly have three types of roles: nominative (ga), accusative (wo), and dative (ni). We
proposed Markov Logic model which jointly deals with the three types of roles. Our
model could take all predicates in a same sentence into account simultaneously and
find the most probable assignments of predicates and arguments. Our model achieved
very competitive results without a large scale unlabeled data.

In Chapter 5, we tackled event structure analysis in biomedical domain which has
distinctive characteristics. On biomedical corpora, we could also build a global joint
model in a sentence. Furthermore, we incorporated coreference information to extract
event-argument relations. This work suggested the effectiveness of exploiting corefer-
ence relations (argument-argument relations) for event extraction.

In Chapter 6, we focus on another aspect of event structures. We constructed an-
alyzers which extract temporal relations for events. Since event is a change of state,



it generally has a temporal attribute. We analyzed temporal orders related to events.
In order to prevent logical contradictions among several temporal relations, our model
exploited global constraints based on temporal closures. As a result, we achieved state-
of-the-art results on an English temporal annotated corpus.

Events and their structures we targeted in above chapters are essential elements to
understand documents. By building sophisticated approaches to extract event struc-
tures, our work constructed a new foothold in document understanding. In the last
section, we suggest some directions to explorer further progress.

7.2 Future Directions
The first strong direction is naturally expanding our approaches to semi-supervised

ones. Incorporating unlabeled data is often effective for various tasks including event-
argument relation extraction and temporal ordering.

However, a practical method of semi-supervised Markov Logic has not been pro-
posed yet. Markov Logic approach is a framework which is computationally very
hard even if we only utilize a small amount of labeled data. Thus, it is intractable to
instantiate a large search space and find the most probable states with a large scale
unlabeled data. Constructing a semi-supervised Markov Logic framework which can
be practically used is the first priority and challenging task.

The second direction is jointly extracting event-argument relations and coreference
relations. Though we have already exploited coreference relations to event-argument
relation extractions in Chapter 5, event-argument relations also contributes to extract
coreference relations. Since Japanese documents have many cross-sentential event-
argument relations, event-argument relations help to extract coreference relations (Iida
and Tokunaga, 2010).

One of th biggest issues in such a joint approach is time and space complexities.
Usually, event-argument relation extraction are solved in a sentence-by-sentence man-
ner. But to jointly extract event-argument and coreference relations, we have to solve
problems in a document-by-document manner. Too large search space targeting a
whole document often makes our problem infeasible. Therefore, in order to realize
joint formulation, we must apply some algorithms of approximation and propose a
model which can perform much more efficiently learning and inference.

Actually, the issues of complexity are very critical. If we overcome the barrier, we
can find a path to the further goal. Let us see Figure 1.2 again. This figure denotes

98



not only event-argument relations but also anaphora and temporal relations. Jointly
extracting event-argument and anaphora (coreference) relations is the problem to be
solved at document-level. Accordingly, we can also expand the problem to joint extrac-
tion of event-argument, anaphora, and temporal relations. Jointly extracting these three
types of relations corresponds to extract event chains and anaphoric chains. Chambers
and Jurafsky proposed an approach to extracting such chains (Chambers and Juraf-
sky, 2008a; Chambers and Jurafsky, 2009). They tried to extract such chains from
unlabeled data and the chains they obtained have general stories of the domain they
targeted.

On the other hand, the chains we wanted to extract by our joint approach are not
general but specific stories corresponding to each document. Of course, we assume to
extract chains by supervised manner. Therefore, the chains we want to obtain have rich
information and are useful to understand the corresponding document itself.

Though high level applications such as automatic document summarization and ma-
chine translation are dreams of Natural Language Processing, the automatic systems
are still far from practical use. However, if event and anaphoric chains enable us to
roughly understand the stories in a document, Automatic analyzers (summarizer or
translator) will output results at practical level.
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