
NAIST-IS-DD0861020

Doctoral Dissertation

Highly Modularized Learning System

for Behavior Acquisition of Functional Robots

Akihiko Yamaguchi

March 17, 2011

Department of Information Systems
Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Akihiko Yamaguchi

Thesis Committee:
Professor Tsukasa Ogasawara (Supervisor)
Professor Kazushi Ikeda (Co-supervisor)
Associate Professor Jun Takamatsu (Co-supervisor)

i

Highly Modularized Learning System
for Behavior Acquisition of Functional Robots∗

Akihiko Yamaguchi

Abstract

An essential ability for highly functional robots, typified by humanoid robots,
is acquiring a behavior by itself. This ability enables the end-users to teach their
wishes easily. This thesis aims to realize an objective-based task design.

Concretely, this thesis proposes a “highly modularized learning system” where
reinforcement learning (RL) methods and related methods are modularized to
construct a learning system for a robot. The proposed system has two distinct
features: (1) learning strategies (LSs), methods to improve RL, are also modular-
ized, and (2) multiple LSs are applied to each task of the robot multiple times.
Examples of LSs are dimension reduction, hierarchical RL, and transfer learning.
Using the LSs, the system automatically generates multiple behavior modules to
learn policies of a task. For feature (2), Boltzmann selection method with upper
confidence bound (UCB) is introduced to select a behavior module that is actu-
ally used to control the robot. Some transfer LSs generate new modules from
previously learned modules. Thus, each behavior module is generated through
a sequence of LSs. The core algorithm is referred to as LS fusion.

This thesis also proposes some elemental technologies to define LSs; mainly, a
discrete action set named DCOB and a method to decompose a dynamics model.
The discrete action set DCOB has a capability for large domains. The name is
derived from the fact that an action is a trajectory Directed to the Center Of a
target Basis function. DCOB is extended to learn continuous actions keeping the
exploration ability of the discrete set; the method is named WF-DCOB because
of using wire-fitting. Some transfer LSs are defined by using WF-DCOB. The
method to decompose a dynamics model can extract a task invariant element,
which enables to transfer a dynamics model of a task to one of the other tasks.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0861020, March 17, 2011.

ii

Additionally, a highly modularized RL library named SkyAI is developed to im-
plement the proposed methods, and is distributed under an open source license.

A number of experiments were performed to verify the proposed methods.
DCOB and WF-DCOB outperformed the conventional methods especially in mo-
tion learning tasks of a simulated humanoid robot. DCOB also demonstrated an
outstanding performance in a crawling task of a real spider robot. The method
to decompose a dynamics model improved the learning speed in maze tasks.
Though WF-DCOB demonstrated an outstanding performance, LS fusion addi-
tionally improved the performance. The scalability of LS fusion was verified in
a maze task of the simulated humanoid robot. In this task, the robot learned a
path to a goal hierarchically using a crawling and a turning motions acquired in
previous learning.

Through these experiments, this thesis concludes that the highly modularized
learning system is a realistic approach to realize the objective-based task design.

Keywords:

Learning System, Reinforcement Learning, Modularization, Motion Learning,
Humanoid Robot

iii

高機能ロボットの行動獲得のための
高度にモジュール化された学習システム∗

山口明彦

内容梗概

ヒューマノイドに代表される高機能ロボットに不可欠な機能のひとつとして，ロ
ボット自身が行動を獲得することがあげられる．このような機能は，エンドユーザ
がロボットに要求を伝えることを容易にする．本論文は，目的に基づくタスク設計
システムの開発を目的とする．
具体的には，本論文は「高度にモジュール化された学習システム」を提案する．

このシステムでは，強化学習手法及び関連手法群がモジュール化され，学習システ
ムを構成する．提案するシステムは次の 2つの特徴を持つ．（1）強化学習を改善す
る学習戦略群もモジュール化される．（2）単一のロボットの各々のタスクに対し，
複数の学習戦略群が複数回適用される．学習戦略とは，例えば次元縮約，階層化，
転移学習である．学習戦略群を用いて，システムはタスクの方策を学習する行動モ
ジュール群を自動的に生成する．特徴（2）について，実際にロボットを制御する行
動モジュールを選択するために，upper confidence bound（UCB）をもとにした
Boltzmann選択手法が導入される．転移学習モジュール群は既に学習したモジュー
ルから新たなモジュールを生成する．このように，各行動モジュールは複数の学習
戦略を通して生成される．中心となるアルゴリズムを学習戦略フュージョンと呼ぶ．
本論文では，学習戦略を定義するための要素技術として，離散行動集合 DCOB

及びダイナミクスモデルの分離手法を提案する．離散行動集合DCOBは規模の大き
いタスクを扱うことができる．DCOBは Directed to the Center Of a target Basis
functionを表し，目標の基底関数の中心に向かうように行動が生成されることを意
味する．DCOBは，離散集合の探索能力を保ったまま，連続行動を学習するように
拡張される．この手法はwire-fittingを用いるためWF-DCOBと名付けられる．一
部の転移学習戦略群は，WF-DCOBを用いて定義される．ダイナミクスモデルの分
離手法は，タスク不変の要素の抽出を可能にする．これによって，あるタスクで学
習したダイナミクスモデルをほかのタスクのモデルに転移することが可能となる．

∗奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻 博士論文, NAIST-IS-
DD0861020, 2011年 3月 17日.

iv

加えて，提案手法を実装するために，高度にモジュール化された強化学習ライブラ
リ SkyAIを開発し，オープンソースで公開する．
提案手法群を検証するため，多数の実験を行った．DCOBとWF-DCOBは，特

にシミュレーションのヒューマノイドの運動学習において，従来手法を上回った．
DCOBは実機蜘蛛型ロボットの匍匐タスクにおいても，優れたパフォーマンスを示
した．ダイナミクスモデルの分離手法は，迷路タスクにおいて学習速度を改善した．
WF-DCOBは優れたパフォーマンスを示したが，学習戦略フュージョンはさらにパ
フォーマンスを向上させた．学習戦略フュージョンの拡張性は，シミュレーション
のヒューマノイドの迷路タスクにおいて検証された．このタスクでは，ロボットは，
過去に学習した匍匐や旋回を用いて，ゴールまでの経路を学習した．
これらの実験を通して，本論文は，高度にモジュール化された学習システムが，

目的に基づくタスク設計を実現する現実的なアプローチのひとつであると結論する．

キーワード

学習システム,強化学習,モジュール化,行動学習,ヒューマノイドロボット

v

Acknowledgements

vi

vii

Contents

1 Introduction 1
1.1 Motivation and Objective 1
1.2 Highly Modularized Learning System 3

1.2.1 Developers and Users 4
1.2.2 Examples of Learning Strategy Fusion 4

1.3 Contributions 6
1.4 Thesis Outline 8

2 Preliminaries 9
2.1 Reinforcement Learning 9

2.1.1 Peng’s Q(λ)-learning 10
2.1.2 Fitted Q Iteration 10

2.2 Function Approximators 11
2.2.1 Linear Function Approximator (LFA) with NGnet 11
2.2.2 Wire-Fitting 12

2.3 Basis Function Allocation 13
2.3.1 Grid Allocation 13
2.3.2 Spring-Damper Allocation 13
2.3.3 Dynamics-Based Allocation 14

2.4 Benchmark Tasks 15
2.4.1 Task Maze2D 15
2.4.2 Task HumanoidML-crawling, turning 17
2.4.3 Task BioloidML-crawling 20

3 SkyAI : Highly Modularized RL Library 23
3.1 Introduction 23
3.2 Overview 24

3.2.1 Principal Concepts 24
3.2.2 Requirements and Solutions 25
3.2.3 Overview of System with SkyAI 26

viii CONTENTS

3.3 Related Works 27
3.4 Experiment: Speed of Modular Communication 27
3.5 Conclusion 30

4 DCOB : Action Space for Large DoF Robots 31
4.1 Introduction 31
4.2 BFTrans 33

4.2.1 Assumptions 33
4.2.2 Overview 34
4.2.3 Generating Trajectory 36
4.2.4 Abbreviating Trajectory 36
4.2.5 Following Trajectory 37

4.3 DCOB 38
4.4 WF-DCOB 38
4.5 Experiments 40

4.5.1 Maze2D 40
4.5.2 HumanoidML-crawling, turning 44
4.5.3 BioloidML 55

4.6 Discussion 60
4.6.1 Convergence of RL with BFTrans 60
4.6.2 Computational Cost of BFTrans 60
4.6.3 Available Types of Basis Functions 61
4.6.4 Related Works 61

4.7 Conclusion 62

5 Dynamics and Reward Models 64
5.1 Introduction 64
5.2 Dyna with Linear Function Approximator 66

5.2.1 Linear Dyna with ‘MG’ Prioritized Sweeping 66
5.3 Composing Dynamics Models 68

5.3.1 MixFS Dynamics Model 68
5.3.2 Learning MixFS Dynamics Model 69
5.3.3 Computational Techniques 70

5.4 Embedding Prior Knowledge on Models 70
5.4.1 Reusing Dynamics Model Parameters 71
5.4.2 Embedding Reward Sources 71

5.5 Experiments 72
5.5.1 Accuracy of Dynamics Models 72

CONTENTS ix

5.5.2 Maze2D 72
5.5.3 Humanoid Navigation 78

5.6 Conclusion 80

6 Learning Strategy Fusion 81
6.1 Introduction 81
6.2 Related Works 82
6.3 LS Fusion Overview 83
6.4 LS Fusion Algorithm 84

6.4.1 Reward Statistics 84
6.4.2 UCB-Boltzmann Selection 86

6.5 Learning Strategies 86
6.5.1 LS-Scratch 87
6.5.2 LS-Accelerating 87
6.5.3 LS-Freeing 88
6.5.4 LS-Planning 89
6.5.5 LS-Model 89
6.5.6 LS-Hierarchy 90

6.6 Experiments 90
6.6.1 Maze2D 90
6.6.2 HumanoidML-crawling 92
6.6.3 HumanoidMaze – Learning from Scratch 100
6.6.4 HumanoidMaze – Model Transfer 104

6.7 Conclusion 106

7 Application to Humanoid Locomotion 107
7.1 Introduction 107
7.2 RL Methods in Switching Stance Mode 109

7.2.1 Cohen’s Hierarchical Reinforcement Learning 110
7.2.2 Structured Function Approximator 110
7.2.3 Experiments 111

7.3 Learning Strategy Fusion for Direct Joint Control 118
7.3.1 LS Fusion Setup 118
7.3.2 Experiments 118

7.4 Conclusion 124

8 Conclusion of Thesis 125

x CONTENTS

A Spring-Damper Allocation 127

B Dynamics of Maze2D Task 129

Bibliography 131

xi

List of Figures

1.1 A part of major solutions to improve RL. 2
1.2 Overview of the highly modularized learning system. 3
1.3 Examples of LS fusion. 5
1.4 The outline of this thesis and the relation of the chapters. 8

2.1 Environment of the robot navigation task. 16
2.2 Types of mazes. 16
2.3 Simulation model of a humanoid robot. 17
2.4 DoF configurations of the humanoid robot. 19
2.5 King Spider (ROBOTIS Bioloid) which has 18 DoF. 20
2.6 Setup of experimental environment. 21

3.1 Example modular structure around an RL module. 26
3.2 C++ code for testing the speed of modular communication. 29
3.3 Modular structure for testing speed. 29

4.1 Relation among the basis functions (BFs), the wire-fitting, and the
proposed methods, BFTrans, DCOB, WF-DCOB. 34

4.2 Illustration of how an action in the BFTrans is executed. 35
4.3 Illustration of the comparison of DCOB and WF-DCOB. 39
4.4 Resulting learning curves of the Maze2D task. 43
4.5 Resulting learning curves of the HumanoidML-crawling task with

3-DoF-Grid. 49
4.6 Resulting learning curves of the HumanoidML-crawling task with

4-DoF-Grid. 49
4.7 Resulting learning curves of the HumanoidML-crawling task with

5-DoF-Dyn. 50
4.8 Resulting learning curves of the HumanoidML-crawling task with

5-DoF-Grid. 50
4.9 Resulting learning curves of the HumanoidML-crawling task with

5-DoF-SprDmp. 51

xii LIST OF FIGURES

4.10 Resulting learning curves of the HumanoidML-crawling task with
6-DoF-SprDmp. 51

4.11 Resulting learning curves of the HumanoidML-crawling task with
7-DoF-SprDmp. 52

4.12 Resulting learning curves of the HumanoidML-turning task with
4-DoF-Grid. 52

4.13 Snapshots of an acquired motion with DCOB (1). 53

4.14 Snapshots of an acquired motion with DCOB (2). 54

4.15 Resulting learning curves of the crawling task. 56

4.16 Averaged learning curves of the crawling task. 57

4.17 Performance of the acquired motion. 57

4.18 Snapshots of acquired crawling motion of the King Spider. 58

4.19 Resulting learning curves of the crawling task of the dinosaur robot. 59

4.20 Snapshots of an acquired crawling motion of the Dinosaur. 59

5.1 Estimation errors of the two dynamics models, MixFS and Simple,
per number of samples Nsmpl in 1-dimensional environment. 73

5.2 Resulting learning curves of the robot navigation task in the easy
maze. 75

5.3 Resulting learning curves of the robot navigation task in the hard
maze. 77

5.4 The humanoid robot employed in the navigation task. 78

5.5 Resulting learning curves of the navigation task by the humanoid
robot in the easy maze. 79

6.1 Resulting learning curves of the Maze2D task. 91

6.2 Possible freeing directions between the DoF configurations. 93

6.3 Learning curves of five runs obtained from LSF. 96

6.4 Learning curve and module transition in a run obtained from LSF. 97

6.5 Snapshots of motions during learning. 98

6.6 Resulting learning curves of the crawling task. 99

6.7 Learning curves of five runs obtained from LSF. 101

6.8 Learning curve and module transition in a run obtained from LSF. 102

6.9 Resulting learning curves of the HumanoidMaze task (learning
from scratch). 102

6.10 Snapshots of an acquired behavior at the end of the Humanoid-
Maze task (taken in 1-FPS). 103

LIST OF FIGURES xiii

6.11 Resulting learning curves of the HumanoidMaze task (model trans-
fer). 105

7.1 Illustration of the new learning-walking scheme. 108
7.2 Illustration of the switching stance mode. 109
7.3 SARCOS biped humanoid robot developed by NICT/ATR. 112
7.4 Illustration of the sub-action spaces of the walking task. 113
7.5 Resulting learning curves of the walking task. 116
7.6 Trajectory of the CoM position. 117
7.7 Animation snapshots. 117
7.8 DoF configurations and possible freeing directions. 119
7.9 Learning curves of five runs obtained from LSF. 122
7.10 Resulting learning curves of the humanoid locomotion task. 123

B.1 Dynamics of a wall. 130

xiv

List of Tables

3.1 Execution time (second). 29

4.1 Number of BFs, actions, and control wires. 48

6.1 Profiles of motions in Figure 6.5. 99

1

Chapter 1

Introduction

1.1 Motivation and Objective

Highly functional robots, typified by humanoid robots, that have been developed
so far are still being improved. They are expected to play an important role in the
future society; Kajita et al. forecast that by 2025, such future comes true (Kajita
and Sugihara 2009). An essential ability for the robots is acquiring a behavior by
itself only from the task objective. This ability enables the end-users to teach their
wishes easily. Such an objective-based task design also improves the adaptability
of robots to their environment.

The ultimate goal of this research is establishing a behavior acquisition mech-
anism equivalent to that of a human brain, and embedding it on robots. Machine
learning provides a myriad of methods for this goal—especially, reinforcement
learning (RL) is a core technology for the objective-based task design. Through
interaction with the environment, an RL agent learns a behavior from the reward
signal that represents the task objective. Many promising RL methods have been
proposed and applied to robotics (e.g. (Kober and Peters 2009; Takahashi, Noma,
and Asada 2008)).

The major issue of RL is its learning cost in large domains, which exponen-
tially increases with respect to the task complexity, such as the degree-of-freedom
of a robot. Naturally, tasks of humanoid robots are large domains. Thus, many
researchers have tackled this issue and proposed effective methods. The follow-
ing is a part of major solutions to improve RL (Figure 1.1).

Dimension reduction: reducing the dimensionality of a state-action space to
accelerate the learning speed (Morimoto, Hyon, Atkeson, and Cheng 2008).

Hierarchical RL: decomposing a task into subtasks to make it easy to learn a
complicated task (Barto and Mahadevan 2003; Morimoto and Doya 2001;
Takahashi and Asada 2003).

Transfer learning: reusing knowledge that is learned in previous tasks (Torrey

2 CHAPTER 1. INTRODUCTION

Figure 1.1 A part of major solutions to improve RL.

and Shavlik 2009; Zhang and Rössler 2004).
Model utilization: introducing models for model-based RL methods (Sutton,

Szepesvári, Geramifard, and Bowling 2008; Sutton 1990; Farahmand, Shade-
man, Jägersand, and Szepesvári 2009).

Imitation learning: initializing the policy from a human demonstration (Pe-
ters, Vijayakumar, and Schaal 2003; Kober and Peters 2009).

We refer to such a method as a learning strategy (LS).
These LSs improve RL, however, their effectiveness or applicability depends

on a task. For instance, a dimension reduction by using a pattern generator may
improve cyclic motions (e.g. (Nakamura, Mori, Sato, and Ishii 2007)); on the
other hand, this method may restrict the capability to learn episodic motions
such as jumping. The dependency of LSs on tasks means that the end-users
should select a proper LS for each task. This selection may be difficult for ordi-
nary users. Therefore, there are two possible approaches for the objective-based
task design: (1) making a single LS that universally improves RL regardless of
tasks, (2) making an algorithm to select proper LSs for each task from a set of
predefined LSs.

This thesis utilizes the latter approach, which seems to be more feasible, and
aims to develop a framework where the algorithms are modularized and auto-
matically selected for each task. The thesis mainly treats motion learning tasks
of robots, looking ahead to extend the framework for more general tasks.

1.2. HIGHLY MODULARIZED LEARNING SYSTEM 3

1.2 Highly Modularized Learning System

This thesis tackles to develop:

“A highly modularized learning system that is suitable for the objective-
based task design.”

Here, a module consists of an algorithm and its data. The purpose of modulariza-
tion is to construct a learning agent with a set of modules. The proposed system
aims to realize that multiple LSs are applied to each task of a single robot multiple
times, where the ordering of the LSs is automatically decided.

For this purpose, the highly modularized learning system mainly consists of
the following four elements:

Behavior module: deciding the behavior of a robot.
Fundamental module type: constructing behavior modules, such as a module of

an RL method.
LS module: generating behavior modules from the fundamental module types

according to its learning strategy.
UCB-Boltzmann selection method: choosing a behavior module actually used in

each learning stage.

Figure 1.2 Overview of the highly modularized learning system. Every small circles, ellipses,
and rectangles indicate modules. The abbreviations denote the following. RL: re-
inforcement learning, DR: dimension reduction, FA: function approximator, LS-scr:
learning from scratch, LS-trans: transfer learning, LS-pln: planning, LS-hier: making
a hierarchy, LS-model: making a model, B: behavior module, M: dynamics/reward
model, H: hierarchical action space, UCB-B: UCB-Boltzmann selection method.

4 CHAPTER 1. INTRODUCTION

Figure 1.2 illustrates the overview of the system. The system maintains a set
of module types. The LS modules generate behavior modules from the types
(Module Instances). Each behavior module is used to decide a behavior of the
robot and learn a task. Some of the LS modules generate behavior modules
from existing behavior modules (e.g. a transfer LS). The system has multiple
behavior modules for each task. Each behavior module has an upper confidence
bound (UCB) as the evaluation value which is calculated from the reward ob-
servation. In each learning stage, a behavior module that actually decides the
movement of the robot is chosen from the whole set of behavior modules by
UCB-Boltzmann selection method. UCB-Boltzmann selection method is Boltz-
mann selection method with the UCB, which enables a probabilistic exploration.
The selected behavior module is trained during the learning stage. Thus, each
behavior module is generated through a sequence of LSs, and the selection of be-
havior modules signifies the selection of a proper LS sequence for the task. The
core algorithm is referred to as LS fusion method.

1.2.1 Developers and Users

The system aims to enable ordinary users to design a task by its objective. Thus,
it is desired that the users specify only the task. Since it is difficult to make a
learning system common for every robot, we assume the roles of developers and
users as follows:

Developers: implement every module types and every LS modules, and tun-
ing their parameters for the robot.

Users: only define tasks. Each task consists of a reward function and an episode
definition.

Sensors and actuators of the robot are hardly changed by the users. Thus, the
robot-specific parameters, such as control gains and state-action space defini-
tions, can be predefined by the developers. Behavior and the other modules are
automatically generated by the system.

1.2.2 Examples of Learning Strategy Fusion

A key feature of LS fusion is that multiple LSs can be applied to a single task mul-
tiple times—moreover, a proper set of LSs and their ordering are automatically
decided. Some conceptual examples are illustrated in Figure 1.3. In Figure 1.3(a),
first, the task (e.g. walking) is learned by a behavior module B1 which is gener-

1.2. HIGHLY MODULARIZED LEARNING SYSTEM 5

(a) Example of applying a transfer-learning strategy in several times.

(b) Example of reusing a model in learning the other task.

(c) Example of learning with a hierarchical task space.

Figure 1.3 Examples of LS fusion. 〈number〉 shows the ordering of generating modules (see
Figure 1.2 for the abbreviations). Dotted arrow shows a generation, and solid arrow
shows a connection; they are automatically performed by the system.

ated by a learning-from-scratch strategy (i.e. learning without prior knowledge).
After some trial and error, B2 is generated from B1 by a transfer-learning strat-
egy. Actual scenario is as follows: a slower walking motion B1 is learned first
because of the ease of learning, then an accelerated behavior B2 is generated to
walk faster. Similarly, B3 is generated. Note that the acceleration does not always
improve the performance since the dynamics of the robot is not considered. In-
stead, UCB-Boltzmann selection method chooses a behavior module that has a
higher possibility to perform well.

Figure 1.3(b) shows reusing a model in learning the other task. B4 is learned

6 CHAPTER 1. INTRODUCTION

from scratch since learning without a model sometimes works better than learn-
ing with a model. A model M1 is trained from samples, and B5 updates its policy
using M1. M1 can be learned using the samples obtained during B4’s learning.
Alternatively, B5 can use a Dyna architecture (Sutton, Szepesvári, Geramifard,
and Bowling 2008) which enables to simultaneously execute an RL algorithm,
training a model, and planning with the model. In learning Task3 after Task2,
a model M2 is generated from M1 if they have common elements. For example,
learning walking and learning turning can have a similar dynamics model if their
state-action spaces are the same.

Figure 1.3(c) illustrates learning with a hierarchical architecture. A hierarchi-
cal action space H1 where some tasks are handled as subtasks is generated by
LS-hier. Here, H1 assumes that the behavior modules for the subtasks are pre-
viously learned. A behavior module B8 is generated by a learning-from-scratch
strategy where H1 is used as an action space. B7 uses an ordinary action space.

1.3 Contributions

Making the highly modularized learning system results the following technolo-
gies.

SkyAI: an open source software library of RL methods to implement the pro-
posed system. The distinct feature is its modular architecture which real-
izes high execution-speed enough for real robot systems and high flexibility
to design learning systems. SkyAI is designed so that the modular struc-
ture can be changed during execution.

DCOB: a method to generate a discrete action space from a set of basis func-
tions given to approximate a value function. The distinct feature is its appli-
cability to large domains. The name is derived from the fact that an action
is a trajectory Directed to the Center Of a target Basis function. WF-DCOB
is also developed as an extension of DCOB to search continuous actions
around each discrete action of DCOB; the name comes from using wire-
fitting (Baird and Klopf 1993). WF-DCOB is also designed to be suitable for
the learning strategies.

Model decomposition: a method to decompose a dynamics model into task
specific and task invariant elements. This method enables to transfer a dy-
namics model of a task to one of the other tasks.

LS Fusion: the core method for the highly modularized learning system. In
addition, LSs are defined by using the proposed methods, WF-DCOB and

1.3. CONTRIBUTIONS 7

the model decomposition.
Learning humanoid locomotion: research for applying the highly modular-

ized learning system to learning locomotion by a human-size humanoid
robot. A new learning scheme is studied where the robot is embedded
with a primitive balancing controller during learning.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

Figure 1.4 shows the outline of this thesis and the relation of the chapters. Chap-
ter 2 describes preliminaries of this thesis, which includes a brief introduction to
RL methods and definitions of benchmark tasks commonly used in this thesis.
Chapter 3 introduces the RL library, SkyAI, which is used to implement the al-
gorithms proposed in this thesis. Chapter 4 proposes DCOB and WF-DCOB, and
Chapter 5 proposes a model decomposition method. These methods are used to
define the LSs in Chapter 6. LS fusion is also proposed in Chapter 6. In Chap-
ter 7, an application to learning locomotion by a human-size humanoid robot is
demonstrated. Finally, Chapter 8 concludes the thesis.

Figure 1.4 The outline of this thesis and the relation of the chapters.

9

Chapter 2

Preliminaries

This chapter describes the preliminaries of this thesis. Concretely, Sec-
tion 2.1 introduces two major RL methods, Section 2.2 describes two function
approximators used in this thesis, Section 2.3 provides three basis function
allocation methods, and finally, Section 2.4 defines three benchmark tasks.

2.1 Reinforcement Learning

The purpose of RL is for a learning system (agent) whose input is a state xn ∈ X
and a reward Rn ∈ R, and whose output is an action un ∈ U , to acquire the policy
π(xn) : X → U that maximizes the expected discounted return E

[
∑∞

k=1 γk−1Rn+k
]

where n ∈ N = {0, 1, . . . } denotes the time step and γ ∈ [0, 1) denotes a dis-
count factor. In value-function-based RL algorithms, an action value function
Q(x, u) : X × U → R is learned to represent the expected discounted return by
taking an action u from a state x. Then, the optimal action rule is obtained from
the greedy policy π(x) = arg maxu Q(x, u).

Another approach to find the optimal policy is searching directly in the policy
space. The Natural Actor Critic (NAC) (Peters, Vijayakumar, and Schaal 2003) is
a typical example. However, this kind of approach strongly depends on the ini-
tial value of the policy parameter, especially in large domains. In our learning-
from-scratch case, we assume that the value-function-based RL methods may
obtain better policy since they can have richer policy parameterization. Thus, we
test Peng’s Q(λ)-learning algorithm (Peng and Williams 1994) and fitted Q itera-
tion algorithm (Ernst, Geurts, and Wehenkel 2003; Ernst, Geurts, and Wehenkel
2005).

In general, fitted Q iteration requires appropriate samples, but it is difficult
to obtain such samples with a random policy. In our preliminary experiments,
though we applied fitted Q iteration in batch mode of small sizes, we were aware
that Q(λ)-learning is better in the early stage of learning. A possible reason is that

10 CHAPTER 2. PRELIMINARIES

since we reduce the set of basis functions of a function approximator to improve
the learning speed, the system loses the Markov property. Thus, we mainly use
Q(λ)-learning, and apply fitted Q iteration to the same function approximator
only with sample sequences of higher return.

2.1.1 Peng’s Q(λ)-learning

The Peng’s Q(λ)-learning algorithm (Peng and Williams 1994) is an on-line RL
method. The update procedure for a generic function approximator Q(x, u) of
the parameter θ ∈ Θ is written as follows:

en = Rn + γVn(xn+1)−Vn(xn), (2.1a)

e′n = Rn + γVn(xn+1)−Qn(xn, un), (2.1b)

θn+1 = θn +αenTrn +αe′n∇θQn(xn, un), (2.1c)

Trn+1 = (γλ)(Trn +∇θQn(xn, un)), (2.1d)

where ∇θQ(x, u) denotes the derivative of Q(x, u) w.r.t. the parameter θ, α de-
notes a step-size parameter, Tr denotes the eligibility trace (Tr0 = 0 ∈ Θ), and
Vn(x) � maxu Qn(x, u). This update procedure is applied after each action.

In order to make learning stable, replacing trace (Singh and Sutton 1996) is
applied after each update of the eligibility trace. Note that replacing trace is
effective only for a linear action value function and applicable BFs are limited as
Tsitsiklis et al. pointed out (Tsitsiklis and Roy 1997). Thus, in this thesis, replacing
trace is applied to only Q(λ)-learning with a linear function approximators.

2.1.2 Fitted Q Iteration

The fitted Q iteration algorithm (Ernst, Geurts, and Wehenkel 2003; Ernst, Geurts,
and Wehenkel 2005) is a batch mode RL method to learn from sample trajecto-
ries whose element is a four-tuple Fn = (xn, un, xn+1, Rn). The idea of fitted Q
iteration is as follows: first, we build a training set from the current function
approximator and a set of four tuples. Then, we train the next function approxi-
mator with the training set by a supervised learning method. Iterating these two
steps, the function approximator will converge to the action value function.

The action value function approximator Q0 is initialized so that Q0(x, u) = 0
for all (x, u) ∈ X × U . In the N-th iteration, the training set {in, on} is built from

2.2. FUNCTION APPROXIMATORS 11

the current function approximator QN−1 and the set of four tuples {Fn} by

in = (xn, un), (2.2)

on = Rn + γ max
u

QN−1(xn+1, u). (2.3)

Then, QN is trained with {in, on}. We implement this supervised learning with a
gradient descent for the least squares.

As mentioned above, we combine fitted Q iteration and Q(λ)-learning. At
the end of each action, we apply the update rule of Q(λ)-learning and store the
sample. At the end of every NFQI episodes, we execute an iteration of fitted Q
iteration with the samples in the top Nsmpl episodes ranked by the return of the
episode.

2.2 Function Approximators

Next, we describe some function approximators for the action value functions
Q(x, u). For a continuous state space X and a discrete action space U , we use
a linear function approximator because of its stability. If both the state and the
action spaces are continuous, we employ wire-fitting (Baird and Klopf 1993). The
notable feature of wire-fitting is that we can maximize Q(x, u) w.r.t. u by evalu-
ating only on a fixed number of points.

2.2.1 Linear Function Approximator (LFA) with NGnet

For a continuous state x ∈ X and a discrete action u ∈ U , we let Q(x, u) =
θ	u φ(x), where φ(x) = (φ1(x), . . . ,φ|K|(x))	 denotes the feature vector of a state
x, K = {φk | k = 1, 2, ..} denotes a set of basis functions, and θu ∈ R|K|×1

denotes a parameter related to an action u. The parameter vector is defined as
θ = (θ	1 , . . . ,θ	|U|)

	 ∈ R|K||U |×1. The derivative of the Q(x, u) w.r.t. θ is given

by∇θQn(x, u) = (δ1uφ
	
1 , . . . , δ|U |uφ	|U|)

	 where δ denotes the Kronecker’s delta.
Note that in the learning-from-scratch case, the parameter θ is initialized by zero.

As basis functions, we use Normalized Gaussian Network (NGnet) (Sato and
Ishii 2000) which is sometimes used as the basis functions of function approxi-
mators in RL applications (Morimoto and Doya 2001). In NGnet, φk(x) is given
by

φk(x) =
G(x; μk, Σk)

∑k′∈K G(x; μk′ , Σk′)
, (2.4)

12 CHAPTER 2. PRELIMINARIES

where G(x; μ, Σ) denotes a Gaussian with mean μ and covariance matrix Σ. In
the case of a linear function approximator, K is predefined and {μk, Σk | k ∈ K}
are treated as fixed parameters.

In the following, we refer to the linear function approximator with NGnet as
LFA-NGnet.

Action Selection for LFA-NGnet

As an exploration policy, we introduce Boltzmann selection method (Sutton and
Barto 1998). An action u ∈ U is selected with the probability

π(u|x) =
exp(1

τ Q(x, u))

∑u′∈U exp(1
τ Q(x, u′))

, (2.5)

where τ denotes a temperature parameter. Letting τ = 0 gives the greedy policy.

2.2.2 Wire-Fitting

For a continuous state x ∈ X and a continuous action u ∈ U , wire-fitting is
defined as:

Q(x, u) = lim
ε→0+

∑i∈W (di +ε)−1qi(x)
∑i∈W (di +ε)−1 , (2.6)

di = ‖u− ui(x)‖2 + C
[
max
i′∈W

(qi′(x))− qi(x)
]
. (2.7)

Here, a pair of the functions qi(x) : X → R and ui(x) : X → U (i ∈ W) is
called a control wire; wire-fitting is regarded as an interpolator of the set of control
wires W . C is the smoothing factor of the interpolation; we choose C = 0.001
in the experiments. Any function approximator is available for qi(x) and ui(x).
Regardless of the kind of the function approximators, one of qi(x), i ∈ W is equal
to maxu Q(x, u) and the corresponding ui(x) is the greedy action at x.

We use NGnet for qi(x) and a constant vector for ui(x), that is, we let qi(x) =
θ	i φ(x) and ui(x) = Ui, where φ(x) is the feature vector of the NGnet. The
parameter vector θ is defined as θ	 = (θ	1 , U	

1 ,θ	2 , U	
2 , . . . ,θ	|W|, U	

|W|), and the
gradient ∇θQ(x, u) can be calculated analytically.

Parameter Initialization and Constraints

In the learning-from-scratch case, {θi|i ∈ W} are initialized by zero. For {Ui|i ∈
W}, a typical initialization method is assigning random values, but this initial-
ization sometimes leads to undesirable local maxima. Instead, we initialize them

2.3. BASIS FUNCTION ALLOCATION 13

on a Grid over a command space. During learning, each Ui is constrained around
the corresponding point on the Grid, which improves the learning stability.

Action Selection for Wire-Fitting

As an exploration policy in using wire-fitting, we use the Boltzmann-like selec-
tion method. A control wire i is considered to be a discrete action whose action
value is qi(x), and one of the control wires is chosen by Boltzmann selection.
Then the corresponding ui(x) is the selected action. Namely, a control wire i ∈ W
is selected by the probability

π(i|x) =
exp(1

τ qi(x))

∑i′∈W exp(1
τ qi′(x))

, (2.8)

where τ denotes a temperature parameter. Then the corresponding ui(x) is the
selected action. We refer to this method as WF-Boltzmann. The same as Boltz-
mann selection, letting τ = 0 gives the greedy policy.

2.3 Basis Function Allocation

Allocating BFs is a major factor to determine the learning performance, espe-
cially in large domains. This section introduces three allocation methods: grid
allocation, spring-damper allocation, and dynamics-based allocation. The grid
allocation requires an exponential number of BFs with respect to the dimension-
ality of a state-action space, while the others can choose the number of BFs.

2.3.1 Grid Allocation

This method allocates BFs on a grid where each dimension of the state-action
space is divided independently. Grid allocation is widely used (e.g. (Matsubara,
Morimoto, Nakanishi, Hyon, Hale, and Cheng 2007)) for ease of use. However,
since the number of BFs increases exponentially w.r.t. the dimensionality of the
state-action space, applying this allocation method to large domains is difficult.

2.3.2 Spring-Damper Allocation

This method allocates a given number of BFs so that they spread as widely as
possible. Since this method can choose the number of BFs, applying it to large
domains is easier than that of grid allocation. In spring-damper allocation, first,

14 CHAPTER 2. PRELIMINARIES

we allocate BFs randomly. The covariance matrix of each BF is constrained to
Σ = σ21 where 1 is a unit matrix. Then, they are re-arranged so that the centers of
the BFs spread as widely as possible and σ becomes as large as possible without
overlapping. The detailed algorithm is described in Appendix A.

2.3.3 Dynamics-Based Allocation

The dynamics-based allocation is similar to the spring-damper allocation, that is,
we first choose the number of BFs. However, the dynamics-based method allo-
cates BFs according to the dynamics of the robot, which may make the allocation
better than that of spring-damper method.

Let us remember that we do not have a dynamics model of the robot. In
the dynamics-based allocation, we construct a function approximator of given
number of BFs as the dynamics model of the robot. Specifically, we first obtain a
data set {x, ũ|x ∈ X , ũ ∈ Ũ} from random motions where X is a state space, and
Ũ is a control command space (e.g. torque space). Then, we train the function
approximator

ẋ = ∑
k∈K

(
Ak

(x
ũ

)
+ bk

)
φk(x; μk, Σk) (2.9)

with the data set, where {Ak, bk, μk, Σk|k ∈ K} are the parameters of the approx-
imator, K is a set of BFs of the given number, and φk is a normalized Gaussian
(eq. (2.4)). The parameters are trained by EM algorithm with unit manipulations1

(Sato and Ishii 2000). The obtained BFs {μk, Σk|k ∈ K′} are used for RL where K′
denotes a new set of BFs.

The advantage of this allocation is explained as follows. In general, a higher
resolution policy is required in state regions of higher nonlinear dynamics, while
a lower resolution policy is enough in state regions of near linear dynamics. On
the other hand, by using the dynamics-based allocation, more BFs are allocated
over state regions of higher nonlinear dynamics, while less BFs are allocated over
state regions of near linear dynamics. Thus, this allocation is considered to be
suitable to represent a policy. Nevertheless, since the policy also depends on
the reward function, this allocation is not the best, but proper when allocating
without task information. This method is based on the idea of MOSAIC model
(Wolpert and Kawato 1998; Doya, Samejima, Katagiri, and Kawato 2002).

1Actually, unit division and unit deletion are implemented.

2.4. BENCHMARK TASKS 15

2.4 Benchmark Tasks

This section describes some benchmark tasks to test the proposed methods. In
the following tasks, the reward function r(t) is calculated at each time step t
rather than at each action. The purpose is to compare different action sets evenly
since they have different durations. The reward for an action is obtained by
summing r(t) during the action.

2.4.1 Task Maze2D

This task is a navigation task of an omniwheel mobile robot. The robot can move
in any direction on a 2-dimensional plane (x1, x2), x1, x2 ∈ [−1, 1] (Figure 2.1).
This task is performed in simulation. The state of the robot is its global position
which is expressed as

x = (x1, x2)	, (2.10)

and its control input is the state transition in a time step δt = 0.01 which is
expressed as

ũ = (Δx1, Δx2)	. (2.11)

In this environment, there is some wind that changes the behavior of the robot in
the direction of the arrows as shown in Figure 2.1. There are also walls which the
robot can not pass through. There are four types of mazes, referred to as easy1,
easy2, middle, and hard, as shown in Figure 2.2. The specific calculation of the
dynamics of the environment is described in Appendix B.

The objective of the navigation task is to acquire a path from the start to the
goal. According to this objective, the reward function is designed by,

r(t) = rg(t)− rsc(t)− ros(t) (2.12)

rg(t) =

{
1 (‖xg − x′‖ < ρg)
0 (otherwise)

(2.13)

rsc(t) = 25‖ũ(t)‖2δt (2.14)

ros(t) =

{
0.5 (x′ /∈ Xpl)
0 (otherwise)

(2.15)

where x′ = x(t + δt), Xpl = {(x1, x2) | x1 ∈ [−1, 1], x2 ∈ [−1, 1]}. rg(t) is the
reward for getting closer to the goal, rsc(t) is the step cost, ros(t) is the penalty

16 CHAPTER 2. PRELIMINARIES

Figure 2.1 Environment of the robot navigation task.

Figure 2.2 Types of mazes.

2.4. BENCHMARK TASKS 17

for going out of the plane. xg denotes the goal state, and ρg = 0.15 denotes the
radius of the goal. Note that the goal reward and the out-of-plane penalty are
given once in each episode. Each episode begins with the start state x(0) = xs,
and ends if the robot has reached the goal, gone outside (x′ /∈ Xpl), or t > 12.

We use NGnet with 64 BFs allocated as shown in Figure 2.1 to approximate
the action value function. These BFs are allocated on a 8 × 8 grid with added
random noise to each center and covariance.

2.4.2 Task HumanoidML-crawling, turning

HumanoidML is a motion learning task of a humanoid robot. Experiments are
performed in simulation using a dynamics simulator ODE (Open Dynamics En-
gine (Smith 2006)). Figure 2.3 shows the simulation model. Its height is 0.328m.
It weights 1.20kg. Each joint torque is limited to 1.03Nm, and a PD-controller
is embedded on it. The dynamics simulation is calculated with a time step δt =
0.2[ms]. A crawling and a turning task are performed with this robot.

The whole-body state xw of the robot consists of the global position (c0x, c0y,
c0z) (the center-of-mass of the body link), the global orientation in quaternion
(qw, qx, qy, qz), their velocities (ċ0x, ċ0y, ċ0z,ωx,ωy, ωz), joint angles (q0, . . . , q16),
and joint angular velocities (q̇0, . . . , q̇16). Thus, the whole-body state xw is a 47-
dimensional vector. The corresponding control command input ũw is the target
joint angles, which is denoted as (qtrg

0 , . . . , qtrg
16). Note that we can also directly

control the joint torques.

Figure 2.3 Simulation model of a humanoid robot.

18 CHAPTER 2. PRELIMINARIES

DoF Configurations

For RL, it is difficult to directly handle all 17-DoFs. Thus, some reduced DoF
configurations are defined. This dimension reduction is performed by defin-
ing constant matrices CX and CŨ such that x = CX xw, ũw = CŨ ũ where x ∈
X , xw ∈ Xw, ũ ∈ Ũ , and ũw ∈ Ũw. The pair (Xw, Ũw) denotes the overall
(whole-body) state-command space. The pair (X , Ũ) denotes the reduced state-
command space.

The following are the prepared DoF configurations (Figure 2.4).

3-DoF (X3, Ũ3) : Joint pairs {q1, q3, q4, q6}, {q8, q13}, {q9, q10, q14, q15} are coupled
respectively, which gives a bilateral symmetry. The default BFs are allocated on
a 5× 5× 5 grid over the reduced joint angle space.

4-DoF (X4, Ũ4) : Joint pairs {q1, q3}, {q4, q6}, {q8, q9, q10}, {q13, q14, q15} are cou-
pled respectively, which means a single DoF for each leg. The default BFs are
allocated on a 4× 4× 4× 4 grid over the reduced joint angle space.

5-DoF (X5, Ũ5) : Joint pairs {q1, q4}, {q3, q6}, {q8, q13}, {q9, q14}, {q10, q15} are
coupled respectively, which gives a bilateral symmetry. The default BFs are allo-
cated by the dynamics-based allocation method over the global state space and
the reduced joint angle/angular velocity space. Specifically, 202 BFs are allo-
cated.

6-DoF (X6, Ũ6) : A coupled joint pair {q7, q12} is added to the 5-DoF, which also
gives a bilateral symmetry. The default BFs are allocated by the spring-damper
allocation method over the reduced joint angle space. Specifically, 300 BFs are
allocated.

7-DoF (X7, Ũ7) : A coupled joint pair {q2, q5} is added to the 6-DoF, which also
gives a bilateral symmetry. The default BFs are allocated by the spring-damper
allocation method over the reduced joint angle space. Specifically, 600 BFs are
allocated.

16-DoF (X16, Ũ16) : Only the head link is fixed, while the other joints can move
independently. The default BFs are not allocated on X16.

For the ND-DoF configuration, let qND denote the reduced joint angle vector.
The command input space of ND-DoF configuration is a target value of qND or
the corresponding torques.

2.4. BENCHMARK TASKS 19

Figure 2.4 DoF configurations of the humanoid robot.

Task HumanoidML-crawling

The objective of the crawling task is to move forward along the x-axis as far as
possible. According to the objective, the reward is designed as follows:

r(t) = rmv(t)− rsc(t)− rfd(t) (2.16)

rmv(t) = 50ċ0x(t) (2.17)

rsc(t) = 2× 10−5‖ũ(t)‖ (2.18)

where rmv(t) is the reward for forward movement, rsc(t) is the step cost, rfd(t) is
the penalty for falling down. rfd(t) takes 4 if the body or the head link touches
the ground, otherwise it takes 0. The penalty for falling down is given once in
each action. Each episode begins with the initial state where the robot is standing
up and stationary, and ends if t > 20[s] or the sum of reward is less than −40.

20 CHAPTER 2. PRELIMINARIES

Task HumanoidML-turning

The objective of the turning task is to turn around the z-axis as fast as possible.
According to the objective, the reward is designed as follows:

r(t) = rtn(t)− rsc(t)− rfd(t) (2.19)

rtn(t) = 2.5ωz(t) (2.20)

rsc(t) = 2× 10−5‖ũ(t)‖+ 0.5‖(ċ0x, ċ0y)‖ (2.21)

where rtn(t) is the reward for turning, rsc(t) is the step cost for the torque usage
and the x − y global movement, rfd(t) is the penalty for falling down. rfd(t)
takes 4 if the body link touches the ground, takes 0.1 if the head link touches the
ground; otherwise it takes 0. rfd(t) is given once in each action. Each episode
begins with the initial state where the robot is standing up and stationary, and
ends if t > 20[s] or the sum of reward is less than −40.

2.4.3 Task BioloidML-crawling

BioloidML is a motion learning task of an actual small robot, Bioloid, made by
ROBOTIS co. We use a King Spider model of Bioloid as shown in Figure 2.5. A
crawling task is performed with this robot.

The whole-body state xw of the robot consists of only the joint angles (q1,
. . . , q18), specifically, it does not include the global position and orientation. The
absence of these observations may break the Markov property of the task. The

Figure 2.5 King Spider (ROBOTIS Bioloid) which has 18 DoF.

2.4. BENCHMARK TASKS 21

Figure 2.6 Setup of experimental environment.

reasons for these absences are that (1) using the Bioloid product as it is makes
verification experiments easy for the other researchers, and (2) we can verify
the applicability to POMDPs (Partially Observable Markov Decision Processes).
Thus, the whole-body state xw is a 18-dimensional vector. The corresponding
control command input ũw is the target joint angles, which is denoted as (qtrg

1 ,
. . . , qtrg

18).

As similar to the tasks HumanoidML, a reduced DoF configuration is defined
as follows.

5-DoF (X5, Ũ5) : Joint pairs {q1, q2}, {q3, q4, q5, q6}, {q7, q8}, {q9, q10, q11, q12},
{q15, q16} are coupled respectively, which gives a bilateral symmetry. The other
joints are fixed to a neutral angle; q13 = q14 = q17 = q18 = 0. The default BFs are
allocated on a 3× 3× 3× 3× 3 grid over the reduced joint angle space.

Sensors

Other than the joint angle sensors, we use an infrared ray (IR) sensor to observe
the distance from the robot to an obstacle. Let dIR denote the distance processed
by a low-pass filter.

22 CHAPTER 2. PRELIMINARIES

Experimental Environment

The experimental environment is configured as shown in Figure 2.6. The robot is
put in front of a wall; the IR sensor measures the distance from the robot to the
wall. The robot is connected to a computer2 and communicates with it through a
serial protocol. In each δt = 0.1[s], the target joint angles ũ are sent to the robot.

Task BioloidML-crawling

The objective of the crawling task is to move forward as far as possible, whose
reward is designed as follows:

r(t) = vIR(t)− 0.15, (2.22)

where vIR(t) denotes the velocity of the robot calculated from dIR(t). Thus, in the
summation of the robot (return), the vIR(t) term indicates a moving distance and
the constant (0.15) term denotes a penalty for elapsed time. Each episode begins
with an initial pose (q1 = −q2 = −π/9, q3,...,18 = 0), and ends if t > 50[s], the
robot touches the wall (determined by the operator), or some problems arise.

2A laptop PC: Pentium M, 2[GHz], 512[MB] RAM, Debian Linux.

23

Chapter 3

SkyAI : Highly Modularized RL Library

This chapter introduces a software library of reinforcement learning (RL)
methods, named SkyAI. This library is a highly modularized RL library for
real and simulated robots to learn behaviors. SkyAI aims to provide an im-
plementation of the proposed methods in this thesis, especially the learning
strategy fusion method. For this purpose, SkyAI realizes two conflicting
features: high execution-speed enough for real robot systems and high flex-
ibility to design learning systems. This chapter describes the concepts, the
requirements, and the current implementation of SkyAI.

3.1 Introduction

As described in Chapter 1, multiple learning strategies (LSs) are applied to a sin-
gle task multiple times. Namely, the structure of the modules is modified in
runtime. Thus, an implementation of the LSs and the modules is required to be
highly flexible to modify the modular structure in addition to high execution-
speed, enough for real robot systems.

Many of existing software libraries of RL are written in script languages,
whose execution-speed is relatively slow. Some existing libraries written in com-
piler languages do not have flexibility.

Thus, a compact middleware is developed to realize high flexibility and high
execution-speed. RL algorithms and the proposed methods in this thesis are im-
plemented as modules on the middleware. Concretely, the middleware and ev-
ery modules are written in C++, and a script interface is provided to modify
the modular structure in runtime. The implemented software library is an open
source software library released as SkyAI.

In the rest of this chapter, Section 3.2 describes the overview. In Section 3.3, we
discuss about the related works. In Section 3.4, an experiment of speed compar-
ison with the other implementation styles is demonstrated. Finally, Section 3.5

24 CHAPTER 3. SKYAI : HIGHLY MODULARIZED RL LIBRARY

concludes this chapter.

3.2 Overview

This section describes the principal concepts of SkyAI, the requirements basing
on the concepts, the solutions, and an overview of a system with SkyAI.

3.2.1 Principal Concepts

High modularization

The approach of the SkyAI is modularization of the RL or the other machine-
learning algorithms. Modular architecture enables the following features:

High extensibility: Modular architecture makes it easy to create a new mod-
ule by inheriting the other module. Adding new functions, or specializing
some functions are realized with a little modification. Thus, the library can
be highly extensible.

High reusability of implementation: Modular architecture can separate a task
(problem) specific implementation into modules. Typical examples are re-
ward modules and low-level robot controller. In addition, we can make
generic, i.e. highly reusable, modules.

High reusability of learned knowledge: Modular architecture can also enhance
the reusability of learned knowledge, such as a learned policy by an RL al-
gorithm, a dynamics model, and a reward model.

High execution-speed and high flexibility

SkyAI must be executed in high speed, and should also be highly flexible. These
are very important features for SkyAI to be applied to real robot systems. Real
robot systems require high-speed execution. On the other hand, we need high
flexibility like script languages. Generally, these two features are conflicting.

Developer friendly

Highly-modularized architecture has many benefits as mentioned above, how-
ever, it sometimes makes development difficult. SkyAI pursues a developer-
friendly implementation to boost the participation of many researchers and de-
velopers.

3.2. OVERVIEW 25

3.2.2 Requirements and Solutions

Writing in a compiler language

To achieve the high execution-speed, SkyAI should be written in a compiler lan-
guage. We choose C++. In general, a C++ source code is compiled to an exe-
cutable code whose execution speed is almost of the highest level. This is very
suitable for real robot systems.

Each module is implemented as a class of C++. Generally, communication
between classes is performed by member functions1. We basically use call-by-
reference for the functions, which enables high-speed communication.

Once compiled, reconfigurable infinitely

Once a C++ source code is compiled, it is difficult to modify its scheme. Thus,
SkyAI wraps the C++ class system and provides a script interface so that the modular
structure can be changed by the script after compiling the source code.

To change the modular structure dynamically, the member functions for the
communication between classes are needed to be connected and disconnected.
Thus, each member function is encapsulated as a port class. Each module can
have any number of ports. Ports can be connected and disconnected at any time
in execution, which enables the reconfiguration of the modular structure.

A script language is defined to provide an interface of modular manipulations
during execution. Specifically, instantiating modules, connecting ports, and set-
ting parameters of the modules (e.g. a learning rate) can be described in the script
language.

Using standard preprocessor and compiler

To make a module program compatible with the modular architecture, the pro-
gram should follow some rules and regulations of SkyAI. Some similar software
platforms, such as (Ando, Suehiro, and Kotoku 2008), provide their own pro-
grams to generate system-compatible source code. However, such a system often
makes modification complicated.

In contrast, SkyAI provides some macros and templates2 to support the de-
velopers to easily write system-compatible source code. The macros and the tem-
plates can be processed by a standard preprocessor and compiler; code genera-

1Public member variables are also available, but, they can be replaced by so-called accessors.
2Strictly, template functions and template classes of C++.

26 CHAPTER 3. SKYAI : HIGHLY MODULARIZED RL LIBRARY

tors are not required. Thus, it is easy for the developers to modify source code
with the system-compatibility.

3.2.3 Overview of System with SkyAI

The center of a software using SkyAI is an agent class. The agent class manages
whole module instances, and has a parser for the script language. The agent class
is provided as a generic one available for any applications. A user instantiates
the agent class and calls the parser from the C++ source code (basically, in the
main function).

Figure 3.1 illustrates an example of a modular structure around an RL mod-
ule. In an on-line learning system, there are several kinds of cycles, such as an
episode, an action, and a time step of a low-level controller. SkyAI’s modular
architecture can handle any number of cycles as shown in Figure 3.1.

SkyAI’s architecture enables the modularization of RL algorithms as generic
ones. Users of SkyAI should implement modules specific to tasks and robots,
such as a low-level robot controller. Thus, in order to apply SkyAI, (1) the user
implements some modules specific to tasks and robots, then, (2) the user builds
them with the provided modules and the agent class. Finally, (3) the user writes
a script for a specific task.

Figure 3.1 Example modular structure around an RL module.

3.3. RELATED WORKS 27

3.3 Related Works

There are similar works to develop libraries for RL or other machine-learning
methods. Compared to the libraries written in script languages, such as Python
and MATLAB, SkyAI has an advantage in execution speed. SkyAI is therefore
considered to be more suitable for real robot systems.

Some libraries mainly written in a script language use a compiler language
in crucial bottleneck parts. For example, PyBrain (Schaul, Bayer, Wierstra, Sun,
Felder, Sehnke, Rückstieß, and Schmidhuber 2010) is written in Python, but some
parts are written in C/C++ which are referred from the Python code by using
SWIG3. There are two reasons why SkyAI does not use such a technology but
defines a custom script language. First, SkyAI provides a composite module archi-
tecture to compose some modules, and existing script languages are considered
to be not suitable to define a composite module. Second, SkyAI is using some
features of C++ that are not supported by SWIG. However, it is considered to
be possible and useful that we implement an interface for Python or other script
languages. The important fact is that SkyAI is completely written in C++ and
provides an interface to manipulate the modular architecture.

The core architecture of SkyAI is a middleware. There are some middlewares
for robotics, such as YARP4, ROS5, and OpenRTM (Ando, Suehiro, and Kotoku
2008). Another objective of SkyAI is to make a learning system by combining
highly reusable modules. A highly reusable module generally becomes small, so
SkyAI needs to prevent overhead of communication between modules. Thus, we
implement each port of a SkyAI’s module as an encapsulated function of call-by-
reference, whose overhead may be smaller than that of the middlewares listed
above.

3.4 Experiment: Speed of Modular Communication

The largest execution cost in the SkyAI system is the overhead of modular com-
munication. Thus, we test the speed of modular communication. We imple-
ment a modular structure which is equivalent to the C++ code listed in Fig-
ure 3.2, where N1 and N2 are constant integers to vary the calculation amount.
We make two modules (Figure 3.3); MTest as an equivalent module of TTest,

3Simplified Wrapper and Interface Generator: www.swig.org
4Yet Another Robot Platform: eris.liralab.it/yarp
5Robot Operating System: www.ros.org

28 CHAPTER 3. SKYAI : HIGHLY MODULARIZED RL LIBRARY

and MRepeater for repeating. By observing the execution time, we determine
the overhead of modular communication compared to the calculation time in the
Step function.

Table 3.1 shows the execution time in second (the mean of 100 execution).
“C++ class” denotes using TTest of a normal C++ code (Figure 3.2), “No com”
denotes using MTest (SkyAI’s module) but no modular communication (just
calling functions of each port), “SkyAI” denotes using MTest and MRepeater

in SkyAI’s manner, and “Python+SWIG” denotes using Python that calls TTest
of a normal C++ code N1 times through SWIG6. In the N1 = 108, N2 = 100 case,
“Modular com” takes more time than “C++ class” and “No com”. The reason
is that the cost of calculation in the Step function is quite small and almost the
same as the overhead of the modular communication in SkyAI. In the other case,
the execution time of these three are almost the same. Every execution time of
“Python+SWIG” is longer than the others. The major reason is considered to be
the slowness of Python’s repeating process.

Therefore, we figure out that if a calculation process of a port is very small,
such as just a scalar calculation, the modular communication cost is relatively
large, but for an usual calculation process, such as update of an RL policy, the
modular communication cost can be ignored. Thus, SkyAI achieves high-speed
communication.

6http://www.swig.org/

3.4. EXPERIMENT: SPEED OF MODULAR COMMUNICATION 29

class TTest
{
public:
void Init() {a_=1;}
void Step()

{for(int i(0);i<N2;++i) {a_+=(a_%10==0)?2:1;}}
void Print() {cerr<<a_<<endl;}

protected:
int a_;

};
int main(int argc, char**argv)
{
TTest test;
test.Init();
for (int i=0;i<N1;++i) test.Step();
test.Print();
return 0;

}

Figure 3.2 C++ code for testing the speed of modular communication.

Figure 3.3 Modular structure for testing speed.

Table 3.1 Execution time (second).

N1 N2 C++ class No com SkyAI Python+SWIG

108 100 0.70 0.69 3.30 113.67

107 101 0.69 0.68 0.89 11.94

106 102 0.64 0.66 0.70 1.79

105 103 0.63 0.65 0.66 0.79

30 CHAPTER 3. SKYAI : HIGHLY MODULARIZED RL LIBRARY

3.5 Conclusion

This chapter described the principal concepts, the requirements, and the solu-
tions of SkyAI. This chapter also demonstrated the speed advantage of SkyAI
compared to the other implementation styles.

Thus, we consider that SkyAI already has the ability to handle real world
tasks. However, a lot of improvements are possible. The critical ones are

Improving the script language and GUI: A script seems complicated due to
its flexibility. We need to simplify it. A graphical user interface is also
useful.

Multi-threading: The current program works on only a single thread. Multi-
threading is desirable to speed-up the execution of the algorithms.

Transporting to the other platforms: Current implementation is only available
on Linux. But, we are going to transport to the other platforms, such as Mi-
crosoft Windows and Mac OS.

Naturally, implementing new modules of state-of-the-art RL methods and more
benchmark modules is an important future work. We also have a plan to make an
interface to the RL-Glue (Tanner and White 2009) which is a language-independent
software package for RL experiments. We encourage researchers to join the
SkyAI project: skyai.org.

31

Chapter 4

DCOB : Action Space for Large DoF Robots

This chapter proposes a discrete action set DCOB which is generated
from the basis functions (BFs) given to approximate a value function. Though
DCOB is a discrete set, it has an ability to acquire high performance motions.
Moreover, by using the dynamics-based BF allocation or the spring-damper
BF allocation (Section 2.3), the size of DCOB is reduced, which improves the
learning speed. In addition, a method WF-DCOB is proposed to enhance the
performance, where wire-fitting (Baird and Klopf 1993) is utilized to search
continuous actions around each discrete action of DCOB.

4.1 Introduction

In many RL applications to robot control, the action space U is defined as a con-
tinuous space since the command input space (we just refer to it as the command
space) Ũ is a continuous space. The simplest example of such an action space
is one which is the same as the command space (U = Ũ) (Kimura, Yamashita,
and Kobayashi 2001; Kondo and Ito 2004; Gaskett, Fletcher, and Zelinsky 2000;
Zhang and Rössler 2004). Some researchers define U so that it is suitable for
RL (Morimoto and Doya 1998; Nakamura, Mori, Sato, and Ishii 2007; Peters, Vi-
jayakumar, and Schaal 2003). However, RL in highly dimensional continuous
command space has issues:

(1) It is difficult to initialize parameters properly especially in a learning-from-
scratch case, which makes converging to undesirable local maxima.

(2) Sometimes the learning process becomes unstable.
(3) It is difficult to apply a value-function based RL method, since maximizing

the action value function w.r.t. an action is computationally costly.

Meanwhile, a discrete action set is often used in some RL methods (Uchibe
and Doya 2004; Takahashi and Asada 2003; Tham and Prager 1994; Kirchner

32 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

1998). The reasons are considered to be

(A) In general, learning in a discrete action space is more stable than learning
in a continuous action space.

(B) Implementing value-function based RL methods is easy.
(C) Some learning architectures can be defined simply, such as a hierarchi-

cal architecture (Takahashi and Asada 2003), a multi-module learning sys-
tem (Uchibe and Doya 2004), and a Dyna architecture (Sutton, Szepesvári,
Geramifard, and Bowling 2008).

However, there are few general ways to design a discrete action set. A typical
one is to independently divide each dimension of the command space. However,
such a method makes the size of the action set increase exponentially w.r.t. the
dimensionality of the command space.

Thus, a method is proposed to construct a discrete action set that is compact,
has an ability to acquire high performance motions, and is therefore applicable to
RL in large domains. Concretely, the proposed action set is named DCOB which
is generated from a set of BFs given to approximate a value function. DCOB is
designed to be able to acquire higher performance than a conventional discrete
action set that has the same size as DCOB. Moreover, reducing number of BFs
by some allocation methods reduces the size of DCOB since DCOB is generated
from the BFs. The examples of such a BF allocation method are the dynamics-
based and the spring-damper allocations defined in Section 2.3. Thus, DCOB has
advantages in both learning speed and ability to acquire performance.

The key technique of DCOB is the way to generate an action set from BFs.
DCOB requires that each BF has a center state as a parameter. Each action in
DCOB is designed to be a trajectory that is Directed to the Center Of a target BF
(which is the origin of the name). Here, each trajectory is terminated around the
nearest BF from the current state. This abbreviation of trajectory makes the ac-
tions suitable for the resolution of BFs. The BFs are also used to learn a policy,
therefore, it is considered that the abbreviation of trajectory improves the learn-
ing.

In addition, as an extension of DCOB, WF-DCOB is also proposed which uses
wire-fitting to search continuous actions around each discrete action of DCOB.
The aim of WF-DCOB is to acquire higher performance than DCOB while keep-
ing the learning stability and speed in learning-from-scratch cases. The key idea
of WF-DCOB is restricting the exploration around the actions in DCOB. This re-
striction makes the learning process stable and keeps the learning speed.

4.2. BFTRANS 33

Since there are some requirements for DCOB, DCOB and WF-DCOB do not
work with all kinds of robots. The methods are mainly applicable to articulated
robots, such as legged robots including humanoid robots, and manipulators.

The rest of this chapter is organized as follows. Section 4.2 describes an action
converter BFTrans commonly used in DCOB and WF-DCOB. Section 4.3 and 4.4
define DCOB and WF-DCOB respectively. Section 4.5 demonstrates the results
of some experiments. In Section 4.6, we discuss the convergence, computational
cost, available types of BF, and the relation to other works. Section 4.7 concludes
this chapter.

4.2 BFTrans

The core system of DCOB is an action converter referred to as BFTrans. BF-
Trans converts an input action u = (g, qtrg) into a sequence of control com-
mands, where g ∈ R is called an interval factor that decides a speed of motion,
and qtrg ∈ Q is the target point of a trajectory. The trajectory is determined by
u = (g, qtrg) and is followed by a low-level controller which outputs the com-
mand sequence. The command sequence is terminated after a short time with
which the state moves into the nearest BF from the starting state of the action
(which is the origin of the name BFTrans; transition between BFs). Thus, BFTrans
provides a continuous action space for RL methods. Let UBFTrans � R×Q denote
the space.

DCOB is generated by discretizing the interval factor space with a small set of
real numbers andQwith the set of BFs. Note that using the space converter (X to
Q), the centers of the BFs are distributed inQ, which means thatQ is discretized
by the BFs. WF-DCOB directly learns within the action space BFTrans using wire-
fitting. Figure 4.1 illustrates these relations. The rest of this section describes the
detail of BFTrans.

4.2.1 Assumptions

BFTrans assumes the following:

(A) Each BF k ∈ K has a fixed center μk ∈ X .
(B) Q, Cp(x), and Cd(x) are defined. Q: a space in which a reference trajectory

is calculated (e.g. a joint angle space). Cp(x): a function that extracts q ∈ Q
from a state x ∈ X as q = Cp(x) : X → Q. Cd(x): a function that extracts
the derivative of q ∈ Q from a state x ∈ X as q̇ = Cd(x).

34 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

�����
���	
����

����

������

���

	���
����
��
�
�����
��

����

�������

���	�
��

����

�������
�	��
�������	
�������	�

Figure 4.1 Relation among the basis functions (BFs), the wire-fitting, and the proposed methods,
BFTrans, DCOB, WF-DCOB. The continuous action space BFTrans is generated from
the BFs. The discrete action set DCOB is obtained by discretizing the BFTrans based
on the BFs. WF-DCOB directly learns within BFTrans using the wire-fitting where
the constraints of the parameters of the wire-fitting are generated from the BFs.

(C) A low-level controller ũ(t) = Ctrl(x(t), qd(t + δt)) is given to follow a tra-
jectory qd(t) (e.g. a PD-controller), where ũ is in Ũ and δt denotes a control
time-step.

We use NGnet in this thesis which satisfies (A). Radial BFs are alternative to
NGnet. The reason of assuming that the centers are fixed is to ensure the conver-
gence of learning.

4.2.2 Overview

When an action un = (g, qtrg) is input to BFTrans at step n (at time tn), the con-
version to a command sequence is performed as described in Algorithm 1 (see
also Figure 4.2).

BFTrans has following features as an action space:

(F1) The dynamics of the actions is suitable for the resolution of BFs.
(F2) The actions can reflect the range of the state space, such as joint angle

limitations.

(F1) is satisfied by abbreviating the trajectory. The original trajectory is a curve
segment of two points in the state space. On average, the length of a curve seg-
ment is comparatively long (see Figure 4.2 “Reference Trajectory”). If a motion

4.2. BFTRANS 35

����������	�
������

�������
���
	�
������

	
�������
��

����������
��

��
�����
��
���
�����������

Figure 4.2 Illustration of how an action in the BFTrans is executed. First, a reference trajectory
is generated, then it is abbreviated. The reference trajectory may change the state
greatly, so the obtained motion is coarse. To make the motion fine, the trajectory is
abbreviated.

Algorithm 1: Executing an action in the BFTrans

Input:Action un = (g, qtrg) ∈ R×Q = UBFTrans,

starting state xn = x(tn)

1: Estimate the time interval Tf of the trajectory from g, xn, qtrg

2: Generating a reference trajectory with which the state changes from xn to qtrg in Tf:
qd(tn + ta), ta ∈ [0, Tf]

3: Abbreviating the trajectory to ta ∈ [0, Tn] ⊆ [0, Tf] (Tn � Tf)

4: Following the trajectory with the low-level controller which outputs a command
sequence: ũ(tn + ta) = Ctrl(x(tn + ta), qd(tn + ta + δt)), ta ∈ [0, Tn)

5: The action un is finished; n ← n + 1

of the robot was represented by a sequence of such curve segments, the whole
trajectory of the motion would become coarse. To make a motion fine, each curve
segment is abbreviated (Figure 4.2 “Abbreviated Trajectory”). Note that this ab-
breviation does not reduce the variety of actions, since the original trajectory is
performed by repeating the action of the same target qtrg several times.

On the other hand, making each trajectory too short may cause long learning
time. A moderate length is one between a BF and the nearest BF from it, since the
representable fineness of a policy over the state space is almost the same as the
resolution of the BFs set. Thus, the original trajectory is abbreviated to the length
between the starting point and the nearest BF.

36 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

For (F2), if we select a target point inside the range of the state space, the
action rarely exceeds the range. This feature is kept for discretizing target point
space by the BFs set, since in many cases, the BFs are allocated inside the range
of the state space.

4.2.3 Generating Trajectory

The reference trajectory qd(tn + ta), ta ∈ [0, Tf] is designed so that the state
changes from the starting state xn = x(tn) to the target qtrg in the time interval
Tf. We represent the trajectory with a cubic function,

qd(tn + ta) = c0 + c1ta + c2t2
a + c3t3

a . (4.1)

The coefficients are calculated with the boundary conditions,

qd(tn) = Cp(xn), qd(tn + Tf) = qtrg,

q̇d(tn + Tf) = 0, q̈d(tn + Tf) = 0,
(4.2)

where 0 denotes a zero vector.
The motivation of introducing the interval factor g instead of Tf is to purely

represent the speed of the action. Such a parameter is suitable to explore in the
motion-speed space and is easily discretized. The speed of the action depends
on both Tf and the distance between Cp(xn) and qtrg, thus, we define g as the
normalized value of Tf by the maximum norm. Namely, we calculate Tf with

Tf = g
∥∥qtrg − Cp(xn)

∥∥
∞

(4.3)

where ‖ · ‖∞ denotes a maximum norm1.

4.2.4 Abbreviating Trajectory

Next, we abbreviate the reference trajectory as qd(tn + ta), ta ∈ [0, Tn] where 0 <

Tn � Tf to make the action suitable for the resolution of BFs. The abbreviation is
performed by cutting off the trajectory at ta = Tn where Tn is decided so that the
state moves into the nearest BF from the starting state 2.

The abbreviation is performed as follows: (1) estimate Dn(xn) indicating the
distance between two neighboring BFs around the start state xn, (2) calculate Tn

1For a vector x = (x1, . . . , xD), the maximum norm is defined as ‖x‖
∞

= maxn |xn|.
2We do not abbreviate the trajectory by observing the output of BFs since it is complicated to

treat a case: the output of BFs does not change around range of the state space. BFTrans with
such an abbreviation may remove the Markov property from a task.

4.2. BFTRANS 37

from the ratio of Dn(xn) and the distance between xn and qtrg. Here, we employ
a maximum norm as a distance rather than the L2-norm since the trajectory of
each joint is calculated independently.

To define Dn(xn), for each BF k, we first calculate dn(k) as the distance be-
tween its center μk and the center of the nearest BF from k. Then, we estimate
Dn(xn) by interpolating {dn(k)|k ∈ K} with the output of the BFs at xn.

dn(k) is calculated by

kn(k) = arg min
k′∈K,k′ =k

‖Cp(μk′)− Cp(μk)‖∞, (4.4)

dn(k) = max
(‖Cp(μkn(k))− Cp(μk)‖∞, dmin k

)
, (4.5)

where dmin k ∈ R is a positive constant to adjust dn(k) for too small ‖Cp(μkn(k))−
Cp(μk)‖∞. For NGnet, we define it as dmin k =

√
λQk where λQk is the maximum

eigenvalue of the covariance matrix ΣQk on the Q space3. Note that we can pre-
compute {dn(k)|k ∈ K} for fixed BFs.

Using the output of BFs φ(xn), Dn(xn) is estimated by

dn � (dn(1), dn(2), . . . , dn(|K|))	, (4.6)

Dn(xn) = d	n φ(xn). (4.7)

Finally, Tn is defined by

Tn(xn, un) =

{ FabbrvDn(xn)
‖qtrg−Cp(xn)‖∞

Tf (Dn(xn) < ‖qtrg − Cp(xn)‖∞)

Tf (otherwise)
(4.8)

where Fabbrv denotes a scaling factor which typically takes 1.

4.2.5 Following Trajectory

The abbreviated trajectory qd(t = tn + ta), ta ∈ [0, Tn) is followed by the low-
level as ũ(t) = Ctrl(x(t), qd(t + δt)), t ∈ [tn, tn + Tn). For the simulated small-
humanoid benchmarks, we use a simple PD-controller. For the Bioloid bench-
marks, we use controllers embedded on each joint actuator.

3ΣQk is calculated from the original covariance matrix Σk (on the X space) as follows. For ease
of calculation, let Cp(x) = Ĉpx where Ĉp is a constant matrix. The converted covariance matrix is
ΣQk = ĈpΣkĈ	

p .

38 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

4.3 DCOB

A discrete action set DCOB is defined by discretizing BFTrans. Recall that an
action in BFTrans is denoted by u = (g, qtrg) ∈ R×Q. The interval factor space
is discretized by a small set of real numbers I , andQ is discretized by a set of the
centers of the BFs {Cp(μk) | k ∈ K}. Let ADCOB denote DCOB: ADCOB = I ×K.
An action an in DCOB selected at step n (at time tn) is executed as follows:

Algorithm 2: Executing an action in DCOB

Input:Action an = (g, k) ∈ I ×K = ADCOB,

starting state xn = x(tn)

1: un ← (g, Cp(μk))

2: Execute BFTrans with un (Algorithm 1)

The size of DCOB is |I||K|. Since we use a small set |I|, the size of DCOB
is a few times the number of BFs. Thus, if the number of BFs is reduced (recall
Section 2.3), the size of DCOB is also reduced.

4.4 WF-DCOB

WF-DCOB directly learns in the continuous action space BFTrans with wire-
fitting. However, as described in Section 4.1, learning in a continuous action
space has issues in initializing parameters and learning stability. WF-DCOB tries
to solve these issues by restricting the exploration around the actions in DCOB;
namely, each fixed point in BFTrans that is an action of DCOB is allowed to move
inside a region around the point (Figure 4.3).

To do this, we prepare the control wires W whose number is the same as the
size of DCOB. Then, each control wire i ∈ W is initialized so that Ui indicates
the corresponding action of DCOB (recall Section 2.2.2). During learning, each
control wire is kept inside the constraint region. Instead of the set of interval
factors I , a set of interval factor ranges is defined for WF-DCOB. A set of ranges
IR is defined as

IR � {(gs
m, ge

m) | 0 < gs
m � ge

m, m = 1, 2, . . . }, (4.9)

where |I| = |IR|.

4.4. WF-DCOB 39

��������	�	�
������
����������

�������������	�	�
������
�
�����

�������������������

����������
���������

����

��� �����
�!"�����

�������������������

����������
���������

#
$����

���	������� ���
������ �����

Figure 4.3 Illustration of the comparison of DCOB (top) and WF-DCOB (bottom). In both meth-
ods, the trajectory is calculated in the same manner as the BFTrans. The difference
is that in DCOB, the target state is the fixed center of a selected basis function, while
in WF-DCOB, the target state can change but is constrained around a corresponding
basis function.

Initializing Wire-Fitting Parameters

For a control wire i ∈ W , we use adcob
i to denote the corresponding action in

DCOB: adcob
i = (gdcob

i , kdcob
i). Let (gs

i , ge
i) denote the range of the interval factor

which includes gdcob
i . For each control wire i ∈ W , its parameter is defined as

Ui = (gi, qtrg
i) and is initialized by

gi ←
gs

i + ge
i

2
, (4.10a)

qtrg
i ← Cp(μkdcob

i
). (4.10b)

The other parameters of the control wires {θi|i ∈ W} are initialized by zero, since
in a learning-from-scratch case, we do not have prior knowledge about the action
values.

Constraints on Wire-Fitting Parameters

For Ui = (gi, qtrg
i), the interval factor gi is constrained inside (gs

i , ge
i), and the

target point qtrg
i is constrained inside a hypersphere of radius dn(kdcob

i) centered
at Cp(μkdcob

i
). Here, dn(kdcob

i) denotes the distance to the nearest BF from kdcob
i

defined in eq. (4.5). Specifically, the parameter Ui = (gi, qtrg
i) of each control wire

40 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

i ∈ W is constrained by

if gi < gs
i then gi ← gs

i ,

if gi > ge
i then gi ← ge

i ,

if ‖qtrg
i − Cp(μkdcob

i
)‖∞ > dn(kdcob

i) then

qtrg
i ← Cp(μkdcob

i
) + dn(kdcob

i)
(qtrg

i − Cp(μkdcob
i

))

‖qtrg
i − Cp(μkdcob

i
)‖∞

.

(4.11)

This constraints are applied each after update of an RL algorithm.

4.5 Experiments

This section demonstrates experimental comparisons of the proposed methods
and the conventional methods. The tasks and the RL methods are defined in
Chapter 2.

4.5.1 Maze2D

Experiments of the task Maze2D are demonstrated. The compared methods are
DCOB with LFA-NGnet, WF-DCOB, a conventional discrete action set with LFA-
NGnet, and wire-fitting.

Configurations of RL Method

As an RL method, we use Peng’s Q(λ)-learning for every conditions. The param-
eters of the Q(λ)-learning are also similar for every conditions: γ = 0.9, λ = 0.9.
We use a decreasing step-size parameter α = α0 exp(−δαNeps) for learning, and
a decreasing temperature parameter τ = τ0 exp(−δτ Neps) for Boltzmann selec-
tion where Neps denotes the episode number. These parameters are determined
through preliminary experiments: α0 = 0.3, δα = 0.002, τ0 = 0.1, δτ = 0.005.

We use the default BFs defined for Maze2D, which are allocated around a
8 × 8 grid. This set of BFs is commonly used to approximate an action value
function, namely LFA-NGnet and wire-fitting, and to generate DCOB and WF-
DCOB.

Configurations of Action Spaces and Function Approximators

The following conditions are compared.

4.5. EXPERIMENTS 41

DCOB : The parameters of DCOB are as follows:

Cp(x) = x = (x1, x2)	, (4.12)

Cd(x) = (0, 0)	, (4.13)

Ctrl(x(t), qd(t + δt)) = qd(t + δt)− Cp(x(t)), (4.14)

I = {0.3}, (4.15)

Fabbrv = 1, (4.16)

The size of the action set is |ADCOB| = |K||I| = 64. As a function approximator,
LFA-NGnet is used.
WF-DCOB : The WF-DCOB’s parameters Cp, Cd, Ctrl and Fabbrv are the same as
DCOB. The other parameter is

IR = {(0.1, 0.5)}. (4.17)

Wire-fitting is used as a function approximator. The number of the control wires
is the same as the size of DCOB.
Radial Action Set (R3, R4, R8, R16, R32, R64) : As a discrete action set, a “radial
action set” AR is defined. Each action changes the state radially from the current
state. The norm of the displacement is constant and the direction is chosen from
a discrete set. Specifically,

Δϕ = 2π/Ndir

AR = {dira | dira = (− sin(aΔϕ), cos(aΔϕ))	,

a = 0, . . . , Ndir − 1} (4.18)

where Ndir denotes the number of division of directions. Each action dira is con-
verted into a sequence of command input as follows:

ũ(t) = ũmaxdira, t ∈ [tn, tn + TR) (4.19)

where ũmax = 0.03 denotes the maximum norm of an input, and TR = 0.1 de-
notes the duration of the action. The size of AR is Ndir. In the following experi-
ments, Ndir = {3, 4, 8, 16, 32, 64} are used, which are represented as R3, . . . , R64
respectively. As a function approximator, LFA-NGnet is used.
Wire-Fitting (WF4，WF8, WF16, WF32, WF64) : The parameters of control wires
{Ui|i ∈ W} are initialized by the elements of the radial action set {dira} defined
above. Similarly, Ndir = {4, 8, 16, 32, 64} are used, which are represented as

42 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

WF4, . . . , WF64 respectively. For an action, the command sequence is computed
by

ũ(t) = ũmaxu(xn). (4.20)

The duration of an action is TWF = 0.1[s].

Results

Figure 4.4 shows the learning curves of the Maze2D task (the mean of the return
over 25 runs is plotted per episode). The radial action set and wire-fitting have
a tendency that the learning speed decreases with increasing Ndir. However, the
learning speed of DCOB and WF-DCOB is faster compared to the others, in spite
of |ADCOB| = 64. It is considered to be a main factor that DCOB has few actions
with which the robot moves out of the plane Xpl since few BFs are allocated out
of Xpl, as is WF-DCOB. Thus, the robot with DCOB and WF-DCOB learned a
path to the goal faster than the robot with the other action spaces.

On the other hand, there is no major difference between DCOB and WF-
DCOB, or a radial action set and the corresponding wire-fitting. Recall that WF-
DCOB or wire-fitting can potentially represent better policy than DCOB or the
corresponding radial action set, while WF-DCOB or wire-fitting has more learn-
ing parameters. However, from the results of Figure 4.4, it is considered that ex-
tending a discrete action to a continuous one is not beneficial for this task. Rather
than this extension, the size of an action set is the dominant factor in the learning
speed.

4.5. EXPERIMENTS 43

(a) Learning curves converging faster.

(b) Learning curves converging slower.

Figure 4.4 Resulting learning curves of the Maze2D task. Each curve shows the mean of the
return per episode over 25 runs. The learning curves converging faster and the ones
converging slower are displayed in these two graphs. Only the curve of DCOB is
displayed in both graphs.

44 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

4.5.2 HumanoidML-crawling, turning

Experiments of the HumanoidML tasks are demonstrated here. The compared
methods are DCOB with LFA-NGnet, WF-DCOB, a conventional discrete action
set with LFA-NGnet, and wire-fitting.

Configurations of RL Method

As an RL method, we use Peng’s Q(λ)-learning for every conditions. The pa-
rameters of the Q(λ)-learning are also consistent for every conditions: γ = 0.9,
λ = 0.9. We use a decreasing step-size parameter α = α0 exp(−δαNeps) for
learning, and a decreasing temperature parameter τ = τ0 exp(−δτ Neps) for
Boltzmann selection where Neps denotes the episode number. These parame-
ters are determined through preliminary experiments: α0 = 0.3, δα = 0.002,
τ0 = 5, δτ = 0.004.

DoF Configurations and BF Allocations

Several conditions are compared in order to investigate the influence of a DoF
configuration and a BF allocation upon DCOB. For the HumanoidML-crawling
task, the following conditions are used:
3-DoF-Grid : The 3-DoF configuration with the default BF allocation (the grid
allocation on a 5× 5× 5 grid). The number of the BFs is 125.
4-DoF-Grid : The 4-DoF configuration with the default BF allocation (the grid
allocation on a 4× 4× 4× 4 grid). The number of the BFs is 256.
5-DoF-Dyn : The 5-DoF configuration with the default BF allocation (the dynamics-
based allocation of 202 BFs).
5-DoF-Grid : The 5-DoF configuration with the grid allocation. The BFs are allo-
cated on a 3× 3× 3× 3× 3 grid over the joint angle space. The number of the
BFs is 243.
5-DoF-SprDmp : The 5-DoF configuration with the spring-damper allocation.
Specifically, 300 BFs are allocated over the reduced joint angle space.
6-DoF-SprDmp : The 6-DoF configuration with the default BF allocation (the
spring-damper allocation of 300 BFs).
7-DoF-SprDmp : The 7-DoF configuration with the default BF allocation (the
spring-damper allocation of 600 BFs).

For the HumanoidML-turning task, the following condition is used:
4-DoF-Grid : The same as the 4-DoF-Grid of the HumanoidML-crawling task.

4.5. EXPERIMENTS 45

Here, ‘Dyn’ denotes the dynamics-based allocation, and ‘SprDmp’ denotes
the spring-damper allocation. Note that in each condition, the set of BFs is com-
monly used to approximate an action value function, namely LFA-NGnet and
wire-fitting, and to generate DCOB and WF-DCOB.

Configurations of Action Spaces and Function Approximators

The following conditions are compared.
DCOB : For each ND-DoF configuration, the parameters of DCOB are as follows:

Cp(x) = qND , (4.21)

Cd(x) = q̇ND , (4.22)

Ctrl(x(t), qd(t + δt)) = Kp{qd(t + δt)− Cp(x(t))} −KdCd(x(t)), (4.23)

I = {0.075, 0.1, 0.2}, (4.24)

Fabbrv =

{
0.5 (ND = 4),
1 (otherwise),

(4.25)

where qND denotes the joint angle vector, q̇ND denotes the joint angular veloci-
ties, Kp = 5.0[Nm/rad], and Kd = 1.6[Nms/rad]. Fabbrv = 0.5 for ND = 4 is
determined through preliminary experiments. For each DoF configuration and
BF allocation, the size of DCOB |ADCOB| = |I||K| is as follows. 3-DoF-Grid:
|ADCOB| = 375, 5-DoF-Dyn: |ADCOB| = 606, 5-DoF-Grid: |ADCOB| = 729, 6-
DoF-SprDmp: |ADCOB| = 900, 7-DoF-SprDmp: |ADCOB| = 1800, 4-DoF-Grid:
|ADCOB| = 768. As a function approximator, LFA-NGnet is used.
WF-DCOB : For each ND-DoF configuration, the WF-DCOB’s parameters Cp, Cd,
Ctrl and Fabbrv are the same as DCOB. The other parameter is

IR = {(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)}. (4.26)

Wire-fitting is used as a function approximator. For each ND-DoF configuration,
the number of the control wires is the same as the size of DCOB.
Grid Action Set (Grid3, Grid5) : A “grid action set” AG is defined as an action set
where the displacement of a target joint angle is discretized by a grid. For each
ND-DoF configuration, AG is defined as follows:

AG =
{
Δq | Δq = (δq1, . . . , δqND)	,

δq1,...,ND ∈ {0,±Δϕ, . . . ,±Ngrid−1
2 Δϕ}} (4.27)

where Ngrid denotes the number of division of each joint angle, and Δϕ = π/12
is a unit of the displacement. The size of AG is |AG| = (Ngrid)ND. In the follow-
ing experiments, Ngrid = 3 and 5 are used, which are represented as Grid3 and

46 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

Grid5 respectively. Each element Δq ∈ AG is converted to a command sequence
as follows:

qd(t) = Cp(x(t)) + Δq (4.28)

ũ(t) = Kp{qd(t)− Cp(x(t))} −KdCd(x(t)) (4.29)

where t = tn + ta, ta ∈ [0, TG), and TG = 0.1[s] denotes a duration of an action.
As a function approximator, LFA-NGnet is used.
Wire-Fitting (WF3，WF5) : The parameters of control wires {Ui|i ∈ W} are ini-
tialized by the elements of the grid action set defined above. Similarly, Ngrid = 3
and 5 are used, which are represented as WF3 and WF5 respectively. For an
action, the sequence of target joint angles is computed by

qd(t) � Cp(x(t)) + u(xn), (4.30)

and is converted into a command sequence with the same manner as the grid
action set. The duration of an action is TWF = 0.1[s].

Table 4.1 shows the number of BFs, actions, and control wires for each DoF
configuration.

Task Setup of HumanoidML-crawling for 4-DoF

The tasks HumanoidML-crawling and turning are defined in Chapter 2 except
for HumanoidML-crawling in the 4-DoF configuration. Since the robot is not
symmetrically constrained in only the 4-DoF configuration, a penalty for rota-
tional movement should be added. Similarly, reward for forward movement is
changed. Concretely, we use the following reward definition only for the 4-DoF
case:

r(t) = rmv(t)− rrt(t)− rsc(t)− rfd(t) (4.31)

rmv(t) = 50(ċ0x(t)ez1(t) + ċ0y(t)ez2(t)) (4.32)

rrt(t) = 5|ωz(t)| (4.33)

rsc(t) = 2× 10−5‖ũ(t)‖ (4.34)

where rmv(t) is the reward for forward movement, (ez1, ez2, ez3)	 is the z-
component of the rotation matrix of the body link, rrt is the penalty for rota-
tion, rsc(t) is the step cost, rfd(t) is the penalty for falling down. rfd(t) takes 4 if
the body or the head link touches the ground, otherwise it takes 0. The penalty
for falling down is given once in each action. Each episode begins with the initial
state where the robot lies down and stationary, and ends if t > 20[s] or the sum
of reward is less than −40.

4.5. EXPERIMENTS 47

Results

Figure 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 show the learning curves of the
HumanoidML tasks; in each graph, the mean of the return over 15 runs is plotted
per episode. In all results, DCOB and WF-DCOB acquire a motion of outstanding
performance than the other methods, and the learning speed of DCOB and WF-
DCOB is almost the fastest. The possible reasons are considered as follows:

(R1) BFTrans provides a suitable action space for RL methods as mentioned in
Section 4.2.2.

(R2) Utilization of BFs for the action space discretization (DCOB) or for the
parameter initialization and constraints (WF-DCOB) reduces the learning
time or the learning instability.

(R1) enables the robot to acquire higher performance; in Figure 4.10 and 4.11,
the size of DCOB and Grid3 are almost the same, but DCOB outperforms Grid3.
Similarly, in Figure 4.6, the size of DCOB and Grid5 are almost the same, but
DCOB outperforms Grid5. We can verify (R2) in Figure 4.7 where the number of
BFs is reduced by the dynamics-based allocation. The size of DCOB is smaller
than Grid5, which enables the fast convergence. Still, the acquired performance
of DCOB is almost the highest.

Next, we compare the results of DCOB and WF-DCOB. In lower DoFs (3, 4,
and 5), DCOB and WF-DCOB are almost the same, or DCOB acquires better per-
formance than WF-DCOB (Figure 4.6, 4.9). In addition, DCOB learns faster than
WF-DCOB in Figure 4.6. On the other hand, in higher DoFs (6 and 7), WF-DCOB
is superior to DCOB; WF-DCOB learns faster in Figure 4.10 and 4.11, WF-DCOB
acquires better performance in Figure 4.11. A possible reason is considered as fol-
lows. In higher DoFs, the number of actions in DCOB is relatively small for the
DoF, which leads a coarse exploration. WF-DCOB explores continuous actions
around the actions in DCOB, which makes exploration finer. Thus, WF-DCOB
performed better than DCOB in the higher DoF cases. Meanwhile in the lower
DoFs, the number of actions in DCOB was considered to be enough for a fine
exploration. In such cases, searching continuous actions improves minimally the
performance. Moreover, due to the instability of learning in a continuous action
space, WF-DCOB is inferior to DCOB in some cases. This consideration can also
explain the results of 5-DoF-Dyn, 5-DoF-Grid, and 5-DoF-SprDmp (Figure 4.7,
4.8, and 4.9).

Figure 4.13 and 4.14 show the snapshots of acquired motions with DCOB.
Though the same set of movable joints are used in 3-DoF and 5-DoF, the dif-

48 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

ference of joint-coupling or BF allocation changes the behavior of the robot (Fig-
ure 4.13(a), 4.13(c), 4.13(d), 4.14(a)). The behavior is also changed by increasing
movable joints as seen in 6 and 7-DoFs (Figure 4.14(b), 4.14(c)). The crawling
behavior with 4-DoF configuration looks slightly turning (Figure 4.13(b)); this is
because the joint-coupling is not symmetric. Comparing the crawling behavior of
4-DoF configuration with the turning behavior of the same configuration, we can
find that the difference of reward function generates the behavior (Figure 4.13(b),
4.14(d)).

Table 4.1 Number of BFs, actions, and control wires.

DoF and
BF allocation BFs DCOB WF-

DCOB Grid3 WF3 Grid5 WF5

3-DoF-Grid 125 375 375 27 27 125 125

4-DoF-Grid 256 768 768 81 81 625 625

5-DoF-Dyn 202 606 606 243 243 3125 3125

5-DoF-Grid 243 729 729 243 243 — —

5-DoF-SprDmp 300 900 900 243 243 — —

6-DoF-SprDmp 300 900 900 729 729 — —

7-DoF-SprDmp 600 1800 1800 2187 2187 — —

BFs: number of BFs, DCOB/Grid3/Grid5: number of actions, WF-DCOB/
WF3/WF5: number of control wires. Dash (—) denotes that the action space
is not used in the DoF.

4.5. EXPERIMENTS 49

Figure 4.5 Resulting learning curves of the HumanoidML-crawling task with 3-DoF-Grid. Each
curve shows the mean of the return over 15 runs per episode.

Figure 4.6 Resulting learning curves of the HumanoidML-crawling task with 4-DoF-Grid. Each
curve shows the mean of the return over 15 runs per episode.

50 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

Figure 4.7 Resulting learning curves of the HumanoidML-crawling task with 5-DoF-Dyn. Each
curve shows the mean of the return over 15 runs per episode.

Figure 4.8 Resulting learning curves of the HumanoidML-crawling task with 5-DoF-Grid. Each
curve shows the mean of the return over 15 runs per episode.

4.5. EXPERIMENTS 51

Figure 4.9 Resulting learning curves of the HumanoidML-crawling task with 5-DoF-SprDmp.
Each curve shows the mean of the return over 15 runs per episode.

Figure 4.10 Resulting learning curves of the HumanoidML-crawling task with 6-DoF-SprDmp.
Each curve shows the mean of the return over 15 runs per episode.

52 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

Figure 4.11 Resulting learning curves of the HumanoidML-crawling task with 7-DoF-SprDmp.
Each curve shows the mean of the return over 15 runs per episode.

Figure 4.12 Resulting learning curves of the HumanoidML-turning task with 4-DoF-Grid. Each
curve shows the mean of the return over 15 runs per episode.

4.5. EXPERIMENTS 53

(a) Snapshots of the crawling task with 3-DoF-Grid, taken in 3-FPS.

(b) Snapshots of the crawling task with 4-DoF-Grid, taken in 3-FPS.

(c) Snapshots of the crawling task with 5-DoF-Dyn, taken in 3-FPS.

(d) Snapshots of the crawling task with 5-DoF-Grid, taken in 3-FPS.

Figure 4.13 Snapshots of an acquired motion with DCOB (1).

54 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

(a) Snapshots of the crawling task with 5-DoF-SprDmp, taken in 3-FPS.

(b) Snapshots of the crawling task with 6-DoF-SprDmp, taken in 3-FPS.

(c) Snapshots of the crawling task with 7-DoF-SprDmp, taken in 3-FPS.

(d) Snapshots of the turning task with 4-DoF-Grid, taken at 0[s], 0.75[s], 1.1[s], 1.35[s], 1.65[s],
2.05[s], 2.35[s].

Figure 4.14 Snapshots of an acquired motion with DCOB (2).

4.5. EXPERIMENTS 55

4.5.3 BioloidML

As an application to a real robot, experiments of the BioloidML-crawling task are
demonstrated. The robot used here is a Bioloid King Spider model.

Configurations of RL Method

As an RL method, we use Peng’s Q(λ)-learning for every conditions. The pa-
rameters of the Q(λ)-learning are also consistent for every conditions: γ = 0.9,
λ = 0.9. We use a decreasing step-size parameter α = α0 exp(−δαNeps) for
learning, and a decreasing temperature parameter τ = τ0 exp(−δτ Neps) for
Boltzmann selection where Neps denotes the episode number. These parame-
ters are determined through preliminary experiments: α0 = 0.3, δα = 0.002,
τ0 = 0.1, δτ = 0.004.

DoF Configurations and BF Allocations

We use the 5-DoF configuration and its default BF allocation, namely, the grid
allocation on a 3× 3× 3× 3× 3 grid.

Configurations of Action Spaces and Function Approximators

The following conditions are compared.
DCOB : The parameters of DCOB are as follows:

Cp(x) = qND , (4.35)

Cd(x) = 0ND , (4.36)

I = {0.5}, (4.37)

Fabbrv = 1, (4.38)

where ND=5, qND denotes the joint angle vector, and 0ND denotes ND-dimensional
zero vector. Note that the command input of the robot is the target joint angles,
thus, Ctrl is considered to be embedded on the robot. Namely, we use qd(t + δt)
as a command input. As a function approximator, LFA-NGnet is used.
Grid Action Set (Grid3) : The grid action set AG is employed that is defined in
Section 4.5.2. The parameters are Δϕ = π/12, and TG = 0.1[s]. As the number
of division, Ngrid = 3 is used, which is referred to as Grid3. LFA-NGnet is used
as a function approximator.

56 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

Results

For each conditions DCOB and Grid3, 4 runs are performed. Figure 4.15 shows
obtained learning-curves. Figure 4.16 shows the mean and ±1 standard devi-
ation of 4 runs in 0th to 77th episode where every runs are overlapping. Fig-
ure 4.17 shows the mean and ±1 standard deviation in the last 10 episodes. Fig-
ure 4.18 demonstrates a motion acquired with DCOB. Figure 4.16 shows that with
DCOB, a higher return is obtained around 20th to 30th episode, which is faster
than Grid3. Meanwhile, Figure 4.17 indicates the performance of the acquired
motions; the graph shows that DCOB acquires motions of higher performance
than Grid3. Therefore, DCOB also outperforms Grid3 both in learning speed
and acquired motion performance.

Figure 4.15 Resulting learning curves of the crawling task. Each curve shows the return per
episode in a run. To see the tendency of each curve, a low-pass filter with a time
constant of 10 episode is applied.

4.5. EXPERIMENTS 57

Figure 4.16 Averaged learning curves of the crawling task. Each curve shows the mean of the
return over 4 runs in 0th to 77th episode. Error bar denotes ±1 standard deviation.
A low-pass filter with a time constant of 10 episode is also applied.

Figure 4.17 Performance of the acquired motion: the average and the ±1 standard deviation of
the return over the last 10 episodes.

58 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

Figure 4.18 Snapshots of acquired crawling motion of the King Spider (4.8[s], 5.4[s], 6.0[s],
7.2[s]).

4.5. EXPERIMENTS 59

Demonstration of Dinosaur

Next, DCOB is applied to a crawling task of a Bioloid of the Dinosaur model. In
this case, the task setup is almost the same as the King Spider case except for the
number of the actuators. The differences are (1) the reward is multiplied by 5
since the Dinosaur is slower than the King Spider because of its shorter legs, (2) a
penalty is given when the robot falls down (which the operator determines), and
(3) the IR sensor is mounted on the head.

Figure 4.19 shows the resulting learning curves in 3 runs, and Figure 4.20
shows snapshots of an acquired crawling motion. Learning speed is slower than
that of the King Spider’s case. The possible reason is that the Dinosaur some-
times falls down, which makes the task more difficult than in the King Spider’s
case.

Figure 4.19 Resulting learning curves of the crawling task of the dinosaur robot. Each curve
shows the return per episode in a run.

Figure 4.20 Snapshots of an acquired crawling motion of the Dinosaur (7.2[s], 7.6[s], 8.0[s],
8.6[s]).

60 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

4.6 Discussion

4.6.1 Convergence of RL with BFTrans

This section discusses the convergence of RL methods with BFTrans. The con-
vergence of some RL methods depends on the Markov property of the task (e.g.
(Tsitsiklis and Roy 1996; Tsitsiklis and Roy 1997)), thus, we clarify the Markov
property of the task using BFTrans.

BFTrans converts the control command space ũ ∈ Ũ to the action space u ∈ U .
With this conversion, the time sequence, the state transition probability, and the
reward function change. The time sequence changes from a continuous time to a
discrete time associated with the action sequence. It is defined by

t0 = 0, tn =
n−1

∑
n′=0

Tnn′ , (4.39)

where Tnn denotes the execution time of the action un at step n which depends
on un and the state xn = x(tn). We define the new reward function as

Rn =
∫ tn+Tnn

tn
r(t)dt (4.40)

where r(t) is the reward at time t. If the original state transition probability de-
pends only on the current state and the control input, i.e. P(x′|x, ũ), the new
state transition probability depends only on the current state and the current
action; P(xn+1|xn, un). This is because the reference trajectory of the action in
BFTrans is determined by only xn and un, thus, the command sequence ũ(t),
t ∈ [tn, tn + Tnn′) depends only on xn and un. Therefore, if the original task has
the Markov property, the converted task also has the Markov property.

Note that DCOB which discretizes BFTrans also has the same property, but,
this is not the case with WF-DCOB because of its nonlinearity. That is, even if the
task has the Markov property and we employ an RL algorithm that guarantees
the convergence with a linear function approximator, this RL algorithm with the
nonlinear function approximator does not guarantee the convergence (Tsitsiklis
and Roy 1997).

4.6.2 Computational Cost of BFTrans

The computational cost of the generating trajectory step and the following tra-
jectory step is O(dim(Q)). The abbreviating trajectory step requires O(|K|2)

4.6. DISCUSSION 61

to compute {dn(k)|k ∈ K}, but dn stays constant during learning for fixed BFs.
Thus, we can pre-compute {dn(k)}. Eventually, the abbreviating trajectory step
requires O(|K|), which is the total computational cost of each BFTrans action (in
general, dim(Q) < |K|). Note that this cost is the same as evaluating all BFs,
which is required in each action selection.

4.6.3 Available Types of Basis Functions

In this thesis, the BFs are assumed to be normalized Gaussian network (NGnet),
but, the proposed methods (BFTrans, DCOB, and WF-DCOB) work with the
other types of BFs if assumption (A) described in Section 4.2.1 is satisfied. In such
cases, a required modification is to define dmin k in eq. (4.5). Concretely, available
types of BFs are a radial basis function (RBF) and the one used by Takahashi et
al. (Takahashi, Takeda, and Asada 1999).

Note that the major factor influencing the performance of a motion is the allo-
cation of the centers of the BFs rather than the type of BFs, since only the centers
are used to calculate an action in BFTrans.

4.6.4 Related Works

Options

Sutton et al. proposed options which are generalized actions of primitive and
macro actions under the RL framework (Sutton, Precup, and Singh 1999). Our
DCOB can be regarded as a kind of the options specialized for robot control.
There are some researches about finding options or subgoals automatically (Mc-
govern and Barto 2001; Menache, Mannor, and Shimkin 2002; Stolle 2004), how-
ever the discovery of the optimal options is still an open problem. DCOB is
considered to be a practical solution to it.

Parti-game Algorithm

Moore and Atkeson proposed parti-game algorithm as an RL method for continu-
ous state-action spaces (Moore and Atkeson 1995). This method assumes a local
controller to move to a near state, and searches an optimal policy in partitions
on the state space where each action is a transition to a neighboring partition. Its
feature is that partitioning of the state space is also optimized, which is superior
to DCOB where the allocation of the given BFs is not changed. However, the ap-
plicable tasks of parti-game algorithm are limited; a task should have a goal state

62 CHAPTER 4. DCOB : ACTION SPACE FOR LARGE DOF ROBOTS

which should be explicitly given. That is, it is not applicable to the crawling task
used in this thesis. DCOB can be treated as an usual action space, which does not
restrict the reward function.

The Other Action Spaces

Using an RL-compatible action space instead of the command space is a common
approach in RL applications. A typical way is using a PD controller and training
an RL agent to learn its target value (e.g. (Morimoto and Doya 1998)). Using
central pattern generator (CPG) and letting an RL agent learn its parameters is
effective to learn rhythmic motions, such as walking (e.g. (Nakamura, Mori, Sato,
and Ishii 2007)). The proposed methods (DCOB and WF-DCOB) are applicable
to episodic tasks, such as jumping, that are difficult to learn with CPG.

Ijspeert and Nakanishi et al. proposed nonlinear dynamic motor primitives
for robot control (Ijspeert, Nakanishi, and Schaal 2002). Later, Peters et al. devel-
oped an RL method to optimize the primitives’ parameters (Peters, Vijayakumar,
and Schaal 2003). This framework is similar to WF-DCOB since both methods
construct RL-compatible action spaces and apply RL methods for a continuous
action space. However, the primitive based approach assumes that the parame-
ters are initialized through an imitation learning framework. Thus, in learning
in a large domain from scratch, the performance of the acquired motion will con-
verge to a lower local maximum. Meanwhile, WF-DCOB provides a proper pa-
rameter initialization even for large domains. Miyamoto et al. proposed an RL
method with via-point representation (Miyamoto, Morimoto, Doya, and Kawato
2004). This method is also regarded as an action space construction method,
however it also has an issue of lacking proper parameter initialization.

4.7 Conclusion

This chapter proposed a discrete action set DCOB for RL methods to handle do-
mains of higher dimensional control input space. DCOB is generated from a set
of BFs given to approximate a value function. DCOB is a discrete set but it has
an ability to acquire high performance motions. Moreover, using the dynamics-
based BF allocation or the spring-damper BF allocation reduces the size of DCOB,
which improves the learning speed. In addition, a method called WF-DCOB was
proposed to enhance the performance, where wire-fitting is employed to search
continuous actions around each discrete action of DCOB. In WF-DCOB, to relax

4.7. CONCLUSION 63

the learning instability of wire-fitting, a parameter initialization and a constraint
method are proposed.

The proposed methods were applied to simulation tasks (Maze2D,
HumanoidML-crawling and turning) and real robot tasks (BioloidML-crawling).
In the simulation tasks, DCOB and WF-DCOB were compared with conven-
tional action spaces. Moreover, in HumanoidML, the methods were compared
in different DoF configurations and different BF-allocation methods. In every ex-
periments, DCOB and WF-DCOB outperformed the other methods. However,
though WF-DCOB was superior to DCOB in some tasks, there were cases where
DCOB was better. A possible reason is that WF-DCOB can represent wider pol-
icy than DCOB, but, suffers from the learning instability of wire-fitting. From
the results of HumanoidML, guidelines for choosing DCOB or WF-DCOB are as
follows: use DCOB if a relatively sufficient number of BFs can be allocated in a
state space (e.g., lower DoF cases); use WF-DCOB if it is difficult to allocate the
enough number of BFs (e.g., higher DoF cases).

A disadvantage of the proposed methods is the assumption of fixed BFs. Op-
timizing the parameters of BFs sometimes can avoid the effects of the curse of
dimensionality. For instance, learning the nonlinear parameters of the sigmoid
functions in a neural network significantly reduces the approximation error com-
pared to learning only the linear weights of the network (Barron 1993). DCOB
assumes that the given BFs have already avoided the curse of dimensionality, but
this assumption is not always satisfied. Some RL researches reported that updat-
ing not only the linear weights of NGnet but also the means and the covariance
matrices can improve learning (Morimoto and Doya 1998; Kondo and Ito 2004).
Thus, removing the assumption of fixed BFs from DCOB and WF-DCOB is con-
sidered to be important for wider applicability.

64

Chapter 5

Dynamics and Reward Models

Learning a dynamics and a reward model during reinforcement learning
is useful since the agent can also update its value function by using the mod-
els. This chapter proposes a general dynamics model that is a composition of
the feature space dynamics model and the state space dynamics model. This
method enables to obtain good generalization ability from a small number
of samples because of the linearity of the state space dynamics, while it does
not lose accuracy because of the feature space dynamics model. Moreover,
in some cases, reusability can be inherited from the generalization ability
of the state space dynamics model. We apply a Dyna algorithm with our
dynamics model to a navigation task, which demonstrates the advantage of
our dynamics model.

5.1 Introduction

Using a dynamics or a reward model is a way to utilize prior knowledge about
the task. The so-called model-based RL is an RL framework where an agent has
a dynamics model and a reward model, and computes a policy with the models.
These models are sometimes incomplete and will be updated while learning. A
well-known architecture is the Dyna proposed by Sutton (Sutton 1990). The con-
vergence of the Dyna with a linear function approximator is proven by Sutton
et al. (Sutton, Szepesvári, Geramifard, and Bowling 2008). In the Dyna archi-
tecture, a normal (i.e. model-free) RL, learning models, and a model-based RL
(i.e. planning) are performed simultaneously. Although the Dyna is a general
architecture where both a model-based and a model-free RL are combined, there
are some similar approaches that utilize models (Rottmann and Burgard 2009;
Farahmand, Shademan, Jägersand, and Szepesvári 2009; Park, Kim, and Song
2007).

The important abilities of models used in the Dyna architecture or the other

5.1. INTRODUCTION 65

model-based RLs are: (1) the model accuracy, (2) the model generalization ability,
and (3) the model portability. Generalization means acquiring accuracy from less
data. Model portability means both the ability to reuse model parameters learned
from other tasks and the ability to encode prior knowledge.

This chapter proposes a composite dynamics model of the feature space dy-
namics and the state space dynamics which improves these abilities. Here, the
feature is defined as the output of the basis functions (that we assume to be local
models) that are used to approximate a value function. Usually, the dynam-
ics model is represented by a transition matrix of the feature. This dynamics
model in the feature space is accurate, but has poor generalization ability and
poor reusability. Instead, the dynamics model in the state space may provide
good generalization ability, since in many practical applications, the dynamics of
the environment (including the robot) is nearly linear in the state space. Typi-
cal examples are navigation tasks and robotic manipulations. Moreover, in some
cases (e.g. navigation tasks), reusability can be inherited from the generalization
ability of the state space dynamics model. Our proposed composite dynamics
model, which we call MixFS dynamics model, can exploit the advantages of both
dynamics models. Thus, the MixFS dynamics model acquires the improved abil-
ities mentioned above.

The main contributions are (1) combining the two dynamics models and mak-
ing it work with the Dyna algorithms, and (2) deriving an on-line learning method
for the developed model. Another contribution is (3) providing a method to
reuse the MixFS dynamics model parameters, and a method to encode prior
knowledge to the reward model. We apply a Dyna with MixFS dynamics model
to several conditions of a navigation task: (a) two types of the mazes, (b) three
types of prior knowledge about rewards, and (c) reused/scratch dynamics model
parameters. The simulation results demonstrate the advantages of MixFS which
come from the abilities mentioned above.

The rest of this chapter is organized as follows. Section 5.2 introduces a Dyna
architecture with a linear function approximator. Section 5.3 proposes a compos-
ite dynamics model of the feature space dynamics and the state space dynamics.
Section 5.4 describes a method to reuse the learned dynamics model parameters,
and a method to embed prior knowledge on the reward model parameters. Sec-
tion 5.5 demonstrates some experiments. Finally, Section 5.6 concludes the chap-
ter.

66 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.2 Dyna with Linear Function Approximator

This section introduces a Dyna architecture with a linear function approximator.

5.2.1 Linear Dyna with ‘MG’ Prioritized Sweeping

McMahan and Gordon proposed the Improved Prioritized Sweeping algorithm
that is a fast planning algorithm in a Markov Decision Process (MDP) (McMahan
and Gordon 2005). Sutton et al. called the algorithm MG prioritized sweeping, and
developed a Dyna using it, Dyna-MG, which was faster than Dyna algorithms
with the other prioritized sweeping methods (Sutton, Szepesvári, Geramifard,
and Bowling 2008). Thus, we use Dyna-MG.

The algorithm of Dyna-MG is given as Algorithm 3. Here, {Fa, ba|a ∈ A}
denotes the parameters of the dynamics model and the reward model defined as
follows:

φ′ ≈ Faφ(x), (5.1)

R ≈ b	a φ(x). (5.2)

Npln ∈ N denotes a planning depth (a given constant), PQueue denotes a prior-
ity queue whose pop() operator removes and returns the queue element of the
highest priority, Th1 ∈ [0, 1] is a threshold that decides to include the PQueue,
e j ∈ R|K|×1 denotes a vector whose j-th element is 1 and the rest are 0, �[i] de-
notes the i-th element of a vector �, �[i, j] denotes the (i, j)-th element of a matrix
�. pred(i) denotes the set of all pairs of a feature index and an action (j, a) such
that taking action a from the feature index j has a positive chance to reach the
feature index i. In this thesis, we define the {(j, a)} = pred(i) as whole pairs that
satisfy all of the following conditions:

j ∈ {1, . . . , |K|}, i = j, (5.3)

a = arg max
a′

Fa′[i, j], Fa[i, j] > Th2, (5.4)

where Th2 ∈ [0, 1] is a threshold. Note that Fa[i, j] denotes the transition probabil-
ity from the feature index j to i by the action a.

5.2. DYNA WITH LINEAR FUNCTION APPROXIMATOR 67

Algorithm 3: Dyna-MG

Input:State space X (continuous), action set A (discrete),

basis functions φ : X → R|K|×1

Output:Coefficient vector θa such that Q̃(x, a) ≈ θ	a φ(x)

1: Initialize: θa, Fa, ba

2: for Neps = 1, 2, . . . do /∗ Neps: episode ∗/
3: n ← 1 /∗ time index ∗/
4: Choose a start state xn ∈ X
5: φn ← φ(xn)
6: while not is-end-of-episode(xn) do
7: Carry out an action an according to current policy, producing a reward Rn and

next state xn+1

8: φn+1 ← φ(xn+1)
9: Update policy by Q(0)-learning:

10: δn ← Rn + γ maxa θ	a φn+1 −θ	an
φn /∗ TD error ∗/

11: θan ← θan +αφnδn

12: Update models:
13: Fan ← Fan +α(φn+1 − Fanφn)φ	n
14: ban ← ban +α(Rn − b	an

φn)φn

15: for i = 1, . . . , |K| do
16: ifφn[i] > Th1 then

17: Put i on the PQueue with priority |δnφn[i]|
18: for 1, . . . , Npln do

19: if PQueue is empty then break
20: i ← PQueue.pop()
21: for all (j, a) ∈ pred(i) do
22: δ ← ba[j] + γ maxa′ θ

	
a′ (Fae j)−θa[j]

23: θa[j] ← θa[j] +αδ

24: Put j on the PQueue with priority |δFa[i, j]|
25: n ← n + 1

68 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.3 Composing Dynamics Models

As mentioned in Section 5.1, the dynamics model of the feature space is accu-
rate, while the dynamics model of the state space has good generalization ability.
Thus, we develop a composite dynamics model of the feature space dynamics
and the state space dynamics to exploit both advantages. We call this model the
MixFS dynamics model.

5.3.1 MixFS Dynamics Model

To use a dynamics model in the prioritized sweeping, a transition probability
from a feature index i to j by an action a should be calculated. Hence, we define
MixFS dynamics model as

φ′ ≈ f̃a(φ(x), x), (5.5)

where f̃a denotes a function approximator that estimates the succeeding feature
vector φ′ from a state x and a corresponding feature φ(x) by an action a. The
parameters of this model are learned within the Dyna algorithm. Then we com-
pute the feature transition matrix; for all feature index pairs i, j ∈ {1, . . . , |K|}
and action a ∈ A,

Fa[j,i] ← f̃a(ei, μi)[j] (5.6)

where ei ∈ R|K|×1 is defined in Section 5.2.1. If the dynamics model f̃a is the con-
ventional one, i.e. eq. (5.1), the equation above correctly extracts Fa of eq. (5.1) by
using ei. Otherwise, the equation above approximates the transition probability
by representing x with the center of the basis function μi. The obtained feature
transition matrix is directly used in the prioritized sweeping part of the Dyna
algorithm.

For the function approximator f̃a, we choose simple linear models for two
dynamics models, and combine them linearly. Thus, f̃a is defined by

f̃a(φ(x), x) = δFaφ(x) +φ(x + δx̃a(x)) (5.7)

δx̃a(x) = Aax + Baφ(x) + da (5.8)

where δFa ∈ R|K|×|K|, Aa ∈ Rdim(X)× dim(X), Ba ∈ Rdim(X)×|K|, da ∈ Rdim(X)×1

are the model parameters. To further understand, let us think about a model,
f̃ ′a(φ(x), x) = φ(x + δx̃a(x)). Here, x + δx̃a(x) is a linear state space dynamics
model, that is, it can estimate the succeeding state from the state x by the action
a. Thus, the model f̃ ′a(φ(x), x) estimates the succeeding feature vector from x by
a. Clearly, MixFS dynamics model eq. (5.7) is a composite dynamics model.

5.3. COMPOSING DYNAMICS MODELS 69

5.3.2 Learning MixFS Dynamics Model

Next, we derive an on-line learning algorithm for the model parameters of MixFS
dynamics model, with which the Update models part of the Dyna algorithm is
replaced. Specifically, the learning algorithm updates δFa, Aa, Ba, and da so that
f̃a(φ(x), x) can estimate the succeeding feature vector φ′ from the observation
data xn, φn, xn+1, φn+1. We simply use an on-line gradient descent algorithm
(Bishop 2006).

However, it is difficult to update Aa, Ba and da in a straightforward manner,
since these parameters are enveloped by the basis functions φ(x) that makes it
complex to calculate the gradient. To overcome this difficulty, we separate the
learning problem into two steps. First, the model parameters of the state space
dynamics model Aa, Ba, da are updated so that x + δx̃a(x) can estimate the suc-
ceeding state x′. Second, the model parameter of the feature space dynamics
model δFa is updated so that f̃a(φ(x), x) can estimate the succeeding feature vec-
tor φ′. Thus, the model parameters of MixFS dynamics model are updated with
Algorithm 4.

Algorithm 4: Update MixFS dynamics model parameters

Input:Current and succeeding state x, x′ ∈ X , action a ∈ A,

basis functions φ : X → R|K|×1, step size α,

current model parameters δFa, Aa, Ba, da

Output:Updated model parameters δF′a, A′a, B′a, d′a
1: x̃′ ← x + Aax + Baφ(x) + da

2: φ̃′ ← δFaφ(x) +φ(x̃′)

3: A′a ← Aa +α(x′ − x̃′)x	

4: B′a ← Ba +α(x′ − x̃′)φ(x)	

5: d′a ← da +α(x′ − x̃′)

6: δF′a ← δFa +α(φ(x′)− φ̃′)φ(x)	

70 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.3.3 Computational Techniques

Constraint for Numerical Stability

The feature transition matrix Fa is assumed to be encoding transition probabilities
of the MDP. However, due to the estimation error, Fa sometimes takes an irregular
value, which makes the planning unstable. Thus, we constrain the Fa as follows:

for all i, j ∈ {1, . . . , |K|}:

if Fa[j,i] < 0 then: Fa[j,i] ← 0

if Fa[j,i] > 1 then: Fa[j,i] ← 1

for all i ∈ {1, . . . , |K|}:

if ∑
j′

Fa[j′ ,i] > 1 then:

for all j ∈ {1, . . . , |K|}: Fa[j,i] ←
Fa[j,i]

∑ j′ Fa[j′ ,i]

The first part constrains the range of the Fa[j,i] to [0, 1] since it represents a transi-
tion probability in the MDP. The second part constrains the sum of the transition
probability w.r.t. the succeeding feature index j′ from i by an action a, which
should be 1.

Fast Computation

After updating the model parameters of MixFS, the feature transition matrix Fa

should be computed by eq. (5.6), but it requires computational cost. Since the
feature transition matrix is required only when the planning is executed in Dyna-
MG, i.e. PQueue = ∅, the feature transition matrix has to be calculated only
when it is demanded. To do this, flaga ∈ {true, false} is prepared for each
action a ∈ A to judge whether Fa was already calculated for the latest model
parameters.

5.4 Embedding Prior Knowledge on Models

In this section, we describe a method to reuse the learned dynamics model pa-
rameters, and a method to embed prior knowledge on the reward model param-
eters.

5.4. EMBEDDING PRIOR KNOWLEDGE ON MODELS 71

5.4.1 Reusing Dynamics Model Parameters

Let us consider how the dynamics model parameters learned in a task are reused
in other tasks. Here, we assume reusing between the tasks that have the same
state/action spaces. Even in such cases, the dynamics may be different; for exam-
ple, navigation tasks that have different mazes. Factors to be taken into account
in reusing are (1) reusing the task-specific parameters makes incorrect planning,
and (2) the set of the basis functions K is generally defined for each task. Thus,
the model parameters related to φ (in MixFS case, δFa and Ba) are omitted, and
the others (Aa and da) are reused. The dynamics Aax + da can be regarded as a
linearized state space dynamics. Thus, for instance, it is possible for the parame-
ters Aa and da to encode how a humanoid robot moves by a walking action in a
navigation task where the effect of the walls are omitted.

5.4.2 Embedding Reward Sources

If the state and the reward of the goal are known, we can embed them on the
reward model as prior knowledge. A model-based RL method can exploit this
kind of information by planning. A general way to embed this kind of informa-
tion, i.e. the reward sources, into the reward model is formulated and solved as
follows:

For given reward sources {(xi, Ri)|i = 1, . . . , Nrsrc}, estimate ba, a ∈ A to satisfy⎡
⎢⎢⎣

R1
...

RNrsrc

⎤
⎥⎥⎦ =

[
φ(x1) · · · φ(xNrsrc)

]	
ba. (5.9)

Letting this equation R = Φba, the solution is ba = Φ�R where Φ� denotes the
pseudo-inverse of the matrix Φ.

Note that the reward model obtained by this method is slightly different from
the correct one since the goal reward is given when the succeeding state is the
goal state, but the reward model above states that the goal reward is given for
any action from the goal state. This problem is addressed through learning.

72 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.5 Experiments

5.5.1 Accuracy of Dynamics Models

First, we compare the approximation accuracy of the two dynamics models in an
environment of simple dynamics. One is the proposed MixFS dynamics model.
The other is a traditional linear dynamics model of the feature space used in
Dyna-MG mentioned in Section 5.2.1, which we refer to as the Simple dynamics
model.

We employ a robot that has a 1-dimensional state space X ⊂ R and only
1-element action set A = {a}. The dynamics of the robot is defined as

x′ = fa(x) = max(min(1.2x + 0.5, 2.0),−1) (5.10)

where x′ denotes the succeeding state from the state x by the action a. This dy-
namics represents a part of a maze surrounded by walls. The experiment is per-
formed as follows: (1) repeat Nsmpl times: {generate x from uniform random dis-
tribution [−2.5, 2.5], compute x′ = fa(x), and train the models in an on-line man-
ner}, (2) evaluate the RMS with (x,φ′) ∈ {(xn,φ′n)|xn = −2.5,−2.48, . . . , 2.5;
φ′n = φ(fa(xn))}. We allocated 5 NGnet in X whose parameters are {(μk, Σk)|
μk = −2,−1, 0, 1, 2; Σk = 1

9}. We set α = 0.1 as the step size parameter, and
tested Nsmpl in {10, 20, . . . , 2000}.

Figure 5.1 shows the approximation accuracy of each dynamics models (the
mean of the RMS over 10 runs is plotted per Nsmpl). MixFS dynamics model
has higher accuracy both in small Nsmpl and large Nsmpl than that of the Simple
dynamics model. A possible reason is as follows. The dynamics of the robot is
nearly linear in many regions of the state space, so the linear component of the
state space dynamics of MixFS, Aax + da, leads to good generalization from small
samples. On the other hand, the composition of two dynamics models enhances
the approximation capability, thus MixFS dynamics model also obtains a higher
accuracy from a large number of samples than the Simple dynamics model.

5.5.2 Maze2D

Next, we evaluate the dynamics models with Dyna-MG algorithm in the naviga-
tion task of an omniwheel mobile robot on a 2-dimensional plane.

5.5. EXPERIMENTS 73

�

���

���

���

���

���

��	

��

���

�� ��� ����

�
�

����������������������������������

�!����

!"#�

Figure 5.1 Estimation errors of the two dynamics models, MixFS and Simple, per number of
samples Nsmpl in 1-dimensional environment.

Experimental Setup

We use two types of mazes, (a): easy and (b): hard (see Figure 2.2). The state
of the robot can be expressed as x = (x1, x2)	, and the possible actions are
A = {up, left, down, right}. This task is almost the same as Maze2D defined in
Chapter 2; the only difference is the lack of wind in Figure 2.1.

We use an NGnet with 64 BFs to approximate the action value function. The
same allocations are used in the two types of maze. These BFs are allocated on a
8× 8 grid with added random noise to each center and covariance.

The configuration of Dyna-MG is γ = 0.9, α = 0.1, Npln = 5, Th1 = 0.2, and
Th2 = 0.3. For exploring actions, we use the Boltzmann policy selection with the
temperature τ = 0.01 for the easy maze and τ = 0.04 for the hard maze. These
parameters and coefficients are chosen through preliminary experiments.

Algorithm Setup

We compare Q(0)-learning (let Npln = 0 in the Dyna-MG algorithm), and the
three Dyna-MG algorithms that have different dynamics model configurations:
Dyna-MG (Simple) : Dyna-MG with the Simple dynamics model (same as Algo-
rithm 3).
Dyna-MG (MixFS) : Dyna-MG with MixFS dynamics model.
Dyna-MG (MixFS, reuse) : Dyna-MG with MixFS dynamics model whose param-
eters are reused (see Section 5.4.1) from learning within a maze that has no walls.

Furthermore, each of Dyna-MG algorithms is used with three reward sources
(see Section 5.4.2) conditions:

74 CHAPTER 5. DYNAMICS AND REWARD MODELS

NO RWD SRC : No reward source. The reward model parameters are initialized
to zero.
GOAL RWD SRC : The goal reward is embedded into the reward model param-
eters. Specifically, we set {(xi, Ri)} = {(xg, 1)} where xg denotes the goal state.
GOAL OUT RWD SRC : The goal reward and the penalty for going out of the
plane are embedded into the reward model parameters. Specifically, we set
{(xi, Ri)} = {(xg, 1)} ∪ {(x�,−0.5)|x� /∈ Xpl} where the latter is the penalty
sources. {x�} are sampled from the outer border of the plane Xpl, i.e., {x�} =
{(−1.25,−1.25), (−1,−1.25), (−0.75,−1.25), . . . }.

Thus, we compare the 1 + 3× 3 = 10 learning conditions.

Results

Figure 5.2 shows the learning curves of the navigation task in the easy maze
(the mean of the return over 25 runs is plotted per episode). These curves result
from the 10 learning conditions that are organized by the reward source type into
Figure 5.2(a) NO RWD SRC, 5.2(b) GOAL RWD SRC, and 5.2(c) GOAL OUT
RWD SRC. The learning curve of Q(0)-learning is the same in these three graphs.

In every reward source type, the order of the learning speed are approxi-
mately the same: Dyna-MG (MixFS, reuse) (fastest), Dyna-MG (MixFS), Dyna-
MG (Simple), Q(0)-learning (slowest). This result is considered to be an effect of
the planning. Especially, Dyna-MG algorithms with MixFS dynamics model are
faster than Dyna-MG with the Simple dynamics model. This result is possible
because MixFS dynamics model can obtain a more accurate estimation than the
Simple one even from a small number of samples. Thus, the planning in Dyna-
MG becomes more precise which makes the learning faster.

In each Dyna-MG configuration, the learning speed is positively correlated
with the number of the reward sources, i.e., the amount of prior knowledge. This
result shows that Dyna-MG can effectively utilize such information by planning.
Especially, Dyna-MG (MixFS, reuse) of GOAL OUT RWD SRC is significantly
faster than the others (Figure 5.2(c)). A possible reason is that because of reusing
the some dynamics parameters and embedding the reward sources, the dynam-
ics and the reward models of the agent are fairly accurate from the beginning of
the learning. Actually, if the agent only learns the dynamics related to the walls,
it acquires nearly the complete dynamics model. Thus, the agent can obtain an
optimal path in a small number of episodes.

5.5. EXPERIMENTS 75

����

����

����

�

���

���

���

���

	

� 	� ��
� �� �� �� ��

�
��

�

�������

������������

������ �!�"����

������ ���$%!�

������ ���$%!& �����

(a) Learning curves of NO RWD SRC.

����

����

����

�

���

���

���

���

	

� 	� ��
� �� �� �� ��

�
��

�

�������

������������

������ �!�"����

������ ���$%!�

������ ���$%!& �����

(b) Learning curves of GOAL RWD SRC.

����

����

����

�

���

���

���

���

	

� 	� ��
� �� �� �� ��

�
��

�

�������

������������

������ �!�"����

������ ���$%!�

������ ���$%!& �����

(c) Learning curves of GOAL OUT RWD SRC.

Figure 5.2 Resulting learning curves of the robot navigation task in the easy maze. Each curve
shows the mean of the return per episode over 25 runs. To see the tendency of each
curve, a low-pass filter with a time constant of 5 episode is applied. The learning
curves are organized into (a), (b), and (c) by the reward source type. The learning
curve of Q(0)-learning is the same in these three graphs.

76 CHAPTER 5. DYNAMICS AND REWARD MODELS

Figure 5.3 shows the learning curves of the navigation task in the hard maze
(the mean of the return over 25 runs is plotted per episode). The learning condi-
tions in Figure 5.3(a), 5.3(b), 5.3(c) are the same as the Figure 5.2.

In this result, overall, Dyna-MG (MixFS) and Dyna-MG (MixFS, reuse) also
seem to be superior to Dyna-MG (Simple) and Q(0)-learning, but the differences
are smaller than that of the easy maze. A possible reason is that since the hard
maze has a complex dynamics, exploring the maze with learning the dynamics
model and the policy are the dominant factor, while the effect of the planning
using the models is relatively small.

In Figure 5.3(b) and 5.3(c), the learning curves of the Dyna-MG algorithms
decrease once. A possible reason is that planning with the reward model initial-
ized by the goal source and the incomplete dynamics model computes the policy
with which the robot attempts to go through a wall toward the goal. Actually,
the robot cannot get to the goal with such a policy, so the cumulative step cost
becomes dominant. Since the Dyna-MG algorithms with MixFS can estimate the
accurate dynamics with fewer samples, these Dyna-MG algorithms can correct
the error of the planning faster than Dyna-MG (Simple). Moreover, the explo-
ration of Dyna-MG (MixFS, reuse) is less than that of Dyna-MG (MixFS) because
of reusing the dynamics model parameters.

5.5. EXPERIMENTS 77

����

����

����

����

�

���

���

���

���

� 	�
��
	� ��� �	� ���

�
�
��

�����

������������
�������� �!���
����������"# �
����������"# $�����

(a) Learning curves of NO RWD SRC.

����

��

����

�

���

�

� �� ��� ��� ��� ��� ���

	

��
	

�����

������
�	��

������������
�

��������� !��

��������� !�"�	
��
�

(b) Learning curves of GOAL RWD SRC.

����

��

����

�

���

�

� �� ��� ��� ��� ��� ���

	

��
	

�����

������
�	��

������������
�

��������� !��

��������� !�"�	
��
�

(c) Learning curves of GOAL OUT RWD SRC.

Figure 5.3 Resulting learning curves of the robot navigation task in the hard maze. Each curve
shows the mean of the return per episode over 25 runs. To see the tendency of each
curve, a low-pass filter with a time constant of 5 episode is applied. The learning
curves are organized into (a), (b), (c) by the reward source type. The learning curve
of Q(0)-learning is the same in these three graphs.

78 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.5.3 Humanoid Navigation

We apply Dyna-MG with MixFS dynamics model to the navigation task of a hu-
manoid robot, and compare it to the other methods. Though we use an action set
coded by hand, the dynamics becomes more complex than that of the task in the
previous section. Thus, we can investigate the applicability of MixFS dynamics
model in a more practical situation.

Experimental Setup

We employ a 17-DoF humanoid robot (Figure 5.4) whose possible actions are
A = {walk, turn-left, turn-right}. In this experiment, these actions are coded by
hand for simplicity. The state of the robot is x = (cx, cy,φ, cosφ, sinφ) where
cx, cy, φ denotes the x-position, the y-position, and the yaw angle of the body
link respectively. The navigation task is almost the same as the previous section
where the maze type is the easy (Figure 2.2). The dynamics is simulated on a
dynamics simulator, ODE (Open Dynamics Engine (Smith 2006)).

The elements, cosφ and sinφ, in the state definition are a trick to improve
the generalization ability of the linear state space dynamics model. It is difficult
for the linear state space dynamics model (eq. (5.8)) over the state definition x =
(cx, cy,φ) to completely estimate the dynamics of the action walk of the humanoid
robot, since the changes of the cx and the cy caused by the walk are proportional to
cosφ and sinφ. Extending the state definition to x = (cx, cy,φ, cosφ, sinφ) en-
ables to estimate the dynamics of the walk with a linear model Aax. The dynamics
of the turn-left/right can also be estimated with a linear model Aax + da.

We also use an NGnet with BFs allocated on a 8× 8× 9× 1× 1 grid. More-
over, we let the diagonal elements of the covariance correspond to cosφ and
sinφ large value (here, 106). Then the output of the BFs is the same as the output

Figure 5.4 The humanoid robot employed in the navigation task. Its possible actions are walk,
turn-left, and turn-right, which are coded by hand.

5.5. EXPERIMENTS 79

from the BFs where the state is defined as x = (cx, cy,φ) and the BFs are allo-
cated on the 8× 8× 9 grid. Thus, we can fairly use the same state definition and
the same set of the BFs K for Q(0)-learning, Dyna-MG (Simple), and Dyna-MG
(MixFS).

Results

We compared Q(0)-learning, Dyna-MG (Simple), Dyna-MG (MixFS), and Dyna-
MG (MixFS, reuse) with a goal reward source condition (GOAL RWD SRC). Fig-
ure 5.5 shows the resulting learning curves (the mean of the return over 25 runs
is plotted per episode). The Dyna-MG algorithms are faster than Q(0)-learning.
Moreover the Dyna-MG algorithms with MixFS are faster than Dyna-MG (Sim-
ple). On the other hand, there is little difference between Dyna-MG (MixFS) and
Dyna-MG (MixFS, reuse). A possible reason is that in the beginning of the learn-
ing, Dyna-MG (MixFS) quickly learns the dynamics model as accurate as the one
reused in Dyna-MG (MixFS, reuse).

��

��

��

��

�

�

�

�

�

�

� ��� ��� ��� ��� ��� 	��
�� ��� ��� ����

�
��

�

�������

������������

������ �!�"����

������ ���$%!�

������
���$%!& �����

Figure 5.5 Resulting learning curves of the navigation task by the humanoid robot in the easy
maze. Each curve shows the mean of the return per episode over 10 runs. To see
the tendency of each curve, a low-pass filter with a time constant of 50 episode is
applied.

80 CHAPTER 5. DYNAMICS AND REWARD MODELS

5.6 Conclusion

This chapter proposed a composite dynamics model of the feature space dynam-
ics and the state space dynamics, called MixFS dynamics model. MixFS can ex-
ploit the advantages of both dynamics models, that is, the generalization ability
of the state space dynamics model and the accuracy of the feature space dynam-
ics model. Moreover, MixFS also has reusability, since in some cases, including
the navigation task, reusability can be inherited from the generalization ability
of the state space dynamics model. We contribute to combine the two dynam-
ics models and make it work with the Dyna algorithm, and to derive an on-line
learning method of the developed model.

The simulation result demonstrates that MixFS can exploit the advantages of
both dynamics models as we expected. Concretely, MixFS can estimate the dy-
namics more precisely from either a small number or a large number of samples
than the conventional linear dynamics model of a feature space. Reusing the dy-
namics model parameters can utilize prior knowledge encoded into the reward
model. As a result, Dyna-MG with MixFS is faster than that with the conven-
tional dynamics model.

81

Chapter 6

Learning Strategy Fusion

This chapter proposes a method to fuse learning strategies (LSs) in rein-
forcement learning (RL) framework. In conventional RL methods, we need
to choose a suitable LS for each task respectively. In contrast, the proposed
method automates this selection by fusing LSs. Actually, LS fusion applies
multiple LSs for a single task multiple times; a proper ordering of the LSs
is automatically decided. The LSs defined in this chapter include a transfer
learning, a hierarchical RL, and a model-based RL.

6.1 Introduction

This chapter attempts to integrate some learning strategies (LSs) to suit for learn-
ing of high DoF robots. Imagine learning a tennis swing. We first swing a racket
slowly. After a good swing form is learned, we speed up the swing. Other ex-
ample is found in an infant’s learning walking model (Taga, Takaya, and Konishi
1999) where the infant starts from a lower DoF (freezing), then learns in a higher
DoF (freeing).

This chapter proposes a method to fuse LSs named LS fusion, in which mul-
tiple LSs are applied to a single task multiple times. The most distinct feature
is that when one of policies almost converges, an LS, such as freeing the DoF
(Degree of Freedom), generates a new policy from the converged one. The new
policy is additionally learned, which may improve the performance. Meanwhile,
the old policy is still stored; if the new one has failed to improve the policy, the
old one is used again. Actually, the system has many policies (behavior modules)
for a single task, and they are increased by the LSs. Behavior modules that have
potentially high performance are trained preferentially; namely, a behavior mod-
ule of better performance is trained more. For this prioritization, Boltzmann se-
lection method with an upper confidence bound (UCB) is employed. We refer to
this selection method as UCB-Boltzmann selection.

82 CHAPTER 6. LEARNING STRATEGY FUSION

This chapter also defines the following LSs:

LS-scratch generates a behavior module that learns a task from scratch using
WF-DCOB (Chapter 4).

LS-accelerating generates a behavior module by accelerating the motion of a
source behavior module.

LS-freeing generates a behavior module by increasing the DoF of a source be-
havior module.

LS-planning generates a behavior module that uses a dynamics and a reward
model module to execute planning.

LS-model generates a dynamics and a reward model module (Chapter 5).
LS-hierarchy generates a hierarchical action space module.

Here, the LS-accelerating and the LS-freeing are transfer learning methods (Torrey
and Shavlik 2009). A distinct feature of these transfer LSs is that the LSs transfer
not only policy parameters, but also physical limitation of the policy. Specifi-
cally, the LS-freeing changes the DoF. The LS-accelerating changes not only the
speed parameters, but the constraints of the speed parameters. Thus, these LSs
modifies the task domain, which has a probability to increase performance.

The rest of this chapter is organized as follows. Section 6.2 discusses the re-
lated works. Section 6.3 describes an overview of LS fusion, Section 6.4 gives the
algorithm of LS fusion, and Section 6.5 defines the LSs. Section 6.6 demonstrates
some experimental results. Finally, Section 6.7 concludes this chapter.

6.2 Related Works

LS fusion is considered to be a learning architecture that consists of multiple RL
modules for a single robot and a single task, and allows behavior transfer. The most
distinct feature compared to the other works is that the LSs transfer not only
policy parameters, but also physical limitation of the policy.

Uchibe et al. (Uchibe and Doya 2004) proposed the Cooperative-Competitive-
Concurrent Learning with Importance Sampling (CLIS) architecture, where mul-
tiple RL modules sharing the same sensory-motor system learn for the same task
simultaneously by using importance sampling. The similarity to LS fusion is
employing multiple modules for a single task. CLIS architecture is considered to
be transferring samples obtained from a module to the other modules. Thus, the
architecture allows concurrent learning. On the other hand, LS fusion transfers
a policy of a behavior module to a new module where some motion parameters,
such as DoF and speed parameters, are changed. Thus, the new behavior module

6.3. LS FUSION OVERVIEW 83

has a probability to increase the performance of the old module.
Fernández et al. (Fernández and Veloso 2006) proposed a method to proba-

bilistically reuse the policies learned in the other tasks. LS fusion is considered to
be reusing policies, so these two methods are similar. The difference is that LS fu-
sion modifies the motion parameters including the physical limitation, while the
method in (Fernández and Veloso 2006) does not change the state-action space
and the dynamics. This difference also appears in the other transfer learning
methods (e.g. (Zhang and Rössler 2004)).

6.3 LS Fusion Overview

LS fusion has two key elements: (1) the LSs, and (2) UCB-Boltzmann selection.
This thesis assumes that there are two types in LSs; behavior LSs that generate new
behavior modules, and supplementary LSs that generate supplementary modules
other than behaviors, such as model modules and hierarchical-action-space mod-
ules. Let LSbhv denote the set of the behavior LSs, LS spl denote the set of the
supplementary LSs. UCB-Boltzmann selection method chooses a behavior from
both the existing behavior modules and the new ones generated by the behavior
LSs. The selected behavior module is used to actually control the robot, and the
module is updated its policy from samples.

We design LS fusion so that the behavior and the supplementary modules are
generated and learned through the following flow:

(1) The supplementary LSs (the LS-hierarchy and the LS-model) generate mod-
ules if applicable.

(2) The behavior LSs generate new behavior modules. Specifically, the LS-
scratch generates new behaviors which may have different DoF configu-
rations. If there are behaviors trained enough, the LS-freeing and the LS-
accelerating generate new behavior modules by transferring the trained
behaviors. If there are a dynamics and a reward model module, the LS-
planning generates a new behavior module using a model-based RL method.

(3) UCB-Boltzmann selection method chooses a behavior module from both
the existing behavior modules and the new ones generated in (2).

(4) Several episodes are performed using the selected behavior module, and
the policy of the behavior module is updated from samples. The supple-
mentary modules are also updated if possible.

(5) (1). . . (4) are repeated.

Here, the UCB (upper confidence bound) uses both the mean of a reward sum-

84 CHAPTER 6. LEARNING STRATEGY FUSION

mation RB and its deviation σB. The deviation σB can estimate the potential
improvement of the performance. The deviation σB is also used to judge if a
behavior module is trained enough.

6.4 LS Fusion Algorithm

We assume that several pairs of a control command space and a state space
{(Ũ ,X)} are predefined; they have different DoF configurations. Here, defining
Ũ and X means giving conversions between (Ũ ,X) and the overall (full DoF)
command and state spaces (Ũw,Xw). Specifically, we assume linear conversions
with constant matrices CŨ and CX such that ũw = CŨ ũ, x = CX xw where ũ ∈ Ũ ,
ũw ∈ Ũw, x ∈ X , and xw ∈ Xw.

Each behavior learning strategy LS is defined as a function GENbhv(LS,U ,X ,
Task) that generates behavior modules, and each supplementary learning strat-
egy is defined as a function GENspl(LS, Task) that generates supplementary mod-
ules.

The LS fusion algorithm is defined for an episodic task. Algorithm 5 shows
the overall algorithm1. Here, NLSSp is an interval of executing the supplemen-
tary LSs (LSSp means LS Supplementary), NLSBh is an interval of executing the
behavior LSs (LSBh means LS Behavior). NLSBh > 1 is needed to compute the
valid reward statistics (we choose NLSSp = 20 and NLSBh = 10 in the exper-
iments of this chapter). UCB-Boltzmann selection method chooses a behavior
module from both the existing B and new behavior modules generated by the
behavior LSs. Note that only the selected new behavior module is added into B.

Thus, the key elements of LS fusion are each LS (GENbhv, GENspl) and UCB-
Boltzmann selection method. Note that LS fusion works with any LS for that
GENbhv or GENspl is defined. The rest of this section describes the reward statis-
tics and UCB-Boltzmann selection method. In the next section, we specify the
LSs used in this thesis.

6.4.1 Reward Statistics

We evaluate the performance of a behavior module by R � ∑t rt
T , where {rt|t =

1, 2, . . . } denotes the observed reward sequence in an episode, and T denotes to-
1In implementing this algorithm, the size of B is limited to 20 per a task to prevent the large

memory usage. If the size exceeds the limit, a behavior module that has the minimum UCB of
RUCB except for Bnext is removed from B.

6.4. LS FUSION ALGORITHM 85

Algorithm 5: Learning strategy fusion

Input:Task Task, behavior modules B,

state-space modules {X }, action-space modules: {U},

dynamics-model modules {Mdyn}, reward-model modules {Mrwd}
/∗ {Mdyn} and {Mrwd}may be empty ∗/

1: for Neps = 1, 2, . . . do /∗ Neps: episode number ∗/
2: if Neps mod NLSSp = 0 then
3: for each LS ∈ LS spl do

4: {X }, {U}, {Mdyn}, {Mrwd} ← GENspl(LS, Task)
5: if Neps mod NLSBh = 0 then
6: /∗ select a behavior module: ∗/
7: Bnew ← {}
8: for each (U ,X) do
9: for each LS ∈ LSbhv do

10: Bnew ← Bnew ∪ GENbhv(LS,U ,X , Task)
11: Select Bnext from B ∪ Bnew by UCB-Boltzmann selection
12: if Bnext ∈ Bnew then B′ ← B ∪ {Bnext} else B′ ← B
13: return Bnext,B′
14: Perform the episode with Bnext:

Bnext is updated by its own learning algorithm
{Mdyn}, {Mrwd} are updated if possible

15: Update the reward statistics RBnext , R2Bnext ,σmaxBnext

tal time in the episode. The definition of R depends on a task. In general, a sum of
reward (return) may be used, but in our crawling task, this definition is suitable
to select a better behavior module, especially in the early stage of learning.

Since each behavior module is updated to obtain better policy, its perfor-
mance changes with each episode. Thus, we compute the mean and the standard
deviation of R while forgetting the old data, and use them to select a behavior
module. Let RNeps the observation at an Neps-th episode. The reward statistics

RB, R2B are updated by

RB ← αRRNeps + (1−αR)RB, (6.1)

R2B ← αRR2
Neps

+ (1−αR)R2B, (6.2)

where αR is a learning rate. The standard deviation of R can be obtained by
σB = (R2B − R2

B)1/2. In addition, at the end of each episode, σmaxB is updated
which is used in some LSs.

86 CHAPTER 6. LEARNING STRATEGY FUSION

The reward statistics RB, R2B are initialized by zero if B is generated by the
LS-scratch or the LS-planning. If B is generated by the LS-accelerating or the
LS-freeing, the statistics are initialized by the source behavior module’s values.

6.4.2 UCB-Boltzmann Selection

We employ an UCB of R to evaluate the priority of search. In addition, we use
Boltzmann selection to probabilistically select a behavior module.

The UCB of R is defined by

RUCBB � RB + fUCBσB (6.3)

where fUCB is a real constant value that decides the weight of expected improve-
ment (typically 1 or 2).

According to Boltzmann selection, the probability to select B is defined as

π(B) ∝ exp(
1

τlsd
RUCBB) (6.4)

where τlsd is a temperature parameter to adjust randomness. We decrease τlsd

with τlsd = τlsd0 exp(−δτlsd Neps).

6.5 Learning Strategies

This section defines the LSs, namely, defines a function GENbhv(LS,U ,X , Task)
or GENspl(LS, Task) for each learning strategy LS. Every behavior module B has
information, Task(B): a task that B is learning, LS(B): a learning strategy with
which the behavior module is generated, U (B): an action space and X (B): a state
space where the behavior module learns, and K(B): a set of BFs.

For the LS-scratch, we consider that using an RL method with a discrete ac-
tion set is suitable, since a policy is learned from scratch. In contrast, for LS-
accelerating and the LS-freeing, it is better to use an RL method with a continu-
ous action space. This is because a new behavior module generated by these LSs
searches a policy around the source behavior’s policy, which is exploration in a
narrow area.

For these reasons, we utilize WF-DCOB (Chapter 4) for the LSs, since WF-
DCOB has features like the discrete action set DCOB but explores continuous
actions around each discrete action of DCOB. In addition, WF-DCOB explicitly
has parameters related to a speed of motion and target joint angles. Thus, WF-
DCOB is suitable not only for the LS-scratch, but for the LS-accelerating and the
LS-freeing.

6.5. LEARNING STRATEGIES 87

6.5.1 LS-Scratch

The function GENbhv(LS-scr,U ,X , Task) generates a behavior module if U is a
command space Ũ and there is no behavior module of the same setup. Namely, a
module is generated if B does not include a behavior module B such that LS(B) =
LS-scr, U (B) = Ũ , and X (B) = X . The reason of preventing a generation of the
same setup is that the probability that the new behavior module obtains better
performance than the existing one is not high. A new behavior module Bnew

uses WF-DCOB with Q(λ)-learning, where a default (predefined) set of BFs is
employed. If a default set of BFs is not predefined for X , a new behavior module
is not generated2. WF-DCOB’s configurations Cp, Cd, Ctrl, IR, and Fabbrv are
assumed to be predefined for each (Ũ ,X). Since this behavior module learns
from scratch, the parameters of wire-fitting are initialized by the WF-DCOB’s
manner as follows:

θ
(Bnew)
i = 0, (6.5)

U(Bnew)
i = (g(Bnew)

i , qtrg(Bnew)
i) (6.6)

= (
gs

i + ge
i

2
, Cp(μki)), (6.7)

for each i ∈ W .

6.5.2 LS-Accelerating

The LS-accelerating generates behavior modules from source behavior modules
that have the same command and state spaces. Also, the generation with the
same setup is prevented, and this LS works with only a command space. The ac-
celeration is performed by multiplying the interval factor of the source module’s
WF-DCOB by a real constant value faccel < 1.

Specifically, in the function GENbhv(LS-accel, Ũ ,X , Task), for each Bsrc such
that U (Bsrc) = Ũ and X (Bsrc) = X , a new behavior module Bnew is generated if the
conditions are satisfied:

(1) B does not include a behavior module B such that LS(B) = LS-accel and
Src(B) = Bsrc,

(2) σBsrc/σmaxBsrc < σth,

where Src(B) denotes the source behavior module of B, σB denotes a deviation of
B’s return, and σmaxB denotes its maximum. Thus, condition (2) checks if Bsrc

almost converged, namely, is trained enough. σth is a threshold.
2In the following experiments, X16 is the case.

88 CHAPTER 6. LEARNING STRATEGY FUSION

Bnew uses the same BFs with Bsrc, namely K(Bnew) = K(Bsrc). The parameters
of wire-fitting of Bnew are copied from Bsrc except for {U(Bnew)

i } that is multiplied
by faccel. Specifically, for each i ∈ W (Bsrc),

θ
(Bnew)
i = θ

(Bsrc)
i , (6.8)

U(Bnew)
i = (g(Bnew)

i , qtrg(Bnew)
i) (6.9)

= (faccelg
(Bsrc)
i , qtrg(Bsrc)

i). (6.10)

In addition, the set of constraint range IR = {(gs
i , ge

i)|i = 1, 2, . . . } is also modi-
fied:

gs(Bnew)
i = faccelg

s(Bsrc)
i , (6.11)

ge(Bnew)
i = faccelg

e(Bsrc)
i . (6.12)

Thus, the LS-accelerating transfers not only the policy parameters, but also the
limitation of the policy.

6.5.3 LS-Freeing

The LS-freeing frees the DoF of a source behavior module to larger DoF based on
a predefined freeing direction F. Each freeing direction F includes information,
Ũ (F)

src , X (F)
src , Ũ (F)

dest, and X (F)
dest which denote the spaces of a source behavior module

and the spaces of a destination behavior module. This LS works with only a
command space.

In the function GENbhv(LS-free, Ũ ,X , Task), for each pair of (F, Bsrc) such that
Ũ (F)

dest = Ũ , X (F)
dest = X , U (Bsrc) = Ũ (F)

src , and X (Bsrc) = X (F)
src , a new behavior module

Bnew is generated if the conditions are satisfied:

(1) B does not include a behavior module B such that LS(B) = LS-free, Ũ (B) = Ũ ,
X (B) = X , and Src(B) = Bsrc,

(2) The same as condition (2) of the LS-accelerating.

Condition (1) is to prevent the generation with the same setup.
Bnew is initialized so that its action value function is almost the same as that

of Bsrc. To do this, first, the freeing matrices DŨ and DX are calculated so that the
conversions ũdest = DŨ ũsrc, xdest = DX xsrc are performed where ũdest ∈ Ũ (F)

dest,
ũsrc ∈ Ũ (F)

src , xdest ∈ X (F)
dest, and xsrc ∈ X (F)

src . We define these matrices as

DŨ = C�

Ũ (F)
dest

CŨ (F)
src

, (6.13)

DX = CX (F)
dest

C�

X (F)
src

, (6.14)

6.5. LEARNING STRATEGIES 89

where � denotes a pseudo-inverse. The parameters of the Bnew’s BFs are calcu-
lated as

μ
(Bnew)
k = DXμ

(Bsrc)
k , (6.15)

Σ
(Bnew)
k = DXΣ

(Bsrc)
k D	X , (6.16)

for each k ∈ K(Bsrc). The parameters of wire-fitting are initialized as

θ
(Bnew)
i = θ

(Bsrc)
i , (6.17)

U(Bnew)
i = (g(Bnew)

i , qtrg(Bnew)
i) (6.18)

= (g(Bsrc)
i , DŨ qtrg(Bsrc)

i), (6.19)

for each i ∈ W (Bsrc). In this case, IR is not changed.

6.5.4 LS-Planning

The function GENbhv(LS-pln,U ,X , Task) generates a behavior module if U is a
discrete action space, and a dynamics and a reward model module for U , X , and
Task are available. Also, the generation with the same setup is prevented.

A new behavior module uses Dyna-MG where we use Q(λ)-learning instead
of Q(0)-learning (see Chapter 5 for the detail). A default set of BFs is employed.

6.5.5 LS-Model

The function GENspl(LS-model, Task) generates a dynamics and a reward model
module for each combination of (U ,X) and Task if U is a discrete action space.
MixFS dynamics model is used as the dynamics model, and a simple reward
model is employed (see Chapter 5 for the models). The parameters of these mod-
els are {δFa, Aa, Ba, da|a ∈ U} and {ba|a ∈ U} respectively. After the model
module is generated, its parameters are updated when an action in U is executed
even if any behavior module does not use the model module.

If there are some dynamics modules learned in the other tasks, the new dy-
namics module is initialized using the parameters of the existing dynamics mod-
ules. Specifically, Aa and da are copied from the existing modules. This transfer
is performed in the manner mentioned in Chapter 5. If the state and the reward
of a goal (or a forbidden region) are known, they are embedded into the reward
model as prior knowledge. The method to embed reward sources is also de-
scribed in Chapter 5.

90 CHAPTER 6. LEARNING STRATEGY FUSION

6.5.6 LS-Hierarchy

The function GENspl(LS-hier, Task) generates a hierarchical action space H. The
LS-hierarchy assumes that each task has a category label. A hierarchical action
space is generated as a set of subtasks that have a same category label. Thus,
the LS-hierarchy does not construct a hierarchical action space in a fully auto-
matic manner. When an action in H is selected, the LS fusion algorithm is also
used to execute the subtask. If a subtask is a continuing task (the HumanoidML-
crawling and the HumanoidML-turning tasks are the case), we need to configure
the duration of the subtask.

6.6 Experiments

6.6.1 Maze2D

To demonstrate the LS-model and the LS-planning work as expected, LS fu-
sion is applied to the Maze2D task. Though the task is as mentioned in Chap-
ter 2, the type of the maze changes at 400th episode which means that two tasks
are learned in sequence. Concretely, in 0th to 399th episode, Maze2D-middle is
learned, then Maze2D-hard is learned.

In this learning, each LS is expected to be used in the following scenario:

(1) The LS-model generates a dynamics and a reward model module for
Maze2D-middle.

(2) The LS-planning generates a behavior module for Maze2D-middle, where
the model modules are used.

(3) The modules above are learned during 0th to 399th episode.
(4) At the beginning of the 400th episode, the LS-model generates a dynamics

and a reward model module for Maze2D-hard. In this case, the dynamics
model for Maze2D-middle is used to initialize the parameters of the new
model.

(5) The LS-planning generates a behavior module for Maze2D-hard, where the
model modules are used.

(6) The modules are learned.

Figure 6.1 shows the resulting learning curves of this task (the mean of the
return over 25 runs is plotted per episode). Here, the following methods are
compared; LSF (MixFS): LS fusion where the LS-model uses MixFS dynamics
model, LSF (Simple): LS fusion where the LS-model uses the Simple dynamics

6.6. EXPERIMENTS 91

Figure 6.1 Resulting learning curves of the Maze2D task where the maze changes at 400th
episode. Each curve shows the mean of the return over 15 runs per episode.

model, and Q(λ)-learning: normal RL methods for the two tasks. In learning
Maze2D-middle, the learning speed of these three are almost the same. In learn-
ing Maze2D-hard, LSF (MixFS) is faster than the others. A possible reason is
that LSF (MixFS) uses the prior knowledge obtained in Maze2D-middle by trans-
ferring the dynamics model. These results indicate that LS fusion works as ex-
pected.

92 CHAPTER 6. LEARNING STRATEGY FUSION

6.6.2 HumanoidML-crawling

Next, we apply LS fusion to learn HumanoidML-crawling task. In this exper-
iment, we investigate the effect of the transfer LSs, the LS-accelerating and the
LS-freeing. The task HumanoidML-crawling is almost the same as defined in
Chapter 2 except for the reward function. We use eq. (4.34) as the reward func-
tion since the DoF configurations include 4-DoF which is not symmetric (see also
Section 4.5.2).

Space Configurations

We use six sets of DoF configurations: 3-DoF (Ũ3,X3), 4-DoF (Ũ4,X4), 5-DoF
(Ũ5,X5), 6-DoF (Ũ6,X6), 7-DoF (Ũ7,X7), and 16-DoF (Ũ16,X16). These config-
urations are defined in Chapter 2. In ND-DoF configuration, its command input
space is a ND-dimensional vector space that represents target joint angles. Its
state space is

x = (c0z, qw, qx, qy, qz, q	ND
,

ċ0x, ċ0y, ċ0z,ωx, ωy, ωz, q̇	ND
)	 (6.20)

where (c0x, c0y, c0z) denotes the position of the center-of-mass of the body link,
(qw, qx, qy, qz) denotes the rotation of the body link in quaternion, (ωx, ωy, ωz)
denotes the rotational velocity of the body link, and qND denotes the joint angle
vector of the ND-DoF. The reason for the absence of c0x and c0y from state x is
that a policy for the crawling task does not have to depend on the global location
of the robot. The default BFs are allocated as mentioned in Chapter 2.

The possible freeing directions between these DoF configurations are defined
as shown in Figure 6.2. Each arrow shows that freeing is possible in this direction.

Learning Method Configurations

We choose the parameters of LS fusion (denoted as LSF in the experiments) as
follows: fUCB = 2, αR = 0.05, NLSBh = 10, NLSSp = 20, τlsd0 = 20, δτlsd = 0.004,
σth = 0.2, and faccel = 0.95. The LS-scratch generates a behavior module whose
parameters are set as τ0 = 2, δτ = 0.02 for Boltzmann selection of the decreas-
ing temperature parameter τ = τ0 exp(−δτ NepsB) where NepsB denotes a num-
ber of episodes performed by the behavior module B. The parameters of WF-
DCOB are as follows: Cp(x) = qND, Cd(x) = q̇ND for x ∈ XND, and IR =
{(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)} for every configurations, and Fabbrv = 0.5 for

6.6. EXPERIMENTS 93

4-DoF, Fabbrv = 1 for the other DoFs. The LS-accelerating and the LS-freeing
generate a behavior module of the parameters τ0 = 0.1, δτ = 0.02 since the be-
havior module starts from an almost converged policy. Every behavior modules
use Peng’s Q(λ)-learning (eq. (2.1)) with γ = 0.9, λ = 0.9, and a decreasing step
size parameter α = max(0.05, 0.3 exp(−0.002NepsB)).

As a comparison, some configurations of WF-DCOB are also applied. Note
that WF-DCOB for the crawling task is superior to conventional methods through

Figure 6.2 Possible freeing directions between the DoF configurations. Each encircled number
shows an index of dimension; joints with the same number are coupled. Each arrow
shows that freeing is possible in this direction.

94 CHAPTER 6. LEARNING STRATEGY FUSION

its performance is almost the same as that of DCOB (Chapter 4). We employ five
conditions that are denoted as WF-DCOB-{3,4,5,6,7}. Each number indicates a
DoF. All of them use Peng’s Q(λ)-learning with the same parameters as a behav-
ior module of the LS-scratch.

Results

We execute 10 runs for each configuration. Figure 6.3 shows the learning curves
of the first five runs of LSF (ex0,...,ex4). In this figure, each circle shows the re-
turn acquired by a behavior module generated by the LS-scratch (we refer to it as
a scratch behavior module). Namely, the other points on the solid curve are ob-
tained by behavior modules generated by the LS-accelerating and the LS-freeing.
In four out of five runs, the learning curves converge to higher values than that
of the scratch behavior modules. This result means that the transfer learning by
the LS-accelerating and the LS-freeing successfully improves the performance of
the motion. Meanwhile, in ex2, the performance is not improved by the transfer
learning. A possible reason is that the scratch behavior module acquires a high
performance motion in the early stage of the learning, and there is no room for
improvement. The notable point is that LS fusion algorithm selects a suitable
sequence of the LSs including selection of a DoF configuration.

Let us see a detailed learning process. Figure 6.4 shows a learning curve and
a behavior module transition in a run obtained from LSF (ex0 in Figure 6.3). The
returns obtained by scratch behavior modules are also plotted by circles. In the
early stage of the learning (0th to 500th episode), the scratch behavior modules
dominate. One of them seems to converge to a return about 230 around 350th
episode. The converged module uses the 3-DoF configuration, with which a
behavior module can learn the policy quickly because of the lower dimension.
Then, the LS-accelerating and the LS-freeing are applied. The behavior mod-
ule used in the final stage of the learning is obtained through the following LS
sequence: S(3-DoF)→F(3→5-DoF)→A→F(5→16-DoF)→A→A→A, where S de-
notes the LS-scratch, A denotes the LS-accelerating, and F denotes the LS-freeing.
The final convergent value of the return is around 370, thus, the performance
is improved by the transfer learning. Figure 6.5 shows snapshots during learn-
ing (ex0 in Figure 6.3), and Table 6.1 shows the profiles of motions in Figure 6.5.
These results show how the performance of motion is improved.

Figure 6.6 shows the resulting learning curves of the crawling task (the mean
of the return per episode over 10 runs). Among WF-DCOBs, WF-DCOB-3 con-
verges fastest and converges to the highest value of return. A possible reason is

6.6. EXPERIMENTS 95

that in addition to the lowest dimension, the joint coupling of the 3-DoF is suit-
able for the crawling task. On the other hand, LSF reaches at a higher value than
that of WF-DCOB-3. The reason is thought to be an effect of LS fusion; though the
return value of WF-DCOB-3 is not improved after convergence, LSF improves its
policy by applying the LS-accelerating and the LS-freeing.

Therefore, these results demonstrate that using LS fusion enables (1) in the
early stage of learning, an agent can select a suitable DoF configuration, and
(2) after a scratch behavior module converges, the LS-accelerating and the LS-
freeing can improve the policy.

96 CHAPTER 6. LEARNING STRATEGY FUSION

Figure 6.3 Learning curves of five runs obtained from LSF. Each solid line shows the return per
episode, and each circle shows the return acquired by a behavior generated by the
LS-scratch.

6.6. EXPERIMENTS 97

Figure 6.4 Learning curve and module transition in a run obtained from LSF (ex0 in Figure 6.3).
The dotted line shows the return per episode, each circle shows the return acquired
by a behavior generated by the LS-scratch, and the solid line shows the index of the
selected behavior module in each episode.

98 CHAPTER 6. LEARNING STRATEGY FUSION

Figure 6.5 Snapshots of motions during learning (ex0 in Figure 6.3). Every snapshots are taken
at 3-FPS during first 15 frames in each episode.

6.6. EXPERIMENTS 99

Table 6.1 Profiles of motions in Figure 6.5.

Episode Return Procedure

200 6.12 S(3)

300 231.55 S(3)

400 210.00 S(3)→F(3→16)

500 229.46 S(3)

600 248.01 S(3)→F(3→5)→A→F(5→6)→F(5→16)

700 328.49 S(3)→F(3→5)→A→F(5→16)→A→A

800 361.10 S(3)→F(3→5)→A→F(5→16)→A→A→A

1000 361.87 S(3)→F(3→5)→A→F(5→16)→A→A→A

1500 374.33 S(3)→F(3→5)→A→F(5→16)→A→A→A

Figure 6.6 Resulting learning curves of the crawling task. Each curve shows the mean of the
return per episode over 10 runs.

100 CHAPTER 6. LEARNING STRATEGY FUSION

6.6.3 HumanoidMaze – Learning from Scratch

Next, to demonstrate the scalability, LS fusion is applied to a maze task of the
simulated humanoid robot. In this task, the robot learns from scratch, which
means it learns not only a path to goal, but also crawling and turning motions.
This task is referred to as HumanoidMaze. In order to train the robot, we spec-
ify a task sequence; 0th to 1499th episode: the crawling task, 1500th to 2499th
episode: the turning-left task, 2500th to 3499th episode: the turning-right task,
and 3500th to 3999th episode: the maze task (easy2).

In this learning, each LS is expected to be used in the following scenario:

(1) The primitive tasks (crawling and turning) are learned with the LS-scratch,
the LS-freeing, and the LS-accelerating.

(2) The LS-hierarchy generates a hierarchical action space in which the primi-
tive tasks are treated as the subtasks.

(3) For the hierarchical action space, the LS-model generates a dynamics and a
reward model module. Then the LS-planning generates a behavior module.

The parameter setup for LS fusion is the same as that in Section 6.6.2.
We execute 10 runs. Figure 6.7 shows the learning curves of the first five runs

of LSF (ex0,...,ex4). In the learning stage of the crawling and the turning tasks,
we can find that scenario (1) is achieved. Figure 6.8 shows a learning curve and
a behavior module transition in a run obtained in ex0 of Figure 6.7. This graph
shows how the set of behavior modules increases.

Figure 6.9 shows the resulting learning curves of the task (the mean of the re-
turn per episode over 10 runs). In learning the maze task, one out of ten runs fails
to acquire a path to goal. The major factor is considered to be a poor connection
between the crawling policy and the turning policy. Using such policies as low-
level actions may remove the Markov property from the maze task. Thus, the
robot fails in the maze task. Such failure will be avoided by mixing the primitive
tasks in the primitive learning stage. This problem is not specific to LS fusion,
but may also arise in the other hierarchical RL methods. Therefore, this failure
does not dismiss the claim that LS fusion has scalability for complex tasks.

Figure 6.10 shows snapshots of an acquired behavior at the end of the maze
task. We can see that the robot moves from start to goal by using crawling and
turning motions.

6.6. EXPERIMENTS 101

Figure 6.7 Learning curves of five runs obtained from LSF. Each solid line shows the return per
episode, and each circle shows the return acquired by a behavior generated by the
LS-scratch.

102 CHAPTER 6. LEARNING STRATEGY FUSION

Figure 6.8 Learning curve and module transition in a run obtained from LSF (ex0 in Figure 6.7).
The dotted line shows the return per episode, each circle shows the return acquired
by a behavior generated by the LS-scratch, and the solid line shows the index of the
selected behavior module in each episode.

Figure 6.9 Resulting learning curves of the HumanoidMaze task (learning from scratch) where
the task changes at 1500th, 2500th, and 3500th episode. Each curve shows the mean
of the return over 10 runs per episode.

6.6. EXPERIMENTS 103

Figure 6.10 Snapshots of an acquired behavior at the end of the HumanoidMaze task (taken in
1-FPS).

104 CHAPTER 6. LEARNING STRATEGY FUSION

6.6.4 HumanoidMaze – Model Transfer

This experiment demonstrates the availability of the LS-model and the LS-
planning in the humanoid robot case. The task setup is similar to the one in
Section 6.6.1. The difference is that in this experiment, we use a simulated hu-
manoid robot that has crawling and turning policies previously learned as the
primitive actions. Concretely, we use the crawling and the turning policies ac-
quired in the experiments of Section 6.6.3 as the primitive actions. In 0th to 499th
episode, a maze task (easy1) is learned, then a maze task (easy2) is learned. A
similar scenario to the experiment in Section 6.6.1 is expected in this learning.
The parameter setup for LS fusion is the same as that in Section 6.6.2.

Figure 6.11 shows the resulting learning curves (the mean of the return over
10 runs is plotted per episode). Here, the following methods are compared; LSF
(MixFS): LS fusion where the LS-model uses MixFS dynamics model, LSF (Sim-
ple): LS fusion where the LS-model uses the Simple dynamics model, and Q(λ)-
learning: normal RL methods for the two tasks. In learning the easy1 maze, the
learning speed of these three are almost the same. In learning the easy2 maze,
LSF (MixFS) is slightly faster than the others due to transferring the dynamics
model. The reason why the improvement of the learning speed is not large is
considered to be using complex primitive actions. These results indicate that LS
fusion works as expected.

6.6. EXPERIMENTS 105

Figure 6.11 Resulting learning curves of the HumanoidMaze task (model transfer) where the
maze changes at 500th episode. Each curve shows the mean of the return over 10
runs per episode.

106 CHAPTER 6. LEARNING STRATEGY FUSION

6.7 Conclusion

This chapter proposed the learning strategy (LS) fusion method where some LSs
are integrated for learning a single task by a single robot. As for LSs, we de-
veloped the LS-scratch, the LS-accelerating, the LS-freeing, the LS-planning, the
LS-model, and the LS-hierarchy. In the LS fusion algorithm, an upper confidence
bound (UCB) and Boltzmann selection method are employed to decide when and
which LS is applied.

The simulation experiments of a crawling task of a small size humanoid robot
demonstrated the advantage of LS fusion compared to learning with single learn-
ing modules. Namely, using LS fusion enables (1) in the early stage of learning,
LS fusion can select a suitable DoF configuration, and (2) after a behavior mod-
ule learning from scratch converges, the LS-accelerating and the LS-freeing can
improve the policy.

The scalability of LS fusion was verified in a maze task of the simulated hu-
manoid robot. In this task, the robot learned a path to a goal using crawling and
turning motions acquired in previous learning sessions.

Our LS fusion architecture does not share the samples among the behavior
modules. Introducing a kind of importance sampling to share the samples like
CLIS (Uchibe and Doya 2004) may improve the learning speed, which is one of
our future tasks.

107

Chapter 7

Application to Humanoid Locomotion

This chapter studies a new scheme for learning locomotion by a hu-
manoid robot: a robot is embedded with a primitive balancing controller
during learning. With this scheme, the robot learns locomotion in safety, and
the size of a state-action space can be reduced. Specifically, this chapter in-
vestigates two possible approaches: (A) learning a foot-placement policy for
locomotion where the robot has two stance modes, and (B) applying learning
strategy (LS) fusion (Chapter 6) for learning locomotion. In approach (A),
we consider several RL methods for this switching-stance-mode domain. In
approach (B), we expect that the robot starts to learn with a lower degree of
freedom, and incrementally improves the policy by the LSs.

7.1 Introduction

Past research on RL applications to locomotion utilizes central pattern genera-
tors (CPGs) (Matsubara, Morimoto, Nakanishi, Sato, and Doya 2006; Righetti
and Ijspeert 2006; Nakamura, Mori, Sato, and Ishii 2007), or a property of passive
dynamic walking (Tedrake, Zhang, and Seung 2004; Hitomi, Shibata, Nakamura,
and Ishii 2006). These methods restrict the behavior of the robot to certain pat-
terns or dynamics. But such restriction is desirable for walking, which reduces
the learning time greatly.

In contrast, we study a new scheme for learning walking by a humanoid
robot: a robot is embedded with a primitive balancing controller during learning
as illustrated in Figure 7.1. Here, we employ a balancing controller proposed by
Hyon et al. (Hyon, Hale, and Cheng 2007; Hyon 2009). This scheme has two
advantages:

(1) The robot learns walking in safety.
(2) The size of a state-action space can be reduced.

108 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

Figure 7.1 Illustration of the new learning-walking scheme. A humanoid robot is embedded
with a primitive balancing controller during learning walking.

The balancing controller restricts the behavior of the robot to avoid falling down.
Using the remaining DoF (degree of freedom), the robot learns to walk. In re-
ality, the robot can still move its center of mass (CoM) and the leg joints, which
enables the robot to walk. However, the dynamics of the robot with the controller
becomes so complex that we cannot easily identify the dynamics model. Thus, it
is difficult to design optimal walking gaits. Even so, model-free RL methods are
applicable to this case.

Compared to the CPG approaches, the new scheme is thought to be safer since
falling down is automatically prevented by the balancing controller. In some pas-
sive dynamic walking approaches, the falling down of the robot is avoided due
to its hardware property. For instance, falling down of the robot in (Tedrake,
Zhang, and Seung 2004) is a rare occasion. However, such kind of avoidance
restricts the variety of robot behavior a lot. In contrast, the new scheme is a soft-
ware approach. The balancing controller is implemented on a humanoid robot
that has a wide variety of motions.

This chapter investigates two possible approaches:

(A) Applying an RL method to learn a foot-placement policy for walking. In
this case, the robot has two stance modes: double stance and single stance.
We consider several RL methods for this switching-stance-mode domain.

(B) Applying learning strategy (LS) fusion (Chapter 6) for learning humanoid
locomotion. We expect that the robot starts to learn with a lower degree of
freedom (DoF), and incrementally improves the policy by the LSs.

In the rest of this chapter, Section 7.2 describes approach (A), and Section 7.3
describes approach (B). Section 7.4 concludes this chapter.

7.2. RL METHODS IN SWITCHING STANCE MODE 109

7.2 RL Methods in Switching Stance Mode

This section investigates an RL method to learn a foot-placement policy for walk-
ing under the new scheme. The features of the RL problem in this case are as
follows:

(F1) The robot learns from scratch to obtain better performance than hand-
coded policies.

(F2) The robot uses an on-line learning method (or batch mode of small sizes)
to handle (F1) and reduce the learning cost.

(F3) The robot has two modes: double stance and single stance, and the se-
lectable action spaces (we call sub-action spaces) change according to the
mode (Figure 7.2).

To handle (F3), we consider a hierarchical RL approach (Kirchner 1998; Barto
and Mahadevan 2003; Cohen, Maimon, and Khmlenitsky 2006) and a structured
function approximator (FA) approach. Kirchner applied a hierarchical version of
Q-learning (HQL) to a similar task, the forward movement of a six-legged robot
(Kirchner 1998). However, in our task, only two layers are needed to handle (F3).
In this case, we can define a single FA into which the sub-FAs (corresponding to
the sub-action spaces) are structured. Then we apply a normal (non-hierarchical)
RL method to the structured FA. In general, if the available prior knowledge of
a task is almost the same, a hierarchical RL method is inferior to a normal RL
method since the former one has to limit its algorithm for converge. Thus, the
structured FA is considered to be a better approach.

����������	�
���������������	�
�����

����������������� 	������������

���

���

��
�����
�������
��

���������

�������
����

Figure 7.2 Illustration of the switching stance mode. (a) Selectable actions in the double and the
single stance modes. (b) Sub-action spaces.

110 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

Therefore, in this section, we compare Cohen’s hierarchical RL (HRL) algo-
rithm (Cohen, Maimon, and Khmlenitsky 2006) and a normal RL method that is
applicable for the structured FA. As the normal RL method, we employ Peng’s
Q(λ)-learning (Peng and Williams 1994) and fitted Q iteration (Ernst, Geurts, and
Wehenkel 2003; Ernst, Geurts, and Wehenkel 2005).

7.2.1 Cohen’s Hierarchical Reinforcement Learning

As a hierarchical RL method, we use Cohen’s hierarchical RL (HRL) (Cohen,
Maimon, and Khmlenitsky 2006). Many hierarchical RL methods require that a
task can be decomposed into sub-tasks. But, in our case, we only design a single
reward function. Thus, the hierarchical RL methods requiring sub-tasks are not
applicable to our case. However, Cohen’s HRL uses a single reward function,
which is suitable for our case. Thus, we choose to use it.

Though Cohen’s HRL is developed for discrete state-action spaces, we extend
this algorithm in a straightforward manner so that a FA is available for each
module.

For our task, we construct a two layer modular structure. Specifically, it
has one higher module and several lower modules. Each lower module has its
unique sub-action space. The higher module selects a lower module as an action.

7.2.2 Structured Function Approximator

We define the structured FA for our walking task, where the action space consists
of discrete sets and continuous vector spaces whose selectability depends on the
state. Such an action space can be defined as a direct sum of discrete sets and
vector spaces. Thus, we denote the action space as U =

⊔
p∈P Up, where Up is a

sub-action space and P is a set of sub-space indexes. Again, see Figure 7.2 as an
example of a set of sub-action spaces. In the following, we denote u = (p, up) ∈
U for convenience. We use P(x) ⊆ P to express the selectable sub-action spaces
at a state x.

We simply define a FA over the action space U by structuring (combining)
sub-action value functions. First of all, we define each sub-action value function
Qp(x, up) over X ×Up. We choose the LFA-NGnet for a discrete set Up, and wire-
fitting for a continuous space Up. Then we define the overall Q as

Q(x, u) � ∑
p′∈P

δpp′Qp′(x, up′) = Qp(x, up), (7.1)

7.2. RL METHODS IN SWITCHING STANCE MODE 111

where u = (p, up). We letθp the parameter of a sub-action value function Qp. The
parameter vector of the Q can be defined as θ = (θ	1 , . . . ,θ	|P|)

	. The derivative
of Q w.r.t. θ is given by

∇θQ(x, u)	 =
(
δp1∇θ1 Q1(x, u1)	,

. . . , δp|P|∇θ|P|Q|P|(x, u|P|)	
)
, (7.2)

where u = (p, up).
The greedy action at x can be given by

u� = arg max
u∈⊔

p∈P(x) Up

Q(x, u). (7.3)

This can be evaluated as follows: (1) calculating ûp = arg maxup∈Up
Qp(x, up) for

all p ∈ P(x), (2) calculating u� = arg maxu∈{ûp} Q(x, u).
As an exploration policy, we define a two-stage action selection method so

that the RL agent can explore as broadly as possible and it has a scalability for
any kind of sub-FAs. In the first stage, for each p ∈ P(x), select a sub-action
ûp from Up based on Qp(x, up). Here, we use Boltzmann selection if Qp is the
LFA-NGnet and WF-Boltzmann selection if Qp is wire-fitting.

In the second stage, select an action u from {ûp|p ∈ P(x)} based on their
action values {Qp(x, ûp)}. We use a weighted version of Boltzmann selection to
consider the size of Up so that the RL agent can broadly explore. That is,

π(ûp|x) =
wp exp(1

τ Qp(x, ûp))

∑p′∈P(x) wp′ exp(1
τ Qp′(x, ûp′))

, (7.4)

where wp denotes the weight to compensate the size of Up. We decide the weights
{wp} so that they are proportional to the size of the action set Up if Up is discrete,
or to the number of the control wires of Qp if Qp is wire-fitting. Note that in the
early stage of learning, the probability of ûp is nearly proportional to wp, which
makes the exploration appropriate for the size of Up.

7.2.3 Experiments

We apply the RL methods mentioned above to the walking task of a human-size
biped humanoid robot shown in Figure 7.3. The humanoid robot has 50 DoF and
torque controllability with hydraulic actuation (Kawato 2008). Its height is 1.58
m, and its hip height is 0.82 m when at an upright posture. It weighs 93.7 kg.
Its DoF configuration is shown in Figure 7.3(b). The arms and legs each have 7

112 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

��� ��� ���

�

� �

Figure 7.3 SARCOS biped humanoid robot developed by NICT/ATR (Kawato 2008). (a) Hard-
ware. (b) DoF configuration. (c) Simulation model. The figures (a) and (b) are
reprinted from (Hyon 2009).

DoFs, and the neck and torso each have 3 DoFs. In this section, we demonstrate a
simulation comparison of the RL methods. In the experiments, we use a dynam-
ics simulator with a precise model (Figure 7.3(c)) including a well-tuned contact
model.

Robotic System Setup for RL

The robot is embedded with the balancing controller (Hyon 2009). It regulates the
center of mass (CoM) to the center of the supporting region through the optimal
force control. For biped walking case, the desired CoM, as well as the position of
the swinging foot should be varied. Although the controller has compliant sta-
bilization and terrain-adaptation capabilities, its performance is not satisfactory
for dynamic situations because of sensory delays and limitations in the low-level
joint controllers. Thus, we investigate which RL method is most appropriate for
this situation.

The state given to the RL agent consists of the stance mode, {left, double, right},
the position of the CoM, and the previous stance mode. We also tested the veloc-
ity of the CoM instead of the previous stance mode. But, the velocity is so sensi-
tive to sensor noise and is therefore not suitable for the real robot case. Thus, the
state x is defined as

x = (modest, xcm, ycm, modepst), (7.5)

where xcm and ycm denote x- and y-position of the CoM respectively, modest de-

7.2. RL METHODS IN SWITCHING STANCE MODE 113

����������	�
���������������	�
�����

����������������� 	������������

Figure 7.4 Illustration of the sub-action spaces of the walking task.

notes the current stance-mode, and modepst denotes the past (previous) stance
mode. In the following experiments, we allocate 405 Gaussians on a 3× 9× 5× 3
grid as the basis functions of the NGnet.

Though the robot with the balancing controller can move the position of the
CoM and the swinging foot, we pre-implement some primitive CoM movements
so that the RL agent can learn the task easily. Thus, the available sub-action
spaces are defined as illustrated in Figure 7.4. The available sub-action space in
the double stance mode is defined as follows.

Uchst = {to-R, to-L} : Changing the stance mode to right or left. Specifically,
the position of CoM is moved to above the left/right foot, then the other
foot is raised up. These actions are executed in 1.0 second respectively.

And the available sub-action spaces in the single stance mode are defined as
follows.

Udwnft = {down} : Putting down the swinging foot. This action is executed in
1.0 second.

Usf = {(Δxsf, Δysf) | Δxsf, Δysf ∈ R} : Moving xsf and ysf which denote the x
and y positions of the swinging foot. Δxsf and Δysf denote their differences.
This action is executed in 0.1 second.

Namely, the action space is U = Uchst � Udwnft � Usf, and the selectable action
spaces at a state x can be written by

P(x) =
{ {chst} if modest = double,
{dwnft, sf} if modest = left or right.

(7.6)

RL Methods Configurations

For the discrete action spaces Uchst and Udwnft, we define Qchst and Qdwnft as
the LFA-NGnet, respectively. For the continuous action space Usf, we define Qwf

sf

114 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

as wire-fitting. For comparison, we also define Qdisc
sf as the LFA-NGnet over

Udisc
sf defined by discretizing Usf with a 3× 3 grid. The parameters of every LFA-

NGnet are initialized to zero. About Qwf
sf , {θi|i ∈ W} are initialized to zero, while

{Ui|i ∈ W} are initialized with points of a 3× 3 grid on Usf.
In this experiments, we compare the following combinations of the RL algo-

rithms and the sub-FAs1.

S-WF-QL: Q(λ)-learning for Qwf where Qchst, Qdwnft, and Qwf
sf are structured.

S-WF-QLFQI: The combination of Q(λ)-learning and fitted Q iteration for Qwf.
S-DISC-QL: Q(λ)-learning for Qdisc where Qchst, Qdwnft, and Qdisc

sf are struc-
tured.

S-DISC-QLFQI: The combination of Q(λ)-learning and fitted Q iteration for
Qdisc.

S-DISC-Q0LFQI: The combination of Q(0)-learning and fitted Q iteration for
Qdisc.

HRL: Cohen’s HRL for a two layer modular structure where the lower mod-
ules learn Qchst, Qdwnft, and Qdisc

sf . The higher module learns the policy to
select a lower module.

S-DISC-Q0LFQI is compared to verify the effect of the eligibility trace (λ). The
reason why Qdisc

sf is used in HRL rather than Qwf
sf is due to the stability of the

linear FA.
For every RL method, we set γ = 0.95. We use a decreasing step size pa-

rameter α = max(0.05, 0.3 exp(−0.002Neps)) for Q(λ)-learning and HRL. Neps

denotes a number of episodes. For fitted Q iteration, we use a constant step
size parameter α = 0.05. For Q(λ)-learning, we set λ = 0.9 and apply the
replacing trace (Singh and Sutton 1996) to make the eligibility trace stable (see
also (Tsitsiklis and Roy 1997)). For the combination of Q(λ)-learning and fit-
ted Q iteration, we set NFQI = 3 and Nsmpl = 10. As the exploration policy,
we use Boltzmann (or Boltzmann-like) selection, with a decreasing temperature
τ = 1.0 exp(−0.002Neps).

Task Setup

The objective of the walking task is to move forward along the x-axis as far as
possible. Though the balancing controller is embedded, the robot still has a prob-
ability of falling down. The balancing controller employed in this thesis does not
consider the swinging leg motions explicitly. When the swinging leg moves too

1We used the RL library, SkyAI: skyai.sourceforge.net

7.2. RL METHODS IN SWITCHING STANCE MODE 115

fast and CoP locates near the supporting edge, then the robot can lose the stabil-
ity. Thus, we design the reward function as follows:

r(t) = rmv(t)− rsc(t)− rfd(t), (7.7a)

rmv(t) = 200vcmx(t), (7.7b)

rsc(t) = 1δt, (7.7c)

rfd(t) =
{

50 if falling-down,
0 otherwise,

(7.7d)

where rmv means a reward for moving, rsc means a step cost, and rfd means a
penalty for falling down2. The sum of r(t) during an action is given to the RL
agent as the reward for the action. Each episode starts with the initial state where
the robot is standing up (first snapshot in Figure 7.7) and stationary, and ends if
t > 75 s or the robot is falling down.

Result

Figure 7.5 shows the resulting learning curves of the walking task (the mean of
the return over 10 runs per episode). The horizontal axis is in logarithmic scale.
The horizontal line (MANUAL) shows the performance of a manually manipu-
lated walking with a keyboard interface3. Figure 7.6 shows the trajectory in an
episode of the CoM position of a walking gait acquired by S-WF-QLFQI, and
Figure 7.7 shows the corresponding snapshots.

HRL and S-DISC-Q0LFQI are very slow, that is, they take a lot of episodes to
acquire performance. A possible reason is that the update rule of HRL is similar
to Q(0)-learning which may be poor for the walking task. About S-DISC-Q0LFQI,
Q(0)-learning is dominant in the early stage of learning rather than fitted Q iter-
ation since suitable samples are not obtained yet. Thus, S-DISC-Q0LFQI is con-
sidered to be as slow as HRL.

All of the methods using Q(λ)-learning are much faster than these two meth-
ods. Thus, the eligibility trace (λ) is considered to be very effective for the walk-
ing task.

The acquired performance of S-WF-QLFQI is the best, which implies that it
converges to the highest value of the return. It substantially exceeds the per-
formance of the manually manipulated walking. Compared with Qdisc, the FA

2Specifically, the falling-down is defined as (|φ| > 25.0◦) ∨ (|θ| > 25.0◦) where φ and θ denote
the x and y-Euler angles respectively.

3The maximum return value in 30 trials is plotted.

116 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

Qwf has an ability to acquire better performance since Qwf directly approximate
over the continuous action space Usf by wire-fitting. However, there is no per-
formance difference between S-DISC-QL and S-WF-QL because of the instability
of wire-fitting caused by its nonlinearity. Thus, we consider the reason for the
best performance of S-WF-QLFQI is due to both using wire-fitting and updat-
ing by fitted Q iteration which is more stable than Q(λ)-learning. We should
also note that S-WF-QLFQI is slightly slower than S-WF-QL. A possible reason is
that Q(λ)-learning and fitted Q iteration conflict since the definition of the action
value function is slightly different in the two algorithms.

Figure 7.5 Resulting learning curves of the walking task. Each curve shows the mean of the
return over 10 runs per episode. The horizontal line (MANUAL) shows the perfor-
mance of a manually manipulated walking with a keyboard interface.

7.2. RL METHODS IN SWITCHING STANCE MODE 117

Figure 7.6 Trajectory of the CoM position. Small arrows indicate the direction of the movement.
Note that the origin of the CoM is the center of the feet.

Figure 7.7 Animation snapshots.

118 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

7.3 Learning Strategy Fusion for Direct Joint Control

Next, we apply learning strategy (LS) fusion proposed in Chapter 6 to the hu-
manoid locomotion task.

7.3.1 LS Fusion Setup

The humanoid locomotion is a motion learning task; a policy to be learned is a
low-level control law. Thus, as LSs, we employ the LS-scratch, the LS-freeing,
and the LS-accelerating. These LSs use WF-DCOB as defined in Chapter 6. In
this task, we expect a following scenario:

(1) In the early stage of learning, a walking motion near a stepping motion at
the same place is learned by using a lower DoF configuration.

(2) Then, the LS-freeing and the LS-accelerating are applied multiple times to
speed up.

(3) Finally, a fast-walking policy using a higher DoF configuration is acquired.

Since an acquired policy is assumed to use a higher (near full) DoF configu-
ration, we directly control the joint angles rather than a task space. Concretely,
we control the leg joints by a simple PD-controller. This joint controller out-
puts torque commands, which linearly added to the balancing controller’s torque
commands. The total torque commands are applied to the robot.

7.3.2 Experiments

The task setup is the same as defined in the previous section except for the re-
ward function. For these experiments, we change the penalty for falling down as
follows:

rfd(t) =
{

20 if falling-down,
0 otherwise.

(7.8)

The reason why the penalty is reduced to 20 is that the original penalty (50) is
too large for the LS-freeing and the LS-accelerating to judge if a behavior module
is trained enough. The whole reward function is as defined in eq. (7.7).

Space Configurations

We use four sets of DoF configurations (Figure 7.8): 2-DoF (Ũ2,X2), 4-DoF (Ũ4,X4),
8-DoF (Ũ8,X8), and 10-DoF (Ũ10,X10). In every DoF configurations, the left leg

7.3. LEARNING STRATEGY FUSION FOR DIRECT JOINT CONTROL 119

and the right leg move independently and have a same joint-coupling configu-
ration; thus, only the configurations of the left leg are illustrated in Figure 7.8.
In the 2-DoF, a joint pair {q1, q2, q4, q6, q7} is coupled. In the 4-DoF, joint pairs
{q1, q7}, {q2, q4, q6} are coupled respectively. In the 8-DoF, a joint pair {q2, q4} is
coupled, and q1, q6, q7 move independently. In the 10-DoF, q1, q2, q4, q6, q7 move
independently. The joints q3 and q5 are fixed at neutral positions.

In ND-DoF configuration, its command input space is a ND-dimensional vec-
tor space that represents target joint angles. Its state space is

x = (q	ND
, vcmy)	 (7.9)

where vcmy denotes y-velocity of the CoM, and qND denotes the coupled joint
angle vector of the ND-DoF.

Figure 7.8 DoF configurations and possible freeing directions. The Full-DoF configuration is
not used in the experiments. Each encircled number shows an index of dimension;
joints with the same number are coupled. In every DoF configurations, the left leg
and the right leg move independently and have a same joint-coupling configuration.
Each arrow shows that freeing is possible in this direction.

120 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

In order to realize a fast learning, the default BFs are allocated only on X2;
namely, the LS-scratch generates only a behavior module that uses the 2-DoF
configuration. Specifically, we allocate 125 BFs by the spring-damper allocation
method (Chapter 2).

The possible freeing directions between these DoF configurations are defined
as shown in Figure 7.8. Each arrow shows that freeing is possible in this direction.

Learning Method Configurations

We choose the parameters of LS fusion (denoted as LSF in the experiments) as
follows: fUCB = 2, αR = 0.1, NLSBh = 5, NLSSp = 20, τlsd0 = 2, δτlsd = 0.004,
σth = 0.2, and faccel = 0.95. The LS-scratch generates a behavior module whose
parameters are set as τ0 = 2, δτ = 0.02 for Boltzmann selection of the de-
creasing temperature parameter τ = τ0 exp(−δτ NepsB) where NepsB denotes
a number of episodes performed by the behavior module B. The parameters
of WF-DCOB are as follows: Cp(x) = qND, Cd(x) = 0ND for x ∈ XND, and
IR = {(0.8, 1.5), (1.5, 3.0)}, Fabbrv = 1 for every DoF configurations. The
LS-accelerating and the LS-freeing generate a behavior module of the param-
eters τ0 = 0.1, δτ = 0.02 since the behavior module starts from an almost
converged policy. Every behavior modules use Peng’s Q(λ)-learning (eq. (2.1))
with γ = 0.9, λ = 0.9, and a decreasing step size parameter α = max(0.05,
0.1 exp(−0.002NepsB)).

As a comparison, some configurations of WF-DCOB are also applied. We
employ a condition denoted as WF-DCOB-2 that uses the 2-DoF configuration
and the Peng’s Q(λ)-learning with the same parameters as a behavior module of
the LS-scratch.

Results

We execute 10 runs for each condition. Figure 7.9 shows the learning curves of
the first five runs of LSF (ex0,...,ex4). Each circle shows the return acquired by a
behavior module generated by the LS-scratch (we refer to it as a scratch behavior
module). In every run, the learning curve converges to a higher value than that of
the scratch behavior modules. This result means that the transfer learning by the
LS-accelerating and the LS-freeing successfully improves the performance of the
motion. However, the transfer LSs are applied earlier than that of Section 6.6.2;
that is, the transfer LSs are applied before the scratch module converges in some
runs. A possible reason is that the maximum value of the deviation is large, with

7.3. LEARNING STRATEGY FUSION FOR DIRECT JOINT CONTROL 121

which the behavior module is recognized to be trained enough4. However, LS
fusion algorithm selects a suitable sequence of the LSs including selection of a
DoF configuration.

Figure 7.10 shows the resulting learning curves of the humanoid locomotion
task (the mean of the return per episode over 10 runs). LSF reaches a higher value
than that of WF-DCOB-2. The reason is considered to be an effect of LS fusion;
though the return value of WF-DCOB-2 is not improved after convergence, LSF
improves its policy by applying the LS-accelerating and the LS-freeing.

Therefore, these results demonstrate that LS fusion is effective in the hu-
manoid locomotion task as well as that in the HumanoidML-crawling case shown
in Section 6.6.2.

4Specifically, σmaxBsrc is relatively large in the generable condition of the LS-accelerating and
the LS-freeing.

122 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

Figure 7.9 Learning curves of five runs obtained from LSF. Each solid line shows the return per
episode, and each circle shows the return acquired by a behavior generated by the
LS-scratch.

7.3. LEARNING STRATEGY FUSION FOR DIRECT JOINT CONTROL 123

Figure 7.10 Resulting learning curves of the humanoid locomotion task. Each curve shows the
mean of the return per episode over 10 runs.

124 CHAPTER 7. APPLICATION TO HUMANOID LOCOMOTION

7.4 Conclusion

This chapter studied a new scheme for learning locomotion by a humanoid robot,
that is, a robot is embedded with a primitive balancing controller during learn-
ing. The advantages of this scheme are that a robot learns locomotion in safety,
and that the size of a state-action space can be reduced. This chapter investigated
two approaches: (A) learning a foot-placement policy under a switching-stance-
mode domain, and (B) applying LS fusion for learning locomotion.

In approach (A), we considered a hierarchical RL approach and FA approaches,
and compared them in simulation. The results demonstrated that Cohen’s hier-
archical RL algorithm did not work well; it took a longer learning time. On the
other hand, the structured FA was defined for our situation. The RL methods
based on Peng’s Q(λ)-learning could obtain a suitable policy much faster than the
HRL. Especially, applying the combination of fitted Q iteration and Q(λ)-learning
to the structured FA acquired the best performance. The reason is considered as
both the accuracy of wire-fitting and the stability of fitted Q iteration.

In approach (B), we employed the LS-scratch, the LS-freeing, and the LS-
accelerating. Since an acquired policy was assumed to use a higher (near full)
DoF configuration, we directly controlled the joint angles rather than a task space.
Simulation results demonstrated that LS fusion is effective in the humanoid lo-
comotion task as well as that in the HumanoidML-crawling case shown in Sec-
tion 6.6.2. Namely, the robot started to learn with a lower degree of freedom, and
incrementally improved the policy by the LSs.

125

Chapter 8

Conclusion of Thesis

This thesis proposed a highly modularized learning system that is suitable for the
objective-based task design. The proposed system realized that multiple learning
strategies (LSs) are applied to each task of a single robot multiple times, where
the ordering of the LSs is automatically decided. For this realization, the system
consists of four elements: (1) behavior modules, (2) fundamental module types,
(3) LS modules, and (4) UCB-Boltzmann selection method.

This thesis proposed some elemental technologies to define LSs. In Chap-
ter 4, DCOB, a method to generate a discrete action space for large domains, was
proposed. DCOB was extended to WF-DCOB for learning continuous actions.
Based on WF-DCOB, the LS-scratch and two transfer LSs, the LS-freeing and the
LS-accelerating, were defined. In Chapter 5, a method to decompose a dynamics
model was proposed, with which we can obtain a task invariant element of a
dynamics model. The LS-model uses this method to learn a dynamics. Further-
more, the LS-model also use the method to transfer a dynamics model of a task
to one of the other task. In addition, a highly modularized RL library SkyAI was
developed to implement the proposed methods. Chapter 3 introduced SkyAI.

In Chapter 6, the core algorithm of the highly modularized learning system
was proposed, which is referred to as LS fusion. LS fusion includes UCB-
Boltzmann selection method to select a behavior module in each learning stage.
The most distinct feature of LS fusion is that it automatically applies multiple LSs
for each task multiple times. The definition of the LSs were also described in this
chapter.

A lot of experiments were performed to verify the proposed methods. The
DCOB and the WF-DCOB outperformed the conventional methods especially in
motion learning tasks of a simulated humanoid robot. The DCOB also demon-
strated the outstanding performance in a crawling task of a real spider robot.
The method to decompose a dynamics model improved the learning speed of
maze tasks. LS fusion improved the performance of acquired motions by WF-

126 CHAPTER 8. CONCLUSION OF THESIS

DCOB. The scalability of LS fusion was verified in a maze task of the simulated
humanoid robot. In this task, the robot learned a path to a goal using crawling
and turning motions acquired in previous learning sessions.

In addition, an application to humanoid locomotion was studied in Chap-
ter 7. This chapter studied a new scheme for learning locomotion by a humanoid
robot: a robot is embedded with a primitive balancing controller during learn-
ing. The simulation experiments demonstrated that LS fusion is also effective in
this application.

Through these experiments, this thesis concludes that the proposed highly
modularized learning system is one of the most realistic approaches to realize
the objective-based task design.

127

Appendix A

Spring-Damper Allocation

This method allocates K BFs on a state space. First, K hyperspheres that have the
same radius r and different positions ps[1,...,K] are allocated on the state space so
that the spheres spread as widely as possible and the radius is a maximum value
without overlapping. Then, each BF is calculated from r and ps[k].

To allocate the hyperspheres, pseudo-dynamics of a spring-damper system is
calculated. Algorithm 6 shows the entire procedure. Here, the variables mean

D: dimensionality of the state space.
r: radius of sphere (common in every spheres).
vr: speed of radius expansion.
ps[1,...,K]: position of each sphere.
vs[1,...,K]: velocity of each sphere.
Ksp: spring constant (1.0).
Fm: margin ratio (0.2).
xmax: upper bound of state space.
xmin: lower bound of state space.
fri: internal force of radius to expand (0.1).
Dr: dumping constant of radius’s movement (10.0).
Ds: dumping constant of sphere’s movement (2.0).
mr: radius’s mass (5.0).
ms: sphere’s mass (5.0).
δt: time-step (0.1).

Each parenthetic value denotes a typical value of the constant.
Using the output of the algorithm, the parameters of each BF k (Gaussian) is

calculated as follows:

μk = ps[k], (A.1)

Σk = (FΣr)21D, (A.2)

where FΣ is a scaling constant (typical value is 0.6).

128 APPENDIX A. SPRING-DAMPER ALLOCATION

Algorithm 6: Spring-damper allocation

1: initialize r (proper value), ps[1,...,K] (random), vr (zero), vs[1,...,K] (zero)

2: repeat

3: Calculate force:
4: fr ← 0 /∗ force that expands radius ∗/
5: fs[1:K] ← 0D /∗ total force of each sphere ∗/
6: for i1 = 1, 2, . . . , K do /∗ for each sphere ∗/
7: for i2 = i1 + 1, . . . , K do /∗ contact force from the other spheres ∗/
8: d ← ‖ps[i2] − ps[i1]‖
9: if d < 2r then /∗ force for overlapping ∗/

10: F ← Ksp(2r−d)
d (ps[i2] − ps[i1])

11: fs[i1] ← fs[i1] − F
12: fs[i2] ← fs[i2] + F
13: fr ← max(fr, Ksp(2r− d))
14: for d = 1, 2, . . . , D do /∗ contact force from boundaries ∗/
15: if xmin[d] = xmax[d] then

16: f ← Ksp((xmin[d] + Fmr)− ps[i1][d])
17: if f > 0 then
18: fs[i1][d] ← fs[i1][d] + f
19: fr = max(fr, f)
20: f ← Ksp(ps[i1][d] − (xmax[d] − Fmr))
21: if f > 0 then
22: fs[i1][d] ← fs[i1][d] − f
23: fr ← max(fr, f)
24: fs[i1] ← fs[i1] −Dsvs[i1] /∗ damper for sphere’s movement ∗/
25: fr ← fri − fr

26: fr ← fr −Drvr /∗ damper for radius’s movement ∗/
27: Calculate dynamics:
28: r ← r + δtvr /∗ update radius ∗/
29: vr ← vr + δt fr

mr
/∗ update radius’s velocity ∗/

30: for i = 1, 2, . . . , K do /∗movement of each sphere ∗/
31: ps[i] ← ps[i]δtvs[i] /∗ update sphere’s position ∗/
32: vs[i] ← vs[i]δt

fs[i]
ms

/∗ update sphere’s velocity ∗/
33: if r < 0 then /∗ constraint on radius ∗/
34: r ← 0

35: until converging

36: return r, ps[1,...,K]

129

Appendix B

Dynamics of Maze2D Task

The dynamics of Maze2D environment is calculated as Algorithm 7. Here, ũmax =
0.03 denotes the maximum norm of an input. The effect of the wind at x is de-
noted by wind(x), specifically,

wind(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 (‖x‖ < ρw1)
x
‖x‖w1 (ρw1 � ‖x‖ < ρw2)

x
‖x‖w2 (ρw2 � ‖x‖)

(B.1)

where w1 = 0.01, w2 = 0.08, ρw1 = 0.5, ρw2 = 1.0. A wall is denoted by
wall ∈ Wall whose elements are the start point wall.p1 and the end point wall.p2.
Figure B.1 illustrates the dynamics of a wall.

130 APPENDIX B. DYNAMICS OF MAZE2D TASK

Algorithm 7: Dynamics of Maze2D

Input:current state x, control input u

Output:next state x′

1: if ‖u‖ > ũmax then u ← u
‖u‖ ũmax

2: Apply wind: Δx ← u + wind(x)

3: Apply walls:

4: if for a wall ∈ Wall, the line segment (wall.p1, wall.p2) and the line segment
(x, x+Δx) are crossing then

5: uwall ← wall.p1−wall.p2
‖wall.p1−wall.p2‖

6: Δx ← (u	wallΔx)uwall

7: if for the other wall′ ∈ Wall\{wall}, the line segment (wall′.p1, wall′.p2) and the
line segment (x, x+Δx) are also crossing then Δx ← 0

8: return next state: x′ ← x + Δx

Figure B.1 Dynamics of a wall. If an action, i.e. a line segment (x, x+Δx), and a wall are
crossing, the action is modified to move along the wall.

131

Bibliography

Ando, N., T. Suehiro, and T. Kotoku (2008). A software platform for compo-
nent based rt-system development: OpenRTM-Aist. Simulation, Modeling,
and Programming for Autonomous Robots 5325, 87–98.

Baird, L. C. and A. H. Klopf (1993). Reinforcement learning with high-
dimensional, continuous actions. Technical Report WL-TR-93-1147, Wright
Laboratory, Wright-Patterson Air Force Base.

Barron, A. (1993, May). Universal approximation bounds for superpositions of
a sigmoidal function. IEEE Transactions on Information Theory 39(3), 930–945.

Barto, A. G. and S. Mahadevan (2003). Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems 13(4), 341–379.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Cohen, S., O. Maimon, and E. Khmlenitsky (2006). Reinforcement learning
with hierarchical decision-making. In ISDA ’06: Proceedings of the Sixth In-
ternational Conference on Intelligent Systems Design and Applications, USA, pp.
177–182. IEEE Computer Society.

Doya, K., K. Samejima, K. Katagiri, and M. Kawato (2002). Multiple model-
based reinforcement learning. Neural Computation 14(6), 1347–1369.

Ernst, D., P. Geurts, and L. Wehenkel (2003, September). Iteratively extend-
ing time horizon reinforcement learning. In N. Lavra, L. Gamberger, and
L. Todorovski (Eds.), Proceedings of the 14th European Conference on Machine
Learning, Dubrovnik, Croatia, pp. 96–107. Springer-Verlag Heidelberg.

Ernst, D., P. Geurts, and L. Wehenkel (2005). Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research 6, 503–556.

Farahmand, A. M., A. Shademan, M. Jägersand, and C. Szepesvári (2009,
May). Model-based and model-free reinforcement learning for visual ser-
voing. In the IEEE Internactional Conference in Robotics and Automation
(ICRA’09), Kobe, Japan, pp. 2917–2924.

132 BIBLIOGRAPHY

Fernández, F. and M. Veloso (2006). Probabilistic policy reuse in a reinforce-
ment learning agent. In AAMAS ’06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, New York, NY, USA,
pp. 720–727. ACM Press.

Gaskett, C., L. Fletcher, and A. Zelinsky (2000). Reinforcement learning for a
vision based mobile robot. In the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS’00).

Hitomi, K., T. Shibata, Y. Nakamura, and S. Ishii (2006). Reinforcement learn-
ing for quasi-passive dynamic walking of an unstable biped robot. Robotics
and Autonomous Systems 54(12), 982–988.

Hyon, S. (2009). Compliant terrain adaptation for biped humanoids without
measuring ground surface and contact forces. Robotics, IEEE Transactions
on 25(1), 171–178.

Hyon, S., J. Hale, and G. Cheng (2007). Full-body compliant human-humanoid
interaction: Balancing in the presence of unknown external forces. Robotics,
IEEE Transactions on 23(5), 884–898.

Ijspeert, A., J. Nakanishi, and S. Schaal (2002). Learning attractor landscapes
for learning motor primitives. In S. Becker, S. Thrun, and K. Obermayer
(Eds.), Advances in Neural Information Processing Systems 15 (NIPS2002), pp.
1547–1554.

Kajita, S. and T. Sugihara (2009). Humanoid robots in the future. Advanced
Robotics 23(11), 1527–1531.

Kawato, M. (2008). From ‘understanding the brain by creating the brain’ to-
wards manipulative neuroscience. Phil. Trans. R. Soc. B 363(1500), 2201–
2214.

Kimura, H., T. Yamashita, and S. Kobayashi (2001). Reinforcement learning of
walking behavior for a four-legged robot. In Proceedings of the 40th IEEE
Conference on Decision and Control.

Kirchner, F. (1998). Q-learning of complex behaviours on a six-legged walking
machine. Robotics and Autonomous Systems 25(3-4), 253–262.

Kober, J. and J. Peters (2009). Learning motor primitives for robotics. In the
IEEE Internactional Conference in Robotics and Automation (ICRA’09), pp.
2509–2515.

BIBLIOGRAPHY 133

Kondo, T. and K. Ito (2004). A reinforcement learning with evolutionary state
recruitment strategy for autonomous mobile robots control. Robotics and
Autonomous Systems 46(2), 111–124.

Matsubara, T., J. Morimoto, J. Nakanishi, S. Hyon, J. G. Hale, and G. Cheng
(2007). Learning to acquire whole-body humanoid CoM movements to
achieve dynamic tasks. In the IEEE Internactional Conference in Robotics and
Automation (ICRA’07), pp. 2688–2693.

Matsubara, T., J. Morimoto, J. Nakanishi, M. Sato, and K. Doya (2006). Learn-
ing CPG-based biped locomotion with a policy gradient method. Robotics
and Autonomous Systems 54(11), 911–920.

Mcgovern, A. and A. G. Barto (2001). Automatic discovery of subgoals in rein-
forcement learning using diverse density. In In Proceedings of the eighteenth
international conference on machine learning, pp. 361–368. Morgan Kaufmann.

McMahan, H. B. and G. J. Gordon (2005). Generalizing dijkstra’s algorithm
and gaussian elimination for solving mdps. Technical Report CMU-CS-05-
127, Carnegie Mellon University.

Menache, I., S. Mannor, and N. Shimkin (2002). Q-cut - dynamic discovery of
sub-goals in reinforcement learning. In ECML ’02: Proceedings of the 13th Eu-
ropean Conference on Machine Learning, London, UK, pp. 295–306. Springer-
Verlag.

Miyamoto, H., J. Morimoto, K. Doya, and M. Kawato (2004). Reinforcement
learning with via-point representation. Neural Networks 17(3), 299–305.

Moore, A. W. and C. G. Atkeson (1995). The parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces. Mach.
Learn. 21(3), 199–233.

Morimoto, J. and K. Doya (1998). Reinforcement learning of dynamic motor
sequence: Learning to stand up. In the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’98), pp. 1721–1726.

Morimoto, J. and K. Doya (31 July 2001). Acquisition of stand-up behavior
by a real robot using hierarchical reinforcement learning. Robotics and Au-
tonomous Systems 36(1), 37–51.

Morimoto, J., S. Hyon, C. Atkeson, and G. Cheng (2008). Low-dimensional
feature extraction for humanoid locomotion using kernel dimension re-
duction. In the IEEE Internactional Conference in Robotics and Automation
(ICRA’08), pp. 2711–2716.

134 BIBLIOGRAPHY

Nakamura, Y., T. Mori, M. Sato, and S. Ishii (2007). Reinforcement learning for
a biped robot based on a CPG-actor-critic method. Neural Networks 20(6),
723–735.

Park, J.-J., J.-H. Kim, and J.-B. Song (2007). Path planning for a robot manipu-
lator based on probabilistic roadmap and reinforcement learning. Interna-
tional Journal of Control, Automation, and Systems 5(6), 674–680.

Peng, J. and R. J. Williams (1994). Incremental multi-step Q-learning. In Inter-
national Conference on Machine Learning, pp. 226–232.

Peters, J., S. Vijayakumar, and S. Schaal (2003). Reinforcement learning for hu-
manoid robotics. In Humanoids2003, IEEE-RAS International Conference on
Humanoid Robots.

Righetti, L. and A. Ijspeert (2006). Programmable Central Pattern Generators:
an application to biped locomotion control. In the IEEE Internactional Con-
ference in Robotics and Automation (ICRA’06), pp. 1585–1590.

Rottmann, A. and W. Burgard (2009). Adaptive autonomous control using on-
line value iteration with gaussian processes. In the IEEE Internactional Con-
ference in Robotics and Automation (ICRA’09), Kobe, Japan, pp. 2106–2111.

Sato, M. and S. Ishii (2000). On-line EM algorithm for the normalized Gaussian
network. Neural Computation 12(2), 407–432.

Schaul, T., J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß,
and J. Schmidhuber (2010). Pybrain. Journal of Machine Learning Research 11,
743–746.

Singh, S. P. and R. S. Sutton (1996). Reinforcement learning with replacing
eligibility traces. Machine Learning 22(1-3), 123–158.

Smith, R. (2006). Open dynamics engine (ODE). http://www.ode.org/.

Stolle, M. (2004, February). Automated discovery of options in reinforcement
learning. Master’s thesis, McGill University.

Sutton, R. and A. Barto (1998). Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming. In In Proceedings of the
Seventh International Conference on Machine Learning, pp. 216–224. Morgan
Kaufmann.

BIBLIOGRAPHY 135

Sutton, R. S., D. Precup, and S. Singh (1999). Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence 112, 181–211.

Sutton, R. S., C. Szepesvári, A. Geramifard, and M. Bowling (2008). Dyna-style
planning with linear function approximation and prioritized sweeping. In
Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pp.
528–536.

Taga, G., R. Takaya, and Y. Konishi (1999). Analysis of general movements of
infants towards understanding of developmental principle for motor con-
trol. In Proceedings of IEEE International Conference on Systems, Man, and Cy-
bernetics, 1999 (SMC ’99), Volume 5, pp. 678–683.

Takahashi, Y. and M. Asada (2003). Multi-layered learning systems for vision-
based behavior acquisition of a real mobile robot. In Proceedings of SICE
Annual Conference 2003, pp. 2937–2942.

Takahashi, Y., K. Noma, and M. Asada (2008). Efficient behavior learning
based on state value estimation of self and others. Advanced Robotics 22(12),
1379–1395.

Takahashi, Y., M. Takeda, and M. Asada (1999). Continuous valued q-learning
for vision-guided behavior acquisition. In the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’99).

Tanner, B. and A. White (2009). Rl-glue: Language-independent software
for reinforcement-learning experiments. Journal of Machine Learning Re-
search 10, 2133–2136.

Tedrake, R., T. Zhang, and H. Seung (2004). Stochastic policy gradient rein-
forcement learning on a simple 3d biped. In the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS’04), Volume 3, pp. 2849–2854.

Tham, C. K. and R. W. Prager (1994). A modular q-learning architecture for
manipulator task decomposition. In the Eleventh International Conference on
Machine Learning, pp. 309–317.

Torrey, L. and J. Shavlik (2009). Transfer learning. In E. Soria, J. Martin, R. Mag-
dalena, M. Martinez, and A. Serrano (Eds.), Handbook of Research on Machine
Learning Applications, Chapter 11. IGI Global.

Tsitsiklis, J. N. and B. V. Roy (1996). Feature-based methods for large scale
dynamic programming. Machine Learning 22, 59–94.

136 BIBLIOGRAPHY

Tsitsiklis, J. N. and B. V. Roy (1997). An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic Con-
trol 42(5), 674–690.

Uchibe, E. and K. Doya (2004). Competitive-cooperative-concurrent reinforce-
ment learning with importance sampling. In In Proc. of International Con-
ference on Simulation of Adaptive Behavior: From Animals and Animats, pp.
287–296.

Wolpert, D. M. and M. Kawato (1998). Multiple paired forward and inverse
models for motor control. Neural Networks 11(7-8), 1317–1329.

Zhang, J. and B. Rössler (2004). Self-valuing learning and generalization with
application in visually guided grasping of complex objects. Robotics and
Autonomous Systems 47(2-3), 117–127.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF753b50cf306e57277e2e30924e005207884c3044307e305b309330023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

