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An Imitation Learning Framework that
Explicitly Considers Robot Configurations

and Robot-Environment Interactions1

Yuka Ariki

Abstract

Behavioral science has focused on imitation learning, a skill acquisition strat-
egy in which learners try to learn skills by observing instructor’s behaviors.
The imitation learning is known as a learning strategy that can be executed
only by animals with higher intelligence and considered as an efficient way to
control high-dimensional system, e.g., human’s body, that has many sensors
and actuators.

Thus, in recent years, attention has been directed to imitation learning
in humanoid robotics. For humanoid robots with many degrees of freedom,
a considerable amount of time is required to prepare multiple motions in
advance since the number of combinations of joint angle trajectories are quite
large. Imitation learning is considered as a suitable approach to initialize
parameters in the vast search space.

However, direct use of the instructor’s motion trajectories often fails be-
cause of the difference of physical properties between the instructor and the
robot. For example, a humanoid robot can falls over or hits own body by
own hand if the robot directly copy the corresponding joint trajectories of
an instructor’s behavior.

Humans can imitate a motion without falling over by simply watching
an instructor’s movement even if their physical properties differ from the
instructor’s.

In this thesis, we show how to imitate like human, which overcome the dif-
ference of physical properties between the instructor and robot. We propose
learning methods to deal with three major case of the difference of physical
properties involved in the imitation learning paradigm. 1) The kinematics
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(e.g., size, the number of joints) of a demonstrator and an imitator are differ-
ent, 2) The dynamics (e.g., weight, inertia) of a demonstrator and an imitator
are different, and 3) The skill transfer problem rather than only imitating
behaviors.

For the first case, we find a shared low-dimensional latent space between
demonstrator’s and imitator’s postures. Then, we derive a corresponding
imitator’s movement to a demonstrator’s behavior. For the second case, we
estimate the ground reaction force from captured demonstrator’s movements
so that an imitator can generate physically consistent imitated behaviors.
For the third case, we extract task-related features from a demonstrator’s
movements. Then, an imitator tries to improve task performance by using
the extracted features.

Keywords: Imitation Learning, Skill Transfer, Switching State-Space Mod-
els, Shared-GPLVM
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Chapter 1

Introduction

1.1 Background

Imitation learning has been one of the major research topics in neuroscience,
especially after remarkable neural activities related to the imitation learn-
ing are observed in a monkey’s brain. Some neurons in monkey’s premotor
cortex (area F5), called mirror neurons, activate not only when a monkey
observes a specific behavior but also when the monkey generates the same
behavior (DiPellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992).

Also, behavioral science has focused on imitation learning, a skill acquisi-
tion strategy in which learners try to learn skills by observing an instructor’s
behaviors. The imitation learning is known as a learning strategy that can
be executed only by animals with higher intelligence and considered as an
efficient way to control high-dimensional systems, such as the human body
that has many sensors and actuators (Schaal, 1999).

Thus, in recent years, attention has been directed to imitation learn-
ing in humanoid robotics. For humanoid robots with many degrees of free-
dom, a considerable amount of time is required to prepare multiple motions
in advance since the number of combinations of joint angle trajectories are
quite large. Imitation learning is considered as a suitable approach to initial-
ize parameters in the vast search space (Calinon, Guenter, & Billard, 2007;
Nakaoka, Nakazawa, Yokoi, Hirukawa, & Ikeuchi, 2003).

However, direct use of the instructor’s motion trajectories often fails be-
cause of the difference of physical properties between the instructor and the
robot.

1



2 CHAPTER 1. INTRODUCTION

In this thesis, we focus on three representatives of differences of physical
properties and describe influence of these differences.

1) The kinematics (e.g., size, the number of joints) of a demon-
strator and an imitator are different.

Because robots have different kinematics, it is difficult to successfully ap-
ply joint trajectories of an instructor’s behavior. For example, if a robot
directly follow the joint angles of a human, the hand endpoint of the robot
may be different from human’s. However, if the robot achieves the hand
endpoint of human, it is not necessarily the case that the robot success-
fully imitates. For an extreme example, how can we generate AIBO motion
from human motion capturing data? This problem is focused on Computer
Graphics (CG) as ”retargetting” (Gleicher, 1998): the problem of adapting
an animated motion from one character to another. A technique for retar-
getting motion treat character’s configuration like human on CG, however
almost all CG characters have big kinematics differences from human have to
behave like human. The technique for retargetting of ”non-human character”
may be useful to generate motion of robot which has different configurations.
Keyframing method is the simplest method of animating based on key poses
of these characters. We assume shared latent spaces between human and
non-human character. We describe how to interpolate the key poses on this
shared latent spaces to overcome the difference of kinematics.

2) The dynamics (e.g., weight, inertia) of a demonstrator and
an imitator are different.

The difference of dynamics between the instructor and the robot can com-
plicate simply mimicking of demonstrated motion. For example, a humanoid
robot can falls over or hits own body by own hand if the robot directly copy
the corresponding joint trajectories of a instructor’s behavior. By simply
watching an instructor’s movement, humans can imitate a motion without
falling over even if physical properties differ from those of the instructor.
This issue is related to the mind-reading problem, that is, Mind-reading
is explained as the ability to estimate another individual’s mental state by
adopting own perspective (Gallese & Goldman, 1998). It is suggested that
the mirror neurons are possibly used for the mind-reading (Gallese & Gold-
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man, 1998). Similarly, it is supposed that humans take their own dynamics
into account when humans are imitating an instructor’s behaviors. Imitated
movements are not identical to the instructor’s behaviors because of the
difference in dynamics. Then, we tackle the question is how the observed
behaviors are converted to imitated actions. The concept of movement prim-
itives is one of the key ideas to explain this conversion (Wolpert & Kawato,
1998). Movement primitives are components that can generate motor com-
mands to accomplish a goal directed behavior (Schaal, Ijspeert, & Billard,
2003). Movements are essentially modular, in that we put through multiple
qualitatively different tasks. Many behaviors are derived from combinations
of previously acquired movement primitives. One of the main problem is
how to define movement primitives. We represent how to define movement
primitives which are able to estimate human mental state to overcome the
difference of dynamics.

3) The skill transfer problem rather than only imitating behav-
iors.

Robot that has the difference of dynamics and kinematics from human
cannot accomplish complicate task by following only joint angles or marker
positions of human. This problem is related to skill transfer. It is important
for skill transfer to find key features about complicate task. (Bentivegna,
Atkeson, Ude, & Cheng, 2004) show imitation learning framework as skill
transfer on air-hockey and marble maze, however experimenter’s defined key
features to accomplish goal of task in this study. Key features of task should
be learned to apply another task. We try to acquire key feature of task
from human learning data. It is supposed that robot should imitate how to
accomplish goal of task based on key features.

1.2 Research purpose

Overcoming of these differences of physical properties is indispensable for
utilization of imitation learning. We solve three cases of the difference of
physical properties by considering feature spaces between human and robot,
CG character. We propose imitation learning framework and its application:
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1) Feature space to represent of kinematics

We have data set of a few key poses of human and non-human characters
(e.g. lamp, penguin, squirrel) which have big differences from human in
kinematics and topology. The key poses should be selected so that they
are representative of the space of the poses in the captured human motion.
Human’s joint space may have very different of freedom than non-human
character’s joint space, however they may be made to assume similar pose.
The latent variable space then characterizes the common pose space. The
key poses of non-human character can be interpolated corresponding with
human poses by using this shared pose space.

2) Primitives to represent of dynamics

We use primitives to recognize observed behaviours in addition to gener-
ate the imitated behaviors. Thus, we simply use the term primitives instead
of movement primitives (Schaal et al., 2003). We proposed the learning sys-
tem extracts primitives from observed behaviors, which are represented by
a linear dynamical model. Then, based on the recognized primitives, the
system generates imitated behaviours that are feasible for its own body. Pa-
rameters of the linear dynamical models are determined from the captured
human behaviors and ground reaction force (GRF) measured simultaneously.
Therefore, this method has only a small dependency on the classification
criteria defined by an experimenter. We also consider balance control by
estimating GRF from the captured human’s motions. GRF is rescaled by
weight ratio between an instructor and a robot. This procedure is consistent
with the idea of mind-reading, the ability to estimate another individual’s
mental state by adopting own perspective. Estimation of dynamics is similar
to estimation of mental state because human has inner dynamics with envi-
ronment. We use GRF to generate proper interaction between robots and
environments to imitate the instructor’s behaviors.

3) Feature space to represent of task

We use key features on low dimensional space of task are extracted from
human learning. The key features are defined as critical point of accomplish-
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ment skill. Robot can easily learn task by using these key features because it
is easy to find direction which improve task performance on low dimensional
space. The key features are extracted as correlation space from between hu-
man training via point data and performance measurement of task. Robot
optimize robot’s via point by using robot’s performance based on the key
features.

1.3 Related work

In this section, we describe previous studies related to our three imitation
learning framework.

1)

First, we show related studies which convert human motion capture data
to non-human characters on CG or robots. In imitation learning for robot,
they solve this kinematics problem by defining the correspondence of robot’s
joints and human’s, however it is dependent on experimenter view. This has
been studied on CG as retargetting problem. While a number of algorith-
mic techniques have been developed for animating human characters, most
of them are not applicable to non-human characters because they assume
that the target character has human-like proportions and topology (Lee &
Shin, 1999; Popovic & Witkin, 1999; Choi & Ko, 2000; Shin, Lee, Shin, &
Gleicher, 2001), An exception is the work by Gleicher (Gleicher, 1998), where
he extended his motion retargetting technique to non-human characters by
explicitly specifying the correspondence of body parts in the original and new
characters. In theory, Simulation- and physics-based techniques can handle
any skeleton model and common tasks such as locomotion and balancing
(Witkin & Kass, 1988; Liu & Popovic, 2002; Macchietto, Zordan, & Shelton,
2009). However, they are typically not suitable for synthesizing complex be-
haviors with specific styles due to the difficulty in developing a wide variety
of controllers for characters of different topology.
(Ikemoto, Arikan, & Forsyth, 2009) use artist’s input to learn a mapping
function based on Gaussian processes from a captured motion to a different
character’s motion. Their method requires that another animation sequence,
edited from the original motion capture data, is provided to learn the map-
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ping function. Such input gives much richer information about the correspon-
dence than the isolated key poses used in our work. Bregler et al. (Bregler,
Loeb, Chuang, & Deshpande, 2002) also developed a method that transfers
a 2D cartoon style to different characters. Our method employs a statis-
tical model called shared Gaussian process latent variable models (shared
GPLVM) (Ek, Torr, & Lawrence, 2007) to map a human pose to a character
pose. Shon et al. (Shon, Grochow, Hertzmann, & Rao, 2005) used a shared
GPLVM to map human motion to a humanoid robot with many fewer degrees
of freedom, however this robot configuration is not different from human. In
our work, robot model has more different configuration from human. Feng
et al. (Feng, Kim, & Yu, 2008) used Kernel CCA to map control point to
facial mesh. Kernel CCA is similar to shared GPLVM. Their method can
find suitable shared deformation spaces to control high dimensional facial
mesh movement. Urtasun et al. (Urtasun, Fleet, Geiger, Popovic, Darrell, &
Lawrence, 2008) developed a method to incorporate explicit prior knowledge
into GPLVM, allowing synthesis of transitions between different behaviors
and with spacetime constraints. Grochow et al. (Grochow, Martin, Hertz-
mann, & Popovic, 2004) used another extension of GPLVM (scaled GPLVM)
to bias the inverse kinematics computation to a specific style. In our work,
we use a small set of key poses, rather than sequences, to learn a mapping
function that covers a wide range of behaviors. We believe that it is much
easier for actors and animators to create accurate character poses than to
create appealing motion sequences, and that the dynamics, or velocity infor-
mation, can best come from the actor’s captured motion.

2)

Next, we describe work about imitation learning uses movement primi-
tives and consider dynamics. The movement primitives can be considered as
a method to convert recognized behaviors to imitated movements that can
be executed on imitator’s body dynamics. One of the popular approaches to
design an imitation learning framework that uses primitive representations
is using a hidden Markov model (HMM). However, in most of the studies us-
ing HMMs (Inamura, Tanie, & Nakamura, 2003; Takano, Yamane, Sugihara,
Yamamoto, & Nakamura, 2006), the primitive representations are manually
defined while our method extracts primitives by using the Gaussian mixture
of linear dynamical model. Thus, performance of imitation learning can be
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highly depends on the experimenter’s intuition for the primitive extraction.
In addition, these studies only focus on imitating demonstrated joint trajec-
tories and do not consider balance control.　

Dynamic movement primitive (DMP) (Ijspeert, Nakanishi, & Schaal, 2003)
is becoming a popular imitation learning framework. DMP is a method to
design dynamics that can generate an imitated movement. DMP focuses on
generating one observed trajectory and modulating the trajectory by manip-
ulating parameters.

When we apply an imitation learning method to a robot that is not
fixed to the ground such as a humanoid robot, we need to consider balance
control. In (Nakaoka et al., 2003) and (Grimes, Chalodhorn, & Rao, 2006),
balance control is taken into account while humanoid robots are imitating
a dancing behavior or one-leg balancing behavior. However, these methods
design specific imitated movements to the given tasks. Thus, it is not easy to
generalize the acquired movements to other behaviors or robots have different
dynamical properties.

In computer graphics and vision research fields, segmentation and recog-
nition of observed behaviors is popular research topic (Barbic, Safonova, Pan,
Faloutsos, Hodgins, & Pollard, 2004; Pavlovic, Rehg, & MacCormick, 2000;
Li, Wang, & Shum, 2002).

In (Yamane & Nakamura, 2003; Macchietto et al., 2009; Muico, Lee,
Popovic, & Popovic, 2009), optimization methods are used to convert ob-
served behaviors to physically consistent behaviors.

Using modular architecture to represent brain functions have been pro-
posed by, e.g., (Gomi & Kawato, 1993; Haruno, Wolpert, & Kawato, 2001;
Wolpert, Doya, & Kawato, 2003; Doya, Samejima, ichi Katagiri, & Kawato,
2002; Samejima, Katagiri, Doya, & Kawato, 2002). The modular selection
and identification for the control (MOSAIC) is one of the popular mod-
els (Haruno et al., 2001; Wolpert et al., 2003). MOSAIC is originally pro-
posed to explain functions of cerebellum that has modular architecture. MO-
SAIC uses linear forward and inverse dynamics to select the module and use
the module to control a target object. On the other hand, applications of
MOSAIC model have been limited to simple mechanical systems such as a
mass-spring-dumper system. One of the reasons is that MOSAIC uses in-
verse dynamics that are not easy to be estimated in the real environments.
Our proposed imitation learning framework dose not use Inverse dynamic
and only uses forward kinematics that is easily estimated.
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3)

Finally, we describe work related to skill transfer. One imitation learning
framework of the skill transfer is Dynamic movement primitive (DMP) (Ijspeert
et al., 2003). DMP is a method to design dynamics model of task. DMP
can be changed goal point or trajectory depend on kinematics of robot or
task (Pastor, Hoffmann, Asfour, & Schaal, 2009). Similarly, (Atkeson &
Schaal, 1997) show that learning from demonstration of balancing pole based
on learning a task model and a reward function. In that way, the method of
skill transfer combining imitation learning and reinforcement learning have
been focused in recent years (Guenter, Hersch, Calinon, & Billard, 2007;
Bitzer, Howard, & Vijayakumar, 2010). However, these framework were not
applied to complex task. On the other hand, (Miyamoto, Schaal, Gandolfo,
Gomi, Koike, Osu, Nakano, Wada, & Kawato, 1996; Miyamoto & Kawato,
1998) show representation of via point to work Kendama and tennis, which
is extracted human movement trajectory using a forward-inverse relaxation
model and is treated as a control variable. As other usage of representation of
via point, (Ude, Riley, Nemec, Kos, Asfour, & Cheng, 2007) show that pro-
posed framework can imitate throwing ball task from human demonstration.
Our proposed framework is based on (Morimoto, Hyon, Atkeson, & Cheng,
2008; Bitzer et al., 2010), we use human motion capture data and find a low
dimensional space representation that preserve human task performance.

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 describes how to find shared
low-dimensional latent space between demonstrator’s and imitator’s. In this
chapter, we apply this framework to generate motion of non-human character
on CG. We apply the method to three characters and six emotional move-
ments. In chapter 3, we present our imitation learning framework, which
estimate ground reaction force from captured demonstrator’s movement so
that an imitator can generate physically consistent imitated behaviors. We
show how to generate an imitated behaviors based on the recognized prim-
itives, and how we apply the proposed method to a four and seven -link
simulated robot model. We also present the generalization performance of
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our framework on the four link models with different physical parameters.
Chapter 4 describes how to find critical point of task accomplishment by us-
ing via point and task performance of human. In this chapter, we apply this
method to Kendama task. Finally, In chapter 5, we describe the conclusions
and future work.





Chapter 2

Common Low-Dimensional
Space between Humans and
Non-Human Characters

In this chapter, we introduce a method for generating whole-body, motion
of non-human character from human motion capture data without relying
on big different configuration. Examples of such non-human characters and
snap-shots of their motions are shown Figure 2.1 along with the human mo-
tions from which the motions are synthesized. Such characters are often
inspired by animals or artificial objects, and their limb lengths, proportion’s
and even topology may be significantly different form humans. We use these
non-human characters as an extreme example of robot which has big differ-
ent configuration. The characters are expected to be anthropomorphic, i.e.,
convey expressions through body language understandable to human view-
ers, rather than moving as real animals.

Keyframing has been almost the only technique available to animate such
characters. Although data driven techniques using human motion capture
data are popular for human animation, most of them do not work for non-
human characters because of the large differences between the skeletons and
motions styles of the actor and the character. Capturing motion of the animal
does not help solve the problem because animals can not behave like human.
Another possible approach is physical simulation, but it is is very difficult to
build controllers that generate plausible and stylistic motions.

11
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To create the motion of a non-human character, we first capture motions
for a human subject acting in the style of the target character. The subject
then selects a few key poses from the captured motion sequence and creates
corresponding character poses on a 3D graphics software system. The re-
maining steps can be completed automatically with little user interaction.
The key poses are used to build a statistical model for mapping an human
pose to a character pose. We can generate a sequence of poses by mapping
every frame of the motion capture sequence using the mapping function. Fi-
nally an optimization process adjust the fine details of the motion such as
contact constraints and physical realism. We evaluate our approach by com-
paring to principal component analysis(PCA), nearest neighbors(NN), and
Gaussian processes(GP), and verify that our method produces more plausi-
ble results.

Compared to keyframe animation, our method significantly reduces the
time and cost required to create animations of non-human characters. In
our experiment, our method uses two hours for a motion capture session, 18
hours for selecting and creating key poses, and 70 minutes of computation
time to generate 18 animations (7 minutes in total) of three characters, while
an animator can spend weeks to crate the same amount of animation by
keyframing.

2.1 Overview

Figure 2.2 shows an overview of our proposed motion synthesis process. The
rectangular blocks indicate manual operations, while the rounded rectangles
are automatic operations.

We first capture motions of a trained actor or actress performing in the
style of the target character. We provide instructions about the capability
and characteristics of the character and then rely on the actor’s talent to
portray how the character would act in a particular situation.

The actor then selects a few keyposes among the capture motion se-
quences. the poses should be selected so that they cover and are represen-
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Figure 2.1: Non-human characters animated using human motion capture
data and human motion capture data.
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tative of the space of the poses that appear in the captured motions. The
last task for the actor is to create a character pose corresponding to each of
the selected key poses. If necessary, an animator can operate a 3D graphics
software system to manipulate the character’s skeleton. This process is diffi-
cult to automate because the actor often has to make intelligent decisions to
, for example, realize the same contact states on characters with completely
different limb length. The actor may also want to add poses that are not
possible for the human body, such as an extreme back bend for a character
that is much more flexible that humans.

The key poses implicitly define the correspondence between the body
parts of the humanoid and character models, event if the character’s body has
different topology. The remaining two steps can be completed automatically
without any user interaction. First we build a statistical model to map the
human poses in each frame of the captured motion data to a character pose
using the given key poses in Section 2.2. In this thesis, we focus on this
static mapping. We then obtain the global transformation of the poses by
matching the linear and angular momenta of the character motion to that of
the human motion. In many cases, there are still a number of visual artifacts
in the motion such as contact points penetrating the floor or floating in
the air. We therefore fine tune the motion by correcting the contact point
positions and improving the physical realism through an optimization process
taking into account the dynamics of the character. We describes these ways
of dynamics optimization in Section 2.3.

2.2 Static mapping

We employ a statistical method called shared Gaussian latent variable model
(shared GPLVM) (Ek et al., 2007; Shon et al., 2005) to learn a static map-
ping function from a human pose to a character pose which has big different
configuration. Shared GPLVM is suitable for our problem because human
poses and corresponding character poses will likely have some underlying
nonlinear relationship. Moreover,shared GPLVM gives a probability distri-
bution over the character poses, which can potentially be used for adjusting
the character pose to satisfy other constraints.
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Figure 2.2: Overview of the system. Rectangular blocks indicate manual
operations and rounded rectangles are processed automatically.

Shared GPLVM is an extension of GPLVM (Lawrence, 2003), which
models the nonlinear mapping from a low dimensional space (latent space) to
an observation space. Shared GPLVM extends GPLVM by allowing multiple
observation spaces sharing a common latent space. The main objective of
using shared GPLVM in previous work is to limit the output space with
ambiguity due to, for example, monocular video (Ek, Rihan, Torr, Rogez,
& Lawrence, 2008). Although our problem does not involve ambiguity, we
adopt shared GPLVM because we only have a sparse set of corresponding
key poses. We expect that there is a common causal structure between
human and character motions. In addition, it is known that a wide variety of
human motions are confined to a relatively low-dimensional space (Safonova,
Hodgins, & Pollard, 2004). A model with a shared latent space would be an
effective way to discover and model the space that represents that underlying
structure.

Our mapping problem involves two observation spaces: theDY -dimensional
human pose space and the DZ dimensional character pose space. These
spaces are associated with a DX -dimensional latent space. In contrast to
the existing techniques that use time-series data for learning a model, the
main challenge in our problem is that the given samples are very sparse
compared to the complexity of the human and character models.
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Figure 2.3: The local coordinate frame (shown in solid, red line) for repre-
senting the feature point positions.

2.2.1 Motion retargetting

There are several options to represent poses of human and character models.
In our implementation, we use the Cartesian positions of multiple feature
points on the human and character bodies, as done in some previous work
(Arikan, 2006). For the human model, we use motion capture markers be-
cause marker sets are usually designed so that they can well represent human
poses. Similarly, we define a set of virtual markers for the character model
by placing three markers on each link of the skeleton, and use their positions
to represent character poses.

The Cartesian positions must be converted to a local coordinate frame
to make them invariant to global transformations. In this paper, we assume
that the height and roll/pitch angles are important features of a pose, and
therefore only cancel out the horizontal position and yaw angle. For this
purpose, we determine a local coordinate frame to represent the feature point
positions.

The local coordinate is determined based on the root position and orien-
tation as follows Figure 2.3. We assume that two local vectors are defined
for the root joint: the front and up vectors that point in the front and up
directions of the model. The position of the local coordinate is simply the
projection of the root location to a horizontal plane with a constant height.
The z axis of the local coordinate points in the vertical direction. The x axis
faces the heading direction of the root joint, which is found by first obtaining
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the single axis rotation to make the up vector vertical, and then applying the
same rotation to the front vector. The y axis is chosen to form a right-hand
system.

For each key pose i, we form the observation vectors yi and zi by concate-
nating the local-coordinate Cartesian position vectors of the feature points
of the human and character models, respectively. We then collect the vectors
for all key poses to form observation matrices Y and Z. We denote the latent
coordinates associated with the observations by X .

2.2.2 Learning and mapping

The learning and mapping processes are outlined in Figure 2.4, where the
inputs are drawn with a black background. In the learning process, the
parameters of the GPLVMs and the latent coordinates for each key pose are
obtained by maximizing the likelihood of generating the given pair of key
poses. In the mapping process, we obtain the latent coordinates for each
motion capture frame that maximize the likelihood of generating the given
human pose. The latent coordinates are then used to calculate the character
pose using GPLVM.

An issue in shared GPLVM is how to determine the dimension of the
latent space. We employ several criteria as detailed in 2.4.3 for this purpose.

Figure 2.4: Outline of the learning and mapping processes. The inputs are
drawn with black background.
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Learning

A GPLVM (Lawrence, 2003) parametrizes the nonlinear mapping function
from the latent space to observation space by a kernel matrix. The (i, j)
element of the kernel matrix K represents the similarity between two data
points xi and xj , and is calculated by

Kij = k(xi, xj) = θ1 exp

(

−
θ2

2
‖xi − xj‖

2

)

+ θ3 + β−1δi,j, (2.1)

where Φ = {θ1, θ2, θ3, β} are the model parameters and δ represents the delta
function. We denote the parameters of the mapping functions from latent
space to human pose by ΦY and from latent space to character pose by ΦZ

Assuming a zero-mean Gaussian process prior on the functions that gen-
erates the observations from a point in the latent space, the likelihoods of
generating the given observations are formulated as

P (Y |X,ΦY ) =
1

√

(2π)NDY |KY |DY

exp{−
1

2

DY
∑

k=1

yTkK
−1
Y yk}, (2.2)

P (Z|X,ΦZ) =
1

√

(2π)NDZ |KZ|DZ

exp{−
1

2

DZ
∑

k=1

zTkK
−1
Z zk}, (2.3)

where KY and KZ are the kernel matrices calculated using (2.1) with
ΦY and ΦZ respectively, and yk and zk denote the k-th dimension of the
observation matrices Y and Z respectively. Using these likelihoods and priors
for ΦY , ΦZ and X , we can calculate the joint likelihood as

PGP (Y, Z|X,ΦY ,ΦZ) = P (Y |X,ΦY )P (Z|X,ΦZ)P (ΦY )P (ΦZ)P (X). (2.4)

Learning shared GPLVM is essentially an optimization process to ob-
tain the model parameters ΦY , ΦZ and latent coordinates X that maximize
the joint likelihood. The Latent coordinates X and parameters ΦY ,ΦZ are
optimized by conjugate gradient method. It is important to find appropri-
ate initial value on gradient method. The latent coordinates are initialized
using Kernel Canonical Correlation Analysis (KCCA) (Akaho, 2006)(see Ap-
pendix B)
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After the model parameters ΦZ are learned, we can obtain the probability
distribution of the character pose for given latent coordinates x by

z̄(x) = µZ + ZTK−1
Z k(x) (2.5)

σ2
Z(x) = k(x, x)− k(x)TK−1

Z k(x) (2.6)

where z̄ and σ2
Z are the mean and variance of the distribution respectively,

µZ is the mean of the observations, and k(x) is a vector whose i-th element
is ki(x) = k(x, xi).

Mapping

The mapping process starts by obtaining the latent coordinates that cor-
respond to a new human pose using a method combining nearest neighbor
search and optimization (Ek et al., 2007). For a new human pose ynew, we
search for the key pose yi with the smallest Euclidean distance to ynew. We
then use the latent coordinates associated with yi as the initial value for the
gradient-based optimization process to obtain the latent coordinates x̂ that
maximize the likelihood of generating ynew, i.e.,

x̂ = argmaxxP (ynew|x, Y,X,ΦY ) (2.7)

The optimization process converged in all examples we have tested. We use
the latent coordinates x̂ to obtain the distribution of the character pose using
(2.5),(2.6).

2.3 Dynamics optimization

The sequence of poses obtained so far does not include the global horizontal
movement. It also does not preserve the contact constraints in the original
human motion because they are not considered in the static mapping func-
tion. Dynamics optimization is performed in three steps to solve these issues.
We first determine the global transformation of the character based on the
linear and angular momenta of the original human motion. We then correct
the contact point positions based on the contact information. Finally, we im-
prove the physical plausibility by solving an optimization problem based on
cost function that have the equations of motion of the character, a penalty-
based contact force model, and the probability distribution given by the



20CHAPTER 2. COMMON LOW DIMENSIONAL SPACE AS FEATURE

Figure 2.5: Three characters used for the experiment: lamp, penguin and
squirrel.
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static mapping function. The modulated trajectory ∆z is defined as:

∆z(t) =

N
∑

i=1

wiϕi(t) (2.8)

ϕi(t) is RBF function. Mean and variance of RBF function is fixed. wi

is optimized as parameter. A penalty based contact force model is simply
described as :

F = −kpy − kdẏ (2.9)

F is contact force which calculated by character’s foot position y from floor.
Parameter wi is optimized so that trajectories are satisfied with this con-
tact force. Dynamics optimization is described more detail in Appendix C
C.2 2. After the optimization, we can generate imitated character’s motion
including physical constraint.

2.4 Simulation results

We prepared three characters for the tests: lamp, penguin, and squirrel (see
Fig. 2.5). The lamp character is an example of character inspired by an
artificial object but yet able to perform human-like expressions using the
arm and lamp shade as body and face. The completely different topology and
locomotion style from humans make it difficult to animate the character. The
penguin character has human-like topology but the limbs are extremely short
with limited mobility. Although it still does biped walking, its locomotion
style is also very different from humans because of its extremely short legs.
The squirrel character has human-like topology but may also walk on four
legs. The tail is occasionally animated during the key pose creation process,
but we do not extensively animate the tail in the present work.

The software system consists of three components.

• An in-house C++ code library for reading motion capture data and key
poses, converting them to feature point data, computing the inverse
kinematics, and evaluating the cost function.

• A publicly available MATLAB implementation of the learning and
mapping functions of shared GPLVM (Lawrence, 2003).

• MATLAB code for evaluating the cost function and performing the
optimization using the MATLAB function lsqnonlin.



22CHAPTER 2. COMMON LOW DIMENSIONAL SPACE AS FEATURE

emotion lamp penguin squirrel
anger 18.6 16 14.3 3 22.9 14
disgust 34.4 1 23.3 7 20.0 3
fear 29.7 2 25.2 4 28.5 18

happiness 20.1 7 23.7 11 25.8 9
sadness 19.5 3 29.6 4 26.7 3
surprise 10.7 1 26.1 4 19.2 5

total 10.7 30 152.2 33 143.1 52

Table 2.1: Statistics of the measured and created data. Each column show
the duration of the sequence in seconds(left) and the number of key poses
selected from each sequence(right).

2.4.1 Manual tasks

We recorded the motions of a professional actor expressing six emotions
(anger, disgust, fear, happiness, sadness and surprise) for each of the three
characters. Before the motion capture session, we showed a picture of each
character and verbally explained the kinematic properties (e.g., no or ex-
tremely short legs, may walk on four legs). The capture session lasted about
two hours.

The actor and an animator worked together with a 3D graphics software
system (Maya) to select key poses from the motion capture data and create
corresponding poses for the characters. It took 18 hours in total to select
and create 115 key poses from 18 motion sequences, which averaged approx-
imately 9 minutes per pose. The average interval between key poses in the
motions is 3.6 seconds, which is obviously much longer than the interval in
standard keyframe animations. Table 2.1 summarizes the statistics of the
data obtained through this process. Table 2.2 show the number of marker on
each character. Thus, DY -dimension of human pose space is 156, and Each
DZ dimension of character pose space are 60 (lamp), 121 (penguin), and 792
(squirrel).

2.4.2 Static mapping

We trained a shared GPLVM for each character using the key poses created
by the actor and animator. An issue in using GPLVM is how to determine the
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lamp penguin squirrel human
the number of marker 20 107 264 52

Table 2.2: The number of marker on each character. Marker has three coor-
dinate values.

dimension of the latent coordinate, DX . We use Kernel CCA to determine
DX .
We evaluate generalization error by 1 leave out cross-validation. We use
Kernel CCA to initialize the latent coordinates, this initial value is important
to determine the dimension of the latent coordinate in shared GPLVM. We
define generalization error as mean squared error of test data’s marker. We
use Gauss kernel (θ1 = 1, θ3 = 0, β = 0) in (2.1), Gaussian process (GP)

can reconstruct from latent coordinates.
√

θ−1
2 is standard deviation, and

modulate generalization error. About squirrel data, we get low dimensional
dataDZ = 20 to decrease computational requirements by using PCA because
the dimension of squirrel data is very high.

Figure 2.6 shows result of cross-validation on each character. The error
improved by increasing DX up to 6 (generalization error = 1.5983) in the case
of lamp. Similarly, minimum error of penguin is at DX = 8 (generalization
error = 6.2062), optimal dimension for the latent space on squirrel data is
DX = 5 (generalization error = 40.727).

Desired property is that the character motion becomes continuous when
the human motion is continuous. Figure 2.7 shows the first two dimensions
of the trajectories in the latent space when a human motion capture sequence
(happy lamp) is input to the models when we used 6 dimensional spaces and
10 standard deviation. We therefore can represent generated trajectories are
continuous based on 6 dimensional shared spaces.

After static mapping, the character stays above a fixed point on the floor
because the horizontal movement has been removed from the key poses before
learning the mapping function. The dynamics optimization tries to match
the two forces by modifying the trajectory, which changes both the required
and actual contact forces. Figure 2.8 show snapshots of the original human
poses and the results of final animation after dynamics optimization.
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Figure 2.6: Generalization error by using 1 leave out cross-validation. Stan-
dard deviation of Gauss kernel make a small change error.

2.4.3 Comparative discussion

We show additional examples of the synthesized animations in the supple-
mental movie.

We compare shared GPLVM with the following mapping techniques:

• Principal component analysis and linear mapping (PCA): We obtain
the 30-dimensional spaces that contain human and character key poses
using principal component analysis, and then obtain a linear mapping
between the two low-dimensional spaces.

• Linear interpolation of nearest neighbors (NN): We find the N nearest
key poses using the Cartesian distance of the vector composed of human
marker data, and obtain the weighted sum of the character feature
point data where the weight is inversely proportional to the distance.
We have tested with N = 3 (NN3) and N = 10 (NN10).

• Gaussian Process (GP): We obtain the Gaussian process model that
maximizes the likelihood of generating the character key poses from the
human key poses. We then use the mean of the distribution obtained
by each motion capture data frame as the output of the model.

We use the happy lamp example and the mapped motions are processed
by the dynamics optimization algorithm to obtain the final results.
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Figure 2.7: Trajectories in the latent space when a human motion capture
sequence is input to the model, projected to the first two dimensions of the
latent space. The trajectory is represented by a line with triangles that de-
note the latent coordinates of individual frames. The (green) circles represent
the key poses from the same motion sequence as the trajectory, and (red)
crosses are the key poses from other motions.
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Figure 2.8: Original human motion and after static mapping, dynamics op-
timization character motion.

Figure 2.9: Comparison static mapping between shared-GPLVM and
PCA,NN3, and NN10.
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Figure 2.10: Comparison static mapping from fewer key poses between
shared-GPLVM and GP.

Simple models (PCA and NN) cannot effectively model the nonlinear rela-
tionship between the human and character pose spaces with sparse examples
(see Fig. 2.9). NN works better especially with 10 neighbors but does not
generalize well enough. The GP model produces results similar to the shared
GPLVM, but slightly less dynamic. This issue could be fixed by applying
the dynamics optimization to many DOFs but it may significantly modify
the actor’s original intention.

We also test the effect of the number of key poses by using GP and shared
GPLVM learned from fewer key poses (see Fig. 2.10). We use the lamp model
and remove the seven key poses from the happy motion for learning, and
synthesize the happy lamp motion. Neither models can predict the extreme
poses during the first high jump, which is expected because we do not have
any example close to that pose. However, the shared GPLVM seem to have
better generalization capability in terms of jump heights and head directions
as demonstrated in the movie.

We test generalization error about the some example. We calculate gen-
eralization error by using one leave out cross-validation (see Table 2.3). This
result show shared-GPLVM have minimal error in Lamp and Penguin and
Squirrel by using low dimensional initial value in section . Generalization
error is too depend on the type and number of training data and initial value
of kernel’s parameter. In the case of few training data, NN method show
better result than shared-GPLVM. We should decide threshold of number
of training data by using generalization error with each character. Also, we
need to explore kernel parameter to acquire good model.

Finally, we acquire several examples of the synthesized emotional and
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PCA NN10(N=10) NN3(N=3) GP S-GPLVM
Lamp 0.33 0.23 0.21 0.23 0.173

Penguin 0.85 0.62 0.57 0.84 0.51
Squirrel 2.93 2.33 2.11 1.78 1.69

Table 2.3: Generalization error with each method.

dance motions. The lamp and penguin dances are synthesized using only
the key poses shown in Table 2.1, while we provided six more key poses to
synthesize the squirrel dance.

2.5 Conclusion

The basic idea of this approach is to leverage the creativity of actors in
imagining how non-human characters should move, in contrast to the current
standard animation procedure where animators have creative control via 3D
graphics software. The use of motion capture also opens up a second pool
of talent as actors are skilled at using their bodies to tell a story or convey
an emotion. The problem with non-human characters is that we have to
map human motion to characters with significantly different proportions or
topologies.

We tested our algorithm on three characters with different levels of sim-
ilarity to humans. Although the squirrel model is the closest to humans
in terms of the proportions and mobility, motions of the lamp and penguin
models look more plausible and expressive. We hypothesize that this result
occurs because the set of key poses for the squirrel model is not sufficient to
cover its wide range of motion, and because viewers do not expect as much
expression from the simple bodies of the lamp and penguin.

On the other hand, we focus on what low dimensional spaces represent.
We measured penguin’s and squirrel’s one of low dimensional space which
has maximum eigen value by adding small value change, and compare re-
constructed character motion with test data. In the result, we show one of
low dimensional spaces of squirrel represents pitch angle, penguin’s repre-
sents up and down. To extend this method, we need to find more meaningful
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low dimensional spaces, for example low dimensional spaces which represent
emotion. Meaningful low dimensional spaces will be reused for other charac-
ter’s.

We show only result on CG animation, however it is easy to apply this
method to robot model because these CG character’s have link structure.





Chapter 3

Movement Primitives for
Imitation Learning

In this chapter, we introduce our imitation learning framework that the learn-
ing system first extracts and recognizes primitives from observed behaviors,
where each primitive is represented by a linear dynamical model. Then, based
on the recognized primitives, the system generates imitated behaviours that
are feasible with its own body. Parameters of the linear dynamical models
are determined from the captured human behaviors and simultaneously mea-
sured ground reaction force (GRF). We use the GRF profiles generated by
the instructor rather than calculating GRF profiles that are consistent with
joint angle trajectories after capturing behaviors. This calculation of consis-
tent GRF profiles requires extra computation (Yamane & Nakamura, 2003),
while we can easily and simultaneously measure the GRF profiles while cap-
turing joint angle trajectories. However, GRF is not directly observable from
visual images, and it is difficult to always use a device to measure tri-axial
GRF for the overall range of human movements. Also, measurement of an
accurate acceleration that needs to estimate GRF is rather difficult due to
the observation noise.

Therefore, we represent primitives containing the GRF by using linear dy-
namical models. We then use switching state-space models (SSSMs) (Ghahra-
mani & Hinton, 2000) to recognize the appropriate primitives that corre-
sponds to the observed human behavior. Simultaneously, SSSMs are used to
estimate joint angle, joint angle velocity, and GRF from the noisy observation

31
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data.

To evaluate our proposed method, we apply our imitation learning frame-
work to recognize human squatting motions and generate the squatting mo-
tions using a four and seven-link simulated robot model.

3.1 Imitation learning framework using move-

ment primitives

In our learning system, we first construct a motion database that collects
joint angles θ, joint angle velocities θ̇, and GRF fgrf from various humans
behaviors by using a motion capture system and a set of force plates. Then,
apply our imitation learning system to recognize newly observed human be-
haviors and generate the imitated movement using robots:

1. We extract primitives by learning the parameter of the linear dynamical
models with using the constructed motion database (see Appendix A).

2. The extracted primitives are used in switching state-space models (SSSMs)
to recognize newly observed motion sequences. Simultaneously, SSSMs

estimate joint angles θd, joint angle velocities θ̇
d
, and the ground reac-

tion force fgrf (GRF) from the noisy observation of joint angles θo and
joint angle velocities θ̇

o
.

3. To generate imitated movements, first, the estimated GRF is scaled
by the weight ratio between an instructor and a robot. Then, feed
forward joint torques τF to generate the scaled GRF fdgrf are derived.

To track the estimated joint angles θd and joint angle velocities θ̇
d
, we

also use a proportional-derivative (PD) controller where the output of
the controller is denoted as τ J . The estimated joint angles θd and joint

angle velocities θ̇
d
are used as the desired values for the PD controller.

Figure 3.1 shows a schematic diagram of the proposed method.

In the following sections, we explain how we extract and recognize prim-
itives and how we generate the imitated behaviors.
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Figure 3.1: Proposed imitation learning framework: ➀ Primitives are ex-
tracted from motion database and switching state-space models are con-
structed by using the primitives. ➁ State variables (joint angles θd, joint

angle velocities θ̇
d
, and GRF fgrf are estimated using switching state-space

models for new observation. The desired GRF fdgrf is derived from the esti-
mated GRF fgrf by considering weight ration between an instructor and a
robot. ➂ The robot model is controlled based on the estimated variables by
using feedforward controller and feedback controller.

3.1.1 Extraction and recognition of primitives

We first extract primitives from captured human behaviors by using the
Gaussian mixture of linear dynamical models (see Appendix A). We define
the one linear dynamical model as one primitive. Then, a newly observed
human behavior is recognized as a combination of these primitives by using
switching state-space models (SSSMs) (Ghahramani & Hinton, 2000).

3.1.2 Switching state space models

The schematic diagram of SSSMs is depicted in Fig. 3.2. This model can be
viewed as a combination of Hidden Markov Model (HMM) with a set of linear
dynamical systems. The model has multiple Markov chains of continuous
linear-Gaussian latent variables X, together with a Markov chain of discrete
variables S of the form used in a HMM.
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We try to estimate the M continuous latent vectors X
(m)
t (m = 1, ...,M),

and the discrete latent state St from the sequence observationYt(t = 1, ..., T ).
The joint probability of observations and hidden state can be factored as

P ({St,X
(1)
t , ...,X

(M)
t ,Yt}) =

P (S1)
T
∏

t=2

P (St|St−1)
M
∏

m=1

P (X
(m)
1 )

T
∏

t=2

P (X
(m)
t |X(m)

t−1)
T
∏

t=1

P (Yt|X
(1)
t , ...,X

(M)
t ,St),

(3.1)

where π = P (S1) is the initial state probability of the discrete latent state,
and Φ = P (St|St−1) is the transition matrix. The linear Gaussian dynamical
model of each continuous latent vector can be represented as

P (X
(m)
t+1|X

(m)
t ) = N (X

(m)
t+1|A

(m)X
(m)
t ,Q(m)), (3.2)

where N (X|µ,Σ) denotes Gaussian distribution with mean µ and variance
Σ.

The output at each time step is determined by stochastically selecting
the output from one of the linear Gaussian dynamics according to the state
of the discrete latent variable. Here we assume that the observation noise is
Gaussian. Therefore, once the m-th linear dynamical model is selected, the
observation can be represented as

P (Yt|X
(1)
t , ...,X

(M)
t ,St = i) = N (Yt|C

(m)X
(m)
t ,R). (3.3)

3.1.3 Recognition of primitives

The primitives are recognized by finding the parameters of SSSMs. These
parameters can be derived by generalizing the EM algorithm. The EM al-
gorithm alternates between optimizing a distribution over hidden states in
E-step, and optimizing the parameter given the distribution over hidden
states in M-steps. In E-step, however, it is intractable to exact distribution
inference in SSSMs. Therefore, variational approximation is used to find the
posterior distribution of the continuous and discrete variables with estimated
parameters. For this purpose, tractable distribution Q is introduced, where
Q is defined by the parameter ξ (Ghahramani & Hinton, 2000):

Q(St,Xt|ξ) =
1

ZQ

[

ψ(S1|ξ)
T
∏

t=2

ψ(St−1,St|ξ)

]

M
∏

i=1

ψ(X
(i)
1 |ξ)

T
∏

t=2

ψ(X
(i)
t ,X

(i)
t−1|ξ),

(3.4)
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ψ are unnormalized probabilities. The posterior can be approximated by
varying the parameter ξ to obtain the tightest possible bound by minimizing
Kullback-Leibler (KL) divergence between Q and the true posterior P :

KL(Q||P ) =
∑

St

∫

Q(St,Xt|ξ) log
Q(St,Xt|ξ)

P (St,Xt|Yt)
dXt. (3.5)

This can be done by using the Kalman smoothing recursion and forward-
backward algorithm. Since each state estimation mutually depends on the
parameter ξ, the estimation processes are repeated until the KL divergence
in (3.5) converges. The M-step optimizes the parameters of both the linear
dynamical systems and the discrete hidden states to increase the expectation
of the log likelihood. In this study, we focus on optimizing the parameters
of discrete hidden states while we use the parameter of the linear dynam-
ical systems that are extracted from the motion database by the method
described in Appendix A.
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Figure 3.2: Switching state-space models. X
(m)
t denotes the state vector of a

linear model m at time t. St is the discrete switching state. Yt denotes the
observation vector.

3.1.4 Generating joint torques from estimated data

By using SSSMs, we estimate joint angles θd, joint angle velocities θ̇
d
, and

the GRF fgrf . The estimated GRF fgrf is scaled by the weight ratio between
the instructor and the robot to derive the desired GRF fdgrf . We then use
the method proposed in (Hyon, Hale, & Cheng, 2007) to derive joint torque
τF at each joint to generate the desired GRF fdgrf .
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link1 link2 link3 link4
mass[kg] 39.4 13.2 6.12 1.32
length[m] 0.85 0.38 0.44 0.36

inertia moment(×10−4)[kg.m2] 2.370 0.159 0.987 0.720

Table 3.1: Parameters of four-link robot model (total mass: 60kg).

link1 link2 link3 link4 link5 link6 link7
mass[kg] 39.4 6.6 3.06 0.66 6.6 3.06 0.66
length[m] 0.85 0.38 0.44 0.4 0.38 0.44 0.4

inertia moment(×10−4)[kg.m2] 2.370 0.079 0.049 0.008 0.079 0.049 0.008

Table 3.2: Parameters of seven-link robot model (total mass: 60kg).

The joint torque τF to generate the estimated GRF fdgrf can be calculated
by the following equation (Hyon et al., 2007):

τ F = JT
P (θ)(−fdgrf ) +Dθ̇, (3.6)

where JP is the Jacobian from the Center of Mass (COM) to the contact
point with the ground (see Fig. 3.3(b)) . D is dumping coefficient. We adopt
a proportional-derivative (PD) controller to track the estimated joint angles.
The output of the PD controller τ J is given according to the estimated

desired joint angles θd and joint angle velocities θ̇
d
:

τ J = Kp(θ
d − θ) +Kd(θ̇

d
− θ̇), (3.7)

with positive gain matrices Kp,Kd > 0. Therefore, the total joint torque
input is given by:

τ = τF + τ J . (3.8)

3.2 Simulation

3.2.1 Simulation setup

We apply our proposed method to a simulated four and seven-link robot(see
Fig. 3.3(a) and Fig. 3.4(a)). Physical parameters of each robot model are
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Figure 3.3: (a): Four-link robot model (b): r1 and r2 represent contact
position from the Center of Mass(COM). rp represents the center of pressure.
fdgrf is the desired ground reaction force.

described in Table 3.1 and Table 3.2. It has the same total mass to the in-
structor’s weight. The weight ration of each link was extracted from anatom-
ical data of human body (e.g., (Hukashiro, Sakurai, Hirano, & Ae, 2000)).
The subject who is considered as the instructor in the proposed imitation
learning framework is asked to demonstrate two kinds of squat motions
with knee amplitudes of 45 and 90 degrees, and movement back
and forth. The demonstrated motions were measured using a motion cap-
ture system and force plates. Using this measurement system, joint angles,
joint angle velocities, and the GRF were measured. We measured five squat
cycles for each squat motion and five cycles for movement back and forth.
Average squat frequency was about 0.5 Hz. Three of the five cycles were
used as training data to determine the parameters of the linear models. The
other two cycles were used as test data for the proposed imitation learning
method. Therefore, we had four different squat cycles as test data. We de-
noted the test data of the 45-degree knee amplitude by 45a and 45b, while
the test data of the 90-degree knee amplitude are denoted by 90a and 90b.
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Figure 3.4: (a): Seven-link robot model (b): rr1, rr2, lr1 and lr2 represent
contact position from the Center of Mass(COM). rp represents the center of
pressure. fdgrfx, f

d
grfz is the desired ground reaction force on horizontal and

vertical axes.

We selected two of these four test squatting cycles and used these combined
behaviors as observed motions to evaluate the proposed imitation learning
system. Thus, we get 16 = 4Π2 sets of observed trajectories. In the case of
movement back and forth, we get one test data.

We only consider the generation of squat motions in a two-dimensional
sagittal plane. Latent continuous state variable X in (3.2) is defined as joint
angles, joint angle velocities, and the GRF (see Fig. 3.3,Fig. 3.4):

X = (θankle, θknee, θhip, θ̇ankle, θ̇knee, θ̇hip, fx, fz)
T , (3.9)

where fx, fz is the horizontal and vertical component of GRF fgrf . Each joint
angle has left left and right legs. In the squat motion, we used average joint
angles and joint angle velocities of the left and right legs for simplicity. We
consider the case only the joint angles and the joint angle velocities can be
observed. Therefore, output matrix C is a 6× 8 matrix in the squat motion.
In the movement back and forth, output matrix C is a 12 × 14 matrix The
element of this matrix is Cij = δij , where δij is the Kronecker delta.

We use three linear models (M = 3) to represent all squatting behav-
iors. To make the learning procedure stable, we adopt the parameters of



3.2. SIMULATION 39

the linear models A and Q derived in the extraction process of primitives
(see Appendix1 A). Covariance of the observation noise R is derived from
training data. In SSSMs, we estimate X and S while parameters (π,Φ) are
optimized.

Then, we derive joint torques using (3.8) based on the estimated joint
angles, joint angle velocities, and GRF of the four and seven -link robot
model. The PD gains in (3.7) are set as (Kp,Kd) = (100I, 90I), where I
is identity matrix in the squat motion. In the movement back and forth,
(Kp,Kd) = (30I, 15I)

3.2.2 Result

Recognition of squat movements

The continuous latent state variables including GRF and the discrete la-
tent state are successfully estimated for all 16 observed trajectories. Fig-
ure 3.5 shows the estimated trajectories when new motion (45a→90a and
90a→45a) are observed. This result indicates that model 1 corresponds to 45
degree squat movement, model 2 corresponds to 90 degree squat movement,
and model 3 corresponds to motionless sequences.

Recognition of movement back and forth

The continuous latent state variables including GRF(fx, fz) and the discrete
latent state are successfully estimated for observed trajectories. In the fig-
ure 3.6, we shows the estimated trajectories when new movement back and
forth are observed. This result indicates that model 1 corresponds to move-
ment forth, model 2 corresponds to movement back. There is no sequences
corresponds to model 3 in this test data.

Generation of squat movements

The four-link robot model could generate successful squatting motions with-
out falling over for all 16 = (4Π2) combined squatting motions. Table 3.3
shows the mean squared error of joint angle trajectories:

1

N

N
∑

i

‖θo
i − θi‖

2
, (3.10)
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Figure 3.5: Estimated trajectories, switching state for data sets 45a→90a
and 90a→45a: The solid line show the measured trajectories, and the dashed
lines show the estimated trajectories. (Top) Joint angles (hip, knee, ankle).
(Middle) Joint angle velocities (hip, knee, ankle). (Bottom) Ground reaction
force (fz), and approximated probability of the discrete switching state St.
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Figure 3.6: Estimated trajectories, switching state for data set movement
back and forth: The solid line show the measured trajectories, and the dashed
lines show the estimated trajectories. (Top) Joint angles of left and right leg
(lhip, lknee, lankle, rhip, rknee, rankle). (Middle) Joint angle velocities of
left and right leg (lhip, lknee, lankle, rhip, rknee, rankle). (Bottom) Ground
reaction force (fx, fz), and approximated probability of the discrete switching
state St.
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Observed squat motion MSE(deg2)
45a→90a 0.73
45a→90b 1.13
45a→45a 0.60
45a→45b 0.51
45b→90a 0.75
45b→90b 1.05
45b→45a 0.52
45b→45b 0.52
90a→45a 0.72
90a→45b 0.80
90a→90a 1.90
90a→90b 0.86
90b→45a 0.90
90b→45b 1.00
90b→90a 0.84
90b→90b 0.97

Average 0.86

Minimum

Maximum
Average

Table 3.3: Tracking errors for squat movements derived from (3.10). The
maximum error was observed with the squat motion 90a → 90a. The mini-
mum error was observed with the squat motion 45a → 45b. For the squat
motion 90a → 90b, the tracking error was closest to the average.

for the 16 successful squatting motions, where N is the number of samples.
The average number of samples was 282, and this corresponds to 5.6 s. θo

i are
the observed joint angles, and θi are the generated joint angles of the robot
model using (3.8) (see Fig. 3.1). The maximum error was observed when the
observed squat motion was 90a → 90a. The minimum error was observed
when the observed squat motion was 45a → 45b. In both case, the four-link
robot model imitated the observed instructors movements comparatively well
without falling over. We depict deviations of generated squat motions from
the observed motions in Fig. 3.7.

Comparison with a simple controller

We compare control performance of the proposed method with that of a sim-
ple PD controller. Figure 3.8 and Figure 3.9 show results of this comparison
with two observed data sets: 45a→90a, and 90a→45a. By using the pro-
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0.0          0.4      0.8       1.2      1.6        2.0       2.4       2.8       3.2        3.6      4.0       4.4       4.8       5.2       5.6         6.0       6.4      6.8

0.0          0.4      0.8       1.2       1.6       2.0       2.4       2.8       3.2        3.6       4.0    

90a 90a

45a 45b

Observed squat

Generated squat

Observed squat

Generated squat

Figure 3.7: Comparison between human squat movements and generated
squat movements. Gray colored model shows observed squat motions. Black
colored model shows generated squat motions. (Top) Squat motion generated
with the observed trajectory 90a → 90a. With this data set, the trajectory
error was maximum among the 16 test data. (Bottom) Squat motion gen-
erated with the observed trajectory 45a → 45b. With this data set, the
trajectory error was minimum among the 16 test data.
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posed method given in (3.8), successful squat motions were generated for
the both estimated trajectories. On the other hand, by only using simple
PD controller given in (3.7), the robot fell over in both cases. These results
indicate an advantage of estimating and using GRF in an imitation learning
framework.

(GRF+PD)

(PD)
Time[sec]

45a  90a

Time[sec]
0.0          0.4      0.8       1.2       1.6       2.0       2.4       2.8      

0.0         0.4       0.8       1.2      1.6        2.0       2.4       2.8       3.2         3.6      4.0       4.4       4.8      5.2       5.6    

Figure 3.8: Comparison between control performance of the proposed method
and that of the simple PD controller. Generated squat movements for the
observed trajectory 45a→90a. By only tracking the desired joint trajectories
with the PD controller, the robot fell over. The results show effectiveness of
using the estimated GRF.
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90a 45a

Time[sec]

Time[sec]

0.0          0.4      0.8       1.2      1.6        2.0       2.4       2.8       3.2         3.6     4.0        4.4       4.8      5.2       5.6     

  0.0        0.4       0.8      1.2       1.6       2.0       2.4       2.8        3.2       3.6       4.0       4.4   

(PD)

(GRF+PD)

Figure 3.9: Comparison between control performance of the proposed method
and that of the simple PD controller. Generated squat movements for the
observed trajectory 90a→45a. By only tracking the desired joint trajectories
with the PD controller, the robot fell over. The results show effectiveness of
using the estimated GRF.
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Availability of ground reaction force in horizontal

We verify value of horizontal ground reaction force fx. We compare control
performance of the proposed method for considering fx. Figure 3.10 show
results of this comparison with observed data sets: new movement back and
forth. By considering fx and fz in (3.8), successful back and forth motion
was generated for the estimated trajectory. On the other hand, by only
considering fz given in (3.8), the robot fell over. These results indicate
estimating and using horizontal GRF fx work well in some cases including
movement back and forth.

  0.0     0.4    0.8    1.2     1.6    2.0    2.4    2.8   3.2     3.6    4.0   4.4    4.8      5.2     5.6    6.0    6.4  6.8   7.2    7.6   8.0   8.4     8.8

(GRF(fx,fz)+PD)

(GRF(fz)+PD)

  0.0     0.4    0.8    1.2     1.6    2.0    2.4    2.8   3.2     3.6    4.0   4.4    4.8      5.2     5.6    6.0    6.4    6.8     7.2    7.6   8.0

Figure 3.10: Comparison between control performance of controller using fx
and fz and that of controller only using fz. Generated squat movements for
the observed trajectory movement back and forth. By tracking the desired
joint trajectories with controller using only the estimated GRF fz, the robot
fell over. The results show availability of using the estimated GRFfx in
movement back and forth.
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Evaluation of generalization performance

Different weight

Kinematic and dynamic properties of an imitator usually differ from that of
an instructor. Here, we show the generalization performance of our frame-
work. We apply our proposed method to robot models that have the same
kinematics as the model shown in Table 3.1 but have different weights.

We apply the proposed method to the different robot models with five
different weights: 40, 50, 60, 70, and 80 kg, while the weight of the robot
model shown in Table 3.1 is 60 kg. As mentioned in Section 3.1, we scaled
GRF by the ratio of the robot total mass to the instructor’s weight. Note
that we can easily measure the total mass by a force plate.

We verified that each of the five different robot models could successfully
generate the squatting motions. In Table 3.4, we show tracking error with
the different weights when system observe the squat motion 90a → 90b. For
the robot that has the same weight to instructor’s, the tracking error was
closest to the average with the observed squat motion 90a → 90b as shown
in Table 3.3. These results show the generalization property of our imitation
learning framework.

Different velocity

Moreover, we apply the proposed method to squat motion which have dif-
ferent velocity from human. The proposed method observe trajectory with
knee amplitudes of 45 degrees with twice the velocity of training data
trajectory with knee amplitudes of 45 degrees. We show squat with
different velocity squat movement with knee amplitudes of 45 degrees
are generated by using different velocity training data.(see Fig. 3.11).

3.3 Conclusion

We proposed an imitation learning framework that can extracts primitives
from captured movements and measured ground reaction force to generate
physically consistent imitated behaviors. We applied the proposed method
to a four and seven-link simulated robot model that has different kinematic
and dynamic properties from an instructor. The extracted primitives are
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Time[sec]

twice period 45 squat 

0.0      0.4    0.8    1.2   1.6    2.0    2.4    2.8    3.2    3.6    4.0    4.4    4.8         

0.0      0.4    0.8    1.2   1.6     2.0      2.4           

Figure 3.11: Generated squat movements for the observed trajectory with
knee amplitudes of 45 degrees with twice the velocity of training data
trajectory with knee amplitudes of 45 degrees. The results show gener-
alization ability of velocity.



3.3. CONCLUSION 49

Weight of robot model MSE (deg2)
40kg 0.76
50kg 0.85
60kg 0.86
70kg 0.91
80kg 0.96

Table 3.4: Tracking error with the five different robot models. We selected
the data set 90a→90b as the observed squat motion. The instructor’s weight
is 60kg.

used to recognize newly observed squat movements. The four and seven -
link robot model generated sixteen different combined squatting behaviors
by using estimated GRF. We also showed the generalization performance of
our proposed method by using five different robot models.

So far, we have only applied the proposed method to simple human behav-
iors. One of our future studies will apply our imitation learning framework
to recognize larger numbers of behaviors and generate more complex motions
by using robots with higher DOF.

In theory, we can apply the proposed method to recognize and generate
a larger number of input motions by increasing the number of the linear
dynamics in SSSMs. However, in practice, the computational requirements
increase according to the increase in linear dynamics, and the state estimation
problems can be computationally intractable. To cope with this issue, we
will consider using a feature extraction method to find low-dimensional state
spaces for human behaviors.





Chapter 4

Via Point Extraction to
Transfer Skill

We proposed solution to overcome difference dynamics and kinematics be-
tween instructor’s and imitator’s. These methods are applicable to movement
of whole body (ex. squat, dance, locomotion). However, these methods are
not applicable complex task because these methods only don’t take into ac-
count performance of task. We need to consider additional constraint to
accomplish task. It is important to treat not only behavior but also skill
transfer in imitation learning framework. In this chapter, we propose imita-
tion learning framework which is applicable to skill transfer by using feature
of human training data. Feature is extracted from correlation between mo-
tion capture data and criteria of task accomplishment. Human can imitate
complex task after a process of trial and error. We suppose that human
can pick up tips during training term. (Kuniyoshi, Ohmura, Terada, &
Nagakubo, 2004) was to show sparse critical points is derived from human
motion data to accomplish Roll-and-Rise.

Critical points are extracted as via point many human motion capture
data including ”know-how” of task in our proposed framework. We apply our
proposed framework to Kendama task. In recent years, Kendama task have
already done various research from the view point mechanical system (Sato,
Sakaguchi, Masutani, & Miyazaki, 1993) or reinforcement learning (Kober
& Peters, 2008) and probabilistic model (Chiappa, Kober, & Peters, 2008).
However, there is no related work which imitate ”know-how” on human learn-
ing process. One of the famous research extract via point from motion cap-
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ture data, and modify via point by using performance of robot (Miyamoto
et al., 1996). In our proposed method, via point are extracted from many
human training data and performance through low dimensional space. We
show robot model can accomplish Kendama task on simulator by using our
imitation learning framework.

4.1 Imitation learning framework and repre-

sentation of via point

In our learning system (see Fig. 4.1), we first construct a motion database
that collects ball position and hand position from various humans behaviors
of kendama by using a motion capture system (see Fig. 4.2). We record
positions of the hand, ball and cup on 45 trial. This database have success
and failure of task. We extract via point based on randomness time, and
trajectories are represented by 5-th spline function from via point. Control
input is represented as between via point and task performance:

1. We extract features of task from database by using Canonical Correla-
tion Analysis (CCA) (see Appendix B).
Performance measurement to accomplish task is defined as ”relative
velocity” when ball position contact with hand position. Feature is
extracted as canonical correlation between via point and performance
measurement.

2. The extracted features are used to optimize robot motion. We optimize
robot model motion by moving these features on simulation.

3. We can know critical point of that task by observing extracted features.

In the following sections, we show our simulation and result.

4.2 Simulation

4.2.1 Simulation set up

We show our simulation setup. To put it simply, we consider only verti-
cal two dimensional (see Fig. 4.3). We define hand position as yhand and
ball position as yball on vertical. Database have Yhand = {y1hand, ..y

m
hand} and
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Figure 4.1: Proposed imitation learning framework: Features of task in low
dimensional space are extracted from via point and human task performance.
Via points are reconstructed by these features, which is optimized by robot
performance.
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Figure 4.2: Experiment setup. The upper arm of human and kendama cup
and ball motions are measured by using optical motion capture.
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Yball = {y1ball, ..y
m
ball}. m is the number of sample. These training data are

aligned in time series. We select k the via point Yhandviapoint and relative veloc-
ity Yhandvelocity on each sample. Thus, the dimension of data set Yhandviapoint
is k × m, the dimension of data set Yhandvelocity is 1 × m. We extract fea-
ture in reduced coordinates U between Yhandviapoint and Yhandvelocity by using
CCA. The matrix of bases can be represented as a linear mapping D, which
transforms the reduced coordinates U to optimally approximate the exam-
ple deformations Yhandviapoint. Thus, it is the solution of the following linear
least-squares problem:

minD

∑

m

‖DU − Yhandviapoint‖
2 (4.1)

Using this parameter D, our framework modify U so that Y robot
handvelocity

converge to 0. Therefore cost function is that:

E =
1

2
‖0− Y robot

handvelocity‖
2 (4.2)

Minimizing this cost function, we modify U by following term.

4.2.2 Simulation result

After robot simulation, via points of hand position are successfully opti-
mized, E = 0.0382. Initial via point is E = 0.5497. We show Figure 4.4
and figure 4.5 shows the trajectories of hand position based on initial and
optimized via points. This result indicates that gradient of optimized hand
position trajectory is almost equivalent to gradient of ball position trajectory
when ball contact to hand. We show that our proposed imitation learning
framework can optimize via point through reduced coordinates.

To verify validity of their low dimensional space U , we optimize via points
by using 1) random a(B.1) and 2) select via points to change by hand. Both
case 1) and case 2) can not generate via points which have error lower than
E = 0.0382. Therefore, we suppose that it is importance to use canoni-
cal correlation space between via point and relative velocity as performance
measure.
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Figure 4.3: Kendama model for simulation. Blue circle show ball position
and red box show hand position. We calculate relative velocity when this
time after ball is jumped over hand position.
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Figure 4.4: Trajectory of initial hand and ball position.
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Figure 4.5: Trajectory of hand and ball position after optimization.
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4.3 Conclusion

In this chapter, we show new imitation learning framework to apply complex
task using human trial and error data. Moreover, we focused on relative
velocity when ball contact to hand, which is introduced in cost function
as performance measure. Finally, we can optimize via points through low
dimensional space which is extracted from canonical correlation between via
points and relative velocity.





Chapter 5

Conclusion

5.1 Summary

This thesis describes a statistic imitation learning framework for humanoid
robots and CG character. These frameworks accommodate instructor’s mo-
tion to robot and CG character which has different kinematics and dynamics.
These frameworks are based on feature extraction from instructor’s motion.
The main contributions of this thesis are generating motion of CG character
or robot consistent with physical condition.
In chapter 1, the significance of imitation learning for intelligence behavior
was described. We focused on three intractable problem under prior imi-
tation learning framework and proposed these solution. Related works were
introduced in a various fields such as neuroscience, behavior science, robotics,
computer graphics and so on.
Chapter 2 described a method generating motion of non-human characters
from human motion capture data. Characters considered in this work have
proportion and/or topology significantly different from humans but are ex-
pected to convey expression and emotions through body language that are
understandable to human viewers. Our proposed method provides motion
of non-human characters that leverages motion data from human subject
performing in the style of the target character. The method consists of
a statistical mapping function learned from a small set of corresponding
key poses, and physics-based optimization process to improve the physical
realism. We demonstrate our approach on three characters and a variety
throughout shared low dimensional coordinates.
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Chapter 3 explained our proposed imitation learning frameworks which se-
lect movement primitives from training data and can generate physically
consistent imitated behaviors. Switching state-space models is applied to
abstraction of instructor’s motion based on movement primitives are auto-
matically extracted from training data. Our proposed framework estimate
GRF by switching these movement primitives.
In chapter 4, we proposed imitation learning framework to apply complex
task. Features of task as correlation low dimensional space is extracted be-
tween motion capture data and task performance. Robot can easily learn
task by using these features of task.

5.2 Future work

Human motion is useful to generate humanoid or non-human robot motion,
however cases of the failure are occurred by the differences of dynamics and
kinematics between human and robot. Our proposed method will be over-
come this difference by extracting shared features between human and robot.
As another advantage for using human motion, it is possible that robot can
recognize and estimate human action. By extending our proposed frame-
work, robot will be move in alien environment by observing human motion
in daily life. Before our proposed frameworks can be put to practical use,
we construct a wealth of database of human motion. In chapter 4, we show
database may be designed based on what to imitate. The development of
new framework focusing on low dimensional database based on proposed
framework will be considered.



Appendix A

Mixture of Experts

We extract primitives from the motion database by using the Gaussian mix-
ture of linear dynamical models. As in Fig. 3.1, the state X in motion

database is defined as X =

(

(

θDB
)T
,
(

θ̇
DB
)T

,
(

fDB
grf

)T

)T

.

Here we consider M mixture of liner Gaussian dynamical models:

P (Xt+1|Xt,H) =
M
∑

m=1

αmP (Xt+1|Xt,ηm), (A.1)

where αm is mixture coefficient for m-th model that is defined as:

αm =

(

P (m)N (Xt|µm,Σm)
∑M

j=1 P (j)N (Xt|µj,Σj)

)

. (A.2)

P (m) is the prior of the model. Here we use P (m) = 1
M
. H consists of

{µm}
M
1 , {Σm}M1 , {ηm}

M
1 , where {ηm}

M
1 consists of {A(m)}M1 , {Q(m)}M1 . The

linear dynamical model is given by:

P (Xt+1|Xt,ηm) = N (Xt+1|A
(m)Xt,Q

(m)). (A.3)

The EM algorithm can be used to optimize the parameters (Xu, Jordan,
& Hinton, 1994), the posterior of the latent variable is calculated as

P (m|Xt+1,Xt,H) =
P (Xt|µm,Σm)P (Xt+1|Xt,ηm)

∑M

j=1 P (Xt|µj ,Σj)P (Xt+1|Xt,ηj)
. (A.4)
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In M-step, the parameters are optimized as follows:

µnew
m =

∑

t P (m|Xt+1,Xt,Hold)Xt
∑

t P (m|Xt+1,Xt,Hold)
(A.5)

Σnew
m =

∑

tP (m|Xt+1,Xt,Hold)
∑

t P (m|Xt+1,Xt,Hold)
(Xt −µnew

m )(Xt −µnew
m )T (A.6)

A(m)
new =

∑

t

P (m|Xt+1,Xt,Hold)Xt+1X̃t (A.7)

×

[

∑

t

P (m|Xt+1,Xt,Hold)X̃tX̃
T
t

]

−1

Q(m)
new =

∑

t P (m|Xt+1,Xt,Hold)
∑

t P (m|Xt+1,Xt,Hold)
(A.8)

× (Xt+1 −A(m)
newX̃t)(Xt+1 −A(m)

newX̃t)
T ,

where X̃t = [XT
t , 1]

T .



Appendix B

Kernel Canonical Correlation
Analysis

CCA( Canonical Correlation Analysis) find to identify and quantify the as-
sociations between corresponding sets of heterogeneous observations. Fur-
ther pairs of maximally correlated linear combinations are chosen such, that
they are orthogonal to those already identified. The pairs of linear combi-
nations are called ’canonical variables’ and their correlations ’the canonical
correlations’. The canonical correlations measure the strength of association
between two sets of variables. CCA is closely related to other linear subspace
method like Principal Component Analysis (PCA), Multivariate Liner Re-
gression (MLR). We define two variables are X ∈ Rnx and Y ∈ Rny. Linear
combinations of the variables in these equation.

Ua =< a,X >=

nx
∑

i

aiXi (B.1)

Vb =< b, Y >=

ny
∑

i

biYi (B.2)

< a,X > is inner product. Correlation is defined from equation(B.1),(B.2).

p =
cov(Ua, Vb)

√

var(Ua)var(Vb)
(B.3)

CCA is solution of the maximization equation B.3 under var(Ua) = 1 and
var(Vb) = 1. However, in the case there are strong non-linear correlation
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between X and Y , we should extend CCA by using Kernel method.
Given an nonlinear map φ into a high dimensional feature space, we can
define a kernel method. learning samples are (Xi, Yi)

N

i=1.

Ua =< a, φx(X) > (B.4)

Vb =< b, φy(Y ) > (B.5)

From Lagrangean and derivation, a is by maximizing correlation,

a =

N
∑

i

αiφx(Xi) (B.6)

As a result, we know

U =
N
∑

i

αi < φx(Xi), φx(X) > (B.7)

U can be defined as inner product in a high dimensional feature space. <
φx(Xi), φx(X) > is kernel functionkX(X1, X2). In similar way V can be
defined by β. Lagrangean of maximizing correlation between U and V can
be defined from kernel function. From Lagrangean, α and β can be calculated
by solving eigen value problem.



Appendix C

List of Publications

C.1 Journal Papers

1. 動作認識における床反力情報の推定と見まね学習への適用
有木 由香, 森本 淳, 玄 相昊
電子情報通信学会論文誌 Vol.J91-D,No.9,pp.2394-2403,Sep. 2008.

C.2 International Conference Proceedings

1. Behavior recognition with ground reaction force estimation and its ap-
plication to imitation learning
Yuka Ariki, Jun Morimoto, Sang-Ho Hyon
International Conference on Intelligent RObots and Systems (IROS),
pp.2029-2034, France, September 2008.

2. Animating Non-Humanoid Characters with Human Motion Data
Katsu　Yamane, Yuka Ariki, Jessica Hodgins
Proc.The ACM SIGGRAPH/ Eurographics Symposium on Computer
Animation 2010
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C.3 Awards

1. 有木　由香　 IEEE 関西支部, 学生研究奨励賞受賞, 2009年 2月

C.4 Domestic Conference Proceedings

1. Extraction of movement primitives without explicit labeling for imita-
tion learning
Yuka Ariki*, Jun Morimoto, Sang-Ho Hyon
2010 Neuro

2. Behavior recognition with ground reaction force estimation and its ap-
plication to imitation learning
Yuka Ariki*, Jun Morimoto, Sang-Ho Hyon
第 31回日本神経科学大会

3. 動作認識における床反力情報の推定と見まね学習への適用
有木 由香, 森本 淳, 玄 相昊
第 25回日本ロボット学会学術講演会 (RSJ 2007)，3G15(CD-ROM)．

4. 床反力情報とモーションキャプチャデータを用いた人間の動作認識
有木 由香, 森本 淳
電子情報通信学会技術研究報告，NC2006-44, pp. 37-41.

5. ASCONE2007 田中宏和先生講義録 [ロコモーションの計算理論-生物と
ロボットの接点-]
杉本徳和　有木由香
日本神経回路学会誌　Vol.15,NO.4(2008)
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