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Unsupervised Category Formation and Its

Applications to Robot Vision∗

Hirokazu Madokoro

Abstract

Recently, human-friendly robots such as pet robots, home robots, and human-

symbiotic robots have emerged in our daily life. A new lifestyle—one of living

with robots together—will be forthcoming in various environments at homes and

offices. For these robots to be useful and valuable for the existence of humans,

it is necessary to obtain the ability to perform various tasks autonomously and

flexibly. To create this ability, robots must have systematic knowledge to adapt

to various environments and to perform those various tasks using world image

maps that are defined as knowledge to be memorized in the brain, and which can

recall the real world in a memory.

This thesis presents an unsupervised category formation method using Self-

Organizing Maps (SOMs) for creating category maps as world image maps. For

signal-based automatic labeling, we introduce Counter Propagation Networks

(CPNs) that are appended the Grossberg layer to SOMs which work for su-

pervised learning. In the primary experiments, this thesis presents basic char-

acteristics of CPNs to improve generalization capabilities of supervised neural

networks based on topological data mapping. Using topological data mapping

on CPNs, our method provides advantages to interpolate new data in sparse ar-

eas that exist among categories and to remove overlapping or conflicting data in

original training data. Moreover, the proposed method can control the number

of training data by changing the size of the category map according to a problem

to be solved.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0961022, September 24, 2010.
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For practical uses in an actual environment, this thesis presents two applica-

tions using a mobile robot. The first application is scene category formation for

global position estimation of a mobile robot. Our method can extract changes

in landscape revealed by viewing image sequences as concept patterns by SOMs.

Effective position information is acquired by making hierarchical SOMs and using

it to consolidate position estimation concept patterns. We evaluated the effect

of shifts in position and direction while the robot was executing a trial journey

on global position estimation. The extent of these shifts established beyond a

doubt that our method was robust. The results of an on-site field test of a robot

system in a hospital with a convalescence ward confirmed the effectiveness of our

method for practical use.

The second application is unsupervised category formation for recognizing

generic objects perceptually. For this application, we propose an unsupervised

category formation method using Adaptive Resonance Theory-2 (ART-2) net-

works and CPNs. Using labels produced by ART-2 for teaching signals of CPNs,

signal-based automatic labeling of units on the category map can be realized.

Moreover, the combination of SOMs and ART-2 can represent spatiotemporal

relations of input data. Using One Class-Support Vector Machines (OC-SVMs),

our method enables feature representation that contributes to improved accuracy

of classification for selecting feature points to concentrate characterized informa-

tion of an image. Classification results of static images using a Caltech-256 object

category dataset and dynamic images using time-series images according to move-

ments respectively demonstrate that the proposed method can visualize spatial

relations of categories while maintaining time-series characteristics. Moreover, we

used Genetic Programming (GP) to create behavior sets for object classification

to obtain diverse appearance changes of objects. Our method can represent di-

verse categories and recognize generic objects for actualizing advanced interaction

between humans and robots.

Keywords:

Unsupervised learning, SOMs, CPNs, ART-2, robot vision, category formation,

object recognition, position estimation.
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Chapter 1

Introduction

1.1. Background and motivation

Numerous robots have been developed for specific purposes, especially in indus-

trial uses, to augment or replace the labor of humans. These robots are operated

automatically to repeat a simple task in an environment that is separated from

people. In this century, the purposes of robots are expanding variously to include

working, cooperating, and living with humans to provide support, enjoyment, and

comfort. Recently, human-friendly robots such as pet robots, home robots, and

human-symbiotic robots have emerged in our daily life [1]. A new lifestyle—one

of living together with robots—will be forthcoming in various environments in

homes and offices. For these robots to be useful and valuable for the existence

of humans, it is necessary that they attain the ability to perform various tasks

autonomously and flexibly. For creating this ability, robots must have systematic

knowledge to adapt to various environments and to perform those various tasks.

As an ability for future robots, Nakano [2] defined world image maps as knowl-

edge that is memorized in the brain, and which can recall the real world in a

memory. World image maps are therefore similar to memories of the real world

that are retained in the brain. Humans obtain various signals using the five senses

(touch, taste, hearing, sight, and smell). We create world image maps using these

signals. Moreover, we can behave intellectually using world image maps. Simi-

larly, robots can move and behave autonomously if they can come to use world

image maps shown in Fig. 1.1 as humans do. In the case of environments that

1



Autonomous behavior Recognition Understanding ・・・
Figure 1.1. World image maps for a robot as a brain-like memory.

contain no map information, humans use memorized appearances of scenes and

objects as landmarks for moving. This is one type of world image map to be

memorized, with appearances of scenes and objects that are retained in memory

as conceptual patterns. Robots could move in an environment without a map if

they were able to create and use world image maps. For creating world image

maps, robots must have the ability to recognize objects and scenes through sensor

systems.

The visual cortex [3] occupies the largest part of the brain shown in Fig.

1.2. In robot sensor systems, visual information is a key channel for sensing

an environment [4]. In Computer Vision (CV) technologies, numerous methods

have been proposed to recognize objects and scenes in images as generic object

recognition [5, 6, 7]. They classify objects and scenes into categories with iden-

tical or similar relations of characteristics. For the application of CV to Robot

Vision (RV) systems, it is necessary to have calculation performance while re-

taining real-time processing in a limited resource environment [4, 8]. Recently,

CV technologies are transferred to RV technologies with the advanced progress of

calculation performance of computers, fast wireless communication technologies,

and popularization of reconfigurable devices as hardware platforms to implement

algorithms [9].

Object recognition methods in CV are divisible into two types: supervised ob-

ject recognition and unsupervised object recognition. The majority is supervised

2



Visual CortexCerebral cortex(Unsupervised learning)Cerebellum(Supervised learning)Basal ganglion(Reinforcement learning)
Figure 1.2. Cerebral regions and learning functions.

object classification aimed at high recognition rates in numerous categories for

use in real-world applications [5]. Supervised methods necessitate the collection

of images for training with teaching signals as ground truth datasets. Recently,

unsupervised object recognition has become attractive as a method to discover

categories automatically from numerous images [5]. For our ultimate goal of im-

plementation of a robot, unsupervised object recognition is necessary to recognize

and understand scenes and objects. For creating world image maps, all informa-

tion collected by sensors must be used for obtaining knowledge of various types

[2]. Therefore, we consider that it is important to discover and to extract hidden

rules and knowledge based on unsupervised object recognition, not that used in

supervised object recognition, which is forced to classify semantic categories.

Figure 1.3 depicts an example of a robot in an actual environment. Our

objective is to move a robot in an actual environment. However, offices and homes

are unsuitable environments in which to move a robot because these are arranged

optimally for humans to work in or to live in. Therefore, it is necessary to train

a robot in each environment. When using supervised learning-based methods, it

is a heavy load to prepare training datasets with teaching signals. When using

unsupervised learning-based methods, a user assigns semantic information to each

category obtained by a robot. Therefore, advanced interactions between robots

and humans can be realized using unsupervised learning-based methods.

For comparison of classification performances, the Caltech-256 object cate-

gory dataset [10] is a famous open dataset used in generic object recognition. In

3



Figure 1.3. An example of a robot in an actual environment

the Caltech-256 dataset, one object consists of one image. No series information

exists in this dataset, although objects of various types are included in one cat-

egory. Regarding recognition systems used in a mobile robot, time-series images

are useful for autonomous movement of a robot. Alternatively, robots can be

controlled by an agent to collaborate with other robots.

In current generic object recognition studies, training from datasets is a valu-

able technology to obtain recognition rules for a target problem automatically.

As in supervised object recognition, Support Vector Machines (SVMs) [11] and

Boosting [12] are popularly used for powerful learning algorithms. These machine

learning algorithms produce a good combination when used with part-based fea-

ture representations. As in unsupervised object recognition, Probabilistic Graph-

ical Models (PGMs) [13] are widely used for text recognition. An advantage of

PGMs is that they obtain high accuracy with selection of an interpretation that

becomes the maximum of the posterior probability to calculate probabilities in

each element and a joint probability between elements. However, the performance

of PGMs depends strongly on the graphical structures to be created. Most models

are created manually by an expert because automatic modeling tools have insuf-

ficient performance to create a structure from datasets. Moreover, the setting of

the number of classifying categories is necessary before creating a model.

For selecting methods, we set two requirements used in unsupervised object

recognition of time-series images obtained using a mobile robot. The first re-
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quirement is an automatic mechanism to extract the number of categories. For

problems that require unsupervised object recognition, the number of categories

is unknown. The second requirement is an incremental mechanism that main-

tains stability and plasticity together. The environment in which a robot moves

changes dynamically. In this situation, robots must be able to learn at any time

for updating created categories.

The cerebral cortex, which sustains higher brain functions such as creativity,

thinking, and memory, is shown to perform specialized unsupervised learning [14].

The Self-Organizing Maps (SOMs) proposed by T. Kohonen [15] act upon self-

mapping high-dimensional input data into a low-dimensional space while main-

taining topological data structures used in competitive and neighborhood learning

functions. One key feature of SOMs is visualization of data distributions with

topological preserving mapping [16]. Using this feature, SOMs have been applied

to numerous applications of actual problems [17, 18].

Labeling of units on the mapping layer of the SOMs is the main step of deter-

mination of categories. The number of categories should be set before labeling.

After learning of SOMs, it is necessary to assign labels to identify categories cre-

ated on units of the mapping layer. The classification performance depends on

labeling as a mapping result, although SOMs have a high mapping capability

[19]. Labeling is a primitive step in unsupervised learning. Especially in the case

of numerous units on the mapping layer, this work requires much loading. More-

over, no well-indexed methods exist for labeling. In many cases, experimenters

or operators must label them manually. As methods to determine the number

of categories, the handling of target problems differs in the cases of known and

unknown quantities of categories. In numerous existing methods particularly ad-

dressing problems of unsupervised learning, the number of categories is assigned

a priori because of the difficulty of evaluating the results, although the number

of categories is unknown.

As incremental and unsupervised neural networks, Adaptive Resonance The-

ory (ART) proposed by Grossberg et al. [20] is a theoretical model used to learn

and to memorize input data to long-term memory with stability and plasticity.

The network structure of ART is designed based on the biological backgrounds

to realize feature extraction, noise cutting, matching with stored memories, and

5



creation of new categories. Actually, ART has many variations: ART-1, ART-1.5,

ART-2, ART-2A, ART-3, ARTMAP, Fuzzy ART, Fuzzy ARTMAP, etc. [20]. In

[21], Kaylani et al. described that one limitation of ART is the category prolifer-

ation problem. They proposed Multiple Object-Genetic ART (MO-GART) using

an optimization approach combined with Genetic Algorithms (GA) [22]. In their

experiments, the performance of MO-GART approaches that of SVMs. However,

this method is only applicable to supervised classification problems.

For this study, we use ART-2 [23], which can input continuous values. Al-

though ART-2 creates categories for all input data, the number of categories

increases according to the number of input data because ART-2 has no mecha-

nisms to delete or to integrate redundant categories. Moreover, spatial relations

among categories are not clear because categories are created sequentially. As de-

scribed in this thesis, our method presents a visual image showing spatial relations

in categories using SOMs for mapping to a two-dimensional space using labels

generated by ART-2. Nielsen proposed Counter Propagation Networks (CPNs)

[24] that are appended the Grossberg layer to SOMs which work for supervised

learning. We used CPNs for automatic labeling of SOMs using labels created by

ART-2.

Existing high-performance unsupervised clustering methods are k-means [25],

probabilistic Latent Semantic Analysis (pLSA) [26], Latent Dirichlet Allocation

(LDA) [27], Dirichlet Process Mixture (DPM) [28], and local Dirichlet Process

(lDP) [29]. Using k-means, pLSA, and LDA requires setting of the number of

categories in advance. As with SOMs, DPM requires no previous information of

the number of clusters. However, DPM is unable to estimate the correct num-

ber of clusters if it has no previous knowledge of data that are used to create

a probability distribution. In contrast, SOMs extract clusters using topological

mapping in a low-dimensional space without prior knowledge of a probabilistic

data distribution [30]. Therefore, we introduce SOMs for unsupervised cluster-

ing and category formation for a mobile robot without previous information of

categories.
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Figure 1.4. Use-case for creating semantic category maps.

1.2. Use-case and application examples

We present a practical example of category formation with a robot based on

use-case analysis. We also present a scenario of semantic category creation for

actualizing perceptual recognition in the same manner used by humans. Fig. 1.4

portrays a use-case example in the training step for a robot to obtain a semantic

category map. A robot moves in an environment without any restrictions. For this

movement, we consider that it is desirable for a robot to obtain not only various

objects, but also various views of the objects. The robot learns sequentially

using images obtained using a camera mounted on the robot. In the training

step, our method requires no teaching signals prepared in advance as a ground-

truth dataset for input images. Particularly, ART-2 networks generate labels

only from input signals. Subsequently, CPNs create category maps using input

datasets and labels generated using ART-2.

Using category maps, our method can recognize objects for test datasets as
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Where is a camera?
Figure 1.5. Example of perceptual recognition using semantic category maps.

signals of images. However, the recognition approach is mismatched to the per-

ception of humans. In signal-based approaches, robots meet a perceptual gap

with humans, although they both observe the same object.

Perceptual correspondence is an important factor to actualize advanced inter-

action between humans and robots. For example, we suppose that a user asks

a robot about an object. We consider that users feel a communication gap if

robots can only recognize an object as signals according to its shape, brightness

distribution, color information, etc. In contrast, communication will be approved

if robots can recognize an object perceptually.

For actualizing perceptual recognition, the assignment of semantic informa-

tion is necessary for categories that are formed by signals. Herein, the assignment

of semantic information is the naming of objects by a user manually. Therefore,

this operation means matching with object names and labels, which are classified

as signals. However, several labels correspond to one object name as a category

because we set fine classification granularity of ART-2 networks. In the step of se-
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Where is my latest paper?I know it!(a) Your own secretary What is this?This is a globe.(b) Clean up the room (c) Education for kids
I‘m in the reading room. I’ll return this book to the bookshelf.

Figure 1.6. Application examples of this technology to recognize scenes and

objects perceptually.

mantic information assignment, labels are integrated by a user on a category map.

Several images are mapped to each label that contains a representative image.

Based on a representative image, category names are assigned by a user in each

label. For this study, we call this operation semantic labeling after unsupervised

category formation.

Actually, unsupervised neural networks extract hidden rules in the datasets.

Teaching signals are used for providing semantic information to classification

results used for a classifier. In our method, it is sufficient to assign teaching signals

with the number of labels created by ART-2. The load of semantic labeling to

a category map is lower than that of supervised learning based methods because

labels with similar input features are mapped to neighborhood regions. Moreover,

our approach is oppositional to semi-supervised learning, by which training signals

are partially assigned. In semi-supervised learning based methods, the recognition
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performance is affected by the combination of training datasets that are assigned

training signals. No rules exist to assign training signals to the set of training

datasets. In our method, targets to assign teaching signals are represented as

training results. Therefore, the load for teaching is lower than that of semi-

supervised based methods. Robots can obtain perceptual recognition capability

through minimum interaction with a user.

Next, we present a practical example of using semantic category maps for a

robot. Fig. 1.5 portrays a use-case scenario for testing. In this case, a robot

moves according to the testing mode. When the robot detects an object, the

robot can input this image to the semantic category map. After matching the

category map, the robot can recognize the object. This example presents that

a person looks for a camera. In the case of signal-based recognition, the person

must indicate the position with coordinate values and characters of the object

numerically. In contrast, robots can communicate with humans if robots can

recognize objects perceptually. Robots can provide user-friendly services using

this technology. Previously, humans had to adapt to robots to compensate for the

robot’s shortage of functions. We consider that the actualization of perceptual

recognition can provide new services to enable robots to adapt to humans.

Fig. 1.6 depicts three application examples of this technology. The first ap-

plication is a secretary use. Numerous documents, goods, devices, etc. exist at

an office or a laboratory. Using our technology, the robot organizes them percep-

tually. The robot works as a secretary from user’s requests. We consider that we

can have own secretary robot in the near future. The second application is a robot

to cleanup objects in the room. In this example, the robot estimates its global

position to understand the situation and context automatically. Subsequently,

the robot finds the book and returns it to the bookshelf. The third application

is a educational use for kids. Kids can learn object names in an environment.

Moreover, it can use to learn forging words. Perceptual object recognition is a

necessary technology for these applications.
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Figure 1.7. Category formation and its applications.

1.3. Thesis aims

This thesis presents an unsupervised category formation method using SOMs for

creating category maps as world image maps. For signal-based automatic label-

ing, we introduce CPNs that are appended the Grossberg layer to SOMs which

work for supervised learning. In the primary experiments, this thesis presents

basic characteristics of CPNs to improve generalization capabilities of supervised

neural networks based on topological data mapping. Using topological data map-

ping on CPNs, our method provides advantages to interpolate new data in sparse

areas that exist among categories and to remove overlapping or conflicting data

in original training data. Moreover, the proposed method can control the number

of training data by changing the size of the category map according to a problem

to be solved.

For practical uses in an actual environment, this thesis presents two appli-

cations shown in Fig. 1.7 using a mobile robot. The first application is scene

category formation for global position estimation of a mobile robot. Our method

can extract changes in landscape revealed by viewing image sequences as concept

patterns by SOMs. Effective position information is acquired by making hier-
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archical SOMs and using it to consolidate position estimation concept patterns.

We evaluate the effect of shifts in position and direction while the robot was

executing a trial journey on global position estimation.

The second application is unsupervised category formation for recognizing

generic objects perceptually. For this application, we propose an unsupervised

category formation method using ART-2 networks and CPNs. Using labels pro-

duced by ART-2 for teaching signals of CPNs, signal-based automatic labeling of

units on the category map can be realized. Moreover, the combination of SOMs

and ART-2 can represent spatiotemporal relations of input data. We evaluate

feature representation that contributes to improved accuracy of classification for

selecting feature points to concentrate characterized information of an image.

Moreover, we evaluate visualization of spatial relations on labels and integrate

redundant and similar labels generated by ART-2 as a category map using self-

mapping characteristics and neighborhood learning of CPNs.

1.4. Thesis outline

This thesis is consisted of six chapters. The relation of each chapter is shown

in Fig. 1.8. Chapter 2 presents a method using CPNs to improve generalization

capabilities of supervised neural networks based on topological data mapping.

Using topological data mapping on CPNs, our method presented provides ad-

vantages to interpolate new data in sparse areas that exist among categories and

to remove overlapping or conflicting data in original training data. Moreover,

our method can control the number of training data by changing the size of the

category map according to a problem to be solved. As a type of supervised neu-

ral networks combined with our method, we select SVMs, which are attractive

as learning algorithms having high generalization capabilities to be mapped to a

high-dimensional space using kernel functions. We applied our method to classifi-

cation problems of two-dimensional datasets for evaluation of basic characteristics

of our method. Topological data mapping based compression of original training

data induces resolution of conflict among data and reducing the number of Sup-

port Vectors (SVs) that are absorbed as soft margins. The classification results

show that decision boundaries are changed and that generalization capabilities
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Figure 1.8. Relation of chapters of this thesis.

are improved using our method. Moreover, we applied our method to face recog-

nition under various illumination conditions using the Yale Face Database B [31].

The results indicate that our method provides not only improved generalization

capabilities, but also visualizes spatial distributions of SVs on a category map.

Chapter 3 presents a method of scene classification for robotic position es-

timation that can process position information without identifying special land-

marks. The method, which combines viewpoint shifts with visual information

about the environment, makes it possible for a robot to move both autonomously

and purposefully. In the procedures, the robot surveys the landscape of an en-

vironment from multiple directions, obtaining self-localization from a viewing

image sequence. For providing a statistical summary of the spatial layout prop-

erties of a scene, we use downsampling images for input features [32]. The robot

is made aware of changes in the landscape via SOMs, which generate concept

patterns. By making the SOM hierarchical, these concept patterns can be con-

13



solidated. This allows the robot to move both autonomously and purposefully

in the environment toward a position by using previously collected information.

By performing a travel experiment with the robot in an indoor environment, in

which characteristic concept patterns recording topologies had been previously

generated at various positions during a learning period, we confirmed that a cor-

rect self-localization estimate can be generated from landscape changes detected

via viewpoint shifts.

Chapter 4 presents a method using ART networks, which are unsupervised

and self-organizing neural networks that contain a stability-plasticity trade off, for

representation of facial expression changes using orientation selectivity of Gabor

wavelets. The classification ability of ART is controlled by a parameter called the

attentional vigilance parameter. However, the networks often produce inclusions

or redundant categories. Our method produces suitable vigilance parameters ac-

cording to classification granularity using orientation selectivity. We evaluated

our method using a facial expression dataset that represents the appearance and

disappearance of facial expression changes to detect dynamic, local, and topolog-

ical feature changes of facial expressions.

Chapter 5 presents an unsupervised learning-based method for selection of fea-

ture points and object category formation without previous setting of the number

of categories. For unsupervised object category formation, this method has the

following features: detection of feature points and description of features using a

Scale-Invariant Feature Transform (SIFT) [33], selection of target feature points

using One Class-SVMs (OC-SVMs) [34], generation of visual words using SOMs,

formation of labels using ART-2, and creation and classification of categories

on a category map of CPNs for visualizing spatial relations between categories.

Classification results of static images using a Caltech-256 object category dataset

and dynamic images using time-series images obtained using a robot according

to movements respectively demonstrate that our method can visualize spatial re-

lations of categories while maintaining time-series characteristics. Moreover, we

emphasize the effectiveness of our method for category formation of appearance

changes of objects.

And finally, Chapter 6 presents conclusions and future work of this study.
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Chapter 2

Topological Data Mapping for

Improving Generalization

Capabilities

2.1. Introduction

Neural networks (NNs) are widely applied to many problems that show difficulty

of formulation or reformulation because of dynamic, high-dimensional, or non-

linear data distributions. Actually, NNs can create mapping relations to extract

rules automatically through learning from given datasets. Especially, NNs express

a profound impact for the problems that contain variations in input data because

NNs can change the processing structures flexibly according to a target problem

with incremental learning or re-learning. Especially in computer or robot vision

studies that use the required algorithms in each target, NNs can create a classifier

only from obtained data. Moreover, NNs are applicable to various applications

according to the progress of processing performances of computers. As expanding

applications of NNs, advanced and flexible recognition capabilities are necessary

for use in various complex environments. In this situation, generalization capa-

bilities are expected to be useful.

The NNs learn one time according to the target problem or data variation if

NNs can acquire high generalization capabilities. Especially, high generalization

capabilities are necessary in an environment that poses difficulty to the steady
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collection of training data. In contrast, data can be too numerous because un-

known data equal all data expected of training data. From the viewpoint of

training data and learning algorithms, Kita [35] set the following two precondi-

tions dealing with generalization capabilities: 1) NNs can extract some hidden

rules constrained by training data; and 2) NNs have a mechanism not only to

store or to recall training data, but also to discover rules to constrain the training

data.

As described in this chapter, we specifically examine precondition 1) related in

training data. This chapter presents a method to control the number of training

data for improving the quality of training data using topological data mapping

of Counter Propagation Networks (CPNs) [24]. Actually, CPNs are supervised

NNs based on Self-Organizing Maps (SOMs) [15] for self-mapping input data to

a low-dimensional space of usually one or two dimensions, with teaching signals

to be assigned for labels as a category map. Using self-mapping characteristics of

competitive learning and neighborhood learning of CPNs, our method can expand

and compress training data while retaining the topological structures of original

training data. Moreover, our method can change the number of training data

concomitantly with changing of the number of units on the mapping layer. Using

category maps of CPNs, new training data are interpolated in sparse regions and

overlapping data are removed from original training data.

As the precondition 2) related to training algorithms, we use Support Vector

Machines (SVMs) [11], which are remarkable NNs with excellent learning and

mapping capabilities. Actually, SVMs are known to be able to obtain high per-

formance of recognition and generalization capabilities to convert input data to a

higher-dimensional space using kernel functions. At the training step, representa-

tive points called Support Vectors (SVs) are selected to gain decision boundaries

with maximize margins among categories. The SVMs use training data selected

for SVs, not all training data. This mechanism improved the training data quality.

In our method, the combination of SVMs and CPNs can realize high generaliza-

tion capabilities because new training data without overlapping or contradiction

are selected from quantity expanded training data using topological mapping

characteristics of CPNs.

This chapter consists of the following sections. We review related work in 2.2
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for setting the position of our study. In 2.3, we explain important details of our

method. In 2.4, we present basic characteristics of our method. We apply our

method to a real problem of various illumination conditions using a large-scale

database in 2.5. We discuss relations between category maps and SVs in 2.6.

Finally, we conclude in 2.7.

2.2. Related studies

Various methods based on training data have been proposed especially in expan-

sion of whole training data quantitatively [36, 37, 38, 39, 40, 41, 42]. Holmstrom

et al. proposed a method to expand training data to add Gaussian-type white

noise [36]. Karystinos et al. proposed a method to expand training data ran-

domly based on probability density functions [37]. Although these methods can

expand training data easily, they might not fulfill Kita’s preconditions because

noise or random expanded data have no hidden rules. In contrast, Tanaka et al.

proposed a method to expand training data according to the distance from the

center of categories [41]. Although this method is superior to methods used in

random noise, they are only used for the situation in the distribution of sparse

data among categories with readily apparent decision boundaries of categories.

Existing methods based on learning algorithms are proposed variously: a

method for division into subnets by Chakraborty et al. [43], a method used in

double-back propagation by Drucker et al. [44], a method to delete redundant

units on the hidden layer by Matsunaga et al. [45], methods to tune weights

[46, 47, 48, 49], active learning based methods [50, 51] etc. Tsuda [52] described

that excellent learning algorithms have three features: high recognition rates for

experiments, a theoretical basis, and easy realization. The SVMs combine high-

recognition performance, especially in recognition programs, a theoretical basis

based on the framework of Probably Approximately Correct (PAC) learning, and

a calculation method leading to a quadratic programming problem. Therefore, we

used SVMs as a classifier for advanced improvement of generalization capabilities.
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Figure 2.1. Procedure of our method. Weights and labels of CPN are used as

training data of SVM.

2.3. Proposed method

To move from quantity control to quality improvement necessitates creation of

data that are interpolated from sparse data and deletion of redundant, over-

lapping, and conflicting data. We specifically examine the topological mapping

characteristic on CPNs. This chapter presents a method to improve generaliza-

tion capabilities in aspects of quality improvement of training data using weights

and labels created with CPNs. The following describes the overall architecture of

our method and the respective learning algorithms used with CPNs and SVMs.

2.3.1 Whole architecture of our method

Fig. 2.1 depicts the procedures used for our method. First, CPNs are trained

using original training data. All units of the mapping layer on the CPN are labeled

automatically using teaching signals. The labeled units are called category maps.

After learning of CPNs, new training data are created: the weights between the

input layer and the mapping layer are used for new training data; the labels

on the category map are used for new teaching signals. New training data are

created while retaining topological structures of original data. Our method can

control the number of new training data arbitrarily by changing the number of
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Figure 2.2. Network architecture of the CPN.

units on the mapping layer.

For the feature of our method, supervised NNs as a classifier are naive to the

original training data. The NNs are trained using topological expanded or com-

pressed data with CPNs. The CPNs map input data into a topological space as

a category map with neighborhood training and Winner-Takes-All (WTA) com-

petition. New data are interpolated with neighborhood learning and overlapping

data are deleted through the WTA. The reason CPNs are not used as a classifier

is that the CPN’s inventor Nielsen described that the classification performance

of CPNs is insufficient as a classifier in comparison to supervised NNs such as

SVMs, Back-Propagation Networks (BPNs) [58], etc.

2.3.2 Counter Propagation Networks

The CPNs are supervised and self-organizing neural networks that combine Koho-

nen’s competitive learning algorithm and Grossberg’s outstar learning algorithm.

The network comprises three layers: an input layer, a Kohonen layer, and a

Grossberg layer. Fig. 2.2 shows the network architecture of CPNs. The input

layer propagates training data. The Kohonen layer performs topological mapping

through the WTA competition. The Grossberg layer propagates teaching signals

and assigns labels to all units of the Kohonen layer. The labeled units are called

category maps. In our method, the Kohonen layer contains two-dimensional

units; the Input layer and the Grossberg layer contain one-dimensional units.
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The CPN training algorithm is the following. Let ui
n,m(t) be the weight from

the input unit i to the Kohonen unit (n,m) at time t. Let vj
n,m(t) be the weight

from the Grossberg unit j to the Kohonen unit (n,m) at time t. These weights are

initialized using random numbers. Let xi(t) be the input data to the input unit i

at time t. The Euclidean distance dn,m between xi(t) and ui
n,m(t) is calculated as

dn,m =

√√√√
I∑

i=1

(xi(t)− ui
n,m(t))2. (2.1)

The win unit c is defined, for which dn,m becomes a minimum by

c = argmin(dn,m). (2.2)

Let Nc(t) be the units of the neighborhood of the unit c. The weight ui
n,m(t)

inside Nc(t) is updated using the Kohonen training algorithm as

ui
n,m(t + 1) = ui

n,m(t) + α(t)(xi(t)− ui
n,m(t)). (2.3)

The weight vj
n,m(t) inside Nc(t) is updated using the Grossberg outstar training

algorithm as

vj
n,m(t + 1) = vj

n,m(t) + β(t)(tj(t)− vj
n,m(t)). (2.4)

Therein, tj(t) is the teaching signal to be supplied from the Grossberg layer, α(t)

and β(t) are the training coefficients that decrease with time. Training is finished

when its iterations reach the maximum number. In our method, α(t) and β(t)

are set respectively as 0.5 and 0.9. The maximum number of training iterations

is set as 1,000 steps.

2.3.3 Back Propagation Networks

The training algorithm of BPNs is as follows. Let wij(t) be the weight between

input unit i and hidden unit j. When input data xi(t) are supplied to the input

units, the output hj(t) of hidden units are

hj(t) = f(
I∑

i=1

xi(t)wij(t)), (2.5)

where f is a sigmoid function defined as

f(x) =
1

1 + e−x
. (2.6)

20



T
ra

in
in

g 
da

ta
T

es
tin

g 
da

ta

R
es

ul
ts

T
ea

ch
in

g 
si

gn
al

s

Training data Teaching signals

Weights

Input layer

Kohonen layer (Category map)

Grossberg layer

CPN

BPN
Hidden layer

Input layer Output layer

Labels

Figure 2.3. .

Let wjk(t) be the weight between the hidden unit j and the output unit k. The

output ok(t) of the output layer is

ok(t) = f(
J∑

j=1

hj(t)wjk(t)). (2.7)

Let E be the mean square error defined as

E =
1

2

K∑

K=0

(tk(t)− ok(t))
2, (2.8)

where tk(t) is the teach signal supplied to the output layer. The aim of the BPN

training is to reduce E with updating weights. Let ∆wkj(t) and ∆wji(t) be the

updating value of wjk(t) and wij(t) as

∆wkj(t) = ηδkhj(t) + α∆wkj(t− 1), (2.9)

∆wji(t) = ηhj(t)(1− hj(t))

(
K∑

k=1

wkj(t)δk) + α∆wkj(t− 1), (2.10)
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δk = (tk(t)− ok(t))ok(t)(1− ok(t)), (2.11)

where η and α are the learning coefficients related to convergence and stability.

We set η = 0.1 and α = 0.3. The weights wjk(t) and wij(t) are updated as follows:

wjk(t + 1) = wjk(t) + ∆wkj(t), (2.12)

wij(t + 1) = wij(t) + ∆wij(t). (2.13)

The learning finished when its iterations reached 1,000,000 steps or when E be-

came less than 0.001.

2.3.4 Support Vector Machines

Actually, SVMs are linear classifiers based on a two-class classification using

kernel functions. Since discovery of a calculation method using kernel tricks with

kernel functions for replacement from a nonlinear space to a linear space of high

dimensions, SVMs have come to be used popularly for numerous applications

because of their high classification and generalization capabilities.

The learning of SVM is to calculate the bias b, weights w of the discriminant

function f as N sets of input data xi(i = 1, ..., N) defined as the following:

f(x) = sign(wTx− b), (2.14)

where sign(u) is a step function to output 1 at u > 0 and -1 at u ≤ 0. Presuming

that the teaching signal is ti(i = 1..., N) with respect to xi, then the hyperplane of

the margin is maximum in two classes calculated using the minimization problem

as

L(w, ε) =
1

2
||w||2 +

N∑

i=1

εi, (2.15)

The second term of εi(≥ 0, i = 1..., N) is a parameter permitting incorrect classi-

fications for the input data that are difficult to classify linearly. This mechanism

is called the soft margin method. The minimization problem of L is solvable using

Lagrange undetermined multipliers. When Lagrange multiplier α is introduced,

then L is calculated as

L(w, b, α) =
1

2
||w||2 +

N∑

i=1

εi
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−
N∑

i=1

α{ti(wTxi − b)− (1− εi)}

−
N∑

i=1

εi, (2.16)

subject to partial differential at w

w =
N∑

i=1

αitixi, (2.17)

subject to partial differential at b

N∑

i=1

αiti = 0. (2.18)

Substituting them, the objective function is

Ld(α) =
N∑

i=1

αi − 1

2

N∑

i,j=1

αiαjtitjx
Txi. (2.19)

Actually, αi(≥ 0) is calculated to solve the quadratic programming optimization

problem subject to these constraining conditions. In addition, xi subject to

αi > 0 is selected to SVs on the hyperplane wTxi − b = ±1. In fact, b is

calculated based on the definition of the hyperplane as

b = wTxi ± 1. (2.20)

To introduce a nonlinear mapping function Φ to a high-dimensional feature space,

Eq. (2.19) is calculated as

Ld(α) =
N∑

i=1

αi − 1

2

N∑

i,j=1

αiαjtitjΦ(xT )Φ(xi), (2.21)

where the inner product Φ(x)T Φ(xi) is calculable using the following trick by the

kernel function K on the Hilbert space as

Φ(x)T Φ(xi) = K(x,xi). (2.22)

Kernel function K uses the polynomial kernel, the Radial Basis Function (RBF),

and the Sigmoid kernel, etc. In this study, we used RBF defined as

K(x, xi) = exp(−||x− xi||2
λ

), (2.23)

where λ is the variance of RBF. Because the property of the Kernel differs in the

setting of λ, we evaluate our method using results to change in a certain range.
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Figure 2.4. Classification of Arrows dataset.

2.4. Classification

We verify basic generalization capabilities of our method for classification bench-

marks that can easily yield distributions of input data and classification results

in a two-dimensional space. In this experiment, we evaluated our method using

open datasets of two types: the Normal Mixtures dataset [53] and the Cone-Torus

dataset [54], which are widely used for evaluation of generalization capabilities.
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2.4.1 Arrows

We originally made a dataset for verification of the interpolating function. The

dataset shown in Fig. 2.4(a) consists of two classes with 18 points. We named the

dataset the Arrows dataset. Both classes are distributed in the shape of arrows;

a wide space separates them.

For interpolating training data, we established the category map as 10 units

× 10 units, as shown in Fig. 2.4(b). Fig. 2.4(c) shows the new training data

obtained from the category map. Their labels correspond to the labels shown in

the category map. The space between clusters was interpolated using the new

training data. Fig. 2.4(d) shows the decision boundary that was obtained using

our method. The curved decision boundary indicates that our method reflects

the actual data distribution.

We compared our method with a normal BPN. Fig. 2.4(e) shows the decision

boundary of the normal BPN. Although the normal BPN correctly classifies both

clusters, the linear decision boundary indicates that the normal BPN did not

reflect the data distribution.

2.4.2 Squares

Fig. 2.5(a) depicts classification of two clusters that are distributed like squares.

We call it square clustering. The solid diamond points show the distribution of

the large square cluster. The solid circle points denote the distribution of the

small square cluster surrounded by the large one. Fig. 2.5(b) shows the result of

the standard BPN trained by the original data points. The decision boundaries

divided the large square cluster into two independent regions. Fig. 2.5(c) shows

the result of our method. The decision boundary exists between the two clusters.

A cluster of solid diamond points is arranged in a single region outside of the

decision boundary.

2.4.3 Normal mixtures dataset

The Normal Mixtures dataset [53] created by Ripley et al. comprised two classes

of 250-point training data and two classes of 1000-point testing data. In this

dataset, some data points are overlapped around boundaries between clusters.

25



(a) Original Training data (b) Result of BPN
(c) New training data (weights) (e) Result of our method
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Figure 2.5. Classification of squares dataset.

Fig. 2.6 shows comparison results of error rates of the conventional SVM

trained with original data and our method. We used category maps of three sizes:

10× 10 units, 15× 15 units, and 20× 20 units. We changed λ, which shows the

variance of RBF of Eq. 2.23 from 0.01 to 1.00 step by 0.01 and shown the results

in this figure. Comparison results reflect that the error rates of our method are

greatly decreased compared with results obtained using the conventional SVM.

Especially, the results of 10× 10 units indicate the minimum error rate.

Fig. 2.7(a) portrays classification results obtained using conventional SVM

with original training data. The data points surrounded by circles represent

training data selected as SVs. In the case of original data, many SVs that are
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Figure 2.6. Comparison results of error rates of the Normal Mixtures dataset

with change of λ and the size of category maps.

merged as a soft margin are visible. Fig. 2.7(b) portrays the classification results

obtained using our method. We set the category map 10× 10 units based on the

comparison result presented above. The original training data are 250 points.

In this case, the training data are compressed to 40 percent. We consider that

compression was valid because original data exist sufficiently compared with the

complexity of the data distribution. The SVs that are merged as a soft margin

are reduced because overlapping data are removed with mapping characteristics

of CPNs. The minimum error rate for the test dataset is 8.80 percent. Compared

with the minimum error rate of 9.50 percent the conventional SVM, the error
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(a) Original Training data (b) Result of SVM onoriginal training data (c) Result of our methodon new training data
(d) Testing data (e) Result of SVMon testing data (f) Result of our methodon testing data

Figure 2.7. Classification results of the Normal Mixtures dataset.

rate is reduced 0.70 percent.

2.4.4 Cone-torus dataset

The Cone-Torus dataset [54], created by Kuncheva et al., includes three classes

of 400-point training data and three classes of 400-point testing data. The data

are distributed in a cone shape, a torus shape, and a Gaussian shape that is

overlapped between them.

Fig. 2.8 shows error rates of the conventional SVM trained by original data

and our method in the case of 10 × 10 units, 20 × 20 units, and 30 × 30 of the

category map. In the comparison results shown in this figure, the category map
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Figure 2.8. Comparison results of error rates of the Cone-Torus dataset with

changing of λ and the size of category maps.

of 30× 30 units is the minimum of the error rate. In this case, the training data

are expanded to 225 percent.

Fig. 2.9 portrays the decision boundary and SVs obtained using the conven-

tional SVM and using our method. We consider that the category map with

a larger number of units that can create more numerous new training data is

valid because this dataset contains overlapping data and complex boundaries in

the data distribution. The minimum error rates for the test dataset are, respec-

tively, 9.00 and 8.50 percent using the SVM trained using original data and our

method. Therefore, the generalization capability is improved 0.50 percent using

our method. In [43], the error rate using the same dataset with the method pre-

sented by Chakraborty et al. is 14.75 percent. Compared with the results, the

error rate is improved 6.25 percent using our method.
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(a) Original Training data (b) Result of SVM onoriginal training data (c) Result of our methodon new training data
(d) Testing data (e) Result of SVMon testing data (f) Result of our methodon testing data

Figure 2.9. Classification results obtained using the Cone-Torus dataset.

2.5. Face recognition under various illumination

conditions

In problems of high-dimensional input data such as image recognition, showing

the existence of a hidden rule or not is a challenging task. Therefore, most

problems are set to the evaluation target of generalization capabilities for the

stability of outputs of NNs to the datasets to insert variations in the range that

can recognize visually. In contrast, to know a priori that the target problem exists

inside or outside using generalization capabilities over the Kita’s precondition

described above is unknown. Therefore, we consider that using a database with
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#1 #2 #3 #4 #5Subset 1Subset 2Subset 3Subset 4
Figure 2.10. Sample images of the Yale Face Database B in each subset.

which a hidden rule can be evaluated step-by-step is necessary. We use the Yale

Face Database B [31], which is an open dataset, to treat various illumination

conditions step-by-step.

2.5.1 The Yale face database B

This database consisted of facial images of 10 subjects with 64 illumination con-

ditions of different azimuths and elevations. The database is separated to five

subsets by azimuths and elevations of the lighting source. In appearance-based

facial recognition processing, the feature difference of illumination conditions is

greater than the difference among subjects.

In this experiment, we used Subset 1 for training and Subsets 2–4 for testing.

In [55], Okabe et al. described that Subset 5 used for evaluation is invalid because

the error rate reached 90 percent in the experimental result with their method

using illumination cones. This rate is the same as the result for recognition at

random. Therefore, we use no Subset 5.
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Figure 2.11. Positions of strobes corresponding to the images of each illumination

subset.

2.5.2 Preprocessing

The original images are 256-gray-level images. The resolution is 640 × 480 pix-

els. We used only frontal images that are assigned two-dimensional coordinate

points of the eyes and mouse. Using the coordinate points, the face region can

be extracted easily. Lee et al. released the Extended Yale Face Database B [56]

of 28 subjects to be the extracted face region of 168× 192 pixels. For this exper-

iment, we used this database after preprocessing of the histogram equalization

and median filtering. Although the image quality of the low-contrast parts is

improved with the histogram equalization, noise pixels were apparently affected

by the histogram extension. We use a median filter for removing the noise. Sub-

sequently, we conducted downsampling to 320× 240 pixels for reducing the effect

of head movements. Moreover, we used Principal Component Analysis (PCA) to

reduce the number of dimensions of the input feature vectors [57]. We extracted

up to the 50th feature value and used it as input data for the CPN. The accumu-

lated contribution rate until the 50th component is 99.95 percent. Regarding the
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Figure 2.12. Category map (Face images without illumination changes show a

person of each category).

robustness against illumination conditions, Okabe et al. obtained a good result

with their method to use illumination cones [55]. We specifically examine simplic-

ity of implementation to evaluate generalization capabilities in this experiment.

Therefore, we do not use illumination cones.

2.5.3 Classification results

Fig. 2.12 portrays a category map that was generated by CPNs as a learning

result. The set of weights and labels corresponding to each unit on the category

Table 2.1. Comparison of the minimum error rates.

Method Subset 2 Subset 3 Subset 4 All

Conventional SVM 0.00% 26.43% 53.33% 26.58%

Proposed 0.00% 7.14% 40.83% 15.53%
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Figure 2.13. Comparison of results of error rates with changing of λ and the size

of category maps.

map is used for the new training data. Using the category map, spatial relations

of input data can be visualized. The categories contain no bias or discrete regions.

Independent categories are created in each subject with similar features.

Fig. 2.13 portrays results of a comparison of error rates in each subset using

the original data and our method. We changed λ from 0.1 to 1.0 step by 0.1

repeated 10 times. In all results of our method, the error rates are lower than

those obtained using the conventional SVM trained by original data. Table 2.1

shows the minimum error rates in each subset. Especially in Subset 3, the error

rate is dominantly decreased to 19.29 percent. The maximum recognition rate is

11.05 percent; the minimum error rates of the conventional SVM and our method

are, respectively, 26.58 and 15.53 percent.
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Figure 2.14. SV units on the category map.

2.6. Discussion

First, we verify the combination of CPNs with other supervised NNs except for

SVMs. Our method based on training data can combine any supervised NNs. As

popularly used NNs, BPNs [58] are used in various applications. We combined

with BPNs and conducted the experiment with the same conditions. The mini-

mum error rate with CPNs and BPNs is 21.83 percent. Similarly, the minimum

error rate with BPNs is 26.05 percent. The improvement of generalization capa-

bilities is only 4.21 percent. We consider that the effect for topological mapping

of learning data with this combination is insufficient because BPNs learn using

all training data for getting a mapping relation. In contrast, we consider that the

combination with SVMs enhance both characteristic features because training

data are examined as SVs with SVMs in case of expanding of training data with

a category map.

Along with changing the size of the category map, our method can change the

total number of training data arbitrarily. This means that our method can expand

or compress the number of training data according to a target problem. From
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the experimental results, the effect of improving generalization capabilities of

expansion is greater than that of compression. This result supports the knowledge

of quantitative retention of data, which improves quality. Feature points around

decision boundaries are selected as SVs. In contrast, new training datasets are

created based on the whole distribution of feature points with our method using

topological mapping characteristics of CPNs. The convergence of error rates of

BPNs is decreased using these datasets. We consider that this is the reason for

peaking of the improvement of generalization capability with BPNs. In SVMs,

data points except for decision boundaries are not selected as SVs. We consider

that this is the reason to improve the error rate than BPNs. The SVs are selected

only from feature points of the original data. In contrast, our method can create

new feature points expect of the original feature points based on topological

structures. Therefore, these SVs contribute to improvement of generalization

capabilities.

Subsequently, data points that contribute to creation of decision boundaries

as SVs can be visualized as a category map using our method. Units that are

selected as SVs are depicted as circles on Fig. 2.14 in the category map presented

in Fig. 2.12. Unlike the clustering problems on a two-dimensional space, it is

difficult to see the distributions of SVs to be selected for deciding the classifica-

tion accuracy and decision boundary when the dimensions of input features are

numerous. Fig. 2.14 portrays that selected units as SVs are distributed around

the boundaries. Our method can visualize the spatial distribution of SVs that

create hyperplanes from a category to map any high-dimensional input data. In

addition, a similarity and neighboring relation among SVs can be elucidated using

category maps. Moreover, we consider that SVs that are absorbed as soft margins

can be visualized, although such SVs are not apparent in this experiment.

2.7. Conclusion

This chpter presents a method to improve generalization capabilities using ex-

pansion or compression of training data while retaining topological structures

using topological mapping characteristics of CPNs. We applied our method to

classification problems of two types: Normal Mixtures dataset and a Cone-Torus
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dataset. Compared with classification results, our method is superior to the con-

ventional SVM using original training data. Moreover, we applied our method

to the face recognition problem under various illumination conditions using the

Yale Face Dataset B. The error rate is decreased by 11.05 percent compared with

the conventional SVM and the generalization capability is improved using our

method. Additionally, we visualized the distribution of data points to be selected

as SVs on the category map using our method. We ascertained that SVs are

distributed around the boundaries on the category map.

In our method, we selected the best size of category maps. The suitable

training data are different in each problem to be solved. Automatic setting of the

size of category maps is the subject of our future work. Moreover, we will apply

our method to large-scale problems.
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Chapter 3

Scene Category Formation and

Position Estimation

3.1. Introduction

It is anticipated that human-friendly robots capable of every types of autonomous

movement will eventually be created for general-purpose use in environments such

as office, home, sickrooms, etc. Regarding these situations, one important task

that mobile robots must be able to perform is position estimation, which in turn

requires a basic mechanism whereby the robot can recognize its own position in

the environment. Ordinarily, sensors of distance traveled, e.g., ultrasonic or in-

frared sensors, are used for self-position of a robot. Because a sensor of travel

distance accumulates errors due to interruption of the travel by slipping of wheels,

vibration, etc, the total error increases with the distance traveled until the po-

sition information stored in the robot’s interior becomes unreliable. Ultrasonic

sensors imply interference and wraparound, and hence precise sensing of the en-

vironment becomes difficult due to the high degree of directionality required.

Yamada et al. used infrared sensors for environmental recognition [59]. However,

because the range of an infrared sensor is short, motion along a wall becomes

necessary, which to some extent prevents the robot from classifying the room in

which it is moving.

Recently, vision-based mechanisms have attracted the notice of researchers

as potential robot sensors. The methods proposed in [60, 61, 62] for position
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estimation used vision sensors, as did the landscape-based methods proposed in

[63, 64, 65, 66, 67, 68, 69]. In the earlier references, it was found that the need

for prior establishment of landmarks in order to create models that extract the

distinctive features in the environment limits the range of motion. Furthermore,

when obstacles are present in the environment, mistakes are easily made in the

landmark extraction process, with possibly fatal consequences for the robot. In

the later references, the authors note that changes can easily be made in a model

based on visual information obtained, directly or otherwise, from a camera. Be-

cause this information is simple to store in memory, methods based on visual

information are found to be robust even in a complicated environment.

An unusual number of method have been proposed for landscape-based self-

position estimation. For example, Nishimura et at. used non-monotonic continu-

ous Dynamic Programming (DP) to make spotting position estimations that are

independent of the robot’s direction of travel [66]. Maeda et al. used a paramet-

ric eigenspace method to reduce the volume of memory needed to store images.

For cases where several positions generate similar landscapes, the eigenspaces are

also similar, which alerts the robot to possible problems. This leads to efficient

position estimations [67]. In the work of Georg et al., environment maps were

generated in a self-organizing way from distinctive feature vectors of a scene, re-

sulting in closely-spaced position estimations within the environment [68]. How-

ever, in all of these familiar methods, even after their respective algorithms are

used to extract distinctive features and decrease the amount of memory volume,

the number of images that can be stored in bulk memory is still not enough to

use for position estimation by matching with images obtained at test travel time.

Accordingly, it is a challenging task to respond in a flexible way to changes in

the scene caused by differences in brightness, movement of local objects, etc. for

each environment used. On the other hand, SOMs proposed by Kohonen [15] are

able to store topology of a scene expressed in images. Because these distinctive

features are represented by activated states of the neurons, it becomes possible

to decrease the memory capacity required for a position estimate map over the

full range of image sequences. Moreover, since SOMs require no explicit teaching

data, it is expected that personal world image maps reflecting global changes

of scene in the environment can be generated whose quality approaches that of
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human memories.

Human beings depend on the images they take in form the outside world in

order to generate world image maps in the brain, which they then use to verify

their personal positions. In our research we have allowed this idea to guide us

in developing a technique a robot can use to make self-position estimates. Our

method uses the changes in an SOM caused by changes in the landscape to gen-

erate world image maps. A special feature of our technique is the concept pattern

defined as the encoding of topological information shifts. By superimposing these

concept patterns, the robot acquires a characteristic world image maps relative

to landscape position, which it stores in its interior. We anticipate that by using

concept patterns and world image maps, which are modeled after human memory

procedures, we can achieve a degree of robustness in self-position that is unrealiz-

able by more orthodox methods. The results we processes the topological features

of a scene to becomes hierarchical, we can consolidate the various portions of a

concept pattern, leading to correct self-position.

In Section 3.2 we describe how our self-position method uses the hierarchical

SOMs, in Section 3.3 we assess a viewing image sequence parameters, in Section

3.4 we present the results of position estimate experiments, and in Section 3.5 we

evaluate our method. Finally, in Section 3.6 we describe the results of a field test

we performed in a hospital with a view to making the method application-friendly,

which tested teh effectiveness of our method.

3.2. A method for position estimation using hi-

erarchical SOMs

3.2.1 Obtaining the viewing image sequence

In [69], the authors proposed omnidirectional sensors as a system for robot vision,

because they can take an entire environment all at once. However, because of

the special imaging equipment needed to obtain omnidirectional images, in our

research we used ordinary images obtained from a CMOS or CCD camera built

into the robot as visual sensors. Because the images are obtained in one direction

only under these conditions, they can only record minor changes in the local
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Figure 3.1. Method to take sequential view images from the robot.

environment. To address this deficiency, we equipped the robot with a pivoting

mechanism, as shown in Fig. 3.1, which allows it to shift its viewpoint to the

right or left of its direction of travel, which is taken as a standard. The set of

images resulting from taking the view in these directions forms a series which we

will refer to as a viewing image sequence.

The robot used in this research (a B14 mobile robot manufacture by the RWI

Company) was equipped with a CCD camera having a 256 step gray scale and

a resolution of 320 × 240 pixels. In addition, after careful consideration of the

limitations imposed by the hardware build into the robot and by the processing

time required, we used image compression to reduce the size of the original images

obtained from the CCD camera.
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Figure 3.2. Concept patterns of world image maps.

3.2.2 Concept pattern for the landscape

Although the human brain possesses no knowledge of any kind when it is first

created, it acquires various forms of knowledge while undergoing the experiences

of the growth process. This knowledge is generated by recalling real-world experi-

ences from archetypes in memory, which make up what we refer to as world image

maps [2, 70]. Human use world image maps to progress intellectually in various

ways. In the same way, if a robot could be equipped with such world image maps,

it could acquire knowledge in a self-organizing way by sensing its surroundings

while moving in a purposeful and at the same time functional manner. We will

discuss this in what follows.

In our scheme, the viewing image sequence shows landscape changes, which

causes the world image maps created within the robot to depend on position

information. This allows a self-position estimation to be made. As shown in Fig.

3.2, in our method the viewing image sequence reflects different neuron firings

that correspond to the topological characteristics of a scene. Each of these firing
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Figure 3.3. Hierarchical Self-Organizing Maps (HSOMs).

neurons generates a concept of the landscape at some position, and the firing

distribution of neurons as a whole defines the concept patterns [70].

3.2.3 Hierarchical structure of SOMs

There are distinctive features in the way the topological mapping that makes up

SOMs store the topology of the input data. Accordingly, we can map the position

information by using the landscape changes that the viewing image sequence

encodes as input to SOMs. Since learning by SOMs require no teaching signals,

the robot can acquire positional information in a self-organizing way as it moves

along its path.

Ordinarily, the network of SOMs comprises two layers, the input layer and the

mapping layer. In our method, concept patterns related to the viewing image se-

quence are generated by units in the SOM mapping layer. In order to consolidate

these concept patters, the SOM is made hierarchical. We made our hierarchical

SOM [71] by using an input layer and two mapping layers, similar to the network

structure shown in Fig. 3.3.

Starting with the layer at the lowest position in the figure, a previously com-

44



pressed image at one layer becomes the input for the next layer up. Thus, the

middle layer (which we will refer to as the first mapping layer in what follows)

becomes the input with respect to the mapping layer. In the middle layer, con-

cept patterns are generated that related to the input images. In the top layer

(which we refer to as the second mapping layer in what follows), connections are

made among the concept patterns generated in the first mapping layer so that

only one neuron will fire for each concept pattern generated.

During the learning period and prior to the trial journey, any of the units of the

second mapping layer that fired were identified and labels were attached to them.

In the course of the trail journey, position estimations are obtained by determining

which positions correspond to the labels of the units that have fired, i.e., the labels

attached during the learning period. During its trial journey, the robot is in the

neighborhood of various labeled positions. A position estimation is defined to

be successful if as the robot pauses at one of these labeled positions of the first

neighborhood units with that position’s label attached during learning fire. We

define the position estimation rate as the number of successful position estimation

cycles divided by the total number of position estimation cycles performed.

3.3. Parameters for the viewing image sequence

In order to determine parameters that can be used to match the viewing im-

age sequence with the robot’s viewpoint shifts, we performed the experiments

described in the three parameters below.

3.3.1 Downsampling levels

Careful consideration of the real-time nature of the position estimate leads us

to conclude that image downsampling is unavoidable. However, the size of the

downsampling grid has a strong influence on how much the volume of data, the

noise component, and the number of distinctive features, e.g., edge components,

etc., can be reduced in the compressed image. Therefore, we carried out exper-

iments to find the relation between the size of the downsampling grid and the

position estimate rate.
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Estimation accuracy (
%)

Downsampling grid (pixel)
Figure 3.4. Relations between position estimation rates and downsampling levels.

Figure 3.5. The number of viewpoint movements.

Figure 3.4 shows how the position estimate rate changes as the size of the

downsampling grid is varied from 4 pixels vertical × 3 pixels horizontal (Level 1)

to 64 pixels vertical × 48 pixels horizontal (Level 5). The figure indicates that

position estimation rates of over 90 percent are obtained for all the downsampling

levels, and that those with the highest rates are Levels 1 and 3. Accordingly, in

this research, we used the parameters for the downsampling Level 3 in order to

ensure the highest processing speed.

3.3.2 Number of view point shifts

Multiple landscape views of the environment are generated by using the robot’s

pivoting mechanism to shift its viewpoint. Increasing the number of viewpoint
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%)

Number of view point shifts
Figure 3.6. Relations between position estimation rates and the number of view-

point movements.

shifts in the manner shown in Fig. 3.5 allows the robot to obtain more position-

related information, because it is capable of taking in a broader ranging scene.

However, various problems develop as the amount of data becomes large, among

them increased time required to process the full range. In contrast, when the

number of viewpoint shifts is small, the information needed for self-position es-

timation cannot be obtained. For this reason, we carried out experiments to

determine the relation between number of viewpoint shifts and the position esti-

mation rate.

Figure 3.6 shows a plot of the position estimation rate versus the number of

viewpoint shifts, which was varies from 3 directions to 9 directions. According

to the figure, an increase in the number of viewpoint shifts is accompanied by an

improvement in the position estimation rate, which is easy to understand. Hence,

after careful consideration of the real-time nature of the position estimate, we

conclude that it is desirable to make position estimates based on a smaller number

of viewpoint shifts. However, with 3 directions clearly the position estimation

rate is low and the scatter is large. Conversely, above 5 directions the difference

in position estimation rates is almost imperceptible. Thus, in this research the

value we chose for the number of viewpoint shifts was 5 directions, for which the

position estimation rate is high and at the same time the number of viewpoint
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Figure 3.7. Angles of viewpoint movements.

shifts is also as small as possible.

3.3.3 Viewpoint shift angles

Just as it does with the number of viewpoint shifts, the landscape view of the

environment varies with the robot’s viewpoint shift angle. As shown in Fig. 3.7,

when the viewpoint shift angle is taken to be small, and the robot surveys a

narrow scene, the overlap between viewpoints becomes large. Likewise, when

the viewpoint shift angle is taken to be large, and the scene surveyed is broad,

the overlap between viewpoints becomes small. Hence, in order to guide us in

what range of scene surveyed and overlap between viewpoints are necessary in

estimating position, we carried out experiments to determine the relation between

the viewpoint shift angle and the position estimation rate.

Figure 3.8 shows a plot of the position estimation rate versus the viewpoint

shift angle, which was varied from 10 deg to 40 deg. According to the figure,

although the position estimation rate does not appear to vary strongly with the

viewpoint shift angle, when the angle = 10 deg, for which the most stable results

48



Estimation accuracy (
%)

Viewpoint shift angles
Figure 3.8. Relations between position estimation rates and the angles of view-

point movements.

were obtained.

3.4. Position estimation experiments

In order to ascertain the effectiveness of our method, we conducted position

estimation experiments in a corridor and a lobby. We first took 5 circuits of the

surroundings, from which the robot could generate viewing image sequences in the

learning phase and use them in the testing phase, respectively. The parametersA B C D30 m2 m
Figure 3.9. Experimental environment in corridor.
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Figure 3.10. Concept patterns on the first mapping layer in corridor.

of the viewing image sequences were those specified in the preceding paragraphs:

the value of the compression was Level 3 (16 pixels × 12 pixels); the number of

viewpoint shift was 5 directions; and the viewpoint angle was10 deg.

3.4.1 Position estimation in a corridor

In this experiment, we set the robot travel down the center of the corridor shown

in Fig. 3.9 from Position A to Position D. Viewing image sequences were taken

and position estimates were made at each position. The circles in the figure

indicate the position of the robot, while the lines from the centers of the circles

indicate the robot’s direction of progress.

Figure 3.10 shows the neuron elements in the first mapping layer of the hi-

erarchical SOM that were caused to fire during the learning phase. The figure

indicates that concept patterns, defined as neuron firing distributions, were gen-

erated at every position. There was no overlap between the various concept

patterns, and the layer was partitioned into regions corresponding to the various
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Figure 3.11. Mapping results on the second mapping layer in corridor.

positions.

Figure 3.11 shows the neuron elements in the second mapping layer of the

hierarchical SOM that were caused to fire. In this figure we have labeled the

neuronal units that fired during the learning phase with the position indicators

from A to D. The first neighborhood neurons are grouped together and treated as

same units, i.e., the same position label is attached to all eight units. These results

verify that the mapping consolidates the concept patterns generated during the

learning phase, so that a characteristic cluster of neurons forms for each position.

As position estimates were made during the trial, firings occurred in the neigh-

borhood units with labels attached during the learning phase, and effective results

were obtained for position estimation when these firings were grouped together.

The position estimation accuracy in the corridor was 95 percent.

3.4.2 Position estimation in a lobby

In this experiment, we made the robot travel counterclockwise along the walls of

the lobby shown in Fig. 3.12. Viewing image sequences were taken and position
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Figure 3.12. Experimental environment in lobby.

estimates were made at the four positions where cornering took place (Positions

A–D). The resulting concept patterns for the landscapes generated in the learning

phase are shown in Fig. 3.13, while Fig. 3.14 shows the results of consolidating

the concept patterns. In this experiment, as in the experiment in the corridor,

a concept pattern was formed at each position during the learning phase. The

respective concept patterns did not overlap, and the layer was partitioned into

regions corresponding to the various positions. Then units with labels attached at

the learning time were separated into consolidated groups corresponding to their

respective positions, so that a characteristic cluster formed for each position.

As position estimations were made during the trial moving, firings occurred

in the vicinity of units with labels attached during the learning phase, and effec-

tive results were obtained for position estimates when these firings were grouped

together. The position estimation accuracy in the lobby was 100 percent., i.e.,

higher in the lobby than in the corridor. In our opinion, this was because the

viewing image sequences encoded large changes in the landscape as the robot

traveled from position to position in the lobby, so that the hierarchical SOM

could precisely identify the distinctive features of a scene.
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Figure 3.13. Concept patterns on the first mapping layer in lobby.

Table 3.1. Relation between estimation accuracies and shifted direction.

Original Right–1 Right–2 Left–1 Left–2

Corridor (%) 95 92 83 92 83

Lobby (%) 100 92 92 100 100

3.5. Evaluation of position estimation

3.5.1 Shifts in the robot’s direction of travel

Ordinarily it is a challenging task for a robot to maintain the same direction of

travel when it is moving autonomously, due to slips, shakes, etc. that interfere

with its progress. For this reason, we carried out the experiment shown in Fig.

3.15, whose purpose was to evaluate the effect of direction shifts caused by stop-

ping for position estimation. In this experiment, the robot’s direction of travel

was shifted stepwise to the right or to the left by 10 deg (Right–1, Left–1) and
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Figure 3.14. Mapping results on the second mapping layer in lobby.

by 20 deg (Right–2, Left–2).

Table 3.1 shows the relation between the position estimation accuracy and

these direction shifts. According to the table, the position estimation accuracy

did not appear to decrease in the corridor experiment, except when the direction

shift was 20 deg for which the position estimation accuracy became 83 percent. In

our view, there was no decrease in the topological characteristics features of the

partial world image maps, so that when the viewing image sequence as a whole

is created the resulting changes are also small. Hence, when the direction shifts

cause changes in a part of a concept, the rest of the concepts will compensate

for the changes, leave the concept pattern unaffected. From this we conclude

that our method, which is based on the concept patterns, is capable of robust

self-position estimation.

3.5.2 Shifts in the robot’s point of departure

Like the robot’s direction shifts, shifts in position caused by events that interrupt

its progress cause problems whenever the robot stops and starts at fixed points
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Figure 3.16. Robustness for position.

in its moving. To address this issue, we carried out the experiment shown in

Fig. 3.16 to evaluate the effect of position shifts caused by stopping for position

estimation. In this experiment, we shifted the robot’s position forward, backward,

left, and right by 60 cm from the position it occupied during the learning phase.

Table 3.2 shows the relation between the position estimation accuracy and

these shifts in the departure point. According to the table, the position estima-

tion accuracy falls below 50 percent in the corridor. We explain this as follows:

because the changes in the corridor landscape recorded in the viewing image se-

quence were minor, and the distinctive feature identified at the various positions

were similar in appearance, the resulting changes in the topological characteristics

of the viewing image sequence as a whole caused by the position shifts were not
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Table 3.2. Relation between estimation accuracies and shifted position.

Original Front Back Right Left

Corridor (%) 95 42 50 25 42

Lobby (%) 100 100 92 92 83

Table 3.3. Hospitals with medical treatment sickbeds

Type Ordinary beds Medical treatment beds

Number of persons in room – 4 or fewer

Sickroom area per person At least 4.3m2 At least 6.4m2

Width of side corridor At least 1.2m2 (interior) At least 1.8m2 (interior)

Width of central corridor At least 1.6m2 (interior) At least 2.7m2 (interior)

sufficient for a correct position estimation. In contrast, there was no perceptible

decrease in the overall position estimation accuracy in the lobby caused by the

position shifts except for the small decrease of 83 percent in the position estima-

tion accuracy for the left-hand shift. In this case, we claim that the changes in

the corridor landscape recorded in the viewing image sequence were substantial,

and the distinctive features identified at the various positions were different in

appearance. This leads us to conclude that our method of self-position estimation

is not robust against position shifts.

3.6. Evaluation testing in a clinical environment

3.6.1 Experimental environment

We had studying the use of a patrol robot system for service providing facilities

under long term care insurance, so called convalescent wards in a general hospital.

Among these facilities, we selected the clinical facilities of Sotoasahikawa General

Hospital in Akita city as the experimental environment [72]. As shown in Table
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Figure 3.17. Experimental environment of global positions at hospital.

3.3, since these facilities the sickroom area per patient is greater than average

(at least 4.3m2 for ordinary sickbeds and at least 6.4m2 for treatment sickbeds),

and the corridor width is 1.5 times that of ordinary facilities, it is an environ-

ment suitable for autonomous running by the robot. In working out a practical

implementation, the functional performance of the robot and adjustment of the

environment and the facilities are very important. Medical treatment sickbeds

are beds for patients who chiefly require long-term hospital care. The number

of such beds has been increasing rapidly: it rose by about 85,000 in fiscal year

1999 alone. In addition, since an environment suitable for long-term medical care

must be provided in such facilities, the environments of the corridors and the

sickrooms are well laid out and orderly.

3.6.2 Position estimation results

In order for the robots to estimate their position as they make their rounds, they

need global position information (positions along their routes where the corri-

dors split) in order to select the proper route, and local position information
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Figure 3.18. Mapping result of global positions.

(position corresponding to room numbers) in order to recognize the entrances

and exits of each sick room. In this work, we equipped the robots with separate

and independent hierarchical SOMs for global position estimation and local po-

sition estimation, because of large differences in the information collected, i.e.,

the topological distinctive features revealed by landscapes of the viewing image

sequences, for the two types of estimates. In the experiment, world image maps

were constructed in the learning phase using position information from viewing

image sequences gathered by making the robots conduct three rounds on the

facilities floor. After these rounds a trial journey was executed.

Seven global positions were specified, as shown in Fig. 3.17: Position A just

before the nurse’s station, Positions B, D, E, G at each of the floor’s corners,

and at the forks (Positions C, F). Likewise, a total of six local positions were

specified, as shown in Fig. 3.19, from Position A in front of room number 333

to Position F in front of room number 327. Figs. 3.18 and 3.20 show the results

of various position estimation experiments. In the position estimations during
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Figure 3.19. Experimental environment of local positions at hospital.

the trial journey, firings occurred among neurons in clusters with common labels

attached in the course of constructing the world image maps during the learning

phase, and correct position estimates were made, regardless of which position was

in question.

The position estimation results shown in Figs. 3.18 and 3.20 reveal that the

world image maps acquired during learning exhibits clustering, and that the clus-

ters differ in size from one position to the next. We argue that those positions that

gave rise to large extended clusters (Positions A, C, G in Fig. 3.18, Position F in

Fig. 3.20) were positions where there was frequent traffic by nurses and caregivers

coming and going, due to the large amount of daily service they were providing.

This produced large contrasts with the viewing image sequence acquired during

the learning phase. In contras, at the positions where small compact clusters

formed (Positions D, E in Fig 3.18, Positions B, D in Fig. 3.20) the traffic was

small, leading to only slight departures from the static viewing image sequence

acquired during the learning phase. That is, the concept patterns generated by

our method from the topological distinctive features of a scene are capable of
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Figure 3.20. Mapping result of global positions.

discriminating whether people come and go rarely or often, indicating a further

advantage of the position-specific world image maps that are created.

Thus, our method can learn dynamic changes in real surroundings (encoded

as scatter in the scene’s position distinctive features) in a self-organizing way.

Because the method acquires position-specific world image maps, during trial

journeys the robot can implement robust position estimation based on changes

detected in the viewing image sequence.

Therefore, because dynamic changes (scatter of the phase characteristics of

the scene) in an actual environment can be learned in a self-organizing manner

and world image maps that are position-specific can be acquired, the proposed

technique allows position estimation that is robust to variation of the sequence

of view images during the test run.
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3.7. Conclusion

In this chapter we developed a method for a robot to estimate its position from

changes in landscape that accompany shifts in viewpoint. The results listed below

were obtained.

• We found that changes in landscape revealed by viewing image sequences

could be extracted as concept patterns by a SOM. Effective position in-

formation is acquired by making this hierarchical SOM and using it to

consolidate position estimation concept patterns.

• We identified the following parameter for effectively characterizing the view-

ing image sequence from the standpoint of position estimation: the compres-

sion level, the number of viewpoint shifts, and the viewpoint shift angles.

• We evaluated the effect of shifts in position and direction while the robot

was executing a trial journey on position estimation. The extent of these

shifts established beyond a doubt that our method was robust.

• The results of an on-site field test of a robot system in a hospital with a

convalescence ward confirmed the effectiveness of our method for practical

use.

In the future, we plan to do experiments that will evaluate the relation be-

tween he number of neurons in the position estimation mapping layers and spatial

resolution accuracy (position estimation ability) in order to extend the range of

usefulness of this method.
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Chapter 4

Representation of Orientation

Selectivity on ART2

4.1. Introduction

People with rich facial expressions are robust to uncertain situations or adverse

circumstances. The roles of facial expressions in communication among people

are important and various. Especially in a close relationship, we can mutually

understand the feeling and intensity from the information of facial expressions. In

the field of human communication, computer recognition of facial expressions has

been studied for realizing a natural and flexible Man-Machine Interface (MMI)

that can interpret the feeling or intensity of users [73].

Ekman defined six basic expressions (anger, sadness, disgust, happiness, sur-

prise, and fear) based on six kinds of basic feelings [76]. However, the number of

categories to express is unknown because facial expressions exist that are invalid

or which reflect several mixed feelings. In this chapter, we introduce Adaptive

Resonance Theory (ART) networks [23] as a method to represent detection of

dynamic, local, and topological changes of facial expressions. The ART, which

was proposed by Grossberg et al., is a theoretical model of an unsupervised and

self-organizing neural network to form a category adaptively in real time while

maintaining stability and plasticity. Using incremental learning of ART, the

method can classify facial expressions without presetting of the number of cate-

gories. In addition, facial expressions that are controlled by feelings change over
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time through aging. We consider that ART, which can learn over time, is useful

to deal with time-series movements of facial expressions.

However, setting the parameters of ART networks is very difficult and com-

plex; furthermore, classification results depend strongly on settings and combi-

nations of parameters. Especially, a parameter called the attentional vigilance

parameter strongly influences classification granularity. In addition, ART net-

works generate inclusions or redundant categories, even though the setting of

vigilance parameters is the same. In this chapter, we specifically describe ori-

entation selectivity of Gabor wavelets for analyzing classification granularity of

ART networks. The method can detect dynamic, local, and topological changes of

facial expressions for category changes of ART networks. Moreover, the method

can prevent redundant categories through the use of orientation selectivity.

4.2. Related studies

Akamatsu described two types of facial diversity [74]. Facial components such

as eyes, eyebrows, and the mouth are different for each person. Facial features

of those facial components’ position, size, location, etc. are also different. This

is called static diversity. On the other hand, we move facial muscles to express

internal emotions unconsciously or express emotions as a message. Facial expres-

sions are produced by the facial components and their transition from a normal

facial expression. This is called dynamic diversity. Regarding facial recognition in

the field of facial image processing, only the use of static diversity is sufficient to

obtain good results. For facial expression recognition, it requires not only static

diversity but also dynamic diversity as a time-series to cope with facial pattern

transitions.

Nishiyama et al. [75] proposed facial scores, a method to describe facial ex-

pression rhythms. They pointed out that facial expressions that are describable

with a Facial Action Coding System (FACS) by Ekman [76] are only static fea-

tures. Therefore, they did not use Action Units (AUs) of FACS. They originally

used setting feature points because FACS can not describe time-series transitions

of facial expressions. On the other hand, humans can recognize facial expressions

to detect movements of local facial components from entire structures of faces.
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Figure 4.1. Architecture of an ART2 network.

We do not need to detect facial elements as movements of characteristic points.

We can automatically detect dynamic, local, and topological feature changes of

facial expressions from whole facial changes.

4.3. Adaptive Resonance Theory 2

Actually, ART has many variations: ART1, ART1.5, ART2, ART2-A, ART3,

ARTMAP, Fuzzy ART, Fuzzy ARTMAP, etc. [20]. We use ART2 [23], into

which analog values can be input.

Figure 4.1 shows the ART network architecture. The network consists of

two fields: Field 1 (F1) for feature representation and Field 2 (F2) for category
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Figure 4.2. Three-dimensional representations of Gabor wavelet filters.

representation. The F1 consist of six sub-layers: pi, qi, ui, vi, wi, and xi. These

sub-layers realize Short Term Memory (STM), which enhances features of input

data and detects noise for a filter. The F2 realizes Long Term Memory (LTM)

based on finer or coarser recognition categories. The algorithm of ART2 is the

following.

1. The top-down weights Zji and bottom-up weights Zij are initialized as

Zji(0) = 0, Zij(0) =
1

(1− d)
√

M
. (4.1)

2. The sub-layers of F1 are initialized as

pi(t) = qi(t) = ui(t) = vi(t) = wi(t) = xi(t) = 0. (4.2)

3. The input data Ii are presented to the F1. The sub-layers are propagated

as

wi(t) = Ii(t) + aui(t− 1), (4.3)

xi(t) =
wi(t)

e + ||w|| , (4.4)

vi(t) = f(xi(t)) + bf(qi(t− 1)), (4.5)

ui(t) =
vi(t)

e + ||v|| , (4.6)

qi(t) =
pi(t)

e + ||p|| , (4.7)
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pi(t) =





ui(t) (inactive)

ui(t) + dZJi(t) (active),
(4.8)

where

f(x) =





0 if 0 ≤ x < θ,

x if x ≥ θ.
(4.9)

4. Search for the maximum active unit TJ as

Tj(t) =
∑

j

pi(t)Zij(t), (4.10)

TJ(t) = max(Tj(t)). (4.11)

5. The weights Zji and Zij are updated as follows.

d

dt
ZJi(t) = d[pi(t)− ZJi(t)] (4.12)

d

dt
ZiJ(t) = d[pi(t)− ZiJ(t)] (4.13)

6. The output value of ri(t) is calculated as

ri(t) =
ui(t) + cpi(t)

e + ||u||+ ||cp|| . (4.14)

The reset is defined as
ρ

e + ||r|| > 1. (4.15)

7. If eq. (4.15) is true, the active unit is reset; go back to 4) to search again.

If no active unit exists, a new category is created; return to 3). If eq. (4.15)

is not true, repeat 3) and 5) until the changing of F1 is sufficiently small,

then return to 2).

Parameters are the following: a and b are coefficients on feedback loops from

ui to wi and from qi to vi; c is a coefficient from pi to ri; d is a learning rate;

cd/(1− d) ≤ 1 is the constraint between them; and θ is a parameter to control a

noise-detection level in layer v.
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Figure 4.3. Gabor wavelet output images of the combination of λ and S.

4.4. Gabor wavelets

Visual information captured by the retina is conveyed to Visual area 1 (V1) in

the occipital lobe via the Lateral Geniculate Nucleus (LGN). The V1 consists of

two visual cells: simple cells and complex cells. The LGN and simple cells have

receptive fields. Receptive fields respond to a particular stimulus of figures such

as the size, length, direction, movement direction, color, and frequency. This is

called response selectivity. Since the time Hubel and Wiesel [78] discovered ori-

entation selectivity on receptive fields from their electrophysiological experiment

using anesthetized cats, orientation selectivity has become the most well known

among response selectivity.

Various methods based on visual cortex information processing models have

been proposed to develop image processing or computer vision systems [74, 77,
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Figure 4.4. Gabor wavelet output images of θ (0≤ θ ≤ 180, λ = 4.0 and S = 0.7)

79]. The representation of Gabor wavelets, which can emphasize an arbitrary

characteristic with inner parameters, is closed to receptive fields. Therefore,

Gabor wavelets are applied to various fields such as character recognition, texture

classification, and facial image processing [84, 85]. Gabor wavelets are functions

that are combined with a plane wave propagating to one direction and a Gaussian

wave. A three-dimensional (3D) representation of Gabor wavelets is shown in Fig.

4.2.

Let λ be a wavelength, and let σx and σy respectively denote widths of hori-

zontal and vertical directions of Gaussian windows, where θ is the angle between

the direction of a plane wave and the horizontal axis. The output of Gabor

wavelets G(x, y) is given as

G(x, y) = exp{−1

2
(
R2

x

σ2
x

+
R2

y

σ2
y

)} exp(i
2πRx

λ
), (4.16)

where 
Rx

Ry


 =


 cos θ sin θ

− sin θ cos θ





x

y


 . (4.17)
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Table 4.1. Target frames that portray facial expressions.

Facial expressions 1st 2nd 3rd

Anger 18-30 50-57 76-82

Sadness 11-24 40-48 65-78

Disgust 15-32 52-65 90-100

Happiness 21-47 64-78 -

Surprise 16-26 52-60 81-92

Fear 16-34 56-63 85-98

When Euler’s formula,

exp(iθ) = cos θ + i sin θ, (4.18)

is applied, the formula (4.16) is changed as:

G(x, y) = Rm(x, y) + iIm(x, y), (4.19)

Rm(x, y) = exp{−1

2
(
R2

x

σ2
x

+
R2

y

σ2
y

)}cos(2πRx

λ
), (4.20)

Im(x, y) = exp{−1

2
(
R2

x

σ2
x

+
R2

y

σ2
y

)}sin(
2πRx

λ
). (4.21)

The final output is

G(x, y) =
√

Rm2(x, y) + Im2(x, y). (4.22)

The suitable values of σx, σy are reported as a function of [81], so that

σx

σy


 = λ


Sx

Sy


 , (4.23)

where Sx and Sy are coefficients.

4.5. Experimental results

The classification and recognition of facial expressions that are associated with

dynamic variety are required to detect local and topological changes of facial
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Figure 4.5. The number of categories in anger (upper) and sadness (lower)

through 0 – 180 deg by 5 deg steps (ρ = 0.970).

components such as eyes, eyebrows, and the mouth, from global changes of overall

facial patterns. The purpose of this experiment is to detect facial expression

changes for the category changes of ART networks from datasets that include

both expressive and normal faces. Moreover, we evaluate orientation selectivity

from categorical changes of ART.

4.5.1 Target images

For this experiment, our evaluation targets are six basic facial expressions (anger,

sadness, disgust, happiness, surprise, and fear) as defined by Ekman. We took

600 facial images from each person. The frame rate was 10 frames per second.
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Figure 4.6. The number of categories in disgust (upper) and happiness (lower)

through 0 – 180 deg by 5 deg steps (ρ = 0.970).

Each facial expression comprises 100 images. The images at W320 × H240 pixels

resolution were taken using a CCD camera in front of the face. We manually

clipped the facial region of W92 × H110 pixels from the images. For automatic

facial detection, we plan to use a method using Haar-like features by Papageorgiou

et al. [82].

The targeted person is a woman in her 20s, a university graduate student.

She repeated one expressed face and a normal face in each facial expression.

Therefore, this image dataset consists of two face types in each facial expres-

sion: one type of expression face and a normal face. The facial expressions are

intentional. However, the timing of expression is idiosyncratic: the targeted per-

son decided that timing. After the dataset acquisition, we specified appearance
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Figure 4.7. The number of categories in surprise (upper) and fear (lower) through

0 – 180 deg by 5 deg steps (ρ = 0.970).

and disappearance points of all facial expression datasets. The appearance and

disappearance points are shown in Table 4.1.

4.5.2 Parameters

We evaluated parameters of Gabor wavelets and ART2 networks. Figure 4.3

shows the relationship between λ and S in the case of θ = 0. The respective

ranges of λ and S are 2.0 ≤ λ ≤ 10.0 and 0.5 ≤ S ≤ 1.0. We selected λ = 4.0

and S = 0.7（σ = 2.8） because these representations are sparse features. In this

case, we set the parameters subjectively. Optimizing parameters using automatic

and objective setting methods is a subject for our future work [83].
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Figure 4.8. Categorical changes in anger (ρ = 0.97).

The electrophysiological knowledge indicates that the visual range of receptive

fields is 1–5 degrees to yield a response to an input stimulation, the parameter θ is

set in each case to five degrees. Figure 4.4 shows a two-dimensional representation

of Gabor wavelets from 0 to 180 degrees by 5 degree steps.

We set the parameters of ART2 networks, θ = 0.01, a = b = 10, c = 0.225,

d = 0.8, e = 0.0001, based on our experience and the Grossberg’s original paper

[23].

4.5.3 Results and discussion

Figures 4.5 — 4.7 shows the number of categories in each direction from 0 to 180

degrees step by 5 degree steps. The vigilance parameter ρ is set to 0.970. The

directions with a large number of categories mean that facial feature changes are

large in the input images. The number of categories of surprise, which features

the open level of a mouth at 90 degrees and nearby, is larger than for the other

directions. This result means that the category changes of these directions are re-

markable. The number of categories of sadness, which features wrinkles between
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Figure 4.9. Categorical changes in sadness (ρ = 0.97).

the eyebrows at 0 and 180 degrees and nearby, is larger than for the other direc-

tions. The result of sadness is a large number of categories compared with other

facial expressions. This result means that category changes of these directions

are also remarkable.

Figures 4.8 — 4.13 show category changes in the case of ρ = 0.970. This

figure shows the generation of new categories as filled rectangles and transitions

to existing categories as empty rectangles. The vertical lines in each graph are

appearance or disappearance of facial expressions as specified in the section 4.5.1.

These lines that correspond to Table 4.1 show the changing frames of appearance

and disappearance between the normal expression and each facial expression.

Category changes are not required on these lines because the appearance and

disappearance continue a few frames before and after specified frames.

The appearance of anger is represented for categorical changes of ART net-

works in all three times (Fig. 4.8). The directions at the first appearance are only

three: 5, 10, and 15 degrees. The directions at the second and third appearance

include wide ranges of directions, meaning that the ranges of orientation selectiv-
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Figure 4.10. Categorical changes in disgust (ρ = 0.97).

ity are narrow at the first point and wide at the second and third points. The first

and second disappearance of anger can be detected, but the third one can not

be detected. The appearance and disappearance of sadness are represented (Fig.

4.9). However, the setting value of ρ is high because many categories occurred,

except at the transition points. The expression of disgust shows a weak response

(Fig. 4.10). This response means the classification granularity is low, although

slight orientation selectivity is apparent. The categorical changes of happiness are

redundant (Fig. 4.11). The classification granularity seems to be short because

the second expression can only detect two directions: 100 and 105 degrees. In

this case, the setting value of ρ cannot be increased. The open level of the mouth

differs before and after the 34th frame of the first appearance. That difference is

detectable for the category changes. The open level of the mouth at surprise is

characteristic (Fig. 4.12). The categorical changes are noticeable around 90 de-

grees. However, in expectation of facial appearance points, the result is strongly

reflective of eye blinking. The categorical changes of fear are not detected (Fig.

4.13). This result indicates that the vigilance parameter, ρ = 0.970, is small.
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Figure 4.11. Categorical changes in happiness (ρ = 0.97).

Next, Figures 4.14–4.17 show the results of sadness, fear, and anger with

changing vigilance parameters. The vigilance parameter of sadness were turned

down step by 0.010 because the category is redundant in Fig. 4.9. The vigilance

parameter of fear and anger were turned up to 0.980 because the classification

granularity is short in Figs. 4.10 and 4.13. The redundant categories were de-

creased at the result of sadness in case of ρ = 0.960 (Fig. 4.14). The category

changes are seen at the first appearance. Moreover, in the case of ρ = 0.950,

the category changes are more apparent at the first and second appearance (Fig.

4.15). The category changes appeared all directions at the 98th and 99th frames.

The cause is eye blinking, which occurred in the frames. We consider that the

features of eye blinking are easy to divide into other features because eye blinking

occurred in almost all directions. The appearance and disappearance of disgust

appeared in the case of ρ = 0.980, especially in the second one (Fig. 4.16). In the

case of ρ = 0.980 of fear, all appearances were detected (Fig. 4.17). Especially,

it was detected in a wide range at the second appearance.

The method can detect facial appearance points, even in the lower setting of
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Figure 4.12. Categorical changes in surprise (ρ = 0.97).

ρ using orientation selectivity. In other words, the method can reduce redundant

categories with the lower setting of ρ. Moreover, the method can detect facial

expression changes with the range of avoiding redundant categories to increase

the setting of ρ within orientation selectivity if the classification granularity is

insufficient for a problem to be solved. We consider that the method can realize an

advanced type of facial expression recognition for the next step of facial expression

classification using the patterns of category changes with orientation selectivity.

4.6. Conclusion

This chapter presents a method for representation of facial expression changes

using orientation selectivity of Gabor wavelets on ART networks. The method

produced suitable vigilance parameters according to classification granularity us-

ing orientation selectivity. Moreover, the method represented the appearance and

disappearance of facial expression changes to detect dynamic, local, and topolog-

ical feature changes from whole facial images.
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Figure 4.13. Categorical changes in fear (ρ = 0.97).

Future studies must evaluate other response selectivity, such as wavelength,

amplitude, frequency and direction of motion. In addition, we are going to take

examinations about the formation of categories for long-term facial changes, im-

plementation of oblivion mechanisms, fusion with context information, etc. to

realize a natural and flexible MMI.
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Figure 4.14. Categorical changes in sadness (ρ = 0.96).

0

30

60

90

120

150

180

0 10 20 30 40 50 60 70 80 90 100[frames]
[deg.] 1st 2nd 3rd

■: generation of new categories, □: transition to existing categories
Figure 4.15. Categorical changes in sadness (ρ = 0.95).
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Figure 4.16. Categorical changes in disgust (ρ = 0.98).
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Figure 4.17. Categorical changes in fear (ρ = 0.98).
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Chapter 5

Object Category Formation and

Recognition

5.1. Introduction

Because of the advanced progress of computer technologies and machine learning

algorithms, generic object recognition has been studied actively in the field of

computer vision [5]. Generic object recognition is defined as a capability by which

a computer can recognize objects or scenes to their general names in real images

with no restrictions, i.e., recognition of category names from objects or scenes in

images. In the study of robotics, one method to realize a robot having learning

functions to adapt flexibly in various environments is to obtain brain-like memory:

so-called world image maps [2]. For creating world image maps, robots must

classify objects and scenes in time-series images into categories and memorize

them as Long-Term Memory (LTM). Additionally, in actual environments for a

robot, the number of categories is mostly unknown. Moreover, the categories are

not known uniformly. Therefore, a robot must classify while generating additional

categories.

This chapter presents unsupervised feature selection and category formation

for application to robot vision. Our method has the following four capabilities.

First, our method can localize target feature points using One Class-Support Vec-

tor Machines (OC-SVMs) [34] without previous setting of boundary information.

Second, our method can generate labels as a candidate of categories for input
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images while maintaining stability and plasticity together. Third, automatic la-

beling of category maps can be realized using labels created using Adaptive Res-

onance Theory-2 (ART-2) as teaching signals for Counter Propagation Networks

(CPNs). Fourth, our method can present the diversity of appearance changes

for visualizing spatial relations of each category on a two-dimensional map of

CPNs. Through object classification experiments, we evaluate our method us-

ing the Caltech-256 object category dataset [10], which is the defacto standard

benchmark dataset for comparing the performance of algorithms in generic object

recognition, and time-series images taken by a camera on a mobile robot.

This chapter presents the following. First, we describe related work in Sec-

tion 5.2. Next, we present the number of classification targets of categories in an

actual environment based on a questionnaire investigation in Section 5.3 Subse-

quently, we explain detailed specifications of our image representation method,

our category formation method, and the whole architecture of our method in Sec-

tions 5.4, 5.5, and 5.6, respectively. We present experimental results in Sections

5.7 5.8, and 5.10. Finally, we respectively present related discussion and salient

conclusions in Sections 5.11 and 5.12.

5.2. Related studies

The problem of Simultaneous Localization and Mapping (SLAM) has attracted

immense attention in mobile robotics studies [86]. The objective of SLAM is

to build a map and update it while simultaneously estimating locations for a

robot. Cummins et al. proposed Fast Appearance Based Mapping (FAB-MAP)

[87] as a probabilistic approach to recognizing places based on their appearance.

The objective of FAB-MAP is similar to SLAM: to build a map of routes using

appearance changes of scene images obtained using a camera on a mobile robot.

Our objective is to classify images obtained using a camera on a mobile robot in

categories for recognizing objects.

Learning-based object classification methods are roughly divisible into super-

vised object classification methods and unsupervised object classification meth-

ods. Supervised object classification methods require training datasets including

teaching signals extracted from ground-truth labels. However, unsupervised ob-
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ject classification methods require no teaching signals with which categories are

automatically extracted to a problem of unknown classification categories for

classifying images into respective categories. Recently, studies of unsupervised

object classification methods have been active. The subject has attracted atten-

tion because it might provide technologies to classify visual information flexibly

in various environments.

In recent studies of object classification, various methods have been proposed

to combine the process of detecting regions or positions of an object as a target of

classification and recognition [93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. Barnard et

al. proposed a word–image translation model as a method based on regions [89].

They automatically annotated segmentation images using images that assigned

some keywords previously. Lampert et al. proposed an Efficient Subwindow

Search (ESS) that can quickly detect a position of an object using branch and

bound methods and integration images [90]. Using ESS, they realized first partial

generic object detection to calculate previously output values of Support Vector

Machines (SVMs) in each feature point and to localize a search range gradually.

Moreover, Suzuki [91] et al. proposed a local feature selection method used in

Bag-of-Features (BoF) [92] with SVMs. This method classifies local features into

background features and target features used for BoF. However, these methods

require previously acquired training samples with teaching signals. Therefore,

these methods are inapplicable to an actual environment for which a target region

and a background region can not be decided uniformly.

As unsupervised object classification methods, Sivic et al. proposed an unsu-

pervised object classification method using pLSA and LDA, which are generative

models from the statistical text literature [93]. They modeled an image con-

taining instances of several categories as a mixture of topics and attempted to

discover topics as object categories from numerous images. Zhu et al. intro-

duced Probabilistic Grammar Markov Models (PGMMs) of generative models

that combined Probabilistic Context-Free Grammars (PCFGs) and Markov Ran-

dom Fields (MRFs) [94]. They used this method to create an object category

model for object detection and unsupervised object classification. Moreover, they

proposed Probabilistic Object Models (POMs) that improved their method and

enabled classification, segmentation, and recognition of objects [95]. Todorovic
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Figure 5.1. Photos in the target environment for the questionnaire investigation.

Table 5.1. Results of questionnaires administered to 10 subjects.

A B C D E F G H I J Max. Min. Ave.

Rough 22 11 17 6 4 7 12 14 11 8 22 4 11

Fine 37 24 41 17 17 14 20 36 35 34 41 14 28

et al. proposed an unsupervised identification method using optical, geometric,

and topological characteristics of multiscale regions consisting of two-dimensional

objects [96]. They represented each image as a tree structure by division of multi-

scale images. Moreover, Nakamura et al. proposed an unsupervised object classi-

fication method using multimodal information of vision, hearing, and touch [97].

They achieved object classification of objects that resemble human senses using

embodied interactions of a robot. However, these methods include the restriction

of prior settings of the number of classification categories. Therefore, these meth-

ods are applied only slightly to classification problems in an actual environment

for which the number of categories is unknown.

5.3. Categories in an actual environment

Numerous categories exist in an actual environment. Humans can recognize sev-

eral tens of thousands of categories [88]. We consider that it is possible for a robot

to classify categories in an actual environment to specify them clearly. In this

chapter, we used a questionnaire investigation to find the number of classification

targets of categories used for an actual environment. The target environment is
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Table 5.2. Categories from which more than two subjects were extracted as a

rough classification from the questioner investigation.

Number Extracted Categories

7 computers, chairs, whiteboard.

5 human, books, desks, refrigerator, sink.

4 shelves, partitions, rockers.

3 plant, bookshelves, doors.

goods, electrical appliances, stationery, boxes, windows,

2 sundry goods, file shelves, printers, microwave oven, trash boxes,

shared shelves, walls, dinning table.

our research room at the Neuro Informatics Laboratory, Akita Prefectural Uni-

versity. Fig. 5.1 depicts photographs taken in the room. The floor space is about

90 square meters. Ten university students participated as subjects. They walked

around the room a few minutes for observation. Subsequently, they wrote cate-

gories that they found and recognized as a categories on the questionnaire sheet.

The questionnaire sheets consisted of two classification types: rough classification

and fine classification.

Table 5.1 presents results of the number of categories to be extracted with this

investigation. In the rough classification, 11 categories were extracted, consisting

of 4 minimum categories and 22 maximum categories. In the fine classification,

28 categories were extracted, consisting of 14 minimum categories and 44 max-

imum categories. Table 5.2 categories from which more than two subjects were

extracted. In the rough classification, chairs, desks, computers, etc., which are

numerous in the research room, are extracted. Moreover, large objects such as

a whiteboard and a refrigerator, for which the number of the category is one

instance in the room, are extracted. In the fine classification presented in Table

5.3, small items such as cups and umbrellas are extracted, although categories

that are the same in the rough classification are extracted. Extracted objects

such as PaPeRo (a communication robot produced by NEC), Mindstorms (a self-

assembled robot by LEGO), and NetTansors (a web-camera embedded robot by
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Table 5.3. Categories from which more than two subjects were extracted as fine

classification from the questioner investigation.

Number Extracted Categories

9 trash boxes

8 books

6 chairs, rockers.

5 desks, shelves, whiteboard, microwave oven, printers,

MindStorms, refrigerator.

4 doors, table taps, bookshelves, cups, computers, keyboards,

tissue boxes, umbrellas.

3 bags, TV, mice, cameras, radio control cars, blind,

NetTansors.

pens, tool boxes, windows, shoes, sundry shelves, displays,

PC desks, pot, clear boxes, terrestrial globe, clock, plant,

2 coffee machine, rocking chair, dishes, sink, robots on desks,

walls, miniature garden, teacher’s area, hardware, laptop PC,

staplers, hollow punch, network cameras, USB memory units, people.

Bandai) are extracted in each category that can be extracted to one category as

a robot.

5.4. Image representation

In fact, BoF [92], which represents features for histograms of visual words with

local features as typical patterns extracted from numerous images, is widely used

to emphasize the effectiveness in image representation methods of generic object

recognition. In BoF of our method depicted in Fig. 5.2, we applied OC-SVMs for

selecting Scale-Invariant Feature Transform (SIFT) [33] feature points as target

regions in an image. Furthermore, we applied SOMs for creating visual words

and histograms in each image from selected features.
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visual wordsfrequency●：Selected points×：Unselected points ・・・

Figure 5.2. Procedures of our image representation method based on BoF.

Our target is SIFT feature points on an object for recognition. Therefore,

target regions and target feature points respectively mean object regions and fea-

ture points on an object. The OC-SVMs are unsupervised-learning-based binary

classifiers that enable density estimation without estimating a density function.

Therefore, OC-SVMs can apply to real-world images without boundary informa-

tion. Detailed algorithms of SIFT, OC-SVMs, and SOMs are the following.

5.4.1 Description of features using SIFT

Generally, SIFT is used as a descriptive method of local features in generic object

recognition. Mikolajczyk et al. [104] compared descriptors of varias types such as

shape context [105], steerable filters [106], PCA-SIFT [107], differential invariants

[108], spin images [109], SIFT [33], complex filters [110], and moment invariants

[111]. They showed that the SIFT-based descripters performs the best [104]. The

SIFT processing consists of two steps: detection of feature points and description

of features [112]. The procedures are the following.

Detection of scale-space extrema

The first stage of keypoint detection is to identify locations and scales that can be

repeatably assigned under differing views of the same object. Detecting locations

that are invariant to scale change of the image can be accomplished by searching

for stable features across all possible scales, using a continuous function of scale
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known as scale space. The scale space of an image is defined as a function,

L(u, v, σ), that is produced from the convolution of a variable-scale Gaussian,

G(x, y, σ), with an input image, I(u, v). The difference-of-Gaussian function

convolved with the image, D(u, v, σ), can be computed from the difference of two

nearby scales separated by a constant multiplicative factor k as

D(u, v, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(u, v). (5.1)

where

L(u, v, σ) = G(x, y, σ) ∗ I(u, v). (5.2)

Therefre, D(u, v, σ) is defined as

D(u, v, σ) = L(u, v, kσ)− L(u, v, σ). (5.3)

Herein, it has been shown by Koenderink [113] and Lindeberg [114] that under

a variety of reasonable assumptions the only possible scale-space kernel is the

Gaussian function as

G(x, y, σ) =
1

2πσ2
exp(−x2 + y2

2σ2
) (5.4)

The relation between D and σ2∇2 can be understood from the heat diffusion

equation as

σ2∇2 =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
. (5.5)

Therefore,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2 (5.6)

In order to detect the local maxima and minima of D(x, y, γ), each sample

point is compared to its eight neighbors in the current image and nine neighbors

in the scale above and below. It is selected only if it is larger than all of these

neighbors or smaller than all of them. The cost of this check is reasonably low

due to the fact that most sample points will be eliminated following the first

few checks. An important issue is to determine the frequency of sampling in the
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image and scale domains that is needed to reliably detect the extrema. However,

it turns out that there is no minimum spacing of samples that will detect all

extrema, as the extrema can be arbitrarily close together. This can be seen

by considering a white circle on a black background, which will have a single

scale space maximum where the circular positive central region of the difference-

of-Gaussian function matches the size and location of the circle. For a very

elongated ellipse, there will be two maxima near each end of the ellipse. As the

locations of maxima are a continuous function of the image, for some ellipse with

intermediate elongation there will be a transition from a single maximum to two,

with the maxima arbitrarily close to each other near the transition. Therefore,

we must settle for a solution that trades off efficiency with completeness. In fact,

as might be expected and is confirmed by our experiments, extrema that are close

together are quite unstable to small perturbations of the image.

Eliminating edge responses

The difference-of-Gaussian function will have a strong response along edges, al-

though the location along the edge is poorly determined and therefore unstable

to small amounts of noise. A poorly defined peak in the difference-of-Gaussian

function will have a large principal curvature across the edge but a small one in

the perpendicular direction. The principal curvatures can be computed from a

two-dimensional Hessian matrix, H , computed at the location and scale of the

keypoint as

H =


 Dxx Dxy

Dxy Dyy.


 (5.7)

The eigenvalues of H are proportional to the principal curvatures of D. Borrowing

from the approach used by Harris and Stephens [115], we can avoid explicitly

computing the eigenvalues, as we are only concerned with their ratio. Let αbe

the eigenvalue with the largest magnitude and β be the smaller one. Then, we

can compute the sum of the eigenvalues from the trace of H , Tr(H), and their

product from the determinant,Det(H), as

Tr(H) = Dxx + Dyy − (Dxy)
2 = αβ, (5.8)
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Det(H) = DxxDyy = α + β. (5.9)

In the unlikely event that the determinant is negative, the curvatures have differ-

ent signs so the point is discarded as not being an extremum. Let r be the ratio

between the largest magnitude eigenvalue and the smaller one, so that α = γβ.

Then,

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(γβ + β)2

γβ2
=

(γ + 1)2

γ
. (5.10)

which depends only on the ratio of the eigenvalues rather than their individual

values. The quantity (r+1)2/r is at a minimum when the two eigenvalues are

equal and it increases with r. Therefore, to check that the ratio of principal

curvatures is below some threshold, r, as

Tr(H)2

Det(H)
<

(γth + 1)2

γth

. (5.11)

This is very efficient to compute, with less than 20 floating point operations

required to test each keypoint. The experiments in this paper use a value of r =

10, which eliminates keypoints that have a ratio between the principal curvatures

greater than 10.

Eliminating low contrast keypoints

The next step is to perform a detailed fit to the nearby data for location, scale, and

ratio of principal curvatures. This information allows points to be rejected that

have low contrast and are therefore sensitive to noise or are poorly localized along

an edge. The approach proposed by Brown et al. [116] uses the Taylor expansion

up to the quadratic terms of the scale-space function, D(x, y, γ), shifted so that

the origin is at the sample point:

D(x) = D +
∂D

∂x

T

x +
1

2
xT ∂2D

∂x2
x. (5.12)

The location of the extremum, x̂, is determined by taking the derivative of this

function with respect to x and setting it to zero, giving

x̂ = −∂2D

∂x2

−1
∂D

∂x
. (5.13)
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The function value at the extremum, D(x̂), is useful for rejecting unstable extrema

with low contrast. This can be obtained by substituting equation 5.13 into 5.12,

giving

D(x̂) = D +
1

2

∂D

∂x

T

x̂. (5.14)

The resulting 3× 3 linear system can be solved with minimal cost. If the offset x̂

is larger than 0.5 in any dimension, then it means that the extremum lies closer

to a different sample point. In this case, the sample point is changed and the

interpolation performed instead about that point. The final offset x̂ is added to

the location of its sample point to get the interpolated estimate for the location

of the extremum.

Orientation assignment

The keypoint descriptor can be represented relative to this orientation and there-

fore achieve invariance to image rotation. The scale of the keypoint is used to

select the Gaussian smoothed image, L, with the closest scale, so that all com-

putations are performed in a scale-invariant manner. For each image sample,

L(x, y), at this scale, the gradient magnitude, m(x, y), and orientation, θ(u, v),

is precomputed using pixel differences as

m(u, v) =
√

fu(u, v)2 + fv(u, v)2, (5.15)

θ(u, v) = tan−1 fv(u, v)

fu(u, v)
. (5.16)





fu(u, v) = L(u + 1, v)− L(u− 1, v)

fv(u, v) = L(u, v + 1)− L(u, v − 1)
(5.17)

An orientation histogram is formed from the gradient orientations of sample

points within a region around the keypoint. The orientation histogram has 36

bins covering the 360 degree range of orientations. Each sample added to the

histogram is weighted by its gradient magnitude and by a Gaussian-weighted cir-

cular window with a γ that is 1.5 times that of the scale of the keypoint. Peaks in
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the orientation histogram correspond to dominant directions of local gradients.

The highest peak in the histogram is detected, and then any other local peak that

is within 80 % of the highest peak is used to also create a keypoint with that ori-

entation. Therefore, for locations with multiple peaks of similar magnitude, there

will be multiple keypoints created at the same location and scale but different

orientations. Only about 15 % of points are assigned multiple orientations, but

these contribute significantly to the stability of matching. Finally, a parabola is

fit to the 3 histogram values closest to each peak to interpolate the peak position

for better accuracy.

Descriptor representation

The final step is to compute a descriptor for the local image region that is highly

distinctive yet is as invariant as possible to remaining variations, such as change

in illumination or 3D viewpoint.

The image gradient magnitudes and orientations are sampled around the key-

point location, using the scale of the keypoint to select the level of Gaussian

blur for the image. In order to achieve orientation invariance, the coordinates of

the descriptor and the gradient orientations are rotated relative to the keypoint

orientation. For efficiency, the gradients are precomputed for all levels of the

pyramid. A Gaussian weighting function with γ equal to one half the width of

the descriptor window is used to assign a weight to the magnitude of each sam-

ple point. The purpose of this Gaussian window is to avoid sudden changes in

the descriptor with small changes in the position of the window, and to give less

emphasis to gradients that are far from the center of the descriptor, as these are

most affected by misregistration errors. The keypoint allows for significant shift

in gradient positions by creating orientation histograms over 4×4 sample regions.

A gradient sample on the left can shift up to 4 sample positions while still con-

tributing to the same histogram on the right, thereby achieving the objective of

allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly

changes as a sample shifts smoothly from being within one histogram to another

or from one orientation to another. Therefore, trilinear interpolation is used to

distribute the value of each gradient sample into adjacent histogram bins. In
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other words, each entry into a bin is multiplied by a weight of 1 − d d for each

dimension, where d is the distance of the sample from the central value of the

bin as measured in units of the histogram bin spacing. The experiments in this

paper use a 4× 4× 8 = 128 element feature vector for each keypoint.

Finally, the feature vector is modified to reduce the effects of illumination

change. First, the vector is normalized to unit length. A change in image con-

trast in which each pixel value is multiplied by a constant will multiply gradients

by the same constant, so this contrast change will be canceled by vector normal-

ization. A brightness change in which a constant is added to each image pixel

will not affect the gradient values, as they are computed from pixel differences.

Therefore, the descriptor is invariant to affine changes in illumination. However,

non-linear illumination changes can also occur due to camera saturation or due

to illumination changes that affect 3D surfaces with differing orientations by dif-

ferent amounts. These effects can cause a large change in relative magnitudes for

some gradients, but are less likely to affect the gradient orientations. Therefore,

we reduce the influence of large gradient magnitudes by thresholding the values

in the unit feature vector to each be no larger than 0.2, and then renormalizing

to unit length. This means that matching the magnitudes for large gradients is

no longer as important, and that the distribution of orientations has greater em-

phasis. The value of 0.2 was determined experimentally using images containing

differing illuminations for the same 3D objects.

5.4.2 Selected feature points using OC-SVMs

As described earlier, the OC-SVMs are unsupervised learning classifiers that es-

timate the dense region without estimation of the density function [34]. The OC-

SVMs set a hyperplane that separates data points near the original point and the

other data points using the characteristic by which the outlier data points are

mapped near the original point on a feature space with a kernel function. The

discriminant function f(·) is calculated to divide input feature vectors xi into two

parts as shown in 5.3. The position of the hyperplane is changed according to

parameter ν, which controls outliers of input data with change, and which has
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origin 
hyperplanenumber of (ν*n) ：correct：outlier 

Figure 5.3. Distribution of correct and outlier data points and the hyperplane on

a high-dimension feature space of OC-SVMs.

range of 0–1.

f(x) = sgn(ω>Φ(x)− ρ) (5.18)

The restriction is set to the following.

ω>zi ≥ ρ− ζi, i = 1, ..., l

ζi ≥ 0, i = 1, ..., l, 0 < ν ≤ 1 (5.19)

The optimization problem is solved with the following restriction

1

2
‖ω‖2 +

1

νl

l∑

i=1

ζi −ρ

→ min ω, ζ, and ρ (5.20)

Therein, zi represents results of the mapping input vector xi to the high-dimension

feature space.

Φ : xi 7→ zi (5.21)

In those expressions, ω and ρ are results of the optimization problem. The La-

grangian function of the optimization problem is calculated to solve the optimiza-
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tion problem.

L(ω, ζ, ρ, α, β) =
1

2
‖ω‖2 +

1

νl

l∑

i=1

ζi − ρ

−
l∑

i=1

αi((ω
>zi)− ρ + ζi)−

l∑

i=1

βiζi (5.22)

In those expressions, α and β of the Lagrangian function are maximized. Ω, ρ

and ζ of the Lagrangian function are minimized. Lagrangian functions that are

partially differentiated by ω, b, ρ and ζ are 0 for an optimized solution.

∂

∂ω
L = 0 → ω =

l∑

i=1

αizi (5.23)

∂

∂ζi

L = 0 → αi =
1

νl
− βi (5.24)

∂

∂ρ
L = 0 →

l∑

i=1

αi = 1 (5.25)





αi · [ρ− ζi − ω>zi] = 0, i = 1, ..., l

ρ− ζi − ω>zi ≤ 0, i = 1, ..., l

0 ≤ αi ≤ 1
νl

, i = 1...., l

βi · ζi = 0, −ζi ≤ 0, βi ≥ 0, i = 1, ..., l

(5.26)

Equations (5.23)–(5.26) are substituted to Lagrangian function. A binary opti-

mization problem is developed if the inner product is transposed to the kernel.

1

2

l∑

i,j=1

αiαjk(z>i zj),

0 ≤ αi ≤ 1

νl
, i = 1, ..., l,

l∑

i=1

αi = 1 (5.27)

Support vectors are learning data zi fulfilling assumptions of (5.26) , αi＞ 0 and

ζi=0. The equation (5.23) is expanded. An equality is true if αi and βi are not 0

for an optimized solution and ρ is calculated as

f(z) =
l∑

i=1

αik(xi, z)− ρ, (5.28)
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where ζi＝ 0. Points of Φ(x) are not apparent in the discriminant function that

is a binary problem using a kernel trick. Therefore, huge calculation costs of the

inner product can be avoided and the number of calculations can be reduced.

Parameter ν of OC-SVMs is a high limit of unselected data and lower limit of

support vectors if the solution of the optimization problem (5.20) fulfills ρ 6=0.

5.4.3 Creating visual words using SOMs

For our method, we apply SOMs, not k-means, which is generally used in BoF,

for creating visual words. In the learning step, SOMs update weights while main-

taining topological structures of input data. Actually, SOMs create neighbor-

hood regions around the burst unit, which demands a response of the input

data. Therefore, SOMs can classify various data whose distribution resembles

the training data. In addition, Terashima et al. reported that SOMs are superior

to k-means as an unsupervised classification method that is useful to minimize

misrecognition [117]. The learning algorithm of SOMs [15] is the same as the

algorithm used between the input-Kohonen layers of CPNs. In this method, we

used all SIFT features for creating visual words at the learning step of SOMs.

We used SIFT features selected by OC-SVMs for generating histograms based on

visual words. Based on our preliminary experiment, we set the learning iteration

to 100,000 times. Additionally, we set the number of units of the Kohonen layer

to 100 units. We created visual words to extract weights between Kohonen layer

units and input layer units.

5.5. Unsupervised category formation

Figure 5.4 depicts the architecture of our unsupervised category formation method

that combined incremental learning of ART-2 and self-mapping characteristics of

CPNs. Actually, ART-2 is a theoretical model of unsupervised neural networks of

incremental learning that forms categories adaptively while maintaining stability

and plasticity together. Features of time-series images from the mobile robot

change with time. Using ART-2, our method enables an unsupervised category

formation that requires no setting of the number of categories.
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Input images 0 0 0 1 1 2・・・ 12 12 13 13 14 ・・・ART-2 Forming labelsBoFCPNsBoF labelscategory map
Figure 5.4. Architecture of our unsupervised category formation method.

A type of supervised neural network, CPN, actualizes mapping and labeling

together. Such networks comprise three layers: an input layer, a Kohonen layer,

and a Grossberg layer. In addition, CPNs learn topological relations of input data

for mapping weights between units of the input-Kohonen layers. The resultant

category formations are represented as a category map on the Kohonen layer.

Our method can reduce these labels using the Winner-Takes-All competition of

CPNs. In addition, our method can visualize relations between categories on

the category map of CPNs. Detailed algorithms of ART-2 and CPNs are the

following.

5.6. Whole architecture of our method

In generic object recognition, it is a challenging task to develop a unified model

to address all steps from feature representation to creation of classifiers. The aim

of our study is the realization of category formation for generic object recognition

to apply theories with different characteristics for each step. Fig. 5.5 depicts the

network architecture of our method. The procedures are the following.
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Image Data 3) SOMs2) OC-SVMs1) SIFT BoF 5) CPNs4) ART-2
・・・ F1 Kohonen LayerInput Layer
F2Vigilance Parameter Grossberg LayerLabels

Figure 5.5. Whole architecture of our method.

1. Extracting feature points and calculating descriptors using SIFT

2. Selecting SIFT features using OC-SVMs

3. Creating visual words of all SIFT descriptors and calculating histograms of

selected SIFT descriptors matched with visual words using SOM

4. Generating labels using ART-2

5. Creating a category map using CPNs

Procedures 1. through 3., which correspond to preprocessing, are based on the

representation of BoF. We apply OC-SVMs to select SIFT feature points for lo-

calizing target regions in an image. For producing visual words, we use SOMs,

which can learn neighborhood regions while updating the cluster structure, al-

though k-means must decide data of the center of a cluster. Actually, SOMs can

represent visual words that minimize misclassification [117]. Furthermore, the
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Table 5.4. Setting values of parameters used in experiments.

Parameters Setting values

OC-SVMs ν 0.5

ART-2 θ 0.1

ρ 0.920

α(t) 0.5

CPNs β(t) 0.5

learning iteration 10,000

combination of ART-2 and CPNs enables unsupervised category formation that

labels a large quantity of images in each category automatically. Table 5.4 shows

parameters of OC-SVMs, ART-2, and CPNs with each experiment.

5.7. Experimental results obtained using the

Caltech-256 dataset

This section presents experimental results of image classification using Caltech-

256 [10] to compare the performance of algorithms in generic object recognition.

The target of this experiment is object classification of static images because

Caltech-256 has no temporal factors in each category. We use the highest 20

categories with the number of images in 256 categories. The results of selection

of SIFT features and recognition rates for classification of 5, 10, and 20 categories

are the following.

5.7.1 Selection of feature points and generation of labels

Figures 5.6 and 5.7 depict results of selected feature points using OC-SVMs on

five sample images of Caltech-256. Fig. 5.6 shows that our method can select

feature points of target objects in images of the Leopards and Face categories.

In addition, Fig. 5.7 shows that our method can select feature points around the

wings that characterize airplanes for various images of the Airplane category.
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●：Selected points,  ×：Unselected points
(b) Leopard
(a) Airplane
(c) Face

Figure 5.6. Results of selected SIFT feature points in different categories of

Caltech-256.

Figure 5.8 depicts labels generated by ART-2. The vertical and horizon-

tal axes respectively represent labels and images. The independent labels in

each category without confusion are generated among different categories. More-

over, for the Airplane, Motorbike, and Face categories one label is generated; for

the Car-side and Leopards categories several labels are generated. These results

demonstrate that OC-SVMs can select SIFT features of target objects and show

that ART-2 can generate independent labels to images for which backgrounds

and appearances of objects differ in each category.
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(a) Original Image (b) SIFT feature points
●：Selected points,  ×：Unselected points

(c) After OC-SVM
Figure 5.7. Results of selected SIFT feature points in same categories of Caltech-

256.

5.7.2 Object classification

Figure 5.9 depicts a category map generated by CPNs for classifications of five

categories: Airplane, Car-side, Motorbike, Face, and Leopards. We show images

that mapped each unit and mapping regions in each category on the category

map. Fig. 5.9 depicts that CPNs created categories for mapping to neighborhood

units on the category map in each image with labels generated by ART-2. The

Car-side and Leopards categories contain several labels. The Car-side category

is mapped to neighborhood units. On the other hand, the Leopards category is

divided into two regions.

Figure 5.10 depicts labels by ART-2 on 20-object classification. The bold line

shows the number of images in 10 categories. The circles and squares portray

images for which ART-2 confused labels on 10 and 20 categories, respectively. In

the 10-object classification, ART-2 generated independent labels in all categories,

although three images of two labels are confused. In the 20-object classification,

independent labels of 19 categories are generated, except for the Zebra category

that is confused of all images, although 16 images of five labels are confused.
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airplane car-side motorbike face leopardsGround-truth category

Figure 5.8. Results of formed labels using ART-2 at five categories.

Confusion of labels occurs often in images of Ketch, Hibiscus, and Guitar-pick

categories. Although confused labels are restrained until 10-object classification,

numerous confused labels are apparent in the 20-object classification.

Figure 5.11 depicts a category map generated by CPNs on 20-object classi-

fication. The names of categories and the number of images are shown on the

category map. For all images in each category, 11 categories are mapped to neigh-

borhood units. The CPNs created categories for mapping neighborhood units on

the category map in images of each category by which ART-2 generated several

labels. In addition, categories without their names are mapped images of differ-

ent categories. Here, for quantitative evaluation of the classification performance

of our method, we use the following recognition rate.

(RecognitionRate) =
(CorrectData)

(AllData)
× 100. (5.29)
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Airplane

car-side

motorbike

face

leopards Leopards

Figure 5.9. Result of category mapping using CPNs of five categories.

Table 5.5 portrays recognition rates in 5, 10, and 20 categories without OC-

SVMs and with OC-SVMs for training and testing datasets. The recognition rates

without OC-SVMs were, respectively, 84%, 70%, and 64% for training datasets

and 76%, 30%, and 38% for testing datasets in 5, 10, and 20 categories. In our

method, the recognition rates were, respectively, 96%, 94%, and 81% for training

datasets and 76%, 42%, and 45% for testing datasets in 5, 10, and 20 categories.

These results address the effectiveness to select SIFT feature points using OC-

SVMs.
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Figure 5.10. Results of formed labels using ART-2 at 10 and 20 categories.

5.8. Experimental results obtained using a mo-

bile robot

In this section, we applied our method to object classification experiments using

time-series images taken by a camera with movements of a robot. In this ex-

periment, we evaluated our method for object classification of dynamic images

because the target is time-series images according to the change of appearances.

We built an original experimental environment to take images of datasets. This

section presents the experimental environment and results of our method as the

following.
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Figure 5.11. Result of a category map of 20 categories.

5.8.1 Specific object recognition obtained using a small

mobile robot

Figure 5.12 portrays a home robot (NetTansor; Bandai Co. Ltd.) used in this

experiment. Table 5.6 presents specificaions of the robot. The robot is 190

mm high, 160 mm long, and 160 mm wide. The camera specifications are the

following: imaging device, 1/4 inch CMOS; image format, JPEG; resolution, 320

× 240 pixels; and frame rate, 15 fps. The moving environment is 1,150 × 1,150

mm surrounded by 300 mm high white walls. Fig. 5.13 shows the assignment

of objects in the environment and the roughly determined goals of routes for
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Table 5.5. Recognition rates of learning and testing datasets used in Caltech-256

Without OC-SVMs Our method

Learning Testing Learning Testing

5 categories 84% 76% 96% 76%

10 categories 70% 30% 94% 44%

20 categories 64% 38% 81% 50%NetTansorObject175mm(a) Robot (b) Experimental environment
Figure 5.12. Robot used for experiments (NetTansor; Bandai Co. Ltd.).

the robot. We assumed the environment for moving of this robot as a desk.

In consideration of the robot height, we used office supplies with characteristic

shapes. Target objects were a hole punch (Object A), a plastic bottle of glue

(Object B), a book (Object C), and a cellophane tape holder (Object D) shown

in Fig. 5.13. For this experiment, we created datasets consisting of time-series

images as shown in the behavior of Fig. 5.13 Datasets comprise RUN1 and RUN2

for which the robot runs twice around in the environment.

Figure 5.14 depicts results of selected feature points using OC-SVMs on four

samples of time-series images taken by the robot. Our method can select feature

points near objects against various appearance changes. In images of Object D,

feature points of whole and a part of Object D are, respectively, selected distant
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Table 5.6. Specifications of NetTansor

Body Height 190 mm

Width 160 mm

Depth 160 mm

Weight 960 g (include battery)

Camera Imaging device 1/4 inch CMOS

Resolution 320 × 240 pixels

Frame Rate 15 fps

Compression JPEG

Table 5.7. Recognition rates of learning and testing datasets of time-series images

Testing Datasets

RUN1 RUN2 Mean

Training RUN1 98.1% 96.2%

Datasets RUN2 97.2% 98.8% 96.7%

from the object and near the object. In addition, feature points are selected not

only of the object, but also around the object.

Figure 5.15 depicts labels generated by ART-2 on the experiment using time-

series images of RUN1. The vertical and horizontal axes respectively represent

labels of ART-2 and frames in images. The top parts portray ranges including

objects and parts of the robot turned 90 deg as time-series images. In this result,

27 labels are generated from time-series images of 220 frames. In addition, the

labels are more numerous than the target objects because labels are assigned

to each image taken by the robot turned 90 deg from the four corners in the

environment. Objects A, B, C, and D respectively generated 3, 2, 6, and 8 labels.

Fig. 5.16 depicts a category map generated by CPNs. On the category map,

we show mapping regions of images in each object. Each object classified with

different labels with ART-2 is mapped to neighborhood units on the category

map of CPNs shown in Fig. 5.16. In addition, images of turning of labels 3
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Figure 5.13. Four objects and the robot route used for our experiment.

and 4 are mapped around border units between categories. Table 5.7 portrays

recognition rates for training and testing calculated using equation (5.29). This

experiment evaluated recognition rates for all combinations of datasets of RUN1

and RUN2 for learning and testing. Underlined values are the recognition rates

for training. In [118], the recall rate of SIFT is less than 50% when objects are

occluded more than 30%. We annotated images including defective objects of

more than 30% as being of the category of backgrounds and other objects. Table

5.7 shows that recognition rates for training and testing datasets are more than

90%. Moreover, the mean recognition for testing datasets is 96.7%. In contrast,

images of turning include misrecognitions and confused labels in each object.

5.8.2 Generic object recognition using an actual-size mo-

bile robot

Based on the results of the questioner presented in Table 5.1, we evaluated our

method as generic object recognition in an actual environment using an actual-size

mobile robot. We used PaPeRo developed by NEC. This robot is a prototype for

a personal robot used especially for child-care purposes [120]. Table 5.8 presents

specifications of this robot related to its use for this experiment. The robot is

385 mm high, 282 mm long, and 251 mm wide. Comparison with NetTansor
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Figure 5.14. Results of selected SIFT feature points of time-series images.

shows that PaPeRo shows that it has sufficient capabilities to move on the floor.

Moreover, servomotors are equipped for the drive system to control movements

with high precision. We used one camera for monocular vision, but two cameras

are mounted for stereo vision. The specifications of cameras are the following:

imaging device, CCD; image format, JPEG; resolution, 320 × 240 pixels; and

frame rate, 30 fps.

Figure 5.17 depicts the experimental environment. This room is a vacant room

used as a professor’s room. It contains a desk, a table, a sofa, and a cabinet. The

floor is carpeted. In the room are a window and a blind. We closed the blind to

avoid effects of sunlight while taking images through the experiment.

We selected target objects that can move portably. They were neither too

large or too small compared with this robot, from the top group of the number

of extracted categories by the questioner investigation presented in Table 5.1.

Fig. 5.18 depicts target objects of four categories: Personal Computers (PCs),
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Figure 5.15. Results of labels created using ART-2 from time-series images.

Chairs, Robots, and Trash Bins (TBs). We selected medium-size desktop PCs to

be placed under the desk. We used only OA chairs, although chairs of numerous

types exist there. Comparison with other objects shows that robots are the

smallest targets for this experiment. We selected TBs that have no patterns or

labels on the surface. We used different objects in same category for testing.

Figure 5.19 portrays routes for the robot and assignments of objects for learn-

ing and testing. The robot moves the environment one round clockwise to use

the behavior set consisting of forward movements and 90 deg turns. For learning,

each object in the same category is assigned to extend lines of the routes. After

one round, the robot movement is suspended to take images. Subsequently, we

changed objects to the next category; the robot resumed movement to take im-
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Figure 5.16. Mapping result of images on the category map of CPNs used in

labels generated by ART-2.

ages. For testing, we assigned four different objects in each corner. The robot

moved using the same behavior set. We took four datasets to change the positions

of objects clockwise.

Figure 5.20 shows feature selection results of images with OC-SVMs. In this

experiment, the range of moving for the robot is wide and the sizes of the target

objects are various. Therefore, background feature points are selected. Moreover,

classification target object robots are smaller than those of other objects. Fea-

ture points including background regions were extracted because the occupancy

of background regions is larger than that of other images. The PC and TB fea-

ture points are few because shapes and components of these objects are simple.
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Figure 5.17. Experimental environment and an actual-size mobile robot for

generic object recognition.

Therefore, feature points include background regions that were extracted because

the occupancy of background regions is larger than those of other images.

Figure 5.21 portrays labels generated by ART-2. For this experiment, we set

ρ to 0.5 to prevent redundant categories. Results show that ART-2 generated 38

labels from 320 frames of input images. We consider that the reason for generation

of numerous labels is the diversity of appearance of objects, although we set a

small value of ρ. Moreover, images of the robot turning are included in training

datasets. In the last part of input frames, overlapping labels are apparent. In fact,

ART-2 generated categories additionally from images to be changed objects. In

this environment, four patterns of background regions are repeated. We consider

that overlapping is caused by these background patterns to be memorized.

Figure 5.22 portrays the category map created by the labels. The category

map size is 20 × 20 units. Categories are created for each independent region.

However, these categories are separated into several regions. Using CPNs, 38

labels generated by ART-2 were integrated to 29 labels.

Table 5.9 presents test results for Datasets 1, 2, 3, and 4. Each dataset

comprises 180 frames. The highest recognition accuracy is 53.3% in robots. In

contrast, the lowest recognition accuracy is 21.9% in PCs. The recognition ac-

curacy is decreased in Datasets 2 and 3. Especially, the recognition accuracy of
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Table 5.8. Specifications of PaPeRo by NEC [121]

Body Height 385 mm

Width 282 mm

Depth 251 mm

Weight 6.5 kg (include battery)

Movement Drive system Servomotor × 2

Speed 23 cm/s (maximum)

Camera Imaging device CCD Camera × 2

Resolution 320 × 240 pixels

Frame Rate 30 fps

Compression JPEG

Software Architecture Operating system Windows XP

Development tool RoboLabo

PCs is 0% in Dataset 2 and 4.4% in Dataset 3. Our method failed to recognize

PCs and TBs. The recognition accuracy is decreased by this false recognition.

The robot ran the same route from the start point under similar patterns of back-

grounds, although objects were replaced in the test datasets. In this environment,

the complexity of backgrounds at the routes of the forward movement after the

start and the forward movement after the two sets of 90-deg turns is higher than

that of the other two routes. In the latter route of complex backgrounds, images

include the door near the entrance. Our method selected these SIFT features in

the background region. Results for test datasets show that the same units on the

category map are burst. This false recognition occurs in cases where the distance

between the robot and objects is great. We consider that these burst patterns

occur in response to patterns of background regions.

Our method selected foreground regions in an unsupervised manner using OC-

SVMs. However, false recognition occurred in cases with small objects shown in

an image with a background of high complexity. We consider that restriction

of the distance between the robot and objects is necessary instead of using all

frames for a target of training and recognition. The objective of our method is to
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(a) Learning objects. (b) Test objects.
Robots
PCs

Trash Bins (TBs)
Chairs PCsChairsRobotsTBsRobots

PCs
Trash Bins (TBs)

Chairs PCsChairsRobotsTBs
Figure 5.18. Classification target objects for learning and testing.

recognize one object in a scene image. We must extend our method to the target

to classify multiple objects in one image.

5.9. Generation of robot behavior using GP

5.9.1 experimental environment

Actually, GP expands the genotype of Genetic Algorithms (GA) to handling

structural expressions such as trees or graphs. As a heuristic approach, GP is

applied to generation of robot programs. Tree structures consist of non-terminal

nodes (functions), terminal nodes (variables or constant values), and a root. For

this study, we used GP for generating two behavior programs to run for routes

A and B. Nodes used for GP were the following.
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(a) Learning routes and objects. (b) Test routes and objects.
A BD C A BD CA BD C A BD C

PCs Chairs
Robots TBs

Chair RobotPC TB PC ChairTB RobotTB PCRobot Chair Robot TBChair PC
Dataset 1 Dataset 2
Dataset 3 Dataset 4

A BD C A BD CA BD C A BD C
PCs Chairs

Robots TBs
Chair RobotPC TB PC ChairTB RobotTB PCRobot Chair Robot TBChair PC

Dataset 1 Dataset 2
Dataset 3 Dataset 4

Figure 5.19. Routes and assignments of objects for learning and testing.

• Terminal nodes: move, left, right, upleft, and upright,

• Non-terminal nodes: runif, progn2, and progn3.

Terminal nodes cope with forward movement, 90 deg turns to the left and to

the right, and 15 deg turns to the left and to the right. The non-terminal node

runif is a condition judgment by which the first argument is executed if there is a

landmark in front of the robot; the second argument is executed if no landmark

exists. The non-terminal nodes progn2 and progn3 are functions that execute two

arguments and three arguments sequentially. For the simulation, we used the

map dividing the environment into 10 × 10 blocks. One block corresponds to 115

× 115 mm. The fitness value is increased when the robot finds a landmark and

runs through it. We set the population size to 50 individuals and the generation

to 100 steps. We used the best individuals as behavior programs. We respectively

call Behavior A and Behavior B to be generated in routes A and B.

Figure 5.23 shows the assignment of objects in the environment and the

roughly determined goals of routes for the robot. We generated behavior pro-

117



(d) TBs
(a) PCs(b) Robots(c) Chairs

●：Selected points,  ×：Unselected points

Figure 5.20. Selected feature points with OC-SVMs.

grams using GP. We set landmarks on both routes. Fig. 5.24 portrays a gener-

ated tree and its simulation result of the simple route along with walls shown in

Fig. 5.23 (a). Fig. 5.24 presents a generated tree and its simulation result of the

route that acquires various appearances around each object shown in Fig. 5.23

(b). For this experiment, we created datasets consisting of time-series images

in each behavior. Datasets comprise training datasets and testing datasets for

which the robot runs two rounds in the environment. In the learning phase, we

evaluate both results of labels generated by ART-2 and category maps generated

by CPNs. In the testing phase, we evaluate results of category maps generated
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Figure 5.21. Results of labels created using ART-2.

by CPNs.

5.9.2 Classification results

In [118], the recall rate of SIFT is less than 50% when objects are occluded

more than 30%. We annotated images including defective objects of more than

30% as being of the category of backgrounds and ’other’. Tables 5.10 and 5.11

respectively present the target datasets and the recognition rate in each dataset

for training and testing. The target datasets presented in Table 5.10 consist of

A-1 and A-2 for the first and second rounds, with Behaviors A and B-1 and B-

2 for the first and second rounds with Behavior B. This experiment evaluated

recognition rates for all combinations of four datasets for learning and testing.

The respective recognition rates for training datasets A-1, A-2, B-1, and B-2

are 99.1, 98.8, 90.8, and 96.8%. In Behavior A, the respective recognition rates for
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Figure 5.22. Mapping result of objects on the category map.

testing A-2 and A-1 after learning A-1 and A-2 are 98.8 and 93.5%. In addition,

the respective recognition rates for testing B-1 and B-2 after learning A-1 and

A-2 are 63.5, 64.3, 51.5, and 50.4%.

In Behavior B, the respective recognition rates for testing B-2 and B-1 after

learning B-1 and B-2 are 86.8 and 87.2%. In addition, the respective recognition

rates for testing A-1 and A-2 after learning B-1 and B-2 are 83.8, 77.1, 94.0, and

95.8%. The respective mean recognition rates for testing datasets for Behavior

A and for Behavior B are 70.3 and 87.5%. This result means that Behavior B is

superior to Behavior A for learning.
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Table 5.9. Recognition accuracy [%].

Chair Robot TB PC Average

Dataset 1 63.6 60.7 24.1 40.0 48.2

Dataset 2 22.7 66.0 31.6 0 30.3

Dataset 3 31.8 20.5 90.2 4.4 33.9

Dataset 4 61.4 65.9 44.2 43.2 52.2

Average 44.9 53.3 47.5 21.9 41.2

(a) Route A (b) Route BB
A

C
D

B
A

C
D

Figure 5.23. Experimental environment and robot routes.

5.10. Computational costs

The robot we used for this experiment has a wireless LAN system that enables it

to communicate with a PC as an external computation environment. Therefore,

we conducted calculations for learning and testing on a PC. Computational costs

of our method are as follows.

• SOMs: 7 min per 1,000 frames

• SIFT and OC-SVMs: 11 min per 1,000 frames

• Training for ART-2 and CPNs: 45 s per 1,000 frames
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Figure 5.24. Generated tree and simulation result of Behavior A.

Table 5.10. Target datasets.

First round Second round

Behavior A A-1 A-2

Behavior B B-1 B-2

• Testing for CPNs: 0.15 s per frame

Some important parameters of our computational environment are Core 2 Duo

2.2 GHz CPU (Intel Corp.); 1.7 G bytes memory,; Vine Linux 4.2 OS,; and the

Eclipse 3.4 development tool with OpenCV 1.0. The mean calculation cost for

SIFT and OC-SVMs is 0.66 s per frame, although it depends on the number of

feature points. The mean calculation cost for CPN testing is 0.15 s per frame,

which enables calculation in real-time for the 30 fps input image.
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Figure 5.25. Generated tree and simulation result of Behavior B.

5.11. Discussion

Experimental results of Caltech-256 and time-series images of the robot show

that OC-SVMs select feature points not only of the whole object, but also of the

background and surrounding regions, and of partial objects. These results signify

that OC-SVMs can select a region to concentrate specific information in an image,

i.e. features that characterize an image, not feature points to be classified into

the object and background.

Table 5.11. Recognition rates in each behavior [%].

Testing Datasets Mean rates for

A-1 A-2 B-1 B-2 testing datasets

A-1 99.1 98.8 63.5 64.3 75.5

Training A-2 93.5 98.8 51.5 50.4 65.1 70.3

Datasets B-1 83.8 77.1 90.8 86.8 82.6

B-2 94.0 95.8 87.2 96.8 92.3 87.5
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Humans, when classifying objects, devote attention to a region that gathers

information for characterizing an object, not the whole object. We consider that

selection of SIFT features using OC-SVMs can describe features effectively for

category formation to represent features and can thereby improve classification

accuracy.

In the static object classification using Caltech-256, the accuracy of our method

reached 81% for training and 50% for testing of 20-object classification. The un-

supervised object classification method proposed by Chen et al. [95] showed

respective performances of 76.9% for training and 67.4% for testing of 26-object

classification for the Caltech dataset. The accuracy of our method is apparently

inferior to that of the existing method. Nevertheless, our method can classify

objects without previous setting of the number of categories. Therefore, our

method is effective for application to problems that are known as challenging

tasks of classification of categories whose ranges and types are unclear.

In this experiment, we observed 10 categories for which multiple labels are

generated on ART-2. The images of Caltech-256 have no time-series factors,

although ART-2 learns time-series changes of input data positively. Therefore,

we inferred that ART-2 maintains no continuity of labels. For the relation of labels

generated by ART-2 and a category map on CPNs, categories that maintained

continued and non-continued labels are mapped respectively to neighborhood and

separated units on the category map of CPNs.

In the dynamic object classification using time-series images of the robot, the

accuracy shows high performance of better than 90% for training and testing

datasets. This result means that our method can classify time-series images

into categories used for characteristics of ART-2. Category formation for generic

object recognition is necessary to classify categories for assigning one label to one

category. However, category formation for robot vision is necessary to classify

categories for assigning labels positively to changes in appearance with sensing

in an environment.

We consider that ART-2 can learn changes in appearance positively for gen-

eration of labels. Nevertheless, the number of labels of ART-2 is greater because

the appearance changes in the environment increase along with the behavior of

turning 90 deg. The CPNs created categories in each object whose appearance
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differs from that of neighboring units. In addition, with the topological map-

ping characteristic based on the neighborhood learning of CPNs, images that

characterized each object and images for which the robot is turning are mapped

respectively near the center in each category and near borders between categories.

This result means that our method can represent the diversity of categories on

category formation.

In this study, we are aiming at category formation to an actual environment

for which the number of categories is mostly unknown. This experimental result

demonstrates that our method can apply category formation such as that shown

for this environment using ART-2 and CPNs for visualizing spatial relations of

time-series images on the category map. We consider that this category formation

method is effective not only for computer vision for generic object recognition,

but also for robot vision, for which the number of categories is unknown and for

which appearances in an environment are various.

5.12. Conclusion

This chapter presented an unsupervised method of SIFT feature points selection

using OC-SVMs and category formation combined with incremental learning of

ART-2 and self-mapping characteristic of CPNs. Our method enables feature

representation that contributes to improved accuracy of classification for select-

ing feature points to concentrate characterized information of an image. More-

over, our method can visualize spatial relations of labels and integrate redundant

and similar labels generated by ART-2 as a category map using self-mapping

characteristics and neighborhood learning of CPNs. Therefore, our method can

represent diverse categories.

Future studies must be conducted to develop methods to extract boundaries

among clusters automatically and to determine a suitable number of categories

from category maps of CPNs. Additionally, we will examine approaches that

include generation of robot behavior for classification and recognition of objects.
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Chapter 6

Conclusions and Future Studies

6.1. Conclusions

This thesis presented an unsupervised category formation method using SOMs

to apply to robot vision. The primary experiment to evaluate basic character-

istics of SOMs showed that generalization capabilities can be improved using

expansion or compression of training data while retaining topological structures

using topological mapping characteristics. We applied our method to classifica-

tion problems of two types: Normal Mixtures dataset and Cone-Torus dataset.

Compared with classification results, our method is superior to the conventional

SVMs using original training data. Moreover, we applied our method to the face

recognition problem under various illumination conditions using the Yale Face

Dataset B. The error rate is decreased by 11.05 percent compared with the con-

ventional SVMs and the generalization capability is improved using our method.

Additionally, our method visualized the distribution of data points to be selected

as SVs on the category map. We ascertained that SVs are distributed around the

boundaries on the category map.

For practical uses in an actual environment, this thesis presented two applica-

tions using a mobile robot. The first application is scene category formation for

position estimation and to create world image maps of a robot. We presented a

method using hierarchical SOMs for a robot to estimate its location from changes

in landscape that accompany shifts in viewpoint. We found that changes in land-

scape revealed by viewing image sequences could be extracted as concept patterns
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by SOMs. Effective position information is acquired by making hierarchical SOMs

and using it to consolidate position estimation concept patterns. We identified

the following parameter for effectively characterizing the viewing image sequence

from the standpoint of position estimation: the compression level, the number

of viewpoint shifts, and the viewpoint shift angles. We evaluated the effect of

shifts in position and direction while the robot was executing a trial journey on

position estimation. The extent of these shifts established beyond a doubt that

our method was robust. The results of an on-site field test of a robot system in

a hospital with a convalescence ward confirmed the effectiveness of our method

for practical use.

The second application is unsupervised category formation of generic objects

to recognize and understand the environment where the robot moves. The pri-

mary experiment to evaluate basic characteristics of ART-2 showed that the pro-

posed method selected suitable vigilance parameters according to classification

granularity using orientation selectivity. Moreover, our method represented the

appearance and disappearance of feature changes to detect dynamic, local, and

topological changes of facial expression images. For object category formation,

we presented an unsupervised method of SIFT feature points selection using OC-

SVMs and category formation combined with incremental learning of ART-2 and

self-mapping characteristic of CPNs. Our method enables feature representation

that contributes to improved accuracy of classification for selecting feature points

to concentrate characterized information of an image. Moreover, our method can

visualize spatial relations of labels and integrate redundant and similar labels

generated by ART-2 as a category map using self-mapping characteristics and

neighborhood learning of CPNs. Therefore, our method can represent diverse

categories of generic objects for actualizing advanced interaction between humans

and robots.

6.2. Future Studies

Category formation for actual datasets obtained using a camera on a mobile robot

yields promising results for application to generic object recognition and global

position estimation using unsupervised neural networks of two types. However,
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some important concerns remain. Herein, we discuss six topics for future studies

that will improve work on this subject.

The first concern is automatic setting of the category map size. The suitable

number of training data differs in each target problem. Actually, SOMs are a

model of functional localization of the brain. For comparison with the number

of neurons of the brain, the SOM units are quite few. Our method allocates

categories to all units, although each category is formed partially. We will mod-

ify SOM algorithms to represent whole categories in a local part of the category

map, similar to functional localization of the brain. As the neighborhood region

of SOMs, we determined its size relative to the number of category map units.

Regarding the relation to the model of the brain, it is desired to change the

neighborhood region size adaptively for updating weights that are burst simul-

taneously, thereby reflecting the strength of the input stimulus. Moreover, we

will examine hardware implementation of our method in the case of increasing

calculation costs using large-scale category maps.

The second concern is evaluation of other response selectivity of features,

such as wavelength, amplitude, frequency, and direction of motion. We consider

that our method can represent these features similarly to human perception and

present natural visual features. The expressive capability of ART-2 will be ac-

tualized using the response selectivity used in these features. For our evaluation

experiments, we used short-term datasets, with 100 frames per subject. We will

evaluate our method using long-term datasets that include variations with aging.

The third concern is to examine approaches that include generation of robot

behavior. We used GP for generating behavior sets of wall-following, which is

the basic behavior used to move in an unknown environment. However, it is a

challenging task to obtain not only various objects, but also various view pat-

terns. We must modify the fitness function to move closer to an object that is

located distant from walls. The behavior generated by GP is a global behav-

ior set. We will develop local behavior sets to obtain various view patterns to

a specific object. For obtaining various view patterns, it is necessary to intro-

duce approaches not only to feedback after movements, but also estimation of

view patterns before movements. We will introduce Bayesian approaches that

actualize high-probabilistic estimation using only a few datasets.
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The fourth concern is comparison of accuracy with existing unsupervised

methods for object recognition, e.g. pLSA, LDA, and DPM. In our method,

we compared recognition performances with the state-of-the-art method of un-

supervised learning in generic object recognition. We conducted no comparison

experiment for object recognition and position estimation using a mobile robot.

Open benchmark datasets obtained using robot vision systems are available for

comparison with other methods. We will use these datasets to conduct compar-

ative experiments.

The fifth concern is extension to multiple object detection and recognition.

We will use co-occurrence mechanisms between foreground objects and back-

ground regions for image representation. In this study, our recognition target is

a single object. For several objects with the same category in an image, it is pos-

sible to recognize feature representation of BoF. However, it is impossible for our

method to recognize objects with different categories. We will extend OC-SVMs

to multiple classifiers. For improvement of feature representation capability and

recognition performance, we will use co-occurrence between foreground regions

and background regions and between categories.

The last remaining concern is to extract boundaries among clusters automat-

ically and to determine a suitable number of categories from category maps of

CPNs. We will investigate methods to detect category boundaries and to de-

termine the number of categories. With our method, users manually determine

boundaries that correspond to semantic categories. As a result of CPNs, candi-

dates of boundaries are extracted automatically from boundaries between labels.

In contrast, actual categories are represented with several labels. Users must

integrate labels corresponding to actual categories. We will develop a method

to integrate labels as categories using the distribution of weights around neigh-

borhood units. We will integrate labels to decide the number of categories that

correspond to the number of perceptual categories.
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