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Abstract

Before new technologies are introduced to a large-scale distributed system such as

the Internet, they need to be evaluated practically to avoid any negative effects they

may have upon existing systems. To perform such evaluations, many researchers and

developers use a customized PC-based cluster also known as a Network Emulation

Testbed (NET).

One of the greatest challenges in performing experiments on a NET is the time-

consuming preparation needed for the user ’s experiments. Large-scale NETs, in

particular, require efficient preparation within the one-week period that is typically

reserved for a single user. Due to the large number of nodes, however, the preparation

workload might be longer than it is on smaller ones. The origin of this problem

can be considered in terms of four subproblems. The first problem is that topology

configuration has no reusability. The second is the differences in assistant’s tools and

experimental procedures on each NET. The third problem is the lack of compatibility

and complementarity of the assistant tools, and the last one is the difficulty of emulating

a realistic topology.

In order to solve these subproblems, I propose AnyBed architecture in this dis-

sertation. I divide the entire preparation process into three parts: network topology

design, resource assignment, and node configuration. In the proposed architecture, I

have three layers corresponding to each part: a design layer, an assignment layer, and

an injection layer. Each layer consists of several components that are loosely coupled.

To solve the first subproblem, I divide network topology information for an exper-

iment into two parts: logical network information and physical network information.

Physical network information, which is stored in a physical network file, has NET-

specific information such as hardware specifications for the nodes and wiring among

network switches. Logical network information, on the other hand, which is recorded in

a logical network file, contains experiment-specific layer three network topology. These
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two information files are combined in such a way as to build an experimental network

for the preparation. This division makes possible the reusability of network topology

among NETs. This offers users the advantage of reduced user workload in such cases

by reproducing the topologies of past experiments on another large scale NET, and

moving that topology from real nodes to virtual nodes.

In regard to the second subproblem, I propose a common node configuration mech-

anism that is used on various NETs. This mechanism reduces the time it takes users

to learn NET-specific procedures by enabling them to use common procedures to con-

figure nodes and perform experiments among the NETs.

Concerning the third subproblem, I propose a layered modular architecture. This

loosely coupled architecture facilitates an easy coordination with other assistant tools.

AnyBed tools exchange data with other tools using simple Extensible Markup Lan-

guage (XML) format or text format.

To resolve the last subproblem, I propose a method that can pick up and emulate

the proper size of an Autonomous System level (AS-level) network from a public data

set, as well as a method that emulates an actual operated Open Shortest Path First

(OSPF) network topology on NETs. This method infers router configurations from the

OSPF Link State Database (LSDB) obtained from one actual router on a backbone

network, and then emulates the OSPF network topology with the inclusion of OSPF

interface cost settings and assigned IP addresses on NETs. These two methods reduce

the users ’workloads in the design of network topology in their experiments.

This proposed architecture has been implemented as an AnyBed toolset, which has

been released as open-source software. From the evaluation results and the feedback

of various users, I confirmed that AnyBed can expedite user’s experiments.

Keywords:

Network Emulation Testbed, Experiment, Network Topology, BGP, OSPF
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Chapter 1

Introduction

Before new technologies are introduced to a large-scale distributed system such as the

Internet, they need to be evaluated practically in order to avoid any negative effects

they may have upon existing systems. Such evaluations need a practical experimental

environment that is similar to the actual Internet. To meet this requirement, many

researchers use a Network Emulation Testbed (NET) to perform their experiments.

Firstly, I provide a brief description of NETs, and point out a number of problems

one faces in expediting experiments on NETs. Next, I present the positive contributions

offered by my work.

1.1 Network Emulation Testbed

Network Emulation Testbed (NET) is a customized PC-based cluster that enables users

to perform network experiments by running their implementations on its nodes. Typ-

ical examples of experiments performed on NETs are deployment tests, verifications,

and performance evaluations of software.

The NET is generally classified in terms of several axes: centralized/distributed,

open access to the Internet/closed to local networks, and one node shared by multiple

users/one node occupied by a single user. A centralized NET consists of commodity

layer 2 switches and many PC nodes in one facility. Users can perform practical network

experiments on an emulated network using these switches and PC nodes that act as

routers. A distributed NET consists of many nodes that are located in universities

and companies world-wide. In the case of an open access NET, users can perform

1



2 CHAPTER 1. INTRODUCTION

experiments with the nodes connected to the actual Internet. Some NETs, however,

provide limited access to the Internet for each node out of concern for unnecessary

traffic leakage. Some NETs adopt virtualization in order to share one node with

multiple users, while others offer access on a reservation basis so that one user can

occupy a part of all the nodes.

StarBED [1] and Emulab [2] are typical large scale centralized NETs. StarBED is

a large scale centralized NET that is located in the Hokuriku Research Center at the

National Institute of Information and Communications Technology(NICT HRC) [3].

StarBED is composed of 1070 PC nodes and several network switches for network

simulation. Emulab is another large scale NET and the same name is used for its

toolset. Located at the University of Utah, Emulab has 374 PCs, 40 wide-area nodes,

58 Wi-Fi nodes, and a front end to PlanetLab. Recently, NETs based on the Emulab

toolset have been implemented in several countries. DETER [4] is the most well-known

large scale NET based on the Emulab toolset. It focuses on experiments for research

and development on cyber-security technologies. PlanetLab [5] is a distributed, live

testbed that is available over the Internet. It has over 1000 nodes that are distributed

at 494 sites around the world.

Preparations for experiments on these large scale NETs have been a tiresome pro-

cess for experimenters due to the complexity of the physical resource assignment and

the configuration overhead. To reduce this workload, StarBED, Emulab, and DETER

have each produced NET assistant tools, which are customized for each environment.

StarBED has produced SpringOS [1], Emulab has developed Emulab tools [2], and

the DETER toolset is available in DETER Testbed [2]. These tools help users to set

up the basic configuration of each node and to describe experimental scenarios in an

NS-like manner [6].

Most NET-specific assistant tools of NETs focus mainly on resource assignment

and basic configuration support such as address assignments for each interface and the

setting of static routes on each node. A NET user therefore has to design a test topology

and generate several configuration files. When a user wants to construct a large network

topology with several routing daemons, for example, an inter Autonomous System

(inter-AS) topology with a Border Gateway Protocol(BGP) [7] daemon for MOAS

experiments [8], he must manually set up the configuration of each BGP daemon.

Moreover, these NET specific assistant tools are not designed to be portable. The

configuration files of these NET-specific assistant tools and the tools themselves are
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currently customized for specific NETs or for the same structure testbeds. Due to this

characteristic of NET-specific tools, a user cannot freely move his experiments among

the various scales and characteristics of NETs.

1.2 Challenges in Expeditious Experiments

The goal of my study is expediting users’ experiments on NETs. Every experiments has

its time-consuming routine process such as preparation. I focus on this preparation. If

this process will be shortened, the experiment becomes more efficient. To achieve this

goal, I tackle the following problems about the preparation.

No reusability on network topology configuration

I assume that the NET dependence of network topology configurations can increase

the workloads involved in reconfiguration. Configurations are difficult to reuse on

different NETs because the configurations of a network topology typically include

resource information that is dependent on specific software, hardware, and/or cable

wiring on a NET.

Another reason for the difficulty of reusability is that most NET assistant tools

are not designed for the generation of configuration files for a large network topology

with several routing daemons. Users must generate their own configuration in addi-

tion to the configuration files generated by the assistant tools. These user-generated

configurations often include dependent information.

Differences in assistant tools and experimental procedures on each NET

Users normally use a different assistant tool on each NET. If users were able to use

the same assistant tools and procedures on various NETs, this would reduce the time

it takes them to learn NET-specific tool and procedures.

Lack of compatibility and complementarity of assistant tools

Currently, performing an experiment simultaneously using multiple assistant tools is

a troublesome process. The origin of this problem is the lack of modularity in the

assistant tools.
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Difficulties to emulate realistic Internet topology

Topology design for experiments is a time-consuming and difficult process for NET

users. I explore an automatic method with which realistic Internet topologies can be

emulated for the evaluation of Internet applications. These topologies contain inter-AS

topologies only, intra-AS topologies only, and mixed topologies that include both.

I describe the details of these problems in Chapter 2.

1.3 Contributions

To achieve the goal of expediting users’ experiments on NETs, my study offers the

following contributions.

1.3.1 Proposed model for network emulation experiments

In order to expedite experiments on NETs, I propose my model of network emulation

experiments, and the architecture and implementations proposed in this dissertation

are based upon this model.

The scale of a user’s experiment varies depending upon its purpose. Most users,

however, gradually increase the scale of their experimental topology as their experi-

ments progress. For example, in the case of networking software development, a user

checks the performance of his software in one server. Next, he verifies the cooperative

performance of several servers. Finally, he evaluates the software’s scalability on many

servers.

The problem is that there are NETs of various scales all over the world. Lab-level

NETs normally have more than several servers. Large scale centralized NETs like

StarBED and Emulab equip hundreds of servers. Users cannot use these large NETs

on a casual basis because they require a reservation for every experiment.

My proposed model for network emulation experiments would enable users to per-

form their experiments with the same assistant tools on a NET that is suitable for

the scale of their experiments. Adopting this model for the previously given example,

a user would first use his development server for his experiment. Next, he would use

a lab-level NET in his laboratory. Finally, he would perform his experiment using

virtualized nodes on the lab-level NET and using real nodes on a large scale NET. In

all these experiments he would use the same assistant tools.
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1.3.2 Proposal of AnyBed architecture

On the basis of the model previously described, I propose AnyBed architecture.

In this approach, I divide the entire process of preparation into 3 parts: network

topology design, resource assignment, and node configuration. In the proposed archi-

tecture, there are 3 layers corresponding to each part: a design layer, an assignment

layer, and an injection layer. Each layer consists of several components that are loosely

coupled.

To realize the reusability of network topology configurations, I divide the network

topology information for an experiment into two parts: logical network information and

physical network information. This division achieves a reusability of network topology

among NETs, and it offers users the advantage of a reduced workload in such cases by

reproducing the topologies of past experiments on other large scale NETs, and moving

that topology from real nodes to virtual nodes. To enable common assistant tools and

common experimental procedures to be used on each NET, I propose a common node

configuration mechanism that can be used on various NETs. This mechanism reduces

the time it takes users to learn NET-specific procedures by enabling them to use the

same procedures to configure nodes and perform experiments among NETs.

To provide compatibility and complementarity of assistant tools, I propose a lay-

ered modular structure. This loosely coupled architecture makes possible the easy

coordination among different assistant tools. The tools in this model exchange data

with other tools using a simple XML format or text format.

With the aim of emulating a realistic Internet topology, I propose a method to pick

up and emulate the proper size of an AS-level network from a public dataset. I also pro-

pose a method that emulates an actual operative Open Shortest Path First(OSPF) [9,

10] network topology on NETs.

1.3.3 Implementation and release of AnyBed toolset

I also document the implementation of the proposed architecture as an AnyBed toolset,

which has been released as open-source software. This release has attracted several

regular users of AnyBed, whose past experiments can be seen in summary form in [11].

For these users, workshops that included an AnyBed session were held in 2008 and

2009 at which they also implemented tools such as XENebula [12], and XBurner [13]

using a number of AnyBed components.
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Tools for realistic topology design

I designed and implemented several tools that can emulate various parts of the Inter-

net. To emulate inter-AS BGP topology, I implement the caida-topology-filter tool

as a part of the AnyBed toolset. Using this tool, users can emulate the proper size

of an inter-AS topology based on the actual AS-level topology of the Internet. For

intra-AS OSPF topology, I implement ONTES, which is an OSPF Network Topology

Emulation System. ONTES infers router configurations from the OSPF Link State

Database (LSDB) obtained from one actual router on a backbone network, and then

emulates OSPF network topology with the inclusion of the OSPF interface cost settings

and assigned IP addresses on NETs. Furthermore, AnyBed can emulate cooperative

topology that includes inter-AS BGP topology and intra-AS OSPF topology. This

function makes possible end-to-end network emulation from an intra-AS network in

AS 1 through an inter-AS network between AS 1 and AS 2 to an intra-AS network in

AS 2.

Portable configuration tools among NETs

To provide for reusability of network topologies among various NETs, AnyBed must

provide for portability of its own tools among these NETs. Each NET has its own

experimental environment that consists of different hardware and different operating

systems. AnyBed must be able to work in these environments in order to meet the

requirement of system portability.

I have considered several mechanisms that could provide portability of tools. In the

end, I adopted the mechanisms that are called the AnyBed portable toolset. Regardless

of the original operating systems (OSes) installed in the NET nodes, the master server

of the toolset provides the nodes with a specified OS image and software via a PXE

boot and NFS root. Users can use same toolset while performing experiments on

various NETs accessing one master server that packages this toolset into the NETs.

The general usage of this toolset is as follows. First, after connecting the master

server to include the toolset in the first NET, a topology is constructed using this kit.

Second, the master server is disconnected and brought to the facilities where another

NET is located. Next, after reconnecting it to another NET, it becomes possible to

quickly rebuild the same topology by regenerating the actual configuration files.
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1.3.4 Prove to expedite network emulation experiments

The study’s evaluation results show that AnyBed can expedite network emulation

experiments. Using AnyBed, the total time taken to construct a complex BGP topology

on 150 nodes was 113 s. This result indicates that AnyBed can generate configuration

files and can deploy them on a large scale NET in a short enough time period.

1.4 Organization of this Dissertation

The rest of dissertation is organized as follows. In Chapter 2, I analyze the problems

faced when performing experiments on NETs. Next, I proposed AnyBed architecture

to solve the problems that are analyzed in Chapter 3 . Next, in Chapter 4, I describe

the mechanisms of topology reusability and system portability that are necessary to

expedite network emulation experiments across NETs. Next, I describe two topology

emulation mechanisms based on the AnyBed architecture: Inter Autonomous System

Network Topology Emulation in Chapter 5, and OSPF Network Topology Emulation

in Chapter 6. Chapter 7 presents a discussion of various significant issues regarding

AnyBed. Finally, Chapter 8 concludes the dissertation by describing the contributions

offered by the proposed model and posing questions that remain open to exploration.





Chapter 2

Toward Expeditious Experiments

on NETs

In this section, I explore experiments conducted in NETs and outline the general steps

involved in performing experiments. Then, I consider the problems in these general

steps that are obstacles to the achievement of more expeditious experiments.

2.1 Network Experiments for Research and Devel-

opment of Network Technologies1

Before new technologies are deployed to a real world, they need to be evaluated by

network experiments in order to avoid any negative effects they may have upon ex-

isting systems. For such an evaluation, the developers of these technologies need to

perform experiment. In this section, I firstly describe general research and development

procedures of network technologies. Next, I introduce experimental methods that can

be used on the verification part in the procedure. Then, I discuss reproducibility, that

is important factor in experiments.

1This section is based on my colleague Toshiyuki Miyachi’s paper [14].

9
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Figure 2.1: Research and Development Procedures of Network Technologies

2.1.1 Research and Development Procedures of Network Tech-

nologies

The purpose of a given experiment will be different for different developers. Nonethe-

less, there are procedures common to them when I focus on the research and devel-

opment of network technologies. I present the procedure that is considered here in

figure 2.1. First, a researcher or developer generates an idea for a new technology.

Next, he verifies the idea logically in terms of its effectiveness, which I refer to as log-

ical verification. After this, he implements the idea concretely, which means creating

software that can be run on suitable hardware. After this, he verifies whether or not

the implementation worked as he intended, a step I refer to as practical verification.

Presuming that it works, the final step is the deployment of the implementation in an

actual working environment.

2.1.2 Experimental Methods

The purpose of the step of logical verification is to verify the proper function of the

idea in a hypothetical environment before implementing it in an actual one. The effec-

tiveness of his proposed algorithms and principles, for example, needs to be verified.

As for the practical verification, its purpose is to verify that the implementation func-

tions well in an environment that is more practical than the abstract realm of logical

verification. The developer should confirm that the implementation works properly as

he intended, and should also compare how it functioned in this verification with how

it functioned in the previous logical verification. Several experimental methods are

used for these verifications, depending on their different purposes. Figure 2.2 presents

a classification of these experimental methods.

One method is simulation, in which an experimenter makes a model of a target

technology and its surrounding environment and then evaluates it. The simulation

that is normally used for logical verification is sub-divided into numerical analysis
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Figure 2.2: Classification of experimental methods

and software simulation. The numerical analysis uses numerical calculation based on

modeled formulas for its evaluation. In the software simulation, users use the software

to implement the models of the target technology. There are a number of infrastructure

software products that support general software simulations, the typical ones being ns-

2 [6] and SSFnet [15].

Another method is emulation, in which an experimenter imitates the surround-

ing environment of the target technology using alternative hardware or software, and

evaluates the target technology by running the software. This method is commonly

used for the step of practical verification. In contrast to simulation, in emulation the

target technology does not need to be changed because the surroundings simulate the

interface to the target technology. This is the advantage of emulation, which makes

it possible to reduce the workload involved in changing the implementation for a later

deployment.

In network research field, this emulation method is commonly used with Network

Emulation Testbed (NET) by many researchers to perform their experiments. A NET

is a customized PC-based cluster that enables users to perform a network experiment

by running their implementations on its nodes. Some typical examples of experiments

performed on NETs are deployment tests, verifications, and performance evaluations

of software. In this dissertation, the focus is upon network experiments on NETs.
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Figure 2.3: Physical topology of NETs

2.1.3 Reproducibility and Repeatability of Experiments

In scientific methodology, reproducibility of experiment is important to repeat the ex-

periment by the other experimenters. Reproducibility means that other experimenter

can get the same result when he performs an experiment in the same conditions.

Repeatability is also important factor in experiment. Repeatability means that the

same experimenter can always get the same result on the same experiment. In case

of network simulation and emulation, reproducibility and repeatability is higher than

experiments held in other research field because there are no disturbance from outside.

However, non-systematic and experimenter-specific procedures can lower reproducibil-

ity and repeatability.

2.2 Experiments in a Network Emulation Testbed

This section offers details regarding experiments in a NET. It begins with a description

of the general structure of NETs, and then discusses the processes common to network

emulation experiments.

2.2.1 Structure of Network Emulation Testbed

Here, I describe the structure of a NET. A NET is a customized PC-based cluster

that enables users to perform network experiments by running their implementations

on its nodes. The typical physical topology of NETs is shown in Figure 2.3. Each



2.2. EXPERIMENTS IN A NETWORK EMULATION TESTBED 13

Figure 2.4: Process of network emulation experiments

node on the NET is connected to two network switches: the experimental network

switch and the management network switch. The former switch creates layer 2 or

layer 3 network topology for the user’s experiment using technologies such as Virtual

Local Area Network (VLAN) and Asynchronous Transfer Mode (ATM). The term

“Network Emulation” denotes an experimental network that is emulated by the switch

and nodes. The latter switch creates a management network for controlling the nodes

and transferring data related to the experiment. This network also connects to a

management node that controls other nodes and collects data.

Each node in a NET acts not only as a router that emulates an experimental

network but also as a server that runs a user’s implementation. Users perform their

experiments with these nodes and the emulated network.

2.2.2 Process of Network Emulation Experiments

From my numerous experiences [11] to support experiments in several NETs, I have an-

alyzed the processes involved in network emulation experiments in NETs. I divide the

entire process into five stages whose requisite elements are considered for each stage.

Figure 2.4 shows the entire process. The five stages involve the following actions:

design, preparation, performance, experimentation, cleaning, and analysis. The requi-

site elements of these stages have been classified as follows: observation/measurement,

network topology, scenario, background traffic, software, and hardware. I describe the

details of these stages and the elements of each stage in the following subsections.
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Elements for experiments

Although the purpose of an experiment varies with each experimenter, there are el-

ements that are common to most experiments, namely: observation/measurement,

network topology, scenario, background traffic, software, and hardware.

Observation and measurement are important elements of experiments. To verify or

evaluate a target implementation, observation and measurement are essential processes.

Network topology and background traffic are also commonly used elements. How-

ever, the complexity of the topology employed and the type of background traffic will

differ, depending on the purpose of a given experiment. For example, a flat network

and no background traffic would be suitable for a simple scalability experiment with

server software. On the other hand, for the evaluation of a modified transport protocol,

a dumbbell topology and heavy background traffic would be required.

Software is composed of a target implementation and other surrounding software

programs, which could include OSes, libraries to run the target implementation, and

software for observation/measurement, for example. These software programs interact

with each other according to a specified scenario.

All these elements are operated with hardware on a NET that includes servers,

network switches, and cables.

Design stage

In this stage, the experimenter designs the overall plan of his experiment based on its

purpose. To do this, he needs to consider a network topology, a scenario, background

traffic suitable for the experiment, a method of observation/measurement, and the

software that is required. He must also consider the number of hardware elements and

their specifications.

Prepararation stage

From that design, he prepares for the experiment on a NET. This stage involves setting

up the sensors for the planned observation/measurement, building an experimental

network, setting up a traffic generator, and setting up the target implementation and

other software. In large scale NETs, he must secure the assignment of the needed

hardware before all these setups.
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Performing experiment stage

After finishing the preparation, he performs his experiments by running his scenario,

which specifies the entire time sequence of the experiment. For example: first run the

specified software, generate traffic 10 s later, run another software 20 s after that, etc.

Cleaning stage

Next, he needs to clean all the settings, software and data stored in the assigned nodes.

At the same time, he collects the data and logs measured by the sensors. In the case

of large scale NETs, he must return the cleaned hardware.

Analysis stage

Finally, he analyzes the collected data. By processing or visualizing the data, he

confirms the results of his experiment.

2.2.3 Problems through the whole process

I identified several problems in the course of the entire process. In the design stage, it

is difficult for an experimenter to design the proper experiment for his purpose. In the

preparation stage, the performance of experiment stage, and the cleaning stage, the

time-consuming workload is burdensome. In the analysis stage, it is difficult to verify

the correctness of the experimental results. The solution of the first and second problem

would enable experimenters to perform experiments more efficiently and accurately.

About the third problem, realizing reproducible experiment by network emulation

would solve the problem, because many researchers can perform the same experiment

and can verify the correctness if possible.

In this dissertation, I mainly focus on a part of the first problem and a part of second

problem. The problems addressed include the difficulty of a time-consuming workload

in the building of a large network topology and the difficulty in designing a proper

network topology for experiments rapidly enough. The third problem is discussed in

the discussion chapter.
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2.3 Related work

In this section, I briefly describe various scale NETs and then discuss the assistant

tools used on NETs. Next, I introduce technologies used on NETs.

2.3.1 Various scale NETs

There are various scale NETs all around us, the smallest of which is probably the PC

a user uses for development. Using recent virtualization technology, a single modern

PC can run a number of virtualized OSes that are connected to virtual networks. This

environment enables the user to perform simple verification processes, such as checking

the performance of his implementation.

A typical mid-sized NET is a PC cluster in a user’s laboratory. Due to the decline

in the cost of PC servers, it is now common for each laboratory to have a PC cluster

comprised of dozens of servers. This cluster is normally used by the members of the

laboratory for various purposes such as computation, software development, and the

network server function.

In the broader world, large scale NETs that are composed of hundreds of servers

are available. I present a brief overview of several of such large scale NETS, and then

consider the general steps that have been extracted from complete experiments that

were conducted on centralized large scale NETs.

StarBED

StarBED is a centralized large scale NET for practical network system-related ex-

periments, which is located at the NICT Hokuriku Research Center [3]. StarBED is

composed of 1070 PC nodes, all of which are commodity 1U rack-mountable servers.

Each node is connected to the other nodes via the Ethernet, and the network topol-

ogy of the nodes is capable of flexibly configuring them using VLAN. Apart from this

connection, each node has another NIC connected to a management network. This

network is used for network booting, controlling nodes, log transfer, etc. Each node

can run over 10 virtual machines, which enables users to create a large scale emulated

network environment in which over 10000 nodes are available.
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Emulab

Emulab is another large scale NET and is also the name of its toolset. Emulab,

which is located at the University of Utah, has 374 PCs, 40 wide-area nodes, 58

Wi-Fi nodes, and a front end to PlanetLab. Researchers use Emulab not only for

simple network emulation experiments but also for live-internet experiments using

its distribution feature, wireless experiments using its 802.11/software radio, sensor

network experiments, and network simulations.

Recently, NETs based on the Emulab toolset have been established in several coun-

tries. A representative example of this is DETER.

DETER

DETER [4] is the most well-known large scale NET based on the Emulab toolset. DE-

TER allows security researchers to replicate threats of interest in a secure environment

and to develop, deploy, and evaluate potential solutions. The testbed has a variety of

hardware devices and supports many popular operating systems. Researchers obtain

exclusive use of a portion of a testbed that is configured into a user-specified topology

and shielded from the outside world by a firewall. DETER’s hardware infrastructure

was enhanced by a collection of software tools for traffic generation, statistics collection,

analysis, and visualization that were developed in its sister project EMIST [16].

PlanetLab

PlanetLab [5] is a distributed, live testbed that is accessed over the Internet. PlanetLab

has over 1000 nodes that are distributed at 494 sites world-wide. Most of the nodes are

hosted by research institutions, although some are located in co-location and routing

centers

Due to its wide distribution, PlanetLab is commonly used as an overlay network

testbed and an experimental deployment platform. The advantage PlanetLab offers

researchers is that they can experiment with new services under real-world conditions

and on a large scale. The example services outlined above all benefit from being widely

distributed over the Internet for three reasons: (1) there are multiple vantage points

from which applications can observe and react to the network’s behavior, (2) they are

in close proximity to many data sources and data sinks, and (3) they are distributed

across multiple administrative boundaries.
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2.3.2 Assistant tools

StarBED has produced its own assistant toolset called SpringOS [1]. SpringOS has

several functions such as resource management, OS and software distribution to each

node, VLAN configuration, and the driving of nodes according to the user’s scenario.

DETER has a Security Experimentation EnviRonment (SEER) [17,18] that enables

security researchers to plan, create, and iterate through a wide range of experimental

scenarios with relative ease. SEER integrates various tools for configuring and exe-

cuting experiments and provides a user-friendly interface on which experimenters can

access its tools. Because SEER aims to support a wide range of experimentation re-

quirements, many researchers prefer to interact with DETER through it, which fosters

collaboration within the security research community.

2.3.3 Technologies commonly used on NETs

There are several technologies that are commonly used for realistic experiments on

NETs: topology generators, link simulators, and traffic generators.

Although the actual network topology of the Internet is composed of a large number

of routers, servers, and clients, there are only hundreds or thousands of nodes in even

a large NET. To decrease the gap between the actual Internet and a NET, modeling

the Internet to reduce the number of nodes is important for experiments on a NET.

Many previous research initiatives such as topology generators [19–23] tried to model

the topology of the Internet and to generate a small part of it.

The term ”link characteristics” indicates bandwidth, delay, jitter, and the rate of

link loss among nodes in the Internet. These characteristics can be emulated in a NET

by link simulators of OSes such as netem [24], NISTnet [25], and Dummynet [26].

Background traffic is also an important element, especially in a protocol experiment.

Several methods to generate background traffic have been proposed. The simplest

method is the use of bandwidth benchmark software such as iperf [27] or netperf [28]

on nodes in a NET. A more complex method involves generating traffic based on actual

traffic, which can be generated by Harpoon [29] and a number of commercial router

testers.
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Figure 2.5: Trade-off between scale of NETs and occupational time for one user

2.4 Trade-off between scale of NETs and occupa-

tional time for one user

Figure 2.5 shows the trade-off between the scale of NETs and the time they are occupied

by a single user. The larger the number of nodes a user needs, the shorter the time

that the NET must be occupied.

On a PC used for development, an experimenter can use all the resources on the

machine whenever he needs. By contrast, on a large scale NET he can use only part

of the servers for a certain period on a reservation basis. These large scale NETs

are designed as a shared facility that is simultaneously used by many users. A user

generally has to offer some form of compensation, such as a usage fee or an offer of

equipment, depending on the time he occupies the NET and the number of nodes used.

For these reasons, it is difficult for one user to occupy the majority of the nodes over

a long period of time. In any case, if he needs to perform experiments that require

many nodes, a user has no alternative but to use a large scale NET.

Due to the trade-off involved, users generally choose a NET of a suitable scale when

he needs to perform his experiment.
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2.5 General Steps to Perform Experiments on Cen-

tralized NETs

What follows is an analysis of the general steps involved in performing experiments

on NETs of several different scales. These steps are derived from my experience with

laboratory colleagues who performed experiments in several NETs. The steps are

described below.

First, the user designs the logical network topology for his experiments. The user

also assigns roles for each node; some nodes are used to run programs and others are

used to collect the experimental results.

Second, the user assigns physical resources to the designed network topology. For

example, an experimental node is assigned to a physical or virtual node, or an ex-

perimental interface is mapped to a physical or virtual interface. The user assigns IP

addresses to the network interfaces of the experimental nodes. The user assigns VLANs

and network addresses to each subnet on the logical network topology. In these se-

quences, the user must assign appropriate resources along with the physical network

topology of a NET, that is, the wiring, the number of physical network interfaces, the

bandwidth of these interfaces, and the performance of the CPU.

Third, the user builds the network by setting up physical nodes and layer 2 switches.

The user configures network interfaces, routing, and name resolution for each node.

The user configures VLANs on layer 2 switches. In addition, the user injects the

programs used for the experiment to each node and sets up these programs.

Fourth, the user conducts the experiment, running programs on each node in the

specified sequence. Finally, the user collects the results of the experiment and then

restores the nodes and switches. The results contain the output of the programs and

the state of each node. The results are saved onto the hard disks of each node or

transferred to a remote node.

There are various NETs in the world such as desktop PCs, a PC cluster in a

laboratory, and large scale centralized NETs. In various testbeds, the user selects a

testbed that is suited to the scale of his experiments. For example, during prototype

implementation, a desktop PC is sufficient for purposes of testing. However, if he needs

a more complex emulated network such as emulated AS-level topology, a desktop PCs

will be inadequate, so he would need to move to a larger scale testbed.
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Figure 2.6: Topology assignment

2.5.1 General Steps to Build Experimental Networks

In the steps described above, the work of building an experimental network empirically

consumes a proportionately long time in the overall experiment. In addition, as the

number of nodes increases, the configuration workload increases as well. For example,

when I and my colleagues performed an experiment regarding IP Traceback [30] on

StarBED, it took me 4 days out of a one-week (5 working days) reservation to build a

logical network topology on 64 nodes and 2 switches of StarBED, on which I emulated

the BGP topology of top 50 Autonomous Systems (AS) by using one BGP node as

one AS.

In order to expedite the experiments, I focused on reducing the overhead involved

in building experimental networks on an NET. I divided the building of experimental

networks on an NET into the five steps described below.
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1. Design

The user designs a logical network topology for an experiment (Figure 2.6-(b)).

The user considers not only a layer 3 network topology but also a layer 2 network

topology.

2. Assignment

The user assigns the resources of a NET to each experimental node according

to the designed logical network topology. The resources to be assigned include

PCs, Ethernet Links, VLANs, and IP addresses (Figure 2.6-(a)).

3. Configuration

The user writes all the configuration files for each application on each node to

emulate the designed logical network topology.

4. Injection

The user injects these configurations to all nodes in actual hardware or software

(Figure 2.6-(c)).

5. Check

The user checks whether the designed logical network topology is correctly built

on the NET.

From my experiences, the most time-consuming of the above five steps in network

experiments are those of assignment and configuration. The larger the scale of a NET,

the longer is the time spent on the assignment step. The more complex a designed

network topology, the more items and parameters there are that need to be configured,

and the more items or parameters, the more time tends to be spent.

2.6 Problem Analysis

Due to the trade-off and the general steps described in Sections 2.5 and 2.5, a user must

move among NETs of several scales many times, depending on the number of nodes

required by his experiment. Every experiment has its own time-consuming routine

processes such as preparation. I focus upon preparation because if this process can be

shortened, the experiment can become more efficient. To achieve this goal, I addressed

the following problems in regard to preparation.
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No reusability of network topology configuration

I assume that the NET-dependence of network topology configuration can increase

the workload involved in reconfiguration. It is difficult to reuse configurations on a

different NET because the configurations of a network topology often include resource

information that is dependent on specific software, hardware, and/or cable wiring on

a NET.

Another reason for the lack of the reusability is that most NET assistant tools are

not designed for generating configuration files for a large network topology with several

routing daemons. Users must generate their own configuration in addition to the

configuration files generated from assistant tools. These user-generated configurations

often include the dependent information that was mention above.

Differences in assistant tools and experimental procedures on each NET

Users normally use a different assistant tool on each NET. However, if users could use

the same assistant tool and procedures on various NETs, this could reduce the time it

takes users to learn NET-specific tools and procedures.

Lack of compatibility and complementarity of assistant tools

Currently, performing an experiment with multiple assistant tools at the same time

is a troublesome process. The origin of this problem is the lack of modularity of the

assistant tools.

Difficulties in emulating realistic Internet topology

The design of topology for experiments is a time-consuming and difficult process for

NET users. Here, I explore a method that can automatically emulate realistic Internet

topologies to evaluate Internet applications. These topologies contain inter-AS topolo-

gies only, intra-AS topologies only, and mixed topologies that combine both kinds.





Chapter 3

Proposal of AnyBed Architecture1

This chapter presents the whole design of AnyBed, which is my proposed architecture

for expediting experiments. Based on the problems that I pointed out in Section 2,

I firstly show the requirements of AnyBed. Then, I propose the layered modular

architecture of AnyBed. We also evaluate the implementation of AnyBed, and confirm

that AnyBed can reduce user’s configuration workload with portability among NETs.

3.1 Design of AnyBed Architecture

In this section, I describe the design of AnyBed. First, I describe the requirements of

AnyBed. Next, I describe the details of the design.

3.1.1 Requirements

According to the problem analysis described in previous chapter, I consider require-

ments of AnyBed. The design goals of AnyBed are as follows:

• Reusability

The reusability of logical network topologies beyond differences of physical fea-

tures among NETs eases a user to quickly start experiments with the same logi-

1This chapter is based on my paper “Expediting experiments across testbeds with AnyBed:
a testbed-independent topology configuration tool” appeared in Proceedings of 2nd International
IEEE/Create-Net Conference on Testbeds and Research Infrastructures for the Development of Net-
works and Communities (TridentCom), March, 2006.

25
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cal network topology even if the user tries to perform the experiment in different

NETs.

• Portability

To achieve the reusability of logical network topologies, AnyBed must have its

own system portability among NETs.

• Affinity

Cooperating between AnyBed and other assistant tools of each NET can expedite

building experimental networks more quickly. AnyBed should have affinities with

each assistant tool on each NET.

• Scalability

To perform experiments on various scale NETs, AnyBed must work well on a

large scale NET as well as small one. Also AnyBed must map a large logical

network topology to the large scale NET in short time.

In order to achieve these goals, I divide information for an experiment into two parts.

The detail is described in the following section.

3.1.2 Required information to build network topology

In section 2.2.2, I describe several elements required for experiments. Here, when

focusing on building network topology, I extract minimum required information from

these elements.

Firstly, I consider minimum information to build layer 1 and layer 2 topology. Fig-

ure 3.1 shows a physical network on NET. From this figure, required information is

desired layer 2 topology, wiring link information among switches and NICs of nodes,

VLAN information, node information, and switch information. The node information

and the switch information includes existing nodes/switches and its capability infor-

mation such as VLAN support. If a user obtain these information, he can build layer

1 and layer 2 topology by configuring switch.

Next, I consider information to build layer 3 network topology with figure 3.2.

Required information is desired layer 3 network topology. This topology includes IP

address information, OSPF information such as link costs, and BGP information.
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Figure 3.1: A physical network on NET

Consequently, minimum information to build network topology is as follows: desired

layer 2 topology, wiring information among switches and nodes, VLAN information,

switch information, node information, and desired layer 3 topology.

These information can be divided into two parts: NET-specific information and

experiment-specific information. The NET-specific information includes wiring link

information, VLAN information, switch information, and node information. The

experiment-specific information is desired layer 2 topology and desired layer 3 topology.

Using these divided information, I propose layered modular architecture that is

described in the following section.
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Figure 3.2: A logical network on NET

3.1.3 Layered modular architecture

According to the requirements mentioned in Section 3.1.1, I design the layered modular

architecture for AnyBed shown as Figure 3.3. AnyBed consists of three layers: the

design layer, the assignment layer, and the injection layer.

In the design layer, a user designs a logical network topology and creates a logical

network file according to the designed logical network topology. Similarly, each NET

prepares a physical network file along with its physical network topology, that is, its

facilities and the wiring among facilities. The assignment layer assigns resources such as

PCs, Ethernet links, VLANs, and IP addresses. After then, assignment layer generates

actual configuration files for each node and each switch. The injection layer injects

actual configuration files to each node, and switch. As this layer depends on OSes

and hardware specifications on each NET, I design the layer to cooperate with existing

NET-specific toolsets.

Because of the layered module architecture, each layer is easily pluggable. It is easy
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Figure 3.3: AnyBed design

to replace a component on each layer to another and to provide various components

on each layer for some specific purposes.

3.1.4 Logical and physical network topology

In AnyBed, a network topology for an experiment is divided into two topologies de-

scribed in XML format: logical network topology and physical network topology. A

logical network topology contains the information about layer 2 and layer 3 topol-

ogy of an experimental network. Since elements and attributes of a logical network

topology present only the connections among logical nodes, it does not depend on a
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specific NET environment. On the other hand, a physical network topology shows the

information about physical nodes, network bandwidth and the wiring among physical

nodes. Hence, the physical network topology of each NET depends on the facilities of

each NET.

By using XML for the syntax of each network topology file, network topologies are

not only human readable but also easily parsed by computers. Also, the consistency

between a logical network topology and a physical network topology can be verified in

the XML parser. As for a physical resource description format in XML, GENI project

is currently standardizing GENI RSpec [31], which is based on the resource description

of Emulab. However, the target of RSpec is only resource description, not topology

description.

3.2 Implementation

In this section, I describe the first AnyBed’s implementation. The first AnyBed im-

plementation was developed on FreeBSD 4.8R and Ruby 1.8.1. In this first implemen-

tation, cluster nodes needed to work with FreeBSD 4.x. Supported layer2 switches

are DELL PowerConnect switches and Extreme Networks Summit switches. The first

AnyBed implementation covered IPv4, and hired only zerba OSPF daemon for routing.

Components of the first AnyBed implementation are shown in Figure 3.4.

In assignment layer, “dispatcher” reads a physical network file and a logical network

file, assigns physical elements to logical ones, and makes XML topology file. Then,

“config generator” reads an XML topology file, and makes actual configuration files.

In injecting layer, “config injector” injects actual configuration files to each cluster

node and switch.

The details of each component are described below.

3.2.1 Configuration files for Network Topologies

In this section, I explain configuration files for network topologies: physical network

file and logical network file.

Physical network file describes wiring and capability of nodes and switches. Cur-

rently, only the information of interface can be described.

The example of physical topology file is shown in Figure 3.5. In the first level, a
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Figure 3.4: AnyBed programs

<nodes> presents for node sets. A <nodes> has some <node> that present physical

nodes. A <node> has some <interface> that present network interfaces on each

physical node. A <interface> has some <link> that present physical links on each

interface.

In this example, the node named “mc12” has the management interface “bge0” and

has the experimental interfaces named “bge1”, “bge2”. Each experimental interface

connects to the port named “ethernet 1/2” and “ethernet 1/7” in the switch named

“mc1-sw2”.

Logical network file describes logical network topology that the user desires to build.

The example of logical network file is shown in Figure 3.6. In the first level, a

<nodes> presents for node sets. A <nodes> has some <node> that present experimental

nodes. A <node> has some <interface> that present network interfaces on each

experimental node. A <interface> has some <network> that present network on

each interface.

The example describes that the “NodeA” has interfaces named “NodeA-Int1” and

“NodeA-Int2”. And, each interface belongs to “Net1” and “Net2”.
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� �
<nodes>

<node name="mc12" os="FreeBSD">

<interface name="bge0" bandwidth="1000"

dot1q="yes" purpose="management"

managementip="172.16.1.12">

</interface>

<interface name="bge1" bandwidth="1000"

dot1q="yes" purpose="experiment">

<link tonode="mc1-sw2" toint="ethernet 1/2"/>

</interface>

<interface name="bge2" bandwidth="1000"

dot1q="yes" purpose="experiment">

<link tonode="mc1-sw2" toint="ethernet 1/7"/>

</interface>

</node>

</nodes>� �
Figure 3.5: Example physical topology

3.2.2 Assignment layer

In the assignment layer, dispatcher reads physical network file and logical network file.

Then, dispatcher assigns physical elements to logical ones properly like figure 3.7. The

physical elements are a physical node, a network interface in the node, an IP address,

a VLAN and bandwidth. Currently, the criteria for properness is only fairness of

bandwidth of each physical link.

In logical network file, there is a tree structure: “node” - “interface” - “network”.

Similarly, in physical network file, there is a tree structure: “node” - “interface” -

“link”. Dispatcher reads these structures, and then make assignment based on the

algorithm shown in Figure 1.

The reason I adopt the simple iterative algorithm is that low computational effort

is more important than bandwidth optimality. If I seek bandwidth-optimum, I must

solve knapsack problem. On the large scale cluster, this cost high computational effort,

and make the user wait for a long time.

After dispatcher makes assignment of nodes and interfaces, dispatcher assigns

VLAN ID and IP addresses to each interface. These IP addresses are private addresses

as 10.0.0.0/8. Next, dispatcher makes XML topology file. Then, config generator

translate from XML topology file to actual configuration file. On the current imple-
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� �
<nodes>

<node name="NodeA">

<interface name="NodeA-Int1">

<network name="Net1"/>

</interface>

<interface name="NodeA-Int2">

<network name="Net2"/>

</interface>

</node>

</nodes>� �
Figure 3.6: Example logical topology

Figure 3.7: Assignment of a physical network file and a logical network file

mentation, dispatcher and config generator are not divided. Dispatcher directly makes

actual configuration files.

Actual configuration files are rc.conf, hosts, zebra.conf, ospfd.conf and switch con-

figuration files. Figure 3.8 shows a emulated ospf topology constructed by AnyBed.

3.2.3 Injection layer

In the injection layer, config injector injects actual configuration files to each cluster

node and switch, and then inject them. The implementation of config injector would

be different for each cluster environment.
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Algorithm 1 An algorithm of assignment nodes and interfaces
1: procedure Assignment Main Routine

2: sort(LogicalNodes) order by Number of Required Interfaces

3: sort(PhysicalNodes) order by Number of Required Interfaces

4: sort(LogicalNodes.Interfaces) order by BandWidth

5: sort(PhysicalNodes.Interfaces) order by BandWidth

6: for all LogicalNodes do

7: l ← LogicalNode.Interface

8: p ← PhisicalNode.Interface

9: for all l do

10: p.ResidualBandwidth ← p.TotalBandwidth

11: MaximumInterface ← maximum(p) order by Bandwidth

12: MaximumInterface.VlanID = assignNewVlanID(MaximumInterface)

13: AverageBandwidth ← p.TotalBandwidth / l.TotalBandwidth

14: p.ResidualBandiwth ← p.CurrentBandwidth - AverageBandwidth

15: remove MaximumInterface from l

16: end for

17: end for

We use three types of config injector. The first is using the modified version of

“mkdiskimage” injected from StarBed [3]. The mkdiskimage is the environment for

making memory filesystem image of PXE [32] boot. When a cluster node boots, the

node gets two contents: memory filesystem image from TFTP server and tarball from

FTP server. The memory filesystem image is mounted to root filesystem, and tarball is

extracted there. Then, operating system reads configuration files there. In the tarball,

we pack actual configuration files.

The second is the method for injecting actual configuration files over NFS. When a

cluster node boots, the node gets actual configuration files from mounted NFS direc-

tory.

The third is the program that communicates to switches via TELNET.

3.3 Verification and Evaluation

In this chapter, I describe the verification result and evaluation result of the AnyBed

implementation. We conducted the following verifications and evaluations: topology

reusability, workload, and scalability to the number of nodes.
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Figure 3.8: An emulated OSPF topology by AnyBed

Table 3.1: Verification environment for reusability and workload (homogeneous cluster)

Node#1 CPU Intel Pentium3 1.4GHz

to Memory 1024MB

Node#17 NIC Broadcom BCM5703X(1000Mbps) x 2

Layer2 switch DELL PowerEdge1655MC Switch

3.3.1 Topology reusability and workload

In this section, I verify topology reusability and workload about AnyBed. We prepare

two clusters that their hardware equipment is different each other. On these two

clusters, I build the same network topology by AnyBed, and I compare number of

configuration files, size of configuration files, average time of building network.

Equipments on each cluster are described in Table 3.1 and Table 3.2. The latter

cluster has heterogeneous nodes while the former cluster has homogeneous nodes.

The homogeneous cluster comprises of 17 blade servers and a layer 2 switch made

by Dell. Physical topology of the cluster is shown in Figure 3.9. We use one server for

DHCP, FTP server, and the other for building experimental network. These cluster

node are connected with each other by 6 layer2 switches named like mcX-swY in the

figure. Because all equipped NICs are PXE-capable, I use PXE boot and mkdiskimage
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Figure 3.9: Physical topology of my homogeneous cluster

for config injector.

The heterogeneous cluster is composed of 7 nodes. Physical topology of the cluster

is shown in Figure 3.10. Although there are 10 nodes in the figure, neta01, Node#1

to node#3 and node#4 to node#7 are different in the type of NIC. Therefore, in two

groups, bandwidth and the name of network interface in operating system is different.

In the heterogeneous cluster, I cannot use PXE boot for config injector because all

equipped NICs are not PXE-capable. Instead of PXE boot, I use the method using

NFS for config injector.

On these 2 clusters, I give the same logical network file that 7 routers are connected

with full mesh, then verify whether the same experimental network topologies are built

or not. The used topology is shown in Figure 3.11. To investigate network topologies,

I login to Zebra OSPF daemon via telnet, and get routing information by executing

“show ip ospf route” command. One of the obtained routing information is shown

in Figure 3.12. Obtained routing information in both cluster has the same routes

and the same routing costs. This result means the same network topology including

the same link structure and link costs among routers have been built in both cluster,

I consider. Simultaneously, I measure the time until experimental network is built.

These sequence is repeated 10 times to calculate the average. In addition, I compare
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Table 3.2: Verification environment for reusability and workload (heterogeneous clus-

ter)

Node#1 CPU Intel Pentium3 450MHz

to Memory 256MB

Node#3 NIC Intel Pro 10/100B/100+(100Mbps)

3Com 3c905B-TX(100Mbps)

Node#4 CPU Intel Pentium3 900MHz

to Memory 256MB

Node#7 NIC 3Com 3c905B-TX(100Mbps)

Netgear GA620(1000Mbps)

FoundryNetworks EdgeIron4802F

Layer2 switch ExtremeNetworks Summit48

ExtremeNetworks Summit5i

Table 3.3: Verification result of usability and workload

Homogeneous Heterogeneous

Number of configuration file in AnyBed 2 2

Size of configuration file in AnyBed 10671 Byte 6549 Byte

Number of actual configuration files 31 30

Size of actual configuration files 33957 Byte 39191 Byte

Average time of building network 137 sec 135 sec

number of configuration files, size of configuration files on 2 clusters. Verification result

is described in Table 3.3.

First, I discuss about size and number of configuration files. We use the logical

network file that size is 3377 Byte on both clusters. About the size of physical network

file, the size of the file in homogeneous cluster is 7294 Byte, and the size of the file in

heterogeneous cluster is 3172. On the other hand, the total size of actual configuration

files are 33957 Byte in homogeneous cluster, and 39191 Byte in heterogeneous clus-

ter. About the number of configuration files, the number of the file in homogeneous

and heterogeneous cluster is 3, while the number of the actual configuration files in

homogeneous cluster is 31, and the number in heterogeneous cluster is 30. Without

AnyBed, the user must write the total size and total number of the file by hand or by

script.

Second, I discuss the time of building experimental network. The time of building
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Figure 3.10: Physical topology of my heterogeneous cluster

experimental network is fewer 140 sec on both clusters. We think that 140 sec is short

enough compared to build it by hand.

Therefore, workload that the user write configuration files is reduced by using

AnyBed.

3.3.2 Scalability to the number of nodes

In this section, I evaluate whether AnyBed can treat large scale network and many

nodes. Because I do not have real large scale cluster, I make dispatcher reading logical

network file that describes many nodes and networks.

We describe evaluation environment. Because I suppose to use AnyBed in StarBed,

I described the information of nodes that is the same as StarBed which the number

of nodes is 512.In logical network file, I describes the structure where each node have

fullmesh link as much as possible. The fullmesh link mostly increases the size of

configuration files and complexity of network topology. On the real network, It is

impossible for 512 nodes to have fullmesh link each other because VLAN ID is limited

upto 4096. We assume usable VLAN ID is up to 4000 because of reservation of VLANs

for management. Therefore, I use the topology that is partly fullmesh and the rest is

tree. Up to 88 nodes makes fullmesh link and the rest is tree that the root is fullmesh
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Figure 3.11: Full-mesh layer 3 network topology for verification of reusability

node. Using this topology, I run dispatcher and measure time consumption, memory

consumption with changing the number of nodes from 2 to 512 on the environment

described in Table 3.4.

The results are shown in Figure 3.13, Figure 3.14, and Figure 3.15. On 512 nodes,

time consumption of dispatcher is 579sec, and time consumption of the part of assign-

ment algorithm is 2sec, and memory consumption is 211 MB.

Figure 3.13, Figure 3.14, and Figure 3.15 shows that time consumption and memory

consumption increase drastically up to 88 nodes. That is why the number of network

increase drastically up to 88 nodes where the topology is fullmesh and increase slowly

above 88 nodes where the topology is tree.
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� �
============ OSPF network routing table ============

N 10.0.0.0/24 [20] area: 0.0.0.0

via 10.0.16.2, vlan1

via 10.0.18.2, vlan2

N 10.0.1.0/24 [20] area: 0.0.0.0

via 10.0.15.2, vlan0

via 10.0.20.2, vlan3

N 10.0.2.0/24 [10] area: 0.0.0.0

directly attached to vlan4

N 10.0.3.0/24 [20] area: 0.0.0.0

via 10.0.16.2, vlan1

via 10.0.20.2, vlan3

N 10.0.4.0/24 [20] area: 0.0.0.0

via 10.0.15.2, vlan0

via 10.0.2.2, vlan4

N 10.0.5.0/24 [10] area: 0.0.0.0

directly attached to vlan5

N 10.0.6.0/24 [20] area: 0.0.0.0

via 10.0.18.2, vlan2

via 10.0.20.2, vlan3

N 10.0.7.0/24 [20] area: 0.0.0.0

via 10.0.2.2, vlan4

via 10.0.16.2, vlan1

N 10.0.8.0/24 [20] area: 0.0.0.0

via 10.0.15.2, vlan0

via 10.0.5.2, vlan5

N 10.0.9.0/24 [20] area: 0.0.0.0

via 10.0.2.2, vlan4

via 10.0.18.2, vlan2

N 10.0.10.0/24 [20] area: 0.0.0.0

via 10.0.5.2, vlan5

via 10.0.16.2, vlan1

N 10.0.11.0/24 [20] area: 0.0.0.0

via 10.0.2.2, vlan4

via 10.0.20.2, vlan3

N 10.0.12.0/24 [20] area: 0.0.0.0

via 10.0.5.2, vlan5

via 10.0.18.2, vlan2

N 10.0.13.0/24 [20] area: 0.0.0.0

via 10.0.5.2, vlan5

via 10.0.20.2, vlan3

N 10.0.14.0/24 [20] area: 0.0.0.0

via 10.0.2.2, vlan4

via 10.0.5.2, vlan5

N 10.0.15.0/24 [10] area: 0.0.0.0

directly attached to vlan0

N 10.0.16.0/24 [10] area: 0.0.0.0

directly attached to vlan1

N 10.0.17.0/24 [20] area: 0.0.0.0

via 10.0.15.2, vlan0

via 10.0.16.2, vlan1

N 10.0.18.0/24 [10] area: 0.0.0.0

directly attached to vlan2

N 10.0.19.0/24 [20] area: 0.0.0.0

via 10.0.15.2, vlan0

via 10.0.18.2, vlan2

N 10.0.20.0/24 [10] area: 0.0.0.0

directly attached to vlan3� �
Figure 3.12: OSPF routing table
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Table 3.4: Evaluation environment for scalability

Hardware

CPU UltraSPARCIII 900MHz × 24

Memory 64GB

Software

Operating System Solaris 8

Programming Language Ruby 1.8.1

XML parser REXML 2.4.8

3.3.3 Summary of verification and evaluation

Because of the verification and evaluation result which is described above, AnyBed en-

ables logical topology reusability on different NETs, building experimental network of

16 nodes below 140sec, reducing configuration file size as 1/3, number of configuration

files as 1/15.

Therefore, the user can perform experiment by the same testbed environment on

various clusters.

3.4 Summary

Through my experiences performing experiments on NETs, I pointed out merits for

the case that a assistant system becomes portable across NETs. With considering the

portability, I analysed the steps to perform experiment on NETs. In the steps, I partic-

ularly forcused on the step to build experimental networks because it is time-consuming

in the all steps. Considered with procedures in the step to build experimental networks,

I designed AnyBed architecture.

As the first implementation, I developed assignment layer and injection layer of

AnyBed. We also verified and evaluated the assignment layer implementation. A

result of the verification and evaluation showed that a user can perform experiment by

the same testbed environment portably on various NETs.
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Chapter 4

Topology Reusability and System

Portability1

This chapter presents considerations about topology reusability and system portability,

which are the core ideas of AnyBed. Firstly, I describe the importance of topology

reusability and system portability on NETs. Then, I show the design of AnyBed

realizing the reusability and the portability. Finally, I show the results of verification

and evaluation.

4.1 Issues of Topology Reusability and System Porta-

bility

Due to the trade-off and the general steps described in Section2.5 and 2.5, a user

have to move several scale NETs many times depending on the necessary number of

nodes about his experiment. On such movements among NETs, configuration files

of assistant tools and tools itself are currently customized for specific NETs. This

traditional design increses a user’s workload such as regenerating configurations to

1This chapter is based on a journal “Expediting Experiments across Testbeds with AnyBed: A
Testbed-Independent Topology Configuration System and Its Tool Set” in IEICE Transactions on
Information and System, Vol. E92-D, No. 10, pp. 1877.

I edited this journal to focus on the portability of AnyBed system and experiments across various
NETs. I referred the experiences of my colleagues who did several experiments with AnyBed. The
experiences of my colleagues was written in [11].

45



46
CHAPTER 4. TOPOLOGY REUSABILITY AND SYSTEM

PORTABILITY

Figure 4.1: A proposed NET use model with AnyBed

move among various scale NETs.

Topology reusability and system portability can reduce this workload. In this

chapter, I explore the way to enable topology reusability and system portability.

4.2 A NET use model with AnyBed

In this section, I explain a proposed model for users to use NET with AnyBed in

Figure 4.1. This model supposes three behavior of users.

The first behavior is that a user should select suitable scale NET for his experiment.

For example, during prototype implementation, it is enough to test it by his desk-side
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PCs. However, if he needs more complex emulated network like emulated AS-level

topology, he cannot perform experiments by his desk-side PCs. He may move to a

larger scale testbed.

The second one is that the user should use the same assistant tools among various

NETs. The user need not to change tools or procedures when he moves to other NET.

Ther last one is that the user should reuse configurations about experimental net-

work topology. The user does not have to regenerate the configurations after each

move.

To realize this model, we design and implement AnyBed portable toolset and co-

operative tools. The details of the tools are described in next section.

4.3 Cooperative tools for AnyBed

In this section, I describe cooperative tools for AnyBed. First, I describe about AnyBed

portable toolset that makes AnyBed portable among NETs. Then, I introduce imple-

mentations of injection layer tools and implementations of design layer tools.

4.3.1 AnyBed portable toolset

For reusability of logical network topologies among various NETs, AnyBed must have

its own system portability among NETs. Each NET has its own experimental envi-

ronments consisted of different hardwares and different operating systems. AnyBed

must work on these environments to meet the requirement of system portability. Ad-

ditionally, performing experiments among various NETs by the same tools gives users

another advantage to omit learning NET’s own tools at every NET.

Because of such situations, I designed a toolset called “AnyBed portable toolset”

that I can be commonly used in various NETs. This toolset contains the following

functions. (1) The user can use the OS which he wants without bothering with whether

HDD is equipped or not and which OS was installed on experimental nodes. The tool

contains servers of DHCP, TFTP, and NFS to boot clients by PXE(Preboot eXecution

Environment) [32]. After nodes booted, they use NFS as its root file system, not depend

on its equipped HDD. (2) The user can command each node to perform experiments

without using NET’s own toolset. This tool named “gsh” is based on “DSH(Distributed

Shell)” [33]. I can use same toolset while performing experiment on various NETs by
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Figure 4.2: Available combination of specifications of AnyBed portable toolset

bringing one master server that packages these toolset into the NETs.

This bringing method aims to support such a use case that users can bring AnyBed-

styled master server into the NETs, and can perform experiments with the toolset in

the server. Generally, almost all PCs in NETs are PC/AT architecture, and support

PXE boot. These PCs are quickly used as AnyBed-styled experimental nodes by the

master server without care of installed OSes in node’s HDD. Accordingly, I consider

that AnyBed toolset realize system portability among various NETs.

Figure 4.2 shows currently available combination of each specification about AnyBed

portable toolset. The toolset can be used with node’s HDD, PXE + NFS, PXE +

RAMDISK as boot method. The user choose suitable OSes such as Debian, ttylinux

on Xen, and FreeBSD for his experiment. When the user build network topology, he

can choose multiplexing method of networks such as IP alias, VLAN, and bare physical

NIC depending on size of the topology and capability of switches on a NET. He can

also choose appropriate routing daemons such as ospfd and bgpd for the purpose of

his experiment.

There are several use cases, which is shown in table 4.1 using AnyBed with other

assistant tools. These use cases show one of the evidences to show modularity and

affinity of AnyBed.
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Experiment XENebula InterTrack SecureOverray

Scenario Control kuroyuri gsh tools original tool

Node Control kuroyuri gsh tools original tool

sbpsh sbpsh sbpsh

ipmitool ipmitool ipmitool

iLO tool iLO tool iLO tool

Topology (L3) AnyBed AnyBed

Toplogy (L2) bwsc.pl bwsc.pl bwsc.pl

Injection Layer XENebula AnyBed AnyBed

sbpsh sbpsh sbpsh

Disk type NFS NFS NFS

RAM RAM RAM

HDD HDD HDD

Table 4.1: Modulrarity amongs assistant tools

4.3.2 Injection layer tools

In the injection layer, config injector injects actual configuration files to each PC node

and switch. All configuration files are classified into two types. One is for PC nodes,

and the other is for switches.

The implementation of config injector would be different from each NET environ-

ment. For general use with AnyBed, I implement two types of config injector for PC

nodes. The first one is using the modified version of “mkdiskimage” from StarBED [1].

The mkdiskimage is the environment for making memory file system image of PXE [32]

boot. When a cluster node boots, the node gets two contents: memory file system im-

age from TFTP server and tarball from FTP server. The memory file system image

is mounted to root file system, and tarball is extracted there. Then, operating system

reads configuration files there. In the tarball, I pack actual configuration files.

The second method injects actual configuration files over NFS. The AnyBed portable

toolset previously described uses this method. After a cluster node boots from PXE,

the node gets actual configuration files from mounted NFS directory.

For switches, I implement another type of config injector. This method communi-

cates to switches via TELNET [34] and modifies the configuration of each switch. In

this version of the program, I assume that only one user uses the switches simultane-
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ously. Therefore, the program operate the switches as an administrative user. Aside

from TELNET, the standardized mechanisms to modify the configuration of switches

is “The Network Configuration Protocol”(NETCONF) [35–38]. NETCONF provides

mechanisms to install, manipulate, and delete the configuration of switches. It employs

an XML-based data encoding for the configuration data as well as the protocol mes-

sages. But, I found a problem on employing NETCONF for the config injector; only

enterprise switches can support NETCONF. Low-end L2 switches that are commonly

used in lab-level small NETs do not support NETCONF.

4.4 Verification

In this section, I describe the verification result of the AnyBed implementation. I

conducted the following verifications and evaluations: topology reusability, system

portability, and scalability to the number of nodes.

4.4.1 Topology reusability

In this section, I verify the functions of AnyBed. In the verification, I prepared two

PC clusters that their hardware equipment is different from each other. On these two

clusters, I built the same network topology by AnyBed to verify topology reusability.

Also I compared number of configuration files, the size of configuration files and the

average time spend for building the network to verify workload reduction. Then, I

verified system portability of AnyBed using another two different PC clusters.

Equipments on each PC cluster are described in Table 4.2 and Table 4.3. The former

PC cluster was homogeneous, that is, it was composed of 17 blade servers where each

blade server had the same hardware and software spec. On the other hand, the latter

PC cluster had heterogeneous nodes, that is, it was constructed with different spec

PCs and several vendors’ switches.

The homogeneous PC cluster was comprised of 17 blade servers and a layer 2

switch made by Dell. I used one server for DHCP, FTP server, and the other for

building experimental network. These cluster nodes were connected with each other

by 6 layer2 switches. Because all equipped NICs were PXE-capable, I used PXE boot

and mkdiskimage for config injector. The heterogeneous PC cluster was composed of 7

nodes. Node#1 to node#3 and node#4 to node#7 were different in the type of NIC.
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Therefore, bandwidth and the name of network interface in operating system were

different between two groups. In the heterogeneous PC cluster, I could not use PXE

boot for config injector because all equipped NICs were not PXE-capable. Instead of

PXE boot, I used NFS for config injector.

On these two PC clusters, I gave the same logical network file that 7 routers were

connected with full mesh links, then verified whether the same experimental network

topologies were built or not. To investigate network topologies, I logged in to Zebra

OSPF daemon via telnet, and got the routing information by executing “show ip ospf

route” command [39].

Obtained routing information in both cluster has the same routes and the same

routing costs. This result means the same network topology including the same link

structure and link costs among routers have been built in both cluster, I consider.

Table 4.2: Verification environment for topology reusability (homogeneous cluster)

Node#1 CPU Intel Pentium3 1.4GHz

to Memory 1024MB

Node#17 NIC Broadcom BCM5703X(1000Mbps) x 2

Layer2 switch DELL PowerEdge1655MC Switch

Table 4.3: Verification environment for topology reusability (heterogeneous cluster)

Node#1 CPU Intel Pentium3 450MHz

to Memory 256MB

Node#3 NIC Intel Pro 10/100B/100+(100Mbps)

3Com 3c905B-TX(100Mbps)

Node#4 CPU Intel Pentium3 900MHz

to Memory 256MB

Node#7 NIC 3Com 3c905B-TX(100Mbps)

Netgear GA620(1000Mbps)

FoundryNetworks EdgeIron4802F

Layer2 switch ExtremeNetworks Summit48

ExtremeNetworks Summit5i
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Table 4.4: Verification environment for system portability (Cluster#1)

CPU AMD Mobile Athlon XP 1800+ 1.53 GHz

Memory 2048MB

NIC Broadcom Gigabit Ethernet Adapter x 2

Operating System Debian GNU/Linux sid

Layer2 switch Sun Fire B1600 Switch

Table 4.5: Verification environment for system portability (Cluster#2)

CPU Intel Pentium3 1GHz

Memory 512MB

Operating System Debian GNU/Linux sid

Layer2 switch Cisco Catalyst 6509

4.4.2 System portability

Then, I verified system portability of AnyBed using another two different PC clusters.

One cluster had 32 blade servers described in Table 4.4 and another cluster had 32 1U

servers described in Table 4.5. At first, after I connected the master server including

the AnyBed portable toolset, I built BGP topology on the first cluster using the toolset.

Secondly, I disconnected the master server and brought it to the facilities that another

cluster was located. Then, after I connected it to another cluster, I had quickly rebuilt

the same topology with regenerating actual configuration files. This verification shows

that AnyBed toolset has system portability.

According to the results of verifications, I conclude that AnyBed enables a topol-

ogy to reuse among 4 NETs and that AnyBed can reduce the workload of building

experimental network on NET.

The result of evaluation and verification shows that AnyBed has achieved the design

goals described in Section 3.1.1. First, Section 4.4.1 has described about the reusability

of network topology. Then, I have described the portability of AnyBed in this section.
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4.4.3 Researchers using AnyBed for their evaluation

Several independent papers confess that AnyBed helps their evaluation. Iimura et al.

[40] used AnyBed with twelve PCs of a Small NET of his lab, and 296 PCs on StarBED

to evaluate his Peer-to-Peer Overlay framework for Multi-player Online Games. Masui

et al. [41] evaluated his measurement platform named “N-TAP” using AnyBed with

128 PCs on StarBED and PlanetLab nodes. Hazeyama et al. [42] used AnyBed to

evaluate their research implementation about network security. They [43] also emulated

inter-AS topology that composed of 449 Japanese ASes. These evidences show that

AnyBed certainly helps researchers to achieve PDCA cycles on development of large-

scale distributed systems.

4.5 Summary

In this chapter, I explored the topology reusability and system portability of AnyBed.

Topology reusability was verified in homogeneous NET and heterogeneous NET. Sys-

tem portability was achieved by AnyBed portable toolset. Several researchers employed

AnyBed to test their implementations across small NET and a large-scale NET.





Chapter 5

Inter Autonomous System Network

Topology Emulation1

In this chapter, I present the system to network topology of inter autonomous system

(inter-AS). This system is located in the design layer of the whole AnyBed design.

To reduce user’s workload while generating realistic inter-AS topology, I consider the

approach to automatically generate the topology based on observed dataset. AnyBed

reduces the size of the topology depending on the number of nodes on target NET,

and generates that. I confirm scalability of the implementation.

5.1 Issues of Inter-AS Network Topology Emula-

tion

According to the ISC report [44], the Internet is composed of over 600,000,000 hosts.

It is hard and not realistic to emulate all Internet hosts on a NET, even when a large

scale NET is available.

Figure 5.1 shows a model of inter-AS network topology. Autonomous System is

a unit of routing on the Internet, which advertises and aggregates subnet routes by

an Exterior Gateway Protocol, typically by BGP. The current Internet is composed of

1This chapter is based on one journal. The journal is “Expediting Experiments across Testbeds
with AnyBed: A Testbed-Independent Topology Configuration System and Its Tool Set” in IEICE
Transactions on Information and System, Vol. E92-D, No. 10, pp. 1877. I edited the paper with
focusing on the inter-AS network topology emulation.

55
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Figure 5.1: Characteristic of Inter AS topology on the Internet

over 33,000 ASes [45]. Many researchers have tried to emulate inter-AS topology to

test inter-domain messaging protocols or large scale distributed systems in simulators

or NETs. In this chapter, I explore the way of constructing inter-AS topology on a

NET with AnyBed.

5.1.1 Approaches On Creating Realistic Experimental Net-

works

Many researches have explored appropriate realistic topologies to evaluate DDoS coun-

termeasures, BGP behaviors, and so on.

Gong et. al [46] simulated their inter-AS packet traceback with 3 large scale inter-

AS topologies to evaluate deployment scenarios of their inter-AS packet traceback

protocol. Their first topology was a 8998-node subgraph of an inter-AS topology

generated from 3 weeks of CAIDA’s AS Relationship dataset collected from 1 to 23

June, 2004 [47]. They also considered a randomly generated an inter-AS topology

with 10,000 nodes created by BRITE (2006) [22] using the Barabasi and Albert (BA)

model in generating their second topology. They mentioned that both of their inter-

AS graphs obey commonly observed power-law degree characteristics of the Internet.

Gong’s third topology was a 30 × 30 mesh which were intended to investigate the

impact of long paths on the traceback performance.
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Zhang et.al. tried to outfit a subgraph of the real Internet onto 72 nodes of DETER

testbed [48] to evaluate multi-origin AS (MOAS) attacks. They chose ASes according

to tier-level mentioned in [49]. There were three Tier-1 ASes, four Tier-2 ASes and

seven Tier-3 ASes. Each Tier-1 AS had three fully connected zebra routers. The

three Tier-1 ASes were full meshed. In 4 Tier-2 ASes, two of them multi-home to

two Tier-1 ASes, the others only connect to one Tier-1 AS. Tier-3 ASes emulate stub

ASes. Carl et.al also tried to construct a subgraph of an inter-AS topology in the

DETER testbed to evaluate MOAS attacks [8]. They outfitted 50 ASes subgraph of

22,086 measured ASes by Route Views in April 1, 2006. Chertov et al. developed

useful topology generation tools [50] for their experiments on DETER. Their tools can

construct Inter-AS and Intra-AS topology based on real topology data obtained by

their tools and Route Views project. Their tools can pick up a set of ASes from the

dataset, or can perform breadth-first traversal of the topology graph from a specified

AS number.

Jin et al. developed “inet”, an AS-level Internet topology generator [51]. Based on

BGP table datasets by RouteView Project [52], the inet generates random networks

with characteristics similar to those of the Internet from November 1997 to June 2000,

and beyond. The size of a generated topology by inet cannot be no less than 3037

nodes due to the size of base dataset that is the number of ASs on the Internet in

November 1997.

Hazeyama et al. proposed four filtering rules for CAIDA’s AS Relationship dataset

(ASDR) in [42] to outfit subgraph of an inter-AS topology to available NET resources.

Four filtering rules in [42] are Top-Ranking Filtering (TRF), Root-AS Neighbors Fil-

tering (RANF), Region-Based Filtering (RBF) , and List-Based Filtering (LBF).

Hazeyama also pointed “Isolated Island Problem” and “Overflow Problem” on out-

fitting ASDR inter-AS topology to available physical resources. Isolated Island Prob-

lem is that a subgraph of an inter-AS Topology, which is composed of selected Top N

ASes, included an AS that has no neighbor in the subgraph, or a subgraph is separated

into several pieces. Because of the complexity on the peering by policy, several Top

rank ASes don’t peer due to the competitor. Two competitors are connected by one

middle rank AS which will not be included top N ASes. On the other way, Overflow

Problem is that the select number of ASes by a filtering rule is easily larger than the

number of available physical resources. Overflow Problem is easily occurs RANF. To

avoid Isolated Island Problem and Overflow Problem, Hazeyama also proposed a fil-
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tering manner which is combined to several filtering rules to fit an inter-AS topology

to available physical resources.

5.1.2 AS Relationship Dataset

AS Relationship Dataset is a dataset which describes of adjacency among ASes. CAIDA

Project has produced IPv4 AS Relationship Dataset(ASRD) [47]. Supported by Route

Views Project [52], CAIDA Project measured BGP4 full route information in several

backbones and analyzed an inter-AS topology according to an inferring method men-

tioned in [53]. Also, State Key Lab. [54] has measured IPv6 AS topology data.

An ASRD shows the state of each link between two active ASes. Variation of link

state is determined by an algorithm described in [53]; provider link, customer link, p2p

link and siblings link. Around 7th, Jan., 2008, there were 26,961 IPv4 ASes announced

by 2 byte AS Number (ASN), and 583 IPv6 ASes existed. These link information were

announced by BGP or BGP+.

5.1.3 Model of Inter-AS Network Topology on NET

Figure 5.2: Model of Inter-AS emulation with AnyBed

Figure 5.2 shows the emulation model of inter-AS network with AnyBed. In inter-

AS topology emulation, the number of VLAN ID is easily consumed. Different from
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OSPF, BGP is independent from the layer 2 link, therefore, BGP routing can be

achieved on virtual interfaces created by IP alias shown in Fig. 5.2. On inter-AS

topology emulation, AnyBed employs IP alias ID for virtual interfaces instead of VLAN

ID.

5.2 Implementation

In this section, I describe the second implementation of assignment layer, which is the

main component of AnyBed. I implemented that in Ruby 1.8.6.

Dispatcher on the assignment layer reads both a physical network file and a logical

network file, assigns the elements of the physical network topology to the elements

of the logical network topology, and makes an experimental network topology with

physical and logical information. Then, config generator converts the experimental

network topology to actual configuration files along with the syntax of each software

or each switch. In injection layer, config injector injects those actual configuration files

to each PC node and switch.

5.2.1 Design layer tools

I redesign the logical topology and re-implement some tools used for the design layer.

First one is a description converter to a physical network file. This converter converts

the resource description file used by StarBED’s assistant tools named “SpringOS” [55]

to the format of AnyBed.

Second one is filter scripts named CAIDA topology filter [42]. These scripts en-

ables me to pick up proper size of AS relationship data from whole dataset obtained

from CAIDA project [47]. CAIDA Project has measured BGP4 full route informa-

tion in several backbones and analyzed an inter-AS topology according to an inferring

method [53]. This AS relationship dataset shows the state of each link between two

active ASes. These picked data are finally converted into a logical topology file of

AnyBed. Using this file, users can easily build an inter-AS BGP topology like as

MOAS experiments topologies [8].

Third one is a script converting a logical network file to Graphviz dot file [56].

Graphviz is open-source graph visualization software. Users can visualize and confirm

their designed topology by using Graphviz with this script.
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5.2.2 Configuration files for EBGP Network Topologies

In this section, I explain the design of the logical network file for EBGP :

A logical network file describes a logical network topology that the user desires to

build.

The example of a logical network file for EBGP is shown in Figure 5.3. Figure 5.3

shows a part of a small BGP topology.

Here I explain the syntax of the first example. In the first level, a <nodes> presents

for node sets. A <nodes> has some <node> that presents an experimental node. A

<node> has some <interface> that present network interfaces on each experimental

node. A <interface> has some <network> that present network on each interface. A

<function> presents that the node as routing functions line OSPF or BGP.

On <bgp> of <function>, <advnetworks> contains <advnetwork> which represent

a subnet network advertized by BGP to neighbor ASes. <neighbors> has sub elements

<neighbor> which shows a BGP neighbor AS. The attribute “asname” of <neighbor>

shows neighbor AS’s name, “type” represents peering protocol (EBGP or IBGP). The

attribute “relationship” has 4 type values, “peer”, “customer”, “provider”, and “sib-

lings”. According to the value of “relationship”, AnyBed generates a simple route

map figured in Fig. 5.4 which is a set of filtering rules for advertized routes and AS

paths. The attribute “localint” and “remoteint” represent peering interfaces. “lo-

calint” should be listed on <interface> of the current <node>, on the other hand,

“remoteint” should appear on <interface> of another <node> part.

5.2.3 Extension of the Assignment layer

Another choice for the user is building a network “IP alias mode” of config gener-

ator. In this mode, network topology can be constructed by assigning alias IP address

instead of using VLAN mentioned in section 3.2. In the assignment layer, dispatcher

reads a physical network file and a logical network file. Then, dispatcher assigns

physical elements to logical ones properly. The physical elements are physical nodes,

network interfaces in the nodes, IP addresses, IP alias ID and bandwidth. In the cur-

rent implementation, the criterion for properness is only fairness of bandwidth of each

physical link. In a logical network file, there is a tree structure: “node” - “interface”

- “network”. Similarly, in physical network file, there is a tree structure: “node” -

“interface” - “link”.
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� �
<nodes>

<node name="AS65001">

<interfaces>

<interface name="Int-AS65001">

<network name="Net-AS65001"/>

</interface>

<interface name="Int-AS65001-AS65002">

<network name="Net-AS65001-AS65002"/>

</interface>

</interfaces>

<function>

<ospf>

</ospf>

<bgp name="AS65001" asname="AS65001" asnum="65001">

<advnetworks>

<advnetwork name="Net-AS65001"/>

</advnetworks>

<neighbors>

<neighbor asname="AS65002" type="EBGP"

relationship="peer"

localint="Int-AS65001-AS65002"

remoteint="Int-AS65001-AS65002"/>

</neighbors>

</bgp>

</function>

</node>

</nodes>� �
Figure 5.3: Example logical network topology using BGP
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� �
ip as-path access-list MyAS permit ^$

ip community-list standard Customer-RT permit 65001:200

route-map import-from-customer permit 10

set local-preference 200

set community 65001:200

route-map import-from-peer permit 10

set local-preference 100

route-map export permit 10

match as-path MyAS

route-map export permit 20

match community Customer-RT

route-map export deny 30

route-map export-my-route-only permit 10

match as-path MyAS

route-map export-my-route-only deny 20

� �
Figure 5.4: Example of quagga bgpd route map in peer case

Algorithm 2 An algorithm of assigning nodes and interfaces
1: procedure Assignment Main Routine

2: sort(LogicalNodes) order by Number of Interfaces

3: sort(PhysicalNodes) order by Number of Interfaces

4: sort(LogicalNodes.Interfaces) order by Bandwidth

5: sort(PhysicalNodes.Interfaces) order by Bandwidth

6: for all LogicalNodes do

7: l ← LogicalNode.Interfaces

8: p ← PhysicalNode.Interfaces

9: for all l do

10: p.ResidualBandwidth ← p.TotalBandwidth

11: MaximumInterface ← maximum(p) order by Bandwidth

12: MaximumInterface.AliasID

= assignNewAliasID(MaximumInterface)

13: AverageBandwidth ← p.TotalBandwidth / l.TotalBandwidth

14: p.ResidualBandwidth ← p.ResidualBandwidth - AverageBandwidth

15: remove MaximumInterface from l

16: end for

17: end for
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Dispatcher reads these structures, and then make assignment based on the algo-

rithm shown in Algorithm 2. The reason that I adopt the simple iterative algorithm

is that low computational effort is more important than bandwidth optimality. If I

seek bandwidth-optimum, I must solve knapsack problem. On the large scale NET,

solving knapsack problem costs high computational effort, and makes the user wait

for a long time. To improve efficiency of this assignment, I must study more about a

heterogeneous hardware case of “network testbed mapping problem” [57]. It is not the

target of this paper however.

After dispatcher finished assigning of nodes and interfaces, dispatcher assigns IP

addresses to experimental interface according IP alias ID, and an experimental network

topology is generated as the result of resource assignment by dispatcher. Then, config

generator translates from the topology to actual configuration files.

The variations of actual configuration files are as follows: rc.conf, hosts, zebra.conf,

ospfd.conf and switch configuration files of each vendor’s syntax.

5.2.4 Consistency checker

To check whether the desired topology is correctly built or not, I made consistency

checker as a part of AnyBed. The checker reads output files from AnyBed, then check

reachability from all nodes to all nodes, and also check routes in all nodes. Figure C.1

shows a result of the reachablility check(upper) and a result of the routecheck(lower).

The vertical axis in this matrix means nodes that check rearchabilities and routes. The

horizontal axis means checked nodes and checked routes. Green means reached, while

grey means unreached.

5.2.5 Building experimental Inter-AS network using AnyBed

The steps for the user to build experimental network with AnyBed is shown in Figure

3.3. The steps are described below:

1. A NET prepares a physical network file along with its facilities and wiring.

2. A user designs a logical network topology and creates a logical network file.

CAIDA topology filter facilitates generating this file. Of course, the users can

edit the file manually.
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Figure 5.5: Results of rearchability check and route check
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3. The assignment layer of AnyBed checks the consistency of the logical network

file and the physical network file.

4. The assignment layer assigns resources to the logical network topology and gen-

erates actual configuration files, if there is no inconsistency between the logical

network file and the physical network file.

5. The injection layer of AnyBed injects those actual configuration files to each node

and switch.

Compared to the manual steps described in Section 2.5.1, AnyBed and its toolset

automate most processes: some parts of design, assignment, configuration, and injec-

tion. The detail evaluation and verification are described in the following sections.

5.3 Evaluation

In this section, I describe the evaluation result of the AnyBed implementation. I

conducted the following evaluations: scalability to the number of nodes and workload

reduction.

5.3.1 Scalability to the number of nodes

In this section, I see if AnyBed can deal with large scale network and many nodes.

Because I do not have a real large scale NET, I use StarBED for my scalability evalua-

tion; which is the well-known large-scale centralized NET that composed of 680 nodes.

I describe evaluation environment. I used 150 experimental nodes on StarBED and

1 master node. As for a typical user on StarBED, he uses about 50 up to 150 nodes

for one experiment. In DETER, recent experiments [8, 58, 59] need roughly 10 to 100

nodes. I think that evaluating AnyBed using up to 150 nodes is enough for typical

uses. The specifications of nodes are described in Table 5.1.

In this evaluation, I described the logical network file where nodes had BGP links

each other. This BGP topology was based on the AS topology of the Internet using

the dataset published by CAIDA [47]. I extracted top ASes and its related networks

from this dataset in order of the number of BGP peers that ASes have. The number of

extracted ASes depended on the number of usable nodes in NET. Using this topology,
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I made an experimental network and measured the time consumption with changing

the number of nodes from 10 to 150 on the environment. In this evaluation, because

1 AS in the dataset corresponded with 1 node in NET, I could only emulate a part of

the whole topology. I measured times taken by below procedures. (1) I ran dispatcher

on the master node to generate actual configuration files, and then deployed them to

experimental nodes. (2) After deployed, I set interface of the experimental nodes up.

(3) Finally, I set BGP connections of each node up.

Table 5.1: Evaluation environment for scalability

CPU Intel Core 2 Duo 2.13GHz

Master Memory 1GB

Node Operating System Debian GNU/Linux sid

Programming Language Ruby 1.8.6

CPU Intel Pentium3 1GHz

Exp. Memory 512MB

Nodes Operating System Debian GNU/Linux sid

Layer2 switch Cisco Catalyst 6509

Figure 5.6 shows that the total time consumption increased linearly up to 150

nodes. However, the time generating configuration files and deploying them does not

seem to linearly but exponentially. The reason that the curve described in the expo-

nential function was that the BGP topology was nearly full meshed and the number of

subnets and interfaces increased in the order of O(n2). The number affected the time

of assigning resources and the time of generating configuration files, I considered. On

150 nodes, the total time consumption of dispatcher was 113 seconds.

Along with this evaluation, I conclude that (1) AnyBed can ease the overhead

of describing configuration files in the order of magnitude, and (2) it can generate

configuration files and can deploy them on a large scale NET in enough short time.

5.3.2 Decline of routing performance

In this section, I discussed the decline of routing performance when a user employs

AnyBed. I evaluated the differences of routing performance on two same topologies:

one was built by AnyBed, and the other was built by hand. Figure 5.7 shows these

topologies. On these topologies, I assigned the same PC for each node. Equipments on
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each PC are described in Table 5.2. On each topology, I measured routing performance

10 times from node1 to node6 by iperf.

node1

AS65001

node3

AS65002

node4

AS65004

node5

AS65005

node2

AS65006

node6

AS65007

Figure 5.7: Evaluation topology for routing performance

The result of the measurement showed that both topologies had the same routing

performances. In both cases, measured routing performance was 914Mbps. The result

means that AnyBed does not cause decline of routing performance.

5.4 Summary

As many researches have explored appropriate realistic topologies to evaluate DDoS

countermeasures, BGP behaviors, and so on, inter-AS topology emulation was em-

ployed in their evaluations In many cases.

To achieve inter-AS network topology emulation by AnyBed, I modeled inter-AS

topology emulation on NET, re-design the XML schema of the logical topology file to

support BGP function, re-implemented assignment layer and injection layer of AnyBed

to cooperate with CAIDA ASRD. I verified and evaluated new features of the assign-

ment layer implementation.

The results of the verification and evaluation showed that AnyBed well automated

the steps to construct an inter-AS network topology on various NETs. AnyBed can

expedite the time spent building 50 AS topology, from 4 days in manual to 30 seconds

in AnyBed.
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Table 5.2: Evaluation environment for routing performance

CPU Intel Xeon 2.13GHz

Master Memory 4GB

Node Operating System Debian GNU/Linux etch

Programming Language Ruby 1.8.5

Exp. CPU Intel Xeon 2.8 GHz

Node1,2 Memory 2.5GB

NIC Broadcom GbE NIC x 2

Exp. CPU AMD Opteron 1.8 GHz

Node3 Memory 4GB

NIC Broadcom GbE NIC x 2

Exp. CPU Intel Xeon 2.8 GHz

Node4 Memory 2GB

NIC Broadcom GbE NIC x 2

Exp. CPU Intel Xeon 2.8 GHz

Node5 Memory 2GB

NIC Broadcom GbE NIC x 2

Exp. CPU Intel Xeon 2.8 GHz

Node6 Memory 1GB

NIC Broadcom GbE NIC x 2

Layer2 switch Buffalo LSW-GT-16NSR





Chapter 6

OSPF Network Topology

Emulation1

In this chapter, I present an OSPF network topology emulation system to emulate

the topology of intra autonomous system(intra-AS). This system is located in the

design layer of the whole AnyBed design. Firstly, I analyze issues of intra-AS topology

emulation, and propose the design of the system. Then, I describe the implementation

and the evaluation of the system.

6.1 Issues of Intra-AS Topology Emulation

On the contrary of dataset of inter-AS topology, the dataset of intra-AS topology usu-

ally does not become public dataset due to security issues on daily network operation.

However, detail information such as cost settings can be available from an intra-AS

network for private use if a NET user operates the intra-AS network.

In this chapter, I explore the way of more realistic network topology emulation

about actual operated network in focus on OSPF network.

1This chapter is based on one domestic conference paper. The domestic conference paper is
“A Topology Imitation System from A Real OSPF topology to A Network Emulation Testbed” in
Proceedings of Internet Conference 2009 (IC2009), Octobor, 2009. I edited these papers with focusing
on the OSPF network topology emulation with an actual operated OSPF network.
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6.2 Design of ONTES: an OSPF Network Topology

Emulation System

When I design ONTES, I have several considerations of network topology collection

methods and emulation methods. If I can obtain all configurations from all routers in

the target network topology as dataset, I can emulate a network topology completely.

However, the configurations for routers are generally secret because they are sensitive

information in network operation. Even configurations of routers are can be collected,

the cost of implementing the mechanism to collect all configurations from all routers is

high to support multi-vender implementations and differences of each vendor syntax.

Also, the configurations of routers include unnecessary information to construct an

emulated network topology.

Many researchers infer topology and configuration by various approaches, and cre-

ate their own datasets that contain suitable information for their purposes. In the

datasets, the unnecessary information except for their purposes, such as interface cost

settings and IP addresses of each interface are mostly degraded or divided into another

dataset. The information contained in public dataset is insufficient for my purpose

to construct accurate topology. I need methods for efficient collection and accurate

topology emulation.

I define design goals described below.

Goal 1. To collect information for private use from actual operated network

Goal 2. To emulate OSPF topology

Goal 3. To collect the information as efficient as possible

Goal 4. To emulate the topology as accurate as possible from the collected information

Goal 5. To shorten the time elapsing from collecting to emulating as possible

About Goal 1 and Goal 2, I consider the middle-size network as that consists of

several to dozens of routers. This number of routers depends on my first emulated

target of ONTES; my research organization named WIDE Project [60] has the OSPF

network composed of approximately 49 routers around Japan.

AnyBed previously adopted private IP addresses on constructing BGP network

because I focused on not actual assigned IP addresses but macroscopic AS relationships.
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However, in case of emulating OSPF network, I aim to emulate actual operated network

information that includes assigned IP addresses because this information would be

important to accomplish the purpose of this research.

Goal 5 comes from the policy of AnyBed that the time users can perform their

experiment should be as long as possible. That is because, on a general large-scale

NET in Japan, users can use the facility only for a limited period on reservation basis.

I intend the preparation time until an user can perform an experiment to be as short

as possible. This time contains collecting targeted network information, assigning

resources, generating configuration files, distributing them, and checking. Previous

AnyBed implementation also aimed to meet this requirement.

6.3 Implementation of ONTES

Related with Goal 1 and Goal 3, I come up with three approaches to collect.

Appr.1. Inferring from the results of traceroute from various points to other points

Appr.2. Inferring from the Routing Information Bases(RIBs) and Forwarding Informa-

tion Bases(FIBs) obtained from all routers that compose the OSPF network

Appr.3. Inferring from the OSPF link-state database(OSPF LSDB) obtained from one

router in the OSPF network.

I adopt Appr.3, and describe the reasons below. Appr.1 is the similar approach to

Rocketfuel. This approach can only collect the best route, cannot collect the whole

network topology information including OSPF cost. I do not adopt this approach

because of the disadvantage of the accuracy of the collected topology. About Appr.2,

in case that a network is composed of multi-vendor routers, each router has its own

command syntax to get RIB and FIB, and low-cost routers do not support OSPF MIB

in SNMP. The implementation cost that covers these multi-vendor differences is high.

I dismiss this approach.

Finally, when I adopt Appr.3 because of efficiency. There are still two approaches

for obtaining LSDB; one is by TELNET, and the other is by SNMP. I adopt the former

because this approach is expected to obtain other information than LSDB versatility in

the future. Compared to Appr.2, the implementation cost is lower because the number

of vendors that I should support is only one.
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Algorithm 3 OSPF Topology Assumption
1: procedure OSPF Topology Assumption

2: load Router LSAs into RLSA LIST

3: load Network LSAs into NLSA LIST

4: for all rlsa from RLSA LIST do

5: select link state id from rlsa

6: select TRANSIT INTERFACE LIST from rlsa by Link Type

7: for all transit interface from TRANSIT INTERFACE LIST do

8: select address of the interface, cost, designated router address from transit interface

9: select nlsa from NLSA LIST by pairs(designated router address, address of the interface)

10: select netmask from nlsa

11: calculate network address from pairs(address of the interface, netmask)

12: output link state id, address of the interface, network address, netmask, cost, designated router address

13: end for

14: select STUB INTERFACE LIST from rlsa by Link Type

15: for all stub interface from STUB INTERFACE LIST do

16: select network address, netmask, cost from stub interface

17: calculate first address from pairs(network address, netmask)

18: output link state id, first address, network address, netmask, cost

19: end for

20: end for

In Appr.3, I infer OSPF network topology from LSA Type 1(Router LSA, RLSA)

and LSA Type 2(Network LSA, NLSA). The detailed algorithm is shown in Algo-

rithm 3. I also briefly describe the algorithm below.

1. To infer network which connect to one router, I obtain the interface addresses

of the router(Addrs-A), OSPF costs and the IP addresses of the designated

routers(DR-Addrs) from RLSAs which is related with the interfaces connected

to transit network.

2. I correlate the router and network by obtaining the network address from an

interface address and a netmask from NLSA for each DR-Addrs related with the

network that includes each Addrs-A.

3. Similarly, I obtain stub-network addresses and netmasks from NLSA that inter-

face address is included in stub-network connected to the router from RLSA. Due

to an interface address of the router is not included in LSAs, I assume first IP

address of the stub-network to be the interface address.

After inferring the topology from this algorithm, ONTES write the topology in the

extended format of the logical network file used in AnyBed. I show an example of the
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extended format in Figure 6.1. This format contains several information about OSPF

network such as addresses of interfaces that one OSPF router has, OSPF cost of the

interfaces, and a router-id of the router.

� �
<nodes>

<node name="192.168.255.108">

<interfaces>

<interface

name="Node192.168.255.108-Int10.0.7.0.24"

interfaceaddress="10.0.7.2"

netmask="255.255.255.0" ospfcost="6">

<network name="Net10.0.7.0.24"

networkaddress="10.0.7.0"

netmask="255.255.255.0"/>

</interface>

<interface

name="Node192.168.255.108-Int10.0.3.0.24"

interfaceaddress="10.0.3.1"

netmask="255.255.255.0" ospfcost="5">

<network name="Net10.0.3.0.24"

networkaddress="10.0.3.0"

netmask="255.255.255.0"/>

</interface>

<interface

name="Node192.168.255.108-Int10.0.6.0.24"

interfaceaddress="10.0.6.2"

netmask="255.255.255.0" ospfcost="7">

<network name="Net10.0.6.0.24"

networkaddress="10.0.6.0"

netmask="255.255.255.0"/>

</interface>

</interfaces>

<function>

<ospf routerid="192.168.255.108">

</ospf>

</function>

</node>

...� �
Figure 6.1: Sample logical network file

Based on this logical network file, the assignment layer of AnyBed assigns resources

and generates configuration files for assigned nodes. On this assignment, one router in

the original topology is associated with one node., and multiple interfaces in the router

are associated with one physical interfaces on the node using IP alias mechanism. The
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types of these configuration files are divided into two parts: one is related with network

settings of each OS, and the other is about applications such as ospfd. I show the former

example in Figure 6.2, and the latter one in Figure 6.3.

� �
hostname 192.168.255.108-192.168.255.108

ifconfig eth1:5 inet 10.0.7.2 netmask 255.255.255.0

ifconfig eth1:2 inet 10.0.3.1 netmask 255.255.255.0

ifconfig eth1:7 inet 10.0.6.2 netmask 255.255.255.0� �
Figure 6.2: Sample configuration file for OS

� �
hostname 192.168.255.108

password sample

enable password sample

interface eth1

ip ospf cost 5 10.0.3.1

ip ospf cost 6 10.0.7.2

ip ospf cost 7 10.0.6.2

ip ospf priority 2 10.0.3.1

ip ospf priority 5 10.0.7.2

ip ospf priority 7 10.0.6.2

router ospf

router-id 192.168.255.108

network 10.0.7.0/24 area 0.0.0.0

network 10.0.3.0/24 area 0.0.0.0

network 10.0.6.0/24 area 0.0.0.0

redistribute bgp� �
Figure 6.3: Sample configuration file for ospfd

To realize ONTES, I newly implement a script named ospfwalk to collect data from

an actual operated router, and extend the assignment layer of previous AnyBed imple-

mentation. The data flow of ospfwalk is shown in Figure 6.4. Firstly, ospfwalk login to

the specified router, and issue a command like “show ip ospf database router/network”

to get OSPF LSDB. In case the host on which ospfwalk runs cannot directly access to

the router, ospfwalk can read the text file that contains the output of the command.

Then, ospfwalk infer a topology by the algorithms described above, and write a logi-
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Figure 6.4: Data flow of ospfwalk

cal network file. I also implement a visualization mechanism using GraphViz [56] in

ospfwalk because I cannot understand a structure of written topology in text format.

AnyBed cannot accurately emulate Point-to-point(PtP) link because AnyBed uses

Ethernet to construct network. Alternatively, AnyBed assigns private IP address to

the both side of PtP link, and construct the network. Because I consider the accuracy

of a topology structure is more important than that of IP addresses.

Also, I extend the assignment layer of previous AnyBed implementation to generate

configuration files that contain actual assigned IP addresses and OSPF costs.

6.4 Verification of ONTES

I verify ONTES in two steps. In the first step, I try to emulate a small OSPF network

constructed manually on my NET. Then, I try to emulate actual operated OSPF

backbone network of WIDE project. I describe the details of this emulation below.

6.4.1 Emulation of a small OSPF network

In the first step of the verification, I manually construct a small OSPF network(Net.A)

composed of 6 routers on my NET, and try to emulate Net.A as Net.A’ on the same

NET.

I show the structure of Net.A in Figure 6.5. To design Net.A, I complicate a

dumbbell topology depending on the number of nodes existing in my NET. All network

have private IP addresses with own /24 subnet. Link costs are dispersed for the
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verification of emulating that.

In this verification, on Net.A and Net.A’, I observe FIBs and RIBs of each corre-

sponding router, and observe the results of running traceroute from R1 to all other

routers shown in Figure 6.5. The result shows that FIBs, RIBs and the results of

traceroute are all same values. Additionally, I verify the interfaces of corresponding

router have the same IP addresses and the same OSPF cost. These results show that

ONTES can emulate the same network topology including the same link structure, the

link costs and the same IP addresses on a NET.N11 R1N0 N3R2 R4N2R3N1N12 R5R6N4N5 N6 N13N14routernetwork5

4

4
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5
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5Numbers beside lines mean OSPF costs.
Figure 6.5: Small OSPF network for verification

Consumed time from collecting Net.A to finish constructing Net.B is totally 44

seconds, in the condition that I have prepared installing and booting OS on each node

before. This time means enough reasonable for users for NETs, I suppose.
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Figure 6.6: Emulated WIDE backbone OSPF network topology
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6.4.2 Emulation of a large operated OSPF network

In the second step, I try to emulate the actual operated OSPF network of WIDE project

on StarBED. Though the targeted network is the large distributed OSPF network

consisted of multiple OSPF areas, I only emulate the backbone area(Net.B) of whole

network due to my system limitation of current implementation. Even in the backbone

area of the network, 49 multi-vendor routers and 237 network are distributed around

Japan. I show the structure of Net.B in Figure 6.6. In this figure, shown IP addresses

of routers are hashed because they are nondisclosure.

I collect the information of Net.B from the service host which runs GNU Zebra

0.95 [39] located in Keio University, Japan. Because I cannot connect from the AnyBed-

running server in StarBED to this service host, I login to the host via SSH, and do

telnet to the console of the ospfd. After logging in, run commands such as “show ip ospf

database router/network”, and save the result to text files. Then, I input these files

to ospfwalk in the AnyBed server. Finally, I construct the emulated network(Net.B’)

using 49 real nodes in StarBED.

After the construction, I manually confirm differences between the RIBs and FIBs

of original 5 router picked from Net.B and corresponding emulated 5 routers in Net.B’.

The confirmation result shows that the routes of the original routers includes the routes

of corresponding ones, and the number of routes is different each other. The costs of

included routes from the routers are the same value between the original routers and

corresponding ones. I suppose this result means that the original routers run other

protocols than OSPF, and routes from other protocols are imported to RIBs and FIBs.

This verification result shows that ONTES can emulate the topology of links be-

tween the original routers, its OSPF costs, partially its IP addresses and the RIBs/FIBs

originated from them in the targeted OSPF backbone-area.

6.5 Discussion and future work

In this section, I discuss current problems of ONTES based on the results of verification.
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6.5.1 About current collection method of OSPF network in-

formation

By current collection method, I cannot obtain detailed information other than the area

where obtained router belongs. I can only obtain summary LSAs that contain little

information of other areas. I plan to solve this problem by combining information

obtained from multiple routers that belong to different areas.

I cannot collect the routes distributed from other protocols than OSPF in current

method. I consider that ONTES would collect RIBs and FIBs from all routers, and

combine them like Appr.2 in Section 6.3 to solve this problem.

Current collection method cannot determine IP addresses of router interfaces that

connect to an OSPF stub-network. Collecting interface information from such router

via logging in or SNMP can determine these IP addresses.

6.5.2 About limitations of an emulated network by ONTES

Current constructing method cannot emulate Point-to-point link contained in the origi-

nal network topology due to Ethernet limitation. I plan to use the function of tunneling

interface equipped in OS to solve this problem.

In case of emulating geographically distributed OSPF network, emulating the la-

tency of each link is also important. Technically, I can use delay simulators like

netem [24] on each router to emulate the latency. However, the collected informa-

tion by ospfwalk does not contain the latency. To collect the latency, I would adopt

traceroute-based method like Appr.2 in Section 6.3.

6.5.3 Use cases of ONTES

ONTES can emulate the original network topology, FIBs/RIBs on the original routers,

and OSPF cost on original links, but cannot emulate the performance of the routers,

bandwidth of the links, and delay of the links. This result means that ONTES can be

used for experiments that concerned about the topology. An advantage of ONTES is

that users can run their software implementation on each emulated router. I consider

that the use cases of ONTES are evaluations of software that depend on topology,

design of network, behavior observations of network fault, and training for operators.
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6.6 Summary

In this chapter, I describe my OSPF network topology emulation. ONTES, which

is based on AnyBed, can emulate an actual operated OSPF network topology inside

an AS. I explain the design and the implementation of ONTES, and describe the

verification results. The results show ONTES can emulate both small OSPF network

consisted of 6 PC-routers and actual operated OSPF network consisted of 49 multi-

vendor routers.



Chapter 7

Discussion

In this chapter, I try to evaluate my studies in chapter 3.1 to chapter 6 and discuss

various pertinent aspects of these studies. First, I compare the latest AnyBed imple-

mentation with other NET assistant tools.

7.1 Comparison between AnyBed and Other NET

Assistant Tools

Since the beginning of the development of AnyBed in 2003, I have improved AnyBed

from a number of varied perspectives. Other NET assistant tools have also been refined

over the past 8 years. Here, I try to compare AnyBed with the latest NET assistant

tools, which includes Emulab software [61], StarBED SpringOS [62], PlanetLab User

tools [63], and DETER SEER [18]. Table 7.1 shows the results of this comparison.

In terms of variation of network topology configuration supports, all the above NET

assistant tools support the basic topology pattern which consists of set static routes.

Only SEER supports application service settings such as HTTP server (apache [64]),

DNS (bind [65]), or IRC server (ircd [66]). In the settings of layer 3 network topology,

only AnyBed can offer support to create EBGP and OSPF network topologies.

Assisting in the design of network topology, Emulab software, SpringOS, and SEER

equip a GUI to edit a small network topology. Although AnyBed does not support

a GUI, it can create a large scale network topology in the manner that was noted in

chapter 5 and chapter 6. Miwa and Hazeyama challenged a large topology emulation

composed of 10,000 AS in [12,67] with AnyBed and XENebula [68].
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In terms of resource management, Emulab software covers various resources, such

as the hardware of wired and wireless nodes, virtual machines, logical resources, and

software for experiments. As mentioned in chapter 3.1, AnyBed’s coverage of resource

management is focused on logical information and software. The modularity of AnyBed

leaves other resources to be managed by the assistant tool of a given NET.

In terms of the injection layer, AnyBed provides its own injection tools just as other

assistant tools do. A Health check function and Logging function are offered on each

of the assistant tools being compared, although each of them has its own limitation.

In the execution of scenarios, an NS-like manner can be obtained from Emulab

software, SpringOS, and SEER. The scenario execution of PlanetLab user tools and of

AnyBed are shell-based scripts, so users have to customize or rewrite these tools for

their scenarios.

The modularity of AnyBed is superior to that of Emulab software, SpringOS, and

SEER due to the layered modularity of its architecture. PlanetLab user tools may

also offer modularity equal to that of AnyBed due to various tools that have been

contributed and improved by PlanetLab users.

In recent years, several small testbeds have been constructed on each NET-specific

assistant tool. On the contrary, AnyBed has better NET portability than the other

assistant tools.

This comparison demonstrates that AnyBed is superior to the other assistant tools

in creating topologies.
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Table 7.1: A comparative table among NET assistant tools

Assistant Emulab StarBED PlanetLab DETER AnyBed AnyBed +

Tool Software SpringOS User Tools SEER SpringOS

Network Basic Basic Basic With app. Various Various

Topology pattern pattern pattern services patterns patterns

Topology Small Small N/A Small Large Large

Design scale scale scale scale scale

Assistant / Archive (GUI) / Archive / XML / XML

(GUI) (GUI) (CLI) (CLI)

Resource HW HW HW HW SW SW

Management VM SW SW SW VM 1 VM 2

SW Logical Logical Logical Logical Logical

Logical

Injection Frisbee PXE-NFS User Frisbee PXE+NFS PXE-NFS

SW / conf. DD tools / gsh DD

to nodes tools gsh tools

Health Equipped Equipped Equipped Equipped Equipped Equipped

Check

Functions

Logging Available Available Available Available Available Available

Scenario Emulab GUI kuroyuri PL user SEER GUI gsh tools kuroyuri

Execution (NS-2 like) (NS-2 like) tools (NS-2 like) (partial) gsh tools

Modularity Partially Partially Good Partially Good Good

NET Emulab StarBED PlanetLab DETER Various StarBED

Portability like like like like NETs like

NETs NETs NETs NETs NETs

Documents Manual Manual Manual Manual Manual Manual

Website Website Website
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7.2 Reproducibility of Network Emulation Experi-

ment

Reproducibility means that an experimenter can always get the same result when

he performs an experiment in the same conditions. I consider that NETs and their

assistant tools require the elements described below to provide reproducibility in a

network emulation experiment.

• Behavior of surrounding environment around the target

The environment surrounding the target implementation always behaves the

same when it receives the same input.

• Accurate event occurrence

Events such as program execution must be accurately executed each time.

I consider the first element in regard to AnyBed, whose focus is on the building

of experimental network topologies. Due to the consistency checker described in sec-

tion 5.2.4, AnyBed can assume that the structure of topologies built from same dataset

is always the same. However, if a specified topology is intrinsically unstable, AnyBed

cannot assume its equivalency. Although the structure is the same, the base elements

under the built topology could be different. For example, in large scale NETs, the

current reserved nodes are different from the previous reserved nodes. In such cases,

because the capabilities of the nodes are different from those of the previous ones, the

experimental result can be different. To prevent such a difference, it would appear

that after an experimenter considers the influence of various elements, he must try to

use the same elements.

In regard to the second element, I consider that the scenario system in assistant

tools can realize the accurate execution of sequential events. The scenario system

generates events on each node in the time sequence specified by the experimenter.

AnyBed is equipped with gsh tools as a scenario system. Although the tool is simple,

an experimenter is able to specify the time sequence using it, which can help to create

reproducibility in network emulation experiments.
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7.3 Scalability in Massive Network Topology Con-

sisting of Virtual Nodes

Recent advances in virtualization technologies have multiplied the number of nodes in

NETs by several times. We therefore tested the scalability of AnyBed anticipating that

a user would use it in thousands of virtual nodes. In the case of 10000 virtual nodes,

AnyBed and the XENebula toolset [69] took 2.5 days to build a network topology.

This result shows that the current AnyBed implementation is not scalable in a massive

network topology.

With the use of virtualization technologies, I consider that it will become more

common for network researchers to use AnyBed to perform experiments with more

than hundreds of virtual nodes in lab-level NETs. However, in a massive environ-

ment, problems still remain, in addition to that of scalability, such as node control,

measurement, and anomaly detection. These too, will be the subject of future works.

7.4 Abstraction Level and Accuracy of the Emula-

tion

The model of AS emulation in AnyBed is simple: an inter-AS network emulated by

AnyBed consists of a single AS border gateway router and a number of network links

to other ASes. This simplification would make it difficult to emulate ASes connected

by multiple links via multiple border gateway routers. Multiple border gateway routers

on a single AS have to be emulated when a target experiment requires high fidelity

emulation of network links, because they are popularly used for redundantly connecting

to other ASes.

Although AnyBed can functionally generate configurations on an AS which consists

of many border gateway routers, the currently used dataset does not contain such

information. It only contains the relationships of one AS to another AS.

In addition, the routing policy of each border gateway router on an emulated inter-

AS network might not be accurately emulated, because a route filter on each bgpd.conf

which was generated by AnyBed to implement a routing policy on the border gateway

router is simply inferred from the AS relationships. I think that the original Route-

View dataset and the Routing Assets Database (RADb) [70] can help us to infer the
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relationships between border gateway routers and their policies.

The current implementation can only emulate an inter-AS BGP topology or an

OSPF network inside an AS separately. I plan to extend the implementation to con-

struct an end-to-end network that combines the network inside an AS with the AS-level

network by implementing iBGP mechanisms in AnyBed.

In terms of accuracy of emulation, there are several differences between emulated

networks and real networks. AnyBed emulates the original commercial routers used

by PC routers. Many recent commercial routers use a hardware engine for packet for-

warding and perform forwarding at different speeds. Moreover, its implementation of

routing protocols is also different from that of PC routers and would thus exhibit dif-

ferent behaviors. In addition, a PC router cannot emulate the vendor-specific features

of commercial routers. If I use an actual commercial router as part of a NET which

is adopted in Remote Network Labs [71], or if router simulators such as CISCO 7200

Simulator [72] are used, these differences can be reduced.

I plan to emulate the performance characteristics of each network link using netem [24]

so the fidelity of the network link emulation will depend on the fidelity of netem. To

do this, its fidelity must be estimated, and if it does not have high enough fidelity,

high fidelity emulation must somehow be provided, for example, by connecting actual

networks into the emulated inter-AS network to add fidelity. This would require esti-

mating the degree of fidelity that is required in experiments on the emulated Internet.



Chapter 8

Conclusion

In this dissertation, I presented an efficient architecture that is designed to expedite

the preparations involved in network emulation experiments. I consider that the time-

consumption is caused by four principal problems. The first problem is that topology

configuration has no reusability. The second is that there are differences in assistant

tools and experimental procedures on each NET. The third problem is the lack of

compatibility and complementarity among assistant tools. The last one is the difficulty

in emulating a realistic topology.

In order to solve these problems, I propose AnyBed architecture in this disserta-

tion. AnyBed architecture divides network topology information for an experiment

into two parts: logical network information and physical network information. These

two streams of information are combined in such a way as to build an experimental

network for the preparation process which achieves topology reusability. AnyBed ar-

chitecture also has a common node configuration mechanism and a layered modular

architecture, which achieves system portability and compatibility with other assistant

tools. This study has also explored a method to emulate the proper size of an AS-level

network picked from the public dataset and a method that emulates an actual OSPF

network topology that is operated on NETs.

I implemented these proposals as an AnyBed toolset, which has been released as

open-source software. The evaluation results and feedback of various users has con-

firmed that AnyBed can expedite the preparation of users’ experiments.
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8.1 Contributions

To attain the goal of expediting users’ experiments on NETs, a number of issues have

been addressed which yielded the following contributions.

• In order to expedite experiments on NETs, I propose my model of network em-

ulation experiments. My proposed model for network experiments enables users

to perform their experiments on different NETs that are suitable for the scale of

their experiments using the same assistant tools.

• On the basis of the model previously described, I proposed AnyBed architecture.

To realize reusability of a network topology configuration, I divided network

topology information for an experiment into two parts: logical network informa-

tion and physical network information. This division achieves a reusability of

network topology among NETs, which offers users the advantage of a reduced

workload in such cases by reproducing the topology of a past experiment on

another large scale NET, and moving that topology from real nodes to virtual

nodes.

• I have also implemented the proposed architecture as an AnyBed toolset, which

has been released as open-source software. This release has attracted several

regular users of AnyBed, whose past experiments using it are summarized in [11].

Workshops for these users, which included an AnyBed session, were held in 2008

and 2009 and participants also implemented tools such as XENebula [12], and

XBurner [13] using a number of AnyBed components.

• I designed and implemented several tools that can emulate various parts of the

Internet. To emulate inter-AS BGP topology, the caida-topology-filter tool was

implemented as part of the AnyBed toolset. With this tool, users can emulate

the proper size of an inter-AS topology based on the actual AS-level topology

of the Internet. For intra-AS OSPF topology, I implemented ONTES: an OSPF

Network Topology Emulation System. ONTES infers router configurations from

the OSPF Link State Database (LSDB) obtained from one actual router on a

backbone network, and then emulates OSPF network topology with the inclusion

of the OSPF interface cost settings and assigned IP addresses on NETs.
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• To provide portability of tools, I designed and implemented an AnyBed portable

toolset. Regardless of the original OSes installed in NET nodes, the master server

of the toolset provides the nodes with the specified OS image and software via

a PXE boot and NFS root. Users can use the same toolset while performing

experiments on various NETs by accessing one master server that packages these

toolsets into the NETs.

• I have proved by evaluation results that the proposed architecture of AnyBed

can expedite network emulation experiments. Using AnyBed, the total time it

takes to construct a complex BGP topology on 150 nodes is 113 s. This result

shows that AnyBed can generate configuration files and can deploy them on a

large scale NET in a short enough time period.
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Appendix B

Recent Experiments Performed

with AnyBed

In this chapter, I introduce recent experiments performed with AnyBed briefly.

B.1 Zone Federation Model

Iimura et al. have evaluated libcookai that is the implementation of Zone Federation

Model(ZFM). ZFM enables Pure P2P Overlay Multiplayer Online Game Infrastructure.

The detail of ZFM is described in his paper [40,73].

In his first experiment, he run totally 700 processes on 7 nodes in StarBED. This

experiment aimed for a measurement about propagation delay of messages among a

large number of processes. Next experiment used 295 nodes and up to 1,000 processes

on each node. On this experiment, the interface of each nodes is configured to have

100 ms delay by Dummynet.

B.2 N-TAP

Masui et al. have performed experiment to evaluate his implementation of N-TAP, that

means “Pure P2P Overlay Network Measurement Infrastructure”. He used two NETs

such as StarBED and PlanetLab, and compare the results of the ideal environment

and the realistic environment. The detail of N-TAP and his experiments is described

in his paper [74].
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B.3 xdt and Chord

Fujiwara and Kadobayashi have evaluated xdt [75], that is a library of multi-threaded

message dispatcher and network dispatcher. They also developed and evaluated an

implementation of Chord [76] using xdt. They used 100 nodes, and run 300 processes

on each node. Their purposes are observing the whole process of overlay-network

construction and measuring the time before the network was stable.

B.4 IP Traceback

Hazeyama et al. performed an experiment about his IP Traceback system using 200 up

to 680 nodes. He picked up Japanese ASes using caida-topology-filter tool, and emulate

relations of those ASes using AnyBed. On that network topology, he simulated the

deployment scenario of the IP traceback system. Based on this result, he consider real

deployment scenario of the system [77].

B.5 Visualizing BGP behavior

In the Cloud Computing Competition on Interop Tokyo 2009(Interop-CCC2009), Hazeyama

et al. performed visualization of BGP behavior on whole router in emulated Internet.

He firstly emulated Japanese AS-level BGP network on 509 XEN virtual nodes over 50

physical nodes. Then, he visualized the BGP behavior of whole networks by collecting

and summarizing BGP Update messages on each router. In this experiment, he took

1.5 hours before the network was stable.

B.6 Intellisense

Also in the Interop-CCC2009, Kuromiya et al. evaluated his implementation of In-

tellisense that enables locality-aware data transfer algorithm using overlay-networks.

Using AS-level BGP network described in B.5, he chose 8 ASes and connected 48

slave-nodes to the ASes. Then he evaluated the transfer algorithm by running his

implementation on the slave-nodes.



Appendix C

Input and Output of AnyBed

Figure C.1: Results of rearchability check and route check
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� �
192.168.0.1 rid-192.168.0.1-AS10010

10.15.189.2 peer-10.15.189.2-10010->9002

10.50.16.2 peer-10.50.16.2-10010->15412

10.12.223.2 peer-10.12.223.2-10010->9225

10.12.106.2 peer-10.12.106.2-10010->9370

10.2.148.2 peer-10.2.148.2-10010->4725

10.75.171.2 peer-10.75.171.2-10010->2516

10.37.183.2 peer-10.37.183.2-10010->2497

192.168.0.2 rid-192.168.0.2-AS10015

10.63.34.2 peer-10.63.34.2-10015->2516

10.11.12.2 peer-10.11.12.2-10015->17676

10.79.76.2 peer-10.79.76.2-10015->4713

10.46.194.2 peer-10.46.194.2-10015->9351

192.168.0.3 rid-192.168.0.3-AS10021

10.52.204.2 peer-10.52.204.2-10021->2914

10.33.230.2 peer-10.33.230.2-10021->15412

10.23.23.2 peer-10.23.23.2-10021->3738

10.60.89.2 peer-10.60.89.2-10021->2516

10.22.82.2 peer-10.22.82.2-10021->2497

10.12.172.2 peer-10.12.172.2-10021->6303

...(snip)...

10.46.37.1 peer-10.46.37.1-9950->17841

192.168.9.212 rid-192.168.9.212-AS9957

10.54.122.1 peer-10.54.122.1-9957->15412

10.0.136.1 peer-10.0.136.1-9957->18302

10.27.175.1 peer-10.27.175.1-9957->10036

10.37.178.1 peer-10.37.178.1-9957->9318

10.41.195.1 peer-10.41.195.1-9957->38091

10.66.33.1 peer-10.66.33.1-9957->10026

192.168.9.213 rid-192.168.9.213-AS9989

10.63.43.1 peer-10.63.43.1-9989->4637

10.34.145.1 peer-10.34.145.1-9989->4657

10.57.42.1 peer-10.57.42.1-9989->13276

10.13.177.1 peer-10.13.177.1-9989->7786

10.65.21.1 peer-10.65.21.1-9989->5511

192.168.9.214 rid-192.168.9.214-AS9993

10.77.110.1 peer-10.77.110.1-9993->2914

10.55.162.1 peer-10.55.162.1-9993->15412

10.35.51.1 peer-10.35.51.1-9993->9225

10.5.42.1 peer-10.5.42.1-9993->2516

10.14.44.1 peer-10.14.44.1-9993->2497� �
Figure C.2: pingman.conf
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� �
10.0.1.0/24

10.0.10.0/24

10.0.115.0/24

10.0.12.0/24

10.0.130.0/24

10.0.135.0/24

10.0.139.0/24

10.0.153.0/24

10.0.163.0/24

10.0.182.0/24

...(snip)...

10.9.242.0/24

10.9.28.0/24

10.9.3.0/24

10.9.38.0/24

10.9.6.0/24

10.9.61.0/24

10.9.66.0/24

10.9.67.0/24

10.9.74.0/24

10.9.83.0/24� �
Figure C.3: routecheck.conf
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� �
::1 localhost localhost.my.domain

127.0.0.1 localhost localhost.my.domain

# myrid-Int-myip-peerip

192.168.0.1 192.168.0.1-AS10010 xen0001

10.15.189.1 192.168.0.1-Int-AS10010-AS9002

10.50.16.1 192.168.0.1-Int-AS10010-AS15412

10.12.223.1 192.168.0.1-Int-AS10010-AS9225

10.12.106.1 192.168.0.1-Int-AS10010-AS9370

10.2.148.1 192.168.0.1-Int-AS10010-AS4725

...(snip)....

10.13.177.2 192.168.9.213-Int-AS9989-AS7786

10.65.21.2 192.168.9.213-Int-AS9989-AS5511

10.84.60.1 192.168.9.213-Int-AS9989

192.168.9.214 192.168.9.214-AS9993 xen2500

10.77.110.2 192.168.9.214-Int-AS9993-AS2914

10.55.162.2 192.168.9.214-Int-AS9993-AS15412

10.35.51.2 192.168.9.214-Int-AS9993-AS9225

10.5.42.2 192.168.9.214-Int-AS9993-AS2516

10.14.44.2 192.168.9.214-Int-AS9993-AS2497

10.41.130.1 192.168.9.214-Int-AS9993� �
Figure C.4: /etc/hosts file generated by AnyBed


