
NAIST-IS-DD0761010

Doctoral Dissertation

Goal-Oriented Representations of the External

World: A Free-Energy-Based Approach

Makoto Otsuka

February 20, 2010

Department of Bioinformatics and Genomics

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Makoto Otsuka

Thesis Committee:

Professor Shin Ishii (Supervisor)

Professor Kenji Doya (Co-supervisor)

Professor Kenji Sugimoto (Co-supervisor)

Associate Professor Tomohiro Shibata (Co-supervisor)

Associate Professor Junichiro Yoshimoto (Co-supervisor)

A thing of beauty is a joy forever.

- John Keats

False-imagination teaches that such things as light and shade, long and short,

black and white are different and are to be discriminated; but they are not

independent of each other; they are only different aspects of the same thing,

they are terms of relation, not of reality. Conditions of existence are not of a

mutually exclusive character; in essence things are not two but one.

- Lankavatara Sutra

To my parents.

3

Acknowledgments

This work would never have materialized without the help of many people to

whom I have the pleasure of expressing my appreciation and gratitude.

My deepest gratefulness is due to my supervisor, Shin Ishii, who accepted a

student who came back from the United States with the intention to do research

on concept formation from the viewpoint of optimality. Despite holding only a

Bachelor’s degree in psychology and cognitive science, he allowed me to dive into

the field of machine learning. It was more than encouraging. Also, without his

trust in my own judgment to study in Okinawa under the supervision of Kenji

Doya, none of the rich experiences in this small island would have been possible.

I would like to extend my deepest gratitude to my co-supervisor, Kenji Doya,

who gave me the opportunity to study in his lab in the early days of Okinawa

Institute of Science and Technology (OIST). Through the countless activities in

his lab, I received a lot of invaluable experience. From his lifestyle, I learned not

only about science, but also about the importance of balance in life.

I would like to express my appreciation to Junichiro Yoshimoto and Eiji Uchibe

for providing me guidance, suggestions and frequent discussions during my study.

Their continuous one-to-one support allows me to break the finishing tape of this

long distance race. I also want to offer my gratitude to the members of my thesis

committee, Tomohiro Shibata and Kenji Sugimoto.

I extend my thanks to all members of Neural Computation unit. Especially, I

appreciate Emiko Asato and Chikako Uehara for supporting my research in every

aspect from business trips to heavily consumed hot coffee. Thanks to Tomofumi

Inoue and Yasuhiro Inamine for setting up my computers and helping me out

of numerous machine troubles. I deeply appreciate Takashi Nakano for being a

great friend of mine. His ingenuous advice prevented me from getting sidetracked

and helped me out of trouble numerous times. Thanks to Makoto Ito for showing

a great example of enjoying each moment and doing the best in every aspect of

life. Thanks to Stefan Elfwing for sharing his ideas in front of the whiteboard and

implementing the proposed algorithms on the Cyber Rodent. Thanks to Viktor

Zhumatiy for checking the final version of my thesis. Thanks to Kayoko Miyazaki,

Katsuhiko Miyazaki, Masato Hoshino, Shinji Kimura, Aurelien Cassagnes, Alan

Rodrigues and Mayumi Higa for being such kind and charming people. Their

4

kindness has always been a strong support for me. Thanks to Tetsuro Morimura

and Takuming Kamioka for taking the unpaved road of writing Ph.D. thesis before

me. I would like to express my gratefulness to my favorite visitors to Neural

Computation Unit, Medhi Khamassi, Akihiro Funamizu, Thomas Trappenberg,

Byron Yu, and Thomas Strösslin.

I would like to further extend my thanks to all of the friends in OIST. Thanks

to my diving, camping, drinking, and thesis-checking buddies, Tomas Pluskal,

Cathy Vickers, Ben Torben-Nielsen, Gunner Wilken, and Klaus M. Stiefel, to

name but a few. I would like to say thanks to all of my friends I met in Nara In-

stitute of Science and Techonology (NAIST). Especially, thanks to Mizuki Ihara,

Satoshi Morimoto, Melva Vidal (Jessica), Eri Saito, Atsunori Kanemura, Shinichi

Maeda, Shigeyuki Oba, Wako Yoshida, Tsuyoshi Ueno, Yoko Kikuchi, Sachiko

Yamazaki, Ritsuko Harima, Yasutaka Kamei, and Osamu Matsumoto for assist-

ing me in many different aspects. Without their help, I would probably have

gotten lost somewhere in the middle of this long-lasting journey.

I would also like to say thanks to my friends in Japan, especially in Oki-

nawa. First of all, I would like to express my deepest gratitude to Shinnosuke

Imazu. I feel really lucky to have met him. Thanks to Kishin Sakiyama, Shigeru

Ahagon, and Tatsuya Morinaga at Kotorino for giving me a chance to touch the

soil. I would like to thank all members of Okinawa Sudbury school: especially,

Ayumi Tahara, Junko Hayashi, Yoshio and Mika Munakata, Midori Potter, and

Simon Robinson. I am grateful to the following friends who gave me countless

support and love: Akira and Nika Hidaka, Haruki Nakamura, Mihiro Matsuda,

Yukikazu Hosokawa, Motoki Sueyoshi, Isamu Jahana, Taeko Okamura, Naomi

Haraki, Yuko Ichimura, Yukari Takaya, Satoshi Oyama, Eri Kawano, Yoshimi

Kurosawa, Hiroshi Ueda, and Yukikazu Hosokawa, to name but a few. Thanks

to Makoto Ando for showing me a way to listen to the voice of nature inside and

outside of us.

Much love and appreciation must go to my precious friends in Los Angeles.

Thanks to Dr. Greg Stevens in UCLA for listening to my wild idea of concept

formation as a creation of unit vector even before I knew the field of linear algebra.

His supportive attitude really helped me, and I think my wild idea has somehow

materialized in this thesis after a decade. Thanks to Dr. Mario Mata for paying

5

attention to me when I lost my direction and confidence in the middle of nowhere.

Thanks to Dr. Shinsuke Shimojo for accepting my visit to his office and giving

me advice and encouragement. I deeply appreciate the love and kindness of

Steve Chong So Lee, Penny Rosman, Manuel and Itzel Bejar, Daniel Bernstein,

Irwan Yunus, Chumba Sichale, Tunde Johnson, Junko and Ronald Vigo, Carey

Chan, Kaori Shimazaki, Ray Sato, Karen Fang, Rainbow Kan and Mini Kurian.

Thanks to Akihiro Mori, Kanako Tsumagari, Yuri Kawano, Jun Kozuma, Koki

Yamashita, Mayumi Oka, Wakana Hayashi, and Tomokazu Yokoyama for being

such great friends for more than a decade.

Thanks to my first students, Nana and Aya, and their charming mother, Mia

Kamimura. Thanks to many of my students and coworkers in Asahi Gakuen, who

kindly allowed me to study in Japan. Especially thanks to Saburo Matsumoto

who made a song for me, and Sakaguchi Yoichi who believed in me and gave me

confidence to explore a new world over the horizon.

Finally, and most importantly, I would like to thank my parents–Yoshinobu

and Emiko, my sisters–Michiko and Yoko, my oldest friend–Kyota Mikami, and

my partner–Ayaka Mori for their faith in me, their love and support. Thanks

from the bottom of my heart.

6

Goal-Oriented Representations of the External

World: A Free-Energy-Based Approach∗

Makoto Otsuka

Abstract

The central objective of living organisms or intelligent systems is not to model

the world as accurately as possible but to act in their environments to achieve

some goals. However, efficient decision making in the real world requires suc-

cessful encoding of noisy, high-dimensional sensory inputs and representation

of the implicit constraints in the environmental dynamics. In this disserta-

tion, we explore methods for goal-directed sensory representations and decision

making in partially observable Markov decision processes (POMDPs) with high-

dimensional, noisy, multimodal sensory inputs and unknown dynamics.

First, we investigated whether free-energy-based reinforcement learning (FERL),

which is known to handle Markov decision processes (MDPs) with high-dimensional

states and actions, can handle an easy class of POMDPs, in which the detection

of the true state behind the noisy, high-dimensional observation reduces the prob-

lem to MDPs. Using a novel “digit-floor” task, we found the reward- and action-

dependent sensory coding in the distributed activation patterns of hidden units

despite large variations in the sensory observations for the hidden state. Sec-

ond, the FERL was combined with recurrent neural networks to handle POMDP

problems that require a dynamic combination of sensory inputs. Using both low-

dimensional bit patterns and high-dimensional binary images, we verified that

the dynamic task-structure was implicitly reflected in the time-varying hidden

unit activations.

∗Doctoral Dissertation, Department of Bioinformatics and Genomics, Graduate School of In-
formation Science, Nara Institute of Science and Technology, NAIST-IS-DD0761010, February
20, 2010.

i

These results show that our dynamic extension of FERL can construct a dis-

tributed representation of the external world autonomously while solving realistic

sequential decision making problems. This approach, which is compatible with

Friston’s free-energy principle, provides a basis for biologically plausible models

of representation learning in the brain.

Keywords:

Reinforcement learning, partially observable Markov decision process, goal-oriented

representation, population coding, restricted Boltzmann machine, free energy

ii

Contents

Acknowledgments . 4

1 Introduction 1

1.1 Motivations and rationale . 1

1.2 Representation learning as a scientific problem 2

1.3 Representation learning as an engineering problem 3

1.4 Contributions of this dissertation 4

1.5 Contents of this dissertation . 5

2 Backgrounds 6

2.1 Energy-based models . 6

2.1.1 Energy, probability, and information 6

2.1.2 Variational and equilibrium free energies 9

2.1.3 Free energy and EM algorithm 10

2.1.4 Boltzmann machine . 11

2.1.5 Restricted Boltzmann machine 12

2.2 Reinforcement learning . 15

2.2.1 Markov decision processes 16

2.2.2 Dynamic programming . 18

2.2.3 Reinforcement learning algorithms 20

2.3 Partially observable Markov decision processes 20

2.3.1 Classification of POMDPs with problem difficulties 21

2.3.2 Incorporating memory . 22

2.4 Recurrent neural network . 24

2.4.1 Backpropagation through time 24

iii

3 Reward- and Action-dependent Sensory Coding 29

3.1 Introduction . 29

3.2 Free-energy-based reinforcement learning framework 30

3.3 Why free energy? . 33

3.4 Digit-floor task . 35

3.5 Simulation results . 38

3.5.1 Noise tolerance . 38

3.5.2 Outlier detection . 41

3.5.3 Population coding of reward-dependent and -invariant states 41

3.6 Summary and discussion . 49

4 Solving POMDPs without Prior Knowledge of an Environment 51

4.1 Introduction . 51

4.2 Model architecture . 51

4.3 Experiments . 53

4.3.1 Regular T-maze task . 54

4.3.2 Matching T-maze task . 62

4.3.3 Digit matching T-maze task 71

4.4 Summary and discussion . 73

5 Solving POMDPs with High-Dimensional Noisy Observations 75

5.1 Introduction . 75

5.2 Model architecture . 76

5.3 Experiments . 78

5.3.1 Matching T-maze task . 78

5.3.2 Digit matching T-maze task 89

5.4 Summary and discussion . 104

6 Conclusions 107

References 110

iv

List of Figures

2.1 Relationship between an energy domain (horizontal axis) and an

unnormalized-probability domain (vertical axis). The exponential

curve represents y = exp(−βx), where x is some quantity in the en-

ergy domain. All quantities associated with double-headed arrows

are some types of information (or surprise). 11

3.1 Basic components of a digit floor: (a)is composed of 28×28 pixels;

(b)is composed of 3 × 3 tiles; and (c)is composed of 4 × 4 patches. 37

3.2 Examples of observations under noise. The number on the top of

each image shows the noise level (the percentage of pixels replaced

by white noise). 38

3.3 Optimal actions. 39

3.4 Moving average of the immediate rewards over 100 steps. 39

3.5 Connection weights from observations to 20 hidden nodes: weights

before the training (Upper two rows) and weights after the training

(lower two rows) . 40

3.6 Count of greedy actions induced by 400 test images for different

combinations of training and test noise levels. The two numbers in

the parenthesis indicate the noise levels in the training and testing

phases. 42

3.7 Outlier detection: Images are sorted by the action-selection prob-

ability to go south (optimal action for the digit “1”). The prob-

ability is shown on top of each image. Top-left images induces

the lowest probability and bottom-left images induced the highest

probability. 43

3.8 . 44

v

3.9 Optimal actions under the clockwise (CW) and counterclockwise

(CCW) conditions. 45

3.10 The median activation of 20 hidden nodes when 400 test images

of each digit are presented to an agent trained in different reward

conditions. 46

3.11 Hierarchically clustered median firing patterns of 20 hidden nodes. 48

3.12 Hierarchically clustered digits according to the mutual information . 49

3.13 Hierarchically clustered median firing patterns of 10 and 40 hidden

nodes. 50

4.1 Models for handling high-dimensional inputs. (a) An actor-only ar-

chitecture for MDPs. (b) A predictor-actor architecture for POMDPs.

54

4.2 A regular T-maze with a corridor length of 3. The optimal action

at the T-junction is indicated by the arrow for each signal condition. 54

4.3 Bit coding of the position, signal, and reward signals 55

4.4 A regular T-maze with the corridor length of 6. 55

4.5 Average weighted prediction errors of the joint predictor of obser-

vations and rewards in the regular T-maze task. The measure of

prediction errors is the absolute error. The top row in the figure

shows the error for the training dataset DT
train, and the bottom

row shows the error for the test dataset DT
test. Each column shows

the error for data with variable lengths T . The left-most column

used the data with 3 steps to the goal (T = 3), and the right-most

column used the data with 10 steps (T = 10, premature termina-

tion). The vertical axis and horizontal axis of each panel indicate

the training epoch of RNNs and steps t in a episode, respectively.

A prediction error with step 0 implies the prediction error for the

initial observation. 59

4.6 Moving average of discounted return in the regular T-maze task

with corridor length 3 (Tmin = 3). The window size is 200 episodes.

Error bars in (a) show the standard error of the mean (s.e.m.) over

10 runs. The upper bound of the discounted return is indicated by

the dotted line (R0 = 4.3175 with γ = 0.95). 60

vi

4.7 Performance measured in (a) the number of steps to the goal and

(b) terminal rewards. The window size of the moving average is

200 episodes. Each measure is averaged over 10 runs. The optimal

performance levels are indicated by a dotted line. 61

4.8 Absolute TD error (a) Moving average of the mean absolute TD

error (Tmin = 3). The episodic mean is taken first, and then, the

moving average is calculated. The window size is 200 episodes.

Error bars show the standard error of the mean (s.e.m.). (b) TD

errors in the 1st run. Data are sparsely plotted every 50 episode

starting from the first episode. 61

4.9 Matching T-maze task. Arrows indicate the optimal action at the

T-junction. 62

4.10 Average weighted prediction errors of the joint predictor of obser-

vations and rewards in the matching T-maze task. Refer to the

caption of Fig. 4.5for reading the figure. 63

4.11 Moving average of discounted return in the matching T-maze task

(Tmin = 3). The window size is 200 episodes. Error bars show

the standard error of the mean (s.e.m.). The upper bound of the

discounted return is indicated by the dotted line (R0 = 4.3175 with

γ = 0.95). 64

4.12 Performance measured in (a) the number of steps to the goal and

(b) terminal rewards. The window size of the moving average is

200 episodes. Each measure is averaged over 10 runs. The optimal

performance levels are indicated by a dotted line. 65

4.13 TD errors. (a) Mean absolute TD error. The window size of the

moving average is 200 episodes. Error bars show the standard error

of the mean (s.e.m.) over 10 runs. (b) TD errors in the 1st run.

Data are sparsely plotted every 50 episode starting from the first

episode. 65

vii

4.14 Activation patterns of the predictor’s memory nodes at the T-

junction. These activations were used to predict the obtained re-

wards at the T-junction before entering the T-junction. (a) Acti-

vations for all visits to the T-junction are shown according to the

four possible signal conditions (initial signal, T-junction signal).

(b) PCA analysis of these activations. The size of the marker re-

flects the the number of steps to the goals. The smallest marker

indicates 3 steps, and the largest marker indicates 10 steps. 66

4.15 Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-

junction. 67

4.16 Contributions of each principal component (actor’s state nodes). . 68

4.17 Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the

T-junction. 69

4.18 Changing activation patterns of the actor’s hidden nodes at the

T-junction. 70

4.19 Analysis of the activation patterns of the actor’s hidden nodes. . . 70

4.20 Digit matching T-maze task. The optimal action at the T-junction

is indicated by arrows. 72

4.21 Performance of the predictor-actor model in the digit matching

T-maze task. 72

4.22 Performance of the predictor-actor model in digit T-maze task. (a)

Moving average of number of steps to the goals over the past 200

episodes. (b) Frequency of terminal rewards in each 200-episode

block. 73

5.1 Improved predictor-actor architecture. This architecture includes

an RBM–based observation preprocessor and separate predictors

for processed observations and scalar rewards. 76

5.2 Average prediction errors of (a) processed-observation predictor

and (b) scalar-reward predictor. The measure of prediction errors

are absolute error for (a) and squared error for (b). Refer to the

caption of Fig. 4.5for reading the figure. 81

viii

5.3 Moving average of discounted return in the matching T-maze task

(Tmin = 3). The window size is 200 episodes. Error bars in (a)

show the standard error of the mean (s.e.m.). The upper bound of

the discounted return is indicated by the dotted line (R0 = 4.3175

with γ = 0.95). 82

5.4 Average number of steps to the goal over 10 runs (Tmin = 3) . . . 83

5.5 Average terminal reward over 10 runs (Tmin = 3) 83

5.6 TD errors. (a) Mean absolute TD error. The window size of the

moving average is 200 episodes. Error bars show the standard error

of the mean (s.e.m.) over 10 runs. (b, c) TD errors in the (b) 1st

run and (c) 2nd run. Data are sparsely plotted every 50 episodes

starting from the first episode. 84

5.7 Activation patterns of the reward predictor’s memory nodes at the

T-junction. These activations were used to predict the obtained

rewards at the T-junction before entering the T-junction. (a) Ac-

tivations for all visits to the T-junction are shown according to

the episode conditions (initial signal, T-junction signal). (b) PCA

analysis of these activations. The size of the marker reflects the

number of steps to the goals. The smallest marker indicates 3

steps, and the largest marker indicates 10 steps. 86

5.8 Activation patterns of the observation predictor’s memory nodes

at the T-junction. These activations were used to predict the pre-

processed observations observed at the T-junction before entering

the T-junction. (a) Activations for all visits to the T-junction

are shown according to the episode conditions (initial signal, T-

junction signal). (b) PCA analysis of these activations. 87

5.9 Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-

junction. 88

5.10 Analysis of the activation patterns of the actor’s state nodes. . . . 89

5.11 Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the

T-junction. 90

ix

5.12 Changing activation patterns of the actor’s hidden nodes at the

T-junction. 91

5.13 Analysis of activation patterns of the actor’s hidden nodes at the

T-junction. 91

5.14 Examples of actual observations for each digit class. 10 out of 100

images are shown. 92

5.15 PCA analysis of all possible observations (500 instances of 784-

dimensional pixel images of handwritten digits) in the digit match-

ing T-maze. 93

5.16 PCA analysis of processed observations. The dimensionality is

reduced from 784 to 20 using a trained RBM. 500 instances of

20-dimensional processed data are used for the analysis. 94

5.17 Average prediction errors of (a) the processed-observation predic-

tor and (b) scalar-reward predictor. The measure of prediction

errors are absolute error for (a) and squared error for (b). Note

the lower bound of the color map in (a) is not 0 but 5. Refer to

the caption of Fig. 4.5for reading the figure. 95

5.18 Average discounted return in the matching T-maze task (Tmin = 3).

The window size is 200 episodes. Error bars show the standard

error of the mean (s.e.m.). The upper bound of the discounted

return is indicated by the dotted line (R0 = 4.3175 with γ = 0.95). 96

5.19 TD errors in the digit-matching T-maze. Refer to the caption of

Fig. 5.6for reading the figure. 97

5.20 Activation patterns of the reward predictor’s memory nodes at the

T-junction. These activations were used to predict the obtained

rewards at the T-junction before entering the T-junction. (a) Ac-

tivations for all visits to the T-junction are shown according to

the episode conditions (initial signal, T-junction signal). (b) PCA

analysis of these activations. The size of the marker reflects the

number of steps to the goals. The smallest marker implies 3 steps,

and the largest marker implies 10 steps. 99

x

5.21 Activation patterns of the observation predictor’s memory nodes

at the T-junction. These activations were used to predict the pre-

processed observations observed at the T-junction before entering

the T-junction. (a) Activations for all visits to the T-junction

are shown according to the episode conditions (initial signal, T-

junction signal). (b) PCA analysis of these activations. 100

5.22 Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-

junction. 101

5.23 Analysis of activation patterns of the actor’s state nodes. 102

5.24 Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the

T-junction. 103

5.25 Analysis of activation patterns of the actor’s hidden nodes. 104

xi

List of Tables

2.1 Classification of four models in terms of observability and inter-

actability. 16

3.1 Parallelism between reinforcement learning, information theory,

and optimal control. 33

4.1 Parameters for the regular/matching T-maze task. 56

4.2 Parameters for the digit matching T-maze task. 71

5.1 Parameters for the matching T-maze task (bit/pixel observations).

N/A indicates associated parameters are removed in the improved

architecture. The newly included parameters are added at the

bottom row. 80

xii

Symbols and Notation

Symbol Meaning

, left-hand side is defined by the right-hand side

t discrete time, t ∈ {0, 1, 2, . . . }
zt time-dependent scalar

zt, Zt time-dependent vector or matrix, respectively

zi,t, Zij,t element of a time-dependent vector or matrix, respectively

wsh
ik connection weight from the node Hk to the node Si

σ(x) logistic sigmoid function σ(x) , 1/(1 + exp(−x))

σβ(x) logistic sigmoid function with a gain modification σβ(x) , 1/(1 + exp(−βx))

E[·] expectation operator

E(·) energy function

F (·) equilibrium free energy with a unity temperature

Fβ(·) equilibrium free-energy with an inverse temperature β

F (q, ·) variational free energy with a unity temperature and the trial distribution q

Fβ(q, ·) variational free energy with an inverse temperature β and the trial distribution q

xiii

Chapter 1

Introduction

1.1 Motivations and rationale

The central objective of living organisms is not to model the world as accurately

as possible but to act in their environment to achieve some goal. All behaviors of

living animals are goal-directed, and their goals are implicitly linked with reward

or punishment signals. Some organisms use reflexes to perform stereotypical

actions to avoid immediate danger, and others use higher cognitive capabilities

to sequentially select actions to achieve long-term goals.

If an environment remains static over many generations and if animals can

detect the critical states for optimal decision making using their sensory system,

they can use genetically programmed, hardwired reflexes to achieve their goals.

However, if task-relevant information is obscured in high-dimensional sensory

inputs, agents need to extract the information first and build efficient spatial

representations of the external world in order to achieve their goals. Even if the

agent successfully extracts the task-relevant features from the current sensory

inputs, the task might still be partially observable with the full set of extracted

features. Then, the agents cannot solely rely on the current sensory inputs.

They need to have a memory of past inputs as well. Here, the spatiotemporal

representations of the environment now become relevant.

To perform tasks beyond reflexes, meaningful representations of the world

become critical. Gradual changes in the neural response reflecting task demand

have been observed in many regions in the cortex from the cellular (Freedman

1

et al., 2001; Freedman and Assad, 2006; Froemke et al., 2007) to the network

levels (Sigala and Logothetis, 2002; Jog et al., 1999; Hyman et al., 2006). Beyond

the primary cortex, the brain appears to extract goal-directed representations

automatically according to the task requirement. As these examples suggest,

goal-directed representations lay the basis for the optimal decision making in a

noisy and uncertain environment.

It is intriguing to find changing representations in the real brain while an

animal’s performance improves via trial and error. Unfortunately, beyond the

cellular level, it is difficult for experimentalists to find changing representations

in the real brain while the performance improves in a reinforcement learning

task. There have been some attempts using a multichannel microelectrode array

(MEA) in in vitro network (Dockendorf et al., 2009); however some experimental

breakthrough is required to reveal the changing neural representation during the

performance improvement of learning animals.

Instead, we employed a different approach. We first formulated the computa-

tional problem that animals solve as a mathematical optimization problem called

a partially observable Markov decision process (POMDP). Then, we proposed

a minimal architecture and learning rule that can solve the given problem in a

biologically plausible manner. Finally, we investigated how the representation is

modified and maintained in the model while the artificial agent’s performance im-

proves. This approach may provide an answer to the long-lasting epistemological

question: “How do we represent the world?” (Churchland and Sejnowski, 1990).

This dissertation has two objectives. The first objective is to elucidate a bio-

logically plausible minimal architecture that can efficiently solve POMDP prob-

lems. The second objective is to investigate how a goal-directed representation is

dynamically modified and maintained in the model of an agent.

1.2 Representation learning as a scientific prob-

lem

Kawato’s definition of computational neuroscience is (Kawato, 2008)

“to elucidate information processing of the brain to the extent that ar-

2

tificial machines, either computer programs or robots, can be built to

solve the same computational problems that are solved by the human

brain, using essentially the same principles.”

We believe that the computational problems that the mammalian brain has

evolved to solve can be captured by the POMDP with high-dimensional, noisy,

multimodal sensory inputs without any prior knowledge of the environment. Our

focus is a mammalian brain, which is usually equipped with general-purpose sen-

sory systems such as a visual system.

Animals do not need to know the absolute coordinates in the universe to

behave optimally. Instead, they require relative coordinates of the external world

within themselves; this is sufficient to help them achieve their goals. Then, the

following question arises: how should the brain create a relative coordinate system

within itself? The guiding principle of representation learning is succinctly and

beautifully captured by Friston’s free-energy principle (Friston, 2009; Friston and

Kiebel, 2009) that simply says, “any adaptive change in the brain will minimize

free-energy.”

Our approach is compatible with the free-energy principle. The main differ-

ences lies in the type of probabilistic model. Our approach uses an undirected

graphical model (random Markov field), whereas Friston and the other (George

and Hawkins, 2009) use a directed graphical model (Bayesian network). In addi-

tion, Friston’s formulation of reinforcement learning as a minimization of obser-

vation prediction error (Friston et al., 2009) appears to be a supervised learning,

not a real reinforcement learning, since an agent need to see the optimal trajecto-

ries before the free-energy-based action selection becomes possible. On the other

hand, our approach handles real reinforcement learning problems using the free

energy of a stochastic network.

1.3 Representation learning as an engineering prob-

lem

To learn how to behave in unknown environments, a reinforcement learning frame-

work can be employed to obtain the optimal behavioral policy. For tasks that

3

involve continuous sensory data, linear function approximators such as CMAC

and RBF networks with fixed basis functions (Sutton and Barto, 1998) are com-

monly used because they theoretically guarantee an approximation of the true

value function with an arbitrary precision if an appropriate set of basis functions

are selected for a particular task. However, the selection of basis functions is

task-dependent and needs to be done manually based on prior knowledge about

the task domain. In addition, the linear function approximators invariably face

the curse of dimensionality (Bellman, 1957) when the dimensionality of data in-

creases.

In order to reduce the burden of feature designing, several methods of auto-

matic feature extraction have been proposed in the field of reinforcement learning.

These methods are roughly divided into two groups according to whether rewards

affect the acquired basis functions. The first type constructs basis functions that

capture statistical regularities in the sensory data (Mahadevan, 2005). The sec-

ond type adjusts the basis functions depending on the acquired rewards (Keller

et al., 2006; Santamaria et al., 1998; Sprague, 2007).

As an engineering problem, we focus on the problem of designing a state space

S for reinforcement learning agents in a goal-directed fashion.

1.4 Contributions of this dissertation

The dissertation makes the following contributions:

• an analysis of reward- and action-dependent coding of sensory inputs in the

hidden layer of a free-energy-based reinforcement learning agent.

• an analysis of noise tolerance of a free-energy-based-reinforcement learning

(FERL) framework.

• a new task called the digit-floor task that is specifically designed to analyze

the coding of true states embedded in the high-dimensional sensory inputs.

• a predictor-actor architecture that can solve a POMDP problem with high-

dimensional noisy input without any prior knowledge of environmental dy-

namics and hidden states.

4

• a (digit) matching T-maze task that requires not only memory but also

sensory inputs to act optimally. With some constraints, the task can be

interpreted as a delayed-matching task that is commonly used in monkey

experiments, and the predictor-actor model can be used for model-based

analysis of neural data.

1.5 Contents of this dissertation

This dissertation is organized as follows. Chapter 2 provides a review of relevant

background about energy-based models, reinforcement learning, POMDPs, and

recurrent neural networks. In Chapter 3, we investigate the emergence of reward-

and action-dependent sensory coding in FERL using a digit-floor task, which falls

into a class of easy POMDPs. In Chapter 4, FERL is combined with RNNs to

handle moderately difficult POMDPs without any prior knowledge of environ-

mental dynamics and hidden states. In Chapter 5, the proposed architecture is

improved to handle difficult POMDPs with noisy, high-dimensional inputs with-

out the assumption of any prior knowledge of the environment. In Chapter 6, we

conclude with an overall summary.

5

Chapter 2

Backgrounds

2.1 Energy-based models

Energy-based models (a.k.a., undirected graphical models, Markov random fields)

are the most important tool in this dissertation. They provide a principled

method to unify information theory, machine learning, and reinforcement learn-

ing.

2.1.1 Energy, probability, and information

An energy is an arbitrary function defined over the configuration of a stochastic

system ξ. Let us assume a system composed of N binary stochastic units ξ ∈
Ξ , {0, 1}N . Let us further assume that the energy is given by an arbitrary

function E(ξ; θ), where θ represents the parameters of the energy function.

Once the energy function and an inverse temperature, which controls an over-

all stochasticity of a system, are given for a certain stochastic system, we can

obtain the probability distribution of the system being in a certain configuration

in its thermal equilibrium pβ(ξ; θ). Note that the parameter θ of the equilibrium

distribution is the parameter of the energy function. This conversion of energy

into probability involves two steps: exponential transformation and normaliza-

tion. In the first step, energy is transformed into an unnormalized probability

(ocasionally called intensity) by the exponential transformation

p̃β(ξ; θ) , exp{−βE(ξ; θ)} ,

6

where β is the inverse temperature of the system. In the second step, the unnor-

malized probability p̃β(ξ; θ) is transformed into a probability pβ(ξ; θ) by normal-

ization

pβ(ξ; θ) =
p̃β(ξ; θ)∑
ξ′ p̃β(ξ′; θ)

. (2.1)

This probability is called the equilibrium distribution (also called the Gibbs distri-

bution or Boltzmann distribution) of the stochastic system defined by the energy

function E(ξ; θ). Note that the parameters of the distribution are equivalent to

those of the energy function. This probability distribution is called the equilib-

rium distribution because the stochastic system realizes a configuration ξ with

probability pβ(ξ; θ) after the system with an inverse temperature β reaches ther-

mal equilibrium.

The summation appearing in the denominator implies that the sum is over all

possible configurations of ξ′ ∈ Ξ. This denominator is called the partition func-

tion (or normalization constant) and is often expressed as Zβ(θ) ,
∑

ξ′ p̃β(ξ′; θ).

The computation of the partition function is often prohibitive due to the ex-

ponentially growing numbers of possible configurations as the number of nodes

increases. For example, even in the simplest system with N binary nodes, which

is our current focus, the computation of the partition function requires the sum-

mation of 2N terms. Due to this partition function, we can rarely evaluate the

probability in Eq. (2.1).

We can often draw samples from this probability distribution pβ(ξ; θ) regard-

less of the computational complexity of calculating the probability. The single

requirement for sampling, which is usually satisfied, is that the unnormalized

probability p̃β(ξ; θ), or equivalently the energy function E(ξ; θ), can readily be

evaluated. Many sampling methods such as Gibb’s sampling can be used to

obtain samples from the probability distribution.

Thus far, we have established the relationship between the energy and the

probability via an unnormalized probability. We can establish another relation-

ship between the energy and the probability via a quantity called information.

Using the notion of information measure first introduced by (Shannon, 1948), the

information content (or surprise) of observing the configuration ξ in the stochastic

7

system is defined as

I(ξ; θ) , − ln pβ(ξ; θ) , (2.2)

where the natural logarithm is used as a base. Using Eq. (2.1), the information

content of ξ can be written as

I(ξ; θ) = − ln p̃β(ξ; θ) − {− ln Zβ(θ)} . (2.3)

Dividing both side of Eq. (2.3) by the inverse temperature β yields

1

β
I(ξ; θ) = − 1

β
ln p̃β(ξ; θ)︸ ︷︷ ︸
E(ξ;θ)

−
{
− 1

β
ln Zβ(θ)

}
︸ ︷︷ ︸

Fβ(θ)

. (2.4)

The first term in the right hand side of Eq. (2.4) is the energy of configuration ξ.

The second term is interpreted as an important quantity called the (equilibrium)

free energy of the stochastic system:

Fβ(θ) , − 1

β
ln Zβ(θ) . (2.5)

We can also say that we obtained the relationship in Eq. (2.4) by applying the

inverse of the exponential transformation1 to Eq. (2.1). This implies that, by the

exponential transformation, energy is mapped to the unnormalized probability

and information is mapped to the probability. Eq. (2.4) provides a further insight

in that the free energy is used to “normalize” the energy. After subtracting the

free energy F (θ) from the energy E(ξ; θ), 0 becomes meaningful in the energy-

or log-domain. In this context, the information I(ξ; θ) can be interpreted as a

temperature-dependent normalized energy :

I(ξ; θ) = β{E(ξ; θ) − Fβ(θ)} .

1When the exponential transformation f is defined as f(·) = exp{−β ·}, the inverse of the
exponential transformation is given by f−1(·) = − 1

β ln(·)

8

2.1.2 Variational and equilibrium free energies

The entropy (or expected information) can be expressed as

H[pβ; θ] , −
∑

ξ

pβ(ξ; θ) ln pβ(ξ; θ) (2.6a)

=
∑

ξ

pβ(ξ; θ)I(ξ; θ) (2.6b)

= β
∑

ξ

pβ(ξ; θ) {E(ξ; θ) − Fβ(θ)} (2.6c)

= β
∑

ξ

pβ(ξ; θ)E(ξ; θ)︸ ︷︷ ︸
〈E(θ)〉pβ

−βFβ(θ) (2.6d)

where 〈E(θ)〉pβ
is called the expected energy (or internal potential) of the stochas-

tic system. Reorganizing the terms in Eq. (2.6d) provides us with a new interpre-

tation of equilibrium free energy: expected energy minus temperature-multiplied

entropy,

Fβ(θ) = 〈E(θ)〉pβ
− 1

β
H[pβ; θ] (2.7)

=
∑

ξ

pβ(ξ; θ)E(ξ; θ) +
1

β

∑
ξ

pβ(ξ; θ) ln pβ(ξ; θ) . (2.8)

Using an arbitrary variational distribution q(ξ) instead of the equilibrium distri-

bution pβ(ξ; θ) in (2.8) leads to a variational free energy:

Fβ(q, θ) , 〈E(θ)〉q −
1

β
H[q] (2.9)

=
∑

ξ

q(ξ)E(ξ; θ) +
1

β

∑
ξ

q(ξ) ln q(ξ) . (2.10)

The lower bound of the variational free energy Fβ(q, θ) is given by the equilib-

rium free energy Fβ(θ), and this lower bound is achieved when the variational

distribution coincides with the Boltzmann distribution :

Fβ(θ) = arg min
q

Fβ(q, θ) ⇔ q(ξ) = pβ(ξ; θ) (2.11)

Changing the energy parameter θ to decrease the equilibrium free energy has

interesting consequences. This is achieved by decreasing the expected energy

9

(first term in Eq. (2.8)) or increasing the entropy (second term in Eq. (2.8)). In

short, changing θ so as to lower the equilibrium free energy ensures the frequent

realization of lower energy configurations (a constraint imposed by the expected

energy term) while encouraging equal realization of all possible configurations (a

constraint imposed by the entropy term). A self-organizing property arises as a

consequence of this free energy minimization. The balance between these two

constraints is controlled by the inverse temperature β.

2.1.3 Free energy and EM algorithm

Suppose that we can divide binary stochastic units ξ in the system into two

groups: visible units v and hidden (latent) units h. Then, the joint probability

distribution can be written as pβ(v,h; θ), where θ is still a parameter of an energy

function. Using this expression, the log-likelihood is written as a combination of

three terms:

ln pβ(v; θ) = Q[q, pjoint] + H[q] + DKL[q, ppost] , (2.12)

where the first term is the expected complete data log-likelihood

Q[q, pjoint] ,
∑

h

q(h) ln pβ(v, h; θ) , (2.13)

the second term is the entropy of the variational distribution over hidden nodes h

H[q] ,
∑

h

q(h) ln q(h) , (2.14)

and the third term is the Kullback-Leibler (KL) divergence

DKL[q, ppost] ,
∑

h

q(h) ln
q(h)

pβ(h|v; θ)
. (2.15)

Eq. (2.12) can be further modified by combining the first two terms

ln pβ(v; θ) = L(q, v,θ) + DKL[q, ppost] , (2.16)

where L(q, v,θ) is called the lower-bound of the log-likelihood because the KL

divergence always takes a non-negative value. A graphical interpretation of

Eq. (2.16) is shown in Fig. 2.1.

10

!
!

"
!""####$

!

!
!"#$"% #&'() *

!
!

"
"# !" $"%#& !

!

"
"# !" $" % #&#'

!
!

"
"# !" $"%#&#'

!!""##!$!! !""##"$!! !"""#!! !""

Figure 2.1. Relationship between an energy domain (horizontal axis) and an

unnormalized-probability domain (vertical axis). The exponential curve repre-

sents y = exp(−βx), where x is some quantity in the energy domain. All quan-

tities associated with double-headed arrows are some types of information (or

surprise).

The parameter θ cannot be changed directly to raise the log-likelihood due

to the expectation in Eq. (2.13). Instead, an expectation-maximization (EM)

algorithm raises its lower-bound in an iterative fashion. In the E-step, the varia-

tional distribution q(h) is set to the posterior distribution pβ(h|v; θ) to make the

KL divergence between these two distributions DKL[q, ppost] vanish. In the M-

step, the lower-bound L(q, v,θ), or equivalently the complete data log-likelihood

Q[q, pjoint], is increased by changing the parameter θ. These two steps are re-

peated until convergence.

2.1.4 Boltzmann machine

Thus far, we have not defined the specific form for the parameters of the energy

function. Let us assume that two binary visible nodes, Vi and Vj, in a visible

11

layer V = {V1, . . . , VN} are connected by the symmetric weight wvv
ij ≡ [W vv]ij.

In the same manner, two binary hidden nodes, Hk and Hl, in a hidden layer

H = {H1, . . . , HK} are connected by a symmetric weight whh
kl ≡ [W hh]kl. In

addition, a visible node Vi is connected with a hidden node Hj by a symmetric

weight wvh
ij ≡ [W vh]ij. The bias terms for the visible node Vi and hidden node

Hj are bv
i ≡ [bv]i and bh

j ≡ [bh]j, respectively. These parameters are collectively

represented as θ , {W vv,W vh, W hh, bv, bh}. This parameterization creates a

stochastic model called the Boltzmann machine. The stochastic behavior of the

Boltzmann machine is characterized by the energy of the network:

E(v, h; θ) , −1

2
v>W vvv − v>W vhh − 1

2
h>W hhh − v>bv − h>bh . (2.17)

For learning in the Boltzmann machine, the EM algorithm described in Sect. 2.1.3

can be used. However, the exact evaluation of a posterior pβ(h|v; θ) is often

computationally infeasible due to the mutual dependence between hidden nodes.

2.1.5 Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is a special type of Boltzmann machine

with a restricted connectivity. The special feature of the RBM is the absence of

intra-layer connections between nodes within the same layer. In short, W vv = 0

and W hh = 0. The energy of a particular configuration (V = v, H = h) in the

RBM is defined by

E(v,h; θ) = −v>W vhh − v>bv − h>bh (2.18)

This restricted connectivity ensures that all hidden units are statistically decou-

pled when visible units are clamped to the observed values:

pβ(h|v; θ) =
K∏

k=1

pβ(hk|v; θ) . (2.19)

This special feature of RBMs allows an easy computation of the expectation over

the posterior distribution:

ĥβ
k ≡ 〈hk〉β =

∑
hk∈{0,1}

hkpβ(hk|v; θ) =
1

1 + exp(−β{
∑

i w
vh
ik vi + bh

k})
.

12

Consequently, the evaluation of two important quantities becomes easy. One is

the free energy of the network:

Fβ(v,θ) =
∑

h

pβ(h|v; θ)E(v,h; θ) +
1

β

∑
h

pβ(h|v; θ) ln pβ(h|v; θ) (2.20)

= −
Nv∑
i=1

Nh∑
k=1

viW
vh
ik ĥβ

k −
Nv∑
i=1

vib
v
i −

Nh∑
k=1

ĥβ
kbh

k (2.21)

+
1

β

Nh∑
k=1

ĥβ
k ln ĥβ

k +
Nh∑
k=1

(1 − ĥβ
k) ln(1 − ĥβ

k)

 , (2.22)

and the other is its derivatives:

∂Fβ(v,θ)

∂wik

= −viĥ
β
k (2.23)

∂Fβ(v,θ)

∂bv
i

= −vi (2.24)

∂Fβ(v,θ)

∂bh
k

= −ĥβ
k . (2.25)

In a usual unsupervised setting, the focus is not on the above two quantities

but on the log-likelihood of observed data DN , {vn}N
n=1:

ln pβ(DN ; θ) =
N∑

n=1

ln pβ(vn; θ) (2.26)

= −
N∑

n=1

β {Fβ(vn,θ) − Fβ(θ)} . (2.27)

13

Its derivative is given by

∂

∂wik

ln pβ(DN ; θ) =
N∑

n=1

∂

∂wik

ln pβ(vn; θ) (2.28)

= −
N∑

n=1

β

{
∂Fβ(vn, θ)

∂wik

− ∂Fβ(θ)

∂wik

}
(2.29)

= −
N∑

n=1

β
{
−vn,i〈hn,k〉β + 〈vihk〉β

}
(2.30)

= β

N∑

n=1

vn,i〈hn,k〉β︸ ︷︷ ︸
〈vihk〉βdata

−
N∑

n=1

〈vihk〉β︸ ︷︷ ︸
〈vihk〉βmodel

, (2.31)

where

〈vihk〉βmodel =
∑

vi∈{0,1}

∑
hk∈{0,1}

pβ(vi, hk; θ)vihk .

Unfortunately, 〈vihk〉βmodel is difficult to compute due to the complex dependencies

between all random variables in the system. The (alternating) Gibbs sampling

can be used to sample from the joint probability distribution pβ(vi, hk; θ) and

calculate this expectation. However, we have to run (alternating) Gibbs sampling

an infinite number of times in order to calculate the true expectation.

To overcome this difficulty, Hinton (2002) proposed the Contrastive Diver-

gence (CD) method and proved that it works well in practice. In the original CD

method, called 1-step CD or CD-1, the model distribution is simply replaced by

the reconstruction distribution.

∂

∂wik

ln pβ(DN ; θ) ≈ β
{
〈vihk〉βdata − 〈vihk〉βrecon

}
(2.32)

The reconstruction is created by first stochastically updating all hidden nodes

using a single observation vn. Then, the state of visible units is stochastically

changed after clumping the hidden nodes to the updated value in the previous

step. In this step, the RBM “reconstructs” the observation. Then, it updates

the hidden variables stochastically using the “reconstructed” observations. If the

14

update is terminated at this point, it is called CD-1. This layer-wise sampling

procedure, called alternating Gibbs sampling, can be terminated after n-updates;

this is called CD-n. It is known that CD-n (n > 1) works better than the

original CD-1; however, it is computationally expensive due to the multiple steps

involved in alternating Gibbs sampling. In addition, CD-1 does not estimate

the true gradient of the log probability. Recently, Tieleman (2008) proposed a

method that estimates the true gradient of the log probability. This method is

called Persistent Contrastive Divergence (PCD).

Although the theoretical domain of the configuration in the visible layer is

restricted to V ∈ {0, 1}N , the restriction is relaxed to V ∈ [0, 1]N in many

practical applications. In image processing, for example, the relaxation can be

regarded as the mean-field approximation in the binarization process of gray-scale

(or colored) pixels and it often makes the RBM work efficiently (Sutskever and

Hinton, 2007). Because we employ a set of image data for our demonstration in

the later section, we assume that this relaxation is acceptable in this dissertation.

To preserve the theoretical validity of the RBM, it is possible to adopt Gaussian

units as the input nodes (Welling et al., 2005); however, this type of the RBM is

beyond the scope of this dissertation.

2.2 Reinforcement learning

Reinforcement learning is a subfield of machine learning that aims to learn the

optimal behavioral policy autonomously using the sampled states, actions, and re-

wards collected stochastically through the interaction with the environment (Barto

et al., 1983; Sutton and Barto, 1998). The properties of reinforcement learning

are as follows:

• trial-and-error search

– An agent does not know how the environment evolves (i.e., the agent

possesses no prior knowledge of an environmental dynamics Pa
ss′ and

an expected reward function Ra
ss′).

• delayed reward

15

Observability of states S
Fully observable Partially observable

Non-interactable Markov Chain (MC) Hidden Markov Model (HMM)

(S,P0,P) (S,Z,P0,P ,O)

Interactable Markov Decision Process (MDP) Partially Observable MDP (POMDP)

(S,A,P0,P ,R) (S,A,Z,P0,P ,R,O)

Table 2.1. Classification of four models in terms of observability and interactabil-

ity.

– There exists a trade-off between an immediate and a distant reward.

The challenges of reinforcement learning are (1) a trade-off between exploration

and exploitation and (2) setting or scheduling of meta-parameters such as the

learning rate α, inverse temperature β, and discount factor γ. Reinforcement

learning can be used to acquire the behavioral policy in an unknown environment

(e.g., distant planet where the dynamics are unknown) where the correct action

is difficult to know beforehand.

2.2.1 Markov decision processes

Definition Markov decision processes (MDPs) can be formally defined as a

5-tuple MMDP = (S,A,P0,P,R) where

• S is the state space. S , {1, 2, . . . , |S|} is assumed to be a finite set of

discrete states.

• A is the action space. A , {1, 2, . . . , |A|} is also assumed to be a finite set

of discrete actions. If both the state space S and the action space A are

finite and discrete, such an MDP is called a finite MDP.

• P0 : S → [0, 1] is the initial state distribution. P0
s denotes the probability

of an episode starting from state s:

P0
s , p(s0 = s) . (2.33)

16

Because it is the probability distribution over the initial state,
∑

s∈S P0
s = 1

should be satisfied.

• P : S × A × S → [0, 1] is the state transition probability distribution. Pa
ss′

denotes the probability of reaching state s′ given the condition of taking

action a at state s:

Pa
ss′ , p(st+1 = s′|st = s, at = a) . (2.34)

Because it is a probability distribution over the next state,
∑

s′∈S Pa
ss′ = 1

should be satisfied.

• R : S × A × S → R is the expected reward function. Ra
ss′ denotes the

expected reward obtained by reaching state s′ after taking action a at state

s:

Ra
ss′ , E[rt+1|st = s, at = a, st+1 = s′] . (2.35)

As a slight variant, the expected reward function can also be defined for a

state-action pair (s, a):

Ra
s , E[rt+1|st = s, at = a] ≡

∑
s′∈S

Pa
ss′Ra

ss′ . (2.36)

The objective of MDPs is to find the behavioral policy π that maximizes a

pre-specified scalar objective function. The policy π encodes how an agent selects

an action at a certain state. The policy can be either stochastic or deterministic.

A stationary stochastic policy π(s, a) , p(a|s) is a map from the state to the

distribution over all possible actions π : S → Ω(A), where Ω(A) is the set of all

probability distributions over A. A stationary deterministic policy π(s) , δa′(a)

is a map from a state to an action π : S → A, where δa′(a) is a Kronecker delta

that takes a value 1 if a = a′ and 0 otherwise.

There are two commonly used objective functions for MDPs: expected dis-

counted return and expected average reward. Depending on the objective func-

tion, there exist two formalisms. They are related in an intrinsic manner (Konda

and Tsitsiklis, 2004).

17

Expected discounted return formalism: In this formalism, the expectation

of the discounted return is used as an objective function. First, the discounted

return or discounted cumulative reward from time t is defined as

Rγ
t , rt+1 + γrt+2 + γ2rt+3 + · · · =

∞∑
k=0

γkrt+k+1 , (2.37)

where γ is called a discount factor (or discount rate). The expected discounted

return conditioned on state s is called the state value of s and is defined as

V π(s) = Eπ [Rγ
t |st = s] , (2.38)

where this expectation is obtained by taking an expectation over all possible paths

generated by following the fixed behavioral policy π in the environment specified

by the state transition probability Pa
ss′ and expected reward function Ra

ss′ . V π(s)

can be interpreted as a function of state s, and therefore, it is also called a state

value function over S. Similarly, the expected discounted return conditioned on

both state s and action a is defined as

Qπ(s, a) = Eπ [Rγ
t |st = s, at = a] , (2.39)

and is called a state-action value of (s, a) or a state-action value function over

S ×A. The expected discounted return is then computed as

Jγ ,
∑
s∈S

P0
s V π(s) ≡

∑
s∈S

∑
a∈A

P0
s π(s, a)Qπ(s, a) . (2.40)

In the expected discounted return formalism, the objective function depends on

the initial distribution P0
s . This formalism is commonly used in value-based

methods.

2.2.2 Dynamic programming

Dynamic programming (DP), introduced by Richard Bellman, is a set of methods

that can solve MDPs with a complete knowledge of the environment. Here, the

environment implies the environmental dynamics Pa
ss′ and the expected reward

function Ra
ss′ . If we know the dynamics of the environment and expected re-

ward function, we can exploit the Bellman equations to obtain the optimal value

function using either a policy iteration method or a value iteration method.

18

Bellman equations

Bellman equations are recursive relationships of value functions. Depending on

the value function, there exist the following types of equations.

• Bellman equation for a state value function V π

V π(s) = Eπ[Rt|st = s] (2.41)

= Eπ

[
∞∑

k=0

γkrt+k+1

∣∣∣∣st = s

]
(2.42)

= Eπ[rt+1|st = s] + γEπ

[
∞∑

k=0

γkrt+k+2|st = s

]
(2.43)

=
∑
a∈A

∑
s′∈S

π(s, a)Pa
ss′Ra

ss′ + γ
∑
a∈A

∑
s′∈S

π(s, a)Pa
ss′ Eπ

[
∞∑

k=0

γkrt+k+2|st+1 = s′

]
︸ ︷︷ ︸

V π(s′)

(2.44)

=
∑
a∈A

∑
s′∈S

π(s, a)Pa
ss′ [Ra

ss′ + γV π(s′)] (2.45)

• Bellman equation for state-action value function Qπ is

Qπ(s, a) =
∑
s′∈S

Pa
ss′

[
Ra

ss′ + γ
∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
(2.46)

• Bellman equation for an optimal state value function V ∗(s)

V ∗(s) , max
π

V π(s) (2.47)

= max
π

∑
a∈A

∑
s′∈S

π(s, a)Pa
ss′ [Ra

ss′ + γV ∗(s′)] (2.48)

• Bellman equation for an optimal state-action value function Q∗(s, a)

Q∗(s, a) , max
π

Qπ(s, a) (2.49)

= max
π

∑
s′∈S

Pa
ss′

[
Ra

ss′ + γ
∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
(2.50)

19

2.2.3 Reinforcement learning algorithms

Reinforcement learning algorithms are a set of methods that can solve MDP prob-

lems without a knowledge of the environmental dynamics Pa
ss′ and the expected

reward function Ra
ss′ . An agent does not possess any information about the con-

sequence of taking action a at state s without learning models of the environment:

a forward model P̂a
ss′ and a reward model R̂a

ss′ .

Depending on the maintenance of these environmental models, reinforce-

ment learning methods can be divided into two types: model-free methods and

model-based methods. Model-free methods do not learn the models of the en-

vironment to improve a policy. SARSA (Rummery and Niranjan, 1994) and

Q-learning (Watkins and Dayan, 1992) are two of the most famous model-free al-

gorithms. In contrast, model-based methods explicitly learn the prediction model

of the next state P̂a
ss′ and the next reward R̂a

ss′ . Note that the forward model

P̂a
ss′ predicts the Markov state and not the non-Markov observation.

2.3 Partially observable Markov decision processes

A partially observable Markov decision process (POMDP) is a variant of rein-

forcement learning that was originally designed to model the realistic decision

making problems (Astrom, 1965; Smallwood and Sondik, 1973; Lovejoy, 1991).

It has been extensively studied in the field of operations research and optimal

control since the late 1960s and is still considered as one of the most difficult

problems in the field of machine learning.

Due to its generality, POMDPs encompass wide ranges of problems with dif-

ferent difficulties. We first provide a formal definition of POMDP. Then, we

classify POMDPs according to their difficulties in order to clarify the problems

that we are going to focus on in this dissertation.

Definition The POMDP can be formally defined as a 7-tuple

MPOMDP = (S,A,Z,P0,P ,R,O), where five constructs share the same defini-

tion with the MDP MMDP = (S,A,P0,P ,R), and the additional two constructs

are defined as follows:

20

• Z is the observation space. Z , {z1, z2, . . . , z|Z|} is assumed to be a finite

set of discrete observations.

• O : S ×A×Z → [0, 1] is the observation distribution.

These two additional constructs prevent an agent from directly detecting the true

state of the world. The agent only receives partial information about the true

state through stochastic observations.

Although the objective of POMDPs remains the same as that of MDPs, i.e.,

to find the behavioral policy π that maximizes a prespecified scalar objective

function, this separation of an agent from the true environmental state makes the

problem extremely difficult. This difficulty arises from the definition of the “state”

on which the agent base its decision. The main difficulty in POMDPs is the con-

struction of the Markovian “state.” Exact algorithms construct Markovian states

internally by either keeping all past experiences (no compression, instance-based

approach) or maintaining sufficient statistics of them (lossless compression, belief-

state-based approach). Approximate algorithms construct approximate Markov

states by keeping a lossy memory of the past experiences (lossy compression,

contextual-feature-based approach).

2.3.1 Classification of POMDPs with problem difficulties

No single POMDP algorithm solves all different types of POMDP problems. This

is due to the varying difficulties of POMDP problems. Depending on their diffi-

culties, we classify POMDP problems in this dissertation into three classes.

Class I POMDP A class I POMDP is solely characterized by the partial ob-

servability of the hidden environmental state. An agent receives only partial

information about the true state (e.g., pixel images of a handwritten digit); how-

ever, the successful detection of the true environmental state (e.g., true class of

handwritten digit) reduces the problem MDP. This class is usually not considered

as a POMDP in literature because of the lack of “perceptual aliasing,” which is

the defining characteristic of conventional POMDPs. Perceptual aliasing implies

that several environmental states are aliased to the same observation, and the

21

agent cannot make an optimal decision solely depending on the immediate ob-

servation. However, we still consider this class as a POMDP due to its partial

observability of true states. In addition, we assume no prior knowledge about

the environment. An agent does not possess any prior knowledge about the en-

vironmental dynamics or about the state space of the environment (e.g., a class

of possible digits).

Class II POMDP The conventional POMDPs described in literature belong

to this category. The defining characteristics of class II POMDPs are (1) par-

tial observability of environmental states, (2) perceptual aliasing, and (3) low-

dimensional observation. Again, we assume no prior knowledge about the envi-

ronment.

Class III POMDP The class III POMDP is an extension of the class II

POMDP with high-dimensional observations. Assumptions of no prior knowl-

edge about the environment and high-dimensional observations make this class

particularly suitable for modeling decision making in the real world.

2.3.2 Incorporating memory

Identical sensory inputs can be differentiated with the help of memory traces in

the agent. Some type of memory structure becomes critical to solve POMDP

problems with perceptual aliasing (i.e., class II and III). There exist four ap-

proaches to incorporate past information into decision making. We use White-

head’s terminology to describe these approaches (Whitehead and Lin, 1995).

1. Instance-based approach:

• All observations, actions, and rewards are stored as instances in mem-

ory. Then, a distance matrix is used to weigh the contribution of past

instances in order to estimate the value function.

• A collection of all instances forms a Markov state.

• One drawback is the increasing number of instances in the memory. An

online kernel sparsification method (Engel et al., 2002) can alleviate

this problem.

22

• Design of a kernel function, or a distance matrix, drastically affects

the learning performance.

• Gaussian processes reinforcement learning (GPRL) (Engel, 2005), kernel-

based reinforcement learning (Ormoneit and Sen, 2002), and instance-

based reinforcement learning (Santamaria et al., 1998) belong to this

category.

2. Window-Q approach:

• This approach pads the current, insufficient observation with few re-

cent observations and actions within a fixed window size.

• Padded observations form a Markov state.

• It is difficult to select a fixed window size in advance. If the cho-

sen window size is too small, the padded observations do not form a

Markov state.

3. Recurrent-Q approach:

• An Elman-type recurrent neural network is used to retain contextual

features about the past observations and actions.

• The combination of the current observation and memory (contextual

features) forms a Markov state.

4. Recurrent-model approach:

• One-step prediction module (predictor) and Q-learning module (actor)

are combined to estimate the value function.

• If its prediction becomes perfect, hidden nodes of a predictor (con-

textual features) should contain sufficient information about the past.

Then, the combination of the current sensory inputs with contextual

features forms a Markov state.

Both the recurrent-Q and the recurrent-model approaches use recurrent neural

networks to retain past experiences. In the next section, we explain learning

algorithms for RNNs.

23

2.4 Recurrent neural network

A recurrent neural network (RNN) is used to map input sequences to disired

output sequences. Unlike a feedforward network, the RNN handles data with a

temporal structure. Due to this ability, the RNN is commonly used for sequential

prediction.

During the last few decades, several training algorithms of RNNs have been

proposed. We can separate these algorithms into two types depending on the as-

sumption of hidden connections. One type of training methods usually assumes a

full recurrent connection. Examples of this first type are backpropagation through

time (BPTT) (Werbos, 1990), real-time recurrent learning (RTRL) (Williams

and Zipser, 1989), and extended Kalman filter (EKF) (Puskorius and Feldkamp,

1994). Another type of training methods assumes a sparse recurrent connection.

Examples of this second type are reservoir computing methods, such as echo state

network (ESN) (Jaeger and Haas, 2004) and liquid state machine (LSM) (Maass

et al., 2002), and self-organizing recurrent network (SORN) (Lazar et al., 2009).

In this section, we focus on the BPTT algorithm since it is used in the latter

chapter.

2.4.1 Backpropagation through time

The network is composed of three types of layers–input, hidden and output layers–

and connection weights and biases for nodes in these layers. We collectively

denote the input, hidden, and output layer by U , {Ui}Nu

i=1, M , {Mk}Nm

k=1, and

X , {Xj}Nx

j=1, where Nu, Nm, and Nx are the number of nodes in each layer,

respectively. The realized values of these nodes are written in the lower case like

u, m and x. The connection weight from the lth hidden node Hl to the kth

hidden node Hk is denoted by wmm
kl . Likewise, the connection weight from the

ith input node Xi to the kth hidden node Mk is denoted by wmu
ki . The connection

weight from the kth hidden node Mk to the jth output node Xk is denoted by

wxm
jk . The hidden and output nodes have biases bm

k and bx
j , respectively. In order

to predict the initial target before receiving the initial input, we put the special

bias bm0
k for the hidden nodes in the initial time step instead of bm

k . The dynamics

24

of the network is defined by,

mk,t = σ

{
Nm∑
l=1

wmm
kl ml,t−1 +

Nu∑
i=1

wmu
ki ui,t + bm

k

}
, t = 1, . . . , T (2.51a)

mk,t = σ
{
bm0
k

}
, t = 0 (2.51b)

xj,t = σ

{
Nm∑
k=1

wxm
jk mk,t + bx

j

}
, t = 0, . . . , T . (2.51c)

where σ(z) , 1/(1 + exp(−z)) is a sigmoid function.

The objective of learning is to change the weight and bias parameters so that

the output trajectories {x̂0, x̂1, . . . , x̂T} follows a desired trajectories {x0,x1, . . . , xT}.
As a measure of RNN’s performance, objective function is defined as the average

of instantaneous losses Et,

J(T) , 1

T + 1

T∑
t=0

Et.

The instantaneous loss function is selected depending on the type of output nodes.

For continuous output nodes, square error function is used,

Et =
1

2

J∑
j=1

cj {xj,t − x̂j,t}2 , t = 0, . . . , T , (2.52)

where cj is the error weighting parameters which control the weighting of errors

for each nodes. Its derivative with respect to the output x̂j is given by,

∂Et

∂yj,t

= −{xj,t − x̂j,t} . (2.53)

For binary output nodes, cross-entropy error function is used,

Et = −
J∑

j=1

cj [xj,t log x̂j,t + {1 − xj,t} log {1 − x̂j,t}] , t = 0, . . . , T, (2.54)

Its derivative with respect to the output x̂j is given by,

∂Et

∂yj,t

= − xj,t − x̂j,t

x̂j,t{1 − x̂j,t}
. (2.55)

25

The weights and biases are updated by

w··
ij := w··

ij − α
∂J(T)

∂w··
ij

(2.56a)

b·i := b·i − α
∂J(T)

∂b·i
(2.56b)

where the dots in the superscript of weights and biases represent appropriate

layer names. For the output weight wxm
jk , the gradients in Eqs. (2.56) are defined

by,

∂J(T)

∂wxm
jk

=
T∑

t=0

δx
j,tmk,t (2.57)

where

δx
j,t , ∂Et

∂x̂j,t

x̂j,t{1 − x̂j,t}, t = 0, . . . , T , (2.58)

where ∂Et/∂x̂j,t is given by Eq. (2.53) or Eq. (2.55). For the recurrent connection

wmm
kl , the gradient in Eqs. (2.56) are defined by,

∂J(T)

∂wmm
kl

=
T∑

t=0

δm
k,tml,t−1 (2.59)

where

δm
k,t , ∂J(T)

∂mk,t

mk,t{1 − mk,t}, t = 0, . . . , T , (2.60)

∂J(T)/∂mk,t can be obtained by the following recursive form:

∂J(T)

∂mk,T

=
∑

j

δx
j,T wxm

jk , t = T (2.61)

and

∂J(T)

∂mk,t

=
∑

j

δx
j,tw

xm
jk +

∑
l

δm
l,t+1w

mm
lk , t = 0, . . . , T − 1 (2.62)

For the input weight wmu
ki , the gradients in Eqs. (2.56) are defined by,

∂J(T)

∂wmu
ki

=
T∑

t=0

δm
k,txk,t . (2.63)

The complete algorithm for BPTT is shown in the following section.

26

Back Propagation Through Time (Batch Training)

1. Set the step-size parameter

α := (appropriately small value),

2. Initialize connection weights (biases are included in the weights):

wxm
jk := (at random), j = 1, . . . , J ; k = 1, . . . , K + 1.

wmm
kl := (at random), k = 1, . . . , K; l = 1, . . . , K + 1.

wmu
ki := (at random), k = 1, . . . , K; i = 1, . . . , I + 1.

bm0
k := (at random), k = 1, . . . , K.

3. Initialize hidden units and compute the initial output x̂(0).

mk,0 := σ(bm0
k) k = 1, . . . , K.

x̂j,0 := σ

{
K+1∑
k=1

wxm
jk mk,0

}
, j = 1, . . . , J

4. For each t = 1, . . . , T

(a) Observe the current input ut.

(b) Compute the prediction output x̂t.

mk,t := σ

{
K+1∑
l=1

wmm
kl ml,t−1 +

I∑
i=1

wmu
ki ui,t

}
, k = 1, . . . , K

x̂j,t := σ

{
K+1∑
k=1

wxm
jk mk,t

}
, j = 1, . . . , J

(c) Evaluate the prediction error ej,t.

ej(t) := xj,t − x̂j,t, j = 1, . . . , J

5. Reset the gradients used for training

∂J(T)

∂wxm
jk

:= 0, j = 1, . . . , J ; k = 1, . . . , K + 1.

∂J(T)

∂wmm
kl

:= 0, k = 1, . . . , K; l = 1, . . . , K + 1.

∂J(T)

∂wmu
ki

:= 0, k = 1, . . . , K; i = 1, . . . , I + 1.

27

6. Reset the effective error gain for error collection in the hidden layer.

δm
k,T+1 := 0, k = 1, . . . , K.

7. For each t = T, T − 1, . . . , 0,

(a) Evaluate the effective gain for error correction in the output layer.

δx
j,t :=

−x̂j,t (1 − x̂j,t) ej,t, (for continuous desired outputs)

−ej,t (for binary desired outputs)
, j = 1, . . . , J.

(b) Update ∂J(T)/∂wxm
jk

∂J(T)

∂wxm
jk

:=
∂J(T)

∂wxm
jk

+ δx
j,tmk,t, j = 1, . . . , J ; k = 1, . . . , K + 1

(c) Propagate the effective gain for error correction to the hidden layer.

δm
k,t :=

J∑
j=1

δx
j,tw

xm
jk +

K∑
l=1

δm
l (t + 1)wmm

lk , k = 1, . . . , K.

(d) Update ∂J(T)/∂wmm
kl and ∂J(T)/∂wmu

ki

∂J(T)

∂wmm
kl

:=
∂J(T)

∂wmm
kl

+ δm
k,tml,t−1, k = 1, . . . , K; l = 1, . . . , K + 1

∂J(T)

∂wmu
ki

:=
∂J(T)

∂wmu
ki

+ δm
k,txi,t, k = 1, . . . , K; i = 1, . . . , I + 1

8. Update all connection weights

wxm
jk := wxm

jk − α
∂J(T)

∂wxm
jk

, j = 1, . . . , J ; k = 1, . . . , K + 1.

wmm
kl := wmm

kl − α
∂J(T)

∂wmm
kl

, k = 1, . . . , K; l = 1, . . . , K + 1.

wmu
ki := wmu

ki − α
∂J(T)

∂wmu
ki

, k = 1, . . . , K; i = 1, . . . , I + 1.

28

Chapter 3

Reward- and Action-dependent

Sensory Coding

3.1 Introduction

Recently, a reinforcement learning algorithm that is capable of handling high-

dimensional inputs and actions was proposed by Sallans and Hinton (2000, 2004).

This method exploits the statistical independence realized by the undirected

graphical model called the Product of Experts (PoE), and it utilizes the negative

free energy of the network state to approximate a state-action value function.

The proposed method, which we call “free-energy-based reinforcement learning

(FERL)” method, has been demonstrated to be able to solve a temporal credit

assignment problem in Markov Decision Processes (MDPs) with large state and

action spaces (Sallans and Hinton, 2000, 2004). In addition, compared to con-

ventional RL algorithms with linear function approximators with prefixed basis

functions such as CMAC or RBF networks (Sutton and Barto, 1998), the FERL

can handle highly nonlinear value functions without feature engineering. Due

to this ability to handle high-dimensional binary data without prior tweaking

of features, the algorithm has a potential to bring a breakthrough for the real-

world application of reinforcement learning. However, the characteristics of the

FERL have not been fully investigated yet. In this chapter, we first demonstrate

the noise tolerance obtained by the FERL under the newly proposed task called

the “digit-floor” task. We then analyze the information coding in the activation

29

patterns of hidden nodes in the network.

3.2 Free-energy-based reinforcement learning frame-

work

In this dissertation, we used the RBM (Fig. 4.1(a)), which is the subtype of

PoE using only binary random variables, as a model of an actor. The visible

layer V is composed of binary state nodes S and binary action nodes A (i.e.,

V , {S,A}) . The hidden layer is purely composed of binary hidden nodes H .

A state node Si is connected to a hidden node Hk by a symmetric connection

weight wsh
ik ≡ [W sh]ik, and an action node Aj is connected to a hidden node Hk

by a symmetric connection weight wah
jk ≡ [W ah]jk. All nodes also have bias terms:

bs
i ≡ [bs]i for state nodes, ba

j ≡ [ba]i for action nodes, and bh
k ≡ [bh]k for hidden

nodes. Therefore, all the parameters of RBM-based agent can be collectively

denoted as θ , {W sh,W ah, bs, ba, bh}. The equilibrium free energy of the system

with inverse temperature β, which is the negative log-partition function of the

posterior probability over H given a configuration (S = s,A = a) in thermal

equilibrium, is given by

Fβ(s,a,θ) ≡ − 1

β
ln

∑
h

exp(−βE(s,a,h; θ))

=
∑

h

pβ(h|v; θ)E(s,a,h; θ) +
1

β

∑
h

pβ(h|v; θ) ln pβ(h|v; θ)

= −s>W shĥ − a>W ahĥ − s>bs − a>ba − ĥ>bh

+
1

β

[
K∑

k=1

ĥβ
k log ĥβ

k +
K∑

k=1

(1 − ĥβ
k) log(1 − ĥβ

k)

]

where

ĥβ
k ≡ p(hk = 1|s, a; θ) (3.1a)

= E[Hk|s, a; θ] (3.1b)

= σ(β[W hss + W haa + bh]k) (3.1c)

is the conditional expectation of Hk given the configuration (s,a).

30

The network is trained so that the negative equilibrium free energy approx-

imates the state-action value function, i.e., Q(s, a) ≈ −Fβ(s,a; θ). Due to the

existence of hidden nodes, this step is done by the EM algorithm. With the char-

acteristics of RBM, the EM algorithm is massively simplified both analytically

and computationally. The E-step is simply done by the evaluation of Eq. (3.1c).

Due to the conditional independence of hidden variables, this evaluation vanishes

the Kullback-Leibler divergence between variational distribution q(h) and the

posterior distribution p(h|s, a; θ).

The error function to be minimized in the M-step is the average square

temporal-difference (TD) error

JTD =
1

T

T∑
t=0

1

2
δt(θ)2 (3.2)

where TD error δt(θ) takes one of the three following forms:

δ
SARSA(0)
t (θ) , rt+1 − γF (st+1,at+1; θ) + F (st, at; θ)

δ
Q(0)
t (θ) , rt+1 − γ max

a∈A
F (st+1, a; θ) + F (st,at; θ)

δ
S(0)
t (θ) , rt+1 − γ

∑
a∈A

p(a|st+1; θ)F (st+1,a; θ) + F (st, at; θ) ,

where γ is a discount factor for future rewards. First form of TD error δ
SRASA(0)
t is

used for the SARSA learning algorithm without an eligibility trace. The second

form of TD error δ
Q(0)
t is used for the Q-learning algorithm without eligibility

trace. The third form of the TD error δ
S(0)
t is used for the modified SARSA

algorithm, which reduces the variance in the parameter update using the current

policy. Since we can easily calculate the action-selection probability (or take

samples from it) and the free energy for certain state-action pair, computation of

this TD error δ
S(0)
t is feasible.

Partial derivatives of the error function Eq. (3.2) give the episodic update rule

of the parameters.

∆θ = −α∇θJ
TD
T (3.3)

where α is a learning rate and

∇θJ
TD
T =

1

T

T∑
t=0

δt∇θF (st,at; θ) . (3.4)

31

Due to the characteristics of RBM, the derivative of equilibrium free energy with

respect to each parameter ∇θF (s, a; θ) in Eq. (3.4) can be compactly expressed

as

∂F (s,a, θ)

∂wsh
ik

= −siĥk (3.5)

∂F (s,a, θ)

∂wah
jk

= −ajĥk (3.6)

∂F (s,a, θ)

∂bs
i

= −si (3.7)

∂F (s,a, θ)

∂ba
j

= −aj (3.8)

∂F (s,a, θ)

∂bh
k

= −ĥk . (3.9)

This update concludes the M-step of the EM algorithm.

The online update rule for each parameter can be easily derived as

∆wsh
ik = αδtsi,tĥk,t (3.10a)

∆wah
jk = αδtaj,tĥk,t (3.10b)

∆bs
i = αδtsi,t (3.10c)

∆ba
j = αδtaj,t (3.10d)

∆bh
k = αδtĥk,t . (3.10e)

Actions can be selected using either a clamping or a sampling method de-

pending on the number of possible actions. The clamping method works best

for problems with a small number of alternative actions. With this method, free

energy at state S = s is calculated for each possible action by “clumping” action

nodes A for each configurations a ∈ A. Then, To select an action at a given

state s, we used softmax action selection rule with inverse temperature β

π(s,a; θ, β) = p(a|s; θ, β) =
exp{−βF (s, a, θ)}∑
â exp{−βF (s, â, θ)}

. (3.11)

Alternatively, the action can be selected using the alternating Gibbs sampling.

First, the observation nodes are set to the current inputs, and action nodes and

32

reinforcement learning (−) information theory (+) optimal control (+)

reward energy instantaneous cost

value function free energy cost-to-go function

Table 3.1. Parallelism between reinforcement learning, information theory, and

optimal control.

hidden nodes are randomly initialized. Next, the binary states of hidden nodes

are sampled from the posterior distribution P (h|s, a; θ) =
∏

k P (hk|s,a; θ).

Then, the action nodes are updated using the states of hidden units P (a|h; θ) =∏
j P (aj|h; θ). The previous two steps are repeated for a long time; then we can

sample the action from the distribution P (a|s; θ).

In our experiment, instead of Gibbs sampling, we used the softmax action

selection rule with an inverse temperature parameter β by directly calculating

the free energies for each action due to the following two reasons: (i) the number

of action is small in the current task, and (ii) action nodes has a constraint such

that one of the action nodes can be active at a time.

3.3 Why free energy?

In FERL, a negative equilibrium free energy of an RBM is used to represent a

state-action value function. The reason for choosing this seemingly unintuitive

represetation becomes clear by realizing the parallelism between reinforcement

learning, information theory, and optimal control (Table 3.1).

A parallelism between reinforcement learning and optimal control is easy to

recognize. Reinforcement learning and optimal control use the opposite sign for

functionally same quantities. As an instantaneous quantity received by taking

an action at a certain state, a reward is used in reinforcement learning as op-

posed to an instantaneous cost in optimal control. The reward in reinforcement

learning encourages a certain action, and the instantaneous cost discourages a

certain action. In other words, an instantaneous cost is equivalent to a negative

reward. In contrast, a value function in reinforcement learning and a cost-to-go

function in optimal control theory capture the long-term stochastic consequences

starting from a certain state (or a state-action pair) with a fixed policy. Regard-

33

less of the stochasticity, both the value function and the cost-to-go function take

a scalar value and only depend on the starting state (or the state-action pair)

due to the assumptions of infinite-horizon and the Markov property over states.

These assumptions ensure that the state (or state-action) distribution reaches the

equilibrium distribution. In other words, the path distribution starting from a

certain state (or a state-action pair) given a certain policy is completely captured

by the equilibrium distribution over states (and actions given by the policy for

these states). Due to the existance of an equilibrium distribution over the state

space (or the state-action space), the calculation of the expectation over spatio-

temporal path can be replaced by the one of the expectation over the state (or

state-action) space.

A parallelism between reinforcement learning and information theory is more

difficult to interpret. Let us first recognize that a reward in reinforcement learning

(or an instantaneous cost) is equivalent to an energy (or an unnormalized surprise)

in the information theory with an opposite sign. In other words, the reward is

the negative energy. Next point for understanding this parallelism is that the

calculation of a value function can be interpreted as taking expectation with

respect to the equilibrium distribution under the assumption of infinite-horizon

and the Markov property over states. Due to the existance of an equilibrium

distribution, the calculation of the expectation over spatio-temporal path can be

replaced by the one of the expectation over space. This replacement of spatio-

temporal expectation by the spatial expectation starting from a certain state

(or state-action pair) is well captured by an equilibrium distribution of an RBM

with the clumped state (or state-action) nodes. In other words, the equilibrium

distribution of the RBM with clumped state-action nodes can capture distribution

over paths starting from the given state-action pair. Therefore, the negative free

energies of the RBM can be used to represent state-action values for MDPs.

If a problem use a finite horizon setting, we need to think a path free energy

explicitly (Kappen, 2005).

34

3.4 Digit-floor task

The digit-floor task, which is a variation of a grid maze task and classified as

the class I POMDP (Section 2.3.1). This task is specifically designed to provide

a common platform in the reinforcement learning community to investigate how

the hidden structure of the task behind noisy and high-dimensional observations

are extracted and represented by a reinforcement learning agent. In the digit-

floor task, an agent receives noisy high-dimensional observation (i.e., an image of

handwritten digit corrupted with white noise) in each grid instead of the index

of grid used in the typical grid maze task. There are several points that makes

this task unique and attractive.

First, the states of the POMDP task, i.e., the class labels of handwritten

digits, are explicitly defined; therefore, we can use the class labels for analyzing

or visualizing results. For example, we can compute the statistics in the activation

patterns of hidden nodes induced by pixel images belonging to each class label.

Besides, the statistics is useful for evaluating how clearly the agent can distinguish

pixel images belonging two distinct classes.. Next, this task is easy to implement

and also easy to replicate the simulation in the exactly same setting. Also, the

optimal policy and/or return can be easily found. In this paper, we used the

digit-floor task to test the noise tolerance of the FERL and to investigate the

type of information coded in the activation patterns of a hidden layer.

The goal of an agent in the digit-floor task is to discover the “optimal” way

to act on a “digit floor” autonomously. The “optimal” behavioral policy leads to

the highest discounted return in the sense of expectation. At each time step, the

agent decides the direction of movement based on previous experiences and the

current noisy high-dimensional observation of a handwritten digit painted on the

floor. Neither the agent can see the entire floor at once nor detect the true class

labels of handwritten digits, so that the problem is partially observable. After

the action is executed, the agent receives a numerical reward and moves toward

its intended direction. When the agent reaches the pre-specified goal positions,

the agent is randomly transported to a position other than the goal positions.1

1We can terminate the episode after visiting the goal state and make it an episodic task
though we employed the continuing version of the task and defined the tiles with the digit of
“4” as goal positions in this dissertation for convenience.

35

The MNIST database of handwritten digits, which contains 60,000 training

images and 10,000 test images, is used for the patterns on the tiles. The original

pixel intensity of the images in the MNIST data is represented by an integer

between 0 and 255. By applying the mean-field approximation for the pixel, the

intensity is linearly normalized within the range of [0, 1]. A “tile” is composed

of 28 × 28 pixels of a handwritten digit as shown in Fig. 3.1(a). A “patch”

is composed of 3 × 3 tiles positioned in a predefined arrangement as shown in

Fig. 3.1(b). A “floor” comprises L × L patches, where for each patch, different

tiles are selected randomly from the training data set. In other words, all patches

on the floor share the same pre-specified arrangement though the handwritten

digits on tiles are all different. The floor has a torus structure; hence, it has no

“edge.” Fig. 3.1(c) shows a typical example of floor patterns with L = 4.

To investigate the properties of the FERL, two constraints are imposed in this

study.2 The first constraint is that the unit distance of movement is one tile. The

other constraint is that the agent has an “imperfect” vision system with a visual

field size of 28× 28 pixels; here, “imperfect” implies that some of pixels observed

in the current input are randomly replaced by white noise. Therefore, an agent

never observes the exact same visual input even if it has visited the same tile

many times. Examples of the noisy inputs are shown in the Fig. 3.2.

The digit-floor task is formally defined as a POMDP, which is commonly

specified with a 7-tuple (S,A,Z,P0,P ,R,O). S is a set of hidden states on the

floor, which is defined as a subset of all the possible types of tiles S ⊂ S0 , {“0”,

. . . , “9”, “N”}3. A set of all the possible actions is denoted by A ≡ {‘N’, ‘E’, ‘S’,

‘W’}, which indicates “step one tile to the North/East/South/West.” A set of

all the possible observations is Z ≡ [0, 1]784. An initial distribution P0 : S → R
is defined as the uniform distribution over all non-goal states. A state transition

P : S ×A → S is deterministic, and the agent always moves toward the intended

position. A default reward function R0 : S × A → R is defined as follows: the

movements toward the tile “4”, which is shown as a blank tile in the center of the

patch in Fig. 3.3, from neighboring tiles give a +10 reward. Clockwise movements

along the boundary of each patch result in a +4 reward. All other movements

2These constraints can be removed in the general setting.
3A double quotation mark is used to indicate a certain digit class. Also “N” indicates that

a tile is covered with white noise.

36

(a) Digit tile (b) Digit patch

(c) Digit floor

Figure 3.1. Basic components of a digit floor: (a) is composed of 28 × 28 pixels;

(b) is composed of 3 × 3 tiles; and (c) is composed of 4 × 4 patches.

37

0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

Figure 3.2. Examples of observations under noise. The number on the top of each

image shows the noise level (the percentage of pixels replaced by white noise).

incur a −2 reward. The probability distribution over the observation space given

the true state P (z ∈ Z|s ∈ S) is implicitly determined on the basis of the exact

floor map and noise levels.

3.5 Simulation results

The basic setting of our simulation was as follows. A single simulation run, which

is called ”epoch,” consisted of two phases. In the training phase, an agent acted

on the predefined digit floor. In the testing phase, 400 new images of each digit,

which had never appeared in the training phase, were shown to the agent, and

the behaviors of the network were investigated.

The meta-parameters for learning were set as follows. A learning rate α in

Eqs. (3.10) was exponentially decreased from 0.1 to 0.01 in the course of each

epoch. In order to avoid the unwanted influence of the large number of connec-

tions on the speed of learning, the learning rate was divided by the square root

of the number of total edges in the network. The discount rate γ in Eqs. (3.10)

was set to 0.9. The inverse temperature β in Eq. (3.11), which is a parameter in

the softmax action selection rule, was linearly increased from 0 to 2.

3.5.1 Noise tolerance

In order to test the influence of noise in both the training and testing phases,

images were tainted with different levels of noise. We conducted tests for nine

different noise levels incremented by 12.5%, or equivalently 98 noise pixels, from

the noiseless image to the purely noisy image (Fig. 3.2).

An agent was trained for 100,000 steps per epoch. The agent had 20 hidden

38

Figure 3.3. Optimal actions.

0 5 10

x 10
4

−2

0

2

4

6

8

Iterations

M
ov

in
g

A
ve

ra
ge

 o
f R

ew
ar

d

Figure 3.4. Moving average of the im-

mediate rewards over 100 steps.

nodes. The optimal action at each hidden state is shown in Fig. 3.3. The course

of training with 12.5% noise level is shown in Fig. 3.4. The vertical axis shows the

moving average of the immediate rewards obtained in the previous 100 steps. The

error bar along this axis represents the standard deviation of the moving average

over 10 epochs with different initialization. As shown in the figure despite the

12.5% noise level in the training phase, the agent performs at a nearly optimal

level after 60,000 steps.4 The connection weights between observation nodes and

hidden nodes before and after training are shown in Fig. 3.5.1.

Before and after each epoch of training, 400 test images with various noise

levels were shown to the agent. Fig. 3.6(b) shows the count of the greedy actions

induced by showing 400 noisy test images to the agent that is trained on a digit

floor with 12.5% observation noise. The results for each digit are organized in

such a manner that they match the pre-configured position of the digit floor.

For example, the upper-left graph of Fig. 3.6(b) illustrates that most of the test

images of “0” triggered the correct optimal action ‘E’ in all the 10 epochs after

training. The same behavioral pattern was observed for all digits used in the

task, and therefore the result supports the robustness of the FERL to noise. For

comparison, the same 400 noisy test images were shown to the agent before train-

ing. The result in Fig. 3.6(a) indicates that an agent does not have a behavioral

tendency for a certain digit.

4The upper-bound of theoretically expected reward per time step is 8 = ((4+10)+(10))/(2+
1).

39

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10

Node 11 Node 12 Node 13 Node 14 Node 15 Node 16 Node 17 Node 18 Node 19 Node 20

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10

Node 11 Node 12 Node 13 Node 14 Node 15 Node 16 Node 17 Node 18 Node 19 Node 20

Figure 3.5. Connection weights from observations to 20 hidden nodes: weights

before the training (Upper two rows) and weights after the training (lower two

rows)

40

The agent was able to perform at the satisfactory level even with 37.5% noise

level in a test set 5. However, the The performance deteriorated after 50% of

noise level in the test set, as shown in Fig. 3.6(c). When trained with 50% of

noise, the performance did not deteriorate even with 50% of test noise, as shown

in Fig. 3.6(d). The agent could even perform at the satisfactory level with 62.5%

test noise level before the performance deteriorated at 75% of noise level. With

75 % noise level, even people find it difficult to detect the correct class of a given

digit, as shown in Fig. 3.2. The results suggest that the tolerance to the noise

get better as the noise level in training increases.

3.5.2 Outlier detection

400 test images of handwritten “1” were shown to the agent before and after

the training. Then, images are sorted by the probability of selecting the optimal

action for digit “1”, which is south. The result is shown in Fig. 3.7 Before the

training the agent did not show any preference for moving south by seeing typical

one (3.7(a)). However, after the training, the agent exhibited the clear preference

for moving south by seeing typical “1” and tries to move non-south direction by

seeing atypical “1”.

3.5.3 Population coding of reward-dependent and -invariant

states

In order to analyze information coded in the activity patterns of hidden nodes,

we modified the previous floor pattern. All the tiles in state “5” in Fig. 3.1(c)

were replaced by purely noisy images that were statistically independent of one

another. The example of the floor with the noise tile is shown in Fig. 3.8.

An agent was trained for 30,000 steps per epoch. We repeated the epoch for

10 times with different initializations for position and weights. The observation

noise levels both in the training and test phases were fixed at 12.5%.

Two different reward functions were designed to verify reward-dependent cod-

ing. The first reward function was the same as the previously used one, which we

call a clockwise (CW) condition. Similarly, the second reward function is called a

5Data not shown due to the limited space.

41

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

 N

E

S

W
0 5 10

0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

(a) (12.5%, 12.5%), before training

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch
C

ou
nt

 N

E

S

W
0 5 10

0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

(b) (12.5%, 12.5%), after training

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

 N

E

S

W
0 5 10

0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

(c) (12.5%, 50%), after training

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

 N

E

S

W
0 5 10

0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

0 5 10
0

200

400

Epoch

C
ou

nt

(d) (50%, 50%), after training

Figure 3.6. Count of greedy actions induced by 400 test images for different

combinations of training and test noise levels. The two numbers in the parenthesis

indicate the noise levels in the training and testing phases.

42

(1)0.00036504

(1)0.042479

(1)0.00046603

(1)0.033073

(1)0.00057685

(1)0.031925

(1)0.00061473

(1)0.029237

(1)0.00072847

(1)0.028707

(1)0.00073575

(1)0.026111

(1)0.00076836

(1)0.023201

(1)0.00079711

(1)0.022564

(1)0.00082652

(1)0.02154

(1)0.00084344

(1)0.021383

(a) Before the training.

(1)2.1086e−05

(3)1

(1)0.00031815

(3)1

(4)0.00037543

(3)1

(1)0.0004727

(3)1

(1)0.0013002

(3)1

(4)0.0030362

(3)1

(4)0.0047894

(3)1

(1)0.0049188

(3)1

(1)0.0091797

(3)1

(4)0.021409

(3)1

(b) After the training.

Figure 3.7. Outlier detection: Images are sorted by the action-selection proba-

bility to go south (optimal action for the digit “1”). The probability is shown on

top of each image. Top-left images induces the lowest probability and bottom-left

images induced the highest probability.

43

Figure 3.8. A digit floor with the noise tile

44

counterclockwise (CCW) condition. The magnitude of reward in both conditions

were the same. The only difference was the optimal action at each corner of the

patches.

(a) CW (b) CCW

Figure 3.9. Optimal actions under the clockwise (CW) and counterclockwise

(CCW) conditions.

When 400 test images of each digit were presented to a pre- or post-trained

agent, 20 hidden nodes showed differential activations. Figure 3.10(a) shows the

median activation of 20 hidden nodes6 when 400 images of each digit were pre-

sented for the pre-trained agent in the epoch 1. We can see several vertical bands

in the figure. It indicates that corresponding hidden nodes do not show the par-

ticular preference to certain digits. This trend changes after training. Figure

3.10(b) and Fig. 3.10(c) shows the median activation of 20 hidden nodes given

400 test images of each digit to the agent trained in CW and CCW conditions,

respectively. In both conditions, hidden nodes have differential activation pat-

terns for distinct digits compared to the one without training. Also, if we let the

agent walk over the floor freely without the delivery of reward, activation level of

all hidden nodes become very low as shown in Fig. 3.10(d).

In order to quantify the similarity between the activation patterns induced by

certain digits, we first calculated the median firing rate (MFR) of hidden nodes

for each digit c. The criterion is given by

MFRc = Medianz∈Dtest
c

 1

|A|
∑
a∈|A|

P (h|z,a)

 , (3.12)

where Dtest
c is a set of test data belonging to the digit c, and the operator

Medianz∈Dtest
c

means to take the median of the expression inside the bracket
6Activation of a hidden node Hk for a given input s is defined as a marginal posterior:∑

a P (hk|s,a)P (a|s).

45

Hidden Nodes

D
ig

its

1 2 3 4 5 6 7 8 9 1011121314151617181920

0
1
2
3
4
5
6
7
8
9
N 0

0.2

0.4

0.6

0.8

1

(a) Before training

Hidden Nodes

D
ig

its

1 2 3 4 5 6 7 8 9 1011121314151617181920

0
1
2
3
4
5
6
7
8
9
N 0

0.2

0.4

0.6

0.8

1

(b) CW condition

Hidden Nodes

D
ig

its

1 2 3 4 5 6 7 8 9 1011121314151617181920

0
1
2
3
4
5
6
7
8
9
N 0

0.2

0.4

0.6

0.8

1

(c) CCW condition

Hidden Nodes

D
ig

its

1 2 3 4 5 6 7 8 9 1011121314151617181920

0
1
2
3
4
5
6
7
8
9
N 0

0.2

0.4

0.6

0.8

1

(d) No reward condition

Figure 3.10. The median activation of 20 hidden nodes when 400 test images of

each digit are presented to an agent trained in different reward conditions.

46

with respect to Dtest
c . The influence of action nodes was marginalized out by

assuming the uniform prior over all admissible actions A. For any pair of dig-

its (i, j), the cosine angle between MFRi and MFRj, which are denoted by Gij,

were used as the similarity measure of the MFRs. All the cosine angles were

collectively represented by a Gram matrix G. In order to visualize a structure

captured by the Gram matrix, hierarchical clustering was employed. A distance

matrix used for the hierarchical clustering was created from the Gram matrix

using D = g1> + 1g> − 2G, where g denotes the vectorized diagonal entries of

G.

In the CW condition, as shown in Fig. 3.9(a), the following pairs had the same

optimal action: (“1”, “2”), (“0”, “3”), (“6”, “7”), (“8”, “N”) where “N” denotes

the white noise. As shown in Fig. 3.11(a), each pair with the same optimal action

formed a distinct cluster. In the CCW condition, the following pairs had the same

optimal action: (“0”, “1”), (“3”, “6”), (“7”, “8”), (“2”, “N”). Still, all the pairs

formed separate clusters. These aggregation patterns could not be explained by

the common statistical regularity between digit images because the digit closest

to “N” was “8” in the CW condition as opposed to “2” in the CCW condition.

As shown in Fig. 3.11(c), without any reward, perceptually similar “1” and “7”

were grouped together; in the same manner, “3” and “8” were grouped together.

These subjective perceptual similarities are further confirmed by calculating the

average mutual information between pair-wise class labels C ≡ {c1, c2} ⊂ S0 and

a pixel intensity Zi ∈ [0, 1], which is an average of the value calculated for each

pixel

I(Zi; C) = H(Zi) −
2∑

j=1

P (C = cj)H(Zi|C = cj).

It measures how much we know about the class identity in average by just ob-

serving a single pixel. If the mutual information is low, it means a pixel value

itself is not a good indicator of a class label; therefore, low mutual information

indicates that two classes are perceptually similar. Fig. 3.12 shows the hierar-

chically clustered digits according to the mutual information calculated for each

pair of digits in the test data set. Since the class “N” has a significantly higher

mutual information than the rest of the data, this class is excluded from the fig-

ure in order to show the clustering pattern clearly. The major clustering trends

47

6 7 1 2 8 N 0 3

0.05

0.1

0.15

(a) CW, 20 nodes

7 8 2 N 3 6 0 1
0.05

0.1

0.15

(b) CCW, 20 nodes

1 7 3 8 6 2 0 N
0.1

0.2

0.3

0.4

0.5

0.6

(c) No reward, 20 nodes

Figure 3.11. Hierarchically clustered median firing patterns of 20 hidden nodes.

48

observed in Fig. 3.12 is same as the one in Fig. 3.11(c). Notice the clustering

in Fig. 3.12 is created just by the test data, and therefore reflects the statistical

regularities of the data set. This indicates that without a reward information, an

agent extracts reward-independent statistical regularities of digits on the floor.

This viewpoint is also supported by the large distance between “N,” which did

not possess any statistical regularities, and other digits.

3 8 2 1 7 6 0

0.11

0.12

0.13

P
ix

el
w

is
e

m
ut

ua
l i

nf
or

m
at

io
n

Figure 3.12. Hierarchically clustered digits according to the mutual information

.

Here, the size of the hidden layer was varied to examine its impact on the

reward-driven representation of hidden states. Two new conditions with 10 and

40 hidden nodes were inspected, and the results were compared with the default

condition with 20 hidden nodes shown in Fig. 3.11(a). Figs. 3.13(a) and (b)

are not clearly different as compared to Fig. 3.11(a). Therefore, we can safely

state that the reward-dependent representations formed by FERL do not severely

depend on the number of nodes in a hidden layer.

3.6 Summary and discussion

In this chapter, we showed that both the reward and the statistical regularity

in the images of handwritten digits influenced the encoding of the states, i.e.,

class labels of digits. We found that the information about the class labels was

robustly coded in the activation patterns of hidden nodes in the RBM. A new

task called digit-floor task was introduced to test the properties of the FERL.

49

0 3 1 2 8 N 6 7

0.05

0.1

0.15

0.2

0.25

(a) CW, 10 nodes

6 7 0 3 1 2 8 N
0.06

0.08

0.1

0.12

(b) CW, 40 nodes

Figure 3.13. Hierarchically clustered median firing patterns of 10 and 40 hidden

nodes.

In order to see the encoding of digits clearly, we used an easy class of POMDP

(class I in section 2.3.1), which can be solved by the conventional reinforcement

learning algorithms for MDPs if they could perfectly identify the digit class for

any pixel image.

The use of a RBM for a reinforcement learning agent appears to be biologically

plausible due to the following few reasons. First reason is the use of stochastic

binary nodes and its unique learning rule (Eq. (3.10)), which can be interpreted

as a Hebb rule modified with TD error. The second reason is the entropy max-

imization of posterior distribution over hidden nodes. It makes the efficient use

of limited resources possible. The third reason is the gradual degradation of

performance with noise.

50

Chapter 4

Solving POMDPs without Prior

Knowledge of an Environment

4.1 Introduction

In the cases described in the previous chapter, past experiences were unnecessary

for optimal decision making. Immediate observations contained enough informa-

tion for optimal decision making. In this chapter, we focus on a conventional

POMDP with perceptual aliasing.

In this chapter, we extend the free-energy-based reinforcement learning (FERL)

framework to handle POMDPs using Whitehead’s recurrent-model architecture (White-

head and Lin, 1995). The proposed method can reliably solve POMDPs with

low-dimensional observations without any prior knowledge of environmental dy-

namics. This architecture also has the potential to handle high-dimensional ob-

servations.

4.2 Model architecture

We employ Whitehead’s recurrent-model architecture (Whitehead and Lin, 1995)

to incorporate task-relevant memory for solving POMDP problems. Fig. 4.1(b)

shows the proposed recurrent-model architecture consisting of two parts: an

Elman-type recurrent neural network (RNN) for one-step prediction (predictor)

51

and a RBM for Q-learning (actor).

The predictor module behaves so as to predict an upcoming observation yt

and an encoded reward rt
1 jointly based on the memory mt, which is supposed

to summarize the history of all past events. The binarized reward rt is used

instead of a raw scalar reward rt in order to share a single memory layer for both

observation and reward predictions.

At the initial time step (t = 0), the prediction of the initial observation y0 is

strongly controlled by the initial memory bias bm
init:

m0 = σβm(bm
init) (4.1)

y0 = σβy(W
ymm0 + by) , (4.2)

where βm and βy are gain parameters for updating a memory and outputting

an observation, respectively. At each time step t, the internal potential of the

memory is given by a linear transformation of the previous observation, action,

and memory (yt−1, at−1, mt−1). Then, the activation of the current memory

layer, mt, is given by the application of a sigmoid function σ(·) on the internal

potential:

mt = σβm(W my(cyyt−1) + W ma(caat−1) + W mmmt−1 + bm) , (4.3)

where cy and ca are input scaling parameters for the previous observation and

action, respectively. 2 The input scaling parameters control the the relative influ-

ence of the previous observation, action, and memory on the memory update in

Eq. (4.3). Once the activation of the memory layer mt is set, the network predicts

(yt, rt) as the composite transformation of a linear mapping of mt followed by a

sigmoid function σ(·):

yt = σβy(W
ymmt + by) (4.4)

rt = σβr(W
rmmt + br) , (4.5)

1The notation r denotes a scalar reward, and the vector notation r denotes a bit coding of
the scalar reward with respect to all possible rewards.

2Note that W my is not equal to the transpose of W ym. W my is the weight from the input
observation layer yt−1 to the hidden memory layer mt. On the other hand, W ym is the weight
from the hidden memory layer mt to the output observation layer yt.

52

where βr is a gain parameter for outputting an encoded reward.

A cross entropy error function is used to measure the instantaneous prediction

error:

Et = −
Ny∑
i=1

ρy [yi,t log ŷi,t + {1 − yi,t} log {1 − ŷi,t}] ,

−
Nr∑
i=1

ρr [ri,t log r̂i,t + {1 − ri,t} log {1 − r̂i,t}] , t = 1, . . . , Tepi , (4.6)

where ρy and ρr are error weighting parameters for binary observations and en-

coded rewards, respectively. These two parameters are used to balance the rela-

tive importance between the observation and the reward prediction.

All weights and biases of the predictor are randomly initialized and trained

by the backpropagation through time (BPTT) algorithm. Other parameters such

as gain parameters, input scaling parameters, and error weighting parameters are

adjusted manually for each task.

The state layer of the actor module is composed of the current observation and

predictor’s memory (yt, mt). The actor is trained by the SARSA(0) algorithm

with Eq. (3.10).

4.3 Experiments

We used a regular T-maze task in order to show the proposed model’s ability

to solve a POMDP without any prior knowledge of the environmental dynamics.

We also designed a matching T-maze task in order to show the proposed model’s

ability to integrate memory and observation on the fly. PCA is applied to the

activation patterns of functional modules (e.g., a predictor’s memory layer, an

actor’s state, etc.) in order to investigate the changing trends of characteristic

firing patterns during the course of performance improvement.

53

Figure 4.1. Models for handling high-dimensional inputs. (a) An actor-only

architecture for MDPs. (b) A predictor-actor architecture for POMDPs.

4.3.1 Regular T-maze task

Task specification

A regular T-maze task is a non-Markovian grid-based T-maze task first introduced

by Bakker (2002). The correct position of the goal depends on the initial signal

at the start position. This task only requires an agent to remember the initial

signal to enter the correct goal after it successfully reaches the T-junction.

An agent has four possible actions: go one step North, West, East, or South.

Figure 4.2. A regular T-maze with a corridor length of 3. The optimal action at

the T-junction is indicated by the arrow for each signal condition.

54

Figure 4.3. Bit coding of the position, signal, and reward signals

Figure 4.4. A regular T-maze with the corridor length of 6.

At each time step, an agent simultaneously receives the information about its po-

sition and a signal specifying the rewarding goal position. There are five types of

information related to the position: (1) start position, (2) middle of the corridor,

(3) T-junction, (4) left goal, and (5) right goal. The signals are only observed at

the start position. Other than these positions, the agent receives no signal. As a

result, all observations are represented by 7 binary nodes (5 for the position and

2 for the signal).

An episode ends either when the agent steps into the goal states or after the

number of action selections exceeds the maximum number of steps allowed in a

single episode. If the initial signal is on the right (or East on the figure), the

agent receives a reward of +5 at the right goal and −5 at the left goal; otherwise,

the reward condition is reversed. When the agent hits the wall, the underlying

environmental state does not change, and the agent receives a reward of −1.

Otherwise, the agent moves in the intended direction and receives a reward of

−0.1. Upon each episode, an initial signal is independently and randomly selected

and fixed. A position, a signal, and reward are all represented by orthogonal bits.

55

Parameters Values Parameters Values Parameters Values

Tmin 3 ρy 1 αpredictor 0.05

Tmax 10 ρr 4 αactor 0.05

N y 7 cy 1 β 0 → 10

N r 4 ca 1 γ 0.95

Nm 20 βm 1 Nsample 2000

Nh 20 βy 1 N 10000

Na 4 Ltraining 5 Nepoch 400

Table 4.1. Parameters for the regular/matching T-maze task.

Parameters

The parameters of the following two experiments in this chapter (regular T-maze

task and matching T-maze task) are listed in Table. 4.1. The environment of the

T-maze is specified by the following parameters. Tmin is the minimum number of

steps required to reach the goal or, equivalently, the length of the vertical corridor.

Tmin can be changed to create a long T-maze. An example with Tmin = 6 is shown

in Fig. 4.4 (Tmin = 3 is the default value). Tmax is the maximum number of steps

in an episode (Tmax = 10 is the default value). All episodes with length Tmax were

prematurely terminated.

For the prediction module, we used 7 observation nodes Y (Ny = 7), 4 reward

nodes R (N r = 4), and 20 memory nodes M (Nm = 20). Error weighting

parameters for observation and reward are set as ρy = 1 and ρr = 4, respectively.

Input scaling parameters (cy and ca) and gain parameters (βm and βy) are all set

to 1. The learning rate of the predictor (αpredictor) is fixed to 0.05. The predictor’s

weights and biases were initialized with a spherical Gaussian with a unit variance.

For the actor module, we additionally used 20 hidden nodes H (Nh = 20)

and 4 action nodes A (Na = 4). The learning rate of the actor (αactor) is fixed to

0.05. The inverse temperature β is linearly increased from 0 to 10. The discount

factor γ is set to 0.95. The actor’s weights and biases were initialized with a

spherical Gaussian with variance 1.

56

Training procedure

First, data were collected by randomly exploring the environment for 2000 episodes

(Nsample = 2000). Each episodic data have a variable step-length between Tmin

and Tmax. Data with long sequences were truncated to observe the generalization

of the predictor’s training. For the training of RNNs, data sequences with a step-

length from Tmin to Tmin + Ltraining − 1 were used, where the parameter Ltraining

specifies the maximum step-length of a training sequence. We used Ltraining = 5

and used training data with step-lengths of 3, 4, 5, 6, and 7. Collected data

were further balanced to obtain equal numbers of training instances for different

step-lengths. 80% of balanced data were used as the training data for RNNs, and

the remaining 20% of data were used as the test data. A set of training data with

step-length T is collectively denoted as

DT
train , {y(n)

0:T , r
(n)
1:T}

NT
n=1 ,

where NT is the number of instances in the set. The predictor is trained using

BPTT with the pattern update mode. The entire set of training data with variable

step-lengths is shown for 400 epochs (Nepoch = 400). Finally, an FE-based actor is

trained with the TD learning rule. The entire pseudocode is given in Algorithm 1.

Results

In order to show the performance improvement of the predictor, the average

weighted absolute prediction errors were plotted in Fig. 4.5. The cross-entropy

error, which was used for actual training, was not used to plot the changing

prediction error because this value increased rapidly as the predictor’s confidence

in estimates increased. The average weighted absolute prediction errors is defined

as

ET
t (θ, ρy, ρr,DT

train) =

NT∑
n=1

1

NT

Eabs
t (y

(n)
0:T , r

(n)
1:T , ρy, ρr; θ) , (4.7)

where

Eabs
t (y0:T , r1:T , ρy, ρr; θ) = ρy

Ny∑
i=1

|yi,t − ŷi,t| + ρr

Nr∑
i=1

|ri,t − r̂i,t| . (4.8)

57

Algorithm 1 Entire training sequence for the one-predictor model.

Initialize all weights and biases.

for n = 1 to Nsample do

Collect episodic samples {yt, rt, at}Tn
t=0 with a random policy.

end for

Create a training dataset {DT
train}Tmax

T=Tmin
and a test dataset {DT

test}Tmax
T=Tmin

.

for T = Tmin to Tmin + Ltraining − 1 do

Train a predictor with DT
train using a BPTT learing rule.

end for

for n = 1 to Nepoch do

Actor’s weights are initialized.

for m = 1 to N do

t ← 0.

Predict the initial observation with ŷt.

Get the initial observation yt.

repeat

Select action at.

Predict the observation and reward with ŷt+1 and r̂t+1.

Get the an observation yt+1 and a reward rt+1.

Actor’s weights are updated with a TD learning rule.

t ← t + 1

until The goal is reached or t = Tmax

end for

end for

58

1 3

80

160

240

320

400
1 3

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7 9

80

160

240

320

400

1 3 5 7 9

80

160

240

320

400

0

0.2

0.4

0.6

0.8

1

Step
1 3

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7 9

80

160

240

320

400

Step

1 3 5 7 9

80

160

240

320

400 0

0.2

0.4

0.6

0.8

1

Figure 4.5. Average weighted prediction errors of the joint predictor of observa-

tions and rewards in the regular T-maze task. The measure of prediction errors

is the absolute error. The top row in the figure shows the error for the training

dataset DT
train, and the bottom row shows the error for the test dataset DT

test. Each

column shows the error for data with variable lengths T . The left-most column

used the data with 3 steps to the goal (T = 3), and the right-most column used

the data with 10 steps (T = 10, premature termination). The vertical axis and

horizontal axis of each panel indicate the training epoch of RNNs and steps t in a

episode, respectively. A prediction error with step 0 implies the prediction error

for the initial observation.

59

is a weighted absolute prediction error.

After training the prediction with DT
train (T = 3, 4, 5, 6, 7), the predictor could

estimate the predictable observations and encoded rewards precisely, as shown

in Fig. 4.5. The prediction error rapidly decreased in the first few epochs. The

learning is well generalized for the test dataset (bottom row in Fig. 4.5) and for

longer sequences (three right-hand side panels in Fig. 4.5). The prediction errors

for the initial observation (left-most column in each panel in Fig. 4.5) did not

decrease as the learning proceeded. This is due to the unpredictability of the

signal given at the beginning of the episode.

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Figure 4.6. Moving average of discounted return in the regular T-maze task with

corridor length 3 (Tmin = 3). The window size is 200 episodes. Error bars in (a)

show the standard error of the mean (s.e.m.) over 10 runs. The upper bound of

the discounted return is indicated by the dotted line (R0 = 4.3175 with γ = 0.95).

After the training of the predictor, the predictor’s weights were fixed. Then,

the actor was trained using SARSA(0). Because the correct decision at the T-

junction is the only source of a positive reward (+5 terminal reward), the positive

return itself ensures that an agent successfully solved the given POMDP task. A

moving average of the discounted return over 10 runs in Fig. 4.6 indicates that

this POMDP task is solved optimally. Fig. 4.7(a) and (b) show that the agent

not only learned to reach the goal with optimal 3 steps but also learned to reach

the correct goals in all 10 runs. Fig. 4.8(a) shows that the TD error decreases

over the episodes in all runs. A closer look at the first run (Fig. 4.8(b)) reveals

60

0 2000 4000 6000 8000 10000
2

3

4

5

6

7

8

9

A
ve

ra
ge

 s
te

ps
 to

 th
e

go
al

Episode

(a) Steps to the goal.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

6

A
ve

ra
ge

 te
rm

in
al

 r
ew

ar
ds

Episode

(b) Terminal rewards.

Figure 4.7. Performance measured in (a) the number of steps to the goal and (b)

terminal rewards. The window size of the moving average is 200 episodes. Each

measure is averaged over 10 runs. The optimal performance levels are indicated

by a dotted line.

0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

Episode

A
ve

ra
ge

 a
bs

ol
ut

e
T

D
 e

rr
or

(a) Average over 10 runs

0

5000

10000

0
2

4
6

8
10

−15

−10

−5

0

5

10

EpisodeStep

T
D

 e
rr

or

(b) Individual runs

Figure 4.8. Absolute TD error (a) Moving average of the mean absolute TD error

(Tmin = 3). The episodic mean is taken first, and then, the moving average is

calculated. The window size is 200 episodes. Error bars show the standard error

of the mean (s.e.m.). (b) TD errors in the 1st run. Data are sparsely plotted

every 50 episode starting from the first episode.

61

how stepwise TD error decreased as the learning proceeded. We can see a clear

correlation between the magnitude of TD errors and the number of steps to the

goal.

4.3.2 Matching T-maze task

Task specification

The matching T-maze task is a simple extension of a regular T-maze task (Bakker,

2002). In order to act optimally, an agent needs to use both the memory and the

immediate observation. This new task is specifically designed to investigate how

an agent integrates an observation and task-relevant memory traces on the fly.

Unlike the regular T-maze task, the signals are observed at the start position

and the T-junction. The agent receives no signal at the other three positions.

Figure 4.9. Matching T-maze task. Arrows indicate the optimal action at the

T-junction.

An episode ends either when the agent steps into the goal states or after

the number of action selections exceeds the maximum steps allowed in a single

episode. If two signals at each end of the corridor are the same, the agent receives

a reward of +5 at the right goal and −5 at the left goal; if two signals at each

end of the corridor are not the same, the reward condition is reversed. When

the agent hits the wall, the underlying environmental state does not change, and

the agent receives a reward of −1. Otherwise, the agent receives a reward of

−0.1. Upon each episode, two signals are independently and randomly selected

and fixed. A position, a signal, and reward are all represented by orthogonal bits.

62

1 3

80

160

240

320

400
1 3

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7 9

80

160

240

320

400

1 3 5 7 9

80

160

240

320

400

0

0.2

0.4

0.6

0.8

1

Step
1 3

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7 9

80

160

240

320

400

Step

1 3 5 7 9

80

160

240

320

400 0

0.2

0.4

0.6

0.8

1

Figure 4.10. Average weighted prediction errors of the joint predictor of observa-

tions and rewards in the matching T-maze task. Refer to the caption of Fig. 4.5

for reading the figure.

Parameters

We used 7 observation nodes Y , 4 reward nodes R, 20 memory nodes M for the

predictor module, and 20 hidden nodes H .

Basic performance

As shown in Fig. 4.10, predictable observations and rewards are well estimated

by the joint predictor after training with DT
train (T = 3, 4, 5, 6, 7). The decrease

in the prediction error occurred at the initial prediction, and then, it gradually

propagated from shorter steps to longer steps in all conditions. The prediction

errors for the last step, whose minimization is crucial for the task, always occurred

after the prediction errors for the leading steps decreased. The learning was well

generalized for the test dataset (bottom row in Fig. 4.10) and for longer sequences

(three right-hand side panels in Fig. 4.10).

Prediction errors for t = 0 (pre-execution step) and t = T − 1 (step immedi-

ately before entering the goal) are high for all successfully terminated episodes

(T = 3, . . . , 9) due to the unpredictability of two signals. Interestingly, the pre-

diction errors decrease as T increases for pre-terminal observations at t = T − 1.

This is due to the increasing number of episodes with predictable pre-terminal

observation. The pre-terminal observation becomes predictable if an agent hits

the north-wall before entering the goal. Due to the difficulty of predicting the

final reward (this requires the initial signal and the signal at the T-junction to

63

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Figure 4.11. Moving average of discounted return in the matching T-maze task

(Tmin = 3). The window size is 200 episodes. Error bars show the standard error

of the mean (s.e.m.). The upper bound of the discounted return is indicated by

the dotted line (R0 = 4.3175 with γ = 0.95).

be combined), the prediction error for the terminal reward is high as compared

to the previously obtained rewards. However, the prediction error for the ter-

minal reward still decreased gradually over epochs. A cascading improvement of

prediction performance from the early steps (small t) to later steps (large t) is

also seen in all panels. This indicates the requirement of accurate prediction of a

shorter sequence before predicting the longer sequence.

After training the predictor, its weights were fixed. Then, the actor was

trained using SARSA(0). A moving average of the discounted return over 10 runs

is shown in Fig. 4.11. It indicates that this POMDP task was solved optimally

in all runs. This result is further confirmed with different performance measures:

average number of steps to the goal (Fig. 4.12(a)) and average terminal reward

(Fig. 4.12(b)).

Fig. 4.13(a) shows that the TD error decreases to zero in all runs. A closer

look at the first run (Fig. 4.13(b)) reveals how the stepwise TD error decreases as

the learning proceeds. We can see a clear correlation between the magnitude of

TD errors and the number of steps to the goal. In addition, the TD error is always

large at the last step in the early episodes due to the difficulty for predicting the

final reward.

64

0 2000 4000 6000 8000 10000
2

3

4

5

6

7

8

9

A
ve

ra
ge

 s
te

ps
 to

 th
e

go
al

Episode

(a) Steps to the goal.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

6

A
ve

ra
ge

 te
rm

in
al

 r
ew

ar
ds

Episode

(b) Terminal rewards.

Figure 4.12. Performance measured in (a) the number of steps to the goal and (b)

terminal rewards. The window size of the moving average is 200 episodes. Each

measure is averaged over 10 runs. The optimal performance levels are indicated

by a dotted line.

0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

Episode

A
ve

ra
ge

 a
bs

ol
ut

e
T

D
 e

rr
or

(a) Average over 10 runs

0

5000

10000

0
2

4
6

8
10

−20

−15

−10

−5

0

5

10

EpisodeStep

T
D

 e
rr

or

(b) Run 1

Figure 4.13. TD errors. (a) Mean absolute TD error. The window size of the

moving average is 200 episodes. Error bars show the standard error of the mean

(s.e.m.) over 10 runs. (b) TD errors in the 1st run. Data are sparsely plotted

every 50 episode starting from the first episode.

65

Internal representations

We are interested in how sequentially collected observations are encoded and

maintained in the agent throughout the decision making process. In this section,

we analyze the activation patterns of the functional module in the agent.

Visits

m
 (

1−
20

)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

1000 2000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

PC 1

P
C

 2

−1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 4.14. Activation patterns of the predictor’s memory nodes at the T-

junction. These activations were used to predict the obtained rewards at the

T-junction before entering the T-junction. (a) Activations for all visits to the T-

junction are shown according to the four possible signal conditions (initial signal,

T-junction signal). (b) PCA analysis of these activations. The size of the marker

reflects the the number of steps to the goals. The smallest marker indicates 3

steps, and the largest marker indicates 10 steps.

First, we focus on the memory layers of the predictor. In order to predict

the terminal reward correctly, the information about the initial signal should be

66

Visits

m
 (

20
),

 y
(−

)

(L, R)

1000 2000

5

10

15

20

25

Visits

(L, L)

1000 2000

5

10

15

20

25

Visits

(R, L)

1000 2000

5

10

15

20

25

Visits

(R, R)

1000 2000

5

10

15

20

25

(a) All activations (initial signal, T-junction signal).

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

PC 1

P
C

 2

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 4.15. Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-junction.

encoded and maintained in the activation patterns of this layer. Fig. 4.14 suggests

that the memory of initial signal is encoded and maintained in the predictor’s

memory layer when the agent reaches the T-junction. The activation patterns

at the T-junction differ depending on the initial signal even before the learning

starts (Fig. 4.14(a)). These trends are further confirmed by the PCA analysis in

Fig. 4.14(b). It shows that, during both the first and the last 1000 episodes, the

variations in the activations are mostly explained by the difference in the initial

signal.

Next, the activation patterns of the actor’s state nodes at the T-junction are

investigated (Fig. 4.15). The actor’s state is composed of 7-dimensional observa-

tion (y) and 20-dimensional predictor’s memory layer (m). The PCA analysis

67

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

PC

C
on

tr
ib

ut
io

n

Figure 4.16. Contributions of each principal component (actor’s state nodes).

shown in Fig. 4.15 revealed that four conditions are separately represented in

state nodes. Further analysis revealed that most of the variability in the actor’s

state nodes can be captured by the first two principal components (Fig. 4.16).

Finally, activation patterns of the actor’s hidden nodes at the T-junction are

investigated (Fig. 4.19). For each task condition, distinct firing patterns appear

as the training proceeds (Fig. 4.17(a)). This trend is further confirmed in the

PCA analysis of these activations. In Fig. 4.19, activations during the first and

the last 1000 visits to the T-junction are projected onto the space spanned by the

first two principal components. This figure shows the separation of firing patterns

depending on the task condition. The dynamic separation in the learning process

is clearly seen in Fig. 4.18 (Fig. 4.19 shows the first and the last 1000 episodes of

Fig. 4.18). It reveals the gradual convergence of firing patterns depending on the

task condition.

Further analysis revealed that most of the variability in the actor’s hidden

nodes can be captured by the first three principal components (Fig. 4.19(a)).

The projection on this three-dimensional space revealed that the firing patterns

for each task condition were not only separated in the three-dimensional space

but were also orthogonalized (Fig. 4.19(b)).

68

Visits

h
(1

−
20

)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

1000 2000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

P
C

 2

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 4.17. Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the T-junction.

69

−0.5

0

0.5

1

−0.4
−0.2

0
0.2

0.4
0.6

0.8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

PC 1
PC 2

T
 ju

nc
tio

n
vi

si
t

(L, R)

(L, L)

(R, L)

(R, R)

Figure 4.18. Changing activation patterns of the actor’s hidden nodes at the

T-junction.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC

C
on

tr
ib

ut
io

n

(a) Contribution of each principal compo-
nent

−0.5

0

0.5

1

−0.4
−0.2

0
0.2

0.4
0.6

0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1
PC 2

P
C

 3

(L, R)

(L, L)

(R, L)

(R, R)

(b) Projection of all activations in the first three
principal components

Figure 4.19. Analysis of the activation patterns of the actor’s hidden nodes.

70

Parameters Values Parameters Values Parameters Values

Tmin 3 ρy 1 αpredictor 0.05

Tmax 10 ρr 4 αactor 0.05

N y 784 cy 0.0089 β 0 → 10

N r 4 ca 1 γ 0.95

Nm 20 βm 1 Nsample 2000

Nh 20 βy 1 N 10000

Na 4 Ltraining 5 Nepoch 400

Table 4.2. Parameters for the digit matching T-maze task.

4.3.3 Digit matching T-maze task

The task was further extended to the digit matching T-maze task in order to test

the proposed model’s ability to handle high-dimensional sensory inputs. In the

digit matching T-maze task, instead of orthogonal bit codes of the position and

signal, 784-dimensional binarized images of handwritten digits are given to the

agent as sensory inputs (Fig. 4.20). All the other task settings are the same as

those in the matching T-maze task described in Section 4.3.2.

Here, we only focus on the ability of the proposed architecture to handle high-

dimensional observations; therefore, observations are not stochastic but static.

We only use a single instance of handwritten digits for each digit class shown in

Fig. 4.20.3

The parameters used for the digit matching T-maze task are listed in Ta-

ble. 4.2. Input scaling parameters are set to cy = 0.0089 (= 7/784) and ca = 1

to balance each layer’s contribution on the memory update. The prediction error

weights are set as ρy = 1 and ρr = 4 in order to reflect the importance of the

reward prediction in the given task. All the other parameters are the same as

those used in the previous experiments.

The performance of the agent remained suboptimal as shown in Fig. 4.21(a);

however, the agent still showed the tendency to select the correct goal as shown

in Fig. 4.21(b). It indicates that the information about the initial signal was at

least retained in the predictor’s hidden nodes.

3This restriction is removed in the next chapter.

71

Figure 4.20. Digit matching T-maze task. The optimal action at the T-junction

is indicated by arrows.

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(a) Discounted return.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

A
ve

ra
ge

 te
rm

in
al

 r
ew

ar
ds

Episode

(b) Terminal reward.

Figure 4.21. Performance of the predictor-actor model in the digit matching

T-maze task.

72

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

Episode

A
ve

ra
ge

 s
te

ps
 to

 th
e

go
al

s

(a) Steps to the goal.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy
 o

f t
er

m
in

al
 r

ew
ar

ds

Episode

+5
−0.1
−1
−5

(b) A predictor-actor

Figure 4.22. Performance of the predictor-actor model in digit T-maze task. (a)

Moving average of number of steps to the goals over the past 200 episodes. (b)

Frequency of terminal rewards in each 200-episode block.

Fig. 4.22 shows one successful run in the digit matching T-maze task. This

success in a particular run is encouraging because the proposed architecture can

potentially handle POMDP problems with high-dimensional observations. How-

ever, its performance is fairly unstable in different runs. In addition, its per-

formance strongly depends on the tuning of parameters such as prediction error

weights (ρy nad ρr) and input scaling parameters (cy and ca).

4.4 Summary and discussion

In this chapter, we proposed a new method to solve POMDP problems without a

prior knowledge of an environment. Here, neither the state transition probability

nor the true set of underlying states is given a priori. The agent selected the action

solely based on the current observation and its own internal memory. Unlike the

original recurrent-model architecture, which used a three-layer feedforward neural

network to approximate state-action values, we employed an RBM-based actor.

The proposed method successfully solved two variants of T-maze tasks: reg-

ular T-maze task and matching T-maze task, which are listed in the order of

increasing task complexity. There were a few success in the digit matching T-

73

maze task; however these were too weak to conclude that this task can be solved

with the proposed architecture.

In our simulation, the predictor estimated both the observation and the en-

coded reward for simplicity. However, this simplification introduced the compli-

cation of balancing these two terms with weighting parameters ρy and ρr. Ob-

servations and rewards should probably be predicted separately using different

memory layers. With this separation, we can estimate a scalar reward directly

instead of a binarized reward. The characteristics of FERL to handle different

modalities may help to use the different memory layers jointly with observations.

The prediction of observation can also be improved using a preprocessing

mechanism. This preprocessing might be achieved using a pre-trained deep belief

network (Hinton, 2002) or a deep Boltzmann machine (Salakhutdinov and Hinton,

2009). By first extracting statistical regularities in the raw sensory data, an

actor can use these extracted features as sensory inputs instead of raw sensory

inputs. In addition, the predictor can predict these processed features instead of

raw sensory data. This preprocessing may improve the robustness to noise and

observation variabilities. In addition, this approach might also boost the learning

speed if we use a smaller number of hidden nodes in the top hidden layer than

the one of observation nodes. These advancements are likely to serve as building

blocks of truly autonomous robots.

74

Chapter 5

Solving POMDPs with

High-Dimensional Noisy

Observations

5.1 Introduction

In the previous chapter, we introduced a novel architecture that can solve POMDP

problems with unknown dynamics. Although the proposed architecture could

solve POMDP problems with low-dimensional bits (regular and matching T-

maze task), the performance in problems with high-dimensional observations

(digit matching-T-maze task) was not satisfactory given the proven ability of

the free-energy-based agent to handle noisy high-dimensional data in the MDPs

(Chapter. 3).

In this chapter, we modify the architecture in order to improve the perfor-

mance by incorporating the results obtained in the previous chapter. The key

features in the improved architecture are (1) the use of RBMs for preprocessing

high-dimensional noisy observations, (2) the use of separate predictors for ob-

servation and reward, (3) the use of a raw scalar reward instead of an encoded

reward, and (4) the removal of unwanted parameters. As a result, POMDPs with

high-dimensional noisy observations were solved without any prior knowledge of

environmental dynamics.

75

Figure 5.1. Improved predictor-actor architecture. This architecture includes

an RBM–based observation preprocessor and separate predictors for processed

observations and scalar rewards.

5.2 Model architecture

The improved recurrent-model architecture for solving POMDP problems with

high-dimensional observations is shown in Fig. 5.1. As in the previous model

(Fig. 4.1(b)), an agent is composed of two overlapping modules: a predictor and

an actor. However, each module is reconstructed to overcome the limitations

posed in the previous chapter. The major changes in the architecture are the

introduction of observation preprocessing and the separation of predictors. The

effects of these changes are further elaborated below.

Observation preprocessing In the improved architecture, observations are

preprocessed using RBMs. In Fig. 5.1, the preprocessing module is represented

by two boxes (y
(0)
t and yt) connected by a double line. Observation preprocessing

affords many benefits.

The first is the reduction in the dimensionality of high-dimensional observa-

tions. As long as the same amount of information is preserved, a low-dimensional

representation is less noisy and becomes a better target for the predictor than a

76

high-dimensional representation.

The second is that the extracted codes or features can be used as a more useful

representation than raw high-dimensional observations. RBMs not only learn

the generative model of observations but also code the observations cohesively

according to the observation distribution. In other words, observations with

similar statistical characteristics are closely mapped in the feature space, and

those with different statistical properties are orthogonally mapped in the feature

space. Unlike mixture-based generative models (e.g., mixture of Gaussian, HMM,

etc.), RBMs realize a distributed representation of data.

Third, these extracted codes are robust to noise. These three benefits make

the processed observations ideal targets for the predictor. Given the same data,

a low-dimensional denoised meaningful target is much easier to predict than a

high-dimensional noisy target.

Finally, the freedom of choosing the number of hidden units in RBMs can be

utilized to balance the importance between the observation and the memory. For

example, in the architecture used in the previous chapter, for the agent seeing

pixel-images, the memory is updated by 784-dimensional observation nodes, 20-

dimensional memory nodes, and 4-dimensional action nodes. In order to alleviate

this unbalanced contribution to the memory update, the input scaling parameters

(cy and ca) have been introduced thus far. Instead of tweaking these parameters,

we can control the importance between the observation and the memory on the

memory update by setting the number of RBMs’ hidden nodes and predictor’s

memory nodes accordingly.

Separation of predictors In the new model, the observation and reward are

predicted by different predictors. This change allows the predictors to use dif-

ferent types of output nodes, or equivalently, different types of prediction error

functions. In the previous chapter, a reward was encoded in a binary vector due

to the requirement of using one type of error function in a single agent. In the

new architecture, we do not need this limitation. Therefore, the error function

for each predictor can be independently considered. For example, we can choose

77

a cross entropy error function for binary processed observation nodes

Ey
t = −

Ny∑
i=1

[yi,t log ŷi,t + {1 − yi,t} log {1 − ŷi,t}] , t = 0, . . . , Tepi , (5.1)

and a square error function for linear reward nodes

Er
t =

1

2
(rt − r̂t)

2 , t = 1, . . . , Tepi . (5.2)

Note that the error weighting parameters (ρy and ρr in (4.6)), which made the

predictor’s learning rule complicated in the previous chapter, were dropped. In

addition, the artificial binarization of reward is no longer necessary.

The separation of the predictors yield two memory layers. An actor uses both

memory layers for decision making. In the new architecture, the actor’s state is

composed of a processed observation layer and two memory layers provided by

the predictors.

Training procedure

The improved architecture has three learning phases. In the first learning phase,

the preprocessor is trained using contrastive divergence. In the second phase, a

predictor is trained with randomly collected data. In the third phase, an FE-

based actor is trained using the TD learning rule. The pseudocode for the entire

training sequence is given in Algorithm 2.

5.3 Experiments

5.3.1 Matching T-maze task

The same matching T-maze task as that described in Section 4.3.2 is solved using

the new architecture.

Parameters

Table. 5.1 lists all parameters used for the two experiments described in this chap-

ter: matching T-maze task and digit matching T-maze task. Several parameters

78

Algorithm 2 Entire training sequence for the improved model.

Initialize all weights and biases.

if Preprocessor is used then

Train the preprocessor using a CD learning rule.

end if

for n = 1 to Nsample do

Collect episodic samples {yt, rt, at}Tn
t=0 with a random policy.

end for

Create a training dataset {DT
train}Tmax

T=Tmin
and a test dataset {DT

test}Tmax
T=Tmin

.

for T = Tmin to Tmin + Ltraining − 1 do

Train a predictor with DT
train using a BPTT learing rule.

end for

for n = 1 to Nepoch do

Actor’s weights are initialized.

for m = 1 to N do

t ← 0.

Predict the initial (processed-)observation with ŷt.

Get the initial observation yt.

if Preprocessor is used then

Process yt.

end if

repeat

Select action at.

Predict the (processed-)observation and reward with ŷt+1 and r̂t+1.

Get the an observation yt+1 and a reward rt+1.

if Preprocessor is used then

Process yt.

end if

Actor’s weights are updated with a TD learning rule.

t ← 0.

until The goal is reached or t = Tmax

end for

end for

79

Parameters Values Parameters Values Parameters Values

Tmin 3 ρy N/A αpredictor 0.05

Tmax 10 ρr N/A αactor 0.05

Ny 7/20 cy N/A β 0 → 10

N r 1 ca N/A γ 0.95

Nm N/A βm N/A Nsample 2000

Nh 20 βy N/A N 10000

Na 4 Ltraining 5 Nepoch 400/600

Nmy 20 Nmr 20

Table 5.1. Parameters for the matching T-maze task (bit/pixel observations).

N/A indicates associated parameters are removed in the improved architecture.

The newly included parameters are added at the bottom row.

were removed in the new architecture. These are marked with N/A in Table. 5.1.

The added parameters are the number of observation-predictor’s hidden nodes

Nmy and the number of reward-predictor’s hidden nodes Nmr . They were both

set to 20. For the architecture using an RBM-based observation preprocessor, the

number of RBM’s hidden nodes are denoted by Ny. In this case, Ny(0)
is used as

the number of raw observation nodes.

Basic performance

As shown in Fig. 5.2, predictable observations and rewards are well estimated by

two distinct predictors after training with DT
train (T = 3, 4, 5, 6, 7). The prediction

error rapidly decreased in the first few epochs. The learning was well generalized

for the test dataset (bottom row in Fig. 5.2(a) and Fig. 5.2(b)) and for longer

sequences (three right-hand side panels in Fig. 5.2(a) and Fig. 5.2(b)).

The performance of the processed-observation predictor is shown in Fig. 5.2(a).

Prediction errors for the initial observation (t = 0) and for the observation imme-

diately before entering the goal (t = T −1) are high for all successfully terminated

episodes (T = 3, . . . , 9) due to the unpredictability of two signals. Interestingly,

the prediction error decreases as T increases for the pre-terminal observation at

t = T − 1. This is due to the increasing number of episodes with predictable

80

1 3

80

160

240

320

400
1 3

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7 9

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7 9

80

160

240

320

400

1 3 5 7 9

80

160

240

320

400

0

0.2

0.4

0.6

0.8

1

Step

1 3 5 7 9

80

160

240

320

400 0

0.2

0.4

0.6

0.8

1

(a) Observation prediction error

1 3

80

160

240

320

400
1 3

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7

80

160

240

320

400
1 3 5 7 9

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7

80

160

240

320

400

Step
1 3 5 7 9

80

160

240

320

400

1 3 5 7 9

80

160

240

320

400

0

0.2

0.4

0.6

0.8

1

Step

1 3 5 7 9

80

160

240

320

400 0

0.2

0.4

0.6

0.8

1

(b) Reward prediction error

Figure 5.2. Average prediction errors of (a) processed-observation predictor and

(b) scalar-reward predictor. The measure of prediction errors are absolute error

for (a) and squared error for (b). Refer to the caption of Fig. 4.5 for reading the

figure.

81

pre-terminal observations. The pre-terminal observation becomes predictable if

an agent hits the north-wall before entering the goal.

The performance of the scalar-reward predictor is shown in Fig. 5.2(b). Due

to the difficulty of predicting the final reward (this requires the combination

of the initial signal and the signal at the T-junction), the prediction error for

the terminal reward is high as compared to the previously obtained rewards.

However, the prediction error for the terminal reward still decreased gradually

over epochs. A cascading improvement of prediction performance from earlier

steps (smaller t’s) to later steps (larger t’s) is also seen in all panels other than

T = 3. This indicates the requirement of accurate prediction of shorter sequence

before predicting the longer sequence.

0 2000 4000 6000 8000 10000
−6

−4

−2

0

2

4

6

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(a) Average over 10 runs

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(b) Individual runs

Figure 5.3. Moving average of discounted return in the matching T-maze task

(Tmin = 3). The window size is 200 episodes. Error bars in (a) show the standard

error of the mean (s.e.m.). The upper bound of the discounted return is indicated

by the dotted line (R0 = 4.3175 with γ = 0.95).

After the training of the predictor, the predictor’s weights were fixed. Then,

the actor was trained using SARSA(0). The moving average of the discounted

return over 10 runs shown in Fig. 5.3(a) indicates that this POMDP task was

solved near-optimally. The large variance in the middle of the episodes and the

remaining variance at the end in Fig. 5.3(a) are both explained by investigating

the individual runs. Fig. 5.3(b) reveals that the agent deviated from a smooth

82

0 2000 4000 6000 8000 10000
2

3

4

5

6

7

8

9

A
ve

ra
ge

 s
te

ps
 to

 th
e

go
al

Episode

Figure 5.4. Average number of steps to the goal over 10 runs (Tmin = 3)

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

6

A
ve

ra
ge

 te
rm

in
al

 r
ew

ar
ds

Episode

Figure 5.5. Average terminal reward over 10 runs (Tmin = 3)

performance improvement in 2 of 10 runs, which contributed to the large variance

in the middle of the episodes. In addition, two other runs converged to a sub-

optimal performance. In these runs, the agent successfully discriminated the

correct goal at the T-junction (Fig. 5.5); however, it took redundant steps to

reach the goal (Fig. 5.4).

Fig. 5.6(a) shows that the TD error decreased over the episodes in all runs.

Fig. 5.6(b) and (c) show how the TD error gradually decreased as the learning

proceeded in two typical runs. The TD error jumps at the terminal step due to its

difficulty in predicting the terminal reward. In addition, as shown in Fig. 5.6(b),

the agent occasionally reached the goal in the sub-optimal 4 steps. This implies

83

0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

2.5

Episode

A
ve

ra
ge

 a
bs

ol
ut

e
T

D
 e

rr
or

(a) Absolute TD error

0

5000

10000

0
2

4
6

8
10

−10

−5

0

5

10

EpisodeStep

T
D

 e
rr

or

(b) Run 1

0

5000

10000

0
2

4
6

8
10

−30

−20

−10

0

10

EpisodeStep

T
D

 e
rr

or

(c) Run 2

Figure 5.6. TD errors. (a) Mean absolute TD error. The window size of the

moving average is 200 episodes. Error bars show the standard error of the mean

(s.e.m.) over 10 runs. (b, c) TD errors in the (b) 1st run and (c) 2nd run. Data

are sparsely plotted every 50 episodes starting from the first episode.

84

that this is one of the two runs that created the remaining variance in Fig. 5.3(a),

Fig. 5.4, and Fig. 5.6(a).

Internal representations

We are interested in how sequentially collected observations are encoded and

maintained in the agent throughout the decision making process. In this section,

we analyze the activation patterns of the functional module in the agent.

First, we focus on the memory layers of the reward predictor. In order to

predict the terminal reward correctly, the information about the initial signal

should be encoded and maintained in the activation patterns of this layer. Fig. 5.7

shows the maintenance of the initial signal in the reward-predictor’s memory

layer. The activation patterns at the T-junction differ depending on the initial

signal even before the learning started (Fig. 5.7(a)). These trends are further

confirmed by the PCA analysis in Fig. 5.7(b). This shows that, during both

the first and the last 1000 episodes, the variations in the activations are mostly

explained by the initial signal.

In order to see the difference between the reward predictor and the observation

predictor, we analyze the activation patterns of the observation predictor’s mem-

ory layer. The activation patterns at the T-junction did not get differentiated

according to the initial signals (Fig. 5.8(a)). These trends are further confirmed

by the PCA analysis shown in Fig. 5.8(b).

Next, the activation patterns of the actor’s state nodes at the T-junction

are investigated (Fig. 5.9-5.10). The actor’s state is composed of 7-dimensional

observation (y) and 20-dimensional observation-predictor’s memory layer (my)

and 20-dimensional reward predictor’s memory layer (mr). The PCA analysis

shown in Fig. 5.9 revealed that four conditions are separately represented in state

nodes.

Further analysis revealed that most of the variability in the actor’s state nodes

can be captured by the first three principal components (Fig. 5.10(a)). The pro-

jection on this three-dimensional space revealed a clear separation of activations

according to the task condition (Fig. 5.10(b)).

Finally, the activation patterns of the actor’s hidden nodes at the T-junction

are investigated (Fig. 5.11-5.13). For each task condition, distinct firing patterns

85

Visits

m
2

(1
−

20
)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

1000 2000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−0.5 0 0.5 1

0

0.5

1

1.5

PC 1

P
C

 2

−0.5 0 0.5 1

0

0.5

1

1.5

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.7. Activation patterns of the reward predictor’s memory nodes at the

T-junction. These activations were used to predict the obtained rewards at the

T-junction before entering the T-junction. (a) Activations for all visits to the T-

junction are shown according to the episode conditions (initial signal, T-junction

signal). (b) PCA analysis of these activations. The size of the marker reflects

the number of steps to the goals. The smallest marker indicates 3 steps, and the

largest marker indicates 10 steps.

86

Visits

m
1

(1
−

20
)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

1000 2000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

P
C

 2

−0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.8. Activation patterns of the observation predictor’s memory nodes at

the T-junction. These activations were used to predict the preprocessed observa-

tions observed at the T-junction before entering the T-junction. (a) Activations

for all visits to the T-junction are shown according to the episode conditions

(initial signal, T-junction signal). (b) PCA analysis of these activations.

87

Visits

m
2

(2
0)

, m
1

(2
0)

, y
(−

) (L, R)

1000 2000

10

20

30

40

Visits

(L, L)

1000 2000

10

20

30

40

Visits

(R, L)

1000 2000

10

20

30

40

Visits

(R, R)

1000 2000

10

20

30

40

(a) All activations (initial signal, T-junction signal).

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

PC 1

P
C

 2

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.9. Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-junction.

88

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC

C
on

tr
ib

ut
io

n

(a) Contribution of each principal compo-
nent

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

−0.5

0

0.5

1

1.5

2

PC 1
PC 2

P
C

 3

(L, R)

(L, L)

(R, L)

(R, R)

(b) Projection of all activations in the first three
principal components

Figure 5.10. Analysis of the activation patterns of the actor’s state nodes.

appear as the training proceeds (Fig. 5.11(a)). These trends are further confirmed

in the PCA analysis of these activations. In Fig. 5.11, activations during the first

and the last 1000 visits to the T-junction are projected onto the two principal

components. This figure shows the separation of firing patterns depending on the

task condition. The dynamic separation in the learning process is clearly seen in

Fig. 5.12 (Fig. 5.11 shows the first and the last 1000 episodes of Fig. 5.12). It

reveals the gradual convergence of firing patterns depending on the task condition.

Further analysis revealed that most of the variability in the actor’s hidden

nodes can be captured by the first three principal components (Fig. 5.13(a)).

The projection on this three-dimensional space revealed that the firing patterns

for each task condition were not only separated in the three-dimensional space

but were also orthogonalized (Fig. 5.13(b)).

5.3.2 Digit matching T-maze task

Task setting

The digit matching T-maze task (Fig. 4.20) was extended further to use noisy

pixel images. In this extended version, observations associated with a certain

89

Visits

h
(1

−
20

)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

1000 2000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

P
C

 2

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.11. Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the T-junction.

90

−0.5

0

0.5

1

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

2000

4000

6000

8000

10000

PC 1
PC 2

T
 ju

nc
tio

n
vi

si
t

(L, R)

(L, L)

(R, L)

(R, R)

Figure 5.12. Changing activation patterns of the actor’s hidden nodes at the

T-junction.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC

C
on

tr
ib

ut
io

n

(a) Distribution of each principal component

−0.5

0

0.5

1

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PC 1
PC 2

P
C

 3

(L, R)

(L, L)

(R, L)

(R, R)

(b) Projection of all activations in the first three
principal components

Figure 5.13. Analysis of activation patterns of the actor’s hidden nodes at the

T-junction.

91

Figure 5.14. Examples of actual observations for each digit class. 10 out of 100

images are shown.

position are not fixed but are stochastically chosen from the fixed-size reservoir

of handwritten digits. Observations change even if the agent visits the same

position within the same episode. In order to simplify the analysis, we fixed the

size of the handwritten digits in the reservoir to 100. Fig. 5.14 shows examples of

actual handwritten digits used for observations. These handwritten images vary

greatly even within the same digit class.

Fig. 5.15(a) shows the distribution of these five digits in the lower-dimensional

space spanned by the first three principal components. The contribution ratio of

the principal components has a long tail (Fig. 5.15(b)).

Observation preprocessor

In the improved architecture, high-dimensional observations are preprocessed

with RBMs. We used an RBM with 20 hidden nodes to preprocess 784-dimensional

observations.

The RBM was trained with all 60000 training data in the MNIST dataset

of handwritten digits (approximately 6000 images per digit class). The entire

training dataset was swept 600 times for training using contrastive divergence

with 3 iterations of Markov update (CD-3).

Fig. 5.16(a) shows the distribution of processed observations for five digits in

the lower-dimensional space spanned by the first three principal components. As

compared to Fig. 5.15(a), the distribution of each digit class is well preserved

92

−2
0

2
4

6
8

−8
−6

−4
−2

0

2
4

−8

−6

−4

−2

0

2

4

PC 1PC 2

P
C

 3
1
2
3
4
5

(a) Projection of all possible raw observations on the
subspace spanned by 3 principal components

0 200 400 600 800
−0.02

0

0.02

0.04

0.06

0.08

0.1

PC

C
on

tr
ib

ut
io

n

(b) Distribution of all 784 principal compo-
nents

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

PC

C
on

tr
ib

ut
io

n

(c) Distribution of the first 20 principal com-
ponents

Figure 5.15. PCA analysis of all possible observations (500 instances of 784-

dimensional pixel images of handwritten digits) in the digit matching T-maze.

93

−300

−200

−100

0

100

−200

−100

0

100

200
−150

−100

−50

0

50

100

150

200

PC 1PC 2

P
C

 3

1
2
3
4
5

(a) Projection of processed observations on the sub-
space spanned by 3 principal components

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC

C
on

tr
ib

ut
io

n

(b) Distribution of all 20 principal compo-
nents

Figure 5.16. PCA analysis of processed observations. The dimensionality is

reduced from 784 to 20 using a trained RBM. 500 instances of 20-dimensional

processed data are used for the analysis.

94

1 3

200

400

600
1 3

200

400

600
1 3 5

200

400

600
1 3 5

200

400

600
1 3 5 7

200

400

600
1 3 5 7

200

400

600
1 3 5 7 9

200

400

600

1 3 5 7 9

200

400

600

5

5.5

6

6.5

7

7.5

8

Step
1 3

200

400

600

Step
1 3

200

400

600

Step
1 3 5

200

400

600

Step
1 3 5

200

400

600

Step
1 3 5 7

200

400

600

Step
1 3 5 7

200

400

600

Step
1 3 5 7 9

200

400

600

Step

1 3 5 7 9

200

400

600 5

5.5

6

6.5

7

7.5

8

(a) Observation prediction error

1 3

200

400

600
1 3

200

400

600
1 3 5

200

400

600
1 3 5

200

400

600
1 3 5 7

200

400

600
1 3 5 7

200

400

600
1 3 5 7 9

200

400

600

Step
1 3

200

400

600

Step
1 3

200

400

600

Step
1 3 5

200

400

600

Step
1 3 5

200

400

600

Step
1 3 5 7

200

400

600

Step
1 3 5 7

200

400

600

Step
1 3 5 7 9

200

400

600

1 3 5 7 9

200

400

600

0

0.5

1

1.5

2

2.5

3

3.5

4

Step

1 3 5 7 9

200

400

600 0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Reward prediction error

Figure 5.17. Average prediction errors of (a) the processed-observation predictor

and (b) scalar-reward predictor. The measure of prediction errors are absolute

error for (a) and squared error for (b). Note the lower bound of the color map in

(a) is not 0 but 5. Refer to the caption of Fig. 4.5 for reading the figure.

after this operation. In addition, the variability in the data was well captured by

the first few principal components (Fig. 5.15(b)).

Basic performance

As shown in Fig. 5.17, the predictor’s performance reflected the predictability of

observations and rewards after training with DT
train (T = 3, 4, 5, 6, 7). As com-

pared to Fig. 5.2(a), the baseline of prediction errors is high in Fig. 5.17(a) due to

the noise in the processed observations. The noise or variability in the inputs and

targets of sequence prediction data makes the prediction task significantly dif-

ficult. Nevertheless, the processed-observation predictor exhibits a performance

improvement in this difficult prediction task. Otherwise, the same overall trends

95

seen in Fig. 5.2 are again observed in Fig. 5.17.

0 2000 4000 6000 8000 10000
−5

0

5

Episode

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

(a) Average over 10 runs

0 2000 4000 6000 8000 10000
−5

0

5

Episode
D

is
co

un
te

d
cu

m
ul

at
iv

e
re

w
ar

d

(b) Individual runs

Figure 5.18. Average discounted return in the matching T-maze task (Tmin = 3).

The window size is 200 episodes. Error bars show the standard error of the mean

(s.e.m.). The upper bound of the discounted return is indicated by the dotted

line (R0 = 4.3175 with γ = 0.95).

After the training of the predictor, the predictor’s weights were fixed. Then,

the actor was trained using SARSA(0). A moving average of the discounted return

over 10 runs is shown in Fig. 5.18(a). It indicates that this POMDP task was suf-

ficiently solved regardless of the noise in the high-dimensional observations. Both

the average number of steps to the goal (Fig. 5.19(a)) and the average terminal

reward (Fig. 5.19(b)) improved toward their theoretical optimal values; however,

they never reached these values due to the existing noise in the observations. This

POMDP task with high-dimensional, noisy inputs without a prior knowledge of

the environment is considered to be an extremely difficult problems in POMDP

literature. Because the positive cumulative cannot be obtained consistently with-

out the identification of the correct goal, the positive discounted return in all runs

shown in Fig. 5.18(b) indicates that the agent sufficiently and consistently learned

to discriminate the correct goal in all 10 runs regardless of the task difficulties.

Fig. 5.19(c) shows that the TD error decreases over the episodes in all runs.

A closer look at the first run (Fig. 5.19(d)) reveals how the TD error gradually

decreased as the learning proceeded. Unlike Fig. 5.6(b), the TD error does not

96

0 2000 4000 6000 8000 10000
2

3

4

5

6

7

8

9

A
ve

ra
ge

 s
te

ps
 to

 th
e

go
al

Episode

(a) Average number of steps to the goal
over 10 runs (Tmin = 3)

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

A
ve

ra
ge

 te
rm

in
al

 r
ew

ar
ds

Episode

(b) Average terminal reward over 10 runs
(Tmin = 3)

0 2000 4000 6000 8000 10000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Episode

A
ve

ra
ge

 a
bs

ol
ut

e
T

D
 e

rr
or

(c) Average over 10 runs

0

5000

10000

0
2

4
6

8
10

−30

−20

−10

0

10

20

30

40

EpisodeStep

T
D

 e
rr

or

(d) Run 1

Figure 5.19. TD errors in the digit-matching T-maze. Refer to the caption of

Fig. 5.6 for reading the figure.

97

exhibit a large jump at the last step, but is distributed evenly for all time steps

throughout episodes (except the first episode). This should be due to the noise

in the observations. The remaining ambiguity about the exact position in the

maze necessarily increases the TD errors (note that the magnitude of the z-axis

is different in Fig. 5.6(b) and Fig. 5.19(d)).

Internal representations

We now investigate how this artificial agent codes the external world, and how it

is modified as the agent’s performance improves.

First, we focus on the memory layers of the reward predictor. In order to pre-

dict the terminal reward correctly, the information about the initial signal should

be encoded and maintained in the activation patterns of this layer. Fig. 5.20(a)

shows the activation of the 20 nodes at the T-junction in all four signal conditions.

The PCA analysis in Fig. 5.20(b) shows that the variation in the activations is

explained by the initial signal even before the actor’s learning starts. Fig. 5.20

clearly suggests that the maintenance of the initial signal in the reward-predictor’s

memory layer.

In order to see the difference between reward predictor and observation predic-

tor, we also analyze the activation patterns of the observation predictor’s memory

layer. The activation patterns at the T-junction did not get differentiated accord-

ing to the initial signals (Fig. 5.21(a)). These trends are further confirmed by the

PCA analysis shown in Fig. 5.21(b).

Next, the activation patterns of the actor’s state nodes at the T-junction are

investigated (Fig. 5.23). The actor’s state is composed of the 20-dimensional

processed observation layer (y), the 20-dimensional observation predictor’s mem-

ory layer (my), and the 20-dimensional reward predictor’s memory layer (mr).

The PCA analysis shown in Fig. 5.23 revealed that the activation patterns of

state nodes are well separated in the two-dimensional projected space. These

differential activation patterns were present even before the learning started.

Further analysis revealed that most of the variability in the actor’s state nodes

can be captured by the first three principal components (Fig. 5.23(a)). The pro-

jection on this three-dimensional space revealed the clear separation of activations

according to the task condition (Fig. 5.23(b)).

98

Visits

m
2

(1
−

20
)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

10002000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−1.5 −1 −0.5 0 0.5

−0.5

0

0.5

1

1.5

PC 1

P
C

 2

−1.5 −1 −0.5 0 0.5

−0.5

0

0.5

1

1.5

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.20. Activation patterns of the reward predictor’s memory nodes at the

T-junction. These activations were used to predict the obtained rewards at the

T-junction before entering the T-junction. (a) Activations for all visits to the T-

junction are shown according to the episode conditions (initial signal, T-junction

signal). (b) PCA analysis of these activations. The size of the marker reflects

the number of steps to the goals. The smallest marker implies 3 steps, and the

largest marker implies 10 steps.

99

Visits

m
1

(1
−

20
)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

10002000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−1.5 −1 −0.5 0

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PC 1

P
C

 2

−1.5 −1 −0.5 0

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.21. Activation patterns of the observation predictor’s memory nodes at

the T-junction. These activations were used to predict the preprocessed observa-

tions observed at the T-junction before entering the T-junction. (a) Activations

for all visits to the T-junction are shown according to the episode conditions

(initial signal, T-junction signal). (b) PCA analysis of these activations.

100

Visits

m
2

(2
0)

, m
1

(2
0)

, y
(−

) (L, R)

1000 2000

20

40

60

Visits

(L, L)

10002000

20

40

60

Visits

(R, L)

1000 2000

20

40

60

Visits

(R, R)

1000 2000

20

40

60

(a) All activations (initial signal, T-junction signal).

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

PC 1

P
C

 2

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.22. Activation patterns of the actor’s state nodes at the T-junction.

These activations were used to select the next action at the T-junction.

101

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PC

C
on

tr
ib

ut
io

n

(a) Distribution of each principal component

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

−2

−1.5

−1

−0.5

0

0.5

1

PC 1
PC 2

P
C

 3

(L, R)

(L, L)

(R, L)

(R, R)

(b) Projection of all activations in the first three
principal components

Figure 5.23. Analysis of activation patterns of the actor’s state nodes.

Finally, the activation patterns of the actor’s hidden nodes at the T-junction

are investigated (Fig. 5.25). For each task condition, distinct firing patterns ap-

pear as the training proceeds (Fig. 5.24(a)). These trend are further confirmed

in the PCA analysis of these activations. In Fig. 5.25, activations during the first

and the last 1000 visits to the T-junction are projected onto the two principal

components. This figure shows the separation of firing patterns depending on the

task condition. The dynamic separation in the learning process is clearly seen in

Fig. 5.25(a) (Fig. 5.25 shows the first and the last 1000 episodes of Fig. 5.25(a)). It

reveals the gradual convergence of firing patterns depending on the task condition

regardless of the noisy observation. In this run, (L,L) condition is represented

with no activation in the actor’s hidden nodes. Further analysis revealed that

most of the variability in the actor’s hidden nodes was already captured by the

first two principal components (Fig. 5.25(b)). This is the reason why the firing

patterns for each task condition were not only separated but were also orthogo-

nalized in the two-dimensional space (Fig. 5.25(a)).

102

Visits

h
(1

−
20

)

(L, R)

1000 2000

5

10

15

20

Visits

(L, L)

10002000

5

10

15

20

Visits

(R, L)

1000 2000

5

10

15

20

Visits

(R, R)

1000 2000

5

10

15

20

(a) All activations (initial signal, T-junction signal).

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

P
C

 2

−1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

P
C

 2

(L, R)
(L, L)
(R, L)
(R, R)

(b) PCA analysis: (Left) first 1000 episodes. (Right) last 1000 episodes.

Figure 5.24. Activation patterns of the actor’s hidden nodes at the T-junction.

These activations were realized after selecting the action at the T-junction.

103

−1

−0.5

0

0.5

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

2000

4000

6000

8000

10000

12000

PC 1
PC 2

T
 ju

nc
tio

n
vi

si
t

(L, R)

(L, L)

(R, L)

(R, R)

(a) Changing activation patterns of the actor’s
hidden nodes at the T-junction.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PC

C
on

tr
ib

ut
io

n
(b) Distribution of each principal compo-
nent.

Figure 5.25. Analysis of activation patterns of the actor’s hidden nodes.

5.4 Summary and discussion

In this chapter, we modified the previously proposed architecture of an agent in

order to solve a more difficult class of POMDP problems. The two new features

introduced here were observation preprocessing based on RBMs and separate

predictors for observations and rewards. This modification results in the removal

of cumbersome reward encoding process and several unwanted parameters. The

performance of the new architecture is reliable even in the POMDP task with

high-dimensional noisy inputs. Regardless of the apparent difference between

the two tasks solved in this chapter (matching T-maze task with 7-dimensional

noiseless observations and digit matching T-maze task with 784-dimensional noisy

observations), the same parameter sets were used for both experiments except the

length of predictor training. The general coding patterns of different functional

modules were similar in both tasks.

It is interesting to note that similar coding patterns were seen in both exper-

iments. Although these two tasks used different observations (or more precisely,

the different observation probabilities p(o|s) with different observation sets O),

the underlying MDP is exactly the same. It appears that coding reflects the

104

underlying “true” MDP task regardless of the superficial difference in the ob-

servation. The task-dependent coding of high-dimensional observations realized

in the proposed architecture matches the experimental finding in the monkey

study (Amemori and Sawaguchi, 2006). Given the ability to handle multimodal,

noisy, high-dimensional inputs, it is possible that the basic concept of the given

architecture is implemented in the brain as a computational principle.

There are several ways to improve the the proposed architecture. First, we

can mix the training phase of a predictor and an actor. When the predictor’s

performance is not satisfactory, an actor can explore the environment to collect

data with a low inverse temperature β. As the predictor’s performance improves,

the inverse temperature β is increased to collect more useful data for task achieve-

ment. Prediction errors can also be added to the raw reward to boost exploration

in an area with surprising observations. In this manner, we can balance explo-

ration and exploitation.

Second, the use of DBNs may be beneficial to handle high-dimensional inputs

from several modalities. In order to integrate information from different modal-

ities, the dimensionality should be massively reduced in each modality. Because

the hierarchical organization of DBNs can preserve more information given the

fixed reduced dimensionality than single-layer RBNs, DBNs can provide better

processed data for the actor than RBMs.

Third, a mechanism for treating high-dimensional actions can be incorporated.

Fortunately, this is an easy step because the FERL framework was originally

proposed to handle high-dimensional actions using Markov chain Monte Carlo

methods (Sallans and Hinton, 2000).

Fourth, the predictor’s performance can be improved in several directions.

In order to completely avoid the difficulty of training RNNs, we can make use

of concepts used in reservoir computing methods such as echo state networks

(ESNs) (Jaeger and Haas, 2004) and liquid state machines (LSMs) (Maass et al.,

2002). According to this framework, randomly initialized and properly adjusted

sparsely connected recurrent weights can carry sufficient information for temporal

prediction. In order to handle a task that has long-term dependencies, methods

such as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1996)

and temporal kernel recurrent neural networks (TKRNN) (Sutskever and Hinton,

105

2010) can be used.

Fifth, continuous data can be handled with the code conversion through a pre-

trained RBM (Nair and Hinton, 2008). A single RBM with Gaussian visible units

and binary hidden units is first pre-trained using raw continuous data. Then, the

agent can use these processed data as binary observations.

Finally, we can also improve the biological plausibility of the model. Although

an actor implemented as an RBM appears to be biologically plausible, the BPTT

used to train the predictor in Chapters 4 and 5 severely degrades the biological

plausibility. This part can be modified using a spike-timing-dependent-plasticity

(STDP) learning rule. Recently, Lazar et al. (2009) proposed a self-organizing

recurrent network (SORN) that combined STDP and a homeostatic rule to train

binary RNNs. This model appears to fit the predictor part of our model. In order

to improve the biological plausibility, the homeostatic rule used in the SORN can

be replaced by the Oja rule. Our newly proposed model can also be implemented

as a spiking neural network. A firing rate model such as our proposed architecture

becomes equivalent to the spiking neural network model under the assumption of

an expoential synaptic kernel (Dayan et al., 2001).

106

Chapter 6

Conclusions

The general goal of this thesis was to understand how learning animals repre-

sent the external world. We believe that they represent the world to achieve

some goals through decision making. We did not directly investigate the brain.

Instead, we tried to solve using neurally realizable models the computational

problems that our brains solve. We formalized this problem as a partially observ-

able Markov decision process (POMDP) with high-dimensional noisy observations

without knowledge of environmental dynamics or a state set with a Markov prop-

erty. This problem by itself is considered to be notoriously difficult in the fields

of machine learning and autonomous robotics.

As a building block, we employed a method originally proposed by Sallans and

Hinton (2000, 2004), which we call a free-energy-based reinforcement learning

(FERL) framework, due to its biological plausibility and its ability to handle

MDPs with high-dimensional states and actions.

When the agent solves an easy POMDP task (Class I POMDP using the

classification criterion in section 2.3.1) called a digit floor task without a prior

knowledge of environmental dynamics and an underlying state set with a Markov

proerpty, the underlying task structure was reflected in the activation patterns of

the agent’s hidden nodes in observation-, reward- and action-dependent fashion

(Chapter. 3). After learning, noisy digit images that share the same optimal ac-

tion induced similar activities in the agent’s hidden nodes. Several experimental

studies with monkeys reported the similar findings about the reward-modulated

sensory coding (Freedman et al., 2001; Miller et al., 2003; Sigala and Logothetis,

107

2002). In addition, by giving a constant reward of 0 for any combination of states

and actions, the activation patterns of the hidden nodes reflected a distribution

of encountered observations. Reward-independent coding of observations in the

early stages of sensory processing has been reported in many experimental studies

and was modeled extensively in computational neuroscience literature (Olshausen

and Field, 1996; Rao and Ballard, 1999; Hyvarinen et al., 2009). FERL’s proper-

ties observed in our experiments such as the robustness to noise and the gradual

degradation of performance with noise increase are also commonly seen in bio-

logical agents (Pelli and Farell, 1999; Rainer et al., 2001).

In chapter 4, FERL was combined with Elman-type recurrent neural networks

to handle POMDP problems that require dynamic combination of sensory inputs.

Although the biological plausibility is hampered by the use of BPTT, moderately

difficult POMDP tasks (Class II POMDP) with low-dimensional bit patterns were

solved due to this change. Knowledge of environmental dynamics and a state set

were again not assumed. After the predictor’s performance improved sufficiently,

the state of the actor, which is a combination of the current observation and

currently maintained memory, began to exhibit Markov properties even under

the true POMDP setting. In other words, the current partial observation was en-

hanced enough to have an approximately Markov property by the rich information

about the past carried in the predictor’s hidden layer. In the matching T-maze

task, the underlying task structure gradually emerged in the activation pattern

of the actor’s hidden nodes as the leaning proceeded. This gradual separation of

the population’s firing properties during performance improvement is believed to

be a characteristic of real neuronal populations. However, the neural data is not

yet available due to the difficulties involved in simultaneously recording from the

multiple task-relevant neurons.

In Chapter 5, the architecture was modified to handle POMDP tasks with

high-dimensional stochastic observations. Knowledge of environmental dynam-

ics and a state set were again not assumed. This setting is much more realistic

because we rarely see the same object in exactly the same way. The same im-

ages on the computer screen are likely to be projected as different images on the

retina. Animals somehow need to use the perceptual similarity of the objects.

This part is realized using a restricted Boltzmann machine (RBM) in the im-

108

proved architecture. The RBM’s known ability of dimensionality reduction and

orthogonalization in the feature space made preprecessed observations better tar-

gets than raw observations. The results presented in this chapter confirmed that

the improved architecture could reliably solve these difficult POMDP problems

(Class III POMDP). The task-dependent encoding of observation sequences was

found in the activation patterns of the actor’s hidden units. Again, these trends

in the population of nodes emerged as the learning proceeded.

Simulation results obtained in this thesis supported our claim that our dy-

namic extension of FERL could construct a distributed representation of the

external world autonomously while solving realistic sequential decision making

problems. This computational approach may provide a basis for biologically

plausible models of representation learning in the brain. The results constitute

my tentative answer to the symbol grounding problem and the long-lasting epis-

temological question asked by biological agents that resist a natural tendency to

disorder: “How do we know?”

109

References

Amemori, Kenichi and Sawaguchi, Toshiyuki (2006) “Rule-dependent shift-

ing of sensorimotor representation in the primate prefrontal cortex,” Eur.

J. Neurosci., Vol. 23, pp. 1895–1909.

Astrom, K. J. (1965) “Optimal control of Markov decision processes with

the incomplete state estimation,” Journal of Computer and System Sci-

ences, Vol. 10, pp. 174–205.

Bakker, B. (2002) “Reinforcement learning with long short-term memory,”

NIPS, Vol. 2, pp. 1475–1482.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983) “Neuronlike adap-

tive elements that can solve difficult learning control problems,” IEEE

Transactions on systems, man, and cybernetics, Vol. 13, No. 5, pp. 834–846.

Bellman, R. E. (1957) Dynamic Programming, Princeton: Princeton Uni-

versity Press.

Churchland, P.S. and Sejnowski, T.J. (1990) “Neural representation and

neural computation,” Philosophical Perspectives, Vol. 4, pp. 343–382.

Dayan, P., Abbott, L.F., and Abbott, L. (2001) Theoretical neuroscience:

Computational and mathematical modeling of neural systems: MIT Press.

Dockendorf, K.P., Park, I., He, P., Principe, J.C., and DeMarse, T.B.

(2009) “Liquid state machines and cultured cortical networks: The sep-

aration property,” BioSystems, Vol. 95, pp. 90–97.

110

Engel, Y. (2005) “Algorithms and representations for reinforcement learn-

ing,” Ph.D. dissertation, The Hebrew University of Jerusalem.

Engel, Y., Mannor, S., and Meir, R. (2002) “Sparse online greedy support

vector regression,” in 13 th European Conference on Machine Learning, pp.

84–96: Springer.

Freedman, D.J. and Assad, J.A. (2006) “Experience-dependent representa-

tion of visual categories in parietal cortex,” Nature, Vol. 443, No. 7107, pp.

85–88.

Freedman, D.J., Riesenhuber, M., Poggio, T., and Miller, E.K. (2001) “Cat-

egorical representation of visual stimuli in the primate prefrontal cortex,”

Science, Vol. 291, No. 5502, p. 312.

Friston, K. (2009) “The free-energy principle: a rough guide to the brain?,”

Trends in Cognitive Sciences, Vol. 13, No. 7, pp. 293–301.

Friston, K. and Kiebel, S. (2009) “Cortical circuits for perceptual infer-

ence,” Neural Networks, Vol. 22, No. 8, pp. 1093–1104.

Friston, KJ, Daunizeau, J., Kiebel, SJ, and Sporns, O. (2009) “Reinforce-

ment Learning or Active Inference,” PLoS ONE, Vol. 4, No. 7, p. e6421.

Froemke, R.C., Merzenich, M.M., and Schreiner, C.E. (2007) “A synaptic

memory trace for cortical receptive field plasticity,” Nature, Vol. 450, No.

7168, pp. 425–429.

George, D. and Hawkins, J. (2009) “Towards a Mathematical Theory of

Cortical Micro-circuits,” PLoS Comput Biology, Vol. 5, No. 10, pp. 1–26.

Hinton, G. E. (2002) “Training Products of Experts by Minimizing Con-

trastive Divergence.,” Neural Computation, Vol. 14, pp. pp 1771–1800.

Hochreiter, Sepp and Schmidhuber, Jurgen (1996) “LSTM can Solve Hard

Long Time Lag Problems,” in NIPS, p. 473.

111

Hyman, S.E., Malenka, R.C., and Nestler, E.J. (2006) “Neural mechanisms

of addiction: the role of reward-related learning and memory,” Annu. Rev.

Neurosci, Vol. 29, pp. 565–598.

Hyvarinen, A., Hurri, J., and Hoyer., P. O. (2009) Natural Image Statistics:

Springer-Verlag.

Jaeger, H. and Haas, H. (2004) “Harnessing nonlinearity: Predicting

chaotic systems and saving energy in wireless communication,” Science,

Vol. 304, No. 5667, p. 78.

Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., and Graybiel, A.M.

(1999) “Building neural representations of habits,” Science, Vol. 286, No.

5445, p. 1745.

Kappen, HJ (2005) “Path integrals and symmetry breaking for optimal

control theory,” Journal of statistical mechanics: theory and experiment,

Vol. 2005, p. P11011.

Kawato, M. (2008) “From Understanding the Brain by Creating the

Brain towards manipulative neuroscience,” Philosophical Transactions of

the Royal Society B: Biological Sciences, Vol. 363, No. 1500, p. 2201.

Keller, P. W., Mannor, S., and Precup, D. (2006) “Automatic Basis Func-

tion Construction for Approximate Dynamic Programming and Reinforce-

ment Learning,” in Proceedings of International Conference of Machine

Learning, pp. 449–456.

Konda, V.R. and Tsitsiklis, J.N. (2004) “On actor-critic algorithms,” SIAM

Journal on Control and Optimization, Vol. 42, No. 4, pp. 1143–1166.

Lazar, A., Pipa, G., and Triesch, J. (2009) “SORN: a Self-organizing Re-

current Neural Network,” Front. Comput. Neurosci, Vol. 3, p. 23.

Lovejoy, William S. (1991) “A survey of algorithmic methods for partially

observed Markov decision processes,” Annals of Operations Research, Vol.

28, No. 1, pp. 47–66.

112

Maass, W., Natschläger, T., and Markram, H. (2002) “Real-time computing

without stable states: A new framework for neural computation based on

perturbations,” Neural Computation, Vol. 14, No. 11, pp. 2531–2560.

Mahadevan, Sridhar (2005) “Samuel Meets Amarel: Automating Value

Function Approximation using Global State Space Analysis,” in Proceedings

of the National Conference on Artificial Intelligence (AAAI-2005).

Miller, E.K., Nieder, A., Freedman, D.J., and Wallis, J.D. (2003) “Neural

correlates of categories and concepts,” Current Opinion in Neurobiology,

Vol. 13, No. 2, pp. 198–203.

Nair, V. and Hinton, G. (2008) “Implicit mixtures of restricted Boltzmann

machines,” Advances in Neural Information Processing Systems, Vol. 21.

Olshausen, BA and Field, DJ (1996) “Natural image statistics and efficient

coding,” Network: computation in neural systems, Vol. 7, No. 2, pp. 333–

339.

Ormoneit, D. and Sen, S. (2002) “Kernel-based reinforcement learning,”

Machine Learning, Vol. 49, No. 2, pp. 161–178.

Pelli, D.G. and Farell, B. (1999) “Why use noise?,” Journal of the Optical

Society of America A, Vol. 16, No. 3, pp. 647–653.

Puskorius, GV and Feldkamp, LA (1994) “Neurocontrol of nonlinear dy-

namical systems with Kalman filtertrained recurrent networks,” IEEE

Transactions on Neural Networks, Vol. 5, No. 2, pp. 279–297.

Rainer, G., Augath, M., Trinath, T., and Logothetis, N.K. (2001) “Non-

monotonic noise tuning of BOLD fMRI signal to natural images in the

visual cortex of the anesthetized monkey,” Current Biology, Vol. 11, No.

11, pp. 846–854.

Rao, R.P.N. and Ballard, D.H. (1999) “Predictive coding in the visual

cortex: a functional interpretation of some extra-classical receptive-field

effects,” nature neuroscience, Vol. 2, pp. 79–87.

113

Rummery, G. and Niranjan, Mahesan (1994) “On-line Q-learning using

connectionist systems,”Technical report, Cambridge Univeristy Engineer-

ing Department.

Salakhutdinov, R. and Hinton, G. (2009) “Deep Boltzmann Machines,” in

Proceedings of The Twelfth International Conference on Artificial Intelli-

gence and Statistics (AISTATS09), Vol. 5, pp. 448–455.

Sallans, B. and Hinton, G. E. (2000) “Using Free Energies to Represent Q-

values in a Multiagent Reinforcement Learning Task,” in NIPS, pp. 1075–

1081: MIT Press.

Sallans, B. and Hinton, G. E. (2004) “Reinforcement Learning with Fac-

tored States and Actions,” Journal of Machine Learning Research, Vol. 5,

pp. 1063–1088.

Santamaria, J., Sutton, R., and Ram, Ashwin (1998) “Experiments with re-

inforcement learning in problems with continuous state and action spaces,”

Adaptive Behavior, Vol. 6, pp. 163–217.

Shannon, C. E. (1948) “A Mathematical Theory of Communication,” The

Bell System Technical Journal, Vol. 27, pp. 379–423.

Sigala, N. and Logothetis, N.K. (2002) “Visual categorization shapes fea-

ture selectivity in the primate temporal cortex,” Nature, Vol. 415, pp. 318–

320.

Smallwood, R. D. and Sondik, E. J. (1973) “The optimal control of partially

observable Markov processes over a finite horizon,” Operational Research,

Vol. 21, pp. 1071–1088.

Sprague, Nathan (2007) “Basis Iteration for Reward Based Dimensional-

ity Reduction,” in the 2007 International Conference on Development and

Learning in London, England.

Sutskever, I. and Hinton, GE (2007) “Learning multilevel distributed rep-

resentations for high-dimensional sequences,” in Proceeding of the Eleventh

114

International Conference on Artificial Intelligence and Statistics, pp. 544–

551.

Sutskever, Ilya and Hinton, Geoffrey (2010) “Temporal-Kernel Recurrent

Neural Networks,” Neural Networks, Vol. 23, pp. 239–243.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: MIT Press.

Tieleman, T. (2008) “Training restricted Boltzmann machines using ap-

proximations to the likelihood gradient,” in Proceedings of the 25th inter-

national conference on Machine learning, pp. 1064–1071, ACM New York,

NY, USA.

Watkins, Charles and Dayan, Peter (1992) “Technical Note Q-Learning,”

Machine Learning, Vol. 8, p. 279.

Welling, M., Rosen-Zvi, M., and Hinton, G. (2005) “Exponential family

harmoniums with an application to information retrieval,” Advances in

neural information processing systems, Vol. 17, pp. 1481–1488.

Werbos, P. J. (1990) “Backpropagation through time: what it does and

how to do it,” Proceedings of the IEEE, Vol. 78, No. 10, pp. 1550–1560.

Whitehead, S. D. and Lin, L. J. (1995) “Reinforcement learning of non-

Markov decision processes,” Artificial Intelligence, Vol. 73, pp. 271–306.

Williams, R.J. and Zipser, D. (1989) “A learning algorithm for continually

running fully recurrent neural networks,” Neural computation, Vol. 1, No.

2, pp. 270–280.

115

