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Statistical Approach to the Single-Channel Sound

Source Extraction®

Mizuki Thara

Abstract

Extracting only the essential sound attributes from sounds is one of the funda-
mental issues of computational auditory scene analysis. Especially, the estimation of
sound source characteristics is difficult since the corresponding physical quantity is
not defined. This dissertation proposes two music information retrieval methods: the
instrument feature extraction assuming the timbre space and the probabilistic model of
sounds considering the source-filter model and dynamics.

In the former part of this dissertation, an instrument feature extraction method with
a combination of linear projection methods is developed. For monophonic music in-
strument identification, various feature extraction and selection methods have been
proposed. Although raw power spectra have enough information for accurate instru-
ment identification, their dimensionality is too high and redundant. It is important
to find non-redundant instrument specific characteristics that maintain information es-
sential for high-quality instrument identification to apply them to various instrumental
music analyses. As such a dimensionality reduction method, a combination of lin-
ear projection methods is introduced: principal component analysis (PCA) and local
Fisher discriminant analysis (LFDA). Additionally, the reason why linear projection
algorithms are suitable for instrument identification is explained by the geometrical
analysis of algorithms. After experimentally clarifying that raw power spectra are
actually good for instrument classification, the feature dimensionality is reduced by
PCA followed by LFDA. The reduced features achieved reasonably high identification
performance that is comparable or higher than those by the power spectra and those
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obtained by existing studies. These results suggest that the proposed PCA-LFDA can
successfully extract low-dimensional instrument features that preserve the characteris-
tic information of instruments.

In the latter part, a probabilistic model that represents our assumption with an ex-
tension of the source-filter model is introduced to estimate three elements of sounds:
pitch, loudness and instrument-specific characteristics. The source-filter model, origi-
nally devised to represent a sound production process, has been widely used to estimate
both of the source signal and the synthesis filter. This model suffers from an indeter-
minacy problem. To resolve it, three constraints are included in the model: harmonics,
smoothness and sparseness. In detail, the source signal and synthesis filter contain
the time-varying fundamental frequency and amplitude information and time-invariant
instrument-specific information, respectively in the source-filter model. A probabilis-
tic model that represents those assumptions with an extension of the source-filter model
is constructed. For learning of model parameters, an EM-like minimization algorithm
of a cost function called the free energy is introduced. Reconstruction of the spectrum
with the estimated source signal and synthesis filter and instrument identification by
using the model parameters of the estimated synthesis filter are performed to evaluate
the proposed approach, showing that this learning scheme could achieve simultaneous
estimation for the source signal and the synthesis filter.

Keywords:

Sound source identification, Acoustical feature extraction, Time series analysis, Sys-

tem identification, Pattern recognition, Variational EM algorithm
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CHAPTER 1

Introduction

1 Motivation

People can guess who is speaking or singing from sounds in a daily life. Here, they eas-
ily solve the task of sound source estimation. However, to simulate estimation of sound
sources on machines is a complex task because the sound signals vary depending on the
syllables, pitch or tones. Moreover, in the real environment, there are noises and some
other present sound sources such as background music and other people’s conversation
that interfere the identification process. The solution of the human auditory system to
this problem suggests that there are time-constant source-specific characteristics that
are independent of from other acoustical features, which is known as timbre constancy
[1]. We utilize these characteristics to identify a speaker or an instrument. This ability
of audition helps to understand the process that we usually sense the source-specific
time-constant features from the time-varying sound signals.

It is also known that humans perceive sounds with decomposing into three ele-
ments: pitch, loudness and timbre [2]. However, corresponding physical attributes are
not discovered yet while it is known that pitch and loudness correspond to the funda-
mental frequency and the sound intensity, respectively [3]. In this research, the ulti-
mate goal is to extract sound-source characteristics (in this study, the sound source is

limited to a musical instrument) by constructing a mathematical model that can extract



time-invariant instrument-specific features like “timbre” and to identify the instrument
with the extracted sound-source features.

The current common approach to the problem of sound-source identification is to
select some useful features from pre-assumed features of instruments; however, the
number of features is too large and too complex to determine which of the feature
sets are related to the sound-source. In order to represent sound-source information
efficiently, the source-filter model is employed since it consists of small number of

parameters.

2 Goals and approach

The final goal of this research is to extract only the certain information from sounds.
There are many kinds of studies about it, for example, the blind source separation. The
difference between the blind source separation and the study on this paper, the single-
channel sound source decomposition is supervised or semi-supervised, so available
information about the source is incorporated in the model to decompose sounds.

The aim of this dissertation is not to separate the sounds but to estimate the three
elements of sounds, pitch, intensity and timbre. To contribute it, two studies are intro-
duced in this dissertation. The first one focuses on the instrument feature extraction.
Existing feature extraction algorithms depend on the global low-level features, which
model all instruments together. The method proposed here first projects the instrument
features to the instrument feature space to scale them with ignoring other information
such as pitch and amplitude. On that instrument feature space, features of each in-
strument are described with the parameters. The efficiency of the extracted features
is evaluated by instrument identification. The second one models the sound to extract
three elements of the sound. Sounds have characteristics of harmonicity, smoothness
and sparsity. The knowledge about sounds is considered to solve the indeterminacy of
the model.

3 Contributions

Although the ultimate focus of this research is to investigate sound-source identifica-

tion system, it also contributes to other research fields.
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e Sound-source identification:
As mentioned before, the source-filter model consists of a source generation
component and a filter component. The model is considered to represent the ac-
tual sound generation mechanism well. For example, in the case of the violin,
the oscillation of a string produces a source signal generation and the instru-
ment itself works as a filter, while in the case of human speech, generation of
the source signal corresponds to the oscillation of vocal cords and the filter cor-
responds to the vocal tract resonance. Thus, the filter part of the source-filter
model is considered to have important information about the sound-source. In
this thesis, whether an instrument can be identified by the parameters of the filter

component is verified.

Though the experiment in this dissertation focuses only on instrument identifica-
tion, the estimation of the source-filter model is also used for identification of a
speaker [4]. Speaker verification technology is useful for voiceprint verification

known as one division of biometrics.

e Data compression and encoding:
Since the source-filter model is a highly structured model, we need only a few
parameters to represent the sound signal. It serves as a basis for an excellent data
compression system, especially for low bit-rate speech compression. Actually,
various vocoders that rely on the source-filter model have been proposed [5].

These methods are often combined with other compression techniques.

e Music information retrieval and transcription:
To estimate pitch, loudness and timbre from a sound, it helps to annotate music.
Music annotation gives information about music similarities, so this could be ap-
plied into music retrieval like Goto did in his system, Musicream [6]. For music
transcription, it is apparent that the tracking of time-varying pitch is important.
Since the source generation part can be characterized by fundamental frequency
if it exists, the estimation of the source-filter model will serve as useful informa-

tion for music transcription.



4 Dissertation overview

In this dissertation, two statistical approaches to the sound source extraction from the
single-channel monophonic music are proposed. In Chapter II, Instrument identifica-
tion on monophonic music with low-dimensional instrument features, the combination
of machine learning based dimensionality reduction methods is introduced as an instru-
ment feature set followed by that feature set evaluation with instrument identification.
Chapter III, Probabilistic harmonic model for single-channel sound decomposition, in-
troduces the probabilistic model for sound decomposition, which considers the sound
dynamics of pitch, amplitude and timbre. The dissertation is closed with the conclud-
ing chapter, Chapter IV.



CHAPTER 11

Instrument identification on monophonic music with

low-dimensional instrument features

In this chapter, the method to extract instrument features is proposed, and the features’
representation ability is evaluated with instrument identification. This study proposes
a method that extracts compact and temporally consistent instrument features to clas-
sify instruments at high accuracy rates even from short excerpts. The compact in-
strument features are extracted by applying a set of linear projection techniques to
the log-power spectra. Instrument feature extraction is important for constructing an
instrument sound production model, which is useful for music information retrieval,
musical transcriptions and sound synthesis. One such application, instrument identi-
fication, has three categories of input sources: isolated notes, monophonic music and
polyphonic music. In this study, we concentrate on instrument identification tasks for
monophonic music. Tasks for polyphonic music are regarded as more important as
practical application; however, this problem is more complex than those for mono-
phonic music. To simplify discussion, the topic is focused on the single instrument
identification problem to explore a feature extraction technique for identifying single
instruments. Such a feature extraction technique will also be useful for polyphonic
music source identification because the compact but high quality of instrument char-
acteristic representation is beneficial to reduce the uncertainty in the identification of

sources in polyphonic music.



Concerning spectrum-based features such as linear predictive coding coefficients
(LPCs), LSF coefficients and MFCCs have been effective in instrument identification
in many existing studies. In this study, firstly how much the (short-term) log-power
spectrum could be used as instrument features in the context of instrument identifica-
tion is confirmed, even though such non-stationary temporal information as sound at-
tack or decay is discarded. Also, instrument features are extracted from the log-power
spectra, which are redundant but sufficient features for distinguishing each instrument.
Note here that most existing spectrum-based features are also reduced features from
the power spectra. Since these features are heuristically obtained, the dimensionality
reduction criteria are not clear; however, there is almost no quantitative way to evaluate
whether they are sufficient or redundant. Although such sufficiency and redundancy
should be dependent on the amount of data used to extract the features, heuristically-
determined features cannot incorporate the effect of the amount of such available in-
formation. In this study, the feature extraction criterion is clarified by quantitatively
defining the model of feature extraction and incorporated the effect of the amount of
available information into the feature extraction method; features are extracted in an
adaptive manner based on available training data instead of obtained by a prescribed

analytic procedure.

Here, two kinds of dimensionality reduction techniques are employed, principal
component analysis (PCA) and local Fisher discriminant analysis (LFDA), both of
which work in an adaptive manner with the available data. We call the combination of
PCA and LFDA as PCA-LFDA and also call the extracted (low-dimensional) features
PCA-LFDA features. Based on the mathematical properties of the LFDA algorithm, it
is assumed that the PCA-LFDA features well represent the instrument characteristics.
The performance of the SVM classifiers employing those features was compared with
those employing the existing spectrum-based features such as MFCC. Note that many
of the existing spectrum-based features are obtained by applying a certain nonlinear
transformation to the log-power spectra; however, PCA-LFDA features are restricted
in the space of the linear transformation of the log-power spectra but are adjustable

because the transformation is learned based on the available training data.
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1 Introduction of instrument feature extraction and in-

strument identification

To represent a sound-source such as a speaker or a musical instrument with a small
number of features is important not only for sound or speech compression but also for
music information retrieval and music transcription. A sound-source estimation prob-
lem, i.e., how to find the parameters that represent the sound-source well, is, however,
considered to be difficult because sound signals are usually very high-dimensional and
are supposed to change nonlinearly. For instance, when the sampling frequency is
44.1kHz as in commercial compact disks, the length of an input vector becomes as
long as 44,100 per second. Also, pitch and musical performance techniques greatly
affect the waveform of instrument sounds, and variations on syllables, pitch intonation
and other acoustical features of a given speaker affect the speech signals.

The advantage of experiments on single notes is that there are many databases for
isolated notes such as [7, 8, 9, 10]. Additionally, instrument features are obtained eas-
ily with less computation than those of music or speech. On the other hand, there
are drawbacks: it is impossible to obtain the features on note transitions with isolated
notes; it is not practical because what humans hear in a daily life is not single notes but
mostly continuous music, sound or speech; and even still humans’ ability to identify
isolated notes’ is far higher than those results [11]. For example, when the system
tracks fundamental frequency information simultaneously along with instrument iden-
tification as in my experiment, it is very easy to determine the fundamental frequency
on isolated notes but not at all on polyphonic music. Since general sound-source esti-
mation problems would suffer from these difficulties, this study focuses on instrument
identification problems in monophonic music.

For monophonic instrument identification, some existing studies used only one
feature extracted from sound signals, while others used a combination of temporal,
cepstral, spectral and other acoustic features. Livshin achieved high identification ac-
curacy by using a combination of a total of 62 temporal, energy, spectral, harmonic
and perceptual features. Even though the number of features was reduced to 20, the
system kept nearly the same recognition rate [12]. In the same way, Essid obtained 70
useful features that were reduced from the originally prepared 160 features of various

acoustic kinds, achieving 87% correctness on average in classifying ten instruments
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[13]. In these studies, recognition systems employed feature parameters chosen on
the basis of a heuristically prepared physical model or acoustical features selected by
feature extraction methods.

Instrument identification consists of two phases: an instrument feature extraction
phase and a class estimation phase based on the extracted features. For the latter phase,
instrument class estimation, Gaussian mixture models (GMM) and support vector ma-
chines (SVM) have been widely used. Marques compared the classification accuracies
of GMM and SVM and concluded that SVM are superior when identifying isolated
notes [14]. Likewise, Agostini compared several classification methods and concluded
that SVM is more accurate than other classification methods [15]. Considering these
experimental results, SVM is employed as a classifier in all the classification experi-
ments in this dissertation.

There have been several studies of instrument feature extraction followed by instru-
ment identification on monophonic music. Many used certain spectrum-based features
as instrument features [14, 16, 17]. When extracting spectrum-based features, not
only direct approximation methods of the power spectrum but also those for spectrum
envelope estimation have been employed. Marques used 16 mel-frequency cepstral co-
efficients (MFCCs) for the classification of eight instruments [14], and Essid compared
classifiers to classify five woodwind instruments based on ten MFCCs [18]. Line spec-
tral frequencies (LSFs) were also proposed as instrument features that actually showed
the identification accuracy of 86% for six instruments which is superior to MFCCs
[17].

In contrast to the above approaches, which are based mainly on cepstral and spec-
tral features, in this study we utilize the raw log-amplitude spectrum of given sound
signals, which discards time-varying information such as attack or decay, is useful
for instrument identification. The result of high accuracy of instrument identification
with the raw log-power spectrum reminds us that most of the features used in existing
methods such as LSFs or MFCCs are calculated from spectral information. We then
reduce the dimensionality of the log-amplitude spectrum by applying a combination
of linear transformations based on classical machine learning techniques: principle
component analysis (PCA) and local Fisher discriminant analysis (LFDA). Then, we
show the relation of algorithms based on the linear discriminant analysis and instru-

ment feature extraction with the geometrical views of those algorithms. Finally, we
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compare the identification done by our method with identification carried out by the
physical model-based feature extraction methods (LPCs and LSFs), which can be re-
garded as nonlinear feature extraction methods of the spectrum, in order to see how the
model-free and linear-feature-based methods (LFDA and PCA) work.

2 Existing spectrum-based global features

In existing studies, most features are extracted in a cepstral or spectral domain. Here,
we call them spectrum-based features. In this section, those feature extraction methods
are reviewed.

First, three feature extraction methods are reviewed. They have been shown effec-
tive in previous instrument identification experiments: LPC, LSF and mel-frequency
cepstrum encoding. These three methods are commonly used to estimate the rough
form of spectra called the spectrum envelope. Since the spectrum envelope highly af-
fect human perception of sound sources [19, 20, 21], methods for spectrum envelope

estimation are included in instrument feature extraction.

2.1 Linear predictive coding (LPC)

LPC is a popular model-based method that can estimate the spectrum envelope. As-
suming that the current sample s; (t = 1, - - - ,T") is represented by a linear combination

of p previous samples:

p
S = — Z a;Si—; + €, 2.2.1)
i=1
where o; (2 = 1,-- -, p) is a set of LPC coefficients, and ¢, is time-independent (white)

noise. The higher the order of LPC coefficients p is, the closer the estimated spectrum
comes to the original spectra [22]. On the other hand, the estimated spectrum envelope
works for instrument identification when order p is suitably small [14, 16, 23].

LPC coefficients are estimated to suitably represent the original signal by minimiz-

ing the total squared error of the signal from 7 to 77,

T ™ p p
&= Z 6 = Z Z Z QGOGT Ty (2.2.2)

t=Tp t=Tp i=0 j=0



In practice, to solve the partial differentiation with respect to o, there are two major
methods: the covariance method and the auto-correlation method. The covariance
method limits the range between 71 and 77 as p to N — 1, while the correlation method
sets the range as —oo to +oo with the regulation x; = 0 for¢ < 0 and N <¢.

By the maximum likelihood spectrum estimation on the frequency domain, which
is equivalent to LPC with auto-correlation method on the time domain, the LPC power

spectrum is reconstructed with

o? 1
Hw)=— 223
(@) 2m Ag +2> 0 | A;cos(iw)’ (2.2.3)

where a set of LPC coefficients is computed with A; = Z?;g‘ oy, ap = 1
(t = 0,41,---,£p). Here, 02, p and & denote the scale factor, the number of LPC
coefficients and a normalized angular frequency w = “”2—518 (—m < w < 7) where w and
F's denote the frequency and sampling frequency, respectively [24, 25].

LPC compresses the spectra to adequately maintain the smooth shapes of the spec-
trum envelopes with a small number of parameters; since there are round-off errors in
the floating-point values, LPC suffers from a risk of instability [26]. In addition, the
way to choose the order (number) of LPC coefficients is not clear since the optimal
order may vary depending on the instrument, the fundamental frequency, the playing
style and so on.

2.2 Line spectral frequencies (LSF)

LSF coefficients are based on another representation of LPC coefficients that show
better compression rates than LPC because of the improved robustness to the round-

off errors. The spectrum envelope is estimated by the following function [27, 28]:

H(@)=2""? {sin2 % H (cos@ — cos by, )*+
n=24,-,p
~ —2
cos? g . !_[ p_l(cos @ — cos bn)Q} , (2.2.4)

where {b,} is a set of LSF coefficients. Employing LSF parameters as instrument

features on monophonic music, Chétry obtained an average identification accuracy of
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86.3% on average [17]. Krishna showed that LSF parameters were superior to other
features (linear prediction cepstral coefficients and MFCCs) in isolated notes’ spectra
compression [29]. These results suggest that LSF can capture instrument’s characteris-
tics as a compact representation. Note that LSF also has a problem in the determination

of the optimal order (number) of coefficients like LPC.

2.3 Mel-frequency cepstrum encoding

Mel-frequency cepstral coefficients (MFCCs) are calculated in the cepstral domain by
applying a few transformations to the spectrum in the frequency domain. Similar to the
above frequency domain analyses, power spectra are computed by applying a Fourier
transformation to the sound waveform in each time frame. In the frequency domain,

linear frequency f(Hz) is converted to mel frequency M with

_ e
M = 1127log, (1 + 700) : (2.2.5)

After that, a logarithm is taken to each mel-spectrum followed by cosine transforma-
tion. The lower MFCCs can often be regarded as instrument characteristics because
they show nice correspondence to the spectrum envelope. While some studies reported
that LSFs outperformed MFCCs as instrument features [29], other studies reported that
MFCCs worked relatively well as instrument features compared with LPCs and cep-
stral coefficients when applied to isolated notes, monophonic music and polyphonic
music [14, 16].

3 Features based on linear-projection to the local tim-

bre space

The extraction methods of instrument features are reviewed in the previous section.
Although these features help to classify instruments correctly, such a manually deter-
mined features might have missed the other useful features. Alternatively, the linear
projection methods are utilized in this study to extract useful and compact features
from a large number of labeled spectrum data concerning a timbre space similar to
[30]. In this section, three machine learning-based linear projection methods are re-

viewed followed by the proposed instrument feature extraction framework.
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3.1 Principal component analysis (PCA)

PCA orthogonally projects the given input data into a low-dimensional linear space.
Let x denote an /N-dimensional input vector and y be a D-dimensional projected out-
put vector, where N > D. The PCA projection is linear:

y = Wk, (2.3.1)

where W is an N x D linear transformation matrix and T denotes the transpose.
Transformation matrix W, in PCA is obtained by maximization of the total variance
of X [31]:

W o = argmax [WTESW]| (23.2)
w

under the orthogonal constraint WTW = I. PCA gives an optimal solution that mini-
mizes the mean squared reconstruction error among all possible linear transformations
[32]. Using the mean of all sound samples p, a covariance matrix of all samples X is
given by

K

=) (- p)(xe— )" (2.3.3)

k=1

The factor loading vector (a row vector of W,.,) that maximizes the total variance of
the input data is assigned as the first projection axis; the following axes project the
input data to maximize the variance of the data projected onto the subspace, which
is orthogonal to all the previous axes. The number of principal components (feature
dimensionality) D is usually determined based on the total sum of the contribution for
explaining data variance with the first K principal components, called the cumulative

contribution ratio.

3.2 Linear Discriminant Analysis (LDA)

While PCA extracts features from the mere input data (unsupervised learning), linear
discriminant analysis (LDA) also considers class labels (supervised learning). Similar
to PCA, LDA is a linear transformation of input space x into output space y. In LDA,

the linear transformation matrix is determined to maximize the between-class variance
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and to maximize the within-class variance. When /N-dimensional input space is re-
duced to D-dimensional output space with D x /N linear transformation matrix W, W

is given by
Wiga = argmax tr (W Sy W) (WIS W), (2.3.4)
W

where 3.5 and 3y denote between-class and within-class covariance matrices, respec-
tively. Let C;, p; and n; be the set, the mean and the number of samples of class 7,
respectively, C' the total number of classes and p the mean vector of all input sam-
ples. Given N-dimensional input vector x, the between-class covariance matrix is the
sum of the covariance matrices of each class, and the between-class and the within-

covariance matrices are given by

c]

Sp=> ni(pi—p)(pi — )" (2.3.5)
=1
c]

Swo= )Y (x - pa)(x — )" (2.3.6)
i=1 z€C;

W 4., defined in (6) is obtained analytically [32]. Unlike PCA, LDA considers the
label information in a supervised manner. Since this is more suitable for extracting
the features important for label classification, it is actually used in speech recognition
[33], e.g. However, LDA may give undesirable results especially when training data
size is small or the feature dimensionality is higher than the number of classes, due to
its supervised nature. In addition, it does not work well when the input distribution of
a certain class has multiple modes [34, 32].

3.3 Local Fisher Discriminant Analysis (LFDA)

Considering the weaknesses of LDA, local Fisher discriminant analysis (LFDA) com-
bines LDA with locality preserving projection (LPP), a linear unsupervised dimension-
ality reduction method [35]. The projection matrix of LPP, W, is given by minimiza-

tion of weighted squared error,
1 & 2
W), = argmin (- D W, — Wky| Ajk>
W 25

= argmin (ATXLX"A) (2.3.7)
w
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under the constraint, ATXDXTA = 1, where X is a matrix of all N samples, and x;
and x;, are the j'* and k** column vectors of X, respectively. L is the Laplacian matrix,
L = D — A, with a N-dimensional diagonal matrix D;; = S0 Aj. (A € [0,1)).
There are several ways to choose values of the affinity matrix, A;;. Here, A,y is defined

by the local scaling of data, which is

2
Ajp, = exp <—M> , (2.3.8)
00k
where oy = ||X(k — xg;",i}|| with the m" nearest neighbor of x(;xy. A takes

a large value when the originally neighboring points x; and x;, are projected closely.
This method projects samples closely located in the original space to the close output
position; in other words, it maintains the locality.

The LFDA transformation matrix is based on that of LDA, Equation (2.3.4). The
only difference is that the locality (),;, Equation 2.3.12, is added to between- and
within-class matrices, which are

N

_ 1 N
Xp =3 > QW (% — %) (% — x)" (2.3.9)
7,k=1
_ 1N
Sw=g D Qg —xi) (g —x)" (2.3.10)
k=1
where
~ A; (l -1 T =Tp=¢C
Qi =4 AN v) @=n=o 23.11)
¥ (T # xi)
Ajk o
- Zik Ti=xp=CcC
Q)= (& =m =0 (2.3.12)

0 (T # xi)

LFDA linearly transforms input samples to output samples so that the transformed
output samples are separated well when they belong to different classes and they make
a local cluster when they belong to the same class [36]. The adoption of LPP allows
input distribution of each class to have multiple modes as well as the output dimension-
ality to be higher than the number of classes [37]. On the other hand, it may over-fit
the training data, especially when the data size is small, which is a similar drawback to
LDA.
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3.4 Proposed Feature Extraction Structure (PCA-LFDA)

The PCA-LDA combination has often been used in practical applications, e.g., face
recognition [38, 39], image retrieval [40]. In this study, however, to manage data
multimodality, which both LDA and PCA-LDA cannot extract, LFDA is used instead
of LDA. Moreover, to eliminate the possible noise that incurs in the input space and to
avoid over-fitting due to the possible lack of training data, we conducted PCA-LFDA,
which applies LFDA to the dimensionality-reduced space obtained by PCA.

4 Geometrical interpretation of linear-projection algo-

rithms

A sound production of an instrument is well approximated by the source-filter model
[1, 41]. In a frequency domain, the source-filter model assumes that the sound spec-
trum at frequency w is represented by a product of the source a(w) and the filter R(w)

S(w) = a(w)R(w), (2.4.1)

where the source oscillation is determined according to the fundamental frequency of
the sound, and the filter property is determined by the instrument-specific resonant
property.

Since every source is assumed to have harmonics on multiples of the fundamental
frequency, any source o’(w) is well represented by a certain fixed source a(w) as
o' (w) = a(kw), where k denotes a scalar coefficient; e.g., kK = 2 when the values of
fundamental frequency of a’(w) is twice of that of a(w) [42].

Let « be the vector of the discritized spectrum along the log-frequency axis, and R
be the diagonal matrix. When we consider a discrete spectrum along with the log-scale
frequency, the pitch modulated source vector o’ is represented by a certain element-
wise shift of a. The example of the shift is shown in Figure 2.4.1.A to Figure 2.4.1.B.
The elements of the diagonal matrix R hold a filter property, corresponding to the shift
invariant on the log-frequency axis (Figure 2.4.1.C). In the following, we write R of

instrument ¢ as R; and the basis spectrum of instrument ¢ as R; o (Figure 2.4.1.D).
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Given the N x N cyclic shift matrix

01 O
0 0 1
S=1|: : . . 1, (2.4.2)
1
1 0

the shift is represented by the power of the shift matrix S™, i.e., @' = S™« where
m is a certain integer assuming the vector on the log-frequency is discretized at equal
intervals. Then, the spectrum is represented with R;S™« (Figure 2.4.1.E), where R;
is a diagonal matrix whose diagonal elements denote the filter property of the corre-
sponding log-frequency scale shift invariantness of instrument .

By the left multiplication of the vector R;S™a with R; !, an inverse matrix of
R,;, we can obtain only the source information, R{lRiSma = S™ea, which does
not depend on the pitch modulation m, as geometrically shown in Figure 2.4.2.A.
In other words, the source information is that the spectra of a certain instrument are
represented as a basis spectrum a with the shift S™ for any pitch. Therefore, the
projections of all instrument samples of all pitches to the unit vector 1 agree, i.e.
1TR,a = 1TR;S™a. The above discussion suggests that in-class variance of sam-

R,S’"a 4 R[Sma +n /

0 R;S"p R,S"f+n

Figure 2.4.2. Geometrical view of the projections of the basis spectrum o and the
pitch modulated spectrum S™« along the unit vector 1 (A), the projections of two

instruments with spectra & and 3 (B) and those with additive noise (C)
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ples transformed with 1TR; ! is ideally zero when the label of classes is the kind of
instruments.

In the same way, we introduce the instrument j, whose basis spectrum is R;3.
Here, 3 is the discritized source spectrum in the log-frequency scale. The projection of
vector R;S™av along the instrument-specific space R; 1 is given by 1"R; 'R,;S™c,
1TS™a, which is shift-variant to . When samples from the instrument with the
spectrum vector « are projected on R; 1 as well as the instrument with that of 3
on Rj’ll ideally, the variance of projected samples become small, which allows us
determine the boundaries of different instruments.

The projection of LDA is based on the criterion which maximizes the between-
class variance and minimizes the within-class variance. This is equivalent to estimate
1TR; ! in 1"R;'S™a from given samples. The geometrical view of LDA projections
of two instruments are in the Figure 2.4.2.B.

Assuming that the additive observation noise, n are added to the sets of instru-
ment samples R,;S™a and R;S™ 3, respectively, it only causes the parallel translation.
Considering this additive noise spectrum as a bias in the geometrical interpretation, the
vectors shift from the origin of the coordinate axes as from Figure 2.4.2.B to Figure
2.4.2.C. The algorithm of LFDA is explained as consideration of the locality to that
of LDA. LFDA keeps the shift-invariance since the within-class variance (Equation
2.3.10) does not change even if the bias is added to the samples from the same class x;
and x;. Since LFDA also holds the translation-invariance, it achieves the instrument
feature projection with the minimal within-class variance.

It suggests that we can find the transformation that minimizes the between-class
variance. Since the projections of LDA and LFDA are based on the criteria which
maximizes the between-class variance and minimizes the within-class variance, LDA
and LFDA can find a similar transformation matrix to the matrix whose column vector

is 1TR ™!, where R varies according to the instrument.

5 Classification method: SVM

Support Vector Machine (SVM), which is one of the most popular pattern classification
methods in the field of machine learning. This method is extensively applied to various

tasks including not only instrument identification of isolated notes, monophonic music
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[14, 17, 13] and polyphonic music but also speaker identification.

SVM are associated with two important concepts: margin maximization and kernel
tricks. When samples are linearly separable between different classes, more than one
boundary hyper-plane exists, which accurately separate those samples. As a criterion
to determine the best boundary among them, Vapnik’s idea maximizes the distance be-
tween the boundary and the samples closest to the boundary, which are called support
vectors. On the other hand, a linearly separable space could be found by projecting the
input samples onto a possibly high-dimensional space even if the input samples are not
linearly separable in the original input space. In SVM, a kernel function

k(xi,x;) = o(xi) - o(x;) (2.5.1)
is assumed, and the left-hand side is directly defined instead of defining mapping func-
tion ¢(-) [43]. Here, x; and x; are i'" and j input samples, respectively. k(-) is a
kernel function, and ¢(-) is a (no more important) mapping function. Learning and
classification by SVM can be employed by kernel function k(-) without caring about
mapping ¢(-). This is called the kernel trick.

For the implementation of SVM, matlab interface of libsvm package available at
National Taiwan University [44] was used in the following experiments. Though SVM
is originally a binary classifier, the combination of it allows us to solve the multi-class
problem. There are several strategies for multi-class SVM. The popular ones are “one-
against-one” and “one-against-all.” Implementation in libsvm adopted one-against-one
because it takes less time than that of one-against-all for training. The SVM type used

in the experiments is C-SVC with the linear kernel.

6 Experiments and results

Applying to several monophonic instrument identification tasks, we examined how
well the proposed method, PCA-LFDA, works to extract compact instrument features.
Due to the lack of standard databases of instrument identification tasks for monophonic
music, however, directly comparing the performance of the proposed method with ex-
isting methods is difficult, unless we implement those methods. If the experimental
conditions, such as the number and the types of instruments to be classified, the time
length of the input sound and the content of the sound data itself, differ between exist-

ing studies, direct comparison of their classification performance can be meaningless.
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In this study, therefore, we implemented some of the existing methods and collected
data for evaluation (and also for training) from various sources so that the comparison

1s meaningful.

6.1 Monophonic music sound database

Sound samples were collected from monophonic commercial CDs of various genres
as well as various recording environments. Eight instruments were chosen to include
at least two from three instrument categories: violin (vn.), cello (vc.), guitar (gt.) and
piano (pf.) from strings; flute (fl.) and oboe (ob.) from woodwinds; and horn (hr.) and
trumpet (tp.) from brass instruments. Monophonic songs (sampling frequency: 44.1
kHz) were divided into 0.046 sec. without overlapping. Silent samples were removed
in advance. The number of total samples, which were taken from 30 different CDs
with 47 different sources (vn: 6, vc: 6, gt: 5, pf: 7, fl: 7, ob: 6, hr: 5, tp: 5; some CDs
include more than one instruments), is 38507 (vn: 6612, vc: 5005, gt: 6524, pf: 5366,
fl: 5783, ob: 3008, hr: 2498, tp: 3711). CDs and instruments played in CDs are listed
in appendix C.

In Experiment 1 and Experiment 2, half of available data for each sample are cho-
sen randomly as training data and the rest as test data. In Experiment 3, we evaluate
the test instrument identification rate averaged over the sources when none is included
in the training dataset; the test data samples are taken from one source, and the training
data samples are taken from the remaining 46 sources. Then, the averaged performance
is evaluated by changing the source for the test dataset. We call the first sample set as

mixed-CD and the second one as leave-1CD-out.

The reason two sample sets are prepared is to verify effects of sound recording
environment to the identification results. As mentioned in [?], difference in recording
environment might affects values of parameters. One solution is to substract the long-
term average from the parameters in each time-frame [?]. In this study, leave-1CD-out
takes test samples and training samples from different sources. Thus, this would be

free from source effects more than the that of mixed-CD results.
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6.2 Signal processing

The sound data spectra were obtained as follows. First, the log-power spectra are
calculated. We used the Fourier transformation after applying a Hamming window to
obtain a 1,024-dimensional spectrum. The dimensionality of the features extracted by
PCA-LFDA was temporarily set as ten (dimensionality effect is evaluated later), which
was small enough compared to the original spectrum dimension, 1,024, but included

enough information for instrument identification tasks.

6.3 Instrument Identification Experiments

To evaluate the effectiveness of PCA-LFDA, our feature extractions method, classifi-
cation performance based on the extracted features was compared with those by the
existing methods. We performed three experiments: the first two were preparatory,
followed by a main experiment. We used several sources in the experiments, but the
test dataset was always independent from the training dataset to avoid the “information

leak.”

Experiment 1 - Log-power spectrum classification

In the first experiment, a basic thing is examined: whether the 1,024-dimensional raw
log-power spectrum itself has enough information for instrument classification. With
10 test trials of instrument identification, we obtained 96.11% correctness with 0.300
standard deviation whose training and test datasets were chosen randomly and indepen-
dently from all sound samples in each trial. This result suggests that each instrument
can be well characterized solely by its short-term spectra, without other information,

like temporal change in the spectra.

Experiment 2 - Feature Dimensionality

Since the previous experiment suggested that the raw log-power spectrum contains
enough information for instrument identification, it is investigated further whether we
can reduce the data dimensionality by PCA-LDA and the proposed feature extraction
method, PCA-LFDA. First, the dimensionality of features is fixed LFDA to ten and
then investigated how much the first-step PCA reduced the dimensionality before the

21



second-step dimensionality reduction by either LDA or LFDA. Figure 2.6.1 shows
the average identification rate by 10-fold cross-validation against the cumulative con-
tribution ratio of the principal components obtained by the first-step PCA. Since the
dimensionality extracted by the second-step LDA or LFDA was constant (ten), this
experiment examined how the first-step PCA worked for the whole feature extraction
process. The best identification rates for LDA and LFDA were obtained using 310 or
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Figure 2.6.1. Instrument identification rates of PCA-LDA (red, solid) and PCA-LFDA
(blue, dotted) with various principal components (A; number of LDA/LFDA features
was fixed at 10) and with various LDA or LFDA dimension (B; PCA dimension is
fixed at 310 for PCA-LDA and 563 for PCA-LFDA)

563 principal components with 95.5% and 99% as the cumulative contribution ratio,
respectively. When the second-step LFDA extracted ten features from these 310 or
563 principal components, the identification rate was higher than that of the 1,024-
dimensional raw log-power spectrum, suggesting that we can deftly represent the in-
strument features by PCA-LDA or PCA-LFDA without degradation of classification
accuracy. Then we investigated the influence of the dimensionality of the feature ex-
tracted by LDA or LFDA on instrument identification.

In the same way, the feature dimensionality of LDA and LFDA is evaluated with
the fixed number of principal components obtained by the first-step PCA, 310 or 563.
The dimensionality over 10 gives the accuracies higher than 98% for LDA and 99% for
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LFDA. By considering the trade-off between complexity and accuracy, fixing the fea-
ture dimensionality extracted by PCA-LDA or PCA-LFDA around ten seems reason-
able. In the following experiments, therefore, we evaluated several feature extraction

methods by fixing the feature dimensionality at ten.

Experiment 3 - Monophonic Music Instrument Identification

As explained at the beginning of this section, we prepared total 47 sound sources. Note
that our experimental condition is not exactly consistent with the existing studies. For
example, some studies only used samples from normal playing styles [45] and samples
from limited pitch ranges [46, 47], whereas we collected samples from all instrument
playing styles to extract the instrument’s characteristic features, which remain constant
despite playing-style variations.

From the result of Experiment 2, the PCA-LFDA instrument identification accu-
racy does not change much for all LFDA dimensionality over ten; in addition, the fea-
ture dimensionalities of many of existing studies are between 10 and 20. Therefore, we
extract 10-dimensional features for each feature extraction methods. In other words,
the coefficients of methods to compare, LPC [14], LSF [17] and MFCC [18] are ten,
and dimensionality is reduced to ten with PCA, LDA, or LFDA. In the cases of PCA-
LDA and PCA-LFDA, from Experiment 2, we first reduce the spectrum dimensionality
with PCA to 385 (for PCA-LDA) or 563 (for PCA-LFDA) followed by dimensionality
reduction into 10 with LDA or LFDA. The leave-1CD-out SVM classification results
are shown in the left panel of Figure 2.6.2 and Table 2.6.1.

MFCC, LPC and LSF denote 10-dimensional mel-frequency cepstral coefficients,
linear predictive coefficients and line spectral frequencies, respectively, and LP denotes
the original raw log-power spectra. In Figure 2.6.2, blue bars are results with training
data and red bars are results with test data. Identification rates shown in Table 2.6.1
are average test accuracies over 10 different trials. Note that the test dataset was taken
independently of the training dataset.

To verify whether the source-dependent factor affected the instrument identifica-
tion results, we compared the leave-1CD-out results with the results by the following
mixed-CD validation method. Different from leave-1CD-out training and test datasets,
the samples of mixed-CD were taken from all 40 mixed sources, but avoiding sample
overlap between the training and test datasets. The right panel of Figure 2.6.2 and
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Figure 2.6.2. Leave-1CD-out (left) and mixed-CD (right) average classification re-
sults of 10 trials with our 8-instrument-class datasets for training (blue) and test (red)

samples

Table 2.6.2 show the training and test accuracies evaluated by the mixed-CD method.

Comparing the results of leave-1CD-out and mixed-CD, the results of mixed-CD
are relatively higher than those of leave-1CD-out. This suggests that in mixed-CD,
perhaps not only instrument-specific characteristics but also source-dependent fea-
tures have been extracted, which was also discussed in previous studies [14, 12]. For
the leave-1CD-out datasets, the proposed method (PCA-LFDA) achieved the highest
identification rate among all ten-dimensional features we compared. Moreover, the
relatively small difference between the training and test accuracies suggests that PCA-
LFDA does not suffer much from the over-fitting that actually occurred in LFDA. Ac-
cordingly, these encouraging results lead to the conclusion that our proposed feature
extraction method, PCA-LFDA, is useful to extract essential instrument features from

monophonic music excerpts.

Some existing studies failed to clearly state the preparation method of the training
and test datasets [48, 16, 46, 47], and others suggested the importance of using training
and test datasets taken from different sound sources in instrument identification [14,
12, 17]. We experimented following the presumption suggested by the latter class of
studies. As a reference, we summarize the classification results of the existing studies

in Table 2.6.3. In the table, the “y” in the “source mixed” column denotes that the
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training data | standard test data standard

instrument features || accuracy (%) | deviation || accuracy (%) | deviation
raw spectrum 100 0 74.01 4.167
LPC (used in [14]) 55.23 0.291 39.66 8.056
LSF (used in [17]) 73.75 0.301 47.87 9.365
MFCC (used in [18]) 80.10 0.413 63.34 5.690
PCA 89.90 0.109 68.52 4.305
LDA 94.85 0.077 76.51 3.970
LFDA 75.13 0.466 43.96 12.633

(proposed methods)

PCA-LDA 92.34 0.117 69.92 7.074
PCA-LFDA 94.00 0.080 76.61 3.575

Table 2.6.1. Comparison of the instrument identification rates of leave-1CD-out train-

ing and test data using proposed features and their standard deviation

training and the test samples were taken from the same source (including when both
were taken from the RWC database [49, 50]), and “n” denotes that they were taken
from different sources, which is [46]. When both letters are found, the experiments
were done for both of the above two settings, but the results were shown only for
the source-mixed setting. The identification accuracies of [17, 12] are higher than our
leave-1CD-out, although they selected training and test samples from different sources.
Because their experimental conditions are different from ours, direct comparison is not
very meaningful. Livshin proposed a sample outlier omission process for simplifying
dataset treatment. Chétry showed high instrument accuracy with LSF features, whereas
based on our experiment the accuracy with the LSF features was around 50% because
the time length of each sample in Chétry’s experiment was much longer (300 sec.)
than the samples used in our experiment (0.046 sec.). If we utilized longer excerpts,

our classification performance would improve.
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training data | standard test data standard

instrument features || accuracy (%) | deviation || accuracy (%) | deviation
raw spectrum 100 0 96.10 0.024
LPC (used in [14]) 54.10 0.374 54.03 0.114
LSF (used in [17]) 71.72 0.173 71.89 0.239
MFCC (used in [18]) 79.97 0.149 79.66 0.013
PCA 75.29 0.414 74.79 0.038
LDA 90.22 0.024 87.78 0.134
LFDA 95.26 0.044 93.57 0.033

(proposed methods)

PCA-LDA 93.28 0.114 92.42 0.046
PCA-LFDA 94.47 0.022 93.50 0.035

Table 2.6.2. Comparison of the instrument identification rates of mixed-CD training

and test data using proposed features and their standard deviation

6.4 Analysis of PCA-LFDA results

Leave-1CD-out confusion matrix

The confusion matrix and its percentage in Table 2.6.4 and Table 2.6.5, respectively,
shows in all 47 leave-1CD-out test trials (eight instruments times five sources), when
the test samples were classified based on the PCA-LFDA features. ' “T” and “E” in
the upper left box denote the true and estimated instruments, respectively. This table
shows that instrument identification error occurs mainly between instruments in the
same instrument categories, string, woodwind and brass, because these instruments
have overlapping ranges of fundamental frequencies or their sound production mecha-

nisms are similar.

Tn a confusion matrix of size [ x [, where [ is the number of classes, the column and row represent
the instances of a predicted and an actual class respectively [51]. It represents how accurately the test

datum is classified.
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Authors number of | number of | accuracy | confidence | source sample
instruments | features (%) intervals mixed | length (sec.)
leave-1CD-out 8 10 76.61 73.77-83.39 n 0.046
mixed-CD 8 10 93.50 | 89.92-94.41 y 0.046
Marques [14] 8 16 70 n/a n 0.2
Livshin [12] 7 62 88 81-94 n 1.0
Chétry [17] 6 16 86 72-98 n 300
Eggink [46] 6 120 66 56-85 ny 2-10
Essid [13] 10 19 87 66-100 y 0.5
Jinachitra [47] 6 28 66 n/a y 0.5
Ventura [16] 5 12 99 97-100 y 10
Brown [48] 4 10 n/a 79-84 y 2.0-7.8

Table 2.6.3. Summary of classification results of existing studies (y: sources mixed, n:

sources not mixed)

Mixed-CD visualization

Samples of each instrument were plotted in a two-dimensional space reduced by PCA-
LFDA. PCA-LFDA dimension reduction was done in the same manner as in the previ-
ous experiments except that the dimensionality reduced by LFDA (LFDA dimension:
two). For intelligible visualization, we randomly chose 50 samples from each instru-
ment sample set (Figure 2.6.3). Even though only two features were used for this
visualization, each instrument’s sample was gathered to form a cluster, and the clusters
of instruments belonging to the same instrument category are also closely clustered:
string instruments (violin, cello, guitar and piano: triangles), woodwind instruments
(flute and oboe: circles) and brass instruments (trumpet and horn: squares). Moreover,
three instruments (flute, oboe and trumpet), which are frequently confused in human
listening tests 2, are all located at the right-bottom corner. Such human misclassifica-

tion is consistent with our experiment shown in Table III.

’This human listening test was informal; we simply presented music samples to subjects and asked

them to identify the instrument.

27



T E vi. vC. gt. pf fl. ob. hr. tp.
vi. 4985 | 38 36 6 82 69 | 349 | 1047
vC. 111 | 3597 | 1033 | 90 4 1 4 165
gt. 18 | 1999 | 3121 | 1175 0 0 1 210
pf. 2 140 | 1276 | 3557 | 10 0 2 379
fl. 89 0 0 2 2571 | 184 | 684 | 84
ob. 8 0 0 0 1747 | 1011 | 595 | 254
hr. 55 0 0 0 398 | 1414 | 822 | 55
tp. 561 81 162 | 221 | 535 | 122 | 645 | 2700

Table 2.6.4. Confusion matrix for leave-1CD-out test samples with linear-kernel SVM

(T: true instrument label, E: estimated instrument label)

7 Summary and discussion

In this study, we presented a machine learning-based method (PCA-LFDA) to extract
low-dimensional features to characterize each instrument and its effectiveness in ge-
ometrical interpretation and instrument classification tasks. We first evaluated how
accurately the instruments were classified with only the log-power spectra information
and suggested that spectra contain enough information of instrument characteristics.
Next, we reduced the dimensionality of the log-power spectra by combining two ma-
chine learning-based linear dimensionality reduction methods: PCA and LFDA. Even
when the feature dimensionality was reduced to ten, instrument classification by SVM
based on the reduced features was as accurate as that based on the raw log-power
spectra.

Most existing studies used heuristically pre-determined features as instrument fea-
tures or features not directly selected from the log-power spectrum. In contrast, our
features were extracted by linear feature projection techniques in an adaptive manner
to the given dataset and still achieved a rather high instrument identification perfor-
mance compared with the existing methods. Moreover, because our feature extraction
method is based on linear transformation of the spectra, the extracted instrument fea-

tures will be useful for instrument identification in polyphonic music in which the
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T E vn. | vc. gat. pf fl. ob. hr. tp.
vn. 7541 06 | 06 | 0.1 | 1.2 | 1.0 | 53 | 158
vC. 22 17191200 1.8 | 0.1 | 0.0 | 0.1 | 3.3
gat. 03 | 306 478|180 O 0 0.0 | 32
pf. 00 | 2.6 | 23.7]66.0| 0.2 0 0.0 | 7.0
fl. 2.5 0 0 0.1 |72.8 | 52 | 194 | 24
ob. 0.2 0 0 0O [483]28.0]165| 7.0
hr. 2.0 0 0 0 14.5 | 51.5 | 30.0 | 2.0
tp. 11.1] 16 | 32 | 44 | 10.6 | 24 | 12.8 | 53.7

Table 2.6.5. Confusion matrix percentage for leave-1CD-out test samples with linear-

kernel SVM (T: true instrument label, E: estimated instrument label)

spectra are well approximated by a linear summation of the spectra of the constituent
instruments.

Another important observation of this study is that the classification results are sub-
stantially affected by the sound source; namely, the test instrument identification rate
was poor when the training datasets were taken from isolated notes or different sound
sources from the test datasets, which was also discussed in previous studies [14, 12].
One plausible explanation is that the feature extraction methods extracted such source
dependent features as recording circumstances that do not correspond to the charac-
teristic features of instruments. To avoid such unwanted over-fitting to the source
dependent features, the feature extraction methods should be trained and evaluated on

large datasets taken from a large variety of independent sources.
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Figure 2.6.3. Distribution of leave-1CD-out randomly chosen 30 test samples of eight
instruments in a two-dimensional PCA-LFDA feature space
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CHAPTER 111

Probabilistic harmonic model for single-channel sound

decomposition

For the sound-source identification problem, some traditional approaches have been
based on Fant’s source-filter model that was originally proposed for modeling produc-
tion processes of sound and speech [41]. This model assumes that the combination of
a sound-source generation pattern GG and the synthesis filter H, which represents the
resonant property of the target instrument, produce sound signals, whose power spec-
trum is represented as s. In the case of a violin, for example, the oscillation of a string
generates source signals, and the body of the instrument works as a filter. In the case
of human speech, generation of source signals is due to the oscillation of vocal cords,

and the filter corresponds to vocal tract resonance.

Non-negative matrix factorization (NMF) is widely used for the single-channel
sound source decomposition with various constraints. In NMF, the observed signals are
represented with factorization of two matrices, for instance, V and W, the source basis
matrix and gain matrix. Some studies simply use the original NMF with additional
penalty terms, which would represent sound characteristics such as sparseness [52, 53,
54], continuity [55, 56, 54, 57], fixed source [58, 59] and harmonicity [60].

Both of the source-filter based models and the matrix factorization based models
suffer from the problem of indeterminacy; that is, observed spectra can be expressed

by various combinations of G and H for the source-filter model and V and W for
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the matrix factorization based models. In order to estimate those combinations, some
constraints are necessary to relax the indeterminacy.

In this chapter, the model assuming that the sound generated by an instrument
is well approximated by the source-filter model is introduced. On these assumptions,
instrument-specific features and pitch information are extracted from monophonic mu-
sic excerpts. The model requires to estimate two elements, the sound source and the
synthesis filter. To reduce the indeterminacy in the source-filter model, assumptions
of harmonics, temporal continuity and sparseness are taken into account. In particu-
lar, dynamics of pitch and loudness are considered. For learning of model parameters,
the variational EM algorithm is employed. The numerical experiments for instrument

identification show that the proposed algorithms work well.

1 Source-filter model and single-channel sound decom-

position state-of-art

Several previous studies have assumed models similar to that in the source-filter model.
Itakura attempted to solve the source-filter problem, in particular for speech signals,
by identifying the synthesis filter first. They modeled the short-term speech signal as
a stationary Gaussian process and estimated the filter by using maximum likelihood
spectrum estimation [61]. Many of speech separation or recognition systems are based
on this source-stationary assumption [62]. For example, in Weiss’s work, as a prior
knowledge, phonetical transitions are assumed to be based on Markov process. Then,
the source-dependent characteristics on the eigenvoice speaker model is estimated via
variational EM algorithm to separate speech mixtures [63]. The assumption of the
stationary Gaussian process, however, ignored the time-varying characteristics of pitch
and loudness. Because of this assumption, it was not sufficient to reproduce real sound-
source or resonant properties.

Klapuri modeled both filters and sources by a linear combination of basis func-
tions. A spectrum is divided into four parts in that model: time-invariant harmonics,
time-invariant body response filter, time-variant loss filter representing the frequency-
dependent decay and time-variant modeling error. The basis functions for the har-
monics (source) were obtained by means of principal component analysis (PCA) in

advance, while those for the body response filter and the loss filter were given as a set
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of triangular band-pass filters distributed uniformly on the critical band scale with 50%
overlapping. This model was successful in extracting the time-constant characteristics
(assumed to be instrument characteristics) from both source signal and the synthesis
filter [64]. Klapuri then used his source-filter model for instrument feature extraction
by assuming that each instrument has its own source and filter characteristics. Al-
though this model was simplified as a linear model for computational tractability, the

real sound generation process should include high non-linearity.

Additionally, Kitahara solved the illposed problem by extracting harmonic struc-
ture with the model of feature weighting given note information [65]. Vincent modeled
polyphonic sound signals as a summation of the power spectra of each note to track
two melodies at once [66] and proposed a basis-gain model as a sound decomposition
model [60]. This model assumes that the time-frequency spectrogram, a matrix S, is
generated with the factorization of a basis matrix V and a gain matrix W, which is
similar to the non-negative matrix factorization (NMF). Many of recent studies about
estimation of the source and/or the filter are based on NMF, which assumes that the
original time-series signals can be factorized into two matrices. Similar to the source-
filter model, this factorization has the inherit illposedness since observation is only
the original signals. Recent studies introduced the sparseness constraint [52], harmon-
ics [57, 60] as well as the pre-learned and fixed dictionary, which holds the harmonic
structure, for the model simplicity [58, 53].

We talk a little about the related topic, speaker identification. A speaker here cor-
responds to the instrument in the meaning of “source.” Because the resonances vary a
lot in speaker identification compared with the changes in instruments, this would be
the hardest problem in four categories. As a speech model, a dynamical system is of-
ten employed. As an example of existing studies, Lee attempted to express the speech
dynamics constructing a switching state-space (SSS) model. For the approximation
of posterior distribution, a variational Expectation-Maximization (EM) algorithm [67]
was used [68, 69]. In Deng’s studies such as [70], the filter model is determined by a
certain number of resonant frequencies and their bandwidths and is based on LPC. It
allows the model to learn parameters of both a filter part (vocal tract resonances, VTR)
and a source signal part (residual). However, it has still not been explored enough to

apply to real speech because it requires many parameters.
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2 Sound generative model and illposedness

2.1 Source-filter model

Many traditional approaches to the sound-source identification problem are based on
the Fant’s source-filter model [41, 1]. This model was originally proposed to repre-
sent the sound- and speech-production process. In this model, the power spectrum s
is modeled as the combination of source signal generation GG and a synthesis filter H,

which modulates the generated source signal, shown in Figure 3.2.1. The examples of

Not observable Observable
P —
Source signal Synthesis filter Sound signal
Gt . Ht Sl‘

v
\4

Figure 3.2.1. The source-filter model of sound production

a source signal and a synthesis filter are the vocal cords and the vocal tract for speech
as well as pitch and instrument specific characteristics for instrument. The filter part
in the source-filter model mainly contributes to the spectrum envelope, which forms
a rough curve over the spectrum shown in the middle part of Figure 3.2.1. Since the
power of the spectrum typically decreases from low frequencies to high frequencies,
the spectrum envelope tends to have a gradual decrease in a frequency domain. It
is often assumed that the synthesis filter contains information to specify the instru-
ment [20, 71] or information on both voice characteristics and pronounced syllables
in speech [72, 73]. On the other hand, the source signal mainly contributes to the fine
structure of the spectrum. It forms a small jagged line in a frequency domain as in
the left part of Figure 3.2.1. Those peaks are apt to be on the multiples of the funda-
mental frequency known as harmonics or overtones [74]. Since this model assumes the

source and the filter are independent, it allows us to examine sound-source information
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without the influence of other acoustical features such as pitch or loudness.

2.2 Illposedness

Although this model is widely used as a generative model to estimate sound charac-
teristics such as instrument-specific features or pitch because of its simplicity, it has
indeterminacy. In other words, there is more than one way to express the observed sig-
nal. ! For instance, suppose the source-filter model is expressed in one-dimension, it
is equivalent to a multiplication of two subjects, G and /. When we want to estimate
the values of a source and a filter from the observed signal equals to six, there is an
infinite number of combinations that can express that data, for example, one by six or

two by three.

s=Gx H 3.2.1)
6=1x6
6=2x3

The representation of the source-filter model has an inherent indeterminacy since it is
impossible to estimate the source signal generation GG; and the synthesis filter H, at
each time t (¢ € {1,--- ,T}) without additional constraints.

2.3 Constraints

To relax this uncertainty, this study considers three kinds of constraints from the sound

properties as well as the source-filter model: harmonicity, dynamics and sparsity.

e Harmonicity
Several recent studies introduce the harmonicity assumption into the model [57,
76]. Most of instruments have harmonic overtones in their power spectrum,
one example of a power spectrum is shown in Figure 3.2.2. From this sound

property, in this study, harmonicity is assumed in the source-filter model in the

"Problems are called ill-posed when they do not satisfy the following three properties of a well-posed
problem: 1. A solution exists. 2. The solution is unique. 3. The solution depends continuously on the
data, in some reasonable topology.

This is introduced by J. Hadamard [75].

35



amplitude
o

A A‘A. ‘ . . \

0 1 2 3 4 5 6 7 8
frequency (kHz)

Figure 3.2.2. The example of harmonicity in the power spectrum

observation process of the probabilistic model which is explained Section IV.3.1.
In this model, the phase information is not modeled from the fact that the human

auditory system is insensible to the phase information [19].

Continuity or discontinuity transitions of pitch and amplitude

In the proposed model, the time-varying source and the time-invariant filter are
assumed in the source-filter model. Smoothness of fundamental frequency is
also considered in other existing studies such as [57, 76]; however, in this study,
the case of discontinuous is also included in the state transition of the stochastic

dynamical system model (Section 1V.3.2).

Sparsity

Models based on the nonnegative matrix factorization (NMF) are often together
with the sparsity constraint [53, 55, 77, 78, 79]. Since the proposed model is
probabilistic, the sparse distribution is employed in the state transition part (Sec-
tion 1V.3.2).
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3 Dynamical system model formulation

The joint distribution of the set of observed spectra 5.7 and the set of hidden variables

Xl:T is
P (51;T, X1:T) = p(ST, $T|51:T—17 Xir-a, 9)p(51:T—1, Xiroa, 9)
= p(ST, IT|51;T—17 Xi7r-1, Q)P(ST—h TT-1 |SI:T—27 ‘9)

T
= p(31, 171|9) HP(% $t|51:t—1, X1, 9)

t=2

T
= p(si]z1, 0)p(x1]0) [ [ p(silzr, 0)p(ae|zi—1,6). (3.3.1)
t=2

Its graphical representation is shown in Figure 3.3.1. The joint distribution can be

p (x| x.p)
X1 Xy X1
Hidden states
p (x)) (pitch, amplitude)
p (s, x)
Observed states
(power spectrum)
S &) 811 Sy St1

Figure 3.3.1. Graphical representation of dynamical system

computed given the observation process p(s;|z;), the state transition p(x;|z; 1) and
the initial state p(s, x1|6). The likelihood p(S1.7) can be calculated by integrating this
joint distribution with respect to X;.7; however, in general, it cannot be performed an-
alytically. The solution is provided in the Section IV.4. Followings are the explanation

of distributions for the observation process, the state transition and the initial state.
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3.1 Observation process

Acoustic distortion measures

There are several distortion measures to evaluate how much the spectrum generated
from the model is close to the observed spectrum; the Euclidean distance and the
Kullback-Leibler divergence are widely used. Recently, NMF with Itakura-Saito diver-
gence is introduced [80], which successfully separate the three different instruments in
Jazz music [81]. This measure is known to be close to perceptual measure of sounds
since it emphasizes the distortion of the peaks of spectra more than that of the valleys
[82]. In this study, the Itakura-Saito distortion measure is employed for the formaliza-
tion of the observation process because the observation process describes how likely
the observed spectrum is produced from the model spectrum by a random observation
noise. Roughly speaking, it measures the divergence between observed spectrum and
model spectrum. As a probabilistic model, Itakura-Saito divergence is considered to

impose a Chi-square distribution for the observation noise.

Itakura-Saito distortion measures to Chi-square distribution

We consider the noise distribution in the frequency domain rather than in the time do-
main. Now, we show the equivalence between the Itakura-Saito distortion measure and
the Chi-square distribution. When the observation spectrum is represented along the
continuous frequency axis as in the Itakura-Saito distortion, the summation is replaced

by the integral, i.e.,

dg = E {M} _ 2/7r {log (@) | sl@) 1} d (3.32)

5¢(@) o (@) (@)

where $(w) is the estimated power spectrum, s(@) is the true short-term power spec-

trum, © = “;—I;S is the normalized angular frequency (—7 < @w < 7), and w and F's are

the digitized frequency and the sampling frequency, respectively.

A Chi-square distribution (degree of freedom: 3) is given by

Jn) = 2F(11.5) (92 xp <_g> ‘ (3.3.3)
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By taking the logarithm of this equation, we have

1 1 1 n
log f(n) = —logT'(1.5) — 510gﬁ — 510g2 ~3
1 1
= —— (const. + log — + n) ) (3.3.4)
2 n
Substituting
5t =5 0n,
C) (3.3.5)
$(@)
into 3.3.4, we obtain
log f f(@ = log S(id) + f(cf) + const. (3.3.6)
8(w) s(w)  8(w)

In Equation 3.3.5, ® is the Hadamard product, the element-by-element product. Since
we have assumed that the noise is generated independently from a Chi-square distri-
bution for each frequency, the joint log-probability of the observation noise becomes a
summation of 3.3.6 over frequencies, which is equivalent to the Itakura-Saito distortion
3.3.2.

The Chi-square distribution as a noise distribution

The probabilistic distribution for the observed spectrum s;, given the amplitude a; and
the fundamental frequency f;, p(s;|z,8), is defined with the Chi-square distribution
with three degree of freedom as:

plsilee,6) = li 2F(1.5;st(z')ao (2(1,— 28) % P (_2<170 28) - G3D

When s; and s; are close enough, this observation process can be approximated as

Here, 3, is the estimated spectrum based on the above-mentioned source-filter model,

represented by §;, = G, H,.
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Details of the source-filter model in an observation process

Suppose we have the observed d-dimensional short-term log-power spectrum s, and
the hidden variable z, at time ¢. The set of time series spectra and the set of time series
hidden variables are Sy.;7 = {s1, -+, s7} and Xy.0 = {x1,--- , zr}, respectively.

The observed log-power spectrum s; is represented by two independent function as
S = Gy(zy;0) © Hy(0) with the source signal G(zy; 0) and the synthesis filter H,(6).
The hidden variable z; is a vector whose elements are the hidden log-amplitude a, and
the frequency f; written as x; = [ay, ft]T, as well as 0 here is a set of parameters for
the model which determines the forms of the distributions or functions.

In this model, the time-invariant function for the synthesis filter is defined as

H(®) = 9l-p {sin2 % H (cosw — cos bn)2}

n=24,---,p
2
+ {6082 % H (cosw — cos bn)Q} , (3.3.9)
n=1,3,--- ,p—1

which is exactly the same as the parameterization with LSF [83]. In this equation, b,
(n=1,---,p) is a set of parameters, which determines the synthesis filter.

On the other hand, the source signal generation has time dependence, which is
represented as the sum of Gaussians whose peaks are located at harmonic frequencies
kfe (k=1 K),

K
Wi
Gt(wh ag, ft7 Ka Op, T, A) = exp (at + Aexp <_?> ZN(C‘)“ kft7 Up2)> .

k=1
(3.3.10)
Here, — (“’7) represents the exponential decay along the frequency axis where wj is a
digitized frequency, and A is an amplitude parameter. N (x; i, o) denotes the Gaussian
distribution of x with mean y and variance 0. K and o, represent the number of Gaus-
sians and the variance of each Gaussian in the synthesis filter, respectively. Details of

each parameter are explained in Figure 3.3.2.

3.2 State transition of fundamental frequency and amplitude

The state transition includes the Markov assumption on dynamics. From the fact that

most of the played notes are present for certain time as well as the current note does
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Figure 3.3.2. Correspondence between parameters of GG; and the form of the source
spectrum

not depend on the previous note when the note shifts to the another note x; is assumed
to shift either continuously or discontinuously. With this assumption, we separately
model two cases as the state transition with a scale mixture [84] of two distributions;

one for a continuous term (7 = 1), and the other is for a discontinuous term (n = 0):

p<xt’$t—l) = ﬁp(xt\xt—l,n = 1) + (1 - ﬁ)p(xt‘xt—hn = O)a (3.3.11)

where 7] 1s the mixing rate, which is the probability to be continuous. In the experiment,
7 is set as 0.8 in advance. Details of the continuous and discontinuous terms are as
follows.

e Continuous transition term, p(x;|x;—1,n = 1):

This term represents the case that one note is played and kept for a while. The
model assumes that the transition of the fundamental frequency and the log-
amplitude occur independently. It is known that when one note is played, the
value of the fundamental frequency does not change much while the amplitude
decays exponentially as the sound progresses [85, 74], so the log-amplitude de-
cays linearly. Considering such sound properties, the transitions of the funda-
mental frequency f; and the log-amplitude a, are defined as

fi = fio1 + 1y, (3.3.12)
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and

exp(ay)
——— = pexp(n,
oxplary) " P(na)
a; = a;_1 + log p + ng, (3.3.13)

where p is an attenuation constant ranging from O to 1. In this equation, n, and
n are Gaussian noise with small variances, >, for the log-amplitude and X for
the fundamental frequency. Under these assumptions, the continuous transition

can be written as

p(xt’xt—b n= 17 9) = ﬁ [N (at; at—1 + log P, Ea)N(ft; ft—17 Ef)] )
(3.3.14)

where N (z; i, o) is a Gaussian distribution whose mean and variance are  and
o, respectively. The first Gaussian represents an exponential decay of the log-
amplitude, and the second Gaussian represents the constancy of the fundamental

frequency.

Discontinuous transition term, p(x;|x;_1,7 = 0):
This term represents the change of the notes in music. Same as the model of
the continuous transition, fundamental frequency and amplitude transitions are

assumed to occur independently. Their transitions are approximated by two in-

2

dependent Gaussian distributions with large variances 0% = [02,

0]20], ie.
pxefxi—1,m = 0,0) = (1 = 7) [N(ay; ma, o) N (fr;myp,07)] . (3.3.15)

where m,, and m are mean vectors of a; and f;, respectively.

Under these assumptions, the proportion of the state transition being either con-
tinuous or discontinuous is represented by 7) that takes a value from O to 1. As a

whole, the state transition is defined as

p(x¢|zi—1,0) = 7(continuous) + (1 — 77)(discontinuous)
= p<Xt|Xt—17 97 n= 1) +p(xt|Xt_1, 07 n= 0)
= 1 [N (a; a1 +1og p, Zo)N (fi; fi-1,Ey)]

+ (1= 7) [N(a; ma, 0))N (fr;mp,07)] . (3.3.16)
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3.3 Initial distribution

The initial distribution of the hidden state is given by two independent Gaussian distri-

butions as

p(z1]0) = N(ay;ml, ()N (fr; m}, (J})Q), (3.3.17)

4 Parameter estimation with free energy minimization

4.1 Maximum likelihood and free energy minimization

The maximum likelihood estimation is one of the methods to estimate parameters of
probabilistic models. However, the likelihood cannot be computed when the model
contains hidden variables. In those cases, the EM algorithm is often employed. The
EM algorithm can increase the likelihood only if the posterior of hidden variables can
be computed. It is not also possible to compute the posterior of hidden variables in the
proposed method; therefore, instead, so-called free energy function is introduced. It
is proved that maximization of likelihood can be reformulated as minimization of the
free energy [86]0

Given the trial distribution of hidden variables X;.7 as ¢(Xi.7), the free energy is
defined as

F(Q(Xl:T)a 9) = - logp(SlT|9) + KL [q<X1:T)Hp(X1:T|SlsT> 9)] . (341)

Here, KL[q(-)||p(-)] is the KL divergence of two probability distributions: p(-) and
q(-),

KL[q||p] = /q(x) log %dz. (3.4.2)

The KL divergence takes the value of zero only when the two probability distributions
are equal and otherwise takes the positive values. From the nonnegativity property of
the KL divergence, the free energy takes the minimum value when p(-) = ¢(-). Thus,
minimization of the free energy with respect to the trial distribution ¢(X;.7) is equiv-
alent to the maximization of the log-likelihood with respect to the set of parameters
0.
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4.2 Free energy minimization and variational EM algorithm

Minimization of the free energy with respect to the trial distribution ¢(X7.7) corre-
sponds to the E-step of the EM algorithm while that with respect to the model pa-
rameters ¢ corresponds to the M-step. In practice, since it is difficult to minimize the
free energy with respect to the trial distribution, we minimize the free energy with
restricting of the trial distribution to the certain distribution family.

Alternate minimization of the free energy with respect to the trial distribution and
the model parameters is equivalent to the variational EM algorithm with the following
update rules:

E-step: ¢ = argmin F(q, 6" ') (3.4.3)

q

M-step: 6% = argmin F(q*, ) (3.4.4)
6

Here, £ is the index for the update. The variational EM algorithm minimizes the free
energy based on the coordinate-descent algorithm, which updates the set of parameters
of either ¢ or # with fixing the other one. The problem in this algorithm is that the
speed of learning parameters becomes slow when two sets of parameters to be learned
are highly correlated. Thus, we parameterize the trial distribution with £ to allow
the simultaneous update of parameters of the model and the trial distribution. That
is ming . F (¢(X1.7|k),0). Total parameters to be learned and the initial values (set
manually in advance) are as follows. The trial distribution ¢ is modeled with a single

Gaussian with mean 1.7 and variance Sy.7, which is
Q(XI:T) - N (XlzT; 122 S) ) (345)

where k = {u, S}. The covariance matrix S;.7 has the values only on E[a,_1, a;] and
E[f;—1, fi], which are adjacent to the correlation of the fundamental frequency and the
amplitude at each time, E[a,?], E[f,*]. Other values are set to be zero. E[] is the
expectation of the trial distribution, ¢(Xy.7).

All the parameter set € of this sound generative model is

9 = {77}’ U{a’f}’ m{a»f}’ E{“vf}’ m~1{a,f}7 E%a,f}? A7 T, Upa K7 bl: Tty bp} . (346)

In the experiment, parameters, o, }, M{q,f}s» S{a,}s m}a e E}a 7y are set manually.

In addition, the probability to take continuous transition 7 is set as 0.8. In summary,
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sets of parameters to be estimated are

Oost = {b1,- -+ ,bp, K,0p, A, T} (3.4.7)
k= {u,S}. (3.4.8)
The initial values of coefficients for spectrum envelope, by, - - - , b,, were determined

by LSF, which we had assumed as the synthesis filter by Equation 2.2.4 which the
number of LSF coefficients being p = 12. Other parameters, K, 0,, A and 7 were

chosen to reproduce well the log-power sectra of instruments we examined.

4.3 Free energy revisited

Calculation of the free energy is as follows.

F(q(Xur|k),0)
— _/. . / q(X1.7|k) log p(St.1, X1.7|0)d X117

+ [ Xl loga(Xual )Xo (3.4.9)

We substitute the entropy

H(p(z)) = — / p(x) log p(z)dz, (3.4.10)

into the second term of the free energy 3.4.9; then, the second term can be written as

/ . / o(Xoz|#) Tog g(X o k)dX vz — —H(q(Xrrl). G411

and replacing the second term of the free energy resulted in

F(Q(X1:T|I€), 9) = — / . / (](Xl;T|I€) logp(Sl;T,X1:T|9)dX1:T — H (q(X1:T|/{)) .
(3.4.12)
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Substitute the joint distribution p(Sy.r, X;.7|0), Equation 3.3.1, into this free energy,

we obtain
f(Q(XlzT‘H%e)

T
/ / (Xur|s log< (s1]21,0)p(1]0) | [ p(stlr, O)p (| 1,9)> dXqr
t=2

— H (¢ (X1.r|K))
. / 4(a1]) log pls |1, 6)diry — / 4(21]1) log pla1[0)dey

T
= [t 1o 3 plsiban )
t=2
T
- /[ dtwnaio o8 3 ple1, ) dcs = M0 (Xl
T
—— [ a0 (o — 3 [ ateile) logpls o 00
t=1

T
- Z // Q<$ta l‘t—1|/f) 10gp($t|$t—17 Q)dit dry—y —H (q (X1:T|H)) .
t=2

(3.4.13)

S Downhill simplex method approximation

The Nelder-Mead’s downhill simplex method or sometimes known as an amoeba method
[87, 88] is employed for the minimization of the approximated free energy.  This is an
unconstraint non-linear optimization algorithm that minimizes an objective function.
Compared with other non-linear optimization methods that use gradients such as the
conjugate gradient method, it does not require any derivatives of the objective function
but only the objective function evaluations. This algorithm is adopted to eliminate the
difficulty in the differentiation of this proposed particular free energy function.

A simplex in this approximation is a polytope of N + 1 affine independent ver-

2This method is conceptually similar to GA. Both of them utilize only a value of the cost function,
keep several candidates for the variables to be optimized and select the new candidate based on the

present candidates [89].
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tices in the N-dimensional parameter space. In two and three dimensions, the figures
of a simplex are a triangle and a tetrahedron, respectively. For example, in a three-
dimensional space, the downhill simplex method first evaluates the objective function
on four vertices. To search and to converge to the point that gives a smaller value of the
objective function than a current value, this method takes four operations: reflection,
expansion, contraction and shrinkage [90]. Figure 3.5.1 shows the operations of the

Nelder-Mead’s downhill simplex method in a two-dimensional parameter space. We
reflection expansion contraction shrinkage

expanded point
[ ]

highest function value

VANVA VNV

best
point

reflected point

Figure 3.5.1. The four operations of the Nelder-Mead’s downhill simplex method

take three vertices in two-dimensional space. The function values are evaluated in each
vertex. The worst point, which has the highest function value among three, is replaced
by a point with a lower value of the cost function with the Nelder-Mead’s downhill
simplex method.

If the first operation, reflection, finds the lowest value among three vertices, we go
on to the second operation, expansion; otherwise, we skip that. We keep the new value
searched by an expansion operation when the expansion finds the best; we keep the
one searched by a reflection operation when the value of the expansion is still worst.

If the reflection operation fails to find the best value, the algorithm tries a contraction
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operation. If all operations fail, the simplex shrinks around the best point among three
vertices. With iterations of those four operations, the Nelder-Mead’s downhill simplex

method searches the optimal point.

6 Experimental evaluation

To verify whether the proposed method can achieve simultaneous estimation of source-
signal generation (&; and synthesis filter /, as well as find sound source-specific filter
parameters, i.e., LSFs, we examined whether the spectrum envelopes represented by
the synthesis filter H show similar patterns (that is, consistency) when the sound source
(instrument) is the same. Moreover, we utilized the LSFs, which are estimated by our

method to identify the instrument.

6.1 Sound data

In monophonic music instrument identification, it is difficult to make an objective eval-
uation since there is no public database. As is done in the most of the existing studies
of music instrument identification, we then chose training and test samples from sev-
eral commercial CDs whose sampling frequency was 44.1k H z. We prepared samples
of five instruments: viola, flute, horn, trumpet and cello. Samples that were silent or
too low in amplitude were removed, but no restriction was applied to the fundamental

frequency.

6.2 Spectrum analysis

Each of the training and test data sets was constructed by extracting 30 excerpts of one
second per sample from each recording, totaling 150 data samples. Each sample for
one second was divided into twenty frames, and in each frame the power spectrum was
computed by discrete Fourier transform with a sampling of 2048 points per frame. In
general, the low frequency range, more than the high range, is considered to include the
timbre information, so the frequency range was set as 1-11020/ z. By smoothing the
spectrum over every 10Hz, the dimensionality of spectrum information can be reduced
from 11,020 to 1,102. To use a log-amplitude as spectrum information, logarithmic

transformation was applied to the 1,102-dimensional vector. According to the LSF
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method, the spectrum vector was compressed into 12 dimensions, which we assumed
as instrument features. Determination of the dimensionality of instrument features has
trade-offs of complexity and accuracy of instrument identification. An existing study
of speaker identification argued that ten-dimensional LPC coefficients were able to
represent well the standard speech waves whose sampling frequency was 8k H z [91].
According to that study, we set the number of instrument features at ten.

6.3 Feature extraction

As mentioned in Chapter II Section 2, there are many kinds of feature extraction meth-
ods. Typical instrument features are either temporal or spectral features or both, which
especially consider information on pitch variation [46, 92, 45]. Especially, the set of
MFCCs is one of the simple and efficient feature extraction methods in existing studies
[14, 18, 47, 93]. Here, we employ the set of LSFs from its high ability of instrument

identification in [17].

6.4 Experiment 1: The source signal and the synthesis filter esti-
mation
Since we have assumed that the filter constitutes a temporally invariant part of the

instrument characteristics, it is expected that the spectrum envelope is consistent for

each instrument. Typical forms of spectrum envelope of each instrument are as follows:

viola | one gradual peak around 1,000 Hz

flute | a sharp peak around 500-1,000 Hz

horn | two sharp peaks around 500 and 1000-1,500 Hz
trumpet | one or two gradual peaks around 1,500-2,000 Hz

cello | a very smooth peak around 300-800 Hz

which are shown in Figure 3.6.1. The downhill simplex method was used to find the
optimal parameters by evaluating the free energy 1,000 times for the parameters A and
7, followed by evaluating it 1,000 times for a set of parameters in the synthesis filter, b,
(n =1,---, K). The initial values of b,, were set to the LSF coefficients, which were
obtained by the existing Levinson-Durbin algorithm [24, 25]. The initial parameters

for A and T were set manually for each instrument.
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Figure 3.6.1. Forms of spectrum envelope of five instruments (x-axis: frequency, y-
axis: log-amplitude)
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Figure 3.6.2.A shows the original spectrum (red, lower) and the reconstructed spec-
trum from the estimated source and filter with initial parameters (blue, upper). After
the parameter learning, the model spectrum is closer to the original spectrum than that
with the initial parameters shown in Figure 3.6.2.B.
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Sy 2 3 4 5 6 7 20 1 2 3 4 5 6 7

A. frequency (kHz) B. frequency (kHz)

Figure 3.6.2. Original log-amplitude spectrum and estimated model spectrum with
initial parameters (A) and with learned parameters (B)

Figure 3.6.3 shows spectrum envelopes of the trumpet with initial (LSF) parameters
(A) and with learned parameters (B) at randomly-chosen times ¢; (thick) and t5 (thin).

Comparing the spectrum envelopes at ¢; and 2, the spectrum envelopes reproduced by

solid: before learning, dotted: after learning

o o5
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©
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frequency (kHz) B. frequency (kHz)

Figure 3.6.3. Example spectrum envelopes of the trumpet, reproduced by the model
with the parameter before learning (LSF coefficients; A) and that after learning (B) at
randomly-chosen times ¢, (thick) and ¢, (thin).

the model with the parameters after learning (Figure 3.6.3.B) are closer to each other
than those with the initial parameters.

The first (lowest-frequency) peaks of spectrum envelopes at ¢; and ¢, shifted from
500 and 900 respectively to around 1,000Hz for both after parameter learning. Figure
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3.6.4 illustrates the source signal and the spectrum envelope estimated by the model
at ¢; and ¢, with the parameters before and after learning. Both initial and learned

A. time # B. time
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smooth shape: spectrum envelope smooth shape: spectrum envelope
comb shape: source signal comb shape: source signal

Figure 3.6.4. Model source signal (thin) and spectrum envelope (thick) before learning
at time ¢, (A) and before learning at time ¢, (B)

spectrum envelopes at ¢; and - in Figure 3.6.3 are displayed together in Figure 3.6.5,
enabling clear comparison of envelopes.

The top two panels of Figure 3.6.4 show the source signal and the spectrum enve-
lope estimation of at times ¢; and ¢, before learning, whose spectrum envelops are the
same as in Figure 3.6.3.A. Similarly, the spectrum envelopes in the bottom panels of
Figure 3.6.4 correspond to those in Figure 3.6.3.B. Before learning, the first peaks of
the spectrum envelopes match one of the harmonic frequencies. Because the harmonic
frequencies vary with time, the frequencies at which the spectrum envelopes have their
first peaks differ between times ¢; and ¢5, and consequently, we cannot obtain similar
forms of spectrum envelope from the same instrument (spectra at times ¢; and ¢, are
from the same instrument) with LSF. Even in such a situation, our dynamical system-

based source-filter model has been successful in making the estimation consistent over
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Figure 3.6.5. Spectrum envelopes before (dotted) and after (solid) learning at ¢; (thin)
and ¢, (thick)

time, because the parameter learning has fully utilized the consistency constraint of the

source filter of a single instrument.

6.5 Experiment 2: Parameter reduction and visualization with LFDA

Considering the trade-offs between the number of parameters that represent the in-
strument characters and accuracy in instrument identification based on the parame-
ters, we examined if it is possible to reduce the number of feature parameters under
maintaining the accuracy. LDA and PCA are classical parameter reduction methods
as used in [12, 13, 65]. They are supervised and unsupervised dimension reduction
methods based on linear transformation, respectively. Since instrument identification
is basically a classification task, LDA may be a more appropriate dimension reduction
method than PCA. However, as mentioned in Section 2, LDA sometimes underper-
forms PCA when the number of features is smaller than the number of classes or when
data distribution has multiple modes [34, 37].

Figure 3.6.6 shows the LSFs obtained by our method, reduced from 12 to three
dimensions. Note that the scale of the y-axis is different for the training and test
data, for visibility. We can see that distributions of individual instruments are con-
sistent when comparing the training and test data sets. Especially, flute (x) and horn
(+) are clearly separated from the other three instruments even in this reduced three-

dimensional space. Although this is a simple visualization task, the fact that the distri-
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Figure 3.6.6. Three-dimensional projection by LFDA from the 12-dimensional LSFs
obtained by our method. For visibility, the projection onto the yz-axis is shown for the
training data (A) and the test data (B)
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butions of different instrument are characteristic even in the reduced three-dimensional

space is encouraging regarding the applicability of the returned features to instrument

identification task.

6.6 Experiment 3: Verification of Instrument Features with In-

strument Identification

Twelve LSFs were used as the features for instrument identification. The number was

determined so that the computational cost would not be expensive in the real sound

analysis. Table 3.6.1 summarizes the results of the SVM classification by using LSFs

obtained by our method and those of the former instrument identification experiments.

Note that these experiments do not share the same data sets, which limits the sig-

Number of instruments | Number of features | Accuracy (%)

Initial parameters 5 12 84.67

(6 dim.) 5 6 83.33

(3 dim.) 5 3 71.33

(2 dim.) 5 2 58.67

Learned parameters 5 12 87.33

(6 dim.) 5 6 82.67
(3 dim.) 5 3 74
(2 dim.) 5 2 52
Marques, 1999 [14] 8 16 70
Eggink, 2003 [46] 5 120 66
Livshin, 2004 [12] 7 62 88
Jinachitra, 2004 [47] 5 28 66
Essid, 2004 [18] 5 10 67
Essid, 2006 [13] 5 70 87

Table 3.6.1. Classification results of original and reduced feature space with initial and

learning parameters, comparing with the other instrument identification experiments

nificance of this comparison. This table suggests that the employment of the LSFs

achieved similar or higher identification performance although the dimensionality of
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the LSFs used in our study was much smaller than those in the other experiments. The
training of the parameters is additionally effective for identification. Especially when
the number of features is reduced to as few as three, our model parameter estimation
is effective in preventing the performance from degrading.

Table 3.6.2 and Table 3.6.3 show the confusion matrices for the initial and learned

LSF parameters. The numbers shows the classification results when the number of

Table 3.6.2. Monophonic music confusion matrix for five instruments with initial pa-

Viola | Flute Horn | Trumpet | Cello
Viola 24.(0) | 0(1) 2(3) 3(14) 1(12)
Flute 00) | 1922) | 7(6) 0(1) 1 (D)
Horn 000) | 0 3025 1| 0(5) 0(@0)
Trumpet | 0(0) | 0(1) 2(1) | 28(28) | 0(0)
Cello 30) | 0(0) 1 (6) 0(11) |26(13)

rameters
Viola Flute Horn | Trumpet | Cello

Viola 25(26) | 0(D) 1(2) 2(1) 2(0)

Flute 2(1) [2223)| 5(5 0(1) 1 (0)

Horn 0(0) 0 |30@27 0(3) 0(0)

Trumpet | 0(24) 0 (1) 1(1) 29 (2) 0()

Cello 5(20) 0 (0) 0(5) 0(5) 25 (0)
Table 3.6.3. Monophonic music confusion matrix for five instruments with learned
parameters

LSF coefficients is 12, and numbers inside parentheses are those when the number of
LSF coefficients is reduced to 2. These confusion matrices show that the error oc-
curs mostly between string instruments, viola and cello, which have similar resonance

structures.
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7 Discussion

7.1 Summary

In this study, we proposed a system identification approach to the simultaneous esti-
mation of the source signal generation and the synthesis filter, based on an additional
assumption of temporal continuity of pitch and loudness. The probabilistic model
was constructed so as to represent the continuity dynamics, and the parameters were
estimated by the minimization of the free energy. The synthesis filter was initially
parameterized by LSFs, and was further modified so as to minimize the free energy.
After the learning of the model parameters, instrument identification was carried out
by using the optimized model parameters.

Although we also found that the initial model parameters could provide enough
information for instrument identification with a small number of parameters, in con-
trast to the existing methods, the optimized parameters showed further effectiveness
for instrument identification. In addition, the accuracy was not degraded so much even
when parameter dimensionality was significantly reduced by applying LFDA to the
LSF parameters.

For practical use of this model for general sound identification, there are at least two
problems. First, generalization to polyphonic music or speech signals is not straightfor-
ward; it is necessary to modify the observation process to deal with polyphonic music.
The second problem is computational complexity. Although the simplex method cur-
rently used for parameter estimation does not require explicit gradient of the objective
function, it takes much computation time to converge. To introduce some non-linear
optimization methods based on gradient information is important for further applica-
bility of our method.

7.2 1Issues

The log-amplitude spectrum and model spectrum of one of the incorrectly classified
samples in both the initial condition and after learning are shown in Figure 3.7.1. The
Figure 3.7.1.A shows the model synthesis filter and the Figure 3.7.1.B represents the
estimated source signal from the original sound. In Figure 3.7.1.C, the model spectrum

(blue, dotted), which combined the first two figures and the original spectrum (red,
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solid), is drawn. Compared with correctly classified samples (See Figure 3.6.2 for
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Figure 3.7.1. One example of source signal (A), spectrum envelope (B) and estimated
spectrum (C) of wrong-classified sound (cello)

the typical original and estimated spectrum of correctly classified samples), most of
misclassification tends to occur at the time that the whole spectrum power is low, and

it is difficult to estimate the fundamental frequency from this power spectrum since the
harmonics tend to collapse.
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CHAPTER IV

Conclusion

1 Summary and contributions

In this dissertation, two studies which contribute to the music information retrieval and

the sound source decomposition are presented.

The former study proposes the instrument feature representation with the linear
projection parameters. A combination of two linear projection methods, PCA and
LFDA, is employed to extract the sets of instrument features. The efficiency is eval-
uated with identification of instruments, which results in the high accuracy rates than
those of existing studies. Additionally, from the visualization of the parameters of pro-
posed method, PCA-LFDA, it is found that the same structured instruments or ones that

are in the same instrument categories are projected closely in the PCA-LFDA space.

The latter study introduces a system identification approach to the estimation of
source signal generation and the synthesis filter for the resonant property. The model
takes into account the temporal continuity of pitch and intensity. The probabilistic
model is constructed for the dynamical model, and the parameters are estimated by
minimization of the free energy. The synthesis filter is parameterized by LSFE. They
are further modified so that the free energy is minimized. After the learning of model
parameters, samples are classified using the trained model parameters. It is found that

the initial model parameters could provide enough information for instrument iden-
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tification with a smaller number of parameters compared with existing methods, and
trained parameters show a little improvement for instrument identification. In addition,
further reduction of the parameters could be achieved using LFDA without degrading

the accuracy of the identification much.

2 Issues and future development

One possible extension of both instrument identification and the source-filter model
estimation is applying it to instrument identification on polyphonic music. For ensem-
ble music, Vincent’s research on non-linear Independent Subspace Analysis (ISA), in
which short-term-time log-power spectra of more than one instrument can be expressed
as a sum of each instruments’ spectrum [66], can be applied to the current model, and
this would result in higher estimation accuracy of musical sound-sources.

Additionally, this research can be extended to the identification of speaker’s char-
acteristics. As with [68, 94], many researchers are currently attempting to apply the
dynamical system to the speech, and research on speaker identification would be more
important than that of instruments since they have many applications. The reason why
speech is gaining attention as a target is that it has many applications. In order to
identify a speaker’s individuality with the proposed model, other kinds of constraints
should be assumed since the important elements of instrument sound and speech are
different from each other.

With the source-filter model, time-variation of the filter H should be considered.
Since the transitions of H can be expressed by the smooth articulation of vowels, it
can be modeled using the proposed dynamical system. In detail, in the case of the
Japanese language, there are five vowels. Among five filters, we find the closest vowel
structure to the original speech using structural matching introduced in [95]. Similarly,
we assume some consonant structures to the source signal generation component. With

these assumptions, we will try to estimate source and filter simultaneously.
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Appendix A: Theorem and probabilistic distributions

e |-dimensional Gaussian distribution

1 1
. 2\ _ 2
Niaip. ) = s exp { = (o = (a-D)
e D-dimensional Gaussian distribution
N, B) = —— (3w o) @
X, = — 5 1P| s X—H X— M -
(2m)% |22 2

e Laplace distribution

1 _
LA(z|p,b) = o5 &XP (_M) (A-3)

e Multivariate (D-dimensional) Laplace distribution

D
1 Tq —
LA(x|pn,B) = H >R, &P <—%) ; (A-4)
=1 d d
1 N
where Bd = N Z ’xnd — ﬂd‘ (A-S)
n=1

N, p and B denote the number of samples, a median vector and a scale param-

eter vector, respectively.

e Jensen’s inequality

E[f(X)] < f(E[X]) — Ellog X] < log E[X] (A-6)
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Appendix B: Free energy calculation in variational EM

In the calculation of the free energy, we assume the trial distribution ¢(Xy.7|x) is a
single Gaussian distribution,

q<X1:T"L€) :N(XlsT;,U>S)7 (B'l)

where = {1, S}. The free energy then becomes

F = (a(Xur ) (B-2)
:_/ /q(XlT]/i)logp()ﬁT’SlTW)XmT
+/ /q(X1T|ff) log ¢(Xi.7|k)dX 17 (B-3)
— [+ [atxialo <1og <p<sl|a:1, parl0) T sl OpCad 1,9>)>dasw
=3
i / / 4(Xy.r|R) log (Xr| k) dX i (B-4)
— /q(x1| ) log p(2:1|0)day — Z/ (2| k) log p(st|ze, 0)da,

- Z / Q(it, 5Et—1|/<) log($t|$t—1, e)dxtdxt—l —H (Q(X1:T|/€)) (B-5)
t=2

=Fi+Fo+ Fs+ Fu (B-6)

B.1 The term for initial state

The first term is corresponds to the initial state, which is
- / q(z1|k) log p(z1|0)dx;. (B-7)
From the likelihood of

P(%’e) = N(al; m(117 (Uclz)z)N(fl; m}”v (011‘)2)
:N(€E1;m1,(01)2), (B-8)
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the first term results in

ﬂz—/ﬂmeM@WMm

—/N(xl;ul,Sl)logN(xl;ml,(01)2)65901

- % (Tr ((01)_251) + (1 — ma) " (o1) (1 — ml))

1
+ 5 log |(1)?| + log(27).

(B-9)
B.2 The term for observation process
The second term is
- /Q($t|ﬁ> log p(ye|w¢, 0)day, (B-10)
where the likelihood is
pyelwe) = Hp (ye(d
—H em(]wm%@A%wmﬁ. (B-11)
% 2moyt( ) 20

As a result of substitution, it becomes

T
—Z/q(xtM) log p(ye| ¢, 0)dx,

- —Z/N T p, S1) Zlog \/_ont( ) exp(—%‘g(logyt(i) —loggt(i))2)dxt.
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Substitute §;(7) = H(i)G,(i) and ¢ = N (zy; pr, St) into this equation, then we obtain

— 3 [ Wt 50Y (- 1otem) o)~ ot

5r (08() ~ g H(0) 05 Gy(0)" ) oy

=1 i—1 202 —
+2(1,2 > (sat + pigy + \/gA(w(z))uatKexp(l) 4 Ag;;z)2KLexp<Z>>]
- 2%2 2 (log i}(é)) (“at + A%))Kem(i))) : (B-13)

where

KLexp (i) =

1 0\ E+l N (=1 (i)
P <_§ ((Sf”k?iz?) <“f’f_k2—+z2”<l>> TETE o2 ’
p

(B-15)
H(w, by, -+, by) (B-16)
- R -2
_olp [ 2% ~ 2 o W ~ 2
=2lr <sm ) (cos@ — cos by, )” + cos 5 H (cos@w — cos by,) ) ,
n:2,4,"',p n:1,3,~~-,p—1
(B-17)
F
(D = ﬂ. (B_18)
2m
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B.3 The term for state transition

The third term is

— / q(zy, x41|k) log p(¢|zi—1, 0)daidry . (B-19)
Using the likelihood
p(ﬂft|$t_17 9) = p(atlat—17 0>p(ft|ft—17 9)7 (B_ZO)

for the calculation of the state equation results in

T
FS - Z / / q(mt’ :Et_1|'%> logp($t|$t—l7 e)dxtd.ft_l
t=2

T
1 Vg v, + 1 1 vy
Z{ilogva—i—logF(?)—logF( 5 )—f—glogvf—i—logF(?)

t=2

1 1 4 2
—logF<Uf2+ )+U“; (B“U“ AL

v2 Vg
v+ 1 ﬁ;Uf ﬁ?vf
+ 5+
2 o vy

Q

+ abcaﬂf)

9

+ abCth) +log B, + log — 3¢ + log

(B-21)

where

Us = G (3237(1 + eiya + 6Zu,aei7a) ,
Ur = ags (3Ei,f + :Ui,f + 62u,fﬂi,f) )
‘/;L - (2aa,t + ba,t) (Zu,a + eiﬂ) )
Vi = (2azs +bge) (Bug + by) -

Cu,a = Mu,a — IOg P,

Cu,f = Hu,f,

abc,t = Ayp + biy + Ciy,
Wa1
Uup = ——— + Wea,
xmax,*,t —1
Wy1
b*7t - — + wa?

v/ Tmax,*,t — 1+ Whp3

Cyt = Wel log(wmax,*,t - ]-) + We2,
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Lmax,*,t —

1 + (Mu7a + ka\/ Su’*)z - ].ng
Va ’

Tmin = 1,
_ 1
Moy = T(M*,t - ,U/*,t71>7
1
2

Sux = =Skt + Sepm1 — 280 1.4-1),

= ftu,a — log p,
Cu,f = Hu,f-

Note that * represents the set of a and f.

B.4 The term for entropy

The last term expresses the entropy which is
Fi=—H(q(X1.1|K)). (B-22)
The calculation results in

Fi=—H(q(X1.r|x))
— HWN (Xv.rlp, S))

1
= —§(n + nlog(2m) + log|S]). (B-23)
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Appendix C: A list of 30 CDs used in experiments

Table 4.2.1-4.2.2 show the list of CDs used in the experiment. All RWC CDs are
regarded as one source. There are 30 CDs including 47 different musical performances

(violin: 6, cello: 6, guitar: 5, piano: 7, flute: 7, oboe: 6, horn: 5, trumpet: 5).

Title player/composer instruments
The 18 monologues for instruments Erland von Koch (composer) all
Sequenzas I-XIV for solo instruments Luciano Berio (composer) | all except hr
J.S. Bach/ B.A. Zimmermann Thomas Demanga vn, ve
RWC-MDB-C-MO06 (classic) vn, Ve
Solo violin sonatas Eugéne Ysaye vn
Sonata for solo violin SZ 117 Béla Barték (composer) vC
Virtuoso music for violoncello Janos Starker \
Bach: the unaccompanied cello suits Yo-Yo-MA vC
RWC-MDB-J-MO01 (jazz) gt, pf
RWC-MDB-C-MOS5 (classic) gt, pf
RWC-MDB-C-M04 (classic) pf
RWC-MDB-G-M06 (music genre) pf
Jazz piano ever V.A. pf
B.C. AD. T-square pf
RWC-MDB-G-MO08 (music genre) gt
Six suites for violoncello solo Wangenheim gt
SOLOS: solo workds of Daniel Asia Daniel Asia (composer) ob
Oboe music Helen Jahren (composer) ob
Oboe solo Yeon-Hee Kwak ob
Noctune Hansjorg Schellenberger ob
Teleman: tweleve fantasies for oboe solo Heinz Holliger ob

Table 4.2.1. list of CDs used for the experiment in Chapter II
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Music for flute Brian Ferneyhough fl
Bach music for solo flute Wilbert Hazelzet fl
Manuera plays French solo flute music Mauela Wiesler fl
In lines of dazziling light John Buckley (composer) | fl, hr
First chairs: cantos for solo instruments Samuel Aduler tp, hr
Bach: works for trumpet Alison Balsom tp
Bach cello suites on trumpet David Coopen tp
Southwest chamber music Richard Derby hr
J.S. Bach: 3 suits Radek Babordk hr

Table 4.2.2. list of CDs used for the experiment in Chapter II (continued)
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Journal papers

e Mizuki Ihara, Shin-ichi Maeda and Shin Ishii, ”Solo Instrumental Music Anal-
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1, pp.3-14, 2009.

International conferences (reviewed)

e Mizuki Ihara, Shin-ichi Maeda and Shin Ishii, ”Instrument Identification in Mono-
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Signal Processing and Information Technology (ISSPIT), pp.607-611, Dec. 2007.
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