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Norihiko Kawai

Abstract

With the spread of digital measurement devices for real scenes and objects
such as digital cameras and rangefinders, it is becoming popular to use digital
multi-dimensional images (still images, videos and range images) of real environ-
ments for various purposes. However, it is sometimes difficult to use original data
because these images may contain undesirable objects or missing regions caused
by occlusions between a measurement device and a target object. In order to
increase the utility value of these data, this thesis proposes novel methods for
image, video and 3D surface completion which remove undesirable objects and
fill in missing regions in multi-dimensional images based on a unified framework
of energy minimization using pattern similarity measures.

As for image and video completion, energy minimization methods based on
pattern similarity have already been proposed and have obtained some good re-
sults. However, these conventional methods still have some problems. The ex-
isting image completion methods easily generate unnatural textures in missing
regions due to two factors: (1) available samples in an image are quite limited;
and (2) pattern similarity is one of the necessary conditions but is not sufficient
for reproducing natural textures. This study extends the conventional energy
function in order to solve such problems by considering brightness changes in
sample textures to obtain effective samples (for (1)) and introducing spatial lo-

cality of texture patterns as a constraint that is usually satisfied in many of real

* Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0761012, March 17, 2010.



scenes (for (2)). The conventional video completion methods fill in missing re-
gions based on the assumption that the appearance of objects does not change
largely between different frames. It is difficult for them to plausibly fill in miss-
ing regions in omnidirectional video caused by a blind side of an omnidirectional
camera. The proposed video completion method successfully completes missing
regions in omnidirectional video by compensating for changes in the appearance
of textures by considering the shape around the missing regions and extrinsic
camera parameters.

As for 3D surface completion, there have been no existing methods which have
treated the completion task as a global optimization problem. The conventional
methods, which successively copy similar local shapes to missing regions, often
generate inconsistent shapes in missing regions. In this study, missing regions are
filled in by minimizing an energy function that is defined based on the similarity
of local shapes. As a result, the proposed method can generate complex and
consistent shapes in missing regions.

This thesis is organized as follows. Chapter 1 describes the introduction of
the thesis and related works. Chapter 2 presents an image completion method for
still images. Chapter 3 presents a video completion method for omnidirectional
videos. Chapter 4 describes a 3D surface completion method. Finally, Chapter 5

summarizes the present study.

Keywords:

multi-dimensional image completion, inpainting, pattern similarity, energy mini-

mization
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Chapter 1

Introduction

With the spread of digital measurement devices for real scenes and objects such
as digital cameras and rangefinders, it is becoming popular to use digital multi-
dimensional images (still images, videos and range images) of real environments
in daily life. For example, digital images and video captured with an ordinary
monocular camera are used in web sites and magazines for entertainment and in-
formation. In addition, since omnidirectional cameras, which can simultaneously
capture almost all directions, have been developed recently, omnidirectional im-
ages and video are also used in web sites such as Google Street View [Goo] and
amusement attractions for telepresence [Min80], which allow users to feel as if
they exist in a remote site by making them able to look around in a remote
scene. In addition, 3D models generated from range images captured with a
rangefinder are used for digital museums and 3D maps.

However, it is sometimes difficult to use the original data captured with digital
measurement devices because it may contain undesirable objects or missing re-
gions caused by occlusions between the measurement devices and target objects.
In addition, especially as for omnidirectional images and video, since ordinary
omnidirectional cameras cannot capture all directions due to the structure of the
camera, missing regions appear in omnidirectional images and video in the blind
side of the camera. Even if there is a camera which can capture completely all
directions entirely, missing regions appear due to occlusions by the persons or
vehicles on which the camera is mounted. In order to increase the utility value

of these data, this thesis proposes novel methods for image, video and 3D sur-



face completion which remove undesirable objects and fill in missing regions in
multi-dimensional images based on a unified framework of energy minimization
using pattern similarity measures. In this thesis, as target data, we pay attention
to three kinds of data: still images captured with a monocular camera, omnidi-
rectional video captured with an omnidirectional camera, and 3D mesh models
composed of vertices and faces as shown in Figure 1.1.

Until now, various methods for image, video and 3D surface completion have
been proposed to plausibly fill in missing regions in images, video and 3D mesh
models. In this chapter, we first review conventional methods for image, video
and 3D surface completion, respectively. Then, we describe the positioning of
this study against the conventional methods. Finally, we give the organization of
this thesis.

1.1. Related Works in Multi-dimensional Image

Completion

1.1.1 Image Completion

First, this section describes image completion methods for still images. Existing

image completion methods can be classified into two categories:
e Method using information around missing regions
e Method using the similarity of textures

Although these methods have been investigated by many researchers, they still
present some problems. In the following, we describe the characteristics and

problems of the methods in sequence.

Image completion method using information around missing regions

The methods using the information around missing regions complete the missing
regions by calculating pixel values considering the continuity of pixel intensity
from the boundary of missing regions assuming that neighbor pixels have similar
pixel values [MTO86, MM98, BSCB00, BBS01, BBSV01, BCV*01, BBMN04,



Still image with undesirable objects captured by a
monocular camera

Omnidirectional video with a blind side captured by an omnidi-

rectional camera

3D mesh model with holes composed of vertices and

faces

Figure 1.1. Examples of target data in this thesis.



Tsc06, CS01a, CS01b, CKSO02, ES03, LZW03, VABF04, YOT05, OHKO05|0 In
addition, these methods pay attention to preserving edges when missing regions
are filled in.

Maeda et al. [MTO86] have proposed a method by which an edge is extended
into a missing region preserving the direction of it when the edge exists on the
boundary of the missing region, otherwise a target pixel value is made the average
of pixel values around the target pixel. In this method, edges may not connect
in the middle of the missing region when the missing region is large because the
pixel values are successively decided from the boundary of the missing region.
Masnou et al. [MM98] linearly connect edges in a missing region by determining
beforehand pairs of edges which reach the boundary. It is difficult for the method
to make pairs of edges when the edges of a boundary are complex. In addition,
rounded edges cannot be generated even when edges around the missing regions
curve.

For these methods, the following measures have been used in order to connect

edges smoothly:

e Partial Differential Equation [BSCB00, BBS01, BBSV01, BCV*01, BBMNO04,
Tsc06]

e Total Variation [CSO0la, CSO1b]

e Euler’s elastica [CKSO02]

e Mumford-Shah-Euler [ES03]

e Markov Random Field [YOT05, OHKO5]
e Probabilistic model [LZW03, VABF04]

These methods can produce the continuous intensity of pixel values and smooth
edges and are effective for small image gaps like scratches in a photograph as
shown in Figure 1.2. However, the resultant images easily become unclear when
the missing regions are large because the methods cannot generate complex tex-

tures in principle.



Original image Completed image

Figure 1.2. Example of image completion by Bertalmio et al. [BSCB00].

Image completion method using the similarity of textures

Image completion methods using the similarity between missing regions and the
rest of the image are classified into two types with respect to the similarity mea-
sure. One method uses feature spaces transformed from textures in an image and

the other uses original textures in an image.

e Image completion method using feature space

Image completion methods using feature space calculate features in a certain
range of area including the missing region and fill in the missing region using
feature vectors generated from the rest of the image, which are similar to
the calculated features around the missing region. As feature space, Fourier

space, wavelet domain and eigenspace have been used.

As for methods using Fourier space, Shoji [Sho88| has used Fourier vectors
in a data region based on the assumption that the position invariance of
Fourier amplitude spectrum in textured images. Hirani et al. [HT96] have
proposed a method which completes missing regions using both frequency
domain and spatial domain. Rane et al. [RRS96] have reconstructed a
missing region in the wavelet-domain using the correlation between the
missing region and its neighboring areas. These methods are effective for

images with cyclical texture patterns. However, it is difficult for them



Original image Completed image

Figure 1.3. Example of image completion by Amano et al. [AS07].

to obtain good results for images with non-cyclical texture patterns. In

addition, a user is required to manually specify regions used for completion
in method [HT96].

Against these methods, eigenvectors have been used from the idea that
features specific to each image are more effective for image completion than
general frequency domain. Amano et al. [AS07] have proposed a BPLP
(Back Projection for Lost Pixels) method using eigenvectors. This method
interpolates missing regions by combining eigenvectors which are extracted
from a data region as learning samples. This method can generate complex
textures in missing regions for images with an autocorrelation property as
shown in Figure 1.3. The effectiveness of this is demonstrated by comparing
results using eigenvectors and Fourier vector in [AS07]. Izoe et al. [IKK02]
have proposed a method using eigenvectors by paying attention to fractal
and autocorrelation properties. This method also can produce complex

textures because the eigenvectors are made from textures in the data region.

As described earlier, the methods using feature space can generate complex
textures in missing regions. However, these methods basically require the
strong constraints, such as the property of autocorrelation for images. In

addition, the size of missing regions to which the methods can be applied is



quite limited because a patch has to include both a missing region and tex-
tures around it when features around the missing region are calculated. As
a result, it is difficult for these methods to complete images with relatively

large missing regions.

Image completion method using original textures as exemplars

The methods using textures as exemplars complete the missing regions in an
image based on the assumption that textures appropriate for missing regions
are similar to those in a data region. Such an approach has been intensively
developed because it can synthesize complex textures in missing regions.
The methods in this approach can be classified into two categories. One
is based on successive texture copy and the other on global optimization.

These methods are hereafter described in more detail.

— Method based on successive texture copy
The method based on successive texture copy searches a data region
for textures similar to those on the boundary of the missing region and
copies the most similar textures successively. This method can gener-
ate detailed textures in a large missing region as shown in Figure 1.4.
This approach is based on a texture synthesis technique, which gener-
ates large texture fields from a small patch of texture. The application
of the texture synthesis technique to image completion was originated
by Efros et al. [EL99]. Bertalmio et al. [BVSOO03] have proposed a
method combining the method considering the continuity of intensity
[BSCBO0] and texture synthesis [EL99]. In these methods, a patch of
texture is successively copied to the boundary of the missing region
and the pixel value is fixed once it is copied. From this characteristic,
the processing cost is small but discontinuous texture is easily gen-
erated because the quality of a completed image largely depends on
the order of copy. For this problem, in order to make more plausible
textures, the order of texture copy has been determined according to

the following criteria:

s Similarity of texture [Har(1]
* Inverse matte [DCOY03]



Original image Completed image

Figure 1.4. Example of image completion by Criminisi et al. [CPT04].

« Number of fixed pixels in a patch [BLLC02]
« Number of fixed pixels in a patch and strength of an edge [CPT04]

x Number of fixed pixels in a patch, strength of an edge and simi-
larity of texture [LQSO05]

Nevertheless, these methods still have the problem that a discontin-
uous texture tends to be generated for images which have complex
texture patterns around missing regions.

As another approach to decide the order of texture copy, the area of
edges are specified beforehand manually or automatically and textures
are preferentially copied to the specified area [SYJS05, JT03]. How-
ever, it is difficult to correctly specify effective edges when textures

around missing regions are complex.

— Method based on global optimization

The method based on successive texture copy has the problem that dis-



continuous textures are easily generated. In order to settle this, meth-
ods which complete missing regions by optimizing an objective function
for whole the missing region have been proposed [KT06, AP06, WSI07].

Komodakis et al. [KT06] have proposed a method which determines
the appropriate order of texture synthesis by optimizing an objective
function based on Priority-BP extended from Belief Propagation and
labeling pixels in missing regions. Allene et al. [AP06] have completed
missing regions by splitting the missing regions and determining the
optimum combination of texture patches in a data region using a graph
cut approach. Wexler et al. [WSI07] have proposed a method which
completes missing regions by defining an objective function based on
pattern similarity between the missing and data regions and optimiz-
ing the function. This method is usually used for video completion and
also can be used for image completion by not considering the tempo-
ral similarity in the energy function. These methods based on global
optimization do not depend on the order of copy and tend to generate
plausible textures for whole the missing region as shown in Figure 1.5.
Although the methods based on global optimization have obtained
better results for many images than the methods based on successive
copy, unnatural images are still generated due to two factors. One is
that available samples in a data region are quite limited. A discon-
tinuous change in brightness often appears in missing regions because
textures with the same patterns but different brightnesses cannot be
used for completion. The other is that the similarity of all the tex-
tures in an image are treated under the same conditions. Due to these
factors textures are often blurred because of inappropriate correspon-

dence between textures in the missing region and data region.

As described earlier, image completion methods using textures as exemplars
can generate detailed textures for large missing regions and obtain good results for
some images. However, there are still some problems with this because available

texture patterns are limited and the conditions of similarity are not sufficient.



Original image Completed image

Figure 1.5. Example of image completion by Wexler et al. [WSI07].
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1.1.2 Video Completion

In this section, video completion methods are reviewed. For video completion,
the image completion methods for still images described in Section 1.1.1 can be
applied to video because video consists of sequential still images. However, tex-
tures may discontinuously change between successive frames because the methods
use only spatial information in each frame.

Therefore, video completion methods usually use not only spatial information
but also temporal information. Video completion methods are classified into two

categories:

e Method using information around missing regions in spatio-temporal video

images
e Method using the similarity of textures

These conventional completion methods have basically been proposed for video
captured with an monocular camera. In the following, we describe the character-

istics and problems of the methods in sequence.

Video completion method using information around missing regions

The methods using the information around missing regions complete the missing
regions by calculating pixel values considering the spatial and temporal conti-
nuity of pixel intensity from the boundary of missing regions. These methods
can be classified into two categories. One method does not employ the motion
information [OMO04] and the other method uses the motion of objects or a camera
[LKK03, MOG™06, SLCF06, YFKMO08].

The first method [OMO04] fills in missing regions using partial differential equa-
tion (PDE) to generate smooth intensity among the spatial and temporal domain.
This method cannot generate complex textures in missing regions in principle.
On the other hand, methods that use motion information complete missing re-
gions based on the correspondences between pixels in a target frame and neighbor
frames. Pixel correspondences are determined based on the estimated motion of

objects or a camera. These methods can be classified into two types. One uses
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Figure 1.6. Example of video completion by Matsushita et al. [MOG™06].

the motion of objects on an image plane [MOGT06, LKK03] and the other uses
the posture of a camera [SLCF06, YFKMO0S|.

As for methods using the motion of objects on an image plane, Litvin et al.
[LKKO03] and Matsushita et al. [MOG™06] have proposed methods that estimate
the motion of textures in missing regions using optical flows for the whole image
and pixel values are copied to the missing regions from different frames based
on the estimated motion as shown in Figure 1.6. However, it is difficult for
these methods to determine appropriate optical flows in an omnidirectional video
because the appearance of textures in the omnidirectional video largely changes
between successive frames and the motion of pixels in the large missing regions
cannot be accurately estimated by 2D interpolation.

As for methods using the motion of a camera, Shen et al. [SLCF06] and
Yamashita et al. [YFKMO08] have proposed methods which complete missing re-
gions using a fixed-viewpoint pan-tilt camera. Because this method can calculate
the angle of pan-tilt, the missing regions are successfully completed using the
same direction of lighting in neighbor frames as shown in Figure 1.7. However,

these methods cannot be applied to video captured with a freely-moving camera
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Input image sequence Completed image sequence

Figure 1.7. Example of video completion by Yamashita et al. [YFKMO08|.

since the fixed viewpoint is the indispensable condition to make correspondence

between pixels in different frames.

Video completion method using the similarity of textures

The methods using the similarity between missing regions and the rest of the
video complete missing regions by copying the similar textures or optimizing
an objective function based on the similarity measure. These methods are also
classified into two categories. One method does not use the motion informa-
tion [CFJ08, WSI07] and the other method uses the motion of objects [ZXS05,
JTWT06, PSBO7].

These methods [CFJ08, WSIO7] define the similarity of local volumes between

the missing regions and the rest of the video and fill in the missing regions by
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Completed image sequence

Figure 1.8. Example of video completion by Jia et al. [JTWTO06].

copying the similar local volumes or optimizing a similarity-based objective func-
tion. These methods can generate continuous textures through successive frames.
However, real scenes behind occlusions are not always used as exemplars even if
the scene behind the occlusions appears in different frames due to the movement
of objects and the camera since any local volumes in a whole video may be used
as exemplars. As a result, the inappropriate textures which actually do not ex-
ist behind occlusions sometimes appear in the missing regions. In addition, the
methods do not consider the change in the appearance of textures caused by cam-
era motion. Because the appearance of texture appropriate for a missing region
in a frame changes in successive frames of a moving omnidirectional camera, it is
difficult for them to successfully complete missing regions in an omnidirectional
video.

On the other hand, methods that use the motion model of objects have been
proposed [ZXS05, JTWT06, PSB07]. In these methods, a given video is divided
into foreground (moving objects) and background layers. The background layer
is completed using 2D optical flow in the similar way to the methods [MOG™06,
LKKO03] described before. In the foreground layer, in order to treat relatively

complicated motion in the missing region, the motion of objects are modeled
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based on the similarity of the motion between missing regions and the rest of
the video and the moving objects are reproduced based on the motion model as
shown in Figure 1.8. However, in the conventional methods, the motion model
is designed for 2D cyclic motion and these methods cannot treat complex 3D

motion of the target in an omnidirectional video.

1.1.3 3D Surface Completion

In this section, 3D surface completion methods for 3D mesh models generated
from range images and video are reviewed. As the most basic method, the method
which generates surfaces in a missing region by connecting vertices on the bound-
ary of the missing region has been used. However, surfaces as a whole become
unnatural when a large missing region is filled in because the method can gen-
erate only a flat surface. Therefore, methods using the information in the 3D
model have been proposed. These surface completion methods are classified into

two categories:
e Method using information around missing regions

e Method using the similarity of shapes

Surface completion method using information around missing regions

Castellani et al. [CLF02] have proposed a method which linearly extends edges
from the boundary to a missing region. This method can generate edges and
corners but not smooth curves. Against this problem, methods using partial
differential equation, moving least squares and Willmore flow have been proposed
[VCBS03, WO03, XMQO04]. These methods can fill in the missing regions with
smooth surface patches as shown in Figure 1.9. Although they are effective for
small holes in a 3D model, unnatural shapes may be generated when the missing
regions are large and the surrounding shapes are complex because the methods
cannot generate a complex surface.

As another approach using the information around missing regions, volumetric-
based methods have been proposed [CL96, DMGL02, Mas04, FIMKO07, SI08].

Curless et al. [CL96] have proposed a method which classifies each voxel into
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Input model with a hole Completed model

Figure 1.9. Example of surface completion by Verdera et al. [VCBS03].

"Unseen’, ’Nearsurface’ and "Empty’ and generates meshes between 'Unseen’ and
"Empty’. Davis et al. [DMGLO02] have filled holes by diffusing a signed distance
function. Masuda [Mas04] has successively fitted a quadratic surface on a signed
distance function and generate smooth surfaces in missing regions. Results by
these methods largely depend on the location and the number of measuring points.
Thus, it is difficult to obtain good results when the location is grossly one-sided
and the number is small. For such problems, Furukawa et al. [FIMKO7] have
determined whether a voxel is inside or outside an object using Bays estimation
and Sagawa et al. [SI08] have flipped the sign of the signed distance of the voxel
considering the relationships among adjacent voxels. These methods have solved
the problem that results largely depend on the location and the number of mea-
suring points and have generated smooth surfaces in the missing regions as shown
in Figure 1.10. However, it is difficult for them to generate complex shapes in
the missing regions because these methods also use only the information around

the missing regions.
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Input model with holes Completed model

Figure 1.10. Example of surface completion by Sagawa et al. [SI0S]

Surface completion method using the similarity of shapes

Methods using shapes in all regions in a 3D model (data region) or shapes in
a model similar to the target model in a database have been proposed [KSO05,
Pau05, PMW08, PGSQ06, SACO04, BF08]. These methods can generate com-
plex shapes in missing regions because abundant shapes are used as exemplars
for completion. Kraevoy et al. [KS05] and Pauly et al. [Pau05] have proposed
methods that fill in missing regions using a similar 3D model in a database. Con-
cretely, the similar model is deformed so that the model fits the target model
and the surface in the similar model corresponding to the missing region in the
target model is copied to the missing region. In these methods, a similar model is
required to be modeled beforehand because these methods need a similar model
to the target model. Therefore, there is the problem that it requires inordinate
man hours to assemble such a database.

On the other hand, methods using not a special database but example shapes
in a data region in the target object have been proposed [PMW*08, SACO04,
BF08, PGSQ06]. These methods can be classified into the method which es-

17



timates shapes by modeling the structure around a missing region [PMW™08§]
and the methods which copy the similar surface to a missing region by using
surfaces in a data region as exemplars [SACO04, BF08, PGSQ06]. The former
method [PMWT08] estimates the shape in missing regions by modeling the ele-
ment shape and the cycle on the assumption that the target object has a cyclic
structure around the missing regions. Therefore, this method is effective for the
model such as a cluster housing, which has a cyclic structure. However, it is dif-
ficult for the method to successfully complete missing regions in a model without
cyclic structures because the method is based on the condition that cyclic struc-
tures are automatically detected. The latter methods [SACO04, BF08, PGSQ06]
calculate the similarity between the local surface shape around the missing re-
gions and that in the data region and fill missing regions by copying the most
similar surface patches successively. These methods can generate plausible and
complex shapes for the model which does not have cyclic structures using many
kinds of surfaces in whole the data region as shown in Figure 1.11. However, an
inconsistent surface is sometimes generated on the seam in the completed model
because the successive copy makes the optimum shape in the local area but does

not always make the optimum surface as a whole.

1.2. Positioning of this Study

In the previous sections, conventional works in completion for multi-dimensional
images (still images, videos, 3D mesh models from range images) have been re-
viewed and we have described that there are sill some problems in the conven-
tional completion methods. In this thesis, we propose novel completion methods
for multi-dimensional images based on a unified framework of energy minimiza-
tion using pattern similarity measures considering the remaining problems.

As for image completion, although the methods based on global optimization
have obtained good results for many images, unnatural images, especially those
with unnatural brightness changes and undesirable blurs, are still generated due
to two factors: (1) available samples in a data region are quite limited, and (2)
pattern similarity is one of the necessary conditions but is not sufficient for repro-

ducing natural textures. In order to improve the image quality, these two factors
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Figure 1.11. Example of surface completion by Breckon et al. [BF08|.
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should be considered. Until now, there have already been some attempts at this.
For (1), the scale and orientation of textures have been considered to obtain effec-
tive samples [DCOY03]. As for (2), Sun et al. [SYJS05] and Jia et al. [JT03] have
proposed techniques that use explicit constraints for texture boundaries. These
methods synthesize textures preserving the edges of textures by specifying them
beforehand in the missing region either manually or automatically. However, it is
difficult to determine automatic and effective explicit constraints when textures
around missing regions are complex. In order to settle such problems, we employ
a new approach different from the heretofore mentioned conventional ones. This
study extends the conventional energy function [WSI07] considering brightness
changes in sample textures to obtain effective samples (for (1)) and introducing
spatial locality of texture patterns as a constraint that is usually satisfied in many
of real scenes (for (2)).

As for video completion, conventional methods have successfully completed
missing regions in video captured with a monocular camera. However, in order
to complete a blind side in omnidirectional video in which the appearance of tex-
tures largely changes between different frames, consideration of the appearance
change is an essential factor. As mentioned earlier, the change in appearance
of textures by a freely-moving camera has not been considered in conventional
methods. In addition, 2D optical flows that are used in the conventional meth-
ods cannot correctly estimate the positions of corresponding pixels in omnidi-
rectional vision because a blind side in omnidirectional video is relatively large
and the motion of corresponding pixels in omnidirectional vision is quite com-
plex due to a characteristic of hard distortion. In order to resolve the problems,
the proposed method utilizes the 3D information from the motion of a camera
and the structure around a blind side which are then simultaneously estimated
by a structure-from-motion technique for omnidirectional video. From the 3D
information, appropriate appearance of textures for completion can be generated
by compensating for the change of the appearance of textures. In addition, the
relatively accurate correspondence of pixels between quite different frames can be
determined by considering the projection model of the omnidirectional camera.

As for 3D surface completion, the conventional methods based on successive

copy of local shapes can make complex surfaces. However, a discontinuous surface
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is sometimes generated. In this thesis, in order to solve the problem, missing
regions are filled in by minimizing an energy function that is defined based on
the similarity of local shapes between missing and data regions. As a result, the
proposed surface completion method can generate complex and consistent shapes

in missing regions as an optimal solution.

1.3. Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 proposes an image
completion method considering brightness changes and spatial locality of tex-
tures by extending a conventional energy function. In experiments, 100 images
with missing regions are completed and the resultant images are qualitatively
and quantitatively evaluated. Chapter 3 proposes a video completion method
for omnidirectional video using the shape around a missing region and extrinsic
camera parameters. In experiments, omnidirectional videos with missing regions
are completed and the resultant videos are qualitatively evaluated. Chapter 4
proposes a 3D surface completion method based on similarity of local shapes.
Experiments are performed using three models with a missing region and the re-
sultant models are qualitatively evaluated by comparing those by a conventional

method. Finally, Chapter 5 summarizes the present study.
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Chapter 2

Image Completion Considering
Brightness Changes and Spatial

Locality of Textures

2.1. Introduction

This chapter describes an image completion method for still images. At present,
digital images are widely used in web pages and magazines for entertainment
and information. However, original images can sometimes not be used since the
images often contain undesired objects. In order to increase the utility value of
such images, it is required to remove undesirable parts in an image and plausibly
fill in the missing regions. For this task, recently, the methods based on global
optimization using the similarity of textures [KT06, AP06, WSI07] have been
intensively developed because the methods can generate consistent and complex
textures in missing regions. However, unnatural images, especially those with
unnatural brightness changes and undesirable blurs, are still generated due to two
factors: (1) available samples in a data region are quite limited; and (2) pattern
similarity is one of the necessary conditions but is not sufficient for reproducing
natural textures.

In the proposed method, in order to obtain good results for many images,
the conventional emthod [WSI07], which is based on energy minimization using

pattern similarity, is extended considering brightness changes of sample textures
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to obtain effective samples (for (1)) and introducing spatial locality of texture
patterns as a constraint that is usually satisfied in many of real scenes (for (2)).

In the following sections, first, the overview of the proposed image completion
method is given in Section 2.2. After introducing the conventional energy func-
tion [WSI07] which is defined based on the similarity of textures in Section 2.3,
an energy function considering brightness changes and spatial locality is newly
defined by extending the conventional energy function in Section 2.4. In Section
2.5, the energy minimization method is described. The order of the computa-
tional cost is discussed in Section 2.6. Next, experiments using 100 images are

performed in Section 2.7. Finally, Section 2.8 concludes this chapter.

2.2. Overview of the Method

Figure 2.1 shows the flow of the proposed method. First, a user manually specifies
regions to be completed such as physically damaged regions and undesired object
regions in an image. Next, initial pixel values are given to the missing regions.
Finally, overall the missing regions are optimally completed by repeating two
processes: (i) searching for a similar texture and (ii) parallel updating of all pixel
values. In the following sections, the energy function based on pattern similarity,

its extension and the energy minimization method are described in detail.

2.3. Definition of Energy Function Based on Pat-

tern Similarity

As illustrated in Figure 2.2, first, an image is divided into region €', including
missing region ) specified by a user, and data region ®, which is the rest of
the image. The plausibility in region €', including missing region €, is defined
using image patterns in data region ®. Here, Q' is the expanded area of missing
region {2 in which there is a central pixel, x;, of square window W overlapping
region (2. Conventional energy function E.,,, that represents the implausibility
in the missing region is defined as the weighted sum of SSD (Sum of Squared

Differences) between pixels around pixel x in region €' and those around pixel x;
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Figure 2.2. Missing and data regions in an image.
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in region ® as follows:

Eoony = Y Wy, SSD(x;, %), (2.1)
x;i €Y
where X; in data region ® denotes the pixel around which the texture pattern is
the most similar to that around x; in region ¥, and SSD(x;,X%;) is defined as
follows:
SSD(xi,%;) = Z{I(XNLP) — I(%; +p)}”. (2.2)
PEW
Here, I(x) represents the intensity of pixel x. Pixel x; for minimizing E.op, is
decided as follows:
x; = argmin SSD(x;,x'). (2.3)

x'ed
Note that weight wy, is set as 1 if x; is in region 'NQ because pixel values in this
region are fixed; otherwise wy, is set as ¢™¢ (d is the distance from the boundary
of 2 and ¢ is a positive constant) because pixel values around the boundary have
higher confidence than those in the center of the missing region. In Wexler’s work
[WSI07], the missing region is completed by calculating pixel value I(x;) in the

missing region and the position of pixel X; that minimizes energy function E.,,,,.

2.4. Extension of Energy Function Considering

Brightness Changes and Spatial Locality

In this study, conventional energy function E.,,, defined in Eq. (2.1) is extended
by considering brightness changes and spatial locality of texture patterns. Con-
cretely, a modification coefficient is introduced to allow for linear brightness
changes in the texture pattern. For considering spatial pattern locality, the cost
function based on the distance between a pixel in a missing region and the cor-
responding pixel in a data region is added to the conventional energy function.
The extended energy function is defined as follows:

Eie =Y wy, {SSD'(x,%;) + waisSD(xi, %)}, (2.4)

X €9

where SSD'(x;,X;) means the pattern similarity considering brightness changes,

and SD(x;,%;) means the cost term for the spatial locality. wg;s is the weight
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representing the strength of spatial locality. In the following sections, definitions
of SSD'(x;,%;) and SD(x;,%;) are described in detail.

2.4.1 Pattern Similarity Considering Brightness Changes

In general images, there are many texture pairs that have the same texture pattern
but different brightness under the non-uniform illumination condition. Although
it can be effective to use such texture patterns for image completion, that was not
considered in similarity SSD (Eq. (2.2)) in the conventional method [WSI07]. In
this study, by introducing a modification coefficient to allow textures to change
brightness, more texture patterns can be used for image completion to improve
the quality of results.
Concretely, similarity measure SSD’ considering brightness changes of tex-
tures is defined as follows:
SSD'(x;, %) = Y {I(x; +P) — o, I (X +p)}° (2.5)
pEW
Here, oy, is an intensity modification coefficient to allow the brightness change
of textures. In this thesis, the ratio of average pixel values around pixel x; and
pixel x; is employed as modification coefficient ay x, to adjust the brightness of
textures in the data region to that in the missing region. However, an unnatural
image is easily generated if large brightness change is approximated by linear
transformation. Therefore, the range of the value of ayx, is limited as given in
Eq. (2.6):
1—-D (Pxx <1—D)
Qxixi = ﬂxlxl (1 -D< ﬂx,x, <1+ D) (2'6)
1+D (Bxsx, > 1+ D),

where D is a constant (0 < D < 1) and fx,x, is defined as follows:
\/quw I(x; + q)?
v qew 1% + )2

Modification coefficient ayg makes the brightness of generated textures smooth

(2.7)

while preserving texture patterns and enables utilization of textures that have

different brightnesses but the same pattern.
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Figure 2.3. Sigmoid function for cost of spatial locality.

2.4.2 Cost Term for Spatial Locality

In many images, it is highly possible that similar textures exist in neighboring ar-
eas. Here, spatial locality of texture patterns S'D considering such a characteristic
is defined by using a sigmoid function as follows:

Nw

SD(i %) = T R (28)

where K and X, are constant and Ny is the number of pixels in window W. As
illustrated in Figure 2.3, this cost function is defined based on the assumption
that the probability of similar texture existence for a certain pixel is uniformly
high for the object region where the pixel exists. On the other hand, outside the
object region, the probability can be assumed to be uniformly low. Therefore,
the cost function as shown in Eq. (2.8) is defined using a sigmoid function, which
gives uniform values inside and outside a certain range. Note that a constant-
sized object region is currently assumed in Eq. (2.8) because we could not know
the range of the object in the missing region.

By adding the constraint of spatial locality, even when the deformation of
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texture pattern exists around the target region, appropriate textures that exist
near the target region are preferentially selected. Thus, textures are less likely to

blur by not selecting blurry textures of low frequency far from the missing region.

2.5. Energy Minimization

Energy function E;, defined in Eq. (2.4) is minimized using a framework of greedy
algorithm similar to Wexler’s EM approach [WSI07]. In the proposed method, it
should be noted to the fact that energy function F;. for each pixel can be treated
independently if similar pattern pairs (x;, X;) can be fixed and the change of
coefficient ayg in an iteration is much smaller than the change of pixel values
in missing regions. Thus, the following two processes are repeated until energy
function E;. converges: (i) searching for a texture pattern while keeping all pixel
values in missing regions fixed; and (ii) parallel updating of all pixel values in
the missing regions while keeping similar pairs of windows between the missing
regions and the data regions fixed. In the following sections, each process is

described in detail.

2.5.1 Searching for Similar Texture Pattern

In process (i), data regions are searched for a similar texture pattern keeping the
pixel values in missing regions fixed. Basically, the position x; of the most similar
texture pattern can be updated by calculating SSD’ and SD that satisfy the

following equation:

f(x;) =x; = argn;)in(SSD'(xi, xX') 4+ weisSD(x4,X')). (2.9)
x'e

However, there is a high cost for calculating SSD" and SD for all the pixels in
data region ®. For this problem, two methods are used in this research. One
is SSDA (Sequential Similarity Detection Algorithm) [BS72], which can skip the
calculation of SSD' whose value is quite larger than the minimum of SSD’. The
other method is making lists of the positions of similar patterns. Making lists
and searching only the lists can reduce the searching region. Figure 2.4 shows

the flow of searching for the most similar patterns and generating a list for each
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Figure 2.4. Flow of searching for the most similar pattern and generating list.

pixel. In the first time of process (i), the entire data region @ is searched for the
most similar pattern and a list is generated. After that, the list is searched for
the most similar pattern if the condition described below is satisfied. Otherwise
the list is updated by searching the entire data region. This process is performed
pixel-by-pixel.

First, the way to generate a list for each pixel is described. Here, the smallest

evaluation value of SSD + wy;sSD by exhaustive search is set as S,,;, as follows:
Smin = SSD' (x4, f(%)) + wais SD(x4, f(x;)). (2.10)

Next, x" which satisfies the following condition is listed as the candidate of the

position of the most similar pattern:
SSD’(XZ', X,) + wdisSD(Xi; X,) < Tlsmin, (211)

where 77 is a constant.
The computational cost is reduced by using the list because only the list is

searched for the most similar pattern. However, the update of pixel values around
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pixel x; by iterative processing leads to the absence of the most similar pattern in
the list. Therefore, the list is updated by exhaustively searching if the following

condition is not satisfied:

> {I'(xi+p) = I(xi +P)}* < T2Smin, (2.12)
pPEW
where I’ is the pixel value when the list is generated and I is the current pixel
value after updating the value. 75 is a constant and the value of T3 should be set
considering the trade-off between the possible existence of the most similar pat-

tern and the computational cost of updating the list through exhaustive search.

2.5.2 Parallel Updating of Pixel Values

In process (ii), all the pixel values I(x;) in missing regions are updated in parallel
so as to minimize energy function E;. by keeping all the similar pairs fixed. In
the following, the method for calculating pixel values I(x;) for fixed similar pairs
of windows is described in detail.

First, energy function Ej. is resolved into element energy E;.(x;) for each pixel
x; in missing regions. As shown in Figure 2.5, the target pixel to be updated is
x;, and a pixel inside a window can be expressed as x; + p (p € W) and is
corresponded to f(x; +p) by Eq. (2.9). Thus, the pixel corresponding to pixel x;
becomes f(x; + p) — p. Now, element energy F;.(x;) can be defined in terms of
the pixel values of x; and f(x; +p) — p, the coefficient o and the Euclid distance

between x; and f(x;) as follows:

Eic(Xi) = Z w(xi+p){1(xi) - a(xi+p)(f(Xi+P))I(f(Xi + p) - p)}2
peEW
Ny
1 + el E(xi—f(xi)ll-Xo)} "

+ Wais (2.13)

The relationship between total energy FE;. for whole the missing regions and

element energy E;.(x;) for each pixel x; can be written as follows:

Eie =Y Ei(x;) + C. (2.14)

x; €€}

C is the energy for the pixels in region Q N €, and is treated as a constant

because pixel values in this region and all similar pairs of windows are fixed here.
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Figure 2.5. Relationship between pixels in energy calculation.

By differentiating E;. with respect to I(x;) in the missing region, the requirement
for minimizing energy F;. can be obtained as follows:

8Eic - 8Ew (Xj)

STe) = 2 Bipe) = 0. (2.15)

X 59

Here, if it is assumed that the change of intensity modification coefficient « is

much smaller than that of pixel value I(x;), the following equation is obtained:

aO‘X]‘ f(x;)

S =0 (7€), (2.16)

From this equation, equation 0F;.(x;)/0I(x;) = 0 (j # ¢) is formed. Thus, energy

E;. is minimized by calculating I(xy), which satisfies the following equation:

oIx) oItk (2.17)
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Here,

OB (x;
8[(>(<-)) = > W 2{ T (%) = Apeip) i+ T (F (%5 +P) = P)}
! peW

00 (x;4p)(f(xi+p))

Therefore, from Egs. (2.16), (2.17) and (2.18), pixel value I(x;) so as to minimize

E;. can be calculated as follows:

> pew Wixi+p) Yxi+p)(fxi+p)) L (f (Xi +P) — P)

I(x;) =
ZpEW w(XH—P)

(2.19)
Eq. (2.19) is an approximate solution when Eq. (2.16) is satisfied. We can obtain a
good solution as the energy converges because the value of intensity modification

coefficient o converges as I(x;) converges.

2.5.3 Coarse-to-fine Approach

In order to avoid local minima efficiently, a coarse-to-fine approach is also em-
ployed as shown in the left part of Figure 2.6. Specifically, an image pyramid is
generated and energy minimization processes (i) and (ii) are repeated from higher-
level to lower-level layers successively using a certain size of window. Good initial
values are given to the lower layer by projecting results from the higher layer.
This makes it possible to decrease computational cost and avoid local minima.
In the lowest layer (original size), as shown in the right part of Figure 2.6,
the energy minimization process is repeated while successively reducing the size

of the window. This enables reproduction of more detailed textures.
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2.6. Order of Computational Cost

In the proposed method, missing regions are completed by iterating two processes:
(i) searching for a texture pattern keeping all pixel values in missing regions
fixed; and (ii) parallel updating of all pixel values in the missing regions keeping
similar pairs of windows between the missing regions and the data regions fixed.

Therefore, the order of the computational cost can be expressed as follows:

O((Csearch + Cupdate)Niteration)a (220)

where Cieqren 1s the cost for searching for similar texture patterns, Cypgqee is the
cost for updating pixel values and Njerqarion i the number of iterations.

Clsearcn consists of the costs for calculating SSD' (Eq. (2.5)) and SD (Eq. (2.8)).
The cost for SSD' between two pixels in expanded missing region €)' and data
region ® is expressed using cost Cgs for calculating squared differences of two
pixel values, cost C, for calculating intensity modification coefficient « from two
pixel values in region " and in data region ®, and the number of pixels Ny, in
window W as follows:

(Co + Cuif) Nw . (2.21)

The cost for SD between two pixels in region €)' and data region ® is expressed
as Cyq. Therefore, cost Cyeqren, Which consists of the costs for calculating SSD’
and SD between all pixel pairs in region €2’ and data region ®, can be expressed

as follows:
Csearch - {(Ca + Cdzf)NW + Csd}NQ’N<1>7 (222)

where Ng and Ng are the number of pixels in region 2 and region ®, respectively.
Here, the sum of number of pixels in regions €2’ and ® equals the number of pixels
Nimage in the image. Thus Eq. (2.22) can be described using the number of pixels

Nimage in the image as follows:
Csearch - {(Ca + Cdlf)NW + Csd}NQ’(Nimage - NQ’) (223)

Cupdate 1s expressed using cost C), for calculating a pixel value in missing region

2 and the number of pixels Ng in missing region €2 as follows:
Cupdate = vaNQ- (224)
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From Eqs. (2.20), (2.23) and (2.24), the order of the computational cost of the
proposed method is described as follows:

O(NWNQ’NimageNiteration)- (225)

From this, we can confirm that the processing time of the proposed method is
proportional to the number of pixels Ny in Window W, the number of pixels
No in region €', the number of pixels Njyqq. in an image and the number of
iterations Njeration- Ny and Nipege 0f the four parameters depend on user input.
For example, when the width and height of an image is doubled and the ratio of

region ' in the image is unchanged, the processing time becomes 2* times longer.
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2.7. Experiments

In this section, in order to demonstrate the effectiveness of the proposed method,
we have applied five kinds of image completion methods, including the conven-
tional methods and the proposed methods, to 100 images (200 x 200 pixels) as

shown in Figure 2.7. The methods used in the experiments are as follows:

Method A Our implemented Criminisi’s method [CPTO04], which is based on

successive copy of similarity texture

Method B Our implemented Wexler’s method [WSI07], which is based on en-

ergy minimization using pattern similarity
Method C Proposed method considering only brightness changes
Method D Proposed method considering only spatial locality

Method E Proposed method considering considering both brightness changes
and spatial locality

Here, in order to confirm the effectiveness of considering the brightness changes
and spatial locality, respectively, the method considering only brightness changes
(Method C) and the method considering only spatial locality (Method D) were
also evaluated as well as the proposed method considering both brightness changes
and spatial locality (Method E).

In these experiments, we used a PC whose specifications were Xeon 3.2 GHz
of CPU and 8 GB of memory. Each parameter in the energy function was set as
shown in Table 2.1 and the same parameters are used for all 100 images. Missing
regions were manually specified as shown in red regions in each image in Figure
2.7, and the average of pixel values on the boundary of the missing region was
given as an initial value to the missing region.

In this section, first, the effectiveness of the proposed method is qualitatively
demonstrated by questionnaire evaluation in Section 2.7.1 and the resultant im-
ages are discussed based on the questionnaire evaluation in Section 2.7.2. Then,
the results of the five methods are quantitatively evaluated in Section 2.7.3. The

computational costs of the proposed and conventional methods are compared in
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Table 2.1. Parameters in image completion experiments.

Multi-scale Level 1 2 3 4 5 6
Image size /41 1/2 ] 1 1 1 1
Window size IX9 | 9x9 | 9x9 | TXT | 5%x5 | 3x3
¢ in weight for pixel wy 1.3
Weight wy;, for spatial locality 120
Parameter in sigmoid function K 0.4
Parameter in sigmoid function X 20
Range D of coefficient a 0.1
Parameter 1} for list 4
Parameter 15 for list 0.5
Condition for convergence Less than 0.01 %
(Ratio of decrease of energy)

Section 2.7.4. The local minima problem is discussed in Section 2.7.5. Finally,

the reliability of the evaluation methods are discussed in Section 2.7.6.
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Figure 2.7. Input images with missing regions (1/3)
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Figure 2.7. Input images with missing regions (2/3)
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96

Figure 2.7. Input images with missing regions (3/3)
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2.7.1 Qualitative Evaluation

In the qualitative evaluation, all the completed images by five methods (Methods
A, B, C, D and E) were subjectively evaluated by 37 subjects (students of Nara
Institute of Science and Technology). The subjects were requested to access the
web page and complete a questionnaire evaluation as shown in Figure 2.8 and
evaluate the resultant images arranged in random order by giving a score of 1
(bad) to 5 (good).

The average of the scores given by the 37 subjects for each of the 100 images
are shown in Figure 2.9. The average scores for the 100 resultant images are
shown in Table 2.2 for each method. The number of times each method got
the highest average score is shown in Table 2.3. From Tables 2.2 and 2.3, the
average score by the proposed method (Method E) is higher than the scores by
the conventional methods (Methods A and B) and the proposed method got
the highest score for the most images. In this experiment, in order to evaluate
the effectiveness of the proposed method statistically, the scores between each
two methods out of five methods were compared by using the t-test with a 5%
significant level. Table 2.4 shows the amount of statistics and whether or not
a significant difference is observed. From these results, significant differences
were observed between the scores for any two methods except Methods C and
D. Therefore, considering brightness changes and spatial locality is respectively
effective the proposed method (Method E) considering both brightness changes
and spatial locality can be statistically verified to be the best of the five methods.
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Figure 2.8. Web page for questionnaire evaluation.

42



Table 2.2. Average score from 100 images.

Method A B C D E
Average score | 2.21 | 3.24 | 3.39 | 3.42 | 3.60

Table 2.3. The number of times the method obtained the highest score.

Method A|B|C|D|E
26 | 23 | 45

EN|
EN|

Average score

Table 2.4. T-value produced by the t-test between a pair of methods with a 5%

significant level. (If significant difference is observed, the t-value is underlined.)

Method | B[WSIO7] | C D E
A[CPT04] | 9.053 |9.138 | 10.870 | 11.046
B[WSI07] - 2.225 | 4.575 | 5.919

C - - 0.403 | 4.397
D - - - 3.351
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (1/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (2/17)
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Figure 2.9. Resultant images and scores (3/17)
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Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (4/17)
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Method D Method E

Figure 2.9. Resultant images and scores (5/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (6/17)
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Method A

7

3.54 3.32 3.21 4.05 4.51

Figure 2.9. Resultant images and scores (7/17)
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Method A Method B Method C Method D

Figure 2.9. Resultant images and scores (8/17)

51



Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (9/17)
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Method A Method B Method C Method D Method E

240 462 321 410 375

1.00 297 421 251 375

Figure 2.9. Resultant images and scores (10/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (11/17)
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Figure 2.9. Resultant images and scores (12/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (13/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (14/17)
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Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (15/17)
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Figure 2.9. Resultant images and scores (16/17)

29



Method A Method B Method C Method D Method E

Figure 2.9. Resultant images and scores (17/17)
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2.7.2 Discussion of Resultant Images

In this section, we discuss the resultant images in detail for the following cases

from the result of questionnaire evaluation.

e Cases when the proposed method obtained a better score than conventional
methods [CPT04, WSIOT7].

e Cases when the proposed method obtained a worse score than conventional
methods [CPT04, WSIOT7].

In the following, each case is described in detail.

Cases when the proposed method obtained a better score than con-
ventional methods [CPT04, WSI07]

From Table 2.3, the proposed method (Methods C or D or E) obtained better
scores than conventional methods (Methods A and B) for 86 images. In this
section, three examples (Images 09, 62 and 78) out of the 86 images for which the
proposed method had a better score than conventional methods [CPT04, WSI07]
are shown in Figures 2.10 to 2.12. Figures 2.13 and 2.14 show finally determined
correspondences of pixels in Images 62 and 78 by Wexler’s and the proposed
methods. In the following, each resultant image is discussed.

Image 09 (Figure 2.10(b)) includes relatively large difference in brightness
between the left part and the right part in the image because of nonuniform
illumination conditions. Figures 2.10(c), 2.10(d) and 2.10(e) are results by Cri-
minisi’s method, Wexler’s method and the proposed method, respectively. The
resultant images (Figures 2.10(c) and 2.10(d)) by the conventional methods look
unnatural because sudden brightness changes appear at the seat and the seat
back. On the other hand, the sudden brightness change is suppressed by the pro-
posed method in Figure 2.10(e). This is because the allowance of the brightness
changes of sample textures makes smooth changes in brightness in the missing
region.

Image 62 (Figure 2.11(b)) includes the difference in texture pattern around
the missing region because of the perspective effect. Figures 2.11(c), 2.11(d) and
2.11(e) are results by Criminisi’s method, Wexler’s method and the proposed
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method, respectively. Figure 2.13(a) and 2.13(b) show finally determined cor-
respondences of pixels by Wexler’s and the proposed methods. In the resultant
image (Figure 2.11(c)) by the conventional method [CPT04], unnatural texture
appears in the missing region. The most similar texture existed in the tree region
in the left side of the image by coincidence and the texture was copied. As a
result, the mixture of textures of the window and tree caused an unnatural ap-
pearance. In the resultant image (Figure 2.11(d)) by the conventional method,
a part of the missing region is blurred. This is because the pixels in the missing
region correspond to those in the untextured area far from the missing regions
as shown in Figure 2.13(a). On the other hand, neighboring textures are pref-
erentially selected as shown in Figure 2.13(b) by considering spatial locality of
texture patterns in the proposed method. Thus the resultant image is successfully
completed as shown in Figure 2.11(e).

Image 78 (Figure 2.12(b)) includes relatively large difference in brightness and
texture patterns between the left side and the right side of the missing region be-
cause of nonuniform illumination conditions and the perspective projection effect.
Figures 2.12(c), 2.12(d) and 2.12(e) are results by Criminisi’s method, Wexler’s
method and the proposed method, respectively. Figure 2.14(a) and 2.14(b) show
finally determined correspondences of pixels by Wexler’s and the proposed meth-
ods. In the resultant image (Figure 2.12(c)) by the conventional method [CPT04],
the square black texture appears in the missing region by successive copy and
whole the image looks unnatural. In the resultant image (Figure 2.12(d)) by
the conventional method [WSIO7], an unnatural image is generated due to the
blurs on the textured area with black squares. This is because pixels in the area
correspond to those in the untextured wall area as shown in Figure 2.14(a). In
addition, there are discontinuous brightness changes on the wall and floor. On
the other hand, in the resultant image (Figure 2.12(e)) by the proposed method,
neighboring textures are selected for completion by using the constraint of the
spatial locality of textures as shown in Figure 2.14(b). As a result, the black
squares are produced. In addition, brightness changes inside the missing region
becomes smoother and more natural by allowing brightness changes in sample

textures.
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(a) Original image (b) Input image with a

missing region

(¢) Result by Criminisi’s (d) Result by Wexler’s (e) Result by the pro-
method [CPT04] method [WSIO07] posed method

Figure 2.10. Experiment for Image 09.
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(a) Original image (b) Input image with a

missing region

(¢) Result by Criminisi’s (d) Result by Wexler’s (e) Result by the pro-
method [CPT04] method [WSIO07] posed method

Figure 2.11. Experiment for Image 62.
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(a) Original image (b) Input image with a

missing region

) Result by Criminisi’s (d) Result by Wexler’s (e) Result by the pro-
method [CPT04] method [WSIO07] posed method

Figure 2.12. Experiment for Image 78.
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(a) Wexler’s method (b) Proposed method

Figure 2.13. Finally determined correspondences of pixels in Image 62.

(a) Wexler’s method (b) Proposed method

Figure 2.14. Finally determined correspondences of pixels in Image 78.
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Cases when the proposed method obtained a worse score than conven-
tional methods [CPT04, WSI07]

The proposed method obtained worse scores for 14 of the 100 images. In this
section, we analyze the results and show the limitation of the proposed method.
Figures 2.15 and 2.16 show the images for which Criminisi’s method [CPT04] and
Wexler’s method [WSI0OT7] obtained the better scores than the proposed method,
respectively. In these figures, the number of image and the difference of the scores
of the proposed method (Method E) and the conventional method (Method A or
B) are written below the images.

First, we analyze the images shown in Figure 2.15. Images 75, 79, 83, 90 and 91
have high-frequency textures around the missing regions and the textures do not
include cyclic patterns. For such images, it is difficult for the proposed method, in
which values in the missing regions are determined by the mixture of textures, to
prevent blurs. On the other hand, the conventional method [CPT04] that is based
on simple copy can generate non-blurred textures. The non-blurred textures
give the appearance of a natural image. Images 03 and 14 have various kinds
of textures around the missing regions and do not have appropriate exemplars
for connecting different kinds of textures in the data region. For such images,
the missing regions also tend to be blurred by the mixture of various kinds of
textures in the proposed method. On the other hand, non-blurred textures by
the conventional method look better than blurred ones.

Next, we analyze the images shown in Figure 2.16. As for Image 60, all the
methods obtained relatively bad scores. Image 60 has the texture of black edges
in the data region but does not have the good exemplar for intersection of black
edges. Therefore, it is difficult for both the proposed and conventional methods
to generate the texture of intersection of the black edges. Images 04, 25, 33, 54
and 64 have similar textures not only around the missing regions but also in whole
the images and the differences in scores between the proposed and conventional
methods are relatively small for these images. The proposed method can obtain
better results especially for images in which similar textures exist only around
the missing region and brightness changes of similar textures appears. However,
for images which do not have such properties, results by Wexler’s method often

produce outcomes better than or as good as those of the proposed method.
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From these results, we can confirm that it is difficult for the proposed method
to successfully complete missing regions around which complex and noncyclic
patterns or various kinds of textures exist in an image. For such images, the
conventional method [CPT04] based on simple texture copy often obtains good
results. In addition, the proposed method does not have an advantage against
the conventional method [WSI07] for images in which similar textures exist in

whole the image and the brightnesses of the same kinds of textures are uniform.
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04 (0.86

54 (0.87) 60 (0.19) 64 (1.22)

Figure 2.16. Images for which Wexler’s method obtained the best score.
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2.7.3 Quantitative Evaluation

In this experiment, as a quantitative measure, RMSE (Root Mean Squared Er-
ror), which is calculated based on pixel-wise differences between original and
completed images, was computed for 29 images whose missing regions were spec-
ified regardless of the object regions, and we did not use the remaining 71 images
because the missing regions of the 71 images are specified so as to remove cer-
tain objects. Table 2.5 shows the average RMSE. From the results, the proposed
method is the best of all five methods and significant differences between the
proposed (E) and conventional methods (A and B) were observed by using the
t-test with a 5% significant level, respectively. From this result, we can confirm

that the effectiveness of the proposed method is demonstrated quantitatively.

2.7.4 Discussion about Computational Cost

The proposed and conventional methods are compared with respect to computa-
tional time in this experiment. Table 2.6 shows the average processing time of 100
images and the average number of iterations of the conventional and proposed
methods. From this table, we can confirm that the processing time of Criminisi’s
method, which is based on successive copy of similar texture, is extremely fast.
This is because pixel values are fixed once the most similar texture is copied in
Criminisi’s method unlike the proposed and Wexler’s methods, which are based
on iterative processing.

As for the comparison of Wexler’s and the proposed methods, the proposed
method requires about 3.5 times as much time as the conventional method. This
is partially because of cost C, for calculating intensity modification coefficients
and cost Cy; for calculating SD. In addition, we can confirm that the num-

ber of iterations of the proposed method is larger than that of the conventional

Table 2.5. Average RMSE from 29 images.

Method A B C D E
RMSE | 42.95 | 28.40 | 27.83 | 28.36 | 27.44
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method from Table 2.6. We consider that increase of the texture patterns by the

brightness changes of textures slows the convergence of energy.

2.7.5 Discussion about Local Minima Problem

The energy minimization in the proposed method is performed by a greedy al-
gorithm based on the iterative processing. In general, such an algorithm does
not always give the global minimum and the finally converged energy depends
on initial pixel values. In this section, we discuss the energies and results with
respect to different initial pixel values using Images 04, 09, 62 and 78. Here, five
kinds of initial values (average pixel values of the boundary of the missing region,
result by Criminisi’s method, black color, gray color and white color) are given
to the missing regions.

Figures 2.17(a) to 2.20(a) show the changes of energies when the five kinds
of initial values are given to missing regions in Images 04, 09, 62 and 78. In
these figures, the energy discontinuously changes when the level in the coarse-to-
fine approach changes. Figures 2.17(b) to 2.20(b) show the resultant images and
the captions below the images show the initial pixel value and the final energy.
As for Images 09, 62 and 78, the initial energies are quite different from each
other as shown in Figures 2.18(a), 2.19(a) and 2.20(a). Especially, initial energies
when the initial colors are black and white are higher. Nevertheless, the finally
converged energies are almost the same and the qualities of the resultant images
using different initial values are also almost the same, as shown in Figures 2.18(b),
2.19(b) and 2.20(b). As for Image 04 whose missing region is relative large, the
resultant images are quite different according to the initial values as shown in

Figure 2.17(b). The energies are also relatively largely different according to

Table 2.6. Comparison with respect to computational cost.

Criminisi’s Wexler’s Proposed

method [CPT04] | method [WSIO7] | method
Processing time (sec.) 2.7 214.6 706.9
Number of iterations - 106.6 119.9
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the values. From these results, we can confirm that the result with the smallest
energy cost is better than that with the largest energy cost. We can also confirm
that the result with the smaller energy cost using gray color is worse than that
with larger energy cost using the result of Criminisi’s method. Therefore, the
small difference of the energies does not always represent a difference in quality,
though good quality of a completed image tends to have a small energy cost.
From these results, the energy sometimes falls into local minima and bad
results are obtained by the proposed method when a missing region is relatively
large. However, as the missing regions get smaller, the proposed method tends

to be able to obtain almost the same or better results regardless of initial values.
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Figure 2.17. Change of energy and results of Image 04 with respect to different
initial values.
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Figure 2.18. Change of energy and results of Image 09 with respect to different
initial values.
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Figure 2.19. Change of energy and results of Image 62 with respect to different
initial values.
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Figure 2.20. Change of energy and results of Image 78 with respect to different
initial values.
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2.7.6 Discussion about Evaluation Methods

In this thesis, although qualitative evaluations using a questionnaire and quanti-
tative evaluations using RMSE were performed in order to verify the effectiveness
of the proposed method, the reliability of the evaluation methods has not been
well discussed in the literature of image completion. In this section, qualitative

and quantitative evaluation methods are analyzed using the evaluation results.

Reliability of qualitative evaluation

In the qualitative evaluation using a questionnaire, the evaluation using a few
images and a few subjects may not be able to validate the effectiveness of image
completion methods due to the bias of images and subjects. In this section,
the reliability of the result when the images and subjects are decreased in a
questionnaire is analyzed in a simulation. Here, the ranking of the methods
decided by the average of scores given by 37 subjects in the questionnaire using
100 images were used as the ground truth.

In this thesis, as the reliability measure of evaluation results, RE (Ranking

Error) is defined as:

RE(n, h) =

0 (Vi,g(¢,100,37) — g(¢,n,h) =0
(vi, g (i ) (i,n, h) ) (2.26)
1

(otherwise),

where ¢(i,n, h) represents the rank order of the method i determined by n images
and h subjects. In this study, we compute RE(n,h) with respect to random
selection of n images and h subjects from 100 images and 37 subjects. ARE(n, h)
is the average score of RE(n,h) by 10,000 times selection.

Figure 2.21 shows the relationship between ARE and the number of images
and subjects. In this figure, (a) and (b) illustrate isolines of ARE for the methods
A and E, and D and E, respectively. In this figure, isolines are drawn every 0.05
units.

The scores of the Methods A and E are significantly and largely different.
From Figure 2.21(a), when h =2, the ranking corresponds to the ground truth
more than 95% of the time (ARE =0.05) if n>3. Therefore, for methods that

generate significantly different results, the ranking is usually equivalent to the
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Figure 2.21. Relationships between ARE and the number of images and subjects.

ground truth even if the number of subjects and images are small. On the other
hand, the scores of the Methods D and E show a significant albeit small difference.
From Figure 2.21(b), in order for the ranking to correspond to the ground truth
more than 95% of the time, more than 49 images are needed if h=2. Even if
h=37, at least 18 images are needed. Therefore, if the number of subjects and
images are small, the ranking may not correspond to the ground truth and the
results of subjective evaluation are not reliable. Therefore, we can confirm that
many images and subjects (for example, 40 images and 5 subjects) are needed to

evaluate image inpainting methods persuasively.

Relationship between quantitative and qualitative evaluation

In the literature on image completion, as the quantitative evaluation, MSE (Mean
Squared Error), RMSE (Root Mean Squared Error) and PSNR (Peak Signal-
to-Noise Ratio), which are based on computing pixel-wise differences between
original and completed images, have been sometimes used. In this experiment,
the relationship between RMSE and scores given by subjects is discussed.
Figure 2.22 illustrates the distribution of the correlation coefficient between
RMSE and the subjective score for 29 images: (a) is by five methods; (b) is
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Figure 2.22. Correlation coefficient between RMSE and subjective score.

by four methods, except for Method A [CPT04]. Correlation coefficient Cc is
computed as follows:

N, ZN R;S; — SNm RixNm S,

Cc=
VNS RE — (SN R)2\ N, SN 52— (580S,)2

, (2.27)

where NNV, is the number of methods, R; is RMSE and S; is the average score by
subjects. From Table 2.5 and Figure 2.22(a), there is a clear negative correlation
between RMSE and subjective score. From this, although the evaluation result by
RMSE may correspond to the ground truth, there also exist three images (Figure
2.23) where positive correlation exists. As shown in Figure 2.23, these images
have very high-frequency components. It is well known that pixel correlation-
based similarity measures including RMSE are sensitive to pixel phase shift for
a high frequency component. However, such a pixel phase shift does not always
affect the quality of images. Thus, RMSE cannot appropriately evaluate images
with a high frequency component. Figure 2.22(b) illustrates the distribution
of the correlation coefficient by the four methods, except for Method A, whose
score is extremely low. In Figure 2.22(b), one third of the coefficients indicate
positive correlation. This means that the small difference in RMSE does not
always represent that of image quality. Therefore, RMSE cannot be used as an

absolute criterion of image quality but can be used for a rough evaluation.
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Figure 2.23. Images with inverse correlation between RMSE and subjective eval-

uations.

2.8. Conclusion

In this chapter, a new energy function for image completion has been proposed.
In order to obtain good results for many images, two factors were considered
based on the conventional energy function using pattern similarity: (1) brightness
changes of sample textures was allowed by introducing an intensity modification
coefficient to an energy function; and (2) spatial locality was introduced as a new
constraint by adding a cost term to an energy function.

In experiments, we have demonstrated the effectiveness of these extensions
by qualitative evaluation using a questionnaire and quantitative evaluation using
RMSE. We have also showed the limitation that it is difficult to complete missing
regions in an image in which textures around missing regions are complex and
noncyeclic.

In addition, we have discussed the reliability of evaluation methods for image
completion. From the discussion, we confirmed that many images and subjects
are required to evaluate image completion methods persuasively in a questionnaire
and quantitative evaluation based on pixel-wise difference such as RMSE cannot

be used as an absolute criterion but can be used for a rough evaluation.

80



Chapter 3

Video Completion for Generating
Omnidirectional Video without

Invisible Areas

3.1. Introduction

This chapter describes a video completion method for omnidirectional video. In
these days, omnidirectional video is often used for various purposes and one of
these is telepresence, which allows users to feel as if they are present at a remote
site [ISY05, HKY07]. However, ordinary omnidirectional cameras for capturing
omnidirectional video cannot capture entire fields of view due to a blind side as
shown in Figure 3.1. This invisible part in the omnidirectional video decreases the
realistic sensation in telepresence. In order to achieve telepresence with highly
realistic sensation, it is required to plausibly fill in this missing region.

Until now, many video completion methods have been proposed for video
captured with an monocular camera and have successfully completed the missing
regions. However, the methods assume that the appearance of objects does not
change largely between different frames. Therefore, it is difficult for the meth-
ods to successfully complete missing regions in omnidirectional video caused by
the blind side of omnidirectional cameras because the appearance of the texture
appropriate for a missing region in a frame changes in the different frames of a

moving omnidirectional camera.

81



Figure 3.1. Omnidirectional panoramic image with a missing region (black region)

caused by a blind side.

In this thesis, we proposes a new method that completes the missing region
in omnidirectional video by compensating for the change in the appearance of
textures. Concretely, by assuming that the ground exists in the direction of the
blind side of a moving camera and the shape of the blind side of the target scene
is planar, the change in the appearance of the texture caused by the camera
motion is compensated by projecting omnidirectional images onto the planar sur-
face fitted to the 3D positions of natural feature points on the ground acquired
by structure-from-motion (SFM). In addition, by using fitted planes and camera
motion, data regions where appropriate textures for missing regions may exist
are determined. Finally, missing regions are completed by minimizing an energy
function based on pattern similarity. In this research, we employ an omnidirec-
tional multi-camera system (OMS) that is composed of radially arranged multiple
cameras as an omnidirectional camera. We assume that textures in the blind side

are captured from different viewpoints.
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3.2. Overview of the Method

The flow of the proposed method is given in Figure 3.2. (A) The position and
posture of an OMS and 3D positions of natural feature points are estimated using
SFM for omnidirectional video. (B) A plane for each frame is fitted to natural
feature points near the ground by using the 3D positions of natural feature points.
(C) An image sequence projected on the fitted plane is generated from the om-
nidirectional video. (D) The missing region in the projected image plane of each
frame is completed frame-by-frame by minimizing an energy function based on
the similarity between textures in the missing region and data regions. In this
process, first, (D-i) data regions in which appropriate textures for missing regions
may exist are specified on the projected image plane using the position and pos-
ture of the OMS and the fitted planes. Next, the energy function is minimized by
repeating two processes: (D-ii) searching for similar textures; and (D-iii) parallel
updating of all pixel values. (E) Omnidirectional video without invisible areas
is generated by re-projecting the completed image onto the spherical panoramic
video with a missing region. In the following sections, each process is described

in detail.

3.3. Estimation of Extrinsic Camera Parameters

and Positions of Natural Feature Points

The position and posture of an OMS and 3D positions of natural feature points
are estimated by SFM for omnidirectional video [TSNO4] in process (A). In this
method, first, a target scene is captured with a moving OMS. Next, initial ex-
trinsic camera parameters and 3D positions of feature points are estimated by
tracking natural feature points in a video, which are detected by Harris operator.
Finally, the accumulative errors of the camera parameters and the 3D positions

of feature points are minimized by bundle adjustment for whole the video.
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(A) Estimate position and posture of OMS
and positions of natural feature points

!

(B) Fit plane to natural feature points

'

(C) Generate images projected on planes
from omnidirectional video

v
(D) Complete missing regions by energy minimization
1
¥
| (D-i) Determine data regions |
| D

| (D-ii) Search for similar textures in data regions |
v

| (D-iii) Update pixel values in missing regions |

Is energy converged?

Yes

¥ Yes
(E) Re-project completed images
onto omnidirectional panoramic video

auwelj IXaN

Figure 3.2. Flow diagram of the proposed video completion method for an omni-

directional video.
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Figure 3.3. Selection of feature points around missing region.

3.4. Generation of Images Projected on Planes

In ordinary omnidirectional video, it is difficult to successfully complete miss-
ing regions using original captured textures because the appearance of textures
largely changes due to camera motion. In this research, on the assumption that
an omnidirectional video is captured while moving on the ground and the shape
around a missing region is planar, an image sequence that includes missing re-
gions is generated by projecting the omnidirectional video to the planes in order
to compensate for the change in the appearance of textures caused by the camera
motion.

First, a plane for each frame which represents the ground is fitted to natural
feature points in process (B). Concretely, natural feature points for plane fitting
are selected from the points obtained by SFM described in Section 3.3. Here, the
points that satisfy the following conditions are selected: (i) a point exists in the
spherical area whose center is a projection center of a representative camera unit
of an OMS and radius is /; and (ii) the height z of a point in the world coordinate
system is (p < z < p+m) (p and m are constants) as shown in Figure 3.3. Then
the expression of the plane of the f-th frame that represents the ground in the
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Figure 3.4. Generation of an image projected on a plane.

world coordinate system is calculated. When the expression is set as
z = arxr + bsy + cy, (3.1)

parameters (ay, by, cy) are determined by the least-squares method so as to min-
imize the following cost function L:

n
L= Z(af:ri + bfyi + Cr— Zi)2, (32)
i=1
where (z;,y;, z;) are the coordinates of a feature point and n is the number of
selected feature points.
Next, an image sequence is generated by successively projecting the omnidi-
rectional video to the estimated plane for each frame in process (C), as shown in

Figure 3.4. In order for a missing region to be the center of the projected image,

86



an intersection point of the plane with the straight line that goes just under an
OMS through the projection center of a representative camera of the OMS is set
as the center of the image. Concretely, transformation matrix My from the rep-
resentative camera coordinate system of the f-th frame to the world coordinate

system is expressed as follows:

mf1 me mfg mf4
m m m m
M, = | > e T s (3.3)

Mygg Mo Mgp11 Mf12
0 0 0 1

Then the central coordinate of the projected image (x,yy, z5) is expressed using

parameter ¢ as follows:

Ty My mgs
yf - mfg +t mf7 . (34)
zf mMy12 mri1

From Egs. (3.4) and (3.1), the central coordinate is calculated by removing pa-

rameter ¢ as follows:

xf My mgs3
. afmf4+bfmfg+cf—mf12
Yr | = | myss b myr | - (3.5)
My — Mgz — OpMp7
zZf myi2 myi1

Here, in order to prevent the rotation of textures in the projected image plane
among different frames, basis vectors (uy, vy) of the image of the f-th frame in

the world coordinate system are set so as to satisfy the following equation:
us-y =0, (3.6)

where y is one of the basis vectors of the world coordinate system. From Egs. (3.6)

and (3.1), basis vectors (us,vy) are determined as follows:

1 —asby
Ve \/(1+a§)(12+a§+b§)
u; = 0 Vi = i (3.7)
I hy v \/(1+a§)b(1+af,+bf,) ’
. f
V/1tag V/(Fa?)(T+a2+07)
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From the center position (Eq. (3.5)) and the basis vectors (Eq. (3.7)), the rela-
tionships between coordinates (uy,vy) on the projected image and 3D positions

T fuvs Y fuvs Zfup) 1 the world coordinate system are expressed as follows:
fuvs Yf f y

huo i U Vv
Y | = | up | Hrluy = S)up ooy = 5)vy, (3-8)
Zfuv 2y

where the size of a pixel is X r and the resolution of a projected image is U x V.
Note that the scale change of textures in the projected image are also prevented
by fixing the size of a pixel. Finally, pixel values in the projected image are
determined by re-projecting the 3D position of each pixel on the image plane of
the OMS camera unit.

3.5. Video Completion by Minimizing Energy Func-
tion

In process (D), we basically apply the image completion method for still images
described in Chapter 2 to video frames. In this completion for video frames, in
order to preserve the temporal continuity, data regions in which the appropriate
texture for a missing region exist are determined pixel-by-pixel from multiple
frames using geometric information. The missing region in an image projected
on the plane of each frame is then completed frame-by-frame by minimizing the
energy function based on the similarity of textures between the missing and data
regions. In the following, the definition of the energy function, a method deter-
mining data regions and a method to minimize the energy function are described

in detail.

3.5.1 Definition of Energy Function Based on Pattern Sim-
ilarity

In this study, we employ pattern similarity allowing brightness changes based
on SSD (Sum of Squared Differences) for an energy function. The similarity

allowing brightness changes generates natural structure and brightness of textures
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Figure 3.5. Missing and data regions in projected images for completion process.

in missing regions. As shown in Figure 3.5, a missing region in the projected image
of the target (f-th) frame is completed using an energy function based on the
similarity of textures between in region (¥}, including missing region {2y, in the
f-th frame and data region ®y; in the reference (k-th) frame (k # f). Here, 0 is
the expanded area of missing region €2¢ in which there is a central pixel, xy;, of
a square window W overlapping region €2;. Each data region ®;; corresponding
to each pixel xf; in the f-th frame is individually determined in Section 3.5.2.
Energy function F,. is defined as the weighted sum of SSD between the textures

around pixel xy; in region Q} and Xy; in data region ®;.

Boe= Y wy, SSD(xpi, Xy1), (3.9)

XfiGQ’f

where wy, is the weight for pixel xy; and is set as 1 if x; is inside region Q’f Ny
because pixel values in this region are fixed; otherwise wy, = g % (d is the
distance from the boundary of Q; and ¢ is a constant), because pixel values
around the boundary have higher confidence than those in the center of the

missing region.
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SSD(xy;,Xy;), which represents the similarity of textures around pixel xy;

and Xy;, is defined as follows:

SSD(Xfi7 }A{fi) = Z{I(Xfi + q) - CYxfififi](fcfi + (])}2, (310)

qeWw

where I(x) represents the pixel value of pixel X. o5, is the intensity modifica-
tion coefficient. Note that textures around a missing region may change due to
the reflection of the light on the ground and the shade of the camera and operator.
Therefore, by using this coefficient, the brightness of textures in data regions is
adjusted to that in the missing region. In this research, ay,z,, is defined as the

ratio of average pixel values around pixels x; and xy; as follows:

_ \/quw I(xp; + q)?
\/quw I(xy + q)Z.

(3.11)

Qxpixyi

In the defined energy function, the parameters are pixel value I(xy;) of each
pixel in missing region €1y and position X; corresponding to pixel xy; in region

Q’f These parameters are calculated so as to minimize the energy function.

3.5.2 Determination of Data Region

In process (D-i), data regions in which the appropriate texture for a missing re-
gion in a target frame exist are determined pixel-by-pixel using the position and
posture of a moving OMS estimated in process (A) and the planes generated in
process (B). In this research, appropriate textures for the missing region in the
target frame are assumed to be captured from different viewpoints in an om-
nidirectional video. Additionally, the parameters of the plane and the position
and posture of the OMS in each frame are known. Therefore, regions in which
the appropriate texture pattern for the missing region exists can be determined
in multiple frames by using the geometric relationships of a moving OMS and
the ground. Here, in order to use textures with high quality as exemplars for
completion, one frame is selected from the multiple frames considering the reso-
lution of the texture pattern and the difference of frame numbers. In addition,

as for frames other than the initial frame, the positions of selected exemplars for
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completion of the previous frame are considered in order to preserve the tem-
poral continuity of generated textures. In the following, we describe the way to
determine a data region (a region and a frame) corresponding to each pixel xy;
in region Q; in the target (f-th) frame that is used for the energy minimization
process. Methods to determine a data region for an initial frame and for frames

except for the initial frame are successively described.

Determination of Data Region for Initial Frame

Data regions for an initial frame are determined pixel-by-pixel considering the
resolution of the textures and the difference of frame numbers between the ini-
tial and reference frames. A region in a frame is determined as a data region.
Concretely, first, the 3D coordinate of pixel x; in region 2 in the target (f-th)
projected image is re-projected on the image plane of a camera unit of the OMS
in the reference (k-th) frame. Then the pixel coordinate py(xy;), which is the
intersection point of the k-th projected image with the straight line that goes
through the re-projected pixel on the image plane of the camera unit and pixel
Xy on the f-th projected image, is calculated as shown in Figure 3.6. In the
same way, pixel coordinate py(xy;) in each frame k corresponding to pixel xy; is
calculated.

Next, one frame is selected by considering the position of pi(xy;) in a pro-
jected image and the difference of frame numbers between the target and reference
frames. In projected images, the resolution of texture becomes lower the farther
a pixel is from the center of the image because textures of objects remote from
the camera become small in input images of an OMS. Thus textures near the cen-
ter of the image should be used as exemplars for completion in order to prevent
the generation of blurred textures. In addition, it is highly possible that tempo-
rally close frames have similar brightness of textures. Therefore, the appropriate
frame s(xy;) is selected from candidate frames K = (ky,...,k,) by the following
equation:

S(Xfi) = arkgnéin(” pk(xfi) — Xcenter || +)\|k - f|), (3.12)
S

where candidate frames K are picked up so that the texture pattern of exemplar
whose center is pg(xy;) does not include the missing region. Xcenser is the central

pixel in the k-th planar projected image and A is the weight for the difference of
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Figure 3.6. Projection to the other frame.

frame numbers. Finally, the fixed square area whose center is pixel p,(x fi)(x fi) is
set as data region @ (x,,);- In the same way, each data region ®(x,,); corresponding

to each pixel xy; in region (2} is individually determined.

Determination of Data Region for Frames Except for Initial Frame

Data regions for frames except for the initial frame are determined considering not
only the resolution of textures and the difference of frame numbers but also the
positions of finally selected exemplars for the completion of the previous frame in
order to preserve the temporal continuity of generated textures. Here, all pixels in
region {2 in the target (f-th) frame are divided into two groups based on whether
or not the pixel can use the position of the selected exemplar for completion of
the previous frame.

Concretely, first, the relationship of the positions of corresponding pixels in
regions () and (2, of the target (f-th) frame and the previous ((f —1)-th) frame
is determined in the same way as shown in Figure 3.6. Here, as shown in Figure
3.7, the pixel in the previous frame corresponding to xy; in the target frame can
be expressed as p(r_1)(Xfi) (= X(s-1);). Next, frame s(xy;) corresponding to xy;

in region (2} of the target frame is determined by Eq. (3.12). Then pixels in region
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Figure 3.7. Projection to the other frame.

)y are divided into two groups. When the reference frames of xy; and x(;_); are
different (s(xs;) # s(x(r-1);)), pixel xz; belong to group (a); otherwise, pixel xy;
belong to group (b).

As for pixel xy; in group (a), data regions are set in the same way as the
initial frame because the positions of the selected exemplars for completion of the
previous frame can not be used. As for pixel xy; in group (b), the positions of the
selected exemplars can be used. Therefore, the fixed size of square area whose
center is pixel f(x(f,l)j), which is a central pixel of the finally selected exemplar
for the completion of the previous frame, is set as data region @ (x,,);, as shown
in Figure 3.7. In addition, we make the size of the data region smaller than that
for pixels in group (a). This makes it possible to not only preserve the temporal

continuity of textures but also decrease the computational cost.

3.5.3 Energy Minimization

Energy function E,. in Eq. (3.9) is minimized by using a framework of greedy
algorithm. In our definition of energy F,., the energy for each pixel can be treated
independently if pattern pairs (xy;,Xs;) can be fixed and the change of coefficient
Qix;.xp; 0 the iterative process of energy minimization is much smaller than the

change of pixel values in the missing region. Thus we repeat the following two
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processes until the energy converges: (D-ii) searching for the most similar pattern
keeping pixel values fixed; and (D-iii) parallel updating of all pixel values keeping

pattern pairs fixed.

(D-ii) Searching for Similar Texture Pattern

In process (D-ii), data region ®;; (k = s(xy;)) is searched for position #(xy;) of
the most similar pattern corresponding to pixel xy; while keeping pixel values
I(xy;) fixed. t(xy;) is determined pixel-by-pixel in parallel as follows:
t(xp) = Xp; = argmin(SSD(xy;, x)). (3.13)
XEPy;

Here, SSDA (Sequential similarity detection algorithm) [BS72] is used for reduc-

ing the computational cost.

(D-iii) Parallel Updating of Pixel Values

In process (D-iii), all pixel values I(xy;) are updated in parallel so as to minimize
the energy keeping the similar pattern pairs fixed. In the following, the method
for calculating pixel values I(xy;) is described. First, energy E,. is resolved into
element energy F(xy;) for each pixel x;; in missing region ;. Element energy
Ey.(xy;) can be expressed in terms of the pixel values of x; and f(xy +q) — q,

coefficient « as follows:

Bue(xgi) = Y Weeira) i (X7i) = Oxiraitsral (HXp + @) — @)} (3.14)
qeWw

The relationship between energy E,. and element energy E,.(xy;) for each pixel

can be written as follows:

Eye= Y E(xp)+C. (3.15)

XfiEQ

C is the energy of pixels in region Q’f N €Yy, and is treated as a constant because
pixel values in the region and all the pattern pairs are fixed in process (D-iii).
Therefore, by minimizing element energy E,.(xy;) respectively, total energy E,.

can be minimized. Here, if it is assumed that the change of ax, is much

Xf;)
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smaller than that of pixel value I(xy;), by differentiating E,.(xy;) with respect to
I(xy;), each pixel value I(xy;) in missing region {2y can be calculated in parallel

as follows:

> qew Wocpita) Xt aytixira)d (H(xXp +a) — )

I(xp;) =
! quw W(xi+q)

(3.16)

3.5.4 Coarse-to-fine Approach

In order to avoid local minima efficiently, a coarse-to-fine approach is also em-
ployed for energy minimization. Concretely, an image pyramid is generated and
energy minimization processes (D-ii) and (D-iii) are repeated from higher-level
to lower-level layers successively. Good initial values are given to the lower layer
by projecting results from the higher layer. In addition, the correspondences of
pixels are inherited and new data regions are set so that the corresponding pix-
els are the center of the new data regions. This makes it possible to decrease

computational cost and avoid local minima.

3.6. Re-projection of Images Projected on Planes

to Panoramic Images

In process (E), an omnidirectional video without invisible areas is generated
by re-projecting the projected images completed in process (D) onto spherical
panoramic images with a missing region. Concretely, the coordinate of the inter-
section of the plane with the straight line that goes through the projection center
of a camera unit and each pixel in the missing region in the sphere is calculated.
Then the pixel value of the calculated coordinate in the projected image is copied

to the corresponding pixel in the spherical panoramic image.
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3.7. Experiments

In this section, the effectiveness of the proposed method is demonstrated using two
image sequences by completing missing regions caused by a blind side of an OMS
and generating omnidirectional videos without invisible areas. In experiments,
we used a PC (CPU: Xeon 3.0GHz, Memory: 8GB) and Ladybug [Poi] as an
OMS as shown in Figure 3.8. Ladybug has radially located six camera units and
their positions and postures are fixed. Each camera unit can acquire 768 x 1024
pixels resolution image at 15 fps. Parameters in the experiments were empirically
determined as shown in Table 3.1. For completion, a missing region in each image
projected on a plane was determined by manually specifying the unneeded regions
(equipment of Ladybug and a shadow of an operator of an OMS) in six images of
the first frame and a blind region in the projected image is also specified as the
missing region.

In the following, first, we describe the acquisition of omnidirectional video and
the estimation results of the extrinsic camera parameters. Then, the experiment
of completion for images projected on images and a prototype telepresence system

using the omnidirectional video without invisible areas is presented.

3.7.1 Acquisition of Input Information

In this experiment, first, two image sequences were captured while a person on

which Ladybug was mounted was walking. Fach video consists of 301 frames of

Figure 3.8. Omnidirectional multi-camera system ”Ladybug”.
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Table 3.1. Parameters in experiments.

For generation of panoramic and projected images

Resolution of panoramic image 2048 x 1024
Resolution of projected image 1200 x 1200
Range for selecting feature points || -1000 (mm) < z < height of camera
[ = 6000 (mm)
Size of a pixel 10 (mm) x 10 (mm)
Weight A 2.0
For energy minimization
Multi-scale level 1 2 3
Image size 1/4 1/2 1
g in weight w 1.1
Window size 51 x 51
Data region (case (a)) 11 x 11 |5x5 5 x5
Data region (case (b)) 3 x3 [3x3 3 %3
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an omnidirectional video (1806 images). Figures 3.9 and 3.10 show images of the
1st frame captured by Ladybug. In scene (1) of Figure 3.9, the ground is almost
planar through all the frames. In scene (2) of Figure 3.10, the ground is slightly
rugged due to various stones and there are steps near missing regions in the
beginning and the end of the scene. Next, the extrinsic camera parameters and
the positions of natural feature points were estimated by Structure-from-Motion

described in Section 3.3 as shown in Figures 3.11 and 3.12.

3.7.2 Completion for Images Projected on Planes

In this section, first, we generated the images projected on planes by the method
described in Section 3.4. The nine frames out of 300 frames of scenes (1) and (2)
are shown in Figures 3.13 and 3.14. Round black regions in the images are missing
regions caused by the blind side of Ladybug. As shown in the figures of scene
(1), textures of tiles on the ground are uniform regardless of the position of pixels
and textures of the same objects do not rotate in each frame. As a result, we can
confirm that appropriate projected images used for completion were generated.
As shown in the figures of scene (2), textures of stones are also the same and do
not rotate in each frame. However, as for scene (2), the brightness of the stones
differs between the right and left sides of the missing regions and the brightness
of the same stones greatly changes between different frames. In this scene, strong
sunlight comes from the right of the images. Therefore, the brightness of objects
changes due to the reflection of the sunlight on the stones according to the position
of the OMS.

Next, a missing region in each projected image was completed. Figures 3.15(d)
and 3.16(d) show a close-up of the completed results for the projected image
of the 11th frame of scene (1) and the 71st frame of scene (2), respectively.
Figures 3.15(a) and 3.16(a) show the target frame in which the missing region
(red region) was specified, and Figures 3.15(b) and 3.16(b) show the central pixels
of the data regions in the reference frames corresponding to pixel (600,600) in the
target frames. Figures 3.15(c) and 3.16(c) show the close-up of the results by
copying values of central pixels in data regions without the energy minimization
process described in Section 3.5. As for Figure 3.15(c), the geometrical and

optical disconnection of textures in the boundary of the missing region appears.
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Ey

Figure 3.9. 1st frame of input image sequence captured by six camera units (scene

(1))

Figure 3.10. 1st frame of input image sequence captured by six camera units
(scene (2)).
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Figure 3.11. Estimated positions and postures of an OMS and positions of natural

feature points (scene (1)).

Figure 3.12. Estimated positions and postures of an OMS and positions of natural

feature points (scene (2)).
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We consider this is because of the errors of the estimation of camera parameters
by SFM and errors of plane fitting. As for Figure 3.16(c), we can also confirm
that the geometrical disconnection of textures in the middle of the missing region.
In this scene, textures in the left side of the missing region are copied from earlier
frames and those of the right side are copied from later frames. Therefore, the
large disconnection appears in the region where the frame numbers of data regions
greatly changes. On the other hand, in the resultant images (d) in Figures 3.15
and 3.16, textures are continuously connected on the boundary and the middle
of the missing region. As a result, natural textures are generated in the missing
regions. From this result, we can confirm that the energy minimization process
using pattern similarity is effective for generating natural textures.

Figures 3.17 and 3.18 and Figures 3.19 and 3.20 show projected images with
a missing region of successive frames (12th to 20th frames of scene (1)) and
(72nd to 80th frames of scene (2)), respectively. From these figures, the missing
region in each frame was successfully completed. In addition, textures in the
missing region change smoothly between successive frames and plausible video
is generated. However, as for scene (2), unnatural changes of textures appeared
from 298th to 301st frames as shown in Figure 3.21. The completed textures are
gradually distorted through these frames. We consider that correspondences of
pixels were not accurate because the angle of the plane of each frame became
relatively greatly different from the ground truth due to steps near the missing
region. In order to overcome the problems, we should consider that the range for
selecting natural features is adaptively determined. In addition, to obtain good
results for more complex scenes, detailed surfaces should be fitted to natural
features in future work.

Finally, we discuss the processing time. As for scene (1), it took 722 seconds
to complete the initial frame (determine data regions and minimize the energy
function) and 513 seconds on averages to complete the frames except for the
initial frame. As for scene (2), it took 776 seconds to complete the initial frame
and 523 seconds on averages to complete the frames except for the initial frame.
In frames except the initial frame, completion results for the previous frame are
used to determine data regions and the size of the data regions is made smaller.

Therefore, the computational cost is decreased.
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1st frame 41st frame 81st frame

121st frame 161st frame 201st frame

241st frame 281st frame 301st frame

Figure 3.13. Images projected on planes (scene (1)).
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1st frame 41st frame 81st frame

121st frame 161st frame 201st frame

241st frame 281st frame 301st frame

Figure 3.14. Images projected on planes (scene (2)).
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(a) Target frame (11th frame) (b) Center of the data region in the 67th
frame corresponding to pixel (600,600) in

the target frame

(c) Result by copying values of central (d) Result by the proposed method

pixels in data regions

Figure 3.15. Comparison of results by projection using a plane and proposed
method.
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(a) Target frame (71st frame) (b) Center of the data region in the 15th
frame corresponding to pixel (600,600) in

the target frame

(c) Result by copying values of central (d) Result by the proposed method

pixels in data regions

Figure 3.16. Comparison of results by projection using a plane and proposed
method.
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12th frame 13th frame 14th frame

15th frame 16th frame 17th frame

18th frame 19th frame 20th frame

Figure 3.17. Successive frames with a missing region (scene (1)).
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12th frame 13th frame 14th frame

15th frame 16th frame 17th frame

18th frame 19th frame 20th frame

Figure 3.18. Successive completed projected images (scene (1)).
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72nd frame 73rd frame 74th frame

75th frame 76th frame 77th frame

78th frame 79th frame 80th frame

Figure 3.19. Successive frames with a missing region (scene (2)).
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72th frame 73th frame 74th frame

75th frame 76th frame 77th frame

78th frame 79th frame 80th frame

Figure 3.20. Successive completed projected images (scene (2)).
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Figure 3.21. Example of failure results. From 298th frame to 301st frame.
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3.7.3 Omnidirectional Telepresence without Invisible Ar-

eas

In this experiment, the effectiveness of the proposed method is demonstrated by
making the telepresence system using omnidirectional videos in which missing
regions are filled in with completed images shown in the previous section.
Figures 3.22(a) and 3.23(a) show omnidirectional panoramic images with a
missing region and Figures 3.22(b) and 3.23 show the omnidirectional panoramic
images without invisible areas generated by projecting the completed image (Fig-
ures 3.15(d) and 3.16(d)) onto the panoramic images (2048 x1024 pixels). Fig-
ures 3.24 to 3.27 show examples of user’s views in the telepresence system using
the panoramic images. By comparing the images with and without the missing
regions, we can confirm that realistic sensation is drastically increased by the
proposed method. However, we can also confirm that textures in the missing
regions slightly blur. In the completion of the proposed method, the resolution
of textures for exemplars is small because the textures are captured from differ-
ent viewpoints away from the camera position of the target frame. In order to
increase the resolution of generated textures, we consider that a super-resolution

method is useful.
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(a) Panoramic image with a missing region

(b) Filled panoramic image

Figure 3.22. Filled panoramic image of 11th frame of scene (1).
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(a) Panoramic image with a missing region

(b) Filled panoramic image

Figure 3.23. Filled panoramic image of 71st frame of scene (2).
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With a missing region.

Without a missing region.

Figure 3.24. Example of looking around using omnidirectional video (11th frame
of scene (1)).
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With a missing region.

Without a missing region.

Figure 3.25. Example of looking around using omnidirectional video (101st frame
of scene (1)).
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With a missing region.

Without a missing region.

Figure 3.26. Example of looking around using omnidirectional video (71st frame
of scene (2)).
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With a missing region.

Without a missing region.

Figure 3.27. Example of looking around using omnidirectional video (101st frame
of scene (2)).
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3.8. Conclusion

In this chapter, we have proposed a method that generates omnidirectional video
without invisible areas by filling in missing regions. In the proposed method, in
order to compensate for the change in the appearance of textures caused by
camera motion, omnidirectional video images were projected onto the planes
which were generated from natural feature points acquired by structure-from-
motion. Then, appropriate data regions for missing regions were determined
using the planes and the position and the posture of an omnidirectional camera.
Finally, the missing regions were completed by minimizing an energy function
based on pattern similarity between in the missing regions and data regions in
different frames.

In experiments, missing regions in images projected on planes of two image
sequences were successfully completed and the effectiveness of an energy mini-
mization based on pattern similarity was demonstrated by comparing results by
the proposed method with and without an energy minimization process. In ad-
dition, we confirmed that textures in missing regions change smoothly between
successive frames. The omnidirectional telepresence without missing regions was
also achieved and an improvement of realistic sensation in telepresence by filling
in missing regions was confirmed. However, we also confirmed that the proposed
method still has the problem that textures in the missing regions blur slightly.
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Chapter 4

Surface Completion By
Minimizing Energy Function
Based on Similarity of Local

Shape

4.1. Introduction

This chapter describes a surface completion method for 3D mesh models. 3D
models of real environments are widely used for entertainment and 3D maps.
Thus, automatic generation of 3D models using range scanners and video images
has been investigated [ZS03, FZ04, AKY05, SKYT02]. Such methods can obtain
whole 3D models by measuring the target objects from multiple view points and
integrating the partial shapes. However, when the target is a large and complex
environment, such as an outdoor scene, it is difficult to generate complete 3D
models without holes due to various occlusions. For this problem, several surface
completion methods, which fill in missing regions in a 3D mesh model, have been
proposed. Recently, methods using the similarity of shape have been intensively
developed [SACO04, BF08, PGSQ06] because such methods can generate complex
surfaces in missing regions. However, inconsistent surfaces are often generated in

the seams of the completed models because methods based on successive copying
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of similar surface patches do not always generate optimum surfaces for the whole.

In this thesis, to solve such a problem, an energy function, which represents
the surface shape implausibility, is defined using the similarity between the local
surface shapes in the missing and data regions. By minimizing the energy function
for whole of the missing region, a model with consistent surface shapes can be
generated as an optimal solution.

In the following sections, first, the overview of the proposed method is given
in Section 4.2. In Section 4.3, an energy function based on the similarity of local
shapes is defined. In Section 4.4, a minimization method for the energy function
is described. Next, experiments using three models are performed in Section 4.5.

Finally, this chapter is concluded in Section 4.6.

4.2. Overview of the Method

Figure 4.1 illustrates the flow diagram of the proposed method. First, a user
manually selects missing regions to be repaired in a 3D model. Next, initial
points and faces are generated to the missing regions. Then, the whole surface
is optimally completed by repeating three processes: (i) searching for similar
local shapes; (ii) parallel updating of positions of vertices; and (iii) adding and
integrating vertices considering density of those vertices. In the following sections,
first, the energy function is defined based on local shape similarity in Section 4.3.

Next, Section 4.4 describes the procedure that minimizes the energy function.

4.3. Definition of Energy Function Based on Sim-
ilarity of Local Shapes

In this section, first, the definition of an energy function based on the similarity
between local shapes in a missing region and a data region is described. Next,

the similarity measure used in the energy function is presented.
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[ Start |
]
Specify target region

Generate initial vertices and faces
;:
(i) Search for a similar local shape

(i) Update positions of vertices

(iif) Add and integrate vertices

No
Is energy converged?

[ End ]

Figure 4.1. Flow diagram of the proposed method.

4.3.1 Definition of Energy Function

As illustrated in Figure 4.2, first, a 3D model is divided into region ', including
missing region 2 selected by a user, and data region ®, that is the rest of the
object. Region ' is determined so that a spherical area A with a constant radius
whose central vertex is in region 2’ includes at least one of the initial vertices
in region (2. Energy function Ej is defined as the weighted sum of SSD (Sum of
Squared Distances) between the vertices around vertex p; in region 2" and the

surface around point p, in region ® as follows:

Zpieﬂ’ wp, SSDs(p;, P;)

ZpiEQ’ Wp,

E, = (4.1)
Here, weight wp, for each vertex p; is set as 1 when p; is inside of region ' N Q
because the positions of the vertices in this region are fixed; otherwise, wy, is set
as s~™ (m is the minimum number of links from vertices of the boundary to vertex

p,, and s is a positive constant) because vertices near the boundary have higher
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Figure 4.2. Missing and data regions in a 3D model.

confidence than those near the center of the missing region. In Eq. (4.1), the
energy is normalized with respect to the sum of the weights because the weight
of each vertex changes due to the updating of vertices positions. In the following

section, the similarity measure SSD; is described in detail.

4.3.2 Similarity of Local Shape

In general, the density of vertices depends on position in a 3D model because of
the nonuniformity of measuring points. Therefore, this study defines the density-
independent similarity SSD using vertices in a missing region and surfaces in a
data region. Concretely, SSD;(p;,P;), which represents the similarity between
local shapes in missing and data regions, is defined as the sum of squared distances
between the vertices in spherical area A, whose central vertex is p; and the

aligned surface around p, as follows:

R P, — Mj p.8i(py) II?
s5D.(pup) = . 1 e Ten8EI [ (42)
P;

Py EAp;

where Mj . denotes the transform matrix for surface alignment as shown in
Figure 4.3. M. ;,.g;(p},) is a point on the aligned surface in the data region that
exists in the normal direction of point p, (€ Ap,). N(Ap.) is the number of
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g.(p;)

Surface in data region

Basis vectors

Z -

X-
Pi n P;

Matrix for alignment V] . e
P:P; ,/

Basis vectors  ”

/ _ ~
pk pi _ Mf’ipipi

Vertices in missing region

Figure 4.3. Alignment of vertex clouds and surface.

vertices in spherical area Ay .

Transform matrix My, . for surface alignment consists of the 3D positions of
P; = (Tp,, Yp,» %p,) and p; = (Tp,,Yp,, #,), and the basis vectors for p, and p;:
(Xpwypuzpi) and (leuyﬁyzrfi) as follows:

Xpi —.%'pi Xf)i —l‘f,i
Yo —Yp, Ys. —Yp,
M;,p, = P: z B: i 4.3
PP zPi _ZPi Zf’i _Zf’i ( )
0 0 O 1 0 0 O 1

Here, the similarity measure SSD; in energy function E largely depends on basis
vectors (x,y,z) for each vertex. Conventional methods inefficiently calculated
the similarity for every surface that is rotated every fixed degree around a normal
axis. Instead of such an inefficient search, in this research, basis vectors are

uniquely determined using the directions of normal and principal curvatures of
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local surface. In the following, the way to determine basis vectors (xp,, Yp, Zp.)
for each point p; is described.

First, through principal component analysis for 3D coordinates of vertices
in spherical area By, whose central vertex is p;, the coordinate system for each
vertex is set so that its x, y and z coordinates are the directions of the eigenvectors
of the first, second and third eigenvalues. Next, the following quadratic surface

function is fitted to vertices in area By :
2(x,y) = ax® + by® + coy +dx + ey + f, (4.4)

where each parameter (a,b,c,d,e,f) is determined using the least-squares method

so as to minimize the following cost Qp,:
Qo, = Y {2(Th:5k) — 2}, (4.5)
P EBp,
where (Z,Jk,Zx) is the 3D coordinate of p, in the coordinate system generated by
principal component analysis. From the estimated quadratic surface, the direc-
tions of normal and maximum and minimum principal curvatures are calculated.
Concretely, Hessian matrix H of quadratic function z(x,y) is used to calculate
the directions of maximum and minimum principal curvatures:
a (L)L)
; : c 2b

Oyox Oy?

Here, eigenvectors of matrix H indicate the directions of the maximum and min-
imum principal curvatures of vertex p; in the coordinate system generated by
principal component analysis. Normal vector n; of vertex p, in the coordinate
system is also calculated as follows:
0z(0,0)  02(0,0)
B = (= dr Oy

The directions of the principal curvatures and normal are converted into the

1) = (—d, —e, 1). (4.7)

directions in the original coordinate system, and the unit vectors are set to xp,
Yp, and z, , respectively. Basis vectors (Xﬁwyfwzﬁi) are also determined in
the same way. However, if directions of principal curvatures are not uniquely
determined in the case when the surface shape is rotationally symmetric, xp,
and y,, are determined using any directions so that directions of the vectors are
orthogonal.
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4.4. Energy Minimization

This section describes the method to minimize energy function Fy in Eq. (4.1)
using a framework of greedy algorithm after generating initial vertices and faces
in missing regions. In our definition of energy function E, the energy for each
vertex can be treated independently if all similar shape pairs (p;, p,) are fixed.
Thus, the following three processes are repeated until the energy converges: (i)
searching for similar local shape keeping positions of vertices fixed; (ii) parallel
updating of all the positions of vertices keeping similar shape pairs fixed; and
(iii) adding and integrating vertices considering the density of vertices. In the

following sections, each process is described in detail.

4.4.1 Searching for Similar Local Shape

In process (i), a data region is searched for similar local shapes while keeping the
positions of all vertices in missing regions fixed. Basically, SSD; is calculated for
all the vertices in data region ®, and the vertex which gives a minimum value is

determined as the most similar vertex p; as follows:

f(p;) = p; = argmin(SSD,(p;, P')). (4.8)
p'e®

However, the required cost for calculating SSD; for all the vertices in region ®
is great. For this problem, two methods are used in this research. One is SSDA
(Sequential similarity detection algorithm) [BS72], which can skip the calculation
of SSD, whose value is much larger than the minimum of SSD,. In the other
method, the calculation of SSDy is skipped for a vertex around which the local
shape may not be similar to that around the target vertex using maximum and
minimum principal curvatures calculated in surface fitting described in section
4.3.2.

Concretely, first, among eigenvalues of Hessian matrix H expressed in Eq. (4.6),
the higher value is set as the maximum principal curvature and the lower value
is set as the minimum principal curvature. Here, maximum and minimum curva-
tures of target vertex p; and corresponding vertex p; are represented as k1, and

klp,, k2p, and k25, respectively. Then, cost K, that is the dissimilarity measure
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of curvatures, is calculated for all the vertices in the data region as follows:
Ky p, = (klp, — k1p,)" + (k2p, — k25,)%, (4.9)

Here, there is a high possibility that both SSD, and K render low values if surface
shapes in missing and data regions are similar. Therefore, by sorting the vertices
in the data region in ascending order according to K and calculating SSD; only
for the top n% vertices out of all the vertices in the data region, the calculation
cost is significantly reduced.

In addition, the proposed method uses plane-symmetrical local surfaces for
completion by paying attention to the fact that an ordinary 3D object has many
plane-symmetrical local shapes. Concretely, by reversing the sign of basis vector
Xp, O yp. in matrix Mgy for surface alignment, SSD; for the plane-symmetrical

shape is also calculated.

4.4.2 Parallel Updating of Positions of Vertices

In process (ii), the positions of all vertices p; in missing regions are updated in
parallel so as to minimize energy E, defined in Eq. (4.1). In the following, the
method for calculating the positions of points p,; for fixed similar shape pairs
is described in detail. First, energy function Ej is resolved into element energy
E(p;) for each vertex in the missing region. Here, as shown in Figure 4.4, the
target vertex to be updated is p,, and the position of the k-th vertex inside area
Ap, is expressed as p;, and is corresponded to f(p,) by Eq. (4.8). In this case, the
point corresponding to vertex p, is g, (p;). Now, element energy E(p,;) can be
defined in terms of p;, g, (p;) and transform matrix Mgy, )p, for surface alignment

as follows:

w
Ep)= 30 5y o~ Mipona() |- (1.10)
pkeAPi P;

The relationship between total energy F and element energy E,(p,;) for each

vertex can be written as follows:

E, =) E(p,)+C. (4.11)

p;€Q
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Figure 4.4. Relationship between vertices in energy calculation.

C is the energy for the vertices in region Q N €Y, and is treated as a constant
because positions of vertices and all the similar shape pairs are fixed in this
region in process (ii).

Here, it should be noted that all the corresponding points Mgy, )p, 8k (P;)
(Vpr € Ap,) exist in the direction of the normal vector of vertex p;. Thus, as
illustrated in Figure 4.5, vertex p; and point Mgy, )p, 8:(P;) can be expressed
using unit normal vector np, of vertex p; and arbitrary point p, in the direction

of normal vector of p; as follows:

P; = Po t lp,1p,, (4.12)
Mf(Pk)Pkgk(pi) =Py T t(pk:pi)npi' (413)
By substituting these equations into Eq. (4.10), the following equation is ob-
tained:
w
E(p;) = Z ka)(tpi - t(pk,pi))Q' (4.14)
PrEAp; Pi

Here, on the assumption that normal vector np does not change after updating
the position of p;, the parameter of element energy FE(p;) is only ¢, and the
change in parameter ¢, does not influence the element energies of the other
vertices. Therefore, overall energy F; can be minimized by minimizing element

energy F,(p;) individually. The value of parameter ¢, that minimizes F,(p;) is
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Figure 4.5. Conversion of parameters.

calculated as follows:
ZpkeApi Wp, l(py..p,)

ZpkeAPi Wy,
Finally, the position of vertex p; is calculated from Egs. (4.12), (4.13) and (4.15)

as follows:

tp, =

i

(4.15)

Zpk €Ap, Wpy Mip,)p, 8k (p:)
Zpk EApi wpk

where, in fact, the value obtained in Eq. (4.16) is an approximate solution because

p; = , (4.16)

the direction of normal vector n,, and the position of Mgy, )p, 8, (P;) change due
to the updating of the position of each vertex. However, a satisfactory solution
can be obtained as the energy converges because the change in the direction of

the normal vector of each vertex gradually decreases.

4.4.3 Adding and Integrating Vertices

The movement of vertices in the energy minimization process described in the
previous section causes bias in the distribution of vertices in the missing region.
As a result, the energy minimization process becomes inefficient if the density of
vertices is higher than necessary, and detailed surface shapes can not be produced

if the density is low. For this problem, the proposed method adds and integrates
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Figure 4.6. Addition and integration of vertices.

vertices in the missing region in order to keep the density constant in the iterative
process.

Concretely, as illustrated in Figure 4.6, the maximum and minimum thresh-
olds of the line fragment length between vertices are set and the following two
processes are performed: (1) add a vertex in the middle of the line segment whose
length is larger than the maximum threshold; and (2) integrate both end vertices
of the line segment whose length is smaller than the minimum threshold and put

the integrated vertex in the middle of the line segment.

4.4.4 Coarse-to-fine Approach

In this research, in order to efficiently complete the missing regions and avoid
local minima, a coarse-to-fine approach, in which the range of spherical area A,
used for calculating SSD, and the number of vertices in region Q' used for calcu-
lating energy are changed every time the energy converges, is employed for energy
minimization. Concretely, the radius of spherical area A, is decreased and the
number of vertices in region 2’ is increased step-by-step. Here, in missing region

Q2 in region ', the density of vertices is increased by gradually decreasing the
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thresholds for the addition and integration of vertices described in the previous
section. This leads to the generation of coarse surface shapes in the initial step
and detailed surface shapes in the final step. In the remaining region ' N in
region (', the number of vertices and the positions are fixed because the region
is not the missing region. Therefore, the energy is calculated by skipping vertices
at a constant rate in the initial step. By repeating the energy minimization pro-
cesses as the skipping rate is gradually decreased, the missing region is efficiently
completed.
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4.5. Experiments

In this section, first, in order to demonstrate the effectiveness of the proposed 3D
surface completion method, the proposed and conventional methods are applied
to three surface models and the results are qualitatively compared. Next, the

influence on completion results of parameters in the proposed method is discussed.

4.5.1 Qualitative Evaluation

In this experiment, three surface models (I), (II), and (III) with a hole as shown in
Figure 4.7(a), 4.8(a), and 4.10(a) are completed. The effectiveness of the proposed
method is demonstrated by comparing the completion results by the proposed
method and our implemented conventional method [BF08], which fills in missing
regions by successively copying similar local shapes to the missing regions after
giving initial vertices and faces in a similar way as the proposed method. The
missing regions in Models (I) and (II) were given on purpose and the missing
region in Model (III) was caused by the occlusion in practical measurement of a
building.

The specifications of the PC in this experiment were Xeon 3.0 GHz of CPU
and 8 GB of memory. In completion of the proposed method, each parameter
in the proposed method was set as shown in Table 4.1. As initial vertices in a
missing region, as shown in each figure (c), the gravity point of the boundary
vertices of the missing region and the median points between the gravity point
and each boundary point were given. Faces were generated so as to connect these
vertices. As for completion of the conventional method [BF08], it is required that
a smooth surface be given to a missing region as an initial surface. Therefore,
in order to give an appropriate initial surface for the conventional method, the
smoothed surface of the original model was given as the initial surface in Models
(I) and (II), and the smoothed surface of the completion result by the proposed
method was given as the initial surface in Model (IIT) because the original surface
does not exist in the missing region of Model (III). Here, each surface model was
completed changing the radius of area A, which is a parameter in the conventional
method, from 904, to 5lye and the best results are illustrated in each figure (d).

Model (I) (Figure 4.7(a)) is a relatively simple bowl model that has a smooth
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Table 4.1. Parameters in the proposed method in experiments (l,,. indicates

average length between vertices in data region).

Multi-scale level 1 2 3
s in weight w 2.0 (Model (I) and (II))
3.0 (Model (III))
Radius of area A 9 yve T ove Y
12140 (Model (1))
Radius of area B 26l4pe (Model (II))
8lave (Model (III))
Rate n in searching 10%
Skipping rate of vertices in ' N Q | 8/9 3/4 0
Maximum threshold A gve 2 e | 1.3l4pe
Minimum threshold 1.504pe | 0.814pe | 0.4l40e

curved surface and raised edges along the curve around the missing region. As
illustrated in Figure 4.7(b), the model completed by the conventional method has
distorted edges in the vicinity of the center of the missing region. On the other
hand, by refining the initial model as shown in Figure 4.7(c) with the proposed
method, the missing region is filled in with a smooth curved surface similar to the
surface in the data region. Raised edges are also constructed and on the whole
the completed model looks very natural.

Model (II) (Figure 4.8(a)) is Stanford Bunny that has a rugged surface and a
dented edge between the body and the leg of the bunny model around the missing
region. As illustrated in Figure 4.8(b), the model completed by the conventional
method has connected edges in the vicinity of the center of the missing region.
However, the shapes of the edges are not smooth even though the shape in the
data region is. On the other hand, by refining the surface model from the initial
model as shown in Figure 4.8(c), a natural rugged surface is generated and a
dented and smooth edge is connected in the missing region as shown in Figure
4.8(d). Figure 4.9 shows changes in shape with iterations. From this figure, we

can confirm that the shape is gradually completed according to the number of
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iterations. In addition, a dented shape is minutely generated by repeating the
processes while increasing the density of vertices step-by-step as shown in Figures
4.9(c) and (d).

Model (III) (Figure 4.10) is a model of a real building and the ground which
has a hole caused by the occlusion of a street lamp in a practical measurement
of outdoor environments. In the resultant model completed by the conventional
method as shown in Figure 4.10(b), an implausible shape is generated near a
window. On the other hand, the resultant model generated by the proposed
method from the initial model (Figure 4.10(c)) has a more plausible shape in the
context of the whole model.

Figure 4.11 shows changes in energy with respect to iterations for each model.
Here, energy in this figure is normalized so that the initial energy is 1. From this
figure, we can confirm that the energy for each model gradually decreases as the
process is repeated from the initial model. It should be noted that the energy
discontinuously changes when the density of vertices and the range of area A for
calculating SSD; are changed (After 17 and 25 times iterations for Model (I), 19
and 23 times iterations for Model (II), and 7 and 11 times iterations for Model

(III)).
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(a) Model with a hole (b) Completion result by [BFO08] (Ra-
dius 7lape)

(¢) Initial model (d) Completion result by the proposed
method

Figure 4.7. Surface completion for Model (I).
(The number of vertices in model (a) is 3404, the number of vertices in missing

region in model (d) is 1579, and the processing time is 234 seconds.)
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(Front side) (Back side)
(a) Model with a hole

(b) Completion result by (c) Initial model (d) Completion model by
[BFO08] (Radius 5l4ye) the proposed method

Figure 4.8. Surface completion for Model (II).
(The number of vertices in model (a) is 17522, the number of vertices in missing

region in model (d) is 1505, and the processing time is 1682 seconds.)

135



TR
e

DR

K}
N
SN

P
Y

NN
AAAAlﬂg
'(,

NN
NS

TN A e
3

gA‘K‘A PN

mw
fA?
K

jas e
KLKZ]
K
o

45
AN

S

RIS
SR
CSARE SRR ANAS

=

T3
X
L7
e
WA

7
)"?,‘

i s
ﬂllk\ SO AV

Nz TSISS
\?h ‘% @V‘“

A
O]

g
KR
KA

SSoe ey
XKL
NACET
NN

VRN
N

NAVNA
N

NN

AN

Lk

(c) After 22 iterations (2 iterations in (d) After 26 iterations (2 iterations in

the second stage) the third stage)

Figure 4.9. Changes in shape with iterations for Model (II).
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Figure 4.10. Surface completion for Model (III).
(The number of vertices in model (a) is 12749, the number of vertices in missing

region in model (d) is 474, and the processing time is 1688 seconds.)
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Figure 4.11. Changes in energy with respect to iterations for each model.
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4.5.2 Discussion about Influence of Parameters

In the proposed method, it is necessary to determine multiple parameters as
shown in Table 4.1 to perform surface completion. In this section, processing time
and completion results for Models (I) and (II) with different values of parameter
s in weight w in energy function FEy, which may especially have a significant
influence on results, are discussed. Table 4.2 and Figures 4.12 and 4.13 show
processing time and completion results for Models (I) and (II) when the value of
parameter s is changed.

As for processing time, from Table 4.2, we can confirm that the processing
time tends to decrease according to the increase of s, which means that the
change rate of the weight between vertices based on the number of links from
the boundary of the missing region increases. When positions of vertices are
updated, the influence of vertices near the boundary of the missing region on
those in more internal areas of the missing region increases as the change rate of
the weight increases. Therefore, the large change of positions of vertices in one
iteration makes the number of iterations decrease. As a result, the processing
time is reduced.

As for completion results, as shown in Figure 4.12, the influence of the differ-
ence in the weight on the completion result of Model (I), which has a relatively
simple shape, was small. However, the large influence on the completion result of
Model (II) can be seen. Concretely, when s is relatively small (s < 1.5), it can be
seen that a dented edge does not connect and the whole surface in the missing re-
gion tends to be smooth. On the other hand, when s is relatively large (s > 3.0),
a dented edge connects and a ragged surface is generated but the shape in the

vicinity of the missing region is unnatural because such shape does not exist in

Table 4.2. Processing time with different values of parameter s for each model.

Processing time (second)
S 1.1 1.5 2.0 3.0 | 5.0

Model (I) || 467 | 303 | 234 | 215 | 174
Model (II) || 1891 | 1307 | 1682 | 1237 | 958
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Figure 4.12. Results of Model (I) with different values of parameter s in weight
w.

the data region.

From these results, it is considered that the increase of s in weight w makes
the energy converge rapidly and the completion efficient. However, as for com-
pletion results, it is difficult to automatically determine optimal parameters and
adjustment of the parameters by trial and error is required. Therefore, in future
work, it will be necessary to establish a method which adaptively determines
optimal parameters by analyzing the characteristics of the target model and the
change of the shape in the completion process in order to realize efficient and

effective completion.
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Figure 4.13. Results of Model (II) with different values of parameter s in weight

w.

141



4.6. Conclusion

In this capture, a novel 3D surface completion method was presented. In the
proposed method, an energy function, which represents implausibility of surface
shape in missing regions, was defined based on pattern similarity SSD; between
local shapes in data and missing regions, and the missing region was plausibly
filled in by minimizing the energy function.

Experiments were performed using three mesh models: a relatively simple
bowl model with smooth surface shape; a relatively complex bunny model with
rugged surface shape and a dented edge; and a model of a real building and
the ground. In the experiments, the effectiveness of the proposed method was
demonstrated by comparing the completed results of three mesh models by the
proposed method and the conventional method. We have also confirmed that
completion results by the proposed method were largely influenced by parameters

in the energy function.

142



Chapter 5

Conclusion

5.1. Summary

In this thesis, novel methods for image, video and 3D surface completion based
on a unified framework of energy minimization using pattern similarity measures
have been proposed.

In Chapter 2, we have presented a novel image completion method for still
images. In the proposed method, in order to obtain better results for many im-
ages, two factors were considered: (1) brightness changes of sample textures were
allowed to obtain effective samples; and (2) spatial locality of textures was intro-
duced as a constraint usually satisfied in many of real scenes. By considering these
two factors, missing regions were successfully completed for many images with
few unnatural brightness changes and few blurs. In experiments, the effectiveness
of the proposed method has been demonstrated by qualitative evaluation using a
questionnaire and quantitative evaluation using RMSE. We have also confirmed
that the proposed method has some limitations. In addition, we have discussed
the local minima problem. Then the reliability of the evaluation methods for im-
age completion is discussed. From the discussion, we confirmed that many images
and subjects are required to evaluate image completion methods persuasively in
a questionnaire, and quantitative evaluation based on pixel-wise difference such
as RMSE cannot be used as an absolute criterion, though it can be used for a
rough evaluation.

In Chapter 3, we have presented a novel video completion method for om-
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nidirectional video. In the proposed method, first, images projected on planes
used for completion were generated from an omnidirectional video to compen-
sate for the change in the appearance of textures considering the shapes around
the missing region and extrinsic camera parameters. Then, missing regions of
the projected images were completed by minimizing an energy function based
on pattern similarity. Finally, omnidirectional video without invisible areas was
generated using the completed images. In experiments, missing regions in images
projected on planes were successfully completed and the effectiveness of energy
minimization based on pattern similarity was demonstrated by comparing results
of the proposed method with and without an energy minimization process. In
addition, we confirmed that textures in missing regions change smoothly between
successive frames. An omnidirectional telepresence without missing regions was
also achieved and an improvement of realistic sensation in telepresence by filling
in missing regions was confirmed.

In Chapter 4, we have presented a novel 3D surface completion method for
3D mesh models. In the proposed method, an energy function, which represents
implausibility of surface shape in missing regions, was defined based on pattern
similarity between local shapes in data and missing regions and the missing region
was plausibly filled in by minimizing the energy function. In experiments, missing
regions in three mesh models were completed. Then, the effectiveness of the
proposed method was demonstrated by comparing results of three mesh models
by the rendering of the proposed method and the conventional method. We
have also confirmed that completion results by the proposed method were largely

influenced by the parameters of the energy function.

5.2. Future work

This thesis has proposed novel methods for image, video and 3D surface comple-
tion. In order for completion methods to be used more practically, the following

items should be investigated further.

e Reduction of computational cost

In the proposed methods for image, video and 3D surface completion, the
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cost for searching for similar pattern is quite large. In order for the com-
pletion methods to be used practically for high-resolution images, videos
and models, it is necessary to reduce computational costs. As a technique
for reducing the computational cost, it is considered that using Graphics
Processing Unit (GPU) could drastically decrease the search cost because
the process of searching data regions for similar pattern is performed in par-
allel per pixel or vertex. As another technique, efficient searching methods
could be applied to the proposed method to reduce computational costs for

searching data regions for similar textures.

e Surface completion for textured models
In the proposed method for a 3D mesh model, only the structure is com-
pleted. We consider that surface completion for textured models could also
be realized based on the same framework of energy minimization using the
similarity measures of both textures and structures in order for completed

models to be used practically.

The following items should be also investigated.

- Automatic determination of optimal parameters

- Video completion for omnidirectional video without planar assumption

- Super-resolution for increasing the resolution of textures in missing regions in

omnidirectional video
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