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Dependency-based Predicate-Argument Structure
Analysis Using Structured Learning and Named

Entity Information∗

Yotaro Watanabe

Abstract

A predicate-argument structure is composed of a predicate that represents
a state or an event, and its arguments which have logical relations to the pred-
icate. The logical relations are roles of arguments such as Agent, Theme, etc.,
are called Semantic Roles. Predicate-argument structure analysis is an impor-
tant process for deep semantic analysis of natural language texts, and has been
exploited in various natural language processing applications.

The aim of this work is primarily realizing robust predicate-argument struc-
ture analysis based on the dependency-based syntactic representation which
is currently the mainstream in the field of natural language processing. In this
dissertation, we focus on (1) designing models for dependency-based predicate-
argument structure analysis with structured learning, (2) acquiring and ex-
ploiting named entity information.

There are two types of dependencies in predicate-argument structures. One
is inter-dependencies between a predicate and its arguments in which types of
arguments depend on their predicate sense, on the other hand, types of argu-
ments of the predicate restrict senses of the predicate. The other is non-local
dependencies between arguments. A predicate-argument structure has no du-
plicate argument roles, and must contain at least one core argument role of the
predicate. Although a number of approaches for predicate-argument structure
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2010.
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analysis have been proposed, none of them handles both of the dependencies
simultaneously. We propose a structured model based on structured learning
that captures both types of dependencies. In the experiments, we achieved
performance improvements on both tasks, and competitive results compared
to the state-of-the-art systems without any feature engineering. Also, we con-
structed a system for syntactic and semantic dependency parsing using the
structured model. The system achieved the best performance among the exist-
ing systems without any feature engineering.

An issue of predicate-argument structure analysis is how to deal with named
entities in sentences. Since a large number of named entities exist, unknown
expressions appear in texts. Their lexical information do not contribute the
analysis, hence it is necessary to generalize them. In order to do this, we as-
sign named entity categories for named entities. We focus on (A) acquiring
named entity information from the Web, (B) incorporating named entity infor-
mation for predicate-argument structure analysis. First, we propose structured
models for acquiring named entity information from Wikipedia that captures
characteristics of list structures in articles. Second, we propose a method to
introduce named entity information for predicate-argument structure analy-
sis. In addition to the features used in the previous work, the global feature
that globally captures types in terms of all core arguments is introduced to
the model. In the experiments, we achieved performance improvements com-
pared to the previous approaches.

Keywords:

predicate-argument structure analysis, structured learning, joint learning, global
features, named entity
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依存構造と固有表現情報を用いた

構造学習による述語項構造解析∗

渡邉陽太郎

内容梗概

述語項構造とは，状態や事態を表す述語と，その述語と関係を持つ項によっ
て構成される構造のことをいう．述語と項の関係には，項が述語に対してどのよ
うな意味役割（動作主，対象など）を持っているかが与えられる．述語項構造解
析は，高次の意味解析を必要とする自然言語処理の応用において重要な要素技術
である．
本研究の目的は，近年自然言語処理分野において主流となっている統語構造

の表現形式である依存構造に基づく頑健な述語項構造解析の実現である．本論文
では，(1)構造学習に基づく述語項構造解析ためのモデル設計，(2)述語項構造解
析のための固有表現情報の獲得と利用，の二点について論じる．
述語項構造には，構造の要素間に二種類の依存関係が存在する．一つは，述

語の意味 (語義)によって項が制約される，また項によって語義が限定されるとい
う相互の依存関係，もう一つは複数の項が同じ意味役割を持たないこと，述語の
必須の項は基本的に存在するといった項の間の依存関係である．既存研究のアプ
ローチでは，これら双方の依存関係を同時に考慮することが困難である．そこで，
双方の依存関係を同時に捉える構造学習法に基づくモデルを提案する．評価実験
では，語義と意味役割の双方の分類性能が向上し，さらに素性選択法を適用せず
に既存研究に匹敵する性能が得られた．さらに，提案モデルを用いて依存構造と
述語項構造の双方を解析するシステムを構築した．評価実験の結果，素性選択法
を用いていない既存システムの中では最良の結果が得られた．
述語項構造解析解析をおこなう上で問題となるのは，文中に現れる固有表現

の存在がある．これらは無数に存在し，未知の固有表現が多く現れるため，これ
∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-IS-DD0761031,
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らを抽象化した形で扱う必要がある．そこで，文中の固有表現に対して固有表現
情報を付与することで，抽象化をおこなう．本論文では，(A) Web文書からの固
有表現情報の自動獲得，(B)固有表現情報の述語項構造解析モデルへの導入，の
二点について論じる．まず，Web上の百科事典であるWikipediaから，記事に現
れるリスト構造の性質を利用した固有表現の獲得手法について提案する．次に，
固有表現情報の導入については，既存研究で用いられている方法に加えて，複数
の項に関連する大域的な固有表現情報の導入を提案する．評価実験では，既存の
導入方法と比較して高い性能が得られた．

キーワード

述語項構造解析，構造学習，結合学習，大域的素性，固有表現
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Chapter 1

Introduction

1. Background

Over the past decade, the field of natural language processing (NLP) has dras-
tically changed by the availability of large hand-annotated training corpora.
The approaches for the tasks of NLP have been shifted from rule-based ap-
proaches to statistical approaches, and by efforts of several researchers, the
performances have gotten the level of practical use in the fundamental NLP
tasks such as POS tagging, base phrase chunking and syntactic parsing. There-
fore now is the time to tackle semantic analysis of texts.

Predicate-argument structure analysis is an important process toward un-
derstanding meaning of sentences. A predicate-argument structure is com-
posed of a predicate that represents a state or an event, and its arguments
which have logical relations to the predicate. The logical relations are roles of
arguments including Agent, Theme, etc., are called semantic roles. Predicate-
argument structure analysis is the process of identifying predicate-argument
structures in texts 1.

Predicate-argument structures have potential to absorb different syntactic
realizations. For example, in the following sentences:

(1.a) [He]AGENT opened [the door]THEME.

(1.b) [The door]THEME opened.
1The task of predicate-argument structure analysis is often called Semantic Role Labeling.



2 Introduction

(1.a) is a transitive use, and (1.b) is a intransitive use of the verb opened. Al-
though the subjects of opened in (1.a) and (1.b) are The door and He, the roles of
both are not the same. In terms of (1.a), the subject The door has the role Theme
of opened.

(2.a) [John]AGENT hit [Mary]PATIENT.

(2.b) [Mary]PATIENT was hit [by John]AGENT.

(2.b) is the passivised sentence of (2.a) where the roles of the subject and the
object are alternated.

(3.a) [John]AGENT gave [Mary]PATIENT [the book]THEME.

(3.b) [John]AGENT gave [the book]THEME [to Mary]PATIENT.

This is an English dative alternation. Although these two sentences have the
same meaning, (3.a) has two objects, on the other hand, (3.b) has only one
object.

Since the difference of syntactic realizations can be absorbed by identify-
ing predicate-argument structures, predicate-argument structure analysis is an
important process for understanding natural language texts by computers. In
recent years, predicate-argument structure analysis has been exploited in var-
ious natural language processing applications, such as information extraction
[87], statistical machine translation [108], question answering [84] and recog-
nizing textual entailment [106].

So far, corpora that have annotations of predicate-argument structures have
been constructed in several languages. For English, predicate-argument struc-
tures for verbs are defined and annotated by FrameNet [4] and Proposition
Bank (PropBank) [70], and that for nouns are defined and annotated by Nom-
Bank. Also, for other languages, predicate-argument structures are annotated
in SALSA Corpus [7] for German, Prague Dependency Treebank [39] for Czech,
Kyoto Corpus [45] and NAIST Text Corpus [41] for Japanese. The availability
of these corpora allows statistical approaches for predicate-argument structure
analysis.
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Since the fact of necessity of constituent parses in predicate-argument struc-
ture analysis was pointed out by Gildea and Palmer [31], a number of work
had been widely explored use of the type of syntactic representation [9, 10].
On the other hand, alternatively, another syntactic representation based on the
dependency grammar has explored by several researchers [109, 68, 26, 61], and
after that more sophisticated higher-order parsing algorithms have been pro-
posed [62, 8, 57]. Because of this background, recently several researchers have
paid much attention to dependency-based predicate-argument structure anal-
ysis [34, 88, 38].

In addition, by the progress of the field of machine learning, it has become
possible to learn models from structured data (Structured Learning). For the
tasks of natural language processing, several researchers have been explored
use of structured learning framework for sequential labeling [17, 49] such as
POS tagging and chunking, and for tree-structured data such as dependency
parsing [61].

Because of the availability of the corpora and the progress of the field of
machine learning, predicate-argument structure analysis could become a re-
liable fundamental technology of NLP. Toward advanced processing of se-
mantic meaning and inference of natural language texts, methods for robust
predicate-argument structure analysis have been demanded.

2. Research Objectives

The research goal of this dissertations is primarily to realize robust dependency-
based predicate-argument structure analysis. An example of a dependency-
based predicate-argument structure on which we focus in this dissertation is
shown in Figure 1.1. The upper part of the figure shows a syntactic depen-
dency structure of the sentence, and the lower part shows predicate-argument
structures. This syntactic dependency structure represents, for example, that
the main verb sold has a subject maker and an object cars. The corresponding
predicate-argument structure has a semantic predicate corresponding to the
verb sold, and its arguments labeled with semantic role labels. The semantic
role labels represent logical relation between the predicate and the arguments.
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A0! A1!

SBJ!NMOD!

AM-LOC!

NMOD!NMOD! NMOD! TMP!

LOC!

OBJ!

NMOD!

PMOD!

NMOD!

AM-TMP!

A0!A1!

luxury!auto!maker! last!The! year!sold!1,214! cars!in!the!U.S.!

maker.01! sell.01!

Figure 1.1. Dependency-based representation of a predicate-argument struc-
ture.

For example, the argument maker of the predicate sold labeled with A0 means
that it has a role Seller for the predicate sold, and the argument car labeled with
A1 means that it has a role Thing Sold for the predicate sold. The label of the
predicates sell.01 represents a word sense which means that the predicate sold
is an instance of the first sense of sell defined in the lexicon.

Predicate-argument structures have strong dependencies among its elements:
a predicate and its arguments. One of its dependencies is that more than one
arguments in a predicate-argument structure do not have the same argument
role. For example, the predicate sold in Figure 1.1 do not allow two arguments
that have the role Seller. The other one of dependencies is that acceptable argu-
ment roles differ for each predicate sense. One of the other possible use of sell
is, for example, “John sold out.”. In this case, the allowed argument role is only
“entity selling out” which corresponds to “John”. By capturing these types
of dependencies, it is expected to realize robust predicate-argument structure
analysis. So, one of the objectives in this dissertation is to design a model
that effectively captures these types of dependencies underlying predicate-
argument structures. In order to capture these types of dependencies, a struc-
tured learning framework is introduced to construct a structured model where
several types of features are introduced. Also, using the structured model, we
construct a system that analyzes both syntactic dependencies and predicate-
argument structures.

Another objective is to resolve lexical sparseness which stems from exis-
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tence of named entities. Since a large number of named entities exist, unknown
expressions frequently appear in texts. Their lexical information does not con-
tribute the analysis, hence it is necessary to generalize them. In order to resolve
this issue, we attempt to generalize lexical information of named entities using
its named entity classes.

We tackle two problems in terms of named entities. At first we construct
a large-scale named entity dictionary from Wikipedia, an encyclopedia on the
Web. In Wikipedia, there is a useful characteristics that the elements enumer-
ated in list structures tend to have the same named entity class. In order to cap-
ture the characteristics, we introduce a structured learning framework where
the model structures are determined based on relations between elements in
list structures. Next, we investigate how the named entity information con-
tributes resolution of lexical sparseness and performance improvements in
predicate-argument structure analysis.

3. Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2: Predicate-Argument Structure Analysis This chapter describes
the formal problem definitions of predicate-argument structure analysis, three
types of syntactic representations used for predicate-argument structure anal-
ysis, and approaches of previous work.

Chapter 3: Structured Learning This chapter describes machine learning
methods to learn from structured data. Several learning algorithms for linear
and log-linear models proposed by previous work are described.

Chapter 4: Joint Learning of Predicate Senses and Argument Roles We pro-
pose a structured model to deal with inter-dependent elements of predicate-
argument structure – a predicate sense and its argument roles. Four factors
that affect to decisions of the model are introduced, and an inference algorithm
and a large-margin learning algorithm adopted for the model are described.
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Chapter 5: A Partially Joint Approach for Syntactic and Semantic Depen-
dency Parsing Based on the structured model described in Chapter 4, we
construct a syntactic and semantic depenency parser which is a partially joint
system.

Chapter 6: Acquiring Named Entity Information from Wikipedia This chap-
ter describes acquisition of named entity information from Wikipedia. Captur-
ing structural characteristics of articles in Wikipedia using structured models,
we show that named entity information can be extracted accurately.

Chapter 7: Exploiting Named Entity Information for Predicate-Argument
Structure Analysis This chapter investigates effects of named entity infor-
mation for predicate-argument structure analysis. We construct and evaluatte
the model in Chapter 4 with the named entity information extracted in Chapter
6.

Chapter 8: Conclusion This chapter summarizes this dissertation and de-
scribe further directions.



Chapter 2

Previous Work on
Predicate-Argument Structure
Analysis

In this Chapter, we describe various approaches proposed by the previous
work.

1. Predicate-Argument Structure Analysis with Shal-
low Syntactic Information

Hacioglu and Ward [36], Hacioglu [33] and Roth et al. [81] formalized the
task of predicate-argument structure analysis as sequential tagging of semantic
roles for arguments.

These work use shallow syntactic information instead of syntactic trees for
predicate-argument structure analysis. The reason of using it is that obtaining
syntactic information such as constituent syntactic trees is computationally ex-
pensive, and not all languages have full syntactic parsers. Another reason is
that treating the task of predicate-argument structure analysis as sequential la-
beling is fast. In sequential labeling, if chunks or phrases that consist of two
or more words have a particular label, the label is decomposed into role and
position labels. The decomposition is sometimes performed by using the IOB
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For! IN! B-PP! B-AM-TMP!

fiscal! JJ! B-NP! I-AM-TMP!

1989! CD! I-NP!

Mr.! NNP! B-NP!

McGovern! NNP! I-NP!

received! VBD! B-VP!

a! DT! B-NP!

Salary! NN! I-NP!

of! PP! B-PP!

877,663! CD! B-NP!

??!

context!

Current decision!

Figure 2.1. Example of chunking-based predicate-argument structure analysis

tag where “B” denotes the first word of the chunk, “I” means that the word is
inside a phrase, and “O” means that the word is not part of a phrase.

Hacioglu and Ward [36] and Hacioglu [33] and Hacioglu et al. [35] used a
chunking-based method which is an history-based approach. The procedure
of the approach presented in [36] is denoted in Figure 2.1. In this example, the
process is determining the argument role label of the word 1989. For determin-
ing argument role label, words, its POSs and its phrase type information that
denoted as context in the figure are encoded as features for the Support Vector
Machine-based chunker.

Roth and Yih [81] used a Linear-chain Conditional Random Fields (Linear-
chain CRFs) [49] for argument role labeling. In contrast to Hacioglu’s ap-
proach, the approach of Roth and Yih is a graph-based. In order to introduce
constraints in terms of argument role labels, they used Integer Linear Program-
ming (ILP) for inference on Linear-chain CRFs, not the Viterbi algorithm.
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The! luxury! auto! maker! last! year! sold! 1,214! cars! in! the! US!

NNP!DT!

NP
O!

IN
O!

NNS!CD!

NP
A1!

PP
AM-LOC!

V
V!

NN!JJ!NN!NN!NN!DT!

NP
A0!

NP
AM-TMP!

VP
O!

S
O!

Figure 2.2. Example of constituent-based predicate-argument structure analy-
sis

2. Constituent-based Predicate-Argument Structure
Analysis

The task of predicate-argument structure analysis based on constituent-trees is
assigning argument role labels for non-terminal nodes of constituent trees.

Figure 2.2 shows an example of constituent-based predicate-argument struc-
ture analysis. For the case of the predicate sold in Figure 2.2, the argument of
the role A0 is “The luxury auto maker”, and the non-terminal node that corre-
sponds to the words is assigned the argument role label.

The first statistical approach for constituent-based predicate-argument struc-
ture analysis was probabilistic-based models proposed by [30, 31]. Later, vari-
ous machine learning approaches such as decision trees [87, 12], Support Vec-
tor Machines [76, 75] have been applied and various feature types have been
explored by these work.

These researchers have been used unstructured multi-class classifiers, where-
after some work applied structured learning techniques for constituent-based



10 Previous Work on Predicate-Argument Structure Analysis

predicate-argument structure analysis. Cohn et al. [16] proposed use of Tree-
structured Conditional Random Fields for predicate-argument structure analy-
sis. They applied conditional random fields over constituent trees where argu-
ment roles are assigned non-terminal nodes of trees collectively. They reported
that allowing parent-child interactions provided performance improvements
over a standard maximum entropy classifier, however, their approach does
not deal with constraints such as “more than one of arguments do not have a
particular core argument role”.

On the other hand, some work showed that capturing non-local informa-
tion using re-ranking is effective for predicate-argument structure analysis.
Haghighi et al. [37] and Toutanova et al. [101, 102] proposed use of global
features which capture whole predicate-argument structures. One of these
global features is core argument label sequence. For the example in Figure 2.2,
the corresponding feature of the core argument label sequence is [voice:active
A0,V,A1]. In order to deal with such global features, they used two classifiers:
one for the local features and the other for the global features, and confidences
of the classifiers are combined to provide the optimal output of the model.
Surdeanu et al. [89] used global features with perceptron-based re-ranker and
a combination approach for generating argument candidates using multiple
classifiers.

3. Dependency-based Predicate-Argument Structure
Analysis

Predicate-argument structure analysis over dependency trees is formalized as
the task of assigning argument role labels to nodes of dependency trees.

An example of dependency-based predicate-argument structure analysis
(English) is shown in Figure 2.3. The upper part of the figure shows a syntac-
tic dependency structure, and the lower part shows semantic dependencies (a
predicate-argument structure). In this example, the arguments that have a par-
ticular role for the predicate wore are His daughter (agent), a small hat (theme)
and yesterday (time). For the phrases that have a particular role, semantic role
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daughter! wore! a! small!

A0! A1!

SBJ!

OBJ!

NMOD!

His! hat! yesterday.!

NMOD!

NMOD!

AM-TMP!

TMP!

wear.01!

Figure 2.3. Example of dependency-based predicate-argument structure anal-
ysis

labels are assigned to head words of each phrase in sentences. For example,
in the case of Figure 2.3, as for the phrase His daughter, daughter is assigned A0
because His modifies daughter.

Dependency-based predicate-argument structure analysis was first explored
by Hacioglu [34]. Later, the challenges of the task was held in CoNLL-2008
Shared Task [88] and CoNLL-2009 Shared Task [38]. In the challenges, predicate-
argument structure analysis was treated the task of detecting argument roles
of predicates as well as senses of predicates.

Riedel and Meza-Ruiz [79], Meza-Ruiz and Riedel [65, 64] used Markov
Logic Networks (MLNs) for predicate-argument structure analysis. Their sys-
tems jointly identify predicates, predicate senses, arguments and argument
roles by designing formulae that depend on these tasks. The system is learned
by MIRA, an online large-margin learning algorithm.

Johansson and Nugues [44] proposed a framework for joint syntactic de-
pendency parsing and predicate-argument structure analysis. Their system
at first generates n-best trees using a higher-order dependency parser, and
then performs predicate-argument structure analysis for each tree, finally ob-
tains the most plausible structure using a re-ranker. They divided the task
of predicate-argument structure analysis into four subtasks: predicate iden-
tification, predicate sense disambiguation, argument identification and argu-
ment role labeling, and prepared classifiers for each task where the features for
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the each task is optimized using a greedy forward feature selection algorithm.
For the re-ranker, they used global features that are similar to those used in
[101]. This approach generates argument candidates of predicate-argument
structures in pipelined way, hence it can be seen as a shallow joint framework.
Their system achieved the top score in the closed challenge of the CoNLL-2008
Shared Task [88].

Henderson et al. [40] and Titov et al. [28] proposed a history-based latent
variable model for this task. They extend a Shift-Reduce parsing [67] which
generally used for dependency parsing, for predicate-argument structure anal-
ysis so as to obtain both of dependency structures. In their framework, either
of both tasks is performed deterministically and on the way, tasks are switched
while its procedure. Their approach is the most succeeded pure joint frame-
work on this task [88].

Lluı́s and Màrquez [54, 53] extended the Eisner algorithm [26], an span-
based parsing algorithm, so as to obtain both joint syntactic dependency trees
and predicate-argument structures. In this approach, the optimal structure
is obtained based on the joint score function of syntactic trees and predicate-
argument structures, however, at first the system need to perform dependency
parsing to obtain features used for predicate-argument structure analysis, there-
fore the approach does not seem to a pure joint approach, and the perfor-
mances of their system do not have superiority over the other state-of-the-art
systems.



Chapter 3

Structured Learning

1. Introduction

In structured learning, the goal is to learn a predictive function h : X → Y from
a structured input x ∈ X to a structured output y ∈ Y , where Y represents a
space of possible outputs. For example, in sequential tagging problems such
as POS tagging, noun phrase chunking, named entity recognition, etc, each
input x is a word sequence, and y ∈ Y is a sequence of labels. In dependency
parsing, x is a word sequence, its lemmas and POS tags, and y ∈ Y is a possible
dependency tree.

The models applied for structured learning can be roughly categorized into
two types: Linear Models and Log-linear Models. In this chapter, we de-
scrible learning algorithms applied for each type of models.

2. Linear Models

2.1 Structured Perceptron

The perceptron algorithm proposed by Rosenblatt [80] is the simplest online
learning algorithm that estimates parameters of linear models. The procedure
of perceptron learning is as follows. At first, the parameter w0 is initialized to
0. For each training sample, if the model with the current parameter wt cor-
rectly classify the output yt, then wt+1 ← wt; otherwise update the parameter
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wt. Rosenblatt’s perceptron is specialized to binary-classification problems,
and Novikoff’s theorem [69] shows that if the training set is separable with
nonzero margin, the procedure terminates. Collins [18] generalized the Rosen-
blatt’s perceptron to multi-class and structured cases. In Collins’s perceptron,
at each iteration t, predict with

ŷ = arg max
y∈Y

w · Φ(x, y) (3.1)

if ŷ = y, then set wt+1 = wt; otherwise, i.e. ŷ 6= y, update the parameter wt as
follows.

wt+1 ← wt + Φ(x, y) − Φ(x, ŷ) (3.2)

Note that since the parameter update is performed only if ŷ 6= y, the parameter
w will not achieve good generalization on unseen test data. For the reason of
the shortcoming of the Rosenblatt’s perceptron, Krauth and Mézard [48] pro-
posed the perceptron with a margin, and Kazama and Torisawa [46] extended
the Krauth and Mézard’s perceptron to cases of structured outputs.

Now, we use a margin function ∆(y, y′) which is defined by the difference
between y and y′. In margin perceptron, the model is stricted so as to ensure
the margin ∆(y, y′) between the gold structure yt and the other structure y′ 6=
yt as follows.

∀y′ ∈ {Y \ yt} wt · Φ(xt, yt) − wt · Φ(xt, y′) ≥ ∆(yt, y′) (3.3)

In order to impose the above constraints, we have only to replace eq. (3.1)
with the following.

ŷ = arg max
y∈Y

w · Φ(xt, yt) + ∆(yt, y) (3.4)

By doing this, if no updates occur, then the learned parameter w satisfies
all margin constraints in eq. (3.3). Algorithm 1 shows a perceptron algorithm
with a margin for structured prediction 1.

1The algorithm we present here has differences with the Kazama’s perceptron algorithm
[46]. In Kazama’s perceptron, (1) The margin value is a constant value C not the margin func-
tion ∆(yt, y), (2) The margin constraint is applied for only y and second-best y′′. In terms of (1),
we believe that fixing margin is not appropriate for structured prediction problems, because
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Algorithm 1 A Perceptron Algorithm with a Margin for Structured Prediction
input Training set T = {xt, yt}T

t=1, Number of iterations N
w ← 0
for i ← 0 to N do

for (xt, yt) ∈ T do
ŷ = arg maxy w · Φ(xt, y) + ∆(yt, y)
w ← w + Φ(xt, yt) − Φ(xt, ŷ)

end for
end for

return w

Perceptron algorithms (including margin perceptrons) have shortcomings
in that fixed margin becomes relatively small than the parameter w because
perceptrons add features of positive and negative examples by fixed coeffi-
cient (namely 1.0). The state-of-the-art learning algorithms such as Passive-
Aggressive Algorithms (PA) [20] and Support Vector Machines (SVMs) [103]
attempt to resolve this problem. These algorithms are described later.

2.2 Passive-Aggressive Algorithms (PA)

The Passive-Aggressive Algorithms (PA) [20], are online large-margin learning
algorithms which are variants of the (margin) perceptron. These algorithms
can be applied for a broad range of problems: binary classification, multi-class
classification, structured prediction, regression and one class prediction. Here,
we describe the application of PA for structured prediction problems.

The Passive-Aggressive Algorithm finds wnew that satisfies the constraint
for only one example by solving the following optimization problem. At first,
we explain the case in which soft margins are not considered.

wnew = arg min
w∈<n

1
2
||w − wt||2 s.t. w · Φ(x, y) − w · Φ(x, ŷ) ≥ ∆(y, ŷ) (3.5)

number of elements in the difference feature of ŷ and y depends on the number of incorrect
assignments. In terms of (2), by using the function ∆(yt, y) to decoding, the margin constraint
for yt and y′′ is naturally incorporated, and the resulting algorithm becomes more simple.
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In order to solve the optimization problem, at first we define the Lagrangian
as follows.

L(w, τ) =
1
2
||w − wt||2 + τ{∆(y, ŷ) − (w · Φ(x, y) − w · Φ(x, ŷ))} (3.6)

where τ is a Lagrange multiplier. Setting the derivative of L(w, τ) with respect
to w to zero, we get

∂L(w, τ)
∂w

= w − wt − τ
(

Φ(x, y) − Φ(x, ŷ)
)

= 0. (3.7)

w = wt + τ(Φ(x, y) − Φ(x, ŷ)) (3.8)

Substituting the eq. (3.8) into eq. (3.6), we obtain

L(τ) =
1
2
||wt + τ(Φ(x, y) − Φ(x, ŷ)) − wt||2

+ τ{∆(y, ŷ) − (wt + τ(Φ(x, y) − Φ(x, ŷ)))(Φ(x, y) − Φ(x, ŷ))}

=
1
2

τ2||Φ(x, y) − Φ(x, ŷ)||2

+ τ{∆(y, ŷ) − wt · (Φ(x, y) − Φ(x, ŷ)) − τ||Φ(x, y) − Φ(x, ŷ)||2}

=
1
2

τ2||Φ(x, y) − Φ(x, ŷ)||2

+ τ{∆(y, ŷ) − wt · (Φ(x, y) − Φ(x, ŷ))} − τ2||Φ(x, y) − Φ(x, ŷ)||2

= − 1
2

τ2||Φ(x, y) − Φ(x, ŷ)||2 + τ{∆(y, ŷ) − wt · (Φ(x, y) − Φ(x, ŷ))}.

(3.9)

Setting the derivative of L(τ) with respect to τ to zero, we get

∂L(τ)
∂τ

= −τ||Φ(x, y) − Φ(x, ŷ)||2 + {∆(y, ŷ) − (wt · (Φ(x, y) − Φ(x, ŷ))} = 0
(3.10)

τ =
∆(y, ŷ) − wt · (Φ(x, y) − Φ(x, ŷ))

||Φ(x, y) − Φ(x, ŷ)||2 =
wt · Φ(x, ŷ) − wt · Φ(x, y) + ∆(y, ŷ)

||Φ(x, y) − Φ(x, ŷ)||2
(3.11)

This update is called PA.
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Next, we consider the cases with a slack variable ξ. A possible objective
function includes ξ is as follows.

wnew = arg min
w∈<n

1
2
||w − wt||2 + Cξ

s.t. w · Φ(x, y) − w · Φ(x, ŷ) ≥ ∆(y, ŷ) − ξ and ξ ≥ 0 (3.12)

where C is a constant that controls an influence of ξ. This update is called PA-I.
By solving the optimization problem, we obtain

τ = min{C,
w · Φ(xt, ŷ) − w · Φ(xt, yt) + ∆(yt, ŷ)

||Φ(xt, yt) − Φ(xt, ŷ)||2 }. (3.13)

Alternatively, we can consider the objective function that scale quadratically
with ξ. In that case, the optimization problem becomes

wnew = arg min
w∈<n

1
2
||w − wt||2 + Cξ2

s.t. w · Φ(x, y) − w · Φ(x, ŷ) ≥ ∆(y, ŷ) − ξ (3.14)

By solving the optimization problem, we obtain

τ =
w · Φ(xt, ŷ) − w · Φ(xt, yt) + ∆(yt, ŷ)

||Φ(xt, yt) − Φ(xt, ŷ)||2 + 1
2C

(3.15)

This update is called PA-II.
The PA algorithms are shown in Algorithm 2.
The similar large-margin learning algorithm, Margin Infused Relaxed Al-

gorithm (MIRA) proposed by Crammer et al. [21] coincides with the PA-I with
the constant value C = 1.

2.3 Structured Support Vector Machines

Structured Support Vector Machines (SSVMs) learns the parameter w that sat-
isfies all constraints of the dataset. More precisely, SSVMs solves the following
optimization problem.

min
w,ξ≥0

1
2
||w||2 + C

n

∑
t=1

ξt

∀t, ∀y ∈ Y \ yt : w · Φ(xt, yt) − w · Φ(xt, y) ≥ ∆(yt, y) − ξi (3.16)
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Algorithm 2 The Passive Aggressive Algorithms
input Training set T = {xt, yt}T

t=1, Number of iterations N
w ← 0
for i ← 0 to N do

for (xt, yt) ∈ T do
ŷ = arg maxy w · Φ(xt, y) + ∆(yt, y)

τ =


w·Φ(xt,ŷ)−w·Φ(xt,yt)+∆(yt,ŷ)

||Φ(xt,yt)−Φ(xt,ŷ)||2 (PA)

min{C, w·Φ(xt,ŷ)−w·Φ(xt,yt)+∆(yt,ŷ)
||Φ(xt,yt)−Φ(xt,ŷ)||2 } (PA − I)

w·Φ(xt,ŷ)−w·Φ(xt,yt)+∆(yt,ŷ)
||Φ(xt,yt)−Φ(xt,ŷ)||2+ 1

2C
(PA − II)

w ← w + τ(Φ(xt, yt) − Φ(xt, ŷ))
end for

end for

return w

In constrast to the Passive-Aggressive Algorithms that use only the constraint
of one example, SSVM finds the parameter w under the exponential number
of constraints. However, since it is impractical to optimize models with the
exponential number of constraints, it is necessary to introduce techniques to
make the optimization problem tractable.

Tsochantaridis et al. show that the optimization problem can be solved
efficiently by introducing a cutting-plane algorithm [103]. The algorithm tries
to find small subset (working set) of the constraints in the problem (3.16). The
algorithm iteratively finds the mostly violated constraint under the current
model, and then adds the constraint to the working set. In order to construct
the current model, an optimization problem is solved using the subset of the
constraints. This procedure is repeated until no constraints are selected. A
cutting plane algorithm for Structured Support Vector Machines is shown in
Algorithm 3.
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Algorithm 3 A Cutting Plane Algorithm for Structured Support Vector Ma-
chines

input Training set T = {(x1, y1, ..., (xN , yN)} and Parameter C
Si ← 0 for all i = 1, ..., N
repeat

for i = 1, ..., N do
H(y) = ∆(yi, y) + w · Φ(xi, y) − w · Φ(xi, yi)
compute ŷ = arg maxy∈Y H(y)
compute ξi = max{0, maxy∈Si H(y)}
if H(ŷ) > ξi + ε then

Si ← Si ∪ {ŷ}
w ← optimize the problem over S = ∪iSi

end if
end for

until no Si has changed during iteration

3. Log-Linear Models

3.1 Conditional Random Fields

Conditional Random Fields (CRFs) [50] are undirected graphical models that
give a conditional probability distribution p(y|x) in a form of exponential model.
CRFs are formalized as follows. Let G = {V, E} be an undirected graph over
random variables y and x. when a set of cliques C = {{yc, xc}} are given, CRFs
define the conditional probability of a state assignment given an observation
set.

P(y|x) =
1

Z(x) ∏
c∈C

Φ(xc, yc) (3.17)

where Φ(xc, yc) is a potential function defined over cliques, and Z(x) is the
partition function defined as follows.

Z(x) = ∑
y

∏
c∈C

Φ(xc, yc) (3.18)

The potentials are factorized according to the set of features { fk}.

Φ(xc, yc) = exp

(
∑
k

λk fk(xc, yc)

)
(3.19)
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where F = { f1, ..., fK} are feature functions on the cliques, Λ = {λ1, ..., λK ∈
R} are the model parameters, obtained for each feature.

In general, the model parameters Λ are estimated by maximizing condi-
tional log-likelihood of N training samples D = {y(d), x(d)}N

t=1.

Lλ =
N

∑
t=1

∑
c∈C(d)

∑
k

λk fk(y(d)
c , x(d)

c ) −
N

∑
t=1

log Z(x(d)) −
K

∑
k=1

λ2
k

2σ2 (3.20)

where third term is prior distribution (Gaussian prior) for parameters [13], and
σ2 is variance for the distribution. By introducing this term, parameters are
normalized, and overfitting of the parameters is alleviated. It is called Maxi-
mum a posteriori (MAP) estimation.

The derivative of the objective function Lλ is the following.

∂Lλ

∂λk
=

N

∑
t=1

∑
c∈C(d)

fk(y(d)
c , x(d)

c ) −
N

∑
t=1

∑
c∈C(d)

∑
yc

fk(yc, x(d)
c )p(yc|x(d)

c ) − λk
σ2 (3.21)

Since the objective function Lλ is convex, global optimal solution can be
obtained. (Stochastic) Gradient Ascent or the Limited Memory BFGS (L-BFGS)
[52] are used for this optimization.

In order to get the value of the equation 3.21, it is necessary to calculate
marginal probabilities of the form p(yc|x) = ∑y\yc p(y|x).

The algorithm for marginal probability calculation to be applied depends
on structure of the graphical model. The forward-backward algorithm is used
for linear chain CRFs that are adopted for sequence labeling tasks such as POS
tagging. In the case of tree-structure, marginal probabilities can be calculated
exactly by using Belief Propagation (BP) [72] which is the general version of
the Forward-Backward algorithm.

In BP, (*) for each clique, cumulative values of the potential functions to a
particular label are calculated (which is called message m = {mi(yj)}) and then
calculate marginal probabilities with the messages. In the case that the defined
cliques consist of at most two nodes, update form of the message mi(yj) for
node i to node j is the following.

mi(yj) = ∑
yi

Φv(yi, x)Φe(yi, yj, x) ∏
k∈N (i)\j

mk(yi) (3.22)
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where N (i) is the adjacent nodes of the i, Φv(yi, x) is the potential function
over the node i ∈ V, and Φe(yi, yj, x) is the potential function over the edge
(i, j) ∈ E. Note that we denoted the observation xc as x because we can see
whole of the sequence. Hereafter, we denote xc as simply x.

Using the equation 3.22, the marginal probability p(yj|x) of the node j can
be calculated by the following equation.

p(yj|x) = κΦv(yj, x) ∏
i∈N (j)

mi(yj) (3.23)

where κ is a normalization factor.
In the case that if the model contains no loops, marginal probabilities can be

calculated by messages. However, if the model have the structure that contains
loops (e.g. Dynamic Conditional Random Fields (DCRFs) [58, 92]，Skip-Chain
CRFs [91]) approximation is necessary to calculate marginals. Approximation
methods for marginal calculation include Loopy Belief Propagation (Loopy
BP) [66] and Tree-based Reparameterization (TRP). Loopy BP applies BP no
matter whether the model contains loops. TRP generate a set of spanning trees
that can be constructed from the model, and then update messages for each
tree using BP.

3.2 Max-Margin Markov Networks (M3N)

Max-Margin Markov Networks (M3N) [98] are structured models in which the
model parameters w are estimated by max-margin criterion. M3N have the
same form of the distribution as CRFs, however, unlike CRFs, parameters w
are estimated by solving the following optimization problem.

w∗ = arg min
w

1
2
||w||2 + C ∑

x
ξx

s.t. ∀t ∀y′ 6= yt; w · (Φ(xt, yt) − Φ(xt, y′)) ≥ ∆(yt, y′) (3.24)

For the quadratic programming, Taskar et al. used Sequential Minimal Op-
timization (SMO). On the other hand, the QP of eq. (3.24) can be converted
into convex optimization problems in which margin constraints are included
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into the objective fuction. In this case, the following optimization problem is
to be solved.

w∗ = arg min
w

1
2
||w||2 + C ∑

t
max

y′
{∆(yt, y′) − w · (Φ(xt, yt) − Φ(xt, y′))}

(3.25)
Since this optimization is not included in any constraints, it can be solved

as a convex optimization problem. For solving this optimization problem,
Globerson et al., Collins et al. proposed use of Exponentiated Gradient (EG) al-
gorithms [51, 32, 19], Zhu et al. proposed Projected Sub-gradient and EM-style
Algorithm [116].

Note that since the M3N optimization problems are the same as the Struc-
tured SVMs, some work see M3N as the same model as Structural SVMs (e.g.
[116]).

3.3 Markov Logic Networks (MLNs)

Markov Logic Networks (MLNs) [77] is a relational learning framework based
on First-order Logic and Markov Networks. It can be seen that MLNs extends
first-order logic: formulas can be violated with some penalty, and that formu-
las of MLNs are templates for instantiating a particular markov network. A
markov logic network is defined by a set of weighted formula. Formally, an
MLN M is a set of pairs (φ, w) where φ is a first-order formula and w is a
weight of the model. M assigns the probability for the hidden ground atoms y
given the observed ground atoms x.

p(y|x) =
1

Z(x)
exp

(
∑

(φ,w)∈M
w ∑

c∈Cφ

f φ
c (x, y)

)
(3.26)

Cφ is the set of all possible bindings of the free variables in φ, and f φ
c is a

feature function. This distribution corresponds to a Markov Network where
nodes represent ground atoms and factors represent ground formulas.

For learning of MLNs, maximum log-likelihood estimation, which is an
ordinary optimization for log-linear models, is used in [85]. On the other hand,
Riedel uses MIRA [78] which is an online large-margin learning algorithm.



Chapter 4

Joint Learning of Argument Roles
and Predicate Senses

1. Introduction

Several researchers have paid much attention to predicate-argument structure
analysis, and the two following important factors have been presented. Jo-
hansson and Nugues [44], and Björkelund et al. [5] presented importance of
capturing non-local dependencies of core arguments. They used argument se-
quences tied with a predicate sense (e.g. AGENT-buy.01/Active-PATIENT) as
a feature for the re-ranker of the system where predicate sense and argument
role candidates are generated by their pipelined architectures. They reported
that incorporating the type of features provides substantial gain of the system
performance.

The other is inter-dependencies between a predicate sense and argument
roles, which relate to selectional preferences, and motivate us to jointly identify
a predicate sense and argument roles. We consider the following sentence as
an example.

(1) She drives a car.

where drives is the predicate. In PropBank, two senses (drive.01 and drive.02)
are defined for the verb drive, and the types of the role theme of these senses
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are vehicle and things in motion respectively. In the example, corresponding
argument of the predicate drives is car, and it is a vehicle. Therefore, the sense
of the predicate drives can be determined as drive.01. This is an example that
has a dependency from the argument roles to the predicate sense.

On the other hand, there are opposite cases, namely, dependency from
predicate senses to argument roles. Next, we consider the two following sen-
tences.

(2) Mr. Yeargin comes to work on weekends.
(3) Tokyo comes to terms with its new status as the region’s economic

behemoth.

In PropBank, the senses of the predicates comes in (2) and (3) are defined as
come.01 (move) and come.14 (come to terms with) respectively. Observe that
Mr. Yeargin in (2) and Tokyo in (3) are both placed at the subject position in each
sentence, however, the semantic role of Mr. Yeargin is A1 (comer), whereas the
role of Tokyo is A0 (entity coming to terms). For the two cases, it is necessary
to determine the senses formerly to identify the argument roles. This type of
dependencies has been explored by Riedel and Meza-Ruiz [79, 65, 64], all of
these are Markov Logic Networks (MLN) based systems. These work use the
global logic formulae that has atoms in terms of both argument roles and a
predicate sense, and the systems identify predicate senses and argument roles
jointly.

Ideally, we want to capture both types of dependencies simultaneously.
However, the approaches of the previous work can not handle both. The for-
mer approaches can not explicitly include features that capture inter-dependencies
between a predicate sense and its argument roles. Though these are implicitly
incorporated by re-ranking where the most plausible assignment is selected
based on a small subset of predicate and argument candidates, these are gen-
erated independently. On the other hand, it is difficult to deal with core argu-
ment features in MLN. Because, the number of core arguments varies with the
role assignments, the type of features is not able to be expressed by a single
formula.

In this chapter, we propose a structured model that overcomes limitations
of previous approaches. For the model, we introduce several types of features
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Figure 4.1. Undirected graphical model representation of the joint model

including those that capture both inter-dependencies among arguments roles,
and inter-dependencies between a predicate sense and its argument roles. By
doing this, while both tasks are mutually influenced, the model determines
the most plausible set of assignments of a predicate sense and its argument
roles simultaneously. Also, we present an exact inference algorithm for the
model, and a new large-margin learning algorithm that handles global features
in parallel with local features.

2. A Structured-Prediction Model for Joint Learning
of Argument Roles and Predicate Senses

In this section, we describe a structured model that captures both non-local de-
pendencies between arguments, and inter-dependencies between a predicate
sense and argument roles.

Figure 4.1 shows a graphical representation of the model. The node p cor-
responds to a predicate, and the nodes a1, ..., aN to arguments of the predicate.
Each node is assigned a particular predicate sense or argument role label. The
black squares are factors which provide scores of label assignments. In the
model, the nodes for arguments depend on a predicate sense, and by influ-
encing labels of a predicate sense and argument roles, the most plausible label
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assignments of the nodes are determined by all factors.
Possible approaches to represent such undirected graphical models are us-

ing log-linear models such as Conditional Random Fields [49] or linear models
[18, 60]. In this work, we use linear models.

Let x be words in a sentence, l be a predicate, Pl be a set of possible senses
of the predicate l, p ∈ Pl be a particular sense of l, and A = {a1, a2, ..., aN}
be a set of possible label assignments for x. A predicate-argument structure is
represented by a pair of p and A.

We define the score function for predicate-argument structures as below.

s(p,A) = ∑
Fk∈F

Fk(x, p,A). (4.1)

The pair of the predicate sense p and the set of argument role assignments A
that has the maximum score is returned by the model. F is a set of all the
factors, Fk(x, p,A), which corresponds to a particular factor in Figure 4.1, is a
factor that scores a predicate or argument label assignments, and is defined by
the inner product of the model parameter w and the feature vector Φk.

Fk(x, p,A) = w · Φk(x, p,A) (4.2)

The feature vector Φk(x, p,A) is a set of clues used in the factor Fk. Each el-
ements of Φk(x, p,A) corresponds to a particular clue which is an observed
feature conjoined with one or more labels to be predicted. Let us consider a
case of detecting the role of hat for wore in 2.3. For this case, we might include
a feature φ

j
k for Φk as follows.

φ
j
k(x, a) =


1 if a = A1

and predicate lemma = wear

and dependency label = OBJ

0 otherwise

j is the j-th dimension of the feature space of Fk. In such a way, we create feature
vectors for the model by mapping various features for different dimensions of
the feature space.
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In the next section, we define four types of factors used for the joint model.
Later, the inference algorithm of the model is shown in Section 2.3, and then
describe the proposed learning algorithm for the model in 2.3. Finally, in Sec-
tion 2.4, we present an issue in terms of the predicate-argument pairwise factor.

2.1 Factors for the Joint Model

We define four types of factors for the joint model.

Predicate Factor FP This factor scores each sense of p, and does not depend
on any argument role assignments. The score function is defined by FP(x, p,A) =
w · ΦP(x, p).

Argument Factor FA This factor scores a label assignment of a particular ar-
gument a ∈ A. The score is determined independently from a predicate sense,
and is given by FA(x, p, a) = w · ΦA(x, a).

Predicate-Argument Pairwise Factor FPA This factor captures inter-dependencies
between a predicate sense and an argument role. The score function is defined
as FPA(x, p, a) = w · ΦPA(x, p, a). The difference from FA is that FPA influences
both the predicate sense and the argument role. By introducing this factor, the
role label can be influenced by the predicate sense, and vise versa. We consider
the example sentence 1 in Section 1. For instance, by introducing the following
feature, the label of car affects scores of the predicate sense label.

φ
j
PA(x, p, a) =


1 if p = drive.01 and a = A1

and argument lemma = car

0 otherwise

Global Factor FG This factor is introduced to be able to capture plausibility
of predicate-argument structures. Like the other factors, the score function
is defined as an inner product of w and a global feature vector ΦG(x, p,A):
FG(x, p,A) = w · ΦG(x, p,A). A possible feature that can be considered for
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this factor is, for instance, if a predicate-argument structure has an agent (A0)
followed by the predicate and a patient (A1), we encode the structure as a
string A0-PRED-A1 and use it as a feature.

φ
j
G(x, p,A) =


1 if p and A can be

expressed by A0-PRED-A1

0 otherwise

This type of features provide plausibility of predicate-argument structures.
For instance, if the highest scoring predicate-argument structure with the lo-
cal factors misses some core arguments , then the global feature demands the
model to fill the missing arguments.

The numbers of factors for each factor type in eq. (4.1) are: FP and FG are 1,
FA and FPA are |A|. By integrating the all factors, as a result, the score function
becomes

s(p,A) = w · ΦP(x, p) + w · ΦG(x, p,A) + w · ∑
a∈A

{ΦA(x, a) + ΦPA(x, p, a)}.

(4.3)
Each factor does not share its feature space with the other factors. Let each

feature space be ΦP ∈ <dP，ΦA ∈ <dA，ΦPA ∈ <dPA，ΦG ∈ <dG , then the fea-
ture space of the parameter vector w could be written as w ∈ <dP+dA+dPA+dG .

2.2 Inference Algorithm of the Joint Model

In general, dynamic programming is applicable when the features are factor-
ized. Among the four factors of the model, the features of three factors are
factorized (FP, FA and FPA). We call these type of features Local Features. The
features used in the global factor FG, we call Global Features. Without the global
factor FG, the exact solution can be produced with FP, FA and FPA. This is be-
cause if the predicate sense label is fixed, then inference with the three factors is
reduced to simple multiclass classifications for each argument. A similar idea
is used by McDonald et al. [60], in which the prediction model is structured
with a rooted tree.
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An issue is how to deal with the global factor FG. In general, efficient in-
ference becomes impractical if we use global features. A naive approach we
can easily conceive is that, at first, we enumerate all of possible argument role
assignments, and then add scores of global features for each assignment, fi-
nally select the argmax. However, enumerating possible assignments is too
costly (at least our case), therefore the approach might be impractical. A num-
ber of methods have been proposed use of global features for linear models.
Daumé III proposed a search-based framework, Learning as Search Optimiza-
tion (LaSO) [24], in which the search space flexibly varies by the current param-
eter vector, and parameters are updated if the search gets disabled to achieve
the correct answer or the argmax is not equal to the correct answer. The ap-
proach is often applied to cases that the exact inferences are impractical due
to large search spaces. Kazama proposed an N-best based approach [46]. The
approach abandons enumerating all of possible assignments, instead, selects
the argmax among N-best candidates that are produced by local features. For
the learning of the model with global features, Kazama proposed a variant of
the margin perceptron learning algorithm.

In this work, we use the approach proposed by Kazama to deal with global
features. Although Kazama’s approach is proposed for sequence labeling tasks,
it can be easily extended for the proposed model. That is, for each possible
predicate sense p of the predicate l, we provide N-best argument role assign-
ments using three local factors FP, FA and FPA, and then add scores of the global
factor FG, finally select the argmax from them. In this case, the argmax is se-
lected from |Pl|N candidates. The inference algorithm for the model is shown
in Algorithm 4.

2.3 Learning Algorithm of the Joint Model

In terms of learning algorithm of the model, we borrow a fundamental idea
of Kazama’s perceptron learning algorithm, however, we use a more sophis-
ticated online-learning algorithm based on the Passive-Aggressive Algorithm
(PA) proposed by Crammer et al. [20].

For the sake of simplicity, we introduce some notations. We denote a predicate-
argument structure y = 〈p,A〉. a local feature as ΦL(x, y) = ΦP(x, p) +
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Algorithm 4 The inference algorithm of the model
input sentence x
p̂ = Â = null
for pli ∈ Pl do
{A}n = generate N-best assignments using FP , FA and FPA

for Aj ∈ {A}n do
s(pli ,Aj) = w · ΦG(x, pli ,Aj) + w · ΦP(x, pli) + w · ∑a∈Aj

{ΦA(x, a) +
ΦPA(x, pli , a)}
if s(pli ,Aj) > s( p̂, Â) then

p̂ = pli , Â = Aj

end if
end for

end for
return p̂ and Â

∑a∈A{ΦA(x, a) + ΦPA(x, p, a)}，a feature vector coupled both local and global
features as ΦL+G(x, y) = ΦL(x, y) + ΦG(x, p,A), the argmax using ΦL+G as
ŷL+G, the argmax using ΦL as ŷL. Also, we use a loss function ρ(y, y′) which
is defined by the the number of incorrect assignments in y′.

Kazama’s margin perceptron learning algorithm is summarized by the fol-
lowing two points.

(1) Local+Global Update: If y 6= ŷL+G, then update the parameter w using
both local and global features. Even y = ŷL+G，if w · {ΦL+G(x, ŷL+G) −
ΦL+G(x, y′)} ≤ ρ(ŷL+G, y′) (∃y′ : ŷL+G 6= y′), then update the parame-
ter w using both features．

(2) Local Update: Even if ŷL+G = y, the argmax ŷL using only local features
is different from y (y 6= ŷL)，then update w using local features. Also,
even y = ŷL, if w · {ΦL(x, ŷL) − ΦL(x, y′)} ≤ ρ(ŷL, y′) (∃y′ : ŷL 6= y′),
then update w using local features.

The necessity of the Local Update is that if we perform only Local+Global Up-
date, the algorithm does not guarantee a sufficient margin, and it leads to poor
quality N-best assignments.
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The margin perceptron learning proposed by Kazama can be seen as an
optimization with the following two constrains.

(A) w · ΦL+G(x, y) − w · ΦL+G(x, ŷL+G) ≥ ρ(y, ŷL+G)

(B) w · ΦL(x, y) − w · ΦL(x, ŷL) ≥ ρ(y, ŷL)

(A) is the constraint corresponds to Local+Global Update that ensures a suffi-
cient margin ρ(y, ŷL+G) between y and ŷL+G. (B) is the constraint corresponds
to Local Update. The constraint is applied in cases that (A) is satisfied, and
ensures a sufficient margin ρ(y, ŷL) between y and ŷL.

The optimization problems of the Passive-Aggressive Algorithm with the
above constraints are as follows.

wnew = arg min
w′∈<n

1
2
||w′ − w||2 + Cξs.t. lL+G(w; (x, y)) ≤ ξ and ξ ≥ 0 if ŷL+G 6= y

s.t. lL(w; (x, y)) ≤ ξ and ξ ≥ 0 if ŷL+G = y 6= ŷL
(4.4)

lL+G(w; (x, y)) is the loss function for the case of using both local and global
features, corresponds to applying the constraint (A). lL(w; (x, y)) is the loss
function for the case of using only local features, corresponds to applying the
constraints (B) in cases that (A) is satisfied. ξ is a slack variable for soft margins
and C is a constant that controls an influence of ξ.

In this optimization, the parameter w is selected so as to minimize the l2-
norm of the new parameter w under a constraints. Either of these two con-
straints is selected for the optimization according to classification results. The
loss function lL+G(w; (x, y)) and lL(w; (x, y)) are

lL+G(w; (x, y)) = w · ΦL+G(x, ŷL+G) − w · ΦL+G(x, y) + ρ(y, ŷL+G) (4.5)

lL(w; (x, y)) = w · ΦL(x, ŷL) − w · ΦL(x, y) + ρ(y, ŷL) (4.6)

The solutions of the optimization problem with the above constraints can be
obtained using the method of Lagrange multipliers. The derivations are the
same as the usual Passive-Aggressive Algorithm. For the details of the deriva-
tions of the Passive-Aggressive Algorithm, see Chapter 3, Section 2.2.
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As a result, we get the learning algorithm shown in Algorithm 5. The line
denoted by (A) is processed using both local features ΦL and global features
ΦG if the argmax ŷL+G is different from the correct answer yt. It corresponds
to the optimization which uses the constraint (4.5). If the argmax ŷL+G is the
same as the correct answer yt, no updates occur because the two feature vec-
tors are the same (ΦL+G(xt, yt) = ΦL+G(xt, ŷL+G)). On the other hand, the
update denoted by (B) is processed in the case that the argmax ŷL+G is the
same as the correct answer yt, however, the argmax using only local features
ŷL is different from the correct answer yt. It corresponds to the optimization
with the constraint (4.6).

The additive type online learning algorithms such as Perceptron and Passive-
Aggressive Algorithms can be applied a technique of efficient parameter av-
eraging that described in [23]. Algorithm 5 uses Daumé III’s parameter av-
eraging technique. The variables c and wa are used for efficient parameter
averaging.

The difference between Kazama’s margin perceptron learning and the pro-
posed algorithm can be seen in the nature of the two algorithms. In perceptron
algorithms, since features of positive and negative examples are added to w
by fixed coefficient (namely 1.0), resulting parameter becomes relatively large.
In contrast, for each update, PA finds the smallest weight that satisfies the con-
straint, hence resulting parameter becomes more small.

2.4 An issue of FPA

As described previously, FPA affects scoring of both a predicate sense and ar-
gument roles, and a set of argument roles contains the label “NONE” which
means the argument has no role. It is quite unlikely that the information “no
role” contributes predicate sense disambiguation, however, if we introduce
FPA naively, it remains possible that the score of a particular sense is increased
by “no role” arguments. In order to avoid such cases, we use a dummy sense
pdummy to “no role” arguments. If the role of argument are “NONE”, instead
of using the parameter wNONE∧sensei , we use wNONE∧dummy.
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Algorithm 5 The learning algorithm of the model
input Training set T = {xt, yt}T

t=1, Number of iterations N and Parameter C
w ← 0, wa ← 0, c ← 1
for i ← 0 to N do

for (xt, yt) ∈ T do
ŷL+G = get argmax using Algorithm 4 with penalty ρ(yt, y)
ŷL = get the highest scoring assignment using FP, FA and FPA with
penalty ρ(yt, y)
Let ∆ΦL+G(xt, yt, ŷL+G) = ΦL+G(xt, yt) − ΦL+G(xt, ŷL+G)
τt = min

(
C, w·∆ΦL+G(xt,yt,ŷL+G)+ρ(yt,ŷL+G)

||∆ΦL+G(xt,yt,ŷL+G)||2
)

w ← w + τt(∆ΦL+G(xt, yt, ŷL+G)) (A)
wa ← wa + cτt(∆ΦL+G(xt, yt, ŷL+G))
if ŷL+G = yt and ŷL 6= yt then

Let ∆ΦL(xt, yt, ŷL) = ΦL(xt, yt) − ΦL(xt, ŷL)
γt = min

(
C, w·∆ΦL(xt,yt,ŷL)+ρ(yt,ŷL)

||∆ΦL(xt,yt,ŷL)||2
)

w ← w + γt(∆ΦL(xt, yt, ŷL)) (B)
wa ← wa + cγt(∆ΦL(xt, yt, ŷL))

end if
c ← c + 1

end for
end for
return w − wa/c
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3. Experiment

3.1 Experimental Settings

We use the CoNLL-2009 Shared Task dataset for experiments, which is a dataset
for multi-lingual syntactic and semantic dependency parsing. The dataset con-
sists of seven languages, Catalan [99], Chinese [71], Czech [39], English [88],
German [7], Japanese [45] and Spanish [99], which are annotated syntactic
dependencies and predicate-argument structures. The English data is con-
structed by converting the constituent trees of Penn Treebank using the head
rules proposed in [43], and added the predicate-argument structures of Propo-
sition Bank [70] and NomBank [63]. The Japanese data consists of a part of
Kyoto Corpus. The data is converted from “bunsetsu-based” dependencies
to “word-based” dependencies using the head percolation rules [45]. For the
details of the CoNLL-2009 Shared Task dataset, see [38].

In the CoNLL-2009 Shared Task SRL-only challenge, participants are im-
posed to identify predicate-argument structures of only the specified predi-
cates. Therefore the problems to be solved are predicate sense disambiguation
and argument role labeling 1. Since the Japanese data does not have predicate
sense annotation, the task to be solved is only argument role labeling.

We use Semantic Labeled F1 for evaluation. Semantic Labeled F1 is calcu-
lated by the following equations. WSD and SRL mean predicate sense disam-
biguation and argument role labeling respectively.

Semantic Labeled Precision = # of correct pred. senses+# of correct arg. roles
# predicates+# of returned arg.

Semantic Labeled Recall = # of correct pred. senses+# of correct arg. roles
# predicates+# arguments

Semantic Labeled F1 = 2×Sem. Lab. Prec.×Sem. Lab. Rec.
Sem. Lab. Prec.+Sem. Lab. Rec.

In order to investigate the impact of the factors described in Section 2,
we experimented the four experimental settings: use (1) only local factors

1The reason is that the dataset contains imperfect annotations. For instance, German data
(SALSA Corpus) is annotated predicate-argument structures only a part of all verbs. The
CoNLL-2008 Shared Task (English only) includes predicate identification task.
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(FP+FA)，(2) local and pairwise factors (FP+FA+FPA)，(3) local and global fac-
tors (FP+FA+FG)，(4) all factors (FP+FA+FPA+FG). For generating N-bests, we
used the beam-search algorithm, and the number of N-bests was set to N = 64.

For learning of the joint model, the loss function ρ(yt, y′) of the Passive-
Aggressive Algorithm was set to the number of incorrect assignments of a
predicate sense and argument roles. Also, the number of iterations of the
model used for testing was selected based on the performance on the devel-
opment data.

3.2 Features for the Joint Model

The features used for our joint model are as follows. In the experiments, we
did not perform any features selection procedure.

Features for the Predicate Local Factor FP

Predicate Token Features Predicted lemma of the predicate and predicate’s
head, and predicted POS of the predicate, and its conjunctions.

Dependency Label Dependency label between the predicate and predicate’s
head.

Child Dep Set The concatenation of the dependency labels of the predicate
dependents.

Features for the Argument Local Factor FA

Predicate Token Features Predicted lemma and predicted POS of the predi-
cate.

Argument Token Features Predicted lemma and predicted POS of the argu-
ment candidate and the argument’s head.

Context Features Predicted lemma and predicted POS of the Leftmost/rightmost
dependent and leftmost/rightmost sibling.
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Dependency Label The dependency label of predicate, argument candidate
and argument candidate’s dependent.

Family The position of the argument candidate with respect to the predicate
position in the dependency tree (e.g. child, sibling and etc.)

Position The position of the head of the dependency relation with respect to
the predicate position in the sentence.

Child Dep Set The left-to-right chain of the predicted dependency labels of
the predicate’s dependents.

Pred-Arg Dep Path Predicted lemma, predicted POS and dependency label
paths between the predicate and the argument candidates.

Distance The number of dependency edges between the predicate and the
argument candidate.

Features for the Predicate-Argument Pairwise Factor FPA

Argument Token Features Predicted lemma of the argument candidate, and
the conjunction of the predicted lemma and the POS of the argument
candidate.

Pred-Arg Dep Path Dependency label path between the predicate and the ar-
gument candidates, for instance

←−
VC

−→
SBJ.

Features for the Global Factor FG

Pred-Arg Label Sequence The sequence of the predicate and the argument
labels in the predicate-argument structure (in order of positions), for in-
stance A0-PRED-A1.

Presence of Labels Defined in Frame Files Whether the semantic roles defined
in the frame of the sense present in the predicate-argument structure, for
instance CONTAINS:A1. The conjunction of the predicate sense and the
frame information, for instance wear.01&CONTAINS:A1.
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Ca Ch Cz En Ge Jp Sp
pruning algorithm 3 1 2 1 1 POS 3
coverage (%) 100 98.9 98.5 97.3 98.3 99.9 100
reduction (%) 88.8 69.1 49.1 63.1 64.3 41.0 89.6

Table 4.1. Pruning results. Coverage denotes the recall of true arguments,
and reduction denotes the percentage of the number of argument candidates
remain after applying the pruning algorithms.

The features for FP and FA are used in a number of work for predicate sense
disambiguation and semantic role labeling respectively. The features for FPA

are lexical, since both types of features contain lemmas. The second feature,
lemmas are tied with dependency paths, is not used in other work. The fea-
tures for FG include the predicate and argument sequence feature as well as
frame-based features.

3.3 Argument Pruning

We observe that most of arguments tend to be near from its predicate on the
dependency structure, we can prune argument candidates to reduce search
space. Since the characteristics of the languages are slightly different, we apply
three types of pruning algorithms.

Let S be the argument candidate set，n be the current node，h(n) be the
function that returns the parent node of n，c(n) be the function that returns
the children of n，gc(n) be the function that returns grandchildren of n, p be
the current node. initialization: S ← φ and n ← p．

Pruning Algorithm 1 (1) S ← S ∪ c(n)．(2) n ← h(n)．
(3) repeat (1)-(2) until n = ROOT．

Pruning Algorithm 2 (1) S ← S ∪ c(n) ∪ gc(n)．(2) n ← h(n)．(3) repeat (1)-
(2) until n = ROOT．

Pruning Algorithm 3 (1) S ← c(n)
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Avg. Ca Ch Cz En Ge Jp Sp
FP+FA 79.17 78.00 76.02 85.24 83.09 76.76 77.27 77.83
FP+FA+FPA 79.58 78.38 76.23 85.14 83.36 78.31 77.72 77.92
FP+FA+FG 80.42 79.50 76.96 85.88 84.49 78.64 78.32 79.21
ALL 80.75 79.55 77.20 85.94 84.97 79.62 78.69 79.29
Björkelund 80.80 80.01 78.60 85.41 85.63 79.71 76.30 79.91
Zhao 80.47 80.32 77.72 85.19 85.44 75.99 78.15 80.46
Meza-Ruiz 77.46 78.00 77.73 75.75 83.34 73.52 76.00 77.91

Table 4.2. Results on the CoNLL-2009 Shared Task dataset (Semantic Labeled
F1).

In addition to the above pruning, we also filtered argument candidates by POS.
We filtered argument candidates assigned less frequent POS in the gold argu-
ments. Table 4.1 shows the pruning results. In terms of Japanese, since we
could not achieve high precision, we filtered out argument candidates by only
POS.

3.4 Results

Table 4.2 shows the results of the experiments, and also shows the results of the
top 3 systems on the CoNLL-2009 Shared Task participated as SRL-only system
[5, 113, 65].

At first, we compare factor effects. By incorporating FPA, we achieved per-
formance improvements for all languages, especially in German (+1.55). This
results suggest that it is effective to capture local inter-dependencies between
a predicate and an argument. For Japanese, since we do not detect predicate
senses, including FPA can be thought to make less sense. However, by using
FPA, we achieved the F1 improvement of +0.45. The reason is that the features
space of FPA is not completely covered by FA. For instance, the conjunction of
lemma and dependency path is not included in FA.

Comparing the results with FP+FA and FP+FA+FG, incorporating FG also
contributed performance improvements for all languages, especially the sig-
nificant F1 improvement of +1.88 is obtained in German.
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Avg. Ca Ch Cz En Ge Jp Sp
SENSE FP+FA 89.65 85.86 94.86 94.09 95.14 83.81 - 84.17

FP+FA+FPA 89.78 85.98 94.94 94.10 95.30 84.00 - 84.36
FP+FA+FG 89.83 86.66 95.00 94.23 95.24 83.09 - 84.79
ALL 90.15 86.68 95.09 94.31 95.56 84.18 - 85.10

ARG FP+FA 72.20 74.52 67.43 74.89 77.47 73.08 63.00 75.05
FP+FA+FPA 72.74 75.01 67.69 74.64 77.77 75.35 63.67 75.10
FP+FA+FG 74.11 76.33 68.75 76.11 79.50 76.34 65.03 76.77
ALL 74.46 76.39 69.05 76.16 80.05 77.26 65.58 76.74

Table 4.3. Results on the CoNLL-2009 Shared Task data (predicate sense dis-
ambiguation and argument role labeling).

Next, we compare our system with CoNLL-2009 Shared Task top 3 sys-
tems. By incorporating both FPA and FG, our joint model achieved competi-
tive results compare to the CoNLL-2009 top 2 systems (Björkelund and Zhao),
and achieved the significant difference compare to the Meza-Ruiz’s system 2.
Björkelund and Zhao applied feature selection algorithms in order to select the
best set of feature templates for each language 3. On the other hand, since our
system uses the same feature templates for all language, there is still room for
performance improvements by applying feature selection algorithms.

Meza-Ruiz’s system also learns and analyzes predicate senses and argu-
ment roles simultaneously, however, the performances are significantly differ-
ent. The reason is that the Meza-Ruiz’s system does not use global features
such as the argument label sequence and the frame-based features of FG. As
shown in Table 4.2, these features greatly affect system performances.

Table 4.3 shows the performances of predicate sense disambiguation and
argument role labeling separately. The upper part “SENSE” stands for the per-
formance of predicate sense disambiguation (accuracy) and lower part “ARG”

2The result of Meza-Ruiz for Czech is significantly worse than the other systems because
of inappropriate preprocessing for predicate sense disambiguation. Excepting Czech, the av-
erage F1 value of the Meza-Ruiz is 77.75, where as our system is 79.89.

3Björkelund and Zhao reported that they took for features selection three to four weeks and
up to two months respectively.
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stands for the performance of argument role labeling (F1). Since we do not
detect predicate senses for Japanese, the corresponding parts are filled by “-”
4.

In terms of sense disambiguation results, incorporating FPA and FG worked
well for all languages. Especially the system achieved relatively high improve-
ments for Spanish and Catalan (+0.93 and +0.86 respectively). Although in-
corporating either of FPA and FG provided improvements of +0.13 and +0.18
on average, adding both factors provided improvements of +0.50. This result
suggests that combination of these factors is effective for sense disambigua-
tion.

As for argument role labeling results, by incorporating FPA and FG con-
tributed performances for all languages, especially the substantial gain +4.18
is achieved in German. By incorporating FPA with local factors, the system
achieved the F1 improvements of +0.54 on average. This result shows that cap-
turing inter-dependencies between a predicate and an argument contributes
argument role labeling. By incorporating FG with local factors, the system
achieved the significant improvement of F1 (+1.91).

Since both tasks are improved by using all factors, we can say that the pro-
posed joint model succeeded in joint learning of predicate senses and argument
roles.

4. Previous Work

Johansson and Nugues [44], and Björkelund et al. [5] decomposed the task of
predicate-argument structure analysis into predicate word sense disambigua-
tion, argument identification and argument classification (incl. predicate iden-
tification in the former). They applied a greedy feature selection algorithm
for each task in order to select the optimal feature set, and used a re-ranker
for selecting the globally plausible predicate-argument structure from candi-
dates. The advantage of our model is that it can deal with inter-dependencies

4The reason of differing performance between Semantic Labeled F1 and ARG of Japanese
is that the evaluation includes predicate sense disambiguation. In Japanese data, the correct
senses are predicate lemmas.
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between a predicate and arguments.
Zhao [112] and Zhao [113] applied for predicate-argument structure anal-

ysis a “history-based” approach where predicates and arguments are labeled
sequentially, and the previous labels are used for the next labeling. They also
applied a beam-search algorithm for searching the optimal assignments. Basi-
cally history based approaches suffer from error propagation. In contrast our
joint model is a “graph-based” where the exact solution can be obtained by the
inference algorithm. The other advantage of our model is that it can deal with
inter-dependencies between predicates and arguments, while their approaches
can not. Also, Zhao’s feature selection results can be used for our joint model.

Meza-Ruiz and Riedel used Markov Logic Network (MLN) [77] for predicate-
argument structure analysis [79, 64, 65]. Their systems perform the subtasks of
predicate-argument structure analysis collectively; the predicate senses and the
arguments of all predicates are labeled jointly. Hence their approaches have
more representational power, however, we described previously, in MLN, it is
difficult to deal with the particular type of features such as the core argument
sequence feature.

5. Summary

In this paper, we proposed a structured model that captures both non-local
dependencies between arguments, and inter-dependencies between argument
roles and predicate senses. More precisely, we designed a linear model-based
structured model, and defined four types of factors: predicate local factor, ar-
gument local factor, predicate-argument pairwise factor and global factor for
the model. We also proposed a new online large-margin learning algorithm
for linear models with global features.

In the experiments, despite the fact that we did not apply any feature selec-
tion algorithms, the proposed model achieved competitive results compare to
the state-of-the-art systems.





Chapter 5

A Partially Joint Approach for
Syntactic and Semantic
Dependency Parsing

1. Introduction

The structured model proposed in Chapter 4 is assumed that predicates are
already identified. Hence, in order to obtain predicate-argument structures
from open texts, we need to identify predicates in sentences. A possible ap-
proach to this is to extend the structured model so as to perform predicate
sense disambiguation and argument role labeling as well as predicate iden-
tification. However, it is not trivial how to extend the structured model to
be able to identify predicates. Also, whether other information in terms of
predicate-argument structures (e.g. argument roles) could be helpful for pred-
icate identification is not trivial. The work of Meza-Ruiz [64] jointly performed
predicate identification, predicate sense disambiguation, argument identifica-
tion and argument classification using the MLN-based system. Their result
seems that the joint approach did not contribute the performance of predicate
identification. Therefore by preparing a predicate identifier and combining it
with the structured model, we create a predicate-argument structure analyzer
(semantic dependency parser).
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Figure 5.1. A partially joint architecture for syntactic and semantic dependency
parsing

Since syntactic dependency parses are also necessary for the structured
model, we also need to perform dependency parsing for sentences. In this
chapter, we develop a high-performance syntactic and semantic dependency
parser using only words and their part-of-speech tags. In the experiments,
we use the CoNLL-2008 Shared Task dataset which are provided annotations
of both syntactic and semantic dependencies, and compare to state-of-the-art
parsers proposed by the previous work.

2. System Architecture

The task of syntactic and semantic dependency parsing can be decomposed
into: syntactic dependency parsing, predicate identification, predicate sense
disambiguation and argument role labeling. Though the argument role la-
beling task is sometimes decomposed into two tasks: argument identification
and role labeling. We deal with them as a single task. Therefore, in order to
develop a syntactic and semantic dependency parser, we need to perform the
four tasks.

Figure 5.1 shows our system architecture for syntactic and semantic depen-
dency parsing. The system consists of three parts: (1) a state-of-the-art higher-
order projective dependency parser, (2) a predicate identifier, (3) the structured
model for predicate sense disambiguation and argument role labeling. The
procedure of the system is as follows. Given a sentence, the system obtains
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dependency trees with the dependency parser, and then identifies predicates
in sentences using the predicate identifier, finally determines a predicate sense
and its argument roles simultaneously. Since the system jointly solve the sub-
tasks of syntactic and semantic dependency parsing, the system is a partially
joint architecture.

2.1 Higher-order Dependency Parsing

The approaches of dependency parsing proposed by the previous work can
be divided into graph-based and transition-based. The Eisner algorithm [26]
for projective dependency parsing and the maximum spanning tree algorithm
proposed by McDonald et al. [61] for non-projective dependency parsing are
categorized graph-based. On the other hand, the shift-reduce-based parsing
algorithms (e.g. Nivre et al. [67]) are categorized transition-based.

In this chapter we focus on graph-based dependency parsing algorithms,
and consider labeled dependency parsing. In labeled dependency parsing,
each edge in dependency trees are labeled a particular syntactic function such
as subject, object, noun modifier, etc. For graph-based algorithms, the basic
score function factorizes a dependency tree into pairs of a head and its depen-
dent tied with a dependency label as follows.

s(y) = ∑
(h,m,l)∈y

w · Φ(h, m, l, x) (5.1)

where (h, m, l) is a particular edge in y, h is a head word, m is a dependent,
and l is a dependency label. The highest scoring dependency tree is returned
by the model. This type of factorization is called first-order.

For the last few years, several researches have investigated higher-order
dependency parsing in which scores of a dependency edge are affected by
the other dependencies, and showed effectiveness in terms of parsing accu-
racy [59, 8, 62]. For projective dependency parsing, McDonald et al. extended
the Eisner algorithm to second-order case in which scores depend on direct
head-dependent relations as well as head-sibling relations [59], and moreover
Carreras extended the McDonald’s algorithm so as to consider not only sib-
ling relations but also grand children relations [8]. On the other hand, second-
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order parsing for non-projective dependency parsing is proved to be NP-hard.
McDonald et al. [62] proposed an approximate second-order projective de-
pendency parsing where at first the parsing algorithm obtains the projective
tree using the second-order projective dependency parsing, and then rear-
ranges edges of the tree to expand the search space to non-projective cases.
The another approach for higher-order non-projective dependency parsing is
proposed by Martins et al. which formalizes the problem of higher-order non-
projective dependency parsing with Integer Linear Programming (ILP) [57].
They reported that the significant improvement is obtained with the ILP ap-
praoch compared to the McDonald’s approximate algorithm.

We use for our system the higher-order projective dependency parsing al-
gorithm proposed by Carreras [8]. In order to model the dependency parser,
as for the structured model in Chapter 4, we use a linear model.

ŷ = arg max
y∈Y

w · Φ(x, y) (5.2)

where w is a parameter vector and Φ(x, y) is a feature vector that represents
the tree y. The tree y is returned if the inner product of the parameter vec-
tor and the corresponding feature vector Φ(x, y) has the highest value among
possible trees.

We factorize the eq. (5.2) as sum of factors as follows.

s(x, y) = ∑
Fk∈F

Fk(x, y) = ∑
Fk∈F

w · Φk(x, y) (5.3)

We use the second-order factor used in Carreras [8] defined as follows.

F2o(h, m, l, x) = w · Φ(h, m, l, x) + w · Φ(h, m, ch, l, x)

+ w · Φ(h, m, cmi, l, x) + w · Φ(h, m, cmo, l, x) (5.4)

where w is a parameter vector, Φ is a feature vector, ch is the child of h in the
span [h...m] that is closest to m, cmi is the child of m in the span [h...m] that is
farthest from m and cmo is the child of m outside the span [h...m] that is farthest
from m.

The features used for our dependency parser are based on those listed in
[42]. In addition, distance features are used. We use shorthand notations in



2 System Architecture 47

order to simplify the feature representations: ’h’, ’d’, ’c’, ’l’, ’p’, ’−1’ and ’+1’
correspond to head, dependent, sibling or grandchild, lemma , POS, left posi-
tion and right position respectively.

First-order Features

Token features: hl, hp, hl+hp, dl, dp and dl+dp.

Head-Dependent features: hp+dp, hl+dl, hl+dl, hl+hp+dl, hl+hp+dp, hl+dl+dp,
hp+dl+dp and hl+hp+dl+dp.

Context features: hp+hp+1+dp−1+dp, hp−1+hp+dp−1+dp, hp+hp+1+dp+dp+1

and hp−1+hp+dp+dp+1.

Distance features: The number of tokens between the head and the depen-
dent.

Second-order Features

Head-Dependent-Grandchild (or Sibling): hl+cl, hl+cl+cp, hp+cl, hp+cp, hp+dp+cp,
dp+cp, dp+cl+cp, dl+cp, dl+cp+cl

2.2 Predicate Identification

As with the dependency parser, we use a linear model for the predicate iden-
tifier as follows.

ŷ = arg max
y∈{true, f alse}

w · Φ(x, y) (5.5)

This model performs binary decisions (true or false). If the model returns
true, the example is identified as a predicate. The features used for the predi-
cate identifier are as follows.

Features for the Predicate Identifier

Token Features The lemma of the predicate and predicate’s head, and pre-
dicted POS of the predicate, and its conjunctions.
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Dependency Label The dependency label between the predicate and predi-
cate’s head.

Child Dep Set The concatenation of the dependency labels of the predicate
dependents.

Lemma in Frame Dictionary Whether the frame dictionary contains the pred-
icate’s lemma (e.g. LEMMAINFRAMEDIC or !LEMMAINFRAMEDIC).

2.3 Joint Model for Predicate Sense Disambiguation and Argu-
ment Role Labeling

For each predicate identified by the predicate identifier described in Section
2.2, the joint model proposed in Chapter 4 detects both a predicate sense and
its argument roles. The score function for a predicate sense p and its argument
roles A is defined as follows.

s(p,A) = ∑
Fk∈F

Fk(x, p,A) (5.6)

=w · ΦP(x, p) + w · ΦG(x, p,A) + w · ∑
a∈A

{ΦA(x, a) + ΦPA(x, p, a)}.

(5.7)

The set of features used for the joint model is the same as that described in
Chapter 4.

3. Experiment

3.1 Experimental Settings

For evaluating our system, we use the CoNLL-2008 Shared Task Dataset which
contains annotations of both syntactic dependencies and predicate-argument
structures. Although the dataset is almost the same as the English data of
the CoNLL-2009 Shared Task Dataset, predicate identification task is included
in evaluation of the CoNLL-2008 Shared Task, which is not in CoNLL-2009
Shared Task.
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For the dependency parser and the predicate identifier training, we used
the averaged Passive-Aggressive Algorithm for learning the dependency parser
and the predicate identifier. For the dependency parser, we set the loss func-
tion ρ(yt, ŷ) as the number of incorrect assignments, and C as 1.0. For the
predicate identifier, we set ρ(yt, y) as 1, and C as 1.0. For the joint model, we
used the all factors (FLp, FLa, FPW and FG) and the same features described in
Chapter 4.

The following metrics are used for evaluation.

Semantic Labeled Precision = # of correct pred. senses+# of correct arg. roles
# predicates+# of returned arg.

Semantic Labeled Recall = # of correct pred. senses+# of correct arg. roles
# predicates+# arguments

Semantic Labeled F1 = 2×Sem. Lab. Precision×Sem. Lab. Recall
Sem. Lab. Precision+Sem. Lab. Recall

Labeled Attachment Score (LAS) the proportion of tokens that are assigned
both the correct head and the correct dependency label.

Labeled Macro Precision (LMP) = 0.5 × Sem.Lab.Precision + 0.5 × LAS

Labeled Macro Recall (LMR) = 0.5 × Sem.Lab.Recall + 0.5 × LAS

Macro F1 harmonic mean of LMP and LMR.

3.2 Results

Table 3.2 shows the experimental results of our system, the top 4 systems [44,
11, 15, 114] in the CoNLL-2008 Shared Task and the subsequent work [112,
100].

Our system outperformed the second best system in the CoNLL-2008 Shared
Task (Ciaramita 2008 [15]), and in terms of predicate identification and its sense
disambiguation, the performance was competitive to the top system. How-
ever, the overall performance (Macro F1) of our system is slightly worse than
Johansson’s system and Zhao’s system because of the relatively low perfor-
mance of argument role labeling. The top two systems (Johansson 2008 and
Zhao 2009) applied greedy feature selection algorithms to obtain the optimal



50 A Partially Joint Approach for Syntactic and Semantic Dependency Parsing

Macro F1 LAS Sem. F1 Pred F1 Arg F1
Johansson 2008 [44] 85.49 89.32 81.65 87.22 79.04
Zhao 2009 [112] 84.93 88.39 80.53 86.80 77.60
Our System 84.51 88.55 80.16 87.03 76.97
Ciaramita 2008 [15] 82.69 87.37 78.00 - -
Che 2008 [11] 82.66 86.75 78.52 85.31 75.27
Titov 2009 [100] 81.80 87.50 76.10 - -
Zhao 2008 [114] 81.44 86.66 76.16 78.26 75.18

Table 5.1. Macro F1 scores of our results and the existing systems. Pred F1
denotes F1 value of predicate identification and word sense disambiguation,
and Arg F1 denotes F1 value of argument role labeling.

feature set for argument role labeling, while the other systems including our’s
are constructed without any feature selection algorithms. Also, the top two
systems used batch learning algorithms for linear models, while our system
uses an online learning algorithm. These facts might affected the system per-
formances. However, the results are promising because our system achieved
the best performances compared to the systems that use no feature selection
algorithms. By applying features selection algorithms as in Johansson (2008)
and Zhao (2009), our system might improve performances.

4. Summary

In this chapter, we proposed a partially joint system for syntactic and seman-
tic dependency parsing. The system consists of three parts: a higher-order
projective dependency parser, a predicate identifier and the structured model
for joint learning of predicate senses and argument roles proposed in Chapter
4. In the experiment, the system achieved the competitive result in terms of
predicate identification and disambiguation compared to the top system, and
the best performance compared to the systems which use no feature selection
algorithms.



Chapter 6

Acquiring Named Entity
Information from Wikipedia

1. Introduction

Named Entities refer to proper nouns (e.g. PERSON, LOCATION and ORGA-
NIZATION), temporal expression and numerical expressions. Since a large
number of named entities exist in the world, unknown expressions appear fre-
quently in texts, and they become causes of errors in text analysis. To cope
with the problem, it is effective to add a large number of named entities to
gazetteers.

Besides, Named Entities play an important role in NLP application such
as Relation Extraction(RE), Information Retrieval(IR) and Question Answer-
ing(QA). For example, in QA systems, questions are given in natural language,
and the systems explore the answer of a question from documents. In the case
of factoid type questions in which the answer of a question is a named entity,
systems first try to identify the NE class of the answer, and explore the NEs
that belong to the identified class, and select the correct answer among them.
If named entity classes of terms are unidentifiable, systems cannot find the
correct answer.

In recent years, NE extraction has been performed with machine learn-
ing based methods. However, such methods cannot cover all of entities in
texts. Therefore, it is necessary to extract entities from existing resources and
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use them to identify more entities. There are many useful resources on the
Web. We focus on Wikipedia1 as the resource for acquiring NEs. Wikipedia
is a free multilingual online encyclopedia and a quickly growing resource. In
Wikipedia, a huge number of named entities are described in titles of articles
with useful information such as HTML tree structure and categories. Each ar-
ticle has anchor texts which refer to other related articles. According to these
characteristics, they could be an appropriate resource for extracting named en-
tities.

Since a specific entity or concept is glossed in a Wikipedia article, we can
regard the named entity extraction problem as a document classification prob-
lem of the Wikipedia article. In traditional approaches for document classifi-
cation, in many cases, documents are classified independently. However, the
Wikipedia articles are hypertexts and they have rich structure that is useful
information for categorization. For example, mentions included in hyperlinks
(we call them anchor text) enumerated in a list tend to refer to the articles that
describe other named entities belonging to the same class. It is expected that
more accurate named entity categorization is accomplished by capturing such
dependencies.

In order to incorporate such dependencies into the graph structure, we de-
fine three types of cliques that correspond to pairs of anchor texts over the tree
structure, and then provide a probabilistic model induced by HTML document
structure.

So far, several statistical models that can capture dependencies between ex-
amples have been proposed. There are two types of classification methods that
can capture dependencies: iterative classification methods [56, 55] or collec-
tive classification methods [29, 97]. In this paper, we use Conditional Random
Fields [50] for named entity categorization in Wikipedia.

1http://wikipedia.org/
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2. Graph-based CRFs for Named Entity Categoriza-
tion in Wikipedia

In this section we describe how to apply CRFs for named entity categorization
in Wikipedia.

In Wikipedia, each article describes a specific entity or concept. Each article
has a heading word, definition, and one or more categories. One possible ap-
proach is to classify each of the NE described in an article into an appropriate
category by exploiting the definition of the article. This process can be done
one by one without considering the relationship with other articles.

On the other hand, articles in Wikipedia are semi-structured texts, and they
have some characteristics which do not exist in unstructured texts. Especially
lists (<UL> or <OL>) and tables (<TABLE>) have important characteristics,
that is, occurrence of elements in them have some sort of dependencies. Figure
6.1 shows an example of a part of HTML document and corresponding tree
structure. The first anchor texts in each list tag (<LI>) tend to be in a same NE
category. This characteristics is useful feature for the categorization task. In
this paper we focus on lists which appear frequently in Wikipedia.

Furthermore, there are anchor texts in articles. Anchor texts are glossed
entity or concept described in the linked page. With this in mind, NE catego-
rization problem can be regarded as NE category labeling problem for anchor
texts in articles. Exploiting dependencies of anchor texts that are induced by
HTML structure, it can be expected to improve categorization accuracy.

We use CRFs for categorization in which anchor texts correspond to ran-
dom variables V in a graph G and a dependency between anchor texts are
treated as edges E in G. In the next section, we describe the concrete way to
construct graphs.

2.1 Constructing graphs based on DOM structure

An HTML document can be regarded as an ordered tree. We define a graph
G on the ordered tree T ordered = (VT , ET ): the nodes VG are anchor texts in
the HTML text; three types of cliques are introduced as the edges EG : Sibling,
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<LI><A><LI> <LI><A> <A><UL><A>Dillard & Clark country rock Carpenters Karen CarpenterSibling CousinRelative

�Dillard & Clark ………country rock…�Carpenters�Karen Carpenter
Figure 6.1. Correspondence between the HTML tree structure and the defined
cliques

Cousin, and Relative. These cliques are introduced to encode NE label depen-
dency on which the two NEs tend to be in a same class, or one NE affects the
other NE label determination.

Then we consider dependent anchor text pairs in Figure 6.1. First，”Dillard
& Clark” and “country rock” have a sibling relation over the tree structure,
and appearing the same element of the list. The elements that have this rela-
tion tend to have a relation in which the following element is an attribute or
a concept of the preceding element. Second, “Dillard & Clark” and “Carpen-
ters” have a cousin relation over the tree structure, and they can be described
that they tend to have a common attribute such as “Artist”. The elements that
have this relation tend to belong to the same class. Third, “Carpenters” and
“Karen Carpenter” have a relation in which “Karen Carpenter” is a sibling’s
grandchild in relation to “Carpenters” over the tree structure. The elements
that have this relation tend to have a relation in which the following element
is a constituent part of the preceding element. It can be thought that the model
can capture dependencies by dealing with anchor texts that dependent each
other as cliques. Then, based on the observations above, we treat anchor text
pairs as cliques satisfying the following three definitions over ordered tree.
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Sibling ES = {(vTi , vTj )|vTi , vTj ∈ VT , d(vTi , cpa(vTi , vTj )) = d(vTj , cpa(vTi , vTj )) = 1, vTj =
ch(pa(vTj , 1), k), vTi = ch(pa(vTi , 1), max{l|l < k})}

Cousin EC = {(vTi , vTj )|vTi , vTj ∈ VT , d(vTi , cpa(vTi , vTj )) = d(vTj , cpa(vTi , vTj )) ≥ 2,

vTi = ch(pa(vTi ), k), vTj = ch(pa(vTj ), k), pa(vTj , d(vTj , cpa(vTi , vTj )) − 1)
= ch(pa(vTj , d(vTj , cpa(vTi , vTj ))), k), pa(vTi , d(vTi , cpa(vTi , vTj )) − 1)
= ch(pa(vTi , cpa(vTi , vTj )), max{l|l < k})}

Relative ER = {(vTi , vTj )|vTi , vTj ∈ VT , d(vTi , cpa(vTi , vTj )) = 1, d(vTj , cpa(vTi , vTj )) = 3,

pa(vTj , 2) = ch(pa(vTj , 3), k), vTi = ch(pa(vTi , 1), max{l|l < k})}

Figure 6.2. The definitions of sibling, cousin and relative cliques, where ES,
EC, ER correspond to sets which consist of anchor text pairs that have sibling,
cousin and relative relations respectively.

Consider ordered tree T ordered = (VT , ET ), where VT and ET are nodes
and edges over the tree. Let distance d(vTi , vTj ) be the number of edges be-
tween vTi , vTj ∈ VT , pa(vTi , k) be k-th generation ancestor of vTi , ch(vTi , k) be
vTi ’s kth child, cpa(vTi , vTj ) be common ancestor of vTi , vTj ∈ VT . Then we de-
fine three relations as cliques. The definitions of cliques are shown in Figure
6.2.

Note that the defined cliques are restricted to pairs of nearest vertices be-
cause of computational cost. Consider a case in which a graph consist of 8
anchor texts and each pair has Cousin relation, then the number of cliques
increases exponentially.

The pairs of vertices satisfying the definitions are treated as cliques . That
is, C = ES ∪ EC ∪ ER ∪ V.

2.2 Model

We introduce potential functions for cliques to define conditional probability
distribution over CRFs. Conditional distribution over label set y given obser-
vation set x are given as:

p(y|x) =
1

Z(x)

 ∏
(vi,vj)∈ES,EC,ER

ΦSCR(yi, yj, x)

 (
∏

vi∈V
ΦV(yi, x)

)
(6.1)
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where ΦSCR(yi, yj) are the potentials over sibling, cousin, and relative edges,
ΦV(yi, x) are the potentials over the nodes, and Z(x) is the partition function.
The potentials ΦSCR(yi, yj) and ΦV(yi, x) factorize according to the features fk

and weights λk as:

ΦSCR
(
yi, yj

)
= exp

(
∑
k

λk fk(yi, yj)

)
(6.2)

ΦV (yi, x) = exp

(
∑
k′

λ′
k f ′k(yi, x)

)
(6.3)

fk(yi, yj) captures co-occurrences between labels, where k ∈ {(yi, yj)|Y × Y}
corresponds to the particular element of the Cartesian product of the label sets
Y . f ′k(yi, x) captures co-occurrences between label yi ∈ Y and observation
features, where k′ corresponds to the particular element of the label set and
observed features.

The weights of a CRF, Λ = {λk, . . . , λ′
k, . . .} are estimated to maximize the

conditional log-likelihood of the graph in a training dataset D = {(x(i), y(i))}N
i=1.

The log-likelihood function can be defined as follows:

Lλ =
N

∑
d=1

[ ∑
(vi,vj)∈E(d)

S ,E(d)
C ,E(d)

R

∑
k

λk fk(y(d)
i , y(d)

j )

+ ∑
vi∈V(d)

∑
k′

λk′ fk′(y(d)
i , x(d)) − logZ(x(d))]

− ∑
k

λ2
k

2σ2 − ∑
k′

λ2
k′

2σ2 (6.4)

where the last two terms are due to the Gaussian prior [13] used to reduce
overfitting. Quasi-Newton methods, such as L-BFGS [52] can be used for max-
imizing the function.

2.3 Tree-based Reparameterization

Since the proposed model may include loops, it is necessary to introduce an
approximation to calculate marginal probabilities. We use Tree-based Repa-
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Named Entity Classes SIZE
NAME EVENT 121

PERSON 3315
UNIT 15
LOCATION 1480
FACILITY 2449
TITLE 42
ORG 991
VOCATION 303
NATURAL OBJ 1132
PRODUCT 1664
NAME OTHER 24

TIMEX/NUMEX TIMEX/NUMEX 2749
OTHER 1851
ALL 16136

Table 6.1. The number of anchor texts per NE-class in evaluation datasets.

rameterization (TRP) [105] for approximate inference. TRP enumerates a set
of spanning trees Υ = {T } from the graph. Then, inference is performed by
applying an exact inference algorithm such as Belief Propagation to each of the
spanning trees, and updates of marginal probabilities is continued until they
converge.

3. Experiment

In this section, we report the experimental results of named entity extraction
from Wikipedia using the proposed model.

3.1 Dataset

Our dataset is a random selection of 2300 articles from the Japanese version of
Wikipedia as of October 2005. All anchor texts appearing under HTML <LI>

tags are hand-annotated with NE class label. We use the Extended Named
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SCR SC SR CR
# loopy examples 318 (36%) 324 (32%) 101 (1%) 42 (2%)
# linear chain or tree examples 555 (64%) 631 (62%) 2883 (27%) 1464 (54%)
# one node examples 0 (0%) 60 (6%) 7800 (72%) 1176 (44%)
# total examples 873 1015 10784 2682
# nodes per example on avg. 18.5 15.8 1.5 6.0

S C R I
# loopy examples 0 (0%) 0 (0%) 0 (0%) 0 (0%)
# linear chain or tree examples 2913 (26%) 1631 (54%) 237 (2%) 0 (0%)
# one node examples 8298 (74%) 1380 (46%) 15153 (98%) 16136 (100%)
# total examples 11211 3011 15390 16136
# nodes per example on avg. 1.4 5.4 1.05 1

Table 6.2. The dataset details constructed from each model.

Entity Hierarchy (ENE) [83] as the NE class labeling guideline, but reduce the
number of classes to 13 from the original 200+ by ignoring fine-grained cate-
gories and nearby categories in order to avoid data sparseness. The correspon-
dence of the ENE classes and the number of anchors in the dataset is shown in
Table 6.1. Also, we eliminate examples that consist of less than two nodes in
the SCR model. There are 16136 anchor texts with 14285 NEs. The number of
Sibling, Cousin and Relative edges in the dataset are |ES| = 4925, |EC| = 13134
and |ER| = 746 respectively.

3.2 Experimental Settings

The aims of experiments are the two-fold. Firstly, we investigate the effect of
each type of cliques. The several graphs are composed with the three sorts of
edges. We also compare the graph-based models with a node-wise method –
just MaxEnt method not using any edge dependency. Secondly, we compare
the proposed method by CRFs with a baseline method by Support Vector Ma-
chines (SVMs) [104].

The experimental settings of CRFs and SVMs are as follows.
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CRFs

In order to investigate which type of clique boosts classification performance,
we perform experiments on several CRFs models that are constructed from
combinations of defined cliques. Resulting models of CRFs evaluated on this
experiments are SCR, SC, SR, CR, S, C, R and I (independent). Figure 6.3
shows representative graphs of the eight models. When the graph are dis-
connected by reducing the edges, the classification is performed on each con-
nected subgraph. We call it an example. We name the examples according the
graph structure: ”loopy examples” are subgraphs including at least one cy-
cle; ”linear chain or tree examples” are subgraphs including not a cycle but
at least an edge; ”one node examples” are subgraphs without edges. Table 1
shows the distribution of the examples of each model. Since SCR, SC, SR and
CR model have loopy examples, TRP approximate inference is necessary. To
perform training and testing with CRFs, we use GRMM [90] with TRP. We set
the Gaussian Prior variances for weights as σ2 = 10 in all models.

SC modelCC C CS SSSCSCR modelCC C CS SSSRRC SR model
S SSSRR CR modelCC C CRRC

S model
S SSS C modelCC C CC R modelRR I model

Figure 6.3. An example of graphs constructed by combination of defined
cliques
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types feature SVMs CRFs
observed definition (bag-of-words)

√ √
(V)

features heading of articles
√ √

(V)
heading of articles (morphemes)

√ √
(V)

categories articles
√ √

(V)
categories articles (morphemes)

√ √
(V)

anchor texts
√ √

(V)
anchor texts (morphemes)

√ √
(V)

parent tags of anchor texts
√ √

(V)
last header of anchor texts

√ √
(V)

last header of anchor texts (morphemes)
√ √

(V)
label between-label feature

√
(S, C, R)

features previous label
√

Table 6.3. Features used in experiments. ”
√

” means that the corresponding
features are used in classification. The V, S, C and R in CRFs column corre-
sponds to the node, sibling edges, cousin edges and relative edges respectively.

SVMs

We introduce two models by SVMs (model I and model P). In model I, each an-
chor text is classified independently. In model P, we ordered the anchor texts in
a linear-chain sequence. Then, we perform a history-based classification along
the sequence, in which j − 1-th classification result is used in j-th classification.
To perform training and testing with SVMs, we use TinySVM 2 with a linear-
kernel, and one-versus-rest is used for multi-class classification. We used the
cost of constraint violation C = 1.0.

Features for CRFs and SVMs

The features used in the classification with CRFs and SVMs are shown in Table
6.3. Japanese morphological analyzer MeCab 3 is used to obtain morphemes.

2http://www.chasen.org/∼taku/software/TinySVM/
3http://mecab.sourceforge.net/
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CRFs SVMs
NE CLASS N C CR I R S SC SCR SR I P
PERSON 3315 .7419 .7429 .7453 .7458 .7507 .7533 .7981 .7515 .7383 .7386
TIMEX/NUMEX 2749 .9936 .9944 .9940 .9936 .9938 .9931 .9933 .9940 .9933 .9935
FACILITY 2449 .8546 .8541 .8540 .8516 .8500 .8530 .8495 .8495 .8504 .8560
PRODUCT 1664 .7414 .7540 .7164 .7208 .7130 .7371 .7418 .7187 .7154 .7135
LOCATION 1480 .7265 .7239 .6989 .7048 .6974 .7210 .7232 .7033 .7022 .7132
NATURAL OBJ 1132 .3333 .3422 .3476 .3513 .3547 .3294 .3304 .3316 .3670 .3326
ORG 991 .7122 .7160 .7100 .7073 .7122 .6961 .5580 .7109 .7141 .7180
VOCATION 303 .9088 .9050 .9075 .9059 .9150 .9122 .9100 .9186 .9091 .9069
EVENT 121 .2740 .2345 .2533 .2667 .2800 .2740 .2759 .2667 .3418 .3500
TITLE 42 .1702 .0889 .2800 .2800 .3462 .2083 .1277 .3462 .2593 .2642
NAME OTHER 24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0690 .0000
UNIT 15 .2353 .1250 .2353 .2353 .2353 .1250 .1250 .2353 .3333 .3158
ALL 14285 .7846 .7862 .7806 .7814 .7817 .7856 .7854 .7823 .7790 .7798
ALL (no articles) 3898 .5476 .5495 .5249 .5274 .5272 .5484 .5465 .5224 .5278 .5386

Table 6.4. Comparison of F1-values of CRFs and SVMs.

3.3 Evaluation

We evaluate the models by 5 fold cross-validation. Since the number of exam-
ples are different in each model, the datasets are divided taking the examples
– namely, connected subgraphs – in SCR model. The size of divided five sub-
data are roughly equal. We evaluate per-class and total extraction performance
by F1-value.

3.4 Results

Table 3 shows the classification accuracy of each model. The second column
“N” stands for the number of nodes in the gold data. The second last row
“ALL” stands for the F1-value of all NE classes. The last row “ALL (no ar-
ticle)” stands for the F1-value of all NE classes which have no gloss texts in
Wikipedia.

In terms of results with SVMs, only the results with C = 1.0 are shown
since we achieved the best results with the setting.
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Relational vs. Independent

Among the models constructed by combination of defined cliques, the best
F1-value is achieved by CR model, followed by SC, SCR, C, SR, S, R and I. We
performed McNemar paired test on labeling disagreements between CR model
of CRFs and I model of CRFs. More precisely, at first, we count the number of
examples (a) correctly classified by only m1, (b) correctly classified by only m2.
Next we test the null hypothesis H0, namely (a)=(b). If the result is contained
in rejection region p < 0.01, then it is determined that the two models have
significant difference. We compared the CR model and I model, and the dif-
ference was significant (p < 0.01). These results show that considering depen-
dencies work positively in obtaining better accuracy than classifying indepen-
dently. The Cousin cliques provide the highest accuracy improvement among
the three defined cliques. The reason may be that the Cousin cliques appear
frequently in comparison with the other cliques, and also possess strong de-
pendencies among anchor texts. As for PERSON, better accuracy is achieved
in SC and SCR models. In fact, the PERSON-PERSON pairs frequently ap-
pear in Sibling cliques (435 out of 4925) and in Cousin cliques (2557 out of
13125) in the dataset. Also, as for PRODUCT and LOCATION, better accu-
racy is achieved in the models that contain Cousin cliques (C, CR, SC and SCR
model). 1072 PRODUCT-PRODUCT pairs and 738 LOCATION-LOCATION
pairs appear in Cousin cliques. “All (no article)” row in Table 3 shows the F1-
value of nodes which have no gloss texts. The F1-value difference between CR
and I model of CRF in “ALL (no article)” row is larger than the difference in
“All” row. The fact means that the dependency information helps to extract
NEs without gloss texts in Wikipedia.

CRFs vs. SVMs

The best model of CRFs (CR model) outperforms the best model of SVMs (P
model). We performed McNemar paired test on labeling disagreements be-
tween CR model of CRFs and P model of SVMs. The difference was signif-
icant (p < 0.01). In the classes having larger number of examples, models
of CRFs achieve better F1-values than models of SVMs. However, in several
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classes having smaller number of examples such as EVENT and UNIT, models
of SVMs achieve significantly better F1-values than models of CRFs.

What type of edge features contribute?

Although the potential function of the proposed model for edges capture only
combinations of pairs of labels, the model can deal with more sparse features
in which a particular observation features is tied with a pair of labels. That
is, the edge potential function ΦSCR of the proposed model is defined by the
following.

ΦSCR = exp

(
∑
k

λk fk(yi, yj, x)

)
It is unclear that what kinds of observation features xl ∈ x should be selected
for the potential function ΦSCR in order to determine two labels yi, yj. The ob-
servation features that capture relations between both anchors might appro-
priate for the edge features. However, among the features in Table 6.3, words
and categories in articles should be included in the corresponding node poten-
tials. Because, if the number of nodes is 1, then such manner is identical to that
of document classification. The possible edge features are “relation of anchors
over the structure” and “relation of anchors in terms of contents”. Among
these, including “relation of anchors over the structure” features for ΦSCR

might not contribute classification performance, because relations such as enu-
meration and back and forth are considered in Cousin and Sibling cliques, and
activated as edge features. A possible features of “relation of anchors in terms
of contents” is that, for instance, shared categories between two articles. If the
two articles share categories, these might tend to have the same named entity
category.

In order to investigate whether shared category features contribute cate-
gorization accuracy, we experimented the two settings: we included shared
category features for one, and the other is not. Both are experimented with
CRFs (CR model). As a result, we can not achieved improvement of classifica-
tion accuracy by including shared category features (0.7797 (incl.) and 0.7862
(not incl.) of F1). A possible reason is that since Wikipedia categories are also
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Figure 6.4. Precision-recall curve of the CR model. The left curve is drawn
using anchors with articles, and the right figure is drawn using only anchors
without articles.

used for node features and these are duplicated, the features did not contribute
the performances.

Although it might be possible to improve categorization accuracy by find-
ing informative features of a pair of anchors, in order to capture dependencies
over list structures, it might enough to use naive label pair features.

Filtering NE Candidates using Marginal Probability

If we construct a named entity dictionary with the proposed model, it is desir-
able that the construction is performed with less human cost. For this reason,
we investigate whether marginal probabilities p(yi|x) of CRFs can be exploited
for filtering named entity candidates. Figure 6.4 shows the precision-recall
curve obtained by thresholding the marginal probability of the MAP estima-
tion in the CR models. For cases of anchors with articles, we achieved 97% of
precision and 75% of recall with the threshold p = 0.968. In contrast, if we re-
strict the anchors without articles, since we have less clues for categorization,
we obtained low recall compare to the case of anchors with articles.
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4. Related Work

Wikipedia has become a popular resource for NLP. Bunescu and Pasca used
Wikipedia for detecting and disambiguating NEs in open domain texts [6].
Strube and Ponzetto explored the use of Wikipedia for measuring Semantic
Relatedness between two concepts [86], and for Coreference Resolution [74].

Several CRFs have been explored for information extraction from the web.
Tang et al. proposed Tree-structured Conditional Random Fields (TCRFs) [96]
that capture hierarchical structure of web documents. Zhu et al. proposed
Hierarchical Conditional Random Fields (HCRFs) [115] for product informa-
tion extraction from Web documents. TCRFs and HCRFs are similar to our
approach described in section 4 in that the model structure is induced by page
structure. However, the model structures of these models are different from
our model.

There are statistical models that capture dependencies between examples.
There are two types of classification approaches: iterative [56, 55] or collective
[29, 97]. Lu et al. [55, 56] proposed link-based classification method based on
logistic regression. This model iterates local classification until label assign-
ments converge. The results vary from the ordering strategy of local classifi-
cation. In contrast to iterative classification methods, collective classification
methods directly estimate most likely assignments. Getoor et al. proposed
Probabilistic Relational Models (PRMs) [29] which are built upon Bayesian
Networks. Since Bayesian Networks are directed graphical models, PRMs can-
not model directly the cases where instantiated graph contains cycles. Taskar
et al. proposed Relational Markov Networks (RMNs) [97]. RMNs are the spe-
cial case of Conditional Markov Networks (or Conditional Random Fields) in
which graph structure and parameter tying are determined by SQL-like form.

As for the marginal probability to use as a confidence measure shown in
Figure 6.4, Peng et al. [73] has applied linear-chain CRFs to Chinese word seg-
mentation. It is calculated by constrained forward-backward algorithm [22],
and confident segments are added to the dictionary in order to improve seg-
mentation accuracy.
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5. Summary

In this chapter, we proposed a method for categorizing NEs in Wikipedia. We
defined three types of cliques that are constitute dependent anchor texts in
construct CRFs graph structure, and introduced potential functions for them
to reflect classification. The experimental results show that the effectiveness
of capturing dependencies, and proposed CRFs model can achieve significant
improvements compare to baseline methods with SVMs. The results also show
that the dependency information from the HTML tree helps to categorize enti-
ties without gloss texts in Wikipedia. The marginal probability of MAP assign-
ments can be used as confidence measure of the entity categorization. We can
control the precision by filtering the confidence measure as PR curve in Figure
6.4.



Chapter 7

Exploiting Named Entity
Information for Predicate-Argument
Structure Analysis

1. Introduction

In this chapter we discuss use of named entity information for predicate-argument
structure analysis. As we described previously, named entities refer to proper
nouns (e.g. PERSON, LOCATION and ORGANIZATION), time expressions or
numeric expressions. Since a large number of named entities exist, unknown
expressions appear in texts. Their lexical information do not contribute the
analysis, hence it is necessary to generalize them.

Also, use of named entity information for predicate-argument structure
analysis can be seen as considering selectional preferences. Selectional Pref-
erences (SPs) capture the fact that predicates prefer arguments in a certain se-
mantic class. For example, a verb drive prefers human as Agent, and vehicle as
Theme. This preferences can be incorporated into models by assigning named
entity classes to nominal and named entities in sentences. Therefore, introduc-
ing classes of entities can be seen as capturing selectional preferences.

Although use of named entity information for constituent-based predicate-
argument structure analysis has been explored [87, 76], there is no research
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of dependency-based work that focused on named entity information. One
of our aim is to investigate what types of features in terms of named entities
are effective for dependency-based predicate-argument structure analysis. In
addition, we also investigate global features in terms of named entity tags of
arguments, since this type of features has not been explored by previous work.

2. Named Entity Tags

In this chapter, we use the tagsets used in the CoNLL-2003 Shared Task (named
entity recognition) [82] and the BBN Pronoun Coreference and Named Entity
Type Corpus [107] to generalize named entities. We refer to them as CoNLL-
2003 tagset and BBN tagset respectively.

In the CoNLL-2003 tagset, four types of tags are defined: PERSON (PER),
LOCATION (LOC), ORGANIZATION (ORG), MISCELLANEOUS (MISC). The
MISCELLANEOUS type include entities that do not belong to the previous
three groups.

The BBN tagset is more fine-grained and widely covers entities. The tagset
includes not only proper nouns but also nominal nouns. For instance, the word
“researcher” is not covered by the CoNLL-2003 tagset, however, it is treated as
an named entity of the type “PERSON DESCRIPTOR”. The types of named
entities defined in the BBN corpus are Person, Facility, Organization, GPE, Lo-
cation, Nationality, Product, Event, Work of Art, Law, Language and Contact-
Info, and the types of nominal entities are Person, Facility, Organization, GPE,
Product, Plant, Animal, Substance, Disease and Game. Also the BBN tagset
defines seven numeric types: Date, Time, Percent, Money, Quantity, Ordinal
and Cardinal.

If the named entity consists of two or more words, it is necessary to repre-
sent such chunk by the tags. We represent such chunks using IOB tag encod-
ing. “B” of IOB denote the first word of the chunk. “I” means that the word is
inside a chunk. A word with tag “O” is not part of a chunk. Table 7.1 shows
an example annotation of both the CoNLL-2003 tagset and the BBN tagset.
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Table 7.1. Examples of the CoNLL-2003 and the BBN Named Entity Tags
POS CoNLL-2003 BBN

Honda NNP B-ORG B-E:ORGANIZATION:CORPORATION
Motor NNP I-ORG I-E:ORGANIZATION:CORPORATION
Co. NNP I-ORG I-E:ORGANIZATION:CORPORATION
’s POS O O
sales NNS O O
of IN O O
domestically RB O O
built VBN O O
vehicles NNS O B-E:PRODUCT DESC:VEHICLE
plunged VBD O O
21.7 CD O B-N:PERCENT
% NN O I-N:PERCENT
from IN O O
a DT O B-T:DATE:DATE
year NN O I-T:DATE:DATE
earlier RBR O I-T:DATE:DATE
. . O O
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Figure 7.1. Undirected graphical model representation of the joint model.

3. Model

In order to investigate effects of generalizing named entities, we use the struc-
tured model described in Chapter 4 which identifies a predicate sense and its
argument roles simultaneously. Figure 7.1 shows the structured models.

The black squares in Figure 7.1 are factors which provide scores of label as-
signments, and the score function for predicate-argument structures is defined
by the sum of the factor scores.

s(p,A) = ∑
Fk∈F

Fk(x, p,A) (7.1)

=w · ΦP(x, p) + w · ΦG(x, p,A) + w · ∑
a∈A

{ΦA(x, a) + ΦPA(x, p, a)}.

(7.2)

4. Additional Named Entity Features for the Model

In addition to the features described in Chapter 4, the following features are
added to the factors FPA and FG of the structured model.
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Named Entity Features for the Predicate-Argument Pairwise Factor FPA

Named Entity Tags The named entity tag of the argument (e.g. B-ORG). This
feature generalize the lexical information of the named entity.

Named Entity Tag-Dependency Path Conjunctions The conjunctions of named
entity tag and dependency path (e.g. B-ORG &

−−→
OBJ). This feature cap-

tures the type of an argument and its syntactic position.

Named Entity Features for the Global Factor FG

Named Entity Tag Sequences of Core Arguments The sequence of core argu-
ment labels and corresponding named entity tags (e.g. A0:I-PER&PRED&A1:B-
ORG). This feature non-locally captures types in terms of all core argu-
ments, and can be seen capturing non-local selectional preferences. The
feature is not included the predicate sense information to avoid it being
sparse.

5. Experiment

5.1 Experimental Settings

We use the CoNLL-2008 Shared Task data for experiments. The named entity
tagsets used in this experiments are the CoNLL-2003 Shared Task tagset and
the BBN Pronoun Coreference and Entity Type Corpus tagset. These tags are
given in the CoNLL-2008 Shared Task Open Challenge data, and are annotated
by a state-of-the-art sequential tagger proposed by Ciaramita and Altun [14].
The dependency parses used in this experiments are outputs of a history-based
parser, Malt Parser, given in the open challenge data of the CoNLL-2008 Shared
Task, and outputs of a higher-order projective dependency parser proposed by
Carreras [8], and the gold parse trees.

One of the test data used for experiments are Wall Street Journal which a
part of the Penn TreeBank, and it is the same domain with the training data
(in-domain). The other data is taken from the Brown Corpus (out-of-domain).
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For training and testing of the model, we used the all factors (FP, FA, FPA

and FG). For learning of the joint model, the loss function ρ(yt, y′) of the
Passive-Aggressive Algorithm was set to the number of incorrect assignments
of a predicate sense and argument roles. Also, the number of iterations of the
model used for testing was selected based on the performance on the develop-
ment data.

5.2 Distributions of Named Entity Tags in the Data

It is important to investigate how many arguments are tagged a particular
named entity tag. Table 7.2 shows the coverages of the named entity tags of
both CoNLL-2003 tagset and BBN tagset in the training data. The overall ra-
tios of arguments tagged with a particular named entity tags are 8.33% on the
CoNLL-2003 tagset and 22.71% on the BBN tagset. The difference is because
the BBN tagset covers named entities as well as nominal entities (some tags
of nominal entities have relatively high coverage: PER DESC for 6.88% and
ORG DESC for 3.83%). Though the same types of named entity types such as
PERSON and ORGANIZATION are included in the both tagsets, the ratios of
the both are slightly different. A possible reason is that the named entity tags
are automatically annotated by taggers, not the gold tags, the taggers might
annotated NE labels inconsistently.

5.3 Results

Table 7.3 shows the performances of core argument role labeling. The results
of the column +NEPA denote the F1 values of the results with NE features for
FPA, and the results of the column +NEPA&G denote the F1 values of the results
with NE features for both FPA and FG.

By introducing NE features for FPA, we achieved slightly better perfor-
mances compared to the results without NE features. Furthermore, adding
the global feature for FG provided performance improvements on both WSJ
(+0.98) and on Brown (+1.74), especially the significant improvement is achieved
for A0 in Brown (+3.30). The results suggest that the proposed global feature
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Table 7.2. CoNLL-2003 and BBN named entity tag distribution of arguments
in the training data

CoNLL NE Tag Ratio #
ORG 3.31% 13440
PER 3.31% 13438
LOC 1.00% 4066
MISC 0.71% 2877
Coverage 8.33% 33821/406169

BBN NE Tag Ratio #
PER DESC 6.88% 27954
ORG 4.63% 18809
ORG DESC 3.83% 15541
PERSON 2.67% 10845
MONEY 0.77% 3132
GPE 0.66% 2695
PERCENT 0.65% 2634
CARDINAL 0.42% 1734
DATE 0.39% 1594
NORP 0.39% 1572
... ... ...
Coverage 22.71% 92258/406169

is effective for predicate-argument structure analysis especially for core argu-
ments of verbs.

6. Related Work

Use of named entity information for predicate-argument structure analysis has
been explored by some of previous work, all of which are constituent-tree
based approaches. Surdeanu et al. [87] reported that named entity information
contributed performance improvements of the constituent-based predicate-
argument structure analyser. In this work, seven types of named entities (PER-
SON, ORGANIZATION, LOCATION, MONEY, PERCENT, TIME and DATE)
are used. These named entity tags are encoded by the two ways: use named
entity tag of the content word (argument candidate), use 7 types of binary fea-
tures which are activated when the phrase contains the corresponding named
entities.

Pradhan et al. [76] followed the work of Surdeanu et al. [87]. They re-
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WSJ Brown
N w/o NE +NEPA +NEPA&G N w/o NE +NEPA +NEPA&G

VB*-A0 3509 92.15 92.44 93.04 551 87.23 87.77 90.53
VB*-A1 4844 92.83 93.14 93.86 669 84.30 84.37 85.22
VB*-A2 1085 85.61 86.71 86.83 145 69.18 69.62 68.34
VB*-A3 169 79.74 81.03 81.01 12 36.36 33.33 31.58
VB*-A4 99 88.78 88.33 88.33 15 47.62 75.00 60.87
VB*-A5 5 88.89 88.89 88.89 - - - -
Total 9711 91.53 91.93 92.51 1392 83.09 84.15 84.83

Table 7.3. Impact of Named Entity features for argument role labeling of verb
predicates (F1 of core argument labels)

ported that named entity information contributed a part of modifier argument
roles such as location (AM-LOC) and temporal (AM-TMP), the performance
improvements of them are 59 → 68 and 78.8 → 83.4 respectively. However,
the overall performance was not significant compared to the result without
named entity information.

Some of work have been used selectional preferences of nouns, not named
entities. Zapirain et al. (2007) [110] exploited WordNet as a resource of selec-
tional preferences for predicate-argument structure analysis. They extracted
word categories from WordNet (e.g. food → nutrient) and use it as a feature
for the Maximum Entropy Markov Model (MEMM) based classifier. In the ex-
periments, the performances of some argument role label assignment (A3 of
core arguments, and two modifier arguments of location (LOC) and temporal
(TMP) ) are improved, however, it has no significant difference compared to
the results without selectional preferences features.

7. Summary

In this chapter, we proposed a new approach of introducing named entity in-
formation for predicate-argument structure analysis. More precisely, in addi-
tion to the named entity features used in the previous work, we incorporated
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the global feature that non-locally captures types in terms of all core arguments
of the predicate, and can be seen capturing non-local selectional preferences.
For training and testing, we used a structured model that can deal with global
features. In the experiments, the proposed global feature contributed perfor-
mance improvements especially for core arguments of verbs.





Chapter 8

Conclusion

This chapter summarizes this dissertation and gives future directions we in-
tend to explore.

1. Summary

This dissertation has explored dependency-based predicate-argument struc-
ture analysis.

In Chapter 4, we proposed a structured model that captures dependen-
cies underlying in predicate-argument structures – non-local dependencies be-
tween arguments and inter-dependencies between a predicate and its argu-
ments. In order to capture both types of dependencies simultaneously, we
introduced four types of factors including pairwise factor that captures local
dependencies between a predicate and one of its arguments, and global factor
that captures non-local dependencies between arguments. We also described
an inference algorithm and a large-margin learning algorithm which handle
both local features and global features. We conducted experiments on ana-
lyzing predicate-argument structures in multiple languages, and the model
achieved performance improvements on both predicate sense disambiguation
and argument role labeling, and competitive results compared to the state-of-
the art systems which use time-consuming feature selection algorithms.

Using the structured model described in Chapter 4, we constructed a syn-
tactic and semantic dependency parser in Chapter 5. The system consists of
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three parts: a higher-order projective dependency parser, a predicate identi-
fier and the structured model. The system achieved the competitive result in
terms of predicate identification and sense disambiguation, and the best per-
formance compared to the systems which use no feature selection algorithms.

From Chapter 6 to 7, this dissertation had focused on named entities – ac-
quiring named entity information from the Web and exploiting it for predicate
argument structure analysis. We selected Wikipedia which is an encyclopedia
on the Web for acquiring named entities, and proposed CRF-based structured
models that captures characteristics of list structures in articles. The experi-
mental results showed that capturing characteristics of list structures improves
classification accuracy, and marginal probabilities provided by CRFs can be
used as a confidence measure for filtering named entity candidates.

Finally in Chapter 7, we discussed use of named entity information for
predicate argument structure analysis. In addition to the features used in the
previous work, we explored use of the global feature that non-locally captures
types in terms of all core arguments is introduced to the model. In the experi-
ments, global named entity information of predicate-argument structures con-
tributed performance improvements especially for core arguments of verbs.

2. Future Directions

2.1 Incorporating Lexical Knowledge

We used named entity information as a knowledge for predicate-argument
structure analysis in Chapter 7. However, since arguments are not only named
entities but also nouns, it is necessary to incorporate various other informa-
tion to deal with lexical sparseness of other words except for named entities.
In order to treat lexical sparseness of nouns, the work of Zapirain et al. [110]
used WordNet categories as additional features for predicate-argument struc-
ture analysis. However, they reported that WordNet features did not provide
significant improvements compared to the results without the features. Also,
one of their successive work [111] used selectional preferences for predicate-
argument structure analysis. The work explored various selectional preference
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measures, and these preferences contributed improvements over the model
with only lexical information. However, they used these preference models
directly for labeling argument roles, hence how to incorporate these prefer-
ences to machine learning-based predicate-argument structure models is still
an open problem.

2.2 Incorporating Unlabeled Data

Predicate-argument structure analysis suffers from data sparseness. Although
the structured model proposed in Chapter 4 is a supervised model which only
uses labeled data, it is expensive to prepare sufficient labeled data for each
predicate. In recent years, a number of work have been proposed methods for
incorporating unlabeled data (semi-supervised learning), and these methods
have been applied for word sense disambiguation [1], sequential labeling tasks
such as syntactic chunking, POS tagging, and named entity recognition [3, 2,
93, 94], and dependency parsing [47, 95].

Lately, some work have been explored semi-supervised methods for predicate-
argument structure analysis. Fürstenau et al. [27] proposed a method for semi-
supervised predicate-argument structure analysis where training samples are
expanded from seed training samples using similarity measures of predicate-
argument structures. They reported performance improvements by expanding
training data with the method, however, they used a very small samples for
training and the resulting model has poor performances, hence the resulting
model can not be used for real applications. Deschacht and Moens [25] pro-
posed latent variable models for predicate-argument structure analysis. They
used word distributions that can be obtained from the models as new features
for supervised discriminative models. The approach achieved significant im-
provements compared to an approach without information of unlabeled data,
however, this type of incorporation of information in terms of unlabeled data
is the most naive approach, and as Suzuki et al. [94, 95], it might be pos-
sible to combine models trained on labeled and unlabeled data for accurate
predicate-argument structure analysis. Therefore, there is still room for fur-
ther improvements of predicate-argument structure analysis using unlabeled
data.
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[99] Mariona Taulé, Maria Antònia Martı́, and Marta Recasens. AnCora:
Multilevel Annotated Corpora for Catalan and Spanish. In Proceedings
of the Sixth International Conference on Language Resources and Evaluation
(LREC-2008), Marrakesh, Morroco, 2008.

[100] Ivan Titov, James Henderson, Paola Merlo, and Gabriele Musillo. Online
graph planarisation for synchronous parsing of semantic and syntactic
dependencies. In Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI-09), 2009.

[101] Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. Joint
learning improves semantic role labeling. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational Linguistics (ACL-2005),
2005.

[102] Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. A
global joint model for semantic role labeling. Computational Linguistics,
34(2), 2008.

[103] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and
Yasemin Altun. Support vector machine learning for interdependent and
structured output spaces. In Proceedings of the 21th International Confer-
ence on Machine Learning (ICML-2004), 2004.

[104] Vladimir Vapnik. Statistical Learning Theory. Wiley Interscience, 1998.



92 REFERENCES

[105] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. Tree-based repa-
rameterization framework for analysis of sum-product and related algo-
rithms. IEEE Transactions on Information Theory, 45(9):1120–1146, 2003.

[106] Rui Wang and Yi Zhang. Recognizing textual relatedness with predicate-
argument structures. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing (EMNLP-2009), 2009.

[107] Ralph Weischedel and Ada Brunstein. BBN pronoun coreference and
entity type corpus, 2005.

[108] Dekai Wu and Pascale Fung. Can semantic role labeling improve SMT?
In Proceedings of the 13th Annual Conference of the European Association for
Machine Translation (EAMT-2009), 2009.

[109] Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis
with support vector machines. In Proceedings of the Eighth International
Workshop on Parsing Technology (IWPT-2003), 2003.

[110] Benat Zapirain, Eneko Agirre, and Lluı́s Márquez. UBC-UPC: Sequential
srl using selectional preferences. an approach with maximum entropy
markov models. In Proceedings of the 4th International Workshop on Seman-
tic Evaluations (SemEval-2007), 2007.

[111] Benat Zapirain, Eneko Agirre, and Lluı́s Márquez. Generalizing over
lexical features: Selectional preferences for semantic role classification.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing
(ACL-IJCNLP-2009), 2009.

[112] Hai Zhao, Wenliang Chen, and Chunyu Kit. Semantic dependency pars-
ing of nombank and propbank: An efficient integrated approach via a
large-scale feature selection. In Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP-2009), 2009.

[113] Hai Zhao, Wenliang Chen, Chunyu Kit, and Guodong Zhou. Multilin-
gual dependency learning: A huge feature engineering method to se-



REFERENCES 93

mantic dependency parsing. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning (CoNLL-2009), 2009.

[114] Hai Zhao and Chunyu Kit. Parsing syntactic and semantic dependencies
with two single-stage maximum entropy models. In Proceedings of the
Twelfth Conference on Computational Natural Language Learning (CoNLL-
2008), 2008.

[115] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. Simul-
taneous record detection and attribute labeling in web data extraction.
In Proceedings of ACM SIGKDD, 2006.

[116] Jun Zhu, Eric P. Xing, and Bo Zhang. Priman sparse max-margin markov
networks. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2009.



94 REFERENCES

List of Publications

Journal Papers

1. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “A Structured
Prediction Model for Joint Learning of Predicate Senses and Argument
Roles”. Transactions of the Japanese Society for Artificial Intelligence,
Vol. 25, No.2, pp.252-261, January 2010. (in Japanese)

2. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “Graph-structured
Conditional Random Fields for Named Entity Categorization in Wikipedia”.
Transactions of the Japanese Society for Artificial Intelligence, Vol. 23,
No. 4, pp.245-254, April 2008. (in Japanese)

International Conference/Workshop Papers

1. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “Multilingual
Syntactic-Semantic Dependency Parsing with Three-Stage Approximate
Max-Margin Linear Models”. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning (CoNLL-2009), pp.
114-119, Boulder, Colorado, June 2009.

2. Yotaro Watanabe, Masakazu Iwatate, Masayuki Asahara and Yuji Mat-
sumoto. “A Pipeline Approach for Syntactic and Semantic Dependency
Parsing”. In Proceedings of the Twelfth Conference on Computational
Natural Language Learning (CoNLL-2008), pp. 228-232, Manchester, Au-
gust 2008.

3. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “A Graph-
based Approach to Named Entity Categorization in Wikipedia Using
Conditional Random Fields”. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL 2007), pp. 649-657,
Prague, June 2007.



REFERENCES 95

Other Publications

1. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “Multilingual
Syntactic-Semantic Dependency Parsing Using Online Large-Margin Learn-
ing Algorithms”. In Information Processing Society of Japanese SIG Notes,
NL-192, No.2, pp.1-8, 2009 (in Japanese).

2. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “Named En-
tity Categorization in Wikipedia Using Conditional Random Fields on
DOM Structure”. In the 21st Annual Conference of the Japanese Society
for Artificial Intelligence, 2G4-5, 2007 (in Japanese).

3. Yotaro Watanabe, Masayuki Asahara and Yuji Matsumoto. “Named En-
tity Categorization Using Conditional Random Fields on HTML Tree Struc-
ture: Semi-Automatic Thesaurus Construction from Wikipedia”. In In-
formation Processing Society of Japanese SIG Notes, NL-179, pp.73-78,
2007 (in Japanese).

4. Masayuki Asahara, Kenta Fukuoka, Ai Azuma, Chooi-Ling Goh, Yotaro
Watanabe, Yuji Matsumoto and Takashi Tsuzuki. “Combination of Ma-
chine Learning Methods for Optimum Chinese Word Segmentation”. 4th
SIGHAN Workshop Bakeoff (IJCNLP 2005).


