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Speaking-Aid Systems Using Statistical Voice

Conversion for Electrolaryngeal Speech∗

Keigo Nakamura

Abstract

Speaking impairment is a serious problem for people trying to communicate

using speech utterances. Laryngectomees are one type of speaking-impaired peo-

ple due to losing their vocal folds because of accidents, disease, and so on. An

electrolarynx (EL) is an external medical device that is easily used by attaching

it to the lower jaw.

This thesis addresses two issues of the existing EL: (1) unnaturalness of the

produced electrolaryngeal speech (EL speech), and (2) noisy sounds radiated from

the attaching location of the EL. The production mechanism of the laryngeal

sound of human voices is too complex to be completely modeled mechanically.

Therefore, an EL has not been developed that enables laryngectomees to speak

comparably to normal speech. Moreover, a current EL generates sound source

signals with large powers. The radiated sound source signals from the attaching

location might be noisy for listeners.

In order to improve the EL speech quality, a voice conversion (VC) technique

is introduced, which consists of training and conversion procedures. Two sets

of speech data, which are the source and the target speech, are set in this VC

method so that the speech of the source speaker is converted so that it sounds like

that of the target speaker. The training and conversion procedures are conducted

based on the maximum likelihood criterion. Gaussian mixture models are used

to describe the acoustic feature spaces between the source and the target speech

data.

∗Doctoral Thesis, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0761022, March 24, 2010.
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This thesis first proposes two kinds of speaking-aid systems. One of the aid

systems converts EL speech to normal speech by estimating both target spectra

and F0 contours from only the source spectral information. The other system also

converts the EL speech to whispered voice to avoid the problem of estimating

natural F0 contours.

To address the other problem of noisy radiated sound source signals, this thesis

employs another sound source unit that generates signals with extremely small

power so that the source signals are not captured by listeners. The produced

small-powered EL speech is recorded using a special microphone called a Non-

Audible Murmur (NAM) microphone by attaching it to the user’s skin directly.

Although the speech is recorded, the voice quality is extremely poor. In order to

make the small-powered EL speech audible, this thesis also proposes two other

aid systems that convert the small-powered EL speech to whispered or normal

speech.

From experimental evaluations, it is demonstrated that the proposed systems

dramatically improve the naturalness of the EL speech using the VC. Moreover,

although the intelligibility of the converted speech is slightly degraded than that

of the source EL speech, the converted speech is preferred to the source EL speech.

Keywords:

Laryngectomee, Electrolarynx, Voice conversion, Silent sound source, Non-Audible

Murmur microphone, Air-pressure sensor
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電気音声に対する統計的声質変換を用いた

発声支援システム∗

中村 圭吾

内容梗概

音声に障害がある発声障害者は，他者との音声コミュニケーションにおいて
深刻な困難を伴う．喉頭摘出者は，事故や病気などを理由に声帯を失った発声障
害者である．喉頭摘出者の音声再建は彼らの日常生活において極めて深刻な課題
であり，古くから研究されている．電気式人工喉頭（以下，電気喉頭）は，喉頭
摘出者による発声を容易に実現する医療用の外部音源機器である．ユーザは電気
喉頭を手で保持し，下あごに圧着してスイッチで音源の発生または停止を切り替
えることで音源を出力し，音声を発声する．
本論文では，(1)電気喉頭をのような外部機器を用いて発声された音声（以下，

電気音声）の不自然性，(2) 電気喉頭の圧着位置から漏れる音源の騒音性という 2

つの問題を解決する．人の声帯音源は非常に複雑であり，機械的に模擬すること
は容易ではない．特に，電気喉頭を用いた自然な抑揚の実現は，電気喉頭に関す
る主要な課題として以前から研究されている．現在では，自然な抑揚を生成する
ような電気喉頭は少なく，多くの電気喉頭の振動数はあらかじめ内蔵されたもの
に固定されている．そのため，発声される電気音声の抑揚は極めて乏しく，人間
が発声する音声として極めて不自然である．さらに，既存の電気喉頭は通常音声
と同等の大きさで発声することを前提としているため，十分大きなパワーを持っ
た音源信号を出力する必要がある．一方で，電気喉頭の圧着位置から漏れる音源
信号の音は，静環境下では周囲の者にとって耳障りとなり，雑音環境下では電気
音声の明瞭性を下げる一因になっている．
本論文では，電気音声の音質を改善するために，統計的声質変換技術を用い

た発声支援システムを提案し，評価する．本論文で用いる統計的声質変換技術を

∗奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-
DD0761022, 2010年 3月 24日.
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電気音声に適応して音質を改善する試みは過去になされておらず，電気音声に対
する統計的声質変換の可能性を調査するという点が，本論文の最大の貢献である．
本論文ではまず電気音声を通常音声あるいはささやき声に変換するシステムを提
案する．電気音声を通常音声に変換するシステムでは，電気音声のスペクトルの
みから通常音声のスペクトルと基本周波数（以下，F0）を推定する．ささやき声
への変換は，自然な F0推定の困難さを回避する狙いがある．本論文では，より
自然な F0を推定するために，ユーザの呼気で電気喉頭の振動数を制御する呼気
センサーを導入し，呼気センサーを用いた電気音声から通常音声に変換するシス
テムも提案する．さらに，音源信号の騒音性問題を解決するために，本論文では
周囲の者に聴取されないほど微弱な音源信号を出力する音源信号を用いる．発声
される微弱な電気音声は，非可聴つぶやきマイクロフォンを用いて話者の体表か
ら直接収録される．収録された微弱な電気音声の音質は極めて悪いため，本論文
では微弱な電気音声を通常音声またはささやき声に変換する発声支援システムも
提案し，微弱な電気音声の品質改善を目指す．
実験結果から，統計的声質変換を用いた提案システムによって，電気音声の自

然性を劇的に改善可能であるおとを示す．さらに，変換音声の明瞭性は元音声と
比べて若干劣化するが，変換音声は元音声と比べて好ましいことを確認する．ま
た，呼気センサーを用いることで，従来の電気喉頭では達成できなかった F0推
定精度が実現されることを示す．

キーワード

喉頭摘出者, 電気式人工喉頭, 統計的声質変換, 微弱音源, 非可聴つぶやきマクロ
フォン，呼気センサー
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Chapter 1

Introduction

1.1. Background and Problem Definition

Much important information for humans is expressed by natural language, and

such information is easily transferred by human voices. An advantage of speech

is that speech conveys not only linguistic information but also para-linguistic

information that does not appear in texts. The human voice has been one of the

most traditional and powerful methods for people to transfer information and

communicate with each other.

When we communicate with each other, many segmentalized processes are

continuously conducted as Figure 1.1 shows, and the whole of the connections

is called the speech chain. A speaker first establishes an abstract concept that

he or she wants to utter. This step is the level of consciousness. Next, the

speaker encodes the abstract image established in the brain to the corresponding

sequence of symbols called language. This coding step is the linguistic level. Next,

individual articulatory organs including vocal folds, oral cavity, tongue, and so

on are moved to generate speech sounds corresponding to the coded language

sequence. This step is the physiological level. The generated speech sounds are

transferred through the air to the listener. This step is the acoustic level. The

ears and the brain of the listener sense the speech sounds at the physiological

level. The listener decodes the speech sounds to the language sequence in the

linguistic level, and understand the contents in the level of consciousness. These

processes in the speech chain are iterated between the speaker and the listener
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Figure 1.1. Speech chain of inter-personal speech communication.

to work out their speech communication.

There are many kinds of disorders related to speech communication, and

therefore, it is difficult to know the entire scope of communication disorders [1].

Communication disorders can be classified from several points of view. Commu-

nication disorders occur wherever the speech chain breaks, and one classification

from the viewpoint of the speech chain is considered.

In disorders of the conscious level, linguistic disorders due to developmental

language delay or mental retardation are concerned. In disorders of the linguis-

tic level, aphasia is the most major disorder, which is total or partial disorder

of language ability including listening and speaking related to speech function

and also including reading and writing related to text function due to cerebral

vascular disorders such as cerebral infarction caused by disorders of the linguis-

tic function in the brain. Disorders of the physiological level are also known as

speech disorders. Speech disorders are due to hearing difficulty or due to disorders

of peripheral speech organs such as vocal folds, the tongue, and so on. Speech
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disorders include sub-groups from the viewpoint of which organ is affected and

another viewpoint of how the organ is affected. The latter case includes organic,

motor, and functional disorder as sub-groups. Organic disorders include physical

change of the organ such as loss or hypertrophy due to diseases, accidents, and

so on. Motor dysfunction, which is often also known as dysarthria, includes dis-

orders of smoothly using the organ due to cerebral palsy, for example. When the

function of the organ is impaired, and the organ has no physically problem, the

disorders are regarded as mental problems and categorized as functional disor-

ders. Some patients might have disorders in plural categories, and therefore, not

all the patients are always classified in those categories. The author recognizes

that this classification might be clinically or scientifically imprecise; however, the

classification of disorders is not within the scope of this thesis. It is important

simply to understand the disorders focused on in this thesis.

The disorder focused on in this thesis is due to loss of the whole larynx includ-

ing vocal folds, which is classified as an organic disorder at the physiological level.

Laryngectomy is a major surgical operation to cure the laryngeal cancer, in which

the larynx and the vocal folds are removed. A patient who has undergone a laryn-

gectomy is called a laryngectomee. This thesis assumes that laryngectomees do

not have disorders related to phonation. The term laryngectomee includes both

partial and total laryngectomees, in whom vocal folds are partially or totally re-

moved. The target of this thesis, however, is total laryngectomees. Therefore,

the word laryngectomee refers total laryngectomees in this thesis.

Laryngectomees can speak by obtaining alternative sound source signals al-

though they have completely lost their vocal folds. Alaryngeal speech includes all

kinds of alternative speech after total laryngectomy. Major alaryngeal speech is

1) esophageal speech, 2) Tracheo-Esophageal (T-E) shunt speech, and 3) speech

using an external device [2, 3, 4]. Esophageal speech generates sound source sig-

nals at the beginning of the esophagus by air flowing up from the stomach. T-E

shunt speech also generates sound source signals at almost the same position of

the esophageal speaking method by conveying air through a prosthesis inserted

between the trachea and esophagus. Sixty surgical operations to embed voice

prostheses were reported in 1980 [5]. A pneumatic artificial larynx is one of the

major external devices, which generates sound source signals by exciting the vi-
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brator by air flowing up from the lungs. An electrolarynx (EL) is another major

external device that generates sound source signals by exciting the vibrator by

pushing a button of the EL.

This thesis is interested in the speaking method using an EL. Many laryn-

gectomees speak using an EL, although the current trend in Japan is esophageal

speech and that in foreign countries is T-E shunt speech. The alternative speaking

method using an EL is easy to learn. Moreover, users need less physical power

to produce electrolaryngeal speech (EL speech) compared to other alternative

speaking methods. On the other hand, the generated EL speech is mechanical

and artificial because the frequency of the vibration is pre-defined.

1.2. Thesis Scope

This research finally aims to provide laryngectomees more smooth speech com-

munication by modifying produced EL speech at the acoustic level of the speech

chain. Given this motivation, this thesis addresses two problems as shown in

Figure 1.2. One problem is the unnaturalness of the EL speech, and the other

is radiated noises of the EL itself leaked from the attaching location of the lower

jaw. These problems are carefully considered through the author’s experience of

speaking using only an EL for 21 days, and the author believes that addressing

these two problems dramatically improves the quality of life of laryngectomees [6].

Conventional studies have tried to address the unnaturalness of EL speech

at the physiological level in the speech chain. Some conventional studies have

so far striven to make the alternative sound source signals of the EL close to

those of natural vocal fold vibration so that laryngectomees can speak naturally

with the EL. For example, the hardware approach is employed to develop a new

EL [7], or a pitch control mechanism is introduced [8]. From the viewpoint of

software, some problems still remain, such as acceptable content is limited and

the generated speech quality is not satisfied. Other conventional studies have

tried to address the radiated noise at the acoustic level in the speech chain. For

example, spectral subtraction is employed [9, 10] to reduce the radiated noise.

Voice conversion (VC) is a technique in which speech signals of a speaker

(so-called source speaker) are modified so that it sounds as if it has been spoken
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Figure 1.2. Problems addressed in this thesis.

by a different speaker (so-called target speaker) while preserving the linguistic

information. Recent efforts regarding VC have made a great contribution to

present natural synthesized speech. In particular, the statistical approach of VC

attracts interest all over the world. As a result, VC is applied to many applications

such as voice response, text-to-speech that synthesizes speech waveforms from

input text information, and so on.

The problem of unnatural EL speech due to the pre-defined pitch is one of

the most classical and important ones. Japanese is a kind of tone language in

which pitch plays an important role to inform listeners of exact meaning. How-

ever, intonations in EL speech are lost, and therefore, the information conveyed

by EL speech is limited. The key issue with the unnaturalness is fundamental

frequency (F0) contours of EL speech. Many studies have been conducted so far

to address this problem; however, natural alaryngeal speech using an external
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Figure 1.3. Comparison between conventional and one of speaking-aid systems

proposed in this thesis.

device has not been achieved.

The radiated noises of the EL itself also constitute an important problem to

be addressed. It was reported that the intensity of the radiated noises was about

20-25 dB in the development of a similar device [11] even if the lips and the

mouths of the speakers were closed. Moreover, this value varies over 4-15 dB

across the subjects for the same device [12]. These steady noises are generated

due to the leakage of the vibrations from the attaching location of the lower

jaw. This kind of leakage to the air contributes to the background noise for

people around the user. As a result, the background noise including the radiated

noise annoy people around the speaker in quiet places such as libraries and make

the produced EL speech unintelligible in noisy, crowded settings. Moreover, the

speaker has a concern that the radiated noise annoys people around the speaker

even if the listeners understand the user’s concerns because the radiated noises

are generated whenever the user speaks. The power of the radiated noises would

be larger when the user has recently had the laryngectomy because cells around

the tracheostoma are hard, and therefore, the cells play the role of an amplifier.

Almost the same case results when the speaker is a non-laryngectomee because

some bones such as the thyroid cartilage also play the role of an amplifier.
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This thesis proposes a novel speaking-aid system for laryngectomees using

VC technique, as Figure 1.3 shows, to address two problems of unnatural EL

speech and radiated noises. In the proposed system, a laryngectomee produces

EL speech in the same manner as the conventional method. The produced EL

speech is recorded once, and then, it is converted to natural voice by the VC

procedure. Finally, the converted speech is presented as the user’s voice. The

proposed system addresses the unnaturalness of EL speech using the VC tech-

nique, and this approach is in the acoustic level in the speech chain. The proposed

system also addresses the radiated noises by employing another sound source unit

that generates extremely small sound source signals, and this approach is at the

physiological level in the speech chain. The proposed speaking-aid system of en-

hancing EL speech signals using the statistical VC approach has some advantages

as follows:

• Users speak by themselves

• Users speak with a natural voice

• Arbitrary content is accepted

• Users easily learn the method

• Users speak without annoying people around them

The application study of statistical VC from EL speech has not been con-

ducted yet, and the EL speech enhancement using statistical VC technique is the

most important contribution of this thesis. In particular, this thesis enhances

three kinds of EL speech, which are conventional EL speech, another EL speech

using an air-pressure sensor (EL(air) speech), and other EL speech using small

sound source signals captured by a body-attached microphone [13]. This thesis

investigates the acceptable ranges of the small sound source signals for the sta-

tistical VC by using different kinds of sound source signals. Moreover, this thesis

confirms the effectiveness of using a supporting device capturing information that

is applicable to F0 information of input EL speech.

The conversion from EL speech to normal speech (EL-to-Speech) is one rea-

sonable conversion framework; however, natural F0 estimation from EL speech
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is a difficult problem because EL speech does not include efficient F0 informa-

tion. This problem has been revealed in another VC framework from extremely

small unvoiced whispering called Non-Audible Murmur (NAM) [14] to normal

speech [15]. To avoid this problem, another conversion framework has been pro-

posed, in which EL speech is converted into whispering (EL-to-Whisper). EL-

to-Whisper is a conversion between speech data not including efficient F0 infor-

mation, and this conversion framework comes from the same motivation of the

conversion framework from NAM to whispering [16]. In order to estimate F0

contours closer to the target F0 contours, an air-pressure sensor is additionally

introduced to extract source F0 contours. This air-pressure sensor was originally

designed to allow laryngectomees to speak with a natural voice using an EL, and

the EL speech produced using the air-pressure sensor (EL(air) speech) is con-

verted to normal speech (EL(air)-to-Speech). In order to address the problem

of the radiated noises, this thesis introduces a new sound source unit that gen-

erates extremely small power compared to existing ELs. The EL speech excited

by the small source signals also has only small power, and the small EL speech

is extremely difficult to capture using a typical air-conductive microphone such

as a head-set or a pin-type microphone. A NAM microphone, which is directly

attached to the user’s neck behind the ear, is introduced to capture the small EL

speech. The small EL speech captured by a NAM microphone (EL(small) speech)

is converted into normal speech (EL(small)-to-Speech) or whispering (EL(small)-

to-Whisper) for the same reason as EL-to-Speech and EL-to-Whisper. The effec-

tiveness of individual systems is experimentally evaluated in later chapters.

1.3. Thesis Overview

This thesis is organized as follows.

In Chapter 2, anatomical description of laryngectomees is given. The cur-

rent situations of laryngectomees such as numbers of laryngectomees and the

way to cure laryngeal cancer are also described. In particular, major alterna-

tive speaking methods for laryngectomees after laryngectomy are compared each

other. Moreover, conventional studies related to this thesis are overviewed. Ap-

plied studies are overviewed, which are about VC and aid systems for speaking-
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impaired people including not only laryngectomees but also other people who are

speaking-impaired due to dysarthria.

In Chapter 3, the statistical VC method that is the core technique of the

proposed system is described. The VC method used in this thesis consists of

training and conversion parts. Before the training part, the VC method first

defines the source and the target speech to prepare parallel data constructed by

time-aligned identical utterances. Then, a Gaussian mixture model (GMM) is

trained in the training part to model the acoustic features of joint probability

density function of the source and the target acoustic features. In the conversion

part, the trained GMM is used as the conversion model that outputs target static

features based on the conditional probability density given the time sequence of

the input feature.

In Chapter 4, one speaking-aid system is proposed, which enhances conven-

tional EL speech through the conversion frameworks of EL-to-Whisper or EL-to-

Speech. In EL-to-Whisper, only spectral features are estimated. In EL-to-Speech,

on the other hand, not only spectral but also F0 features are estimated from

only the spectral information of the source EL speech. These conversion frame-

works are experimentally evaluated as the preliminary evaluation using imitated

EL speech produced by a non-laryngectomee. In order to extract manipulated

source F0 features, an air-pressure sensor is introduced, and another speaking-aid

system is also proposed, which enhances EL(air) speech through the conversion

framework of EL(air)-to-Speech. In EL(air)-to-Speech, target spectral features

are estimated from source spectral features in the same manner of EL-to-Speech.

Target F0 features are, on the other hand, estimated from only source spectral

features or from source spectral and F0 features.

In Chapter 5, the other speaking-aid system is proposed, which enhances

EL(small) speech through the conversion frameworks of EL(small)-to-Whisper

or EL(small)-to-Speech. In this aid system, a sound source unit generating ex-

tremely small signals is employed to address the problem of radiated noises. Es-

timated acoustic features and the manner of estimation in EL(small)-to-Whisper

and EL(small)-to-Speech are the same as EL-to-Whisper and EL-to-Speech, re-

spectively. Because this system has the VC part inside, small sound source signals

are designed from different viewpoints compared to conventional ELs. This thesis
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designs small sound source signals by changing the spectrum and the power inde-

pendently in this chapter. This proposed system including two conversion frame-

works of EL(small)-to-Whisper and EL(small)-to-Speech are also experimentally

evaluated as the preliminary evaluation using imitated EL(small) speech uttered

by the same non-laryngectomee as in Chapter 4.

In Chapter 6, three kinds of proposed speaking-aid systems are experimen-

tally evaluated using one laryngectomee’s data. Advantages of the proposed

systems are first summarized in this chapter. Next, objective and subjective

evaluations are conducted. From the experimental results, the proposed systems

dramatically enhance the naturalness of the EL speech using VC procedures. Al-

though the intelligibility of the converted speech is slightly degraded than that of

the source EL speech, the converted speech is finally preferred to the source EL

speech by the listeners. From the experimental results, the results of EL(air)-to-

Speech are almost the same as those of EL-to-Speech and EL(small)-to-Speech.

In order to investigate the effectiveness of using the air-pressure sensor, target

speech utterances are additionally recorded so that the pitch of the target normal

speech is close to that of source EL(air) speech utterances. From the objective re-

sult of an additional experimental evaluation, F0 estimation accuracy is improved

by using the air-pressure sensor.

In Chapter 7, this thesis is concluded. This thesis is first summarized in this

chapter. Future work related to this research is explained second.

In Appendix A, speech recognition of impaired speech due to cerebral palsy,

acquired hearing impairment or laryngectomy is described. For the first group

of impaired speech data due to cerebral palsy or acquired hearing impairment,

an acoustic model is adapted using a small amount of adaptation data. After

the adaptation, word recognition is conducted to evaluate the adapted acoustic

model for individual patients. For the other group of impaired speech data due

to the laryngectomy, the same data and the same subject as in Chapter 6 are

used for the dictation task. Finally, the availability of speech recognition systems

for those speaking-impaired people is evaluated.
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Chapter 2

Laryngectomees and

Conventional Researches

This chapter explains laryngectomees, laryngeal cancer that is the major cause

of losing the vocal folds, alternative speaking methods, and conventional research

related to this thesis. Development of medical techniques allowed doctors to

find out about laryngeal problems early on; however, it is said that there are

almost 600 thousand speaking-impaired patients due to the loss of the vocal folds

throughout the world [17]. Many communication-aid systems including speaking-

aid systems for laryngectomees have so far been developed. This chapter describes

conventional approaches from the viewpoint of (1) developing a new artificial

larynx, (2) enhancing alaryngeal speech with software approaches, (3) enhancing

esophageal speech, (4) novel devices for speech communication, and (5) other

applied research for VC and speech recognition.

2.1. Introduction

The larynx is an organ located at the position at where the trachea and the esoph-

agus are separated [18]. The important role of the larynx is to prevent aspiration

and to ensure the safety of the airway by guiding food and drink to the stom-

ach through the esophagus and air to the lungs through the trachea. Although

laryngeal cancer is comparatively easy to discover, the surgical operation to re-

move the larynx is often selected as the definitive procedure for curing laryngeal
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cancer. The subjects, laryngectomees, lose their voices and they need to learn

another speaking method to speak without vocal fold vibration. Laryngectomees

can again obtain their voices by learning an alternative speaking method; how-

ever, the alaryngeal speech quality is often not satisfactory. Therefore, help is

needed for laryngectomees to communicate.

This chapter is organized as follows. In Section 2.2, laryngeal cancer and

anatomical features of laryngectomees are described. In Section 2.3, alternative

speaking methods for laryngectomees are explained. In Section 2.4, conventional

aid systems for speaking-impaired people and novel devices used in this thesis are

described.

2.2. Laryngectomees

Larynx is an organ located at the position at where it separates the trachea from

the esophagus [18]. The important role of the larynx is to prevent aspiration by

guiding foods and drinks to the stomach through the esophagus and also guiding

the air to the lungs through the trachea. Larynx includes vocal folds, which

generate primary tone that is essential sound sources when speaking. Upper and

lower organs than glottis are called supraglottis and subglottis, respectively.

Laryngeal cancer is the highest incidence among head and neck cancers al-

though it is a kind of minor disease among all cancers [19, 20]. Laryngeal cancer is

categorized according to the location of the tumor; the glottic cancer, the supra-

glottic cancer, and the subglottic cancer. Although the number of contracting

the laryngeal cancer in the 70s was less than two thousand people in Japan, that

in 1996 was coming up to almost three thousand people in Japan [21]. It is said

that the number of laryngectomees were estimated less than 20 thousand people

in more than 20 years ago [22], and the number of them would be more increased

these days. Male patients are much more than females, and it is often developed

at an advanced age [19]. Major problems causing the disease are smoking, con-

tinual drinking of much alcohol, and so on [23]. It is said that there are almost

600 thousands speaking-impaired patients due to the loss of vocal folds all over

the world [17].

Although it is a terrible problem for us, early detection of the cancer is com-
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paratively easier than other cancers because in the most cases, some troubles

of the neck are observed by the output speech utterances [24]. In these days,

the ways to cure the disease are becoming diverse according to the progress of

the cancer [25][26][27][28]. Radiation therapy is effective, which has fascinating

option of keeping the larynx and vocal folds especially in the early stages of la-

ryngeal cancer. It is possible to cure the disease by the radiation therapy in the

early stage; however some surgical procedures to directly remove the disease are

introduced. There are mainly three types of surgical procedures, which are partial

laryngectomy, total laryngectomy, and supracricoid laryngectomy with cricohyoi-

doepiglottopexy (SCL-CHEP). Partial laryngectomy partially removes the larynx

including vocal folds to preserve the patients’ voices. Although the partial laryn-

gectomy sounds effective for speech communication and it has become popular

from 60s to the end of 80s, it is no longer generally performed because of high

possibility of reappearance of the disease and high frequency of aspiration. To-

tal laryngectomy removes all surrounding areas including epiglottis, hyoid bone,

arytenoid cartilage, cricoid cartilage, thyroid cartilage, and vocal folds, that is a

default surgical procedure for laryngeal cancer in the last stage. SCL-CHEP is

a novel surgical procedure, which preserves the patients’ voices even though the

vocal folds are removed. Many successful procedures have been reported, and it

is highly expected for the cure of the laryngeal cancer. On the other hand, there

are many patients who have been undergone the treatment of total laryngectomy,

and the aid of them socially plays extremely important rolls.

Figure 2.1 shows anatomical images of non-laryngectomees and laryngec-

tomees. Larynx works as a valve so that the trachea carries air and the esophagus

does foods. The operation of total laryngectomy completely removes the larynx

including vocal folds. To prevent foods flowing into lungs through trachea, total

laryngectomees must choose which organ is connected to the mouth; the trachea

or the esophagus. Most of laryngectomees connect their mouth to the esophagus.

In that case, they have a hole called tracheostoma at the middle of their neck (see

Figure 2.1) to breath. To keep the tracheostoma clean, it is covered by gauze,

and certain constraints such as bath is concerned.
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Figure 2.1. Anatomical image of non-laryngectomees and total laryngectomees.

2.3. Speaking Methods

Laryngectomees mainly have three kinds of alternative speaking methods that are

different ways of obtaining the sound sources: 1) esophageal speaking method,

2) tracheo-esophageal (TE) shunt speaking method, and 3) a method using an

external unit such as an EL or pneumatic artificial larynx [29] [30, 31]. Figure

2.2 shows the route of floating air from the lungs to expiring. The benefits and

defects of these methods are shown in Table 2.1.

1 Esophageal speech

The esophageal speaking method is conducted in the following procedure;

taking air from the mouth to the beginning of the stomach, exploring the air

to the mouth, and vibrating gelled gathers of the beginning of the esophagus to

be the sound source vibration. It is said that the esophageal speech is natural

compared to other alternative speaking methods because this methods generates

the sound source signals in their body. There are many supporting society for

esophageal speech in Japan. As the result, the esophageal speaking method is
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Figure 2.2. Major alternative speaking methods for laryngectomees.

the most likely to use in Japan. On the other hand, the esophageal speaking

methods requiring strength for the speakers, and therefore, some aged people are

difficult to speak with the esophageal speaking methods to use another method

such as an EL.

2 TE shunt speech

To speak with the TE shunt speaking method, a voice prosthesis [32] that is

a valve with only one direction is inserted between the trachea and esophagus.

In speaking, laryngectomees block the tracheostoma to make the air go to the

esophagus through the prosthesis. The air vibrates gelled gathers of the beginning
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Table 2.1. Benefits and defects of alternative speaking methods for total laryn-

gectomees

Alaryngeal speech Naturalness Difficulty Popularity (in Japan)

Esophageal speech Good Bad Popular

TE shunt speech Good Good Not yet

EL speech Awful Good Popular

Pneumatic artificial
Better Good Popular in past days

laryngeal speech

of the esophagus to be the sound source vibration just like the esophageal speech.

It is easier to produce the TE shunt speech than the esophageal speech with

almost the same quality. It is said, on the other hand, the operation to insert the

voice prosthesis is difficult. As the result, it is not popular method in Japan.

3 Pneumatic artificial larynx

One major external speaking device is pneumatic artificial larynx. Pneumatic

artificial larynx is used by pushing the vibrator to the tracheostoma and by

holding the whistle in the mouth. The fundamental frequency (F0) is manipulated

by the expired air flowed from the tracheostoma, and moreover, the vibration is

once taken into the mouth to be articulated so that the voice humanity is added.

As the result, pneumatic artificial larynx enables laryngectomees to speak with

natural speech compared to an EL. An interesting pneumatic artificial larynx was

developed [33]; however, this device is less used in these days even though it seems

useful because both of the speaker’s hands are used to produce the alaryngeal

speech, the visual is not acceptable, and speakers have a sanitary concern about

whistle.

4 Electrolarynx

The other major external medical device is an EL. The basic structure of an

EL is shown in Figure 2.3. An EL is pushed on the lower jaw in speaking,

and the on/off is switched by the button. One of the advantages of the EL is
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its short learning period. The other advantage is that laryngectomees with less

physical power also can use the device. One biggest defect of the EL is its fixed

fundamental frequency as the Figure 2.4 shows deriving artificial and mechanical

unnatural speech even though human speaks. Some problems about EL including

unnatural speech have been represented so far. The author had tried to speak

using only an EL for 21 days to find out which problems should be solved. As the

result, this research focuses on two problems; 1) the naturalness of the EL speech

and 2) the large sound of the EL itself. The current ELs have to output with large

power of the sound source signals because it is assumed that ELs are used for

normal speech conversation. It is reasonable; on the other hand, the sound source

signals are noisy for people around the speaker especially in the quiet situation

such as library. Moreover, the speaker might have a concern that he or she would

annoy for other people because of the noisy sound source signals. These defects

prevent smooth inter-personal speech communication for laryngectomees.

2.4. Conventional Speaking-Aid Systems for La-

ryngectomees

Most of conventional studies have been conducted by addressing the unnatural-

ness of EL speech in the physiological level in the speech chain shown in Figure

1.1. Namely, those studies have aimed to enable the laryngectomees to directly

speak with natural voice. There are many aid devices and procedures. This sec-

tion describes those approaches from the view point as followings. Subsection

2.4.1 describes about the development of a new artificial larynx to generate alter-

native sound source signals. Subsection 2.4.2 describes approaches to enhancing

EL speech using signal processing procedures. Subsection 2.4.3 describes other

studies to enhance esophageal speech. Subsection 2.4.4 describes other devices

that would be useful for not only laryngectomees but also other people including

speaking-impaired and elderly people. Other applied researches for VC and for

automatic speech recognition (ASR) are described in Subsection 2.4.5.
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Main body(Battery inside) Main body(Battery inside)

Figure 2.3. Basic structure and examples of existing electrolarynxes.

2.4.1 Developing a new artificial larynx

One EL named ’yourtone’ is developed in Japan, which considers acoustic fluc-

tuations of vowels of our normal speech to enable laryngectomees to speak with

more natural voice even though it outputs only fixed F0 [7] [34] [35]. All ELs be-

fore developing ’yourtone’ was made in abroad, and therefore, technical supports

and other advisements were significantly poor for users. The basic idea of ’your-

tone’ is to produce an EL in Japan to carefully support users of laryngectomees
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Figure 2.4. Example of EL speech produced by laryngectomee who is proficient

to produce EL speech.
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in Japan. Moreover, ’yourtone’ had tried to enable laryngectomees to speak with

more natural speech even though the generated EL speech only has monotone

pitch. In the first stage to develop ’yourtone’, developers first had analyzed hu-

man voices to confirm the impact for the naturalness of human voices affected by

sensitive variations appeared in outline shapes of waveforms compared to another

sensitive variations caused by durations [34]. As the result, they had found that

at least pitch waveforms for 32 cycles in which each cycle is normalized are nec-

essary to enhance the naturalness of EL speech. They confirmed the effectiveness

of the acoustic variations using a prototype of pipe-inserted artificial larynx. In

the second step of the development the ’yourtone’, a novel air-pressure sensor is

developed to enable laryngectomees to control the intonations using their breath

flowed from the tracheostoma [35]. A recording scene of the EL speech using

the air-pressure sensor (EL(air) speech) is shown in Figure 2.5, and an example

of waveforms, spectrogram, and extracted F0 contours is shown in Figure 2.6.

As the figure shows, more rich F0 contours are obtained compared to the con-

ventional EL generating monotone pitch. The naturalness using EL(air) speech

is much higher than conventional type of EL speech. On the other hand, the

convenience of speaking using the external device is reduced since users needs

both hands to hold the main body of the EL and the air-pressure sensor. More

than one thousand of ’yourtone’ is used and it is preferred by buyers. This is the

first EL made in Japan, and its effectiveness is experimentally and practically

confirmed. Therefore, this thesis mainly uses this EL.

Another EL named ’myvoice’ is also developed by SECOM Corporation in

Japan [36]. ’myvoice’ provides users natural voice by gently changing F0 that

once rising and going down as the time goes. One advantage of this EL is that

the F0 patterns are included in the EL in advance; therefore, the action required

to the user is to just put the button of the EL to turn on or off the vibrator. Us-

ing this EL, laryngectomees can speaks with more natural speech than using EL

generating monotone pitch even the action in speaking is equivalent to previous

devices. This EL might be regarded as an abridged edition of EL(air). It seems

effective; however, the essential problem of EL is not addressed by ’myvoice’, since

the F0 pattern is decided and users cannot manipulate it. Moreover, the basic

structure of the EL is the same as others, namely the included vibrator vibrates
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Electrolarynx

Air pressuresensor

Head-set microphone

Figure 2.5. Recording scene of EL speech using air-pressure sensor.

to hit the vibration plate in generating the sound source signals, which mecha-

nism is also the same as ’yourtone’ even if it uses air-pressure sensor. Therefore,

this thesis thinks that it would be able to obtain natural speech with the equiv-

alent quality of normal speech only by enhancing the EL speech out of the basic

structure.

Takahashi et al. developed an interesting voice generation system using an

intramouth vibrator [37]. The vibrator is embedded in artificial teeth to be

fixed in the oral cavity. This device had begun developing from wired-type,

and a prototype of the wireless vibrator is also developed. The F0 generation
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Figure 2.6. Example of waveforms, spectrograms, and F0 contours for EL speech

using air-pressure sensor produced by laryngectomee.
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model proposed by Fujisaki et al. [38] is employed in this device. Although it

is an interesting system, it is concerned that the user can use this system in

any situations and that the physical conditions of the user due to sound source

generation are no problem. Moreover, not all users available this system since

this device is used by embedding the sound source unit in their artificial teeth.

2.4.2 Enhancing alaryngeal speech from software approaches

Murakami et al. proposed a speech transformation method from EL speech,

which is source speech, into normal speech, which is target speech, by applying

transformation rules to the input EL speech [39]. This method consists of two

parts of acquiring conversion rules from the training data and applying those rules

to the test data. In the step of acquiring conversion rules, the following procedures

are conducted utterance by utterance. First, the same utterance pairs of the

source EL speech and the target normal speech are prepared, and then, a time-

sequence of spectral parameters are extracted from those two speech data. Next,

dynamic programming (DP) procedure is independently conducted to both EL

and normal speech to split the whole utterance to acoustic difference or common

segments based on local directions in the DP. After that, the segments decided as

the common parts, namely the segments in which the local direction on the path

of DP matching is constantly less than a threshold set in advance, is registered to

a dictionary as the transformation rule. Here, if multiple segments are available,

only one segment which has the highest confidence measure is registered, which

is calculated from the start point, end point, and the local length of the common

segment part. In the other step of applying the rules, first, a time sequence of

spectral parameters are extracted from the input speech as the same method

as the acquiring step. Next, all conversion ruled registered in the conversion

dictionary is compared with the input parameters. Here, in order to compare the

data, partial patterns are extracted from input parameters by conducting word

spotting by continuous DP procedures [40] since the length of the speech segment

registered in the conversion dictionary is shorter than that of the input EL speech

segment. After the comparison, conversion rules are selected if the input data and

registered segments are match more than certain frames. One final conversion

rule is selected from the selected conversion rules, and then, the input speech
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segment is converted to normal speech using the selected rule. Finally, converted

normal speech is output by waveform concatenative speech synthesis. This study

is interesting, since the concept of this method is equivalent to that of this thesis

from the view point of enhancing the EL speech quality for the produced speech

while keeping its linguistic information. Although the effectiveness of this method

is experimentally evaluated, the problem of unacceptable samples exists if nothing

rules are matched to the input data in conversion applying procedures remains.

Norton et al. [41] analyzed the effect of sound-shielding to suppress the radi-

ated noise, and found some improvement. However, later experiments found that

the sound-shielding makes the size of the EL increasing, and it makes it inconve-

nient to hold the EL. The failure of physical approach to suppressing its radiated

noises has led researchers to consider the use of signal processing techniques.

Spectral subtraction (SS) technique [42] is employed to reduce the additive noise

of the direct path noise of the EL [9][10] which is based on the assumption that

speech signals and the additive noise is uncorrelated. SS for EL speech provided

an improvement the EL speech; however, the subtraction parameters used for the

EL speech enhancement are fixed and cannot be adapted frame-by-frame.

Liu et al. updated the idea of conventional SS for the EL speech [43]. They

introduced auditory masking properties in the enhancement process of EL speech,

in which perceptual weighting technique is applied to adapt the subtraction pa-

rameters. Auditory masking properties take into account the frequency-domain

masking properties of the human auditory system. Frequency masking exper-

iments [44] showed that noise near formant peaks is inaudible to the human

ear, where the speech signal has high energy. Using this property, the auditory

masking property adapts the subtraction parameters to more subtract near the

formant peaks. Subtraction parameters, on the other hand, is set to make the

distortions between before and after subtraction lower in order to suppress the

generation of musical noises [45] due to the over-subtraction. As the result of

this property, the weighting filter for the subtraction parameters is drawn so that

it has almost inverse peaks and valleys compared to the spectral envelope in a

frame. Subtraction parameters are adapted based on the perceptual weighting

filters, and weighted estimated noise parameters are subtracted from the input

observation signals. As the result of subjective experimental evaluation, the en-
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hanced EL speech by their method is more pleased than that by the conventional

PSS method especially in the case of the additive noises such as white Gaussian

noise and speech babble noise. Finally, based on the frame-by-frame adapta-

tion of the subtraction parameters, the enhanced EL speech in [43] realized the

tradeoff between reducing noise and increasing intelligibility, and achieved the

tradeoff between keeping the residual noises and the distortion acceptable to a

human listener. The enhancing method in [43] was intended to reduce additive

noises including radiated noise that is directly observed from the EL itself during

phonation. Their intention to reduce the radiated noise is just the same as one

problem focusing in this thesis, and it is interesting.

2.4.3 Speech enhancement for esophageal speech signals

In Japan, there are many laryngectomees who selects esophageal speech as their

alaryngeal speech. Proficients of the esophageal speech speak with compara-

tively natural voice than beginners, and they have reintegrated into society, e.g.

getting a job. On the other hand, not all the esophageal speakers can be pro-

ficients. It is said that the esophageal speech is further different from normal

speech than TE shunt speech [46] and it is meaningful for both laryngectomees

and non-laryngectomees to enhance the esophageal speech by signal processing

procedures. The loudness of the esophageal speech is almost the same as that of

the normal speech. In other words, when esophageal speech signals are enhanced

to be output, listeners would listen to not only processed speech but also to pro-

duced esophageal speech. The enhancement of the esophageal speech might be

difficult to be used in conversations with face-to-face. On the other hand, it would

be useful in situations which laryngectomees have to communicate with others

using only their voices. For example, in the situation of telecommunication, lis-

teners must understand what the laryngectomees said from only the transmitted

speech. Therefore, the transmitted speech plays extremely important rolls to

make smooth conversation successful in such situations, and the enhancement for

the esophageal speech would be effective to conduct more smooth speech com-

munication.

Hisada et al. had introduced a comb filter to clarify esophageal speech while

keeping the speaker’s individuality preserved. This study is intended to the real-
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time clarification that is essential problem for the clarification to be used in out

daily lives. Experimentally, this filtering method is confirmed to be effective even

though some problems still remain such as echo effects and electronic impressions

caused by the misdetection of the pitch.

Another study also aims to enhance esophageal speech by analysis-synthesis

approach [47, 48]. In this study, the input esophageal speech is firstly divided

into two channels of lower and higher frequency components (at 2.5 [kHz] in the

study [48]). Only the lower frequency channel is used for the analysis-synthesis

procedures. The higher frequency channel is mixed at the final stage (after

synthesizing the lower channel). This filtering has two major effects. One is

that blending the higher frequency component would give more natural sound-

ing and intelligible consonants. The other is that errors of voiced or unvoiced

decisions using only lower channel would decrease. Voiced or unvoiced speech

frames are decided using the power level of the lower channel. The unvoiced

frames are not processed. Only voiced frames are analyzed in which linear pre-

diction coding (LPC) analysis is applied to extract formant information, and are

synthesized [49]. These algorithms are implemented on a DSP system [48]. This

analysis-synthesis method for the esophageal speech is rated by speech therapists.

Another study of enhancing the esophageal speech using the same conversion

technique as used in this thesis has been performed [50]. This enhancement

approach tries to essentially modify the acoustic features of the esophageal speech

by describing joint acoustic features of esophageal and normal speech with GMMs.

This study is focused on the converted voice quality than the processing speed. As

the result of objective evaluation, the correlation between resulting F0 contours

and the target ones are almost 0.7 with voiced or unvoiced errors was 8.36 [%]

even though the correlation between F0 contours of before processing and those

of normal speech was 0.12. From the subjective evaluation, the naturalness of the

modified esophageal speech is highly scored than that of the source esophageal

speech while keeping the intelligibility almost the same scores.

2.4.4 Novel devices for speech communication

Hanada et al. developed an alternative speaking system using PDA to support

Japanese daily conversations for speaking-impaired people [51]. Their aid sys-
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tem (Voice Output Communication Aid: VOCA in the paper) accepts arbitrary

input texts and outputs synthesized speech as their voice. In order to use VOCA,

users make an input text by (1) selecting a conversational sentence registered in

advance or (2) selecting Japanese characters using a pen. Next, input text is

split into pairs of consonant-vowel (CV). Next, CV pairs corresponding to the

split CV pairs from the input text are searched from a dictionary. Next, vocal

tract parameters (coefficients of linear predictive coding in the paper [51]) on the

basis of F0 generation model that is derived from physiology model of control-

ling the larynx and vocal source parameters calculated from a glottal waveform

model are obtained. Finally, synthesized speech is output by convolving these

parameters. The size of the dictionary used in the paper [51] is 1.2 [MB]. VOCA

system has important advantages that are results of carefully consideration. For

example, the PDA is small (83.5 [mm] wide, 130 [mm] long, 15.9 [mm] thick) and

light (185 [g] including batteries) enough to carry it out, and the speech synthesis

is conducted within three seconds. Moreover, VOCA is established through a

lot of trial and error processes such as employing histories of past input texts to

make the input time shorter, allocating highly frequent texts to certain buttons

of the PDA, and so on. VOCA is expected to be a greatly effective tool for

speaking-impaired people as an alternative speaking system. On the other hand,

this thesis thinks that it is natural to conduct speech communication by humans

themselves. This thesis intends to establish a speaking-aid system using speech

of the user oneself.

Hosoi et al. had founded a novel device that generates extremely small power

so that it is almost too difficult for people around the speaker to capture the

signals [52]. This sound source unit is expected to give people silent communica-

tion without annoying any other people while speaking. Actually, people would

hear the small sound source signals in silent spaces such as a fully anechoic room;

however, it is rare to find such quiet situations in our daily lives. There are almost

background noises such as air-conditioner, machine noises and so on even in quiet

scenes such as library. As the result, the small-powered sound source signals are

almost too difficult for others to be captured.

Nakajima et al. had defined Non Audible Murmur (NAM) as articulated res-

piratory sound without vocal-fold vibration transmitted through the soft tissues
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of the head [14]. NAM is acoustically seen as a whispering with extremely small

power so that the people around the speaker cannot hear the sounds. NAM is too

small-powered to be effectively detected by a usual air-conductive microphones

such as head-set microphones or pin-type microphones. NAM microphone is si-

multaneously developed with NAM to detect NAM signals [13]. Figure 2.7 shows

the attaching location and basic structure of NAM microphone, and Figure 2.8

shows an example of waveforms and spectrograms of normal speech recorded with

a head-set microphone and NAM recorded with the NAM microphone, in which

first and second formants are automatically extracted. It is characteristic about

its materials. Soft silicone is used as the attaching area, where is safe for human

body. The acoustic impedance of the soft silicone is almost the same acoustic

impedance as that of muscles of the attaching location so that it can detect the

resonance in the oral cavity. The sensor is wrapped by the soft silicone and the

soft silicone is wrapped by a noise proof. Resin is introduced as a material for

noise proof, which is hard and safe for human body. NAM microphone is also

characteristic about its attaching location. Nakajima found the better location

to detect the resonance, where is on the sternocleidomastoid behind the ear as

shown in Figure 2.7. Although the effectiveness of the location has not scientif-

ically revealed, it is concerned to be effective because the microphone detects the

resonance occurred in the oral cavity without been prevented by any bones. NAM

microphone detects the vibration of the muscle. The vibration data detected by

NAM microphone is regarded as speech as a matter of convenience, although

some people might disagreement to call the detected data ’speech’ because it is

not the speech waveform propagated through the air.

Figure 2.8 shows an example of speech signals recorded with a NAM micro-

phone. Higher frequency components over 4000 Hz of those speech signals are

almost not observed because of the loss of radiation features and low-pass filter-

ing that is thought to be occurred when the resonances are passed through the

muscle. This characteristic is observed for not only NAM signals but also other

speech signals recorded with a NAM microphone. Acoustic features in higher fre-

quency components are lost; however, NAM can automatically be recognized [14]

and it is expected to be a novel sensor for speech communication.
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Figure 2.8. Examples of waveforms and spectrograms of normal speech and NAM

recorded with NAM microphone. Solid lines in the spectrograms show first and

second formants extracted automatically.
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2.4.5 Applied research for VC and speech recognition

Detected NAM using a NAM microphone is less intelligible, and therefore, two

approaches to enhancing NAM are proposed. One is to convert NAM to normal

speech using statistical VC [15], and the other is to convert NAM to whispering

using the same statistical VC [16]. NAM does not have effective F0 information.

Therefore, in the conversion from NAM to normal speech, all acoustic features

including spectral, F0, and aperiodic components are estimated from only the

spectral information of NAM. Moreover, in order to capture not only statistical

and dynamic features, segmental features including the data of several frames are

used for the source data. As the result of experimental evaluations, the correlation

of F0 contours between converted and target speech has been over 0.5 [16], and

the converted normal speech is more natural than NAM [15].

Tran et al. had tried to address the difficulty of estimating natural F0 con-

tours [53] in the conversion framework from whispering to normal speech. In

this study, linear discriminative analysis is introduced to reduce the dimension

of feature vectors, although principal component analysis (PCA) is used in the

conventional study [15]. Moreover, long frame intervals are considered to capture

suprasegmental features. In order to improve the estimating performance from

whispering, visual data are additionally used in this study. Target normal speech

is estimated using both audio and visual information using Gaussian mixture

models (GMMs). They have also proposed hidden Markov model (HMM)-based

audio-visual conversion system [54]. In the training procedure of their system,

the joint probability densities of source and target parameters and duration prob-

ability distribution are modeled by context-dependent phone-sized HMM using

aligned training utterances. In the synthesizing procedures, HMM-based recog-

nition is firstly performed using the source stream consisted of audio and visual

data to determine phone sequence. And then, HMM-based speech synthesis is

conducted using HMM-based speech synthesis system [55, 56]. This system is

also expected to help people including impaired-people to communicate with each

others.

Although the VC from NAM to normal speech is effective to enhance NAM, it

is difficult to estimate natural F0 contours from only the source spectral informa-

tion. Japanese is a kind of tone language, and therefore, the estimation of natural
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F0 contours plays important roll in the speech enhancement. In order to avoid

this problem, the other approach to enhancing NAM is proposed, in which NAM

is converted into whispering that is a hoarse unvoiced speech. Since whispering

does not have F0 information, VC only needs to convert spectral information.

As the result of experimental evaluations, converted whispering is dramatically

preferred to converted normal speech derived from NAM.

Another interesting research to generate speech waveforms from gestures of

the user’s hand have been proposed by Kunikoshi et al. [57]. In this study,

Japanese five vowels have so far been focused to be generated, and it has so far

been investigated that features of hand gestures detected using a special glove

are able to be converted to corresponding acoustic features of vowels. This study

is expected to be a novel speaking-aid interface that is effective for speaking-

impaired people such as dysarthria.

Kain et al. had intended to enhance the intelligibility of conversational speech

produced by any speakers so that hearing-impaired people are easy to under-

stand the contents [58]. It would be an assistive system for hearing-aid people

in their speech communication. They have also tried to enhance the intelligi-

bility of speech produced by speaker-impaired people with dysarthria, who have

problems in articulation, for example, ataxic, flaccid, and hyperkinetic in their

paper, also using conversion techniques. In this case, they had not achieved to

the significant improvement of the intelligibility. There are so many speaking-

and language-impaired people (in Japan, there are 40 thousand people including

speech, language, and mastication impaired [59]). Moreover, the acoustic feature

space of the speaking-impaired people would be strongly deviant from that of the

normal speaker. These problems make the resolution difficult.

ASR is a technique to extract linguistic information from input speech data.

Speech can be recognized with more than 90 % accuracy in the framework of

large vocabulary continuous speech recognition (LVCSR), which is the practical

system [60]. On the other hand, ASR for speaking-impaired people, especially for

dysarthria who have problems in articulation, is dramatically difficult problem

compared to normal speech. In order to establish ASR system for speaking-

impaired people, generally, several constraints are employed such as the speaker-

dependent system using speaker adaptation technique, comparatively small dic-
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tionary, and the combination of these constraints.

Matsumasa et al. had tested the ASR performance for dysarthria (especially

cerebral palsy) in the task of controlling home electronics [61]. In their later

work, they have proposed a robust feature extraction method for ASR systems of

speaker-impaired people [62]. ASR is also used in a speech training system [63].

Moreover, another aid system using ASR system for physically impaired person

is proposed [64]. These studies would be great help for impaired people.

2.5. Summary

This chapter described laryngeal cancer and the way to cure the disease. More-

over, differences between laryngectomees and non-laryngectomees were anatomi-

cally described.

Conventional studies for not only laryngectomees but also other speech-impaired

people were also described. Moreover, novel devices such as the NAM microphone

and small sound source signals were introduced.
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Chapter 3

Statistical Voice Conversion

This chapter describes the statistical VC technique used in this thesis. The con-

version approach includes the training and conversion parts. In the training part,

a GMM is trained using the training data that consists of joint feature vectors of

source and target feature vectors. In the conversion part, the conditional proba-

bility density function given the source feature vector is output as the estimated

target feature. One important feature for improving the naturalness of converted

speech is dynamic features. The other important feature described in this thesis

is global variance (GV), which is a global variance of acoustic features over a time

sequence.

3.1. Introduction

The primary role of speech is to convey the linguistic information; however, sec-

ondary information that speech conveys such as speaker individuality also plays

an important role in inter-personal speech communication. The VC technique

modifies speech signals of a given source speaker so that another speaker speaks

while maintaining its linguistic information. This technique is useful for many ap-

plications such as voice responses and text reader systems. It is often convenient

to specify the desired modification of the acoustic characteristics with reference

to an existing speaker (so-called target speaker).

This chapter is organized as follows. In Section 3.2, the basic framework of

VC used in this thesis is explained. In Section 3.3, novel statistic features of
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dynamic features and GV are introduced. Finally, this chapter is summarized in

Section 3.4.

3.2. Voice Conversion Using Joint Probability Den-

sity

The global framework of the VC method using GMMs is shown in Figure 3.1 [65].

This method includes training and conversion part. In the training part, the time

sequence of the source and the target training data are automatically aligned by

dynamic time warping (DTW) procedure in advance. Then, the joint probability

density functions of the source and the target data are modeled by a GMM.

Finally, the conditional probability density function of the target data given the

source data is to be the converted target data.

In the training procedure, let xt = [xt(1), · · · , xt(dx)]
⊤ and yt = [yt(1), · · · , yt(dy)]

⊤

be a static input and output feature vector at frame t, respectively, where dx and

dy denote the dimensions of xt and yt, respectively, and ⊤ denotes transposi-

tion. The joint probability density of the source and the target feature vector

zt = [x⊤
t ,y⊤

t ]⊤ is described by a GMM as follows:

P (zt|λ(z)) =
M∑

m=1

ωmN
(
zt; µ

(z)
m ,Σ(z)

m

)
, (3.1)

where m is an index of an mixture component, M is a number of mixture com-

ponent, ωm is a weight parameter of mth mixture component, and N (·; µ,Σ)

represents a Gaussian distribution including a mean vector µ and a covariance

matrix Σ. λ(z) is a model parameter set including weights, mean vectors, and

covariance matrices. The mth mean vector and the covariance matrix is written

as

µ(z)
m =

[
µ

(x)
m

µ
(y)
m

]
, Σ(z)

m =

[
Σ(xx)

m Σ(xy)
m

Σ(yx)
m Σ(yy)

m

]
, (3.2)

where µ
(x)
m and µ

(y)
m represent the mean vectors of the mth mixture component

for the source and the target features, respectively. Σ(xx)
m and Σ(yy)

m represent the

covariance matrices of the mth mixture component for the source and the target
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Figure 3.1. Overview of statistical VC procedures using Gaussian mixture model

in maximum likelihood manner.

features, respectively. Σ(xy)
m and Σ(yx)

m represent the cross-covariance matrices

of the mth mixture component for the source and the target features, respec-

tively. The model parameters are estimated by expectation-maximization (EM)

algorithm [66].

In the conversion procedure, the conditional probability density function of

yt given xt is also described by a GMM as follows:

P (yt|xt, λ
(z)) =

M∑
m=1

P (m|xt, λ
(z))P (y|xt,m, λ(z)), (3.3)
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where

P (m|xt, λ
(z)) =

ωmN (xt; µ
(x)
m ,Σ(xx)

m )∑M
n=1 ωnN (xt; µ

(x)
n ,Σ(xx)

n )
, (3.4)

P (y|xt,m, λ(z)) = N
(
yt; E

(y)
m,t,Dm,(y)

)
. (3.5)

The mean vector E
(y)
m,t and the covariance matrix D(y)

m of the mth conditional

probability density function are represented as

E
(y)
m,t = µm,(y) +Σ(yx)

m Σ(xx)−1

m

(
xt − µ(x)

m

)
, (3.6)

D(y)
m = Σ(yy)

m − Σ(yx)
m Σ(xx)−1

m Σ(xy)
m . (3.7)

In the conventional study [67], the converted target features are calculated on the

basis of the minimum mean-square error as follows:

ŷt = E[yt|xt] (3.8)

=

∫
p
(
yt|xt, λ

(z)
)
ytdyt (3.9)

=

∫ M∑
m=1

P
(
m|xt, λ

(z)
)
P

(
yt|xt,m, λ(z)

)
ytdyt (3.10)

=
M∑

m=1

P
(
m|xt, λ

(z)
)
E

(y)
m,t, (3.11)

where ŷt means the converted target feature vector, and E[·] means the expecta-

tion. As the equation (3.11) shows, the converted target features are calculated

by weighted sum of the conditional mean vectors, where the posterior probabil-

ities of the source vector belonging to individual mixture components are used

as weights. Moreover, the equation (3.11) also shows that the converted features

are independently obtained frame by frame.

3.3. Employing Dynamic Features and Global Vari-

ances

Toda et al. have improved the performance of the conversion accuracy by consid-

ering dynamic features [68]. When people utter something, articulatory organs
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are smoothly moved. This fact, which is not considered in MMSE-based con-

version method, indicates that a time sequence of extracted acoustic parameters

should have certain correlations between frames over an utterance. The effec-

tiveness of dynamic features is confirmed in hidden Markov model (HMM)-based

speech synthesis method [55][56].

Let X t = [x⊤
t , ∆x⊤

t ]⊤ and Y t = [y⊤
t , ∆y⊤

t ]⊤ be the source and the target joint

feature vector of static and dynamic feature vector for frame t. Then, time se-

quences of source and target feature vectors are written as X = [X⊤
1 , · · · ,X⊤

t , · · · ,X⊤
T ]⊤

and Y = [Y ⊤
1 , · · · , Y ⊤

t , · · · ,Y ⊤
T ]⊤, respectively.　　 Although Y seems a new

feature sequence, it is rewritten using an extending matrix from the static feature

vector to the joint feature vector of static and dynamic feature vector as

Y = Wy. (3.12)

Using this correlation, a time sequence of the converted feature vectors is deter-

mined as follows:

ŷ = arg max P
(
Y |X, λ(Z)

)
(3.13)

= arg max P
(
Wy|X, λ(Z)

)
, (3.14)

where ŷ is a time sequence of the converted static feature vectors. Two solutions

are considered for the equation (3.14); EM algorithm and an approximation of

mixture sequences.

In EM algorithm, the following auxiliary function is considered:

Q(Y , Ŷ ) =
∑
allm

P
(
m|X,Y , λ(z)

)
log P

(
Ŷ , m|X, λ(z)

)
, (3.15)

where Ŷ is the time sequence of converted joint feature vectors consisting of

static and dynamic feature vectors and m = [m1, · · · , mt, · · · ,mT ] is a mixture

37



component sequence. The auxiliary function is written as

Q(Y , Ŷ ) =
∑

t

∑
m

P
(
m|X t,Y t, λ

(Z)
)
log P

(
Ŷ t,m|X t, λ

(Z)
)

(3.16)

=
∑

t

∑
m

γm,t

{
log γm,t −

D

2
log(2π) − 1

2
log

∣∣∣D̂m

∣∣∣
− 1

2

(
Ŷ t − E

(Y )
m,t

)⊤
D(Y )−1

m

(
Ŷ t − E

(Y )
m,t

)}
(3.17)

=
∑

t

∑
m

γm,t

{
log γm,t −

D

2
log(2π) − 1

2
log

∣∣∣D̂m

∣∣∣
− 1

2

(
Ŷ

⊤
t D(Y )−1

m Ŷ t − 2Ŷ
⊤
t D(Y )−1

m E
(Y )
m,t + E

(Y )⊤

m,t D(Y )−1

m E
(Y )
m,t

)}
(3.18)

=
∑

t

∑
m

γm,t

(
−1

2
Ŷ

⊤
t D(Y )−1

m Ŷ t + Ŷ
⊤
t D(Y )−1

m E
(Y )
m,t

)
+ K, (3.19)

where K is independent terms for Ŷ t. γm,t is a weight for mth mixture component

at frame t written as

γm,t = P
(
m|X t,Y t, λ

(Z)
)

(3.20)

=
ωmN

(
X t, Y t; µ

(Z)
m ,Σ(Z)

m

)
∑

n ωnN
(
X t,Y t; µ

(Z)
n ,Σ(Z)

n

) . (3.21)

The equation (3.19) is also written as

(3.19) =
∑

t

{
−1

2
Ŷ

⊤
t D(Y )−1

m Ŷ tŶ
⊤
t

∑
m

(
γm,tD

(Y )−1

m

)
Ŷ t

+ Ŷ
⊤
t

∑
m

(
γm,tD

(Y )−1

m E
(Y )
m,t

)}
+ K. (3.22)

The time sequence of the converted static features maximizing the auxiliary

function is given by

ŷ =
(
W⊤D(Y )−1

W
)−1

W⊤D(Y )−1
E(Y ), (3.23)
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where

D(Y )−1
= diag

[
D

(Y )−1

1 , · · · ,D
(Y )−1

t , · · · ,D
(Y )−1

T

]
, (3.24)

D(Y )−1
E(Y ) =

[
D

(Y )−1

1 E
(Y )
1 , · · · , D

(Y )−1

t E
(Y )
t , · · · , D

(Y )−1

T E
(Y )
T

]
, (3.25)

D
(Y )−1

t =
M∑

m=1

γm,t. (3.26)

One essential problem in maximum likelihood criterion is that estimated pa-

rameters tend to over-smoothed as Figure 3.2 shows. In order to address the

over-smoothing problem, Toda et al have proposed a novel feature of GV which is

a global variance of acoustic features over a time sequence [68]. GV is expected to

effectively capture acoustic variations that are lost in other statistical conversion

methods. GV is seen as meta acoustic features since it is the acoustic feature to

capture behaviors of acoustic features that are the target of GV. The concept of

GV is similar to that of the ’yourtone’ described in Subsection 2.4.1; sensitive

fluctuations (or outline shapes) of speech waveforms give important influences for

the naturalness of human voices.

GVs of the target static feature vectors over a time sequence are written as

follows:

v(y) = [v(1), · · · , v(d), · · · , v(D)]⊤, (3.27)

v(d) =
1

T

T∑
t=1

(yt(d) − ȳ(d))2 , (3.28)

ȳ(d) =
1

T

T∑
t=1

yt(d), (3.29)

where yt(d) is the dth component of the target static feature vector at frame t. In

this thesis, GVs are calculated utterance by utterance. A new likelihood function

consisting of two probability density function for a sequence of target static and

dynamic feature vectors and for the GVs of the target static feature vectors as

follows:

P
(
Y |X, λ(Z), λ(v)

)
= P

(
Y |X, λ(Z)

)ω
P

(
v(y)|λ(v)

)
, (3.30)
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Figure 3.2. Example of over-smoothing of converted features compared to target

ones.

where P
(
v(y)|λ(v)

)
is described by a single Gaussian with the mean vector µ(v)

and the covariance matrix Σ(vv) as follows:

P
(
v(y)|λ(v)

)
= N

(
v(y); µ(v),Σ(vv)

)
. (3.31)

Two models of the GMM λ(z) and the Gaussian distribution λ(v) are independently

trained using training data. The constant ω denotes the weight factor to control

the balance between those two likelihoods. This thesis set ω as the ratio of the

number of dimensions between v(y) and Y , namely, 1
2T

.

The new time sequence of the converted static feature vectors is determined

as follows:

ŷ = arg max P
(
Y |X, λ(Z), λ(v)

)
(3.32)

= arg max P
(
Wy|X, λ(Z), λ(v)

)
. (3.33)
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The new auxiliary function is updated from Eqn. (3.15) as follows:

Q(Y , Ŷ ) = ωL1 + L2, (3.34)

where L1 is equal to an auxiliary function of Eqn. (3.15) and L2 is written as

follows:

L2 = log P
(
v(ŷ)|λ(v)

)
(3.35)

= −1

2
v(ŷ)⊤Σ(vv)−1

v(ŷ) + v(ŷ)⊤Σ(vv)−1

µ(v) + K ′, (3.36)

where K ′ is independent factors for ŷ. The derivative of L2 with respect to ŷ is

given as follows:

∂L2

∂ŷ
=

[
v

′⊤

1 , · · · , v
′⊤

t , · · · ,v
′⊤

T

]
, (3.37)

v′
t =

∂L⊤
2

∂ŷt

(3.38)

= [v′
t(1), · · · , v′

t(d), · · · , v′
t(D)]

⊤
, (3.39)

v′
t(d) =

∂L2

∂ŷt(d)
(3.40)

=
∂L2

∂v(d)

∂v(d)

∂ŷt(d)
. (3.41)

In order to obtain ∂L2

∂v(d)
, let us concern dth factor after obtaining the partial

derivative of L2 with respect to v(ŷ).

∂L2

∂v(d)
=

∂

∂v(d)

(
−1

2
v(ŷ)Σ(vv)−1

v(ŷ) + v(ŷ)Σ(vv)−1

µ(v) + K ′
)

(3.42)

= −Σ(vv)−1

v(ŷ) + Σ(vv)−1

µ(v) (3.43)

= −Σ(vv)−1 (
v(ŷ) − µ(v)

)
. (3.44)

Let p
(d)
v be the dth row vector of Σ(vv)−1

. Then, the dth coefficient of Eqn. (3.44),

namely ∂L2

∂v(d)
, is written as follows:

∂L2

∂v(d)
= −p(d)

v

(
v(ŷ) − µ(v)

)
. (3.45)
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In order to obtain ∂v(d)
∂ŷt(d)

, first v(d) is rewritten as follows:

v(d) =
1

T

T∑
t=1

{(
ŷt(d) − ŷ(d)

)2
}

(3.46)

=
1

T

T∑
t=1


(

ŷt(d) − 1

T

U∑
u=1

ŷu(d)

)2
 (3.47)

=
1

T

T∑
t=1

ŷt(d)2 − 2

T
ŷt(d)

U∑
u=1

ŷu(d) +
1

T 2

(
U∑

u=1

ŷu(d)

)2
 (3.48)

=
2

T

(
ŷt(d) − 1

T

U∑
u=1

ŷ(d)

)
(3.49)

=
2

T

(
ŷt(d) − ŷ(d)

)
. (3.50)

Finally, v′
t(d) is written as follows:

v′
t(d) =

∂L2

∂v(d)

∂v(d)

∂ŷt(d)
(3.51)

= − 2

T
p(d)

v

(
v(ŷ) − µ(v)

) (
ŷt(d) − ŷ(d)

)
. (3.52)

Figure 3.3 shows an example of converted spectral features considering GV.

Comparing the figure with Figure 3.2, the parameters are estimated so that

is has larger variances than the parameters derived from maximum likelihood

estimation. The converted features considering GV is actually out from the pa-

rameters of maximum likelihood estimation, on the other hand, the synthesized

voice quality is much better than using parameters not considering GV. This

comes from the result of effective modeling of acoustic variations that the natural

target speaker includes.

3.4. Summary

This chapter described the statistical VC method using GMM based on maximum

likelihood criterion. The dynamic characteristic was introduced in order to cap-

ture certain correlations between frames. Moreover, other statistics of GV were

introduced to suppress over-smoothing of converted features due to maximum

likelihood estimation.
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Figure 3.3. Example of converted features considering GV.

43



Chapter 4

Proposed Speaking-Aid System

for EL Speech

This chapter proposs a speaking-aid system that enhances EL speech by statisti-

cal VC described in Chapter 3. First, the proposed system and the enhancement

approach that accepts EL speech and outputs converted natural speech are de-

scribed. This proposed system is experimentally evaluated as a preliminary test

using EL speech imitated by a non-laryngectomee. In order to estimate more nat-

ural F0 contours, an air-pressure sensor is introduced. Then, another speaking-

aid system that enhances EL(air) speech is also proposed. Using the air-pressure

sensor, the source F0 values are available from the input EL(air) speech.

4.1. Introduction

This chapter proposes a novel speaking-aid system for laryngectomees to en-

hance EL speech using statistical VC technique. Although it is no wonder that

it is natural for people to transmit something to others by speech in their daily

lives, the convenience of speech is not always available to everyone, especially

for speaking-impaired people. Laryngectomees described in this thesis can ar-

ticulate with sound excitations; however, the produced alaryngeal speech is still

unnatural and it makes it difficult for them to remain part of the society of non-

laryngectomees as they had been. For EL and EL speech, many studies have so

far been conducted to enhance the EL speech. Although those studies work well,
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the generated speech quality has not been satisfied.

This thesis proposes a speaking-aid system to enhance the EL speech by the

statistical VC technique. Basically, F0 contours of ELs are pre-defined. This

indicates that the EL speech does not have sufficient F0 information except for

the number of vibrations. In the VC to normal speech, the loss of F0 information

might derive degradations of F0 estimation accuracy. This concern comes from

VC from NAM to normal speech [15]. In order to avoid this problem, the pro-

posed system enhancing EL speech converts EL speech to not only normal speech

as the conversion framework of EL-to-Speech but also to whispering that does

not include F0 information as another conversion framework of EL-to-Whisper.

The motivation for EL-to-Whisper comes from similar conversion from NAM to

whispering [16]. The effectiveness of EL-to-Speech and EL-to-Whisper are exper-

imentally confirmed. In the conversion from NAM to whispering, the naturalness

of the converted whispering is more highly scored than that of the converted nor-

mal speech [16]. We often speak with whispering, and therefore, the whispering

is an important output of the aid system. On the other hand, the proposed aid

system aims to be used in the daily life of laryngectomees. Although we often

speak with a whispering, it would be not natural for laryngectomees to speak

with whispering all the time in their conversations. To convert the EL speech

to more natural speech, an air-pressure sensor to detect F0 information of EL

speech is introduced. EL(air) speech would be converted to normal speech in the

conversion framework of EL(air)-to-Speech.

This chapter is organized as follows. In Section 4.2, the speaking-aid system

for EL speech is described. In Section 4.3, VC from EL speech is explained. In

Section 4.4, the speaking-aid system for EL speech is experimentally evaluated

as a preliminary test using imitated EL speech produced by a non-laryngectomee.

In Section 4.5, another speaking-aid system for EL(air) speech using an air-

pressure sensor is described. In Section 4.6, VC from EL(air) speech is described.

Finally, this chapter is summarized in Section 4.7.
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Figure 4.1. Overview of proposed speaking-aid system for conventional EL speech.

4.2. Speaking-Aid System for EL Speech

An overview of the speaking-aid system for EL speech is shown in Figure 4.1.

This system consists of four parts; (1) generating sound source signals, (2) record-

ing the EL speech, (3) converting the EL speech, and (4) output the converted

speech. A current existing EL is supposed to be attached to the same location

as a laryngectomee usually does. Conventional studies for ELs have focused on

only the sound source signals to enable laryngectomees speak with more natural

voice. The novel point of view of this system is that once it records the produced

speech and converts the data to achieve more natural voice.

Because of the same reason of the enhancement of the esophageal speech,

the proposed system would be significantly effective certain situations in which
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Table 4.1. Input and output acoustic features for EL-to-Whisper and EL-to-

Speech

System Input Output

EL-to-Whisper spectrum spectrum

spectrum spectrum

EL-to-Speech spectrum F0

spectrum aperiodic components

laryngectomees have to communicate with others only by their voices such as

telecommunication. The system would be difficult to be used in conversations

with face-to-face because listeners would listen not only converted speech but also

the produced EL speech. On the other hand, in situations which laryngectomees

have to communicate with others only by their voices, listeners must understand

what the laryngectomees said from only the transmitted speech, and therefore, the

transmitted speech plays extremely important rolls to make smooth conversation

successful. In telecommunication, most of the current telephones are specialized

for human speech to decrease data quantity to be transmitted. Because of that,

the current mechanical EL speech is not suitable for telecommunication and it

confines the use of telephone of laryngectomees. In other situations in which EL

speech has to be amplified to be transmitted for many people such as lectures,

this system would be a powerful tool to help laryngectomees.

One usual VC framework for EL speech is to convert the EL speech into nor-

mal speech (EL-to-Speech). Although it is reasonable to convert the EL speech

to normal speech, it is difficult to estimate natural F0 contours. To avoid the

difficulty of F0 estimation, another conversion framework from EL speech to

whispering (EL-to-Whisper) is concerned. In this conversion, only the spectral

information of the EL speech is converted. Input and output acoustic features

in EL-to-Whisper and EL-to-Speech is shown in Table 4.1 in which aperiodic

components [69] shows the strength of noises in each frequency band that is used

in constructing mixed excitation signals [70].
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4.3. Voice Conversion for EL Speech

The basic idea of the VC for EL speech is the same as the statistical VC de-

scribed in Section 3.2. The training data of a GMM for spectral estimation is

joint vectors of the source and the target spectral features. This thesis calculates

delta information from one previous and succeeding frame. For the target data,

joint feature vectors of static and delta features are constructed. For the source

data, this thesis uses segmental feature vector that includes information of mul-

tiple frames. Acoustic features of the EL speech are significantly different from

those of the normal speech, and therefore, the same feature extraction method

might have a risk of degradations of the conversion accuracy. On the other hand,

information that the conversion wants is supposed to be included in the current,

several previous and succeeding frames. Multivariate analysis powerfully works

to extract common factors from observations consisting of multivariable feature

vector. There are some methods of multivariate analysis such as on the basis of

correlation matrix that is on of most classical methods. This thesis uses PCA

as one of major multivariate analyses. PCA procedure extract common factors

which are decorrelation each other to explain observations by linear combinations

of the extracted common factors, which are called principal components. Princi-

pal components are extracted in decreasing order of variances for each dimension

in order to catch the data as most as the components can.

Figure 4.2 shows a flow chart of constructing segmental feature vectors from

static feature vectors which are spectral feature vectors in the case of EL-to-

Whisper and EL-to-Speech. Let Θx = {x1, · · · ,xt, · · · , xT} be a set of source

static feature vectors where xt = [xt(1), · · · , xt(d), · · · , xt(Dx)] is Dx-dimensional

feature vector. Let c∗
t = [x⊤

t−L, · · · ,x⊤
t , · · · ,x⊤

t+L]⊤ be a Dc = D(2L + 1)-

dimensional concatenated feature vector over the current ±L(L ≥ 1) frames.

Then, the D̂(D̂ ≤ Dc)-dimensional segmental feature vector X t at frame t is

extracted by PCA.

PCA procedure is regarded as eigenvalue decomposition for the covariance

matrix of the data. Usually, the dimension of the segmental feature is less than

that of the concatenated feature vector. From the view point of dimension, PCA

procedure is regarded as the procedure to reduce dimensions. This procedure is

expected to compensate loss information due to laryngectomy. The effectiveness
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Figure 4.2. Flow chart of constructing segmental feature vectors from static

feature vectors.

of using not joint feature vectors of static and delta feature but segmental feature

vectors is experimentally confirmed in other studies in which some data such as

higher frequency components are lost. Therefore, the segmental feature vector is

expected to be effective for the EL speech conversion.

In the conversion procedure, source segmental feature vectors are constructed

by the same approach in the training part. Acoustic parameters are estimated

by the same method described in Section 3.2.

In EL-to-Speech, not only spectral information but also F0 information should

be estimated; however, source EL speech does not have effective F0 information

to be converted. Therefore, the GMM to estimate F0 is trained using joint feature
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vectors of source spectral data and target F0 data. Source spectral segment is

set to the spectral data, which is constructed by the same method as EL-to-

Whisper. Joint vector of the target log-F0 and its delta at frame t are set to

the target F0 data. In the conversion procedure, source spectral segment is given

to the trained GMMs for both spectral and F0 estimation and then, acoustic

parameters are generated in maximum likelihood manner.

4.4. Preliminary Experimental Evaluation of the

Speaking-Aid System for EL speech

4.4.1 Experimental conditions

The speaking-aid system for EL speech was experimentally evaluated as a pre-

liminary test. The source speaker and the target speaker were the same non-

laryngectomee. He had trained to produce EL speech for 21 days; therefore, he

had learned the best position to produce EL speech. The speaker recorded 50

newspaper articles for the training data and the other 20 ones for the test data.

EL speech was set to the source speech, and whispering or normal speech was set

to the target speech. All speech data were recorded using a head-set microphone

in a sound proof room. Data format of the recorded data was 16000 Hz sampling

with 16 bit for each sample.

For the spectral data of source EL speech, 0th through 24th mel-cepstral coef-

ficients, which were extracted by mel-cepstral analysis [71], were used. Note that

0th coefficient captured power information. For the spectral data of the target

whispering, 0th through 24th mel-cepstral coefficients extracted by the same mel-

cepstral analysis [71] were used. For the spectral data of the target normal speech,

the 0th through 24th mel-cepstral coefficients, which were extracted by Speech

Transformation and Representation using Adaptive Interpolation of weiGHTed

spectrum (STRAIGHT) analysis [72], were used. F0 values and aperiodic com-

ponents of the target speech were extracted by STRAIGHT analysis [72]. The

segmental feature vector of source spectral data to estimate target data was con-

structed by the following procedures; first, the current, previous and succeeding

eight frames were concatenated into one vector, and then, the dimension of the
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concatenated vector was compressed by PCA procedures. Finally, 50-dimensional

segmental feature vector was constructed frame by frame. For F0 estimation, the

frame length to construct segmental feature vectors was set to eight, and the same

method as constructing the segmental feature vectors of spectral data was em-

ployed. The number of GMM components to estimate spectral, F0 and aperiodic

parameters was set to 32, respectively.

Mel-cepstral distortion was introduced to objectively calculate conversion ac-

curacy about spectrum between converted and target spectra, which was given

by

Mel − cd [dB] =
1

T

T∑
t=1

10
√

2
∑D

d=1 {(tart[d] − convt[d])2}
ln 10

, (4.1)

where tard[d] and convt[d] were dth coefficients of the target and converted mel-

cepstrum at the frame t, respectively. Calculating the distortion between source

and target spectra, orgt[d] as the dth coefficients of the source mel-cepstrum at the

frame t was set instead of convt[d]. Two measures were introduced to objectively

calculate F0 conversion accuracy between converted and target F0; (1) unvoiced or

voiced decision errors (U/V errors) and (2) correlation coefficient only for voiced

frames. U/V errors were calculated as the rate of number of target U/V frames

and converted U/V frames. Since source EL speech did not have effective F0

information for VC, only the combination of converted and target F0 values were

calculated. Because of the same reason as F0 evaluations, only the distortion of

converted and target aperiodic components were calculated by root mean square

errors given by

RMSE =

√∑T
t=1 rmset

T
, (4.2)

rmset =
D∑

d=1

(
AP tar

t (d) − AP conv
t (d)

)2
, (4.3)

where AP tar
t (d) and AP conv

t (d) were the dth aperiodic component at frame t of

target and converted data, respectively.

51



Table 4.2. Averaged mel-cepstral distortion. Values in front of and behind the

slash shows distortions considering and not considering power information (i.e.

0th coefficient), respectively

System Source-Target Converted-Target

EL-to-Whisper 9.09 / 7.57 5.00 / 4.38

EL-to-Speech 9.42 / 8.43 4.73 / 3.99

Table 4.3. Voiced or unvoiced error rates and correlation coefficients between

voiced frames of converted F0 values and those of target ones. ’x → y’ denotes

the rate of x frames regarded as y frames. The label ’U’ and ’V’ denote unvoiced

and voiced frames, respectively. For example, V → U means rate of voiced frames

regarded as unvoiced frames

Correlation coefficients 0.317 ± 0.105

V → V 41.92 [%]

U → U 48.96 [%]

V → U 7.09 [%]

U → V 2.04 [%]

4.4.2 Experimental results

Table 4.2 shows averaged mel-cepstral distortions utterance by utterance for

EL-to-Whisper and EL-to-Speech. Table 4.3 shows objective results for F0 es-

timation, which are correlation coefficients and U/V errors between converted

and target F0 values. Figure 4.3, Figure 4.4, and Figure 4.5 show examples

of waveforms, spectrograms, F0 contours of source, converted, and the target

normal speech, respectively. Although the correlation coefficient of F0 contours

calculated from only voiced frames of between converted and target normal speech

is not high, F0s with certain tones are estimated.
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Figure 4.3. Example of waveforms, spectrograms, and F0 contours for source EL

speech.
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Figure 4.4. Example of waveforms, spectrograms, and F0 contours for converted

normal speech.
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Figure 4.5. Example of waveforms, spectrograms, and F0 contours for target

normal speech.
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4.5. Speaking-Aid System for EL(air) Speech

An air-pressure sensor to manipulate F0 contours has been developed by Uemi

et al [35]. In order to use this sensor, the air-pressure sensor is connected to the

existing EL called ’yourtone’. A user holds both the body of the EL and the

air-pressure sensor with his or her both hands. The body of the EL is attached to

the speaker’s lower jaw. The air-pressure sensor is set to cover the tracheostoma.

The current air-pressure sensor is closed-type that does not pass through the air

when the sensor covers thetracheostoma. Consequently, the speaker do the fol-

lowing processes to speak using the air-pressure sensor for every pause insertions:

1) taking air into the lungs while attaching only the body of the EL to the lower

jaw, 2) putting the air-pressure sensor so that it covers the tracheostoma, 3) ex-

piring the air so that it drives the vibrator of the EL, and 4) articulating the

vibrations to speak with EL speech. The circuit that converts the air-pressure to

the number of vibration of the vibrator is built in the main body of the EL.

As the Figure 4.6 shows, this system is similar to Figure 4.1 except its

sound source unit and target speech. The F0 contours of EL(air) speech are

not monotone; however, those are also not natural than those of normal speech.

This F0 information might be effective for VC of converting EL(air) to normal

speech (EL(air)-to-Speech). The effectiveness of using the air-pressure sensor and

F0 information is experimentally investigated in Chapter 6 using a laryngec-

tomee’s data. In the enhancement of EL(air) speech, EL(air) speech is converted

to only normal speech because source EL(air) speech has not monotone pitch

information. In the VC of EL(air)-to-Speech, the same kinds of acoustic features

as EL-to-Speech are estimated; spectrum, F0, and aperiodic components, which

are independently estimated. Input and output acoustic features in EL(air)-to-

Speech are shown in Table 4.4. For the spectral estimation, one GMM is trained.

For the F0 estimation, two types of conversion are concerned in which F0 estima-

tion from only spectral data, only F0 data, or both spectral and F0 data.
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(4) Converted normal speech

(3) Voice
Conversion

(2) Recording

(1) Electrolarynx

Air-pressure sensor
Air flow

Figure 4.6. Overview of proposed speaking-aid system for EL(air) speech.

Table 4.4. Input and output acoustic features for EL(air)-to-Speech

Input Output

spectrum spectrum

spectrum or
F0spectrum and F0

spectrum aperiodic components

4.6. Voice Conversion for EL(air) Speech

In EL(air)-to-Speech, joint feature vectors of static and dynamic target log F0

values are set to the target F0 feature vectors. When target F0 values are esti-

mated from only source spectral features, the same segmental feature vectors as
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Spectral segmental feature vectors F0 segmental feature vectors

Spectral staticfeature vectors F0 static feature vectors

Figure 4.7. Flow chart of constructing segmental feature vectors from spectral

and F0 feature vectors.

the spectral estimation are set to the source data. Next, joint vectors consisting

on segmental vectors of source spectral features and joint vectors of target log F0

features are modeled by a GMM. When estimating target F0 values using both

spectral and F0 information, two methods of constructing source segmental fea-

tures are concerned; 1) firstly concatenate two static feature vectors of spectral

and F0 feature vectors, and then, construct the segmental features, or 2) firstly

construct spectral and F0 segmental feature vectors independently for each frame

in the same method as Figure 4.2 shows, and then, concatenate these vectors as

Figure 4.7 shows. What it wants to confirm by using both spectral and F0 infor-

mation is the effectiveness of the source F0 information. In the first method, it is

not ensured that information of source F0 data remains in the segmental feature

vectors. Because of that, the second method in which two individual segmental

feature vectors are concatenated is employed in this thesis.

58



4.7. Conclusion

This chapter described a speaking-aid system to enhance EL speech using the

statistical VC method. In the aid system, a VC framework of EL-to-Speech was

concerned. It is attractive; however, the natural F0 estimation might be difficult

because source EL speech does not have sufficiently rich F0 information. To

avoid the problem of natural F0 estimation, another VC framework of EL-to-

Whisper was considered. To obtain a non-monotone pitch of source EL speech,

a novel air-pressure sensor was additionally introduced, with which speakers can

manipulate F0 of the EL by their own air expired from the tracheostoma. This

EL speech using the air-pressure sensor was converted to normal speech. In this

VC framework, F0 contours of the converted speech were expected to be closer

to those of the normal speech. When estimating target F0 using EL speech with

air-pressure sensor, three kinds of source segmental vectors were used, which were

spectral segmental vectors, log F0 segmental vectors, or joint vectors of spectral

and log F0 segmental features.
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Chapter 5

Proposed Speaking-Aid System

for EL(small) Speech

This chapter proposes the other speaking-aid system that accepts EL speech using

the extremely small-powered sound source signals and outputs natural speech.

If the users can select sound source signals, it might be the versatility of the

system. This thesis designed sound source signals by changing the spectrum

and the power independently. In the case of changing its spectrum, this thesis

designed three kinds of sound source signals of pulse train, a sawtooth waves, and

the compensation waves into whispering. In the other case of changing its power,

the spectrum is fixed to the sawtooth waves that has the largest dynamic range.

This system is also experimentally evaluated as a preliminary test using imitated

EL speech by a non-laryngectomee.

5.1. Introduction

This chapter describes another speaking-aid system for laryngectomees using the

statistical VC approach. The input of the speaking-aid system described in

Chapter 4 is EL speech that has enough power for speech communication in

laryngectomees’ daily life. On the other hand, the large power of the electrolar-

ynx often annoys people around the speaker especially in quiet settings such as

a library. Moreover, the problem is that the speaker would be anxious that he or

she makes people around him or her uncomfortable since the sound source sig-
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nals are output every utterance. This problem was made obvious by the author’s

experience producing utterances using only an electrolarynx for 21 days.

To address the noisy sound source signals, this thesis introduces another sound

source unit, proposed by Hosoi et al., that outputs any signals with extremely

small power so that people around the user have difficulty to catch the sound.

The new sound source unit (EL(small)) addresses the noisy sounds of the electro-

larynx; on the other hand, another problem rises that not only the sound source

signals but also the produced EL speech have only small power so that it is almost

too difficult for a usual air-conductive microphone such as head-set microphone to

catch the EL speech. To record the EL speech excited by small-powered signals,

this paper introduces the NAM microphone.

As the other challenging speaking-aid system for laryngectomees, the small-

powered EL speech recorded with a NAM microphone (EL(small) speech) is set

to the source signals. In this system, two kinds of speech signals of whispering

or normal speech are output as the same idea as the EL-to-Whisper; EL(small)-

to-Whisper and EL(small)-to-Speech in this thesis, respectively. EL(small) can

generate arbitrary signals. Using these characteristics, three sound source signals

are designed; (1) pulse train, (2) sawtooth waves, and (3) compensation waves

that compensates for acoustic features of EL(small) speech to whispering. The

robustness of VC for these sound source signals is experimentally evaluated in

advance. The effectiveness of EL(small)-to-Whisper and EL(small)-to-Speech are

experimentally evaluated in the following Chapter 6 in which the pulse train and

the sawtooth waves are used.

This chapter is organized as follows. The speaking-aid system using EL(small)

is described in Section 5.2. VC for EL(small) speech is described in Section 5.3.

In Section 5.4, the speaking-aid system for EL(small) speech is experimentally

evaluated as a preliminary test using imitated EL(small) speech produced by the

same non-laryngectomee as Chapter 4. This section is summarized in Section

5.5.
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(1) Sound source unit

(4) Converted whispered
or normal speech

(3)Voice
Conversion

Amplifier

(2) NAM microphone

Figure 5.1. Overview of proposed speaking-aid system for EL(small) speech.

5.2. Speaking-Aid System for EL(small) Speech

The speaking-aid system using EL(small) speech is shown in Figure 5.1. The

basic framework of this system consisting of uttering, recording, converting, and

outputting are the same as other aid systems described in Chapter 4. The input

and output acoustic features in EL(small)-to-Whisper and EL(small)-to-Speech

are also the same as EL-to-Whisper and EL-to-Speech (see Table 4.1). Although

the sound source unit is different as other aid systems, the attaching location of

the EL(small) is the same as EL. This system is expected to be used not only

for telecommunication but also conversations of face-to-face. Using this system,

three concerns would be expected; (1) volumes of source signals and EL(small)

speech, (2) auditory feedback to the user oneself, and (3) delay of the conversion.

One powerful feature of this system is the silence of the produced EL(small)
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speech. Although the EL(small) is captured in extremely quiet rooms such as

sound proof room, it is rare for users to use this system in such too quiet scenes.

There are usually some background noises in our lives such as electric furniture of

air-conditioner. As the result, it is expected that such background noises would

mask the EL(small) speech. Next concern is that such mask effect also works not

only for people around the speaker but also the speaker oneself. In other words,

the speaker might be difficult to hear one’s own voice. Even though the speaker

could capture the EL(small) speech, he or she would hear both EL(small) speech

and converted speech that would make the speaker confusing since the current

VC framework for alaryngeal speech is not specified for real-time framework.

As the result, the speaker would too difficult to hear his or her own EL(small)

speech or would hear delayed those speech. Feedback mechanism often plays

important rolls for a subject to continuously monitor the subject’s action by

giving back the result to the subjects. Auditory feedback is one of the important

feedback information about speech, that carries the implicit idea that speakers

listen to the sound of their voice and send the result of this perception back

to the brain in a level where this result can be compared with the production

the speaker intended to produce [73]. Yates have pointed out at least three

feedback information for the subject [74]; kinesthetic and proprioceptive feedback

from changes in the muscular and sensory apparatuses involved in speaking and

listening, auditory feedback transmitted via the physical structures of bones or

muscles in uttering, and another auditory feedback transmitted through the air to

the speaker’s ears. Since some muscles around the neck of most of laryngectomees

would be removed in the laryngectomy, they are difficult to obtain second in-body

auditory feedback described above as same as non-laryngectomees do. The mask

effect for the EL(small) speech by background noises prevents the third auditory

feedback described above. Moreover, even if the speaker could obtain the third

auditory feedback, the articulation would be modified by hearing both produced

EL(small) speech and converted speech in extremely short but not the same terms

since the current VC framework used in aid systems in this thesis is not specified

for real-time. As the result, the user needs well perceptible auditory feedback

for the produced EL(small) speech to make the user’s articulation stable in the

use of this EL(small) aid system in the user’s daily life. This thesis simply gives
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Figure 5.2. Designed sound source signals with different spectra.

the speaker recorded EL(small) speech directly to the user’s one ear to make the

user’s articulation stable. The effectiveness of enhancing auditory feedback is

experimentally evaluated in Section 5.4.

This thesis designed sound source signals from the view points of spectra and

powers, independently. In case of changing the spectra, this thesis designed three

types of sound source signals of (1) pulse train, (2) sawtooth waves, (3) com-

pensation waves to whispering. The waveforms and spectra of these signals are

shown in Figure 5.2. These sound source signals are designed in the following

concepts:

1 Pulse train

Pulse train only has the amplitude at the first sample of the cycle. This signal is

designed as one of the simplest signals as sound source excitations. As the Figure

5.2 shows, this signal has equally powers for all components in the frequency

domain.

2 Sawtooth waves
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Sawtooth wave is one of asymmetric triangular waves that the power is going

down as the time goes. Sawtooth waves showed in the Figure 5.2 are designed

since it is said that vocal folds vibrations of humans are approximated by asym-

metric triangular waves. As the figure shows, this signal includes larger powers

of acoustic features in lower frequency components. Since NAM microphone is

suitable to capture lower frequency components, it is expected to be an advan-

tage for users to clearly listen to their own auditory feedback. Moreover, it has

certain amplitude over the time sequence, and therefore, the dynamic range of

the power is larger than pulse train. As the result, it makes possible to design

other sawtooth waves with different powers.

3 Compensation waves

The VC method used in thesis optimizes model parameters by EM algorithm that

is related to initial parameters. Compensation waves are designed so that more

suitable initial parameters in VC are obtained. As the result, the VC accuracy

might be improved by making the initial parameters close to other ones after

maximum likelihood estimation. This thesis tries to design compensation waves

into whispering. The flow chart of designing the compensation waves is shown in

Figure 5.3.

Figure 5.4, Figure 5.5, and Figure 5.6 show examples of waveforms, spec-

trograms, and F0 contours produced using those sound source signals with dif-

ferent spectra and with the same power, respectively. As these figures show, EL

speech using pulse train includes almost the same powers in almost all frequency

components. Another EL speech using the sawtooth waves includes much spec-

tral intensity in lower frequency components. On the other hand, the other EL

speech using compensation waves into whispering has much spectral intensity

over 4000 Hz compared to other two EL speech signals. Figure 5.7 shows his-

tograms of normalized powers of 50 utterances of EL(small) speech using those

three different small sound source signals, in which left groups show power his-

tograms of silence parts and the other groups show those of speaking parts. As

the figure shows, although the EL(small) speech using the compensation waves

includes much spectral intensity over 4000 Hz, it totally has smaller powers than

other EL(small) speech signals. Moreover, EL(small) speech using the sawtooth

waves totally has larger power than others. This tendency is related to the spec-
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Figure 5.3. Flow chart of designing compensation waves into target speech.

tral intensity included in the lower frequency components of the sound source

signals.

In case of changing the powers, the spectrum is fixed to be the sawtooth waves

because it has the largest dynamic ranges among those three different spectra.

Figure 5.8 shows histograms of normalized powers of 50 utterances of three kinds

of speech signals. One of the histograms comes from EL(small) speech using the

sawtooth waves which power is the same as the power of the pulse train. This

is the basic power among power variations. Another one comes from another

EL(small) speech using sawtooth waves which power is larger than the previous

one. The other histogram comes from EL speech using a conventional EL to be the

higher limit of the power. As the figure shows, EL(small) speech using the large-

powered sawtooth waves has larger powers than the other EL(small) speech using

the basic-powered sawtooth waves; however, the power of the EL(small) speech

is still small than that of the EL speech. Figure 5.9 shows other histograms of

normalized powers of 50 utterances of three kinds of speech signals. One of the

histograms comes from EL(small) speech using the sawtooth waves which power

is the same as the power of the pulse train. Another one comes from another
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Figure 5.4. Example of waveforms, spectrograms, and F0 contours using pulse

train produced by a non-laryngectomee.
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Figure 5.5. Example of waveforms, spectrograms, and F0 contours using sawtooth

waves produced by a non-laryngectomee.
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Figure 5.6. Example of waveforms, spectrograms, and F0 contours using com-

pensation waves into whispering produced by a non-laryngectomee.
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Figure 5.7. Histograms of normalized powers of EL(small) speech using pulse

train, sawtooth waves, and compensation waves into whispering.

EL(small) speech using sawtooth waves which power is extremely smaller than

the previous one. The other histogram comes from speech without using any

sound source signals, in which recording, the speaker only moves the mouth like

his/her speaks. This speech is assumed to be the lower limit of the power. As

the figure shows, it is difficult to distinguish the speaking and silence parts if the

power of the sound source signals is too small.

5.3. Voice Conversion for EL(small) Speech

The basic idea of the VC for EL(small) is the same as other VC for alaryngeal

speech described in this thesis. Because the source speech does not have effective

F0 information, EL(small) speech is converted to whispering or normal speech

that is EL(small)-to-Whisper or EL(small)-to-Speech in this thesis, respectively.
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Figure 5.8. Histograms of normalized powers of EL(small) speech using average-

powered sawtooth waves, large-powered sawtooth waves, and EL.

The way to constructing the training data of EL(small)-to-Whisper and EL(small)-

to-Speech is the same as EL-to-Whisper and EL-to-Speech, respectively. In

EL(small)-to-Whisper VC, only a GMM to estimate spectral information is trained,

in which procedure joint feature vectors of source segmental feature vectors

and target joint feature vectors of static and dynamic feature are modeled. In

EL(small)-to-Speech VC, three GMMs each of which independently estimates

spectrum, F0 contours, and aperiodic components are trained. In the training

procedure, spectral segmental feature vectors are set to source features of the

three GMMs, and joint feature vectors of static and dynamic features of target

spectrum, F0 values, and aperiodic components are used to train the individual

GMMs.
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Figure 5.9. Histograms of normalized powers of EL(small) speech using average-

powered sawtooth waves, extremely small-powered sawtooth waves, and articu-

lation in which any sound source signals are not used when speaking.

5.4. Preliminary Experimental Evaluation of the

Speaking-Aid System for EL(small) Speech

This section describes preliminary experimental evaluations using imitated EL(small)

speech produced by a non-laryngectomee. This evaluation is intended to investi-

gate following two items:

• Effectiveness of enhancing auditory feedback

• Impact of using different sound source signals for the VC accuracy

First, the effectiveness of enhancing the speaker’s auditory feedback is investi-

gated. And then, the second concern is investigated.
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5.4.1 Effectiveness of enhancing auditory feedback

The effectiveness of enhancing auditory feedback is evaluated through the follow-

ing two steps. The simple method to provide the speaker with amplified auditory

feedback is firstly evaluated whether it is suitable to enhance the auditory feed-

back. Next, the effectiveness and the necessity of enhancing auditory feedback

are evaluated by converting the EL(small) speech to normal speech.

Experimental conditions

The speaker was the same one non-laryngectomee of a Japanese male as Sec-

tion 4.4. All speech data were recorded in a sound proof room, and an air-

conditioner noise [75] was output as a background noise. As shown in Figure

5.10, the user spoke 50 cm away from two loudspeakers. The noise levels, which

were 50 dBA, 55 dBA, 60 dBA, 65 dBA respectively, were controlled at the

user’s location. These situations were expected to simulate indoor noise environ-

ments in our daily life. The usual noise level in the recording room was almost

31 dBA. The user articulated using the pulse train described in Section 5.2 to

produce EL(small) speech. When enhancing the auditory feedback, EL(small)

speech passed through an amplifier was directly given to the user’s one ear with

a closed-type ear phone. The volume of the amplified auditory feedback was con-

trolled to each noise level so that the user was the most comfortable to listen.

When the auditory feedback was not enhanced, the user got the auditory feed-

back only from the produced EL(small) speech signals. The user read out nine

sentences of newspaper articles for each condition, and totally 90 utterances (nine

sentences, five noise levels, and with/without auditory feedback) were recorded

that was used to evaluate the simple method to enhance the auditory feedback.

The speech data were recorded with 48000 Hz sampling and 24 bit for each sam-

ple.

The stability of user’s articulation with or without amplified auditory feedback

was subjectively evaluated by eight non-laryngectomees. They evaluated recorded

all 90 sentences with five scaled opinion score (1: Bad, 2: Poor, 3: Fair, 4: Good,

5: Excellent). The audio format of the stimuli was 16000 Hz sampling and 16 bit

for each sample. Stimuli were randomly given to both ears by a headphone in

the recording room.
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In order to evaluate the effectiveness of the enhancing the auditory feedback,

a VC experiment was also conducted. In this evaluation, EL(small) speech using

the pulse train was set to the source speech and whispering recorded using a head-

set microphone was set to the target speech. The same speaker as the above

experiment additionally recorded 75 sentences including 49 phoneme-balanced

sentences for the training and 26 newspaper articles for the test. The noise level

was set to 50 dBA or 55 dBA, respectively. The other recording conditions were

the same as described above.

The 0th through 24th mel-cepstral coefficients [71] were extracted from the

source and the target speech, respectively. In order to alleviate the degrada-

tion of the VC accuracy due to the lack of information because of recording the

speech using a NAM microphone, segmental feature vectors were used in the pre-

vious study of VC from NAM to normal speech [15]. Therefore, this thesis also

used spectral segmental feature vectors, which were constructed by the following

frame-by-frame procedures: a vector was prepared by concatenating the extracted

static feature vectors at a current ± eight frames, and then, the dimension of the

concatenated feature vector was reduced by principal component analysis (PCA).

Finally, 50-dimensional segmental feature vectors were established as the source

data. A joint feature vector consisting on the static and the delta of the first-

order information was constructed at each frame to be set to the target data. The

number of GMM mixture components was set to 32. The mel-cepstral distortion

between the target and the converted mel-cepstra, which was given by equation

(4.1), was used as an evaluation metric of the voice conversion accuracy.

Experimental result

Figure 5.11 shows the result of the subjective evaluation. In case of not

giving the amplified auditory feedback, the stability of the user’s articulation is

obviously degraded. On the other hand, the user can utter with stable articula-

tion by getting his auditory feedback explicitly. Figure 5.12 shows a waveform

example of utterances with or without amplified auditory feedback. In case of

not giving the amplified auditory feedback, many bursts supposed to be appeared

in consonants are suppressed. On the other hand, the user can clearly articulate

even under the large background noise environment by getting his amplified au-
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Figure 5.10. Speech recording condition under existing background noises.

ditory feedback with the ear phone. From these result, the user needs to receive

one’s amplified auditory feedback from the system to make the articulation stable.

Figure 5.13 shows the result of a voice conversion experiment. When the

auditory feedback is not enhanced, the voice conversion accuracy is significantly

degraded. This degradation is still observed even if the noise level is set to 50

dBA. On the other hand, the auditory feedback enhancement yields significant

improvements of the voice conversion accuracy. Therefore, our method of enhanc-

ing the auditory feedback is significantly useful to record the EL(small) speech

used for training the conversion model.

5.4.2 Robustness of VC for several small-powered sound

source signals

Experimental conditions

The speaking-aid system for EL(small) speech was experimentally evaluated

as a preliminary test. Employing the result of previous evaluation, all EL(small)

speech described in this subsection was produced by giving the speaker amplified

auditory feedback.

In order to investigate the robustness of VC for sound source signals, several

EL(small) speech was converted to whispering, in which the spectrum and the

power of the sound source signals were independently changed. Three different
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Figure 5.11. Mean opinion score of the stability of articulation under existing

background noises.

spectra of pulse train, sawtooth waves, and compensation waves into whispering

were evaluated as the influences of the spectrum changes. Six different powers

of the sawtooth waves of -27 dB, -18 dB, -9 dB, 0 dB, +9 dB, and +18 dB

were evaluated as the other influence of the power changes. 0 dB, which was the

basic power of the small-powered sound source signals, means the same averaged

power as the pulse train as described in Section 5.2. Totally 10 kinds of different

imitated alaryngeal speech were evaluated to find out which sound source signals

would degrade the VC accuracy. Frequencies of all small excitations were set to

100 Hz. Cross validation in which 50 newspaper articles were for training, and

other 20 ones were for evaluation is conducted. Other experimental conditions

were the same as evaluations conducted in Section 4.4.
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/k/ /t/ /k/ /k/ /t/ /m/without enhanced auditory feedback

with enhanced auditory feedback/k/ /t/ /k/ /k/ /t/ /m/
Figure 5.12. Example of EL(small) speech with or without amplified auditory

feedback under existing background noises.

Not only objective but also two subjective evaluations were conducted for

EL(small)-to-Whisper. One subjective evaluation was to evaluate the system of

EL(small)-to-Whisper, and the other was to investigate influences due to using

different sound source signals.

Five-scaled opinion score (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent)

was used as the measurement of the subjective evaluation. Stimuli were following

seven kinds of converted whispering:

(1) converted whispering from only articulation without using any sound source

signals

(2) converted whispering from EL(small) speech using minimum power of the

sawtooth waves

(3) converted whispering from EL(small) speech using basic power of the saw-

tooth waves
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Figure 5.13. Mel-cepstral distortions without power information under existing

background noises.

(4) converted whispering from EL(small) speech using the pulse train

(5) converted whispering from EL(small) speech using the compensation waves

into whispering

(6) converted whispering from EL(small) speech using maximum power of the

sawtooth waves

(7) converted whispering from conventional EL speech

Totally 140 utterances (20 utterances, 7 source signals) were randomly evaluated

by five non-laryngectomees with respect to the naturalness.

Experimental result

78



4.40
4.45
4.50
4.55
4.60
4.65

Mel-c
epstr
al dis
tortio
n

Sawtooth waves(0)pulse train(0)Compensation waves(0) Sound source signals(values show power [dB])

95% confidence intervals

Figure 5.14. Mel-cepstral distortion of EL(small) speech without power informa-

tion using sound sources with different spectra.

Figure 5.14 shows averaged mel-cepstral distortions utterance by utterance

for EL(small)-to-Whisper, in which influences of different spectra are investigated.

Figure 5.15 shows other averaged mel-cepstral distortions, in which influences of

different powers are investigated. The results show that the VC accepts different

spectra of sound source signals. Changing the power of the sound source signals

shows a tendency that the distortion is getting larger as the power going down

especially between the articulation and the power of -18 dB. On the other hand,

variations of the results cover individual results. Finally, in the objective evalua-

tion, this thesis regards that once sound source signals are given to produce EL

speech, VC using sound sources with different powers works in almost the same

accuracy.
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Figure 5.15. Mel-cepstral distortion of EL(small) speech without power informa-

tion using sound sources with different powers.

Table 5.1. Averaged mel-cepstral distortion for EL-to-Speech in which imitated

EL speech produced by a non-laryngectomee is used as the source speech

Source/Converted With power information [dB] Without power information [dB]

Source 9.42 8.43

Converted 4.73 3.99

Table 5.1 shows other averaged mel-cepstral distortions utterance by utter-

ance for EL-to-Speech. Table 5.2 shows the other result about F0 estimation.

Although the correlation coefficient of F0 contours calculated from only voiced

frames of between converted and target normal speech is not high, F0 values with

certain tones are estimated.
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Table 5.2. Voiced or unvoiced error rates and correlation coefficients for voiced

frames for EL-to-Speech between converted F0 values estimated from imitated EL

speech produced by a non-laryngectomee and target ones. Notations are same as

those in Table 4.3

Correlation coefficients 0.317 ± 0.105

V → V 41.92 %

U → U 48.96 %

V → U 7.09 %

U → V 2.04 %

Figure 5.16 shows subjective results of using different spectra and powers of

the sound source signals. The result for EL(small) speech using different spectral

shows the same tendency as the objective result. The VC accuracy is almost the

same within the spectral changes. On the other hand, different tendencies from

the objective results are seen in case of power changes. The quality is slightly

degraded as the power going larger; however, the mean opinion score keeps around

three. This thesis regards that this result is acceptable. The quality degradation

is seen as the power goes down. Especially using -27 dB of the sawtooth waves,

the converted voice quality is degraded. Considering objective and subjective

results, this thesis expects that VC accepts large variety of sound source signals

with different spectra and powers except the case that the power of the speaking

part is almost the same as that of the silence part.

5.5. Conclusion

To suppress the volume of ELs, this thesis used another sound source unit that

outputs arbitrary source signals with extremely small power as EL(small). The

produced EL(small) speech was preliminarily converted to whispering or normal

speech as other speaking-aid systems of EL(small)-to-Whisper or EL(small)-to-

Speech, respectively using the imitated EL(small) speech produced by a non-

laryngectomee. In EL(small)-to-Whisper, only spectral features were estimated
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Figure 5.16. Mean opinion score of EL(small) speech using sound sources with

different spectra and powers.

from the source spectral features. In EL(small)-to-Speech, spectral, F0, and ape-

riodic features were estimated from only the source spectral features. Three

sound source signals were; pulse train, sawtooth waves, and compensation waves

to make the spectral features of EL(small) close to those of whispering. From the

preliminary experimental evaluation, VC accepted all of these signals except the

case in which the power of the speaking parts was the almost the same as that of

the silent parts.
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Chapter 6

Experimental Evaluations

This chapter experimentally evaluates all conversion frameworks of speaking-

aid systems proposed in this thesis; EL-to-Whisper, EL-to-Speech, EL(air)-to-

Speech, EL(small)-to-Whisper, and EL(small)-to-Speech. The speaker is one

male laryngectomee who is proficient at using an external utterance device. Ob-

jective and subjective evaluations achieve the enhancement of all kinds of EL

speech. Unfortunately, intelligibility is slightly degraded. On the other hand, nat-

uralness of all converted speech is dramatically high compared to that of source

speech. Finally, converted speech is preferred to the source speech, which indi-

cates the effectiveness of the VC for alaryngeal speech using an external device.

The effectiveness of using an air-pressure sensor is additionally evaluated.

6.1. Introduction

Table 6.1 shows advantages of the all types of speaking-aid systems proposed in

this thesis.

In order to evaluate three types of speaking-aid systems using EL, EL(air),

and EL(small) speech, respectively, this chapter conducts objective and subjective

evaluations. This thesis uses a laryngectomee’s data to experimentally investigate

following concerns:

(1) Is VC objectively and subjectively effective for EL speech enhancement

using different sound source signals?
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Table 6.1. Advantages and effective use of individual speaking-aid systems pro-

posed in this thesis

Sound source Output
System

Desired

unit speech advantages

EL
Whispering EL-to-Whisper Speaking with

Normal speech EL-to-Speech natural voice

EL(air) Normal speech EL(air)-to-Speech
Speaking with

more natural voice

EL(small)
Whispering EL(small)-to-Whisper Speaking with natural voice

Normal speech EL(small)-to-Speech without annoying others

(2) Is the air-pressure sensor effective in EL(air)-to-Whisper and EL(air)-to-

Speech?

(3) Is F0 information effective in EL(air)-to-Speech?

This chapter is organized as follows. In Section 6.2, three proposed speaking-aid

systems are objectively evaluated. In Section 6.3, these systems are subjectively

evaluated. Additional experimental evaluation is conducted in Section 6.4. This

section is summarized in Section 6.5.

6.2. Objective Evaluations of the Speaking-Aid

Systems

6.2.1 Experimental conditions

A source speaker was one Japanese male laryngectomee in his 50s. He was under-

gone the total laryngectomee more than 10 years ago, which meant his physical

condition around the neck after the operation was stable. Not only his larynx but

also most of his left-side muscles including his sternocleidomastoid were removed,

where was a key location to attach NAM microphone. He always used EL in his

daily conversations; therefore, he was a proficient to utter using external sound
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source unit. One non-laryngectomee was set to a target speaker who was a dif-

ferent from the source speaker. Both of source and target speakers recorded 50

phoneme-balanced balanced sentences for training data and uttered 30 newspaper

utterances for test data. Five kinds of source speech signals were converted, which

were EL speech, EL(air) speech, EL(small) speech using pulse train, EL(small)

speech using sawtooth waves with the same averaged power as the pulse train,

and EL(small) speech using sawtooth waves with larger averaged power as the

pulse train. These source speech signals were converted to whispering or nor-

mal speech in each proposed aid system. Only EL(small) speech signals were

recorded by NAM microphone, and all other utterances were recorded by a head-

set microphone. All speech data were recorded in 48000 Hz sampling with 24 bit

for each sample. After down-sampling to 16000 Hz and down-bitrate to 16 bit

for each sample, acoustic features were extracted. For target speech data, the

0th through 24th mel-cepstral coefficients, which were extracted by STRAIGHT

analysis, were used as the target spectral parameters in which 0th coefficient

captures power information. F0 values and aperiodic components of the target

speech were extracted by STRAIGHT analysis. Time-domain Excitation extrac-

tor using Minimum Perturbation Operator (TEMPO) [72] analysis was employed

for F0 extraction. For other speech data of target whispering and all kinds of

source speech data, the 0th through 24th mel-cepstral coefficients [71] were used

as the spectral parameters in which the 0th coefficient captures power informa-

tion. F0 values of the EL(air) speech were extracted by Robust Algorithm for

Pitch Tracking (RAPT) [76]. Aperiodic components of the EL(air) speech were

extracted by STRAIGHT analysis. The number of a GMM component to esti-

mate spectral and aperiodic parameters was set to 32, respectively, and that of

another GMM component to estimate F0 parameters was set to 16, 32, 64, or 128.

The segmental feature vector of source spectral data to estimate target spectral

data was constructed by the following procedures; first, the current, previous and

succeeding eight frames were concatenated into one vector, and then, the dimen-

sion of the concatenated vector was compressed by PCA procedures. Finally,

50-dimensional segmental feature vector was constructed frame by frame. For F0

estimation, the frame length to construct spectral segmental feature vectors was

set to 8.
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Table 6.2. Averaged mel-cepstral distortions for all kinds of speaking-aid systems

proposed in this thesis. Values in front of and behind the slash respectively

shows distortions considering and not considering power information (i.e., 0th

coefficient). ’Sawtooth waves 1’ means averaged power of sawtooth waves is same

as that of pulse train, and ’Sawtooth waves 2’ means another sawtooth waves

including larger power compared to ’Sawtooth waves 1’

System
Source- Converted-

Target Target

EL(small: Pulse train)-to-Whisper 11.61 / 7.85 5.21 / 4.23

EL(small: Pulse train)-to-Speech 17.39 / 10.43 5.27 / 4.37

EL(small: Sawtooth waves 1)-to-Whisper 11.49 / 7.81 5.10 / 4.18

EL(small: Sawtooth waves 1)-to-Speech 17.00 / 10.04 5.07 / 4.21

EL(small: Sawtooth waves 2)-to-Whisper 12.41 / 8.44 5.41 / 4.35

EL(small: Sawtooth waves 2)-to-Speech 17.49 / 9.83 5.23 / 4.38

EL-to-Whisper 9.66 / 7.85 4.96 / 4.12

EL-to-Speech 10.63 / 8.12 4.77 / 4.02

EL(air)-to-Speech 12.28 / 9.05 4.90 / 4.08

The objective measures were the same as described in Section 4.4.1; mel-

cepstral distortion for spectral evaluation, U/V error rate and correlation coeffi-

cient calculated from only voiced frames for the F0 evaluation.

6.2.2 Experimental results

Table 6.2 shows averaged mel-cepstral distortion for all kinds of speaking-aid

systems proposed in this thesis. As the table shows, all kinds of VC work well to

reduce the mel-cepstral distortion even though the small-powered sound source

signals are used.

Figure 6.1 show U/V errors between target and converted F0 values, and

Figure 6.2 shows correlation coefficients between target and converted F0 con-

tours about only voiced frames for both data.
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Figure 6.1. Errors of voiced or unvoiced decision for all speaking-aid systems

proposed in this thesis. Basic power denotes same power as pulse train.

Figure 6.3, Figure 6.4, Figure 6.5 show examples of waveforms, spectro-

grams, and F0 contours of a set of source speech of EL speech, EL(air) speech, and

EL(small) speech using pulse train, respectively, and converted normal speech.

An example of the target speech is shown in Figure 6.6.
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Figure 6.2. Correlation coefficients between converted and target F0 contours

about only voiced frames for both data. ’spc → F0’ denotes target F0 contours

are estimated using source spectral features.

6.3. Subjective Evaluations of the Speaking-Aid

Systems

6.3.1 Experimental conditions

10 non-laryngectomees and one laryngectomee who was the source speaker himself

evaluated intelligibility, naturalness, and preference with 5-scaled opinion score

(1: awful, 2: bad, 3: fair, 4: good, and 5: excellent). Intelligibility was scored

as how the contents of the stimuli could be understood by listeners. Naturalness
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Figure 6.3. Examples of waveforms, spectrograms, and F0 contours of EL speech

produced by a laryngectomee and those of converted normal speech.
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Figure 6.4. Examples of waveforms, spectrograms, and F0 contours of EL(air)

speech produced by a laryngectomee and those of converted normal speech.
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Figure 6.5. Examples of waveforms, spectrograms, and F0 contours of EL(small)

speech using pulse train produced by a laryngectomee and those of converted

normal speech.
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Figure 6.6. Example of waveforms, spectrograms, and F0 contours of target

normal speech.
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was scored as how the stimuli were close to the human voices. Preference was

scored as how listeners prefer to listen to the stimuli in their conversations in

case of non-laryngectomees, and how the listeners preferred to speak with the

stimuli in their conversation in case of the laryngectomee, respectively. Stimuli

were following 10 speech signals:

(1) source EL speech

(2) converted whispering from the EL speech

(3) converted normal speech from the EL speech

(4) source EL(air) speech

(5) converted normal speech form the EL(air) speech

(6) source EL(small) speech produced using pulse train

(7) converted whispering from the EL(small) speech

(8) converted normal speech from the EL(small) speech

(9) target whispering after analysis-synthetic procedures

(10) target normal speech after analysis-synthetic procedures.

Three speech samples were randomly selected for individual stimuli, speakers,

and items of speech qualities. As a result, 30 samples per listener were evaluated

for each speech quality. The evaluations were conducted in a sound proof room,

and all stimuli were provided to both ears of listeners by a head-phone.

6.3.2 Experimental results

Figure 6.7, Figure 6.8, and Figure 6.9 show the results of intelligibility, nat-

uralness, and preference test, respectively.

From the result of the intelligibility, slight degradation of the intelligibility for

converted speech signals is shown. The source speaker has used an EL for more

than 10 years, and therefore, he is a proficient to speak with EL speech. This

is the reason why the intelligibility of the source EL and EL(air) speech is high
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scored. The problem of this intelligibility degradation has not addressed yet, and

this is one of future works. Although the intelligibility of converted speech signals

from EL or EL(air) speech is degraded, the score is kept around three in mean

opinion score. This thesis regards this as acceptable scores. The result of VC

from EL(small) is worse than other two systems. One reason of this is thought the

difficulty of recording EL(small) speech using current NAM microphone. NAM

microphone used in this thesis employs soft silicone as the facial material between

the microphone and the skins. Soft silicone does not have adherence property,

and therefore, it needs another supplementary device to fix the microphone on

the speaker’s skins. Using this soft-silicone NAM microphone, special noises are

mixed in the recorded signals when the speaker moves one’s neck in uttering.

Moreover, the source laryngectomee lost not only his larynx but also a part of his

muscles. This derives ripple noises that has not been seen in the speech recording

of the non-laryngectomee’s imitation are observed on waveforms. This thesis

thinks that these unnecessary noises unevenly mixed not only in silence parts but

also speaking parts derives the result of VC from EL(small) speech. Although

the intelligibility of converted EL(small) speech is not achieved to that of others,

VC does work to enhance the original intelligibility.

From the result of the naturalness, drastic enhancement is observed in all

kinds of converted speech. Although there are no statistical significances between

the results of converted whispering and converted normal speech in VC from

EL(small) and EL speech, the naturalness of the converted whispering is slightly

higher than that of the converted normal speech. This is thought to be the result

of avoiding the problem of errors of F0 estimation, since F0 is not estimated in

the conversions to whispering. The results of VC from EL speech are slightly

better than that of VC from EL(small) speech. This thesis thinks that major

source of this problem is the reason described in the results of intelligibility.

Comparing results between converted normal speech from EL speech and that

from EL(air) speech, although the intervals of converted EL(air) speech is slightly

smaller than the other one, the result is almost the same scored. The VC is

significantly effective to enhance EL speech utterances, on the other hand, the

result of the converted speech signals is far from that of target normal speech,

and it is necessary for further enhancement.
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From the result of the preference, all converted speech signals are higher scored

than source speech. There are no statistical significances between results of the

converted whispering and converted normal speech in VC from EL(small) and

EL speech, converted normal speech is slightly better than converted whispering,

which is the inverse trend of the result of naturalness. Whispering is generated by

humans and people often speak with whispering; however, Situations for people

to communicate with others using whispering is limited. This is thought to be the

source problem of the result. There are also no statistical significances between

converted speech from EL speech and that from EL(air) speech. As the result

of this, the effectiveness of using the air-pressure sensor is not high. Although

the laryngectomee had trained the usage of the air-pressure sensor for only one

month, the training period of the air-pressure sensor is shorter than that of the

EL. The result might be changed as the training efforts of using the air-pressure

sensor by the speaker. Moreover, other devices that can control the F0 values

of the EL [8] [77] might derive different results, which is one of future works.

The preference score of the converted speech signals is far from that of target

normal speech, and it is necessary for further enhancement. On the other hand,

converted speech is preferred to source speech in all combinations of VC. This

result indicates the effectiveness of the proposed system that enhances EL speech

by conversion.

After the subjective evaluation scored by the laryngectomee, he gave impor-

tant comments about the proposed system. He commented that the modification

of the source F0 contours is no problem since the control of the F0 contours us-

ing breath is not perfect. He also commented that the F0 contours of converted

speech utterances are preferred to those of the source EL(air) speech if the un-

natural contours of the source EL(air) speech are removed. The laryngectomee

scored almost the same preference score for converted whispering from EL speech

and converted normal speech from EL(air) speech in the result of Figure 6.9.

Therefore, modification of source F0 contours is no problem for the user.
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Figure 6.7. Mean opinion score with related to intelligibility for all proposed aid

systems.

6.4. Discussion

In order to investigate the effectiveness of the air-pressure sensor, this section

conducts additional experimental evaluation for the proposed system of EL(air)-

to-Speech.

6.4.1 Experimental conditions

The same laryngectomee as Section 6.2.1 trained to controll F0 contours of the

EL(air) speech as much as he could for 21 days. High correlation of F0 contours

between the source and the target speech would derive F0 contours close to the
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Figure 6.8. Mean opinion score with related to naturalness for all proposed aid

systems.

target ones. Therefore, the laryngectomee trained to produce EL(air) speech of

which the pitch similarly represents that of the target normal speech used in

Section 6.2.1.

After the 21-days training, the laryngectomee additionally recorded EL(air)

speech with the same contents as Section 6.2.1 so that the pitch of the EL(air)

speech similarly represented that of the target normal speech as much as he could.

Although the laryngectomee trained the usage of the air-pressure sensor, the con-

trol of the F0 contours using the air was not perfect. Therefore, the same target

speaker as Section 6.2.1 also additionally recorded the target normal speech

of which F0 contours similarly represented those of the additionally recorded

EL(air) speech. This additional recording of the normal speech was aimed to
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Figure 6.9. Mean opinion score with related to preference for all proposed aid

systems.

make the correlation of the F0 contours between the source EL(air) speech and

the target normal speech high. Two VC experiments were conducted from ad-

ditionally recorded EL(air) speech into normal speech used in Section 6.2.1 or

into another normal speech additionally recorded in this section. Other source

electrolaryngeal speech including EL speech and EL(small) speech were also con-

verted into additionally recorded normal speech for the comparison. Note that

other experimental conditions were the same as Section 6.2.1.

6.4.2 Experimental results

Mel-cepstral distortions in the VC from additionally recorded EL(air) speech

into the normal speech used in Section 6.2 are following: 11.08 dB and 8.67 dB
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for the results between the target and the source speech with or without power

information, respectively, and 4.60 dB and 3.92 dB for the results between the

target and the converted speech with and without power information, respectively.

U/V error rates for the results of this conversion framework is 5.38 %, 5.10 %,

4.55 %, and 4.93 % for 16, 32, 64, and 128 mixture components, respectively.

Correlation coefficients of this conversion are 0.60, 0.58, 0.59, and 0.55 for 16,

32, 64, and 128 mixture components, respectively. Although the speaker trained

to control F0 contours and recorded EL(air) speech so that the F0 contours of

the EL(air) speech similarly represent those of the target normal speech, the

trend of these results is almost the same as Section 6.2. In other words, the

experimental result of the conversion from additionally recorded EL(air) speech

to target speech used in the Section 6.2 is still insufficient, and the effectiveness

of the air-pressure sensor is still not cleared.

Mel-cepstral distortions of the VC from the additionally recorded EL(air)

speech into the additionally recorded normal speech are shown in Table 6.3. U/V

error rates and correlation coefficients of this conversion framework are shown in

Figure 6.10 and Figure 6.11, respectively. As the result of VC from addition-

ally recorded EL(air) speech into additionally recorded normal speech is better

than other results for both U/V errors and correlation. These results show that

the use of air-pressure sensor powerfully works to estimate F0 contours which are

close to target ones compared to EL speech or EL(small) speech.

Figure 6.12, Figure 6.13, Figure 6.14, and Figure 6.15 show examples

of waveforms, spectrograms, and F0 contours of additionally recorded EL(air)

speech, normal speech used in Section 6.2, another normal speech addition-

ally recorded in this section, and converted normal speech when the additionally

recorded normal speech is set to the target speech, respectively. From these

figures, unnatural steps of F0 contours are observed in EL(air) speech. These

steps are usually not observed in natural speech, and therefore, unpleasant re-

sults might be output when the source F0 contours are directly used to synthesize

waveforms. It is seen that unnatural F0 contours are addressed by converting the

F0 contours, and therefore, it is meaningful not only to use the air-pressure sensor

but also convert the source F0 contours to present F0 contours.
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Table 6.3. Averaged mel-cepstral distortions for all proposed aid systems using

target normal speech of which F0 contours similarly represents those of addition-

ally recorded EL(air) speech. Format of this table is same as Table 6.2

System
Source- Converted-

Target Target

EL(small: Pulse train)-to-Speech 17.00 / 11.42 5.50 / 4.55

EL(small: Sawtooth waves 1)-to-Speech 16.59 / 11.01 5.30 / 4.41

EL(small: Sawtooth waves 2)-to-Speech 16.97 / 10.88 5.47 / 4.55

EL-to-Speech 10.93 / 8.96 5.09 / 4.25

EL(air)-to-Speech 11.45 / 9.51 4.90 / 4.12

Error
 of vo
iced/
unvo
iced 
decis
ion [%
]

Number of mixture components16 32 64 128

6.0
6.57.0
7.5
8.0

4.55.0
5.5

EL(small: Pulse train) speech EL speechEL(air) speech, spc+F0→ F0

Figure 6.10. Errors of voiced or unvoiced decision using target normal speech of

which F0 contours similarly represents that of EL(air) speech.
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Figure 6.11. Correlation coefficients between converted and additionally recorded

target F0 contours about only voiced frames for both data.

6.5. Conclusion

This chapter investigated three concerns of (1) the effectiveness of VC for all EL

speech signals, (2) the effectiveness of using an air-pressure sensor, and (3) the

effectiveness of using F0 information in estimating target F0 information. From

objective and subjective experimental evaluations, VC is significantly effective

for all kinds of EL speech used in this thesis. In the estimation of target F0

information, the conversion accuracy from EL(air) speech is almost the same as

that from EL speech in spite of using the air-pressure sensor. As a result, in the

case of a short period for the laryngectomee to train to produce EL(air) speech,

conventional EL speech is enough to be the input of the speaking-aid system. On

the other hand, in the case of a long period to train the sensor, the conversion

accuracy was not investigated and this remains for future work. This thesis
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employed only an air-pressure sensor to manipulate F0 patterns. Using different

devices [8][77] to manipulate F0 patterns might give different results, which also

remains for future work.
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Figure 6.12. Examples of waveforms, spectrograms, and F0 contours of EL(air)

speech of which F0 contours similarly represents those of normal speech shown in

Figure 6.13.
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Figure 6.13. Examples of waveforms, spectrograms, and F0 contours of target

normal speech of which acoustic parameters including F0 contours are same as

those of target speech shown in Section 6.2.

104



0 2 4Time [sec]1 53

8
0Frequ

ency [kHz] 4

30k
-30kAmpli

tude 0

F0[Hz
]

Waveform

Spectrogram

F0
6 7

1002550
200400

Figure 6.14. Examples of waveforms, spectrograms, and F0 contours of target

normal speech of which F0 contours are produced to similarly represent those of

EL(air) speech shown in Figure 6.12.
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Figure 6.15. Examples of waveforms, spectrograms, and F0 contours of converted

normal speech of which F0 contours are estimated to represent those of normal

speech shown in Figure 6.14.

106



Chapter 7

Conclusion

7.1. Summary of This Thesis

EL is an external medical device to enable a laryngectomee to regain their voices,

and the use of the EL is one of the major alternative methods for laryngectomees.

Two problems with the current EL have been addressed in this thesis: (1) un-

naturalness of the EL speech and (2) noisy radiated sound source signals of the

EL itself. In order to address the problem of unnatural EL speech, this thesis

introduced a statistical VC technique using GMMs based on the maximum like-

lihood criterion. In order to address the other problem of the radiated noises,

this thesis employed a novel sound source unit that generates extremely small

signals that were too faint to be heard by people around the user. This thesis

proposed speaking-aid systems using the statistical VC to enhance three kinds

of EL speech, which are EL speech, EL(air) speech, and EL(small) speech. This

suggestion and the evaluation of the aid systems are the major contribution of

this thesis.

In Chapter 2, laryngectomees and major alternative speaking methods were

described. A novel sound source unit was introduced, which generated extremely

small signals so that the people around the speaker were almost could not hear

the sound. A NAM microphone was also introduced, which captures extremely

small signals through the soft tissues of the head. Moreover, conventional studies

were overviewed in this chapter.

In Chapter 3, statistical VC used in this thesis was described. VC is a tech-
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nique to modify input speech data as if it were uttered by a different speaker

while maintaining its linguistic information. This thesis employed statistical VC

using GMMs based on the maximum likelihood criterion. This method consisted

of the training and conversion parts. Before the training part, two speakers were

set to an input speaker (so-called source speaker) and output speaker (so-called

target speaker), respectively. Joint probability density function of the source and

the target speaker were described by a GMM in the training part. After training

the GMM, in the conversion part, target features were estimated based on the

conditional probability density function given source features. Three GMMs are

usually trained, among which each GMM estimates one acoustic feature which is

spectrum, F0, or aperiodic components, respectively. The VC method employs

not only static features but also dynamic features to capture smooth movement of

the acoustic features. The VC method also introduces GV to suppress the prob-

lem of over-smoothing of the conversion features due to the maximum likelihood

criterion.

In Chapter 4, one speaking-aid system was proposed, in which conventional

EL speech was input and converted natural speech by the statistical VC was out-

put as the user’s new voice. Although it is reasonable to set the normal speech

to the output speech, it would be difficult to estimate natural F0 contours from

source EL speech because the EL speech does not include effective F0 information.

To avoid this problem, this thesis converts EL speech not only to normal speech

as one conversion framework of EL-to-Speech but also to whispering as the other

conversion framework of EL-to-Whisper. In EL-to-Whisper, only one GMM that

estimates spectral information is trained. In order to capture complicated multi-

variable factors, this thesis used segmental spectral feature vectors of the source

EL speech. Segmental feature vectors are constructed in the following procedures;

first, the current ±L frames are concatenated to one feature vector, and then,

the segmental feature vector for the current frame was established by principal

component analysis procedure. EL-to-Speech is achieved by estimating spectra,

F0s, and aperiodic components from only the spectral information of the source

EL speech using individual GMM. Both EL-to-Whisper and EL-to-Speech were

experimentally evaluated using imitated EL speech by a non-laryngectomee as

a preliminary evaluation. From objective evaluations, spectral estimation works

108



well. Correlation coefficient between converted and target F0 values were al-

most 0.3 and U/V errors between those features were almost 9 %. Although

the correlation was not good, non-predefined F0 contours were estimated and the

proposed system was expected to be effective for laryngectomee’s data to enhance

EL speech. This thesis additionally introduces an air-pressure sensor with which

the speaker can control intonations using their breath. Using this sensor, EL(air)

speech includes non-predefined F0 contours. Then, another speaking-aid system

was proposed, which enhances EL(air) speech in another conversion framework

of EL(air)-to-Speech.

In Chapter 5, another sound source unit generating extremely small sound

source signals was introduced to address the problem of noisy radiated noises.

EL(small) speech was obtained by recording the small EL speech with a NAM

microphone. Then, the other speaking-aid system was proposed, which enhances

EL(small) speech to output normal speech as another conversion framework of

EL(small)-to-Speech or output whispering as the other conversion framework

of EL(small)-to-Whisper. Acoustic features for VC and its procedure were the

same as the proposed system for EL speech enhancement. Different sound source

signals were designed from the viewpoint of independently changing its spectra

or powers. In case of changing its spectra, three sound sources were designed,

which were pulse train for all frequency bands, sawtooth waves for lower fre-

quency bands, and compensation waves into target whispering for higher fre-

quency bands. In case of changing its powers, the spectra were fixed to the saw-

tooth waves that have the largest dynamic ranges among those three sound source

signals. EL(small)-to-Whisper and EL(small)-to-Speech were also preliminarily

evaluated using the EL(small) speech imitated by the same non-laryngectomee as

the evaluation of VC from EL speech. From experimental results, correlation co-

efficient between converted and target F0 values were almost 0.3 and U/V errors

between those features were almost 9 %. The results of EL(small) speech enhance-

ment were almost the same as those of EL speech enhancement, and therefore,

the proposed system for EL(small) speech enhancement was also expected to be

effective for laryngectomee’s data.

In Chapter 6, all proposed speaking-aid systems of EL-to-Whisper, EL-to-

Speech, EL(air)-to-Speech, EL(small)-to-Whisper, and EL(small)-to-Speech were

109



experimentally evaluated using one male laryngectomee’s data. From objective

evaluations, estimation of spectral information works well. Moreover, another

estimation of F0 information also works well in which correlation coefficient be-

tween the estimated and the target F0 values were more than 0.5 with less U/V

errors (less than 7 % for all kinds of source speech). The converted voice quality

related to intelligibility, naturalness, and preference was subjectively evaluated

by 10 non-laryngectomees and one laryngectomee who was the source speaker.

From the results, intelligibility of the converted speech was slightly degraded

from that of the source speech. This is a problem that has not been addressed

yet, and this remains for future work. On the other hand, the naturalness of

the converted speech was dramatically improved from that of the source speech.

Moreover, the preference, which was a total evaluation of the voice quality, of

the converted voice was higher scored than that of the source speech. As the

result of experimental evaluation, the proposed speaking-aid systems addressed

the unnaturalness of EL speech by VC technique. The proposed systems also

accept several kinds of sound source signals. This advantage is expected to give

great versatility to the aid systems when those are used in our daily lives. More-

over, the effectiveness of using an air-pressure sensor was investigated by using

additionally recorded target normal speech so that the pitch of the target normal

speech is close to that of the source EL(air) speech.

7.2. Future Work

Although EL speech quality has been enhanced by VC technique, a number of

problems remain to be addressed.

• Degradation of intelligibility

The source speaker in this thesis is proficient at producing alaryngeal speech

using an external device, and therefore, the intelligibility of the speaker is high-

scored. The intelligibility of the converted speech is, however, lower scored than

that of the source EL speech as Figure 6.7 shows. It is preliminarily investigated

that VC accuracy from EL speech produced by another laryngectomee who is a

beginner at producing EL speech and was worse than the result in this thesis; and
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the converted speech was not intelligible although the source EL speech was also

not intelligible. In order to address this problem, other VC frameworks might be

necessary. For example, an external device such as an air-pressure sensor might

contribute to suppressing the degradation of the intelligibility of the converted

speech, or another constraint such as linguistic information might be effective to

suppress unnatural transitions between mixture components. Conditional Ran-

dom Field (CRF) [78] is interesting for this study. In CRF, not a generative

model but a discriminative model is introduced to describe features considering

many rules called feature functions. A novel VC framework considering such rules

might be necessary to suppress the degradation of the intelligibility of converted

speech.

• Controlling speaker individuality

In the interview of the laryngectomee who was the source speaker, he was con-

cerned that the speaker individuality of the converted speech would be changed

because the different speaker from the source speaker was set as the target

speaker. In order to address this problem, three methods are concerned. One

is to use the original voice of the source speaker before undergoing laryngectomy.

If some data before the laryngectomy remains, those data would be able to be

set as the target data so that the user speaks with his or her original voice.

When there is no such data, the second idea is to set another person whose

voice quality is similar to the user as the target speaker. For example, the user

would choose one speaker from a speech corpus, and then, the laryngectomee

reads the same contents as what the target speaks. As a result, the laryngec-

tomee would obtain natural voices such that speaker individuality is much closer

to the original speaker’s individuality. When there are no desirable speakers or

the quality is not satisfied, the third idea is concerned to introduce Eigenvoice

conversion (EVC) [79, 80] that enables users to control speaker individuality with

a small amount of parameters.

• Further evaluation of EL(air)-to-Speech

As Section 6.4 shows, the effectiveness of using an air-pressure sensor is

investigated. In order to confirm the result, subjective evaluation should be
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conducted by non-laryngectomees and the laryngectomee. It is desired to confirm

the advantage of using an air-pressure sensor by comparing converted normal

speech from EL(air) speech with that from EL speech.

• Introducing another device to control F0 contours without giving

the speaker stress

The air-pressure sensor introduced in this thesis is effective to enable the

speaker to control the F0 contours of the EL speech. The laryngectomee, how-

ever, gave an important comment that he felt huge stress in producing EL(air)

speech because the use of the air-pressure sensor forced the speaker to expose

the tracheostoma. Moreover, the speaker needs both hands to produce EL(air)

speech, and therefore, the usefulness of the air-pressure sensor is limited. From

these issues, introducing another device to enable laryngectomees to control F0

contours without giving the speaker stress is necessary to establish the proposed

aid systems. This thesis used air flowing from the tracheostoma; on the other

hand, other methods are available such as myoelectric information, a pressure-

sensitive switch, and so on.

• Optimization of constructing segmental feature vectors for source

data

This thesis used PCA procedure and Tran et al. used LDA procedure [53]

to construct segmental feature vectors. Other applied research also used PCA

procedures; however it was not revealed that PCA or LDA is the best method to

reduce the dimension of the vectors. There is another technique of factor analysis

to reduce the dimension. In order to exactly represent a multi-dimensional feature

vector with small parameters, further investigation is desired. Moreover, acoustic

features, namely spectral features, to be concatenated in constructing segmental

feature vectors have not been discussed. Mel-cepstral coefficients have so far

been used; however, it is not revealed that those coefficients are the best features

especially in the conversion from source speech including certain F0 contours such

as EL(air) speech.

• Evaluation using EL speech produced by other laryngectomees
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This thesis evaluated the proposed system for only one laryngectomee. More

users would be necessary in order to evaluate proposed systems for other laryn-

gectomees. The variation of voice humanities of EL speech is smaller than that

of normal speech because voice characteristics of EL speech are mainly occupied

by the external sound source signals. Therefore, similar results as described in

this thesis would be expected for other proficient people to produce alaryngeal

speech using an external device.

• Real-time procedure for VC procedures

The VC procedures used in this thesis are not specified for real-time proce-

dures. It is essential to update the current VC framework to the real-time VC

framework to make the proposed systems useful in our daily lives. In order to

achieve the real-time VC, a time-recursive conversion algorithm based on maxi-

mum likelihood estimation of spectral parameter trajectory is proposed [81]. This

method is inspired by the parameter generation algorithm for HMM-based speech

synthesis [55] and the vector quantization algorithm for speech coding [82]. This

method is expected to be effective for the proposed aid systems.
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Appendix

A. Case Studies of Speech Recognition for Im-

paired Speech

A.1 Introduction

It is reasonably natural for human beings to be interested in human-machine

communications with speech because of the convenience of speech. In human-

machine communication, the technique that extracts linguistic information from

input speech waveforms is called automatic speech recognition (ASR). It is al-

most impossible to establish an ASR system that achieves equal performance to

the hearing ability of human beings even though the latest scientific techniques

are used. Therefore, ASR systems in which conditions such as users, tasks, and

the dictionary size are limited are usually established for use in our daily lives.

Introducing such limitations derives higher recognition accuracy, and ASR tech-

nique is applied to many applications such as a car navigation system, text reader

systems, and so on.

The difficulty of the ASR system differs with relation to acceptable users,

words, and the size of dictionary. Large vocabulary continuous speech recognition

for speaker independent ASR systems is a greatly more difficult task than small

vocabulary isolated word speaker recognition for speaker dependent ASR systems.

Moreover, speech signals including loud background noises are more difficult to

recognize than speech signals without loud noises.

The basic flow chart of a continuous ASR system is shown in Figure A.1.

The acoustic model holds patterns of acoustic characteristics for each recognition

unit (e.g. phoneme) to conduct pattern matching with input parameters. The
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Figure A.1. Overview of speech recognition system.

language model decides connections of words. The dictionary defines the words

and those phoneme identities accepted in the system. Only the words defined in

the word dictionary are the target of the ASR system. The recognizer decodes the

input speech parameters to the output texts using the acoustic and the language

model.

This section is organized as follows. Speech recognition using hidden Markov

models (HMMs) and a major adaptation technique for unseen speech data are

overviewed in Section A.2. In Section A.3, some acoustic models for impaired-

speech data are experimentally evaluated. Finally, this section is concluded in

Section A.4.

A.2 Speech Recognition Using Hidden Markov Models

From the definition of ASR, the estimation of the word sequence Ŷ given input

speech parameters X is represented as

Ŷ = arg max P (Y |X) (A.1)

= arg max
P (Y,X)

P (X)
. (A.2)

Although the Eqn. (A.2) is the definition of ASR, the direct calculation of P (Y |X)

is difficult. Therefore, using Bayes’ rule, ASR is rewritten as

Ŷ = arg max
P (X|Y )P (Y )

P (X)
. (A.3)

The denominator of the Eqn. (A.3) is independent for the decision of Y , and

therefore, the solution of ASR, namely the maximization of the posterior proba-

115



bility for Y given X, is also rewritten as

Ŷ = arg max P (X|Y )P (Y ). (A.4)

P (X|Y ) in the Eqn. (A.4) is calculated by comparing the input patterns with the

templates defined in the acoustic model. HMM is the major model to describe

P (X|Y ) in these days [83], and HMM enables users to effectively and flexibly

process time-sequence data.

Figure A.2 shows an example of left-to-right without skip nor back loop

HMM, which is one of typical HMM structure in ASR system in these days in

which si is the state index and πi is the initial state probability of the state i.

aij = P (st+1 = j|st = i) is the transition probability in which the current frame

is in the state i at the time t and it is in the state j at the time t + 1. bi is the

probability distribution function of the state i. Each state in Figure A.2 has the

continuous output distribution such as Gaussian distribution or GMM). Figure

A.2 effectively expresses characteristic of human voices. The existence of self-loop

means that human voices are regarded as quasi-periodic signals. The undefined

loop of skip transition expresses that the vocal tract parameters smoothly moves,

and another undefined loop of back loop is seen that the speech signals does not

go back to the past.

When the recognition unit is phoneme (and this would be the most popular

unit), each phoneme is modeled by a HMM. This type of acoustic model is called

monophone model. Speech signals are continuously uttered, and therefore, the

acoustic characteristic of the current phoneme differ with related to the previous

and succeeding phonemes. In order to express this transition, another acoustic

model called triphone prepares different templates with related to the previous

and succeeding phonemes, which is the most popular acoustic model. The tri-

phone HMM reasonably expresses characteristic of human voices; on the other

hand, the number of parameters to be estimated of the triphone HMM is dramat-

ically larger than those of the monophone HMM. As the result, many utterances

are required to train triphone HMM.

Maximum likelihood parameter estimation includes two essential problems to

be addressed: Over training for the training data and robustness for the un-

seen data in the training data. Establishing a robust HMM acoustic model is an

important topic and it is achieved by sharing parameters. This thesis employs
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Figure A.2. Example of left-to-right HMM.

Phonetically Tied-Mixture (PTM) [84] acoustic model that shares a set of mix-

ture components among states of the same central phoneme of the state-shared

triphone. This state-based PTM models Gaussian distributions more accurately

by having independent mixture components on triphones with different central

phonemes compared to other tying methods [85][86].

Speaker independent (SI) acoustic model accepts arbitrary speakers as the

input speakers. SI model is useful for systems in which switching of the in-

put speaker frequently occurs such as book searching system in book stores or

libraries. On the other hand, SI model is not suitable for specified speaker.

Speaker dependent (SD) acoustic model, on the other hand, accepts only the

specified speaker defined in advance. The SD model is often powerful model

when the target of the system is known.

In order to straightforwardly obtain a SD triphone HMM for the new user,

environment, or speech style, hundreds of utterances are required, which is almost

too difficult for users to record those data especially for speaking-impaired people.

Model adaptation technique plays the important roll to have the acoustic model

well represent unknown input data by transforming the model parameters. The

issue of the model adaptation is that how the transformations are estimated
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using small amount of speech data of the new acoustic environment, so-called

adaptation data, so that it maximizes the likelihood for the adaptation data

given the current model parameter set.

In the speech recognition of speech-impaired people, the usual acoustic model

that was suitable for non-laryngectomees was not appropriate because the acous-

tic features of the impaired people were extremely different from those of the

non-impaired people. Moreover, it is rare to be able to obtain huge amount of

speech data of impaired people.

Maximum likelihood linear regression (MLLR) [87] is one of the most powerful

and popular adaptation techniques using only small amount of the adaptation

data. Here, consider the case of continuous density HMM with Gaussian output

distributions. Given a speech parameter vector at frame t,ot, the probability

density of that vector generated from a particular distribution s, bs(xt), is written

as

bs(xt) = N (xt; µs,Σs) (A.5)

=
1

(2π)
n
2 |Σs|

1
2

exp

{
−1

2
(xt − µs)

⊤ Σ−1
s (xt − µs)

}
. (A.6)

Model-space linear transformation updates the mean vector µs to µ̂s written as

µ̂s = Asµs + bs = W sξs, (A.7)

(A.8)

where W s is the d-by-(d + 1) transformation matrix to maximizes the likelihood

of the HMM to the adaptation data, and ξs is the extended mean vector defined

as

ξs = [1, µ⊤
s ]⊤ (A.9)

= [1, µs(1), · · · , µs(d), · · · , µs(D)]⊤, (A.10)

where µs(d) is the dth dimensional mean value. The current issue is to find the

transformation W s. This thesis also updates covariance matrices as follows [88]:

Σ̂m = B⊤
mHmBm, (A.11)

Bm = C−1
m , (A.12)

Σ−1
m = CmC⊤

m. (A.13)
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Let X be a series of T observations:

X = x1, · · · ,xT . (A.14)

The total likelihood of the model set generating the objective sequence is repre-

sented as

L(X|λ) =
∑
θ∈Θ

L(X, θ|λ), (A.15)

where L(X|λ) is the likelihood of generating X using the state sequence θ given

the model parameter set λ. Θ denotes a set of all state sequences. Then, in order

to maximize the objective function, a following auxiliary function is defined [89]:

Q(λ, λ̂) =
∑
θ∈Θ

L(X,θ|λ) log
(
L(X,θ|λ̂)

)
. (A.16)

These updates take two stages [88]. First, the transform for the mean vector

is found given the current covariance matrix. Next, another transform for the

covariance matrix is found given the current mean vector. Finally, the whole

process would iteratively update the model parameters so that it maximizes the

likelihood of the given adaptation data.

A.3 Experimental Evaluation

Experimental conditions

This thesis used two kinds of speech data sets of (1) EL speech utterances of the

laryngectomee described in this thesis and (2) other types of speaking-impaired

people.

One Japanese male laryngectomee recorded 50 phoneme-balanced balanced

sentences for the adaptation data and recorded 30 newspaper utterances for the

test data. He recorded those 80 utterances of EL speech, EL(air) speech, and

EL(small) speech using three kinds of sound source signals, which were pulse train,

sawtooth waves with the same power as the pulse train, and another sawtooth

wave with larger powers than the pulse train. Only EL(small) speech utterances

were recorded by NAM microphone, and all other utterances were recorded by a
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head-set microphone. Data format were 16000 Hz sampling with 16 bit for each

sample.

As other types of speaking-impaired people, ten subjects of speaking-impaired

people recorded speech data. Two of them had a disorder due to cerebral palsy.

One another subject was a congenital hearing-impaired person. One another

subject had a problem due to measles encephalitis. Other three subjects were

hearing-impaired or hearing loss patients due to taking the streptomycin. The

remaining three subjects were acquired hearing-impaired patients. The contents

were Japanese syllables, words expected to be used in their daily lives, several

numbers with one through four digits, telephone numbers also expected to be

used in their daily lives, and short sentences of ”north winds and the sun” and

”the ants and the grasshopper” which were often used in clinics. All contents

including the meaning and the theoretical phonemes were listed as follows:

1 Japanese syllables

/a/, /i/, /u/, /e/, /o/, /ka/, /ki/, /ku/, /ke/, /ko/, /sa/, /shi/, /su/, /se/,

/so/, /ta/, /chi/, /tsu/, /te/, /to/, /na/, /ni/, /nu/, /ne/, /no/, /ha/, /hi/,

/fu/, /he/, /ho/, /ma/, /mi/, /mu/, /me/, /mo/, /ya/, /yu/, /yo/, /ra/, /ri/,

/ru/, /re/, /ro/, /wa/, /o/, /N/

Note that the second o from the tail was the same pronunciation as the other /o/

of vowel (fifth from the head in the above list), although the Japanese character

was different.

2 Words

/ka: sa n/(mother), /to: sa N/(father), /o ba: cha N/(grand mother),

/o ji: cha N/(grand father), /go ha N/(rice), /o ka zu/(side dish),

/ha na/(flower), /ma do/(window), /o ha yo:/(good morning),

/ko N ni chi wa/(hello), /ko N ba N wa/(good evening),

/o ya su mi/(good night), /ko za ka na/(little fish),

/pa so ko N/(personal computer), /ma u su/(mouse), /a i/(love),

/de N sha/(train), /hi ko: ki/(plain), /sa ka na/ or /to to/(fish),

/ya ma ya ma/(mountains), /hyo: ta N/(gourd), /sha N de ri a/(chandelier),
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/ku ri su ma su/(Christmas), /ro: a ky: ka i/(association of the deaf),

/go ho: bi/(reward), /fu ku o ka)(Fukuoka), /he ri ko pu ta:/(helicopter),

/hi de ri/(dry weather), /ka bi N/(vase), /fu na de/(departure of vessel)

Alphabets surrounded by the slash denoted the theoretical phoneme labels to

be recognized, and words surrounded by parentheses denoted the meaning of

individual words. The label of /to to/ was a Japanese ancient word representing

fish. Although these words were individually uttered as isolated words, some of

those were recorded in one file. Six speakers uttered all words in one file, and the

other subjects uttered several (two, three, five, or six) words in one file. When

several words were recorded in one file, not individual words but the individual

files were recognized to make the size of dictionary small. Note that a part of the

above words were used in evaluations.

3 Numbers with one through four digits

/ze ro/(0), /i chi/(1), /ni/(2), /sa N/(3), /shi/ or /yo N/(4), /go/(5),

/ro ku/(6), /shi chi/ or /na na/(7), /ha chi/(8), /kyu:/ or /ku/(9), /ju:/(10),

/ni ju: i chi/(21), /sa N ju: ro ku/(36), /ju: na na/(17), /yo N ju: ro ku/(46),

/go ju: kyu:/ or /go ju: ku/(59), /ro ku ju: na na/(67), /ha chi ju: yo N/(84),

/kyu: ju: go/(95), /kyu: hya ku ha chi ju: i chi/(981),

/na na hya ku sa N ju: ro ku/(736), /ha q pya ku ha chi ju: ha chi/(888),

/ro q pya ku ju: ni/(612), /go hya ku sa N ju: ky u:)(539),

/yo N hya ku go ju: kyu:/(459), /se N sa N bya ku sa N ju: i chi/(1331),

/ni se N ky u: hy a ku ha chi ju: ni/(2982),

/sa N ze N sa N bya ku kyu: ju: ha chi/(3398),

/yo N se N na na hya ku na na ju: na na/(4777),

/na na se N go hya ku ro ku ju: ha chi/(7568)

Note that one subject read three digit and four digit numbers as the connection

of one digit; not /na na hya ku sa N ju: ro ku/ for 736 but /na na sa N ro ku/

just like 7-3-6.

4 Phone numbers

It was almost the combination one digit pronunciation. The contents were hidden

to protect the personal information.
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5 The ants and the grasshopper

/a ri to ki ri gi ri su/(The ants and the grasshopper),

/a tsu i a tsu i na tsu no hi no ko to/(In a field one hot summer’s day),

/a ri sa N ta chi wa sa mu i fu yu ni so na e te i q sho: ke N me: ha ta ra i te i

ma shi ta/ (the ants were working hard for cold the winter.),

/mi N na de chi ka ra o a wa se te ta be mo no o ha ko bu a ri sa N/ (Some ants

united their strength to carry foods.),

/to N ne ru o ga N ba q te ho ri su su me ru a ri sa N/ (Other ants hard

continued digging a tunnel.),

/mi N na mi N na so re wa i q sho: ke N me: ha ta ra i te i ma shi ta/ (All of

them were very hard working.).

Note that although the almost all speakers uttered all the sentences of each work

into one file, sentences were split into individual sentences in the adaptation and

the test.

6 The north wind and the sun

/ki ta ka ze to ta i yo:/(The north wind and the sun),

/a ru hi no ko to ki ta ka ze ga ta i yo: ni chi ka ra ji ma N o shi te i ma su/

(One day, the north wind boasted of great strength to the sun.),

/ki ta ka ze ga i: ma shi ta/(The north wind said),

/bo ku wa do N na mo no de mo ka N ta N ni fu ki to ba su ko to ga de ki ru

yo/ (”I can easily blow out anything.”),

/se ka i de ichi ba N no tsu yo i no wa ya q pa ri bo ku da ne/ (”It is me that

am the one with the greatest strength in the world.”),

/su ru to ta i yo: ga i: ma shi ta/(Then, the sun said),

/fu fu N, ta shi ka ni ki mi wa chi ka ra mo chi da/ (”Well, you surely have the

great power.”),

/de mo i chi ba N q te i u no wa do: ka na/ (”But I doubt that you are the

top.”).

Note that although the almost all speakers uttered all the sentences of each work

into one file, sentences were split into individual sentences in the adaptation and

the test.
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Table A.1 and Table A.2 showed the information of disorder, adaptation,

and test data for individual speakers.

Table A.1. Information of speaking-impairment, adaptation data and test data

for individual speakers. Note that the number in the parenthesis after the words

shows that the number of the represented words are recorded in one file. For

example, ”words(3)” and ”words(all)” show 3 words and all words are recorded

in one file, respectively. NS and AG notes ”The North Winds and the Sun” and

”The Ants and the grasshopper”, respectively

Speaker index
adaptation data test data

(speaking-impairment)

41 utterances including 16 utterances including

YT060910a syllables, words (3), syllables, words (3),

(cerebral palsy) NS, AG, 1-4 digits numbers, and one digit numbers

and phone numbers and one digit numbers

KK061005c 18 utterances including 18 utterances including

(acquired syllables, words (all), syllables, words (all),

hearing loss) AG, and one digit numbers AG, and one digit numbers

KS061005c 18 utterances including 18 utterances including

(acquired syllables, words (all), syllables, words (all),

hearing loss) AG, and one digit numbers AG, and 1 digit numbers

NT061004b 17 utterances including 16 utterances including

(hearing loss syllables, words (all), syllables, words (all),

due to streptomycin) AG, and one digit numbers AG, and one digit numbers

TF061005b 18 utterances including 18 utterances including

(hearing loss syllables, words (all), syllables, words (all),

due to streptomycin) AG, and one digit numbers AG, and one digit numbers

Mel-frequency cepstral coefficients (MFCCs) [90] were employed to calculate

spectral parameters of all speech utterances including adaptation and test utter-

ances. MFCC parameters were calculated by filter bank analysis using triangular

windows that were put equally spaced on the mel frequency domain that was
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Table A.2. Information of speaking-impairment, adaptation data and test data

for the remaining individual speakers. Notations are same as Table A.1

Speaker index
adaptation data test data

(speaking-impairment)

TT060910c 17 utterances including 17 utterances including

(acquired syllables, words (all), syllables, words (all),

hearing loss) AG, and one digit numbers AG, and numbers (1 digit)

YS060910b 16 utterances including 16 utterances including

(hearing-impaired syllables, words (all), syllables, words (all),

due to streptomycin) AG, and one digit numbers AG, and one digit numbers

40 utterances including

YI060910a
syllables, words (3), NW,

15 utterances including

(cerebral palsy)
three sentences out of AG,

syllables and words (3)
1-4 digits numbers,

and phone numbers

NS061213d
26 utterances including

17 utterances including

(congenital
syllables, words (5 or 6),

syllables and

hearing loss)
phone numbers,

words (5 or 6)
and 2-4 digits numbers

23 utterances including
17 utterances including

TY070130e syllables, words (2 or 3),
syllables,

(dysarthria due to 1-3 digits numbers,
words (2 or 3),

measles encephalitis) phone numbers,
and one digit numbers

and four utterances out of NW

calculated from linear frequency domain as follows:

Mel(f) = 2595 log10

(
1 +

f

700

)
, (A.17)

where the unit of f is Hz. In other words, the data in the lower frequency

components were analyzed in detain using triangular windows that have higher

resolutions, and the data in the higher frequency components were roughly an-
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alyzed using triangular windows that had lower resolutions. The mel-scale filter

bank was analyzed by weighting sum of amplitude spectrum |S(k)| to output the

power of the frequency band corresponding to the window range as follows:

m(l) =
hi∑

k=lo

W (k; l)|S(k)|(l = 1, · · · , L), (A.18)

W (k; l) =

{
k−klo(l)

kc(l)−klo(l)
(klo(l) ≤ k ≤ kc(l))

khi−k(l)
khi(l)−kc(l)

(kc(l) ≤ k ≤ khi(l))
, (A.19)

where L was the number of filter bank, klo(l), kc(l), and khi(l) were lower, center,

and higher frequency bins of lth filter, respectively. These three indexes satisfied

the following relationships between neighboring filters:

kc(l) = khi(l − 1) = klo(l + 1). (A.20)

Finally, dth MFCC, MFCC(d), was calculated by applying logarithm transform

and discrete cosine transform to the L powers derived from the filter bank analysis

in the mel-frequency domain:

MFCC(d) =

√
2

L

L∑
l=1

{
log (m(l)) cos

((
l − 1

2

)
dπ

L

)}
. (A.21)

All speech utterances were parameterized for ASR evaluation in which frame

length was set to 25 msec and the frame shift was set to 10 msec. In each frame,

26 dimensional acoustic parameter vector to recognize the impaired speech was

constructed, in which 12 of those parameters are MFCCs that were top 12 MFCCs

extracted from 24 ones, another one was log energy of the static feature, other

12 dimensions were delta coefficients, and the other was the delta energy.

Phoneme identities were manually given to all the recorded utterances. This

thesis basically defined phoneme identities as roman letters. The differences from

the public notation were following:

: representing long vowel

N representing syllabic nasal (different from syllables beginning with /n/)

q representing chocked sound
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sp representing silence in a sentence

silB representing another silence at a beginning of a sentence

silE representing the other silence at a end of a sentence

Adding one more notice to the above, phoneme labels were given as the labeler

heard. For example, in a case of labeling ’mother’, Japanese written characters of

’mother’ is /o ka a sa N/. If the labeler heard as /o ka: sa N/, then that sample

is labeled as /o ka: sa N/.

Julius [91] was used for the recognition decoder. Word accuracy was calculated

as the recognition rate for the input speech, which was written as follows:

Accuracy [%] =
N − D − S − I

N
× 100, (A.22)

where N denoted the number of total words, D, S, I denoted number of error

words due to deletion, substitution, and insertion, respectively.

Experimental results

Table A.3 shows the result of word accuracy for impaired speech uttered by

individual speakers in the recording first group. The averaged word accuracy of

impaired speech signals due to the disorder in the brain including YT060910a,

YI061119a, TY070130e is 39.66 %, on the other hand, that of impaired speech due

to hearing-impairment including KK061005c, KS061005c, NT061004b, TF061005b,

TT061005c, and YS061005b is 83.02 %. If subjects have a disorder in their brain,

the articulations are often distorted. As a result, the impaired speech is diffi-

cult to be recognized even though the recognition task is extremely simple and

strict. In the recognition of impaired speech including distorted articulation,

not only simple transformations of linear regressions but also addressing many

problems such as considering acoustic features [62], modeling specific fillers that

occur before and after the utterance and so on. Although the task is difficult, the

possibility of the ASR system for such people remains by setting strictly defined

task such as simple yes or no question. On the other hand, the result shows that

acquired hearing loss of impaired speech is well recognized. This is because the

problem of those impaired speech utterances are mainly unstable speech volumes
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and the articulation is comparatively stable. Although it might be difficult for

them to use difficult task such as dictations, acquired hearing loss or impaired

people would be able to use ASR system in a simple task in which the size of the

vocabulary is not large.

Figure A.3, Figure A.4, and Figure A.5 show the other results of word

accuracy for EL speech, EL(air) speech, and EL(small) speech, respectively. The

adaptation technique dramatically improves the recognition accuracy even the

initial model is normal speech of non-laryngectomees. The merit of using con-

verted normal speech as the adaptation data is the recognition accuracy using the

initial SI model (0th iteration in the figures) is better than the original electrola-

ryngeal speech. It is notable that the converted normal speech from EL speech is

recognized more than 70 % even though the initial SI model is used. In the other

cases of converted speech from EL(air) and EL(small) speech, the word accuracy

is around 50 % that is not high; however, it would be effective by introducing

constraints for the recognition tasks. In the case of adaptation from the converted

normal speech, the over-training is occurred since the recognition accuracy is de-

graded after a few adaptation data. Although the recognition accuracy of the

converted speech using SI model is better than that of the source EL speech,

the performance of the source speech goes above that of the converted speech as

the adaptation goes. It is thought that source EL speech keeps clear phoneme

boundaries and identities in the acoustic feature space; on the other hand, such

phoneme environment would be distorted by the conversion procedure. Since the

model parameters are adapted in maximum likelihood criterion, more suitable

adaptation might be applied by setting the input acoustic features more close to

the maximum likelihood values. The results, however, show the contrast trend.

Although the differences are little, the word accuracy considering GV is better

than the word accuracy not considering GV. This fact would be seen that GV

works as the penalty factor for the conversion errors and it is interesting fact as

one of the GV tricks. From these results, high recognition accuracies are seen in

the significantly different task of the dictation. These results are worthwhile since

the possibility of using the ASR system for laryngectomees who usually speaks

with EL speech is confirmed.
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Table A.3. Word accuracy of various kinds of speaking-impaired people. Acoustic

model after 10 iterations of MLLR is used for the SD-AM

Speaker index Acc. using SI-AM [%] Acc. using SD-AM [%]

YT060910a 6.25 43.75

KK061005c 30.56 77.78

KS061005c 16.67 69.45

NT061004b 15.63 75.00

TF061005b 30.55 94.44

TT060910c 23.53 97.06

YS060910b 31.25 84.38

YI060910a 26.67 46.67

NS061213d 5.88 26.47

TY070130e 10.72 28.57

A.4 Conclusion

This appendix experimentally evaluated ASR for impaired-speech data including

disorders of the brain, hearing impairment, and laryngectomy as case studies.

In the ASR for impaired speech of one group including the disorders of the

brain and hearing impairment, although the experimental conditions were not

completely the same, a total of 10 subjects uttered Japanese syllables, words,

short sentences, and so on, in which some utterances were recorded twice. Since

the vocabulary size was extremely small, strictly designed network grammar was

introduced in which all input utterances were recognized as one word even though

it would be sentences, and a few words. MLLR was introduced as a powerful

speaker adaptation technique to make the model well represent the acoustic fea-

ture spaces of impaired speech. SI acoustic model of normal speech uttered by

non-impaired people were used as an initial model. Almost 23 utterances were

used for the adaptation, and almost 17 utterances were used for the test. As

a result, although the impaired speech due to the impairment of the brain was

more difficult to recognize since the articulation was significantly distorted, other

impaired speech due to the hearing impairment was well recognized (more than
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EL speechConverted normal speech considering GVConverted normal speech not considering GV

Figure A.3. Word accuracy of EL speech and converted normal speech signals.

80 %) in this simple task.

In the other group of impaired speech due to laryngectomy, which was the

source speaker of VC in this thesis, acoustically more stable adaptation data were

obtained. 50 phoneme-balanced sentences were used for the speaker adaptation,

and 30 newspaper utterances were used for the test. The same SI model as the

previous group was used was used as the initial model for speaker adaptation.

Three kinds of EL speech were recognized, which were conventional EL speech,

EL(air) speech, and EL(small) speech using sawtooth waves, whose power was

the same as the pulse train. Moreover, three kinds of speech signals in each EL

speech were recognized, which were the original EL speech, the converted normal

speech considering GV, and the converted normal speech not considering GV.
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EL(air) speechConverted normal speech considering GVConverted normal speech not considering GV

Number of iterations0 0 2 4 6 8 10
Word
 accu
racy 
[%]

20
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100

Figure A.4. Word accuracy of EL(air) speech and converted normal speech sig-

nals.

Converted normal speech signals were the result of VC conducted in Chapter 6.

As the result of experiments, the recognition accuracy using the converted normal

speech was dramatically higher than that using the original EL speech. Especially

in the converted normal speech from EL speech, the recognition accuracy using

the initial model was almost 80 %. After the first speaker adaptation, recognition

accuracy of EL speech and EL(air) speech was dramatically improved so that it

was comparable to the accuracy of converted speech. In the case of EL(small)

speech, it needed more iteration times so that the accuracy of the EL(small)

speech was comparable to that of the converted speech.
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Figure A.5. Word accuracy of EL(small) speech using the sawtooth waves and

converted normal speech signals.
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