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Abstract

A hands-free speech recognition system and a hands-free telecommunica-
tion system are essential for realizing an intuitive, unconstrained, and stress free
human-machine interface. In an actual acoustic environment, however, not only
user’s speech but also interference source signals such as background noise and
interference speech are existing. Such interferences disturb high-quality speech
recognition or telecommunication. Therefore, a source extraction method is needed
to realize high-quality hands-free systems. Particularly, blind source extraction
methods are spotlighted. Since blind source extraction does not require any su-
pervision, it can be applied to wide-area applications.

Independent component analysis (ICA) is a successful candidate of blind source
extraction methods. There have been many studies on ICA, and they have pro-
vided strong evidences that ICA can extract blindly source signals from noisy
observations. However, almost all studies on ICA only treat the limited case, i.e.,
all sound sources are point source like speech. Such an acoustic condition is very
unrealistic; interferences are often widespread in an actual world.

In the thesis, | mainly deal with generalized noise that cannot be regarded as a
point source. Then, first, | analyze ICA under a non-point-source noise condition,
and theoretically point out that ICA is proficient in noise estimation rather than in
speech estimation under such a noise condition. Namely, we cannot utilize ICA
as a target speech estimator. However, we can still use ICA as an accurate noise
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estimator. Based on the above-mentioned findings, | propose a new blind source
extraction architecture, i.e., blind spatial subtraction array (BSSA). The proposed

BSSA comprises an ICA-based noise estimator, and noise reduction is carried out
by subtracting the power spectrum of the estimated noise via ICA from the power

spectrum of the partly-speech-enhanced signal by microphone array technique.
This “power-spectrum-domain subtraction” procedure accomplishes better noise
reduction than the conventional ICA.

Furthermore, the proposed BSSA provides robustness against the permutation
problem inherent in ICA. The frequency-domain ICA often causes source per-
mutation ambiguity problem in each frequency bin, and the permutation problem
markedly degrades the resultant signal quality. Therefore, itis indispensable for us
to align the permutation problem so that each extracted signal contains frequency
components from the same source. Indeed the proposed BSSA partially involves
the permutation problem in the ICA-based noise estimator part. However, the pro-
posed BSSA canficiently reduce the negativéfaction of the permutation owing
to the over-subtraction in the spectral subtraction and defocusing properties in the
speech enhancement part. In addition, the proposed BSSA has a remarkable prop-
erty that is the robustness against reverberation and microphone element errors.
This fact is given by an alternative interpretation of the proposed BSSA.

These #ectiveness of the proposed BSSA are shown several experiments.
First, | gives an evidence of permutation robustness of the proposed BSSA in
an artificial computer simulation. Next, | conduct experiments in a experimen-
tal room and an actual rail-way station. As a result of the experiments, it can
be confirmed that the noise reduction and speech recognition performance of the
proposed BSSA outperforms those of the conventional ICA. From these results, |
conclude that the proposed BSSA is well applicable to the noise-robust hands-free
system.

Next, | propose the real-time algorithm of the proposed BSSA. As for hand-
free speech recognition system and telecommunication system, “real-time” prop-
erty is a crucial factor. Indeed the proposed BSSA can reduce ndisaerdly,

BSSA is dificult to work in real-time because ICA-based noise estimation part
consumes huge amount of computational complexities. Therefore, | take a strat-



egy in that the separation filter optimized by using the past time period data is
applied to the current data. Although the separation filter update in the ICA part

is not real-time processing but involves some latency, the entire system still seems
to run in real-time because the other parts of BSSA can work in the current seg-
ment with no delay. Based on the real-time BSSA algorithm, | develop a hands-
free spoken-oriented guidance system. The developed system can realize enough
speech recognition performance, over 80% word correct, and low-latency, partic-
ularly about 50 ms, blind source extraction.

Next, | focus my attention to “musical-noise problem.” Musical noise is an
artificially generated noise through nonlinear signal processing, and makes users
uncomfortable. Unfortunately, the proposed BSS&exng from the musical-noise
problem because the proposed BSSA includes nonlinear spectral subtraction in
its own structure. In the thesis, | analyze how much musical noise are generated
through methods of integrating microphone array signal processing and spectral
subtraction like the proposed BSSA on the basis of higher-order statistics. As a
result of the analysis, | clarify that the specific integration structure can mitigate
the musical-noise generation. The validity of the analysis is demonstrated via
computer simulations and subjective listening tests.

Keywords:
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spectral subtraction, musical noise, higher-order statistics
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CHAPTER 1

PROLOGUE

1.1. Background

These days, hands-free speech recognition systems (see Fig. 1), e.g., human-robot
speech interaction system [1, 2, 3], and hands-free telecommunication systems [4]
are in demand because such systems are essential for the realization of an intuitive,
unconstrained, and stress-free human-machine interface. In such hands-free sys-
tems, however, not only the user’s speech but also interference sounds such as
background noise and interference speech are observed by the microphones in the
systems. Thus, itis fficult to achieve high-quality speech recognition or telecom-
munication systems compared with the case of using a close-talking microphone
(see Fig. 2) such as a headset microphone or a hand microphone. Therefore, in-
terference sounds must be suppressed to realize a noise-robust hands-free system.

In order to remove interference sound sources, there have been many studies
on source separation. Source separation for acoustic signals is the estimation of
the original sound source signals from the mixed signals observed in each input
channel. Various methods have been presented for acoustic source signal separa-
tion, which can be classified into two groups: methods based on single-channel in-
put, e.g., spectral subtraction (SS) [5], and those based on multichannel input, e.g.,
microphone array signal processing [6]. There have been various studies on mi-
crophone array signal processing; in particular, the delay-and-sum (DS) [7, 8, 9]
array and the adaptive beamformer (ABF) [10, 11, 12] are the most commonly
used microphone arrays for source separation and noise reduction. The ABF can
achieve higher performance than the DS array. However, the ABF requires
priori information, e.g., the look direction and speech break interval. These re-
quirements are due to the fact that the conventional ABF is bassdpervised
adaptive filtering, which significantly limits its applicability of ABF to source
separation in practical applications. Indeed, the ABF cannot work well when the
interfering signal is nonstationary noise.



Recently, alternative approaches to acoustic source signal separation have been
proposed. Blind source separation (BSS) is an approach to estimating original
source signals using only the mixed signals observed in each input channel. In
particular, BSS based on independent component analysis (ICA) [13], in which
the independence among source signals is mainly used for the separation, has
been studied actively [14, 15, 16, 17, 18, 19, 20, 21, 22]. Indeed, conventional
ICA can work particularly in the case of speech-speech mixing, i.e., all sources
can be regarded as point sources, but such a mixing condition is very rare and
unrealistic; real noises are oftendespreadsources.

Furthermore, many methods of integrating microphone array signal process-
ing and nonlinear signal processing such as SS have been studied with the aim of
achieving better noise reduction [23, 24, 25, 26, 27, 28]. It has been well demon-
strated that such integration methods can achieve higher noise reduction perfor-
mance than that obtained using conventional adaptive microphone arrays [27],
e.g., the Gffith-Jim array [11]. However, a serious problem exists in such meth-
ods: artificial distortion (so-calledhusical noisg29]) due to nonlinear signal
processing. Since the artificial distortion causes discomfort to users, it is de-
sirable that musical noise is controlled through signal processing. However, in
almost all nonlinear noise reduction methods, the strength parameter to mitigate
musical noise in nonlinear signal processing is determined heuristically. Although
there have been some studies on reducing musical noise [29] and on nonlinear sig-
nal processing with less musical noise [30], evaluations have mainly depended on
subjective tests by humans, and no objective evaluations have been performed to
the best of my knowledge.

1.2. Scope of thesis

The aim of this study is to establish a blind source extraction method with the
following three aspects.

e Good source extraction performance in the real world:
The conventional ICA-based BSS cannot treat a realistic acoustical condi-
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Figure 1. Configuration of hands-free speech recognition system.

tion that involves widespread noise. Thus, it is desirable that a blind source
extraction method can deal with widespread noise. Hence, | propose a blind
source extraction method that is a combination of conventional ICA and
nonlinear SS in this study. The proposed blind source extraction method
can handle widespread noise.

Real-time processing:

As for hand-free speech recognition and telecommunication systems, a real-
time property is a crucial factor. In this study, | construct a real-time archi-
tecture for the proposed blind source extraction method that can be applied
to real-world source extraction problem.

Good sound quality for human hearing:

In applications involving human hearing such as mobile phones, teleconfer-
ence systems and a hearing-aid systems, the sound quality of the output is
extremely important. In particular, an artificial distortion such as musical



(a) Headset microphone (b) Hand microphone

Figure 2. Example of close-talking microphones: (a) a headset microphone and
(b) a hand microphone.

noise originating from nonlinear signal processing is a critical weak point
in such applications. Therefore, | analyze the generation of musical noise
in methods of integrating microphone array signal processing and nonlinear
signal processing, and clarify the type of integration structure that is suitable
for human hearing.

In the following sections, | describe my approach to each aspect.

1.2.1 Approach to blind source extraction method in real world

Problems of ICA-based BSS in real world

Although conventional ICA-based BSS techniques can separate acoustic sound
sources in the particular case that all sources can be approximated as point sources,
such an acoustic condition is very rare and unrealistic. In actual environments,
not only a point-source interference source signal but also non-point-source noise
(widespread noise) often exists.

In this study, | mainly deal with generalized noise that cannot be regarded as
a point source. Moreover, | assume this noise to be nonstationary noise that arises
in many acoustical environments; however, ABF cannot treat this noise well.

4



Although ICA is not d@ected by nonstationarity of signals unlike ABF, the
assumed noise environment is still a very challenging task that conventional ICA-
based BSS cannoftectively address because ICA cannot separate widespread
sources. In order to improve the performance of BSS, some techniques combining
conventional ICA and beamforming have been proposed [31, 21]. However, these
studies still deal with the separation of point sources, and the behavior of such
methods under a non-point-source condition has not been explicitly analyzed to
the best of my knowledge.

Approach

In this study, | first analyze ICA under a non-point-source noise condition and
theoretically point out that ICA isféective for noise estimation rather than for
speech estimation under such a noise condition. This analysis implies that we can
still utilize ICA as an accurate noise estimator.

Next, | propose a new blind spatial subtraction array (BSSA). The proposed
BSSA consists of an ICA-based noise estimator, and noise reduction in the pro-
posed BSSA is achieved by subtracting the power spectrum of the noise esti-
mated via ICA from the power spectrum of the noisy observations. This “power-
spectrum-domain subtraction” procedure provides better noise reduction than con-
ventional ICA with estimation-error robustness.

Another advantage of the proposed BSSA architecturpastutation robust-
ness’ In frequency-domain ICA, a source permutation ambiguity arises in each
frequency bin and markedly decreases the resultant quality. Therefore, it is in-
dispensable to align the permutations so that each separated signal contains fre-
guency components from the same source. Although various permutation solvers,
e.g., spectral-continuity-based methods [16, 32], methods based on direction of ar-
rival (DOA) [19, 33], and the method integrating spectral continuity and DOA [34],
have been proposed, the permutation problem cannot be solved completely.

In addition, an increase in the permutation-salvaging accuracy requires an in-
crease in computational cost. Permutation robustness indicates how little the BSS
method is &ected for a certain probability of a permutation arising, and such an



important property has not yet been investigated in ICA studies. Note that per-
mutation robustness in the BSSA does not conflict with any permutation solver.
That is to say, all permutation solvers can be used in the ICA part of the BSSA.
The BSSA reduces the number of remaining permuted components that cannot be
solved by a permutation solver.

1.2.2 Approach to realizing real-time processing

Problems of real-time processing of proposed method

Although BSSA can reduce noisefieiently, it is difficult to operate in real-time
because the ICA part of the BSSA requires a huge amount of computations. Thus,
it is necessary to develop a real-time architecture for the BSSA.

Approach

In the proposed BSSA, it is toilsome to optimize the separation filter by ICA

in real-time. In other words, the other parts of the BSSA operate in real-time.
Therefore, | introduce a strategy in which the separation filter optimized using the
data of the previous time period is applied to the current data. Although the update
of the separation filter in the ICA part is not real-time processing and involves
some latency, the entire system still appears to run in real-time because the other
parts of the BSSA can operate in the current segment with no delay. In the system,
the performance degradation due to the latency problem in ICA is mitigated by
oversubtraction in the spectral subtraction.

1.2.3 Approach to obtaining good sound quality for human hear-
ing
Problems of nonlinear signal processing

Although nonlinear signal processing such as by SS is a powerful noise reduc-
tion technique, it generates an artificial musical noise. It is desirable to reduce or



control the amount of musical noise because it is unpleasant for users. Unfortu-
nately, the proposed BSSA alsdi&iss from the problem of musical noise because

it involves SS in its structure. However, in almost all nonlinear signal processing
methods, the strength parameter in the processing is determined heuristically to
mitigate musical noise. This is because there are no objective criteria to measure
the amount of musical noise generated via nonlinear processing.

Approach

Recently, it was reported that the amount of generated musical noise is strongly
related to the dference between higher-order statistics (HOS) before and after
nonlinear signal processing [35]. Moreover, an objective metric for the amount
of musical noise generated has been established [35]. Furthermore, a detailed
analysis of the amount of musical noise generated through SS has been given and
the features of musical-noise generation in SS have been clarified [35].

In this study, | perform a musical-noise analysis on methods of integrating
microphone array signal processing and SS on the basis of HOS, and | reveal that
a specific integration structure can mitigate the amount of musical noise generated.

1.3. Overview of thesis

The thesis is organized as follows.

First, the sound-mixing model used in this study is described in Chapter 2. In
this chapter, conventional ICA is also explained.

In Chapter 3, a theoretical investigation of ICA under non-point-source noise
condition is presented. As a result of the investigation, | reveal that conventional
ICA is proficient in noise estimation under a non-point-source noise condition.
Moreover, a computer simulation result that supports this result is also demon-
strated.

On the basis of the above-mentioned findings, | propose a novel blind source
extraction method, i.e., the BSSA, in Chapter 4. In this chapter, | discuss signal
processing on BSSA in detail and analyze its permutation robustness. Moreover,



| provide strong evidence of thdfeeacy of the proposed BSSA via experimental
results in not only an experimental room but also a real-world scenario.

Next, | give an alternative explanation of the proposed BSSA in Chapter 5. In
this chapter, I first introduce the spatial subtraction array (SSA), which is a method
of nonlinear microphone array signal processing and has a similar structure to
the proposed BSSA. Next, | describe the problem of the SSA, and then perform
the alternative analysis of the noise estimation part of the proposed BSSA by
comparing it with the noise estimation part in the SSA. As a result of the analysis,
| reveal that the proposed BSSA is robust against reverberation and microphone
element errors.

In Chapter 6, | establish a real-time algorithm for the proposed BSSA, and
construct a hands-free spoken-oriented guidance system using the real-time BSSA.
Moreover, a result of the speech recognition test of the proposed real-time BSSA
is also given.

In Chapter 7, the preliminaries to the musical-noise analysis in Chapter 8 are
presented. First, | give formulations for two typical methods of integrating a mi-
crophone array and SS. Second, the objective metric for musical noise on the basis
of HOS proposed in [35] is described.

In Chapter 8, HOS-based musical-noise analysis is carried out, and | reveal
that a specific integration structure is preferable for applications involving human
hearing. Moreover, several simulation results and the result of subjective listening
test are illustrated in the chapter.

Finally, Chapter 9 concludes this thesis and clarifies remaining open problems.



CHAPTER 2
DAtA M ODEL AND CONVENTIONAL BSS METHODS
witH |CA

2.1. Introduction

In this chapter, | describe data model of speech enhancement problem in this study
and conventional BSS methods with ICA applied to acoustical source separation
problems. In recently years, many types of ICA-based BSS methods have been
researched. Then, | review two typical ICA algorithms, second-order statistics-
based ICA (SO-ICA) and higher-order statistics-based ICA (HO-ICA), in this
chapter.

The chapter is organized as follows. Firstly, the sound mixing model to define
the speech enhancement problem in Sect. 2.2. Next, | review the two types of
ICA-based BSS methods in Sect. 2.3.

2.2. Sound mixing model

In this section, | represent the sound mixing model. | treat the convolutive sound
mixing model which takes account into a time delay and a room reverberation.

In this study, a straight-line array is assumed. The coordinates of the elements
are designated;(j = 1,..., J), and the DOAs of multiple sound sources are des-
ignateddk(k = 1,...,K) (see Fig. 3). Then, | consider that only one target speech
signal, some interference signals that can be regarded as point sources, and addi-
tive noise exist. This additive noise represents noises that cannot be regarded as
point sources, e.g., spatially uncorrelated noises, background noises, and leakage
of reverberation components outside the frame analysis. Multiple mixed signals
are observed at microphone array elements, and a short-time analysis of the ob-
served signals is conducted by frame-by-frame discrete Fourier transform (DFT).
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Figure 3. Configurations of microphone array and signals.
The observed signals are given by
x(f,7) = A(F) {s(f, 7) + n(f, 7)} + na(f, 7), 1)

wheref is the frequency bin, andis the time index of DFT analysis. Alsg(f, )
is the observed signal vectdX( f) is the mixing matrixs(f, 7) is the target speech

signal vector in which only th&Jth entry holds the signal componexi(f, 7) (U

is the target source number)(f, 7) is the interference signal vector which con-

tains signal components except théh component, andy(f, 7) is the nonstation-

ary additive noise signal term that generally represents non-point-source noises.
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These are defined as

X(f,7) = [x(f, 7). ... xo(f, D), (2)

f,7) = [0 .,0,sy(f,7),0 0IT 3)

n(f,‘l') = [nl(f,r), ey nU_l(f,T),O, NY+1s - - - ,nK(f,T)]T, (4)

na(f.7) = NO(F,7),....n3 (. 7). (5)
Aqi(f) - Aw(f)

A(f)y=| o (6)
Anu(f) - Aw(f)

2.3. Conventional BSS methods with frequency-domain
ICA

In this section, | describe the BSS methods using ICA. In ICA algorithm, it is
assumed that source signals are mutually independent, and an appropriate sepa-
ration filter is optimized so that output signals are mutually independent. Indeed
there exists many types of ICA, the filter is optimized by various iterative or non-
iterative approaches. In this section, | review two typical types of ICA, SO-ICA
and HO-ICA, on frequency-domain.

2.3.1 Demixing process

Here, | consider a case where the number of sound soufcesjuals the number
of microphones), i.e.,J = K. In addition, similarly to that in the case of the con-
ventional ICA context, it is assumed that the additive noigd, 7) is negligible

in (1). In the frequency-domain ICA (FDICA), signal separation is expressed as

of,7) = [os(f,7),..., o (f, D17 = Wica(f)x(f, 1), (7)
WSICA) (f) - VV(ICA) (f)

Wica(f) = : (8)
Wy |

11



Seprating process
(0(f,T)=WICA(f)x(f,T))

> Seprated signals

Source 1

E Optimize Wica(f) so that o1(f;t) and o2(f;t) '

Source 2 i are mutually independent.

......................................

Figure 4. Blind source separation procedure in FDICA in cask-eK = 2.

whereo(f, 7) is the resultant output of the separation, 8%da(f) is the complex-
valued unmixing matrix (see Fig. 4).

2.3.2 Optimization of unmixing matrix

The unmixing matriXW,ca(f) is optimized by ICA so that the output entries of
o(f,7) become mutually independent. Indeed, many kinds of ICA algorithms
have been proposed. In SO-ICA [18, 20], the separation filter is optimized by
joint diagonalization of co-spectra matrices using nonstationarity and coloration
of the signal. For instance, the following iterative updating equation based on
SO-ICA has proposed by Parra[18]:

Wiga(f)

= — ) x(f) off-diag(Roo (F, 7)) WIZ, ()Rl f, 70) + W, (F), (9)

Th
whereu is the step-size parametep] [is used to express the value of thi step
in iterations, ¢f-diag[X] is the operation for setting every diagonal element of
the matrixX to zero, andy(f) = (3., lIR«(f, m)II?)™ is @ normalization factor
(Il- || represents the Frobenius normM(f, ) andRyo(f, 7p) are the cross-power
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spectra of the inpux(f,r) and the outpud(f, r), respectively, which are calcu-
lated around the multiple time blocks. Also, Pham et al. have proposed the
following improved criterion for SO-ICA [20];

3" {3 fou detdiagiica (1) Ru . roMWica(1] - log detitiea (1]} (10

Tb

where the superscript H denotes Hermitian transposition. This criterion is to be
minimized with respect toV,ca(f).

On the other hand, a higher-order-statistics-based approach exists. In HO-
ICA, the separation filter is optimized based on the non-Gaussianity of the signal.
The optimaW,ca(f) in HO-ICA is obtained using the iterative equation;

WIZH(F) = ull - (@(o(f, D) (F oDIWIEL (1) + WL (), (1)

wherel is the identity matrix{-), denotes the time-averaging operator, gl is

the nonlinear vector function. Many kinds of nonlinear funciggr, ) have been
proposed. Considering a batch algorithm of ICA, it is well-known that tanh(

or the sigmoid function is appropriate for super-Gaussian sources such as speech
signals [36]. In this study, | define the nonlinear vector func{g) as

e(o(f, 7)) = [p(0u(f,7)),..., 0ok (f, )], (12)
o(0(f, 7)) = tanhoP(f, 7) + i tanhol (f, 7), (13)

where the superscripts (R) and (I) denote the real and imaginary parts, respec-
tively. The nonlinear function given by (12) indicates that the nonlinearity is
applied to the real and imaginary parts of the complex-valued signals separately.
This type of complex-valued nonlinear function has been introduced by Smaragdis [17]
for the FDICA, where it can be assumed in speech signals that the real (or imag-
inary) parts of the time-frequency representations of sources are mutually inde-
pendent.

According to Refs. [22, 37], the source separation performance of HO-ICA is
almost the same as or superior to that of SO-ICA. Thus, | utilize HO-ICA as basic
ICA algorithm in simulations of this study.
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2.3.3 Scaling and permutation problem

In FDICA, separation matrices are updated independently in each frequency bin.
Therefore, source-gain ambiguity and source-order ambiguity arise in each fre-
qguency bin. The former problem is known as@aling problemand the latter
problem is referred to as permutation problem The scaling problem can be
solved by projection back (PB) method [16]. On the other hand, the permuta-
tion problem heavily decreases the resultant quality. Therefore, it is indispensable
for us to align the permutation so that each separated signal contains frequency
components from the same source. There have been several methods of solving
permutation problem, e.g., a method based on correlations among neighbor fre-
quency bins [16], a method based on DOA clustering [19, 33] and a integrated
method of above mentioned methods [34]. However, the permutation problem
cannot be solved completely. In addition, increase of the permutation-salvaging
accuracy requires higher computational costs.

2.4. Conclusion

In this chapter, first, data model of speech enhancement system was denoted. Next
two typical ICA algorithms for BSS were reviewed.
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CHAPTER 3
ANALYSIS OF ICA UNDER NON-POINT-SOURCE

Noise CONDITION

3.1. Introduction

In this chapter, | investigate the proficiency of ICA under a non-point-source noise
condition. In relation to the performance analysis of ICA, Araki et al. has men-
tioned that ICA-based BSS has equivalence to parallelly constructed ABFs [38].
However, this investigation was focused on separation with a non-singular mixing
matrix, and thus was valid for only point sources.

First, | analyze beamformers that are optimized by ICA under a non-point-
source condition in Sect. 3.2. In the analysis, | clarify that the beamformers op-
timized by ICA become specific beamformers that maximize the signal-to-noise
ratio (SNR) in each output (so-call&NR-maximize beamformgrdn particu-
lar, the beamformer for target speech estimation is optimized to be a DS beam-
former, and the beamformer for noise estimation is likely to be a null beamformer
(NBF) [19].

Next, a computer simulation is conducted in Sect. 3.3, and its result also in-
dicates that ICA is proficient in noise estimation under a non-point-source noise
condition. Then, | conclude that ICA is suitable for noise estimation such a con-
dition.

3.2. Analysis of ICA under non-point-source noise con-
dition
3.2.1 Can ICA separate any source signals?

Many previous studies of BSS provided strong evidence in that conventional ICA
could work in source separation, particularly in the special case of speech-speech
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mixing, i.e., all sound sources are point sources. However, such sound mixing
is not realistic under common acoustic conditions; indeed the following scenario
and problem are likely to arise (see Fig. 5):

e The target sound is the user’s speech, which can be approximately regarded
as apoint source In addition, the user themselves locates relativear
the microphone arraye.g., 1 m apart), and consequently the accompanying
reflection and reverberation components are moderate.

¢ As for the noise, we are often confronted with interference sound(s) which
is not a point sourcdut a widespread source. Also the noise is usually far
from the array and heavily reverberant.

In such an environment, can ICA separate the user’s speech signal and a widespread
noise signal? The answems. It is well expected that conventional ICA can sup-
press the user’s speech signal to pick up the noise source, but ICA is very weak in
picking up the target speech itself via the suppression of a far widespread noise.
This is due to the fact that ICA with small numbers of sensors and filter taps often
provides only directional nulls against undesired source signals. Results of the
detailed analysis of ICA for such a noise case are shown in the following subsec-
tions.

3.2.2 SNR-Maximize beamformers optimized by ICA

In this subsection, | consider beamformers that are optimized by ICA in the fol-
lowing acoustic scenario; the target signal is the user’s speech and the noise is not
a point source. Then, the observed signal contains only one target speech signal
and an additive noise. In this scenario, the observed signal is defined as

X(f,7) = A(F)S(f, 7) + ny(f, 7). (14)

Note that the additive noisey(f, ) cannot be negligible in this scenario. Then,
the output of ICA contains two components, i.e., estimated speech sighai)
and estimated noise signgl f, 7); these are given by

[ys(f, 7). Yo(f, 1" = Wica(F)x(F, 7). (15)
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Figure 5. Expected directivity patterns that are shaped by ICA.

Therefore, ICA optimizes two beamformers; these can be written as

Wica(f) = [94(), ga()]", (16)

where gy(f) = [¢(f),...,gP(f)]" is the codficient vector of the beamformer

to pick up the target speech signal, agdf) = [g"(f),...,g{" ()] is the co-
efficient vector of the beamformer to pick up the noise. Therefore, (15) can be
rewritten as

[ys(f, 7). ya( £, )17 = [94(F). Gu( DI X(f. 7). (17)

In SO-ICA, the multiple second-order correlation matrices of distinct time block
outputs,

<O(f’Tb)OH(f’Tb)>Tb’ (18)

17



are diagonalized through the joint diagonalization.

On the other hand, in HO-ICA, the higher-order correlation matrix is also
diagonalized. Using Tailor expansion, a factor of the nonlinear vector function of
HO-ICA, ¢(ok(f, 7)), can be expressed as

o(ok(f, 7)) = tanho(f, 7) + i tanho{ (, 7),

Rt ) Ot )
:{O(kR)(f,T)—(Ok (397-)) +__.}+i{o(k|)(f’7)_w+”, ,

CENC

:ok(f,r)—[ 3 +i 3

(19)

Thus, the calculation of higher-order correlation in HO-1GKp(f, 7))o (f, 1),
can be decomposed to a second-order correlation matrix and the summation of
higher-order correlation matrices of each order. This is shown as

(p(o(f, 7)) d(f, 7)) = (o(f, 1) (f, 7)), + ¥(F), (20)

where¥(f) is a set of higher-order correlation matrices. In HO-ICA, separation
filters are optimized so that the all order correlation matrices become diagonal
matrices. Then, at least the second-order correlation matrix is diagonalized by
HO-ICA. Either ways in SO-ICA and HO-ICA, at least second-order correlation
matrix is diagonalized. In the following, hence, | prove that ICA optimizes beam-
formers as SNR-maximize beamformers focusing on only the part of second-order
correlation. Then an absolute value of normalized cross-correlatiaficiert
(off-diagonal entries) of second-order correlatiGnijs defined by

|<yS(f9 T)%(f’ T))‘r

= ; (21)
VAYs(F, D) VAIya(F, TP

ys(f,7) = &f, 7) + r6(f, 7), (22)

y(f.7) = A(f, 7) + rn&(f, 7), (23)

whered(f, 7) is a target speech component in ICA's outm(t,, 7) is a noise com-
ponent in ICA's outputfs is a codficient of the residual noise component,is
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a codficient of the target-leakage component, and superserigpresents conju-
gate complex number. Therefore, the SNRg0f, 7) andy,(f, ) can be respec-
tively represented by

s = (&f, 7))/ (rXIR(T, T))o), (24)
Tn = (A(F, 7)2./(ralPAS(F, T))0), (25)

whereZXg is the SNR ofys(f, 7) andX, is the SNR ofy,(f, 7). Using (22), (23),
(24) and (25), we can rewrite (21) as

- |1/\/§_;S. giargrs 4 1/ \/z_n.ejargrr’?
V1+1/3V1+1/%,
|1/ Vs + 1/ VE, - ei@rgri-argrs)
Y y) Vi ypom

: (26)

where arg represents the argumentrfThus,C is a function of onlyzs andX,,.
Therefore, the cross-correlation betweg(f, r) andy,(f, ) only depends on the
SNRs of beamformerg,(f) and g,(f).
Now, | considerC minimization, which is identical with the second-order

correlation matrix diagonalization in ICA. Whemrgr: — argrs| > n/2 where
-1 < argrs < mrand-n < argr;, < n, it is possible to mak& zero or mini-
mization independently &5 andX,,. This case is proper to the orthogonalization
betweenyy(f, 7) andy,(f, 7), which is related to the principal component analy-
sis (PCA) unlike ICA. However, SO-ICA imposes that all correlation matrices in
the diferent time blocks are diagonalized (joint diagonalization) to maximize in-
dependence among all outputs. Also, HO-ICA imposes that all order correlation
matrices are diagonalized, i.e., not okt f, 7)o" (f, 7)), but¥(f) in (20) is also
diagonalized. These result in the prevention of the orthogonalizatigy( tifr)
andy,(f,7) (see Appendix A); consequently, hereafter we can consider only the
case off argr? — argrg| < x/2. Then, partial dferential ofC? by X is given by

ac? Q-

0Zs  (Es+1)2Z,+1)

Zs VEn(1 - %)
(s + 1P(En + 1)

. 2Re|e/@or-a99 | < Q, (27)
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whereXs > 1 andX, > 1. As for the partial dferential ofC? by %, | can also
provedC?/9x, < 0, whereZs > 1 andX, > 1 in the same manner. Therefof2,
is a monotonically decreasing function Bf andX,. The above-mentioned fact
indicates the following in ICA.

e The absolute value of cross-correlation only depends on the SNRs of beam-
formers spanned by each row of an unmixing matrix.

e The absolute value of cross-correlation is a monotonically decreasing func-
tion of SNR.

e Therefore, the diagonalization of a second-order correlation matrix leads to
SNR maximization.

Thus, I conclude that ICA, in a parallel manner, optimizes multiple beamformers,
l.e., gs(f) andg,(f), so that the SNR of the output by each beamformer becomes
maximum.

3.2.3 What beamformers are optimized under non-point-source
noise condition?

In the previous subsection, it has been proved that ICA optimizes beamformers as
SNR-maximize beamformers. In this subsection, | analyze what beamformers are
optimized by ICA particularly under a non-point-source noise condition, where

| assume a two-source separation problem. The target speech can be regarded
as a point source, and the noise is a non-point-source noise. First, | focus my
attention on the beamformeg,(f) that picks up the target speech signal. The
SNR-maximize beamformer fag(f) is minimizing the undesired signal’s power
under the condition that the target signal’s gain is kept constant. Thus the desired
beamformer should satisfy the following

gm 0:(F)R(f)gy(f) subject togs(f)a(f,ds) = 1, (28)
a(f, 6(f)) = [exp(2r(f/M)fd; Sinbs/C), . .., exp(2r(f/M)fd; sinds/c)]",
(29)
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wherea(f, 65(f)) is the steering vectoé(f) is the direction of the target speech,
M is the DFT size,fs is the sampling frequency; is the sound velocity, and
R(f) = (na(f, 7)nH(f, 7)) is the correlation matrix oh,(f, 7). Note thatds(f) is
a function of frequency because the DOA of the source varies in each frequency
subband under a reverberant condition. Here, using the Lagrange-multiplier, the
solution of (28) is

a(f, o5(f)"R()
a(f, 6s(M)HR*(Fa(f, 65(f))

This beamformer is called a minimum variance distortionless response (MVDR)

a(f)" = (30)

beamformer [39]. Note that the MVDR beamformer requires the true DOA of the
target speech and the noise-only time interval. However, we cannot determine the
true DOA of the target source signal and noise-only interval because ICA is an
unsuperviseddaptive technique. Thus, the MVDR beamformer is expected to be
the upper limit of ICA in the presence of hon-point-source noises.

Although the correlation matrix is often not diagonalized in lower-frequency
subbands [39], e.g., fluse noise, | approximate that the correlation matrix is
almost diagonalized in whole frequency subbands. Then, regarding the power
of noise signal as approximated§(f), the correlation matrix results iR(f) =
62(f) - I. Therefore, the inverse of correlation matRx*(f) = I /62(f) and (30)
can be rewritten as

a(f, 6s(f))"
a(f, os(f))a(f, os(f))’
Sincea(f, 6s(f))"a(f, 6s(f)) = J, we finally obtain

g(f)" = (31)

1 . .
9:(f) = slexp(-i2n(f/M)fed; sinds(f)/c).
..., exp(=i2n(f/M)fd, sings(f)/c)]". (32)
This filter g,(f) is approximately equal to a DS beamformer [7]. Note that the
filter g4(f) is not a simple DS beamformer buteverberation-adapted DS beam-
former because it is optimized for distinég(f) in each frequency bin. The re-

sultant noise power i§%(f)/J when the noise is spatially uncorrelated and white
Gaussian. Consequently the noise-reduction performance of the DS beamformer
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optimized by ICA under a non-point-source noise condition is proportional to
101log,;, J [dB]; this performance is not so good.

Next, | consider the other beamformgj(f) which picks up the noise source.
As for the noise signal, the beamformer which removes the target signal arriving
from 64(f) is the SNR-maximize beamformer. Thus, the beamformer which steers
the directional null tws(f) is the desired one for the noise signal. Such a beam-
former is called NBF [19]. This beamformer compensates the phase of the signal
arriving from 65(f), and takes subtraction. Thus, the signal from arriving from
0s(f) is removed. For instance, NBF with two-element array is designed as

On(f) = [exp(=i27(f/M)fsd; sindy(f)/c),
— expi2a(f /M) fdy sinés(f)/0)]™ - o (f), (33)

whereo(f) is the gain compensate parameter. This beamformer surely satisfies
gf(f) - a(f,64(f)) = 0. The steering vectoa(f, 65(f)) expresses the wavefront
of the plane wave arriving fro(f). Thus,g,(f) actually steers directional null
to 05(f). Note that this always holds regardless of the number of microphones
(at least two microphones). Hence, this beamformer achieves quite high, ideally
infinite, SNR for the noise signal.

Also, note that the filteg,(f) is not a simple NBF but eeverberation-adapted
NBF because it is optimized for disting4( f) in each frequency bin. Overall, the
performance of enhancing the target speech is very poor and that of estimating the
noise source is good.

3.3. Computer simulation

| conduct computer simulations to confirm the performance of ICA under a non-
point-source noise condition. Here, | used HO-ICA [17] as the ICA algorithm.

| used the following 8 kHz-sampled signals as ICAs input; the original target
speech (3 seconds) convoluted with impulse responses that were recorded in an
actual environment, and to which three types of noise from 36 loudspeakers were
added. The reverberation timBRTgo) is 200 ms; this corresponds to mixing fil-
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Figure 6. Layout of reverberant room in my simulation.

ters with 1600 taps in 8 kHz sampling. The three types of noise are an indepen-
dent Gaussian noise, an actually recorded railway-station noise, and interference
speech by 36 people. Figure 6 illustrates the reverberant room used in the simu-
lation. | use 12 speakers (6 males and 6 females) as sources of the original target
speech, and the input SNR of test data is set to 0 dB. | use a two-, three-, or
four-element microphone array with an interelement spacing of 4.3 cm.

The simulation results are shown in Figs. 7 and 8. Figure 7 shows the result
for the average noise reduction rate (NRR) [19] of all the target speakers. NRR
is defined as the output SNR in dB minus the input SNR in dB. This measure
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Figure 7. Simulation-based separation results under non-point-source noise con-
dition.

indicates the objective performance of noise reduction. NRR is given by

J
NRR [dB] = :—;Z(OSNR— ISNR)), (34)
i=1
where OSNR is the output SNR and ISNRthe input SNR of microphong
From this result, we can see an imbalance between the target speech estima-
tion and the noise estimation in every noise case; the performance of the target
speech estimation is significantly poor, but that of noise estimation is very high.
This result is consistent with the theory previously stated. Moreover, Fig. 8 shows
directivity patterns shaped by the beamformers optimized by ICA in the simu-
lation. It is clearly indicated that the beamformg(f) that picks up the target
speech resembles the DS beamformer, and the beamfajtierthat picks up
the noise becomes NBF. From these results, we can confirm that the previously
stated theory, i.e., the beamformers optimized by ICA under a non-point-source
noise condition are DS and NBF, is valid.
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Figure 8. Typical directivity patterns under non-point-source noise condition
shaped by ICA at 2 kHz and two-element array in white Gaussian noise case.

3.4. Conclusion

In this chapter, | gave the analysis of ICA under non-point-source noise condi-
tion. As a result of the analysis, | founded out that ICA optimizes SNR-maximize
beamformers. Therefore, ICA generates NBF for target speech reduction, and DS
for non-point-source noise reduction. That is to say, since the signal reduction
performance of NBF is significantly high, ideally infinity, ICA is proficient in
noise estimation that is equivalent to reduction of target speech. Also, the validity
of this analysis was shown via a computer simulation. As a result of the simula-
tion, it could be confirmed that ICA is proficient in estimation of non-point-source
noise signal. Also, it could be shown that ICA generates DS for non-point-source
signals and NBF for point source signals. For these reasons, | conclude that ICA
is proficient in noise estimation under non-point-source noise condition.
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CHAPTER 4
BLIND SPEECH EXTRACTION M ETHOD

wiITH |CA- BASED NOISE ESTIMATOR

4.1. Introduction

In this chapter, | propose a new blind speech extraction method with using ICA-
based noise estimator. In the previous chapter, | have clarified that ICA is profi-
cient in noise estimation rather than in target-speech estimation under a non-point-
source noise condition. This analytic result implies that ICA cannot be directly
applied to the source separation problem which involves non-point-source noise
signals. However, this analysis also insists that ICA can be still utilized as an accu-
rate noise estimator. This fact motivates me to propose a new speech-enhancement
strategy, i.e., BSSA. The proposed BSSA consists of a DS-based primary path
and a reference path including ICA-based noise estimation (see Fig. 9). The es-
timated noise component in ICA idheiently subtracted from the primary path

in the power-spectrum domain without phase information. This procedure can
yield better target-speech enhancement than the simple ICA, even with a benefit
of estimation-error robustness in speech recognition applications.

Furthermore, the proposed BSSA has another advantag@grmutation ro-
bustnessin frequency-domain ICA, source permutation ambiguity arises in each
frequency bin, and markedly decreases the source separation quality. Therefore
it is indispensable for us to align permutation so that each separated signals con-
tains frequency components from the same source. Although various permuta-
tion solvers have been proposed, e.g., spectral-continuity-based methods [16, 32],
DOA-based methods [19], and the integration method of spectral continuity and
DOA [34], have been proposed, the permutation problem cannot be solved com-
pletely. In addition, an increase of the permutation-salvaging accuracy requires an
increase in computational cost. Permutation robustness indicates how much the
BSS method is notféected under a certain probability of arising permutation, and
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Figure 9. Block diagram of proposed blind spatial subtraction array.

such an important property has never been studied so far in previous ICA studies.
Note that permutation robustness in BSSA does not conflict with any permutation
solver. That is to say, any permutation solvers are available in ICA part of BSSA.
BSSA reduces the remained permuted components which could not be solved by
a permutation solver. An improvement in permutation robustness through small
computations is a novel andfieient way of increasing BSS quality.

The chapter is organized as follows. In the following Sect. 4.2, | give a detailed
signal processing in proposed BSSA. Next, the discussion about permutation ro-
bustness is described in Sect. 4.3. Next, tieotiveness of the proposed BSSA
is shown via experimental results in Sect. 4.4. Finally, Sect. 4.5 concludes the
chapter.

4.2. Algorithm

4.2.1 Partial speech enhancement in primary path

| consider the generalized form of the observed signal as described in (1) again.
The target speech signal is partly enhanced in advance by DS. This procedure can
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be given as

yos(f,7) = wps(F)x(f, 7)
= Whs(F)A(F)S(f, 7) + wihs(F)A(F)N(f, 7)

+Wlg(F)na(f, 1), (35)
Wos = [WPS(F), ..., wPS(f)], (36)
wiPS(f) = %exp(—iZn(f /M) fd; singy /c), (37)

whereyps(f, 7) is the primary-path output that is a slightly enhanced target speech,
wps(T) is the filter codicient vector of DS, andy is the estimated DOA of the
target speech given by the ICA part in Sect. 4.2.2. In (35), the second and third
terms on the right-hand side express the remaining noise in the output of the pri-
mary path.

4.2.2 ICA-based noise estimation in reference path

The proposed BSSA provides ICA-based noise estimation. First, source separa-
tion by ICA is applied to the observed signal, and we obtain the separated signal
vectoro(f, 7) is obtained as

o(f, 7) = Wica(f)x(f, 1), (38)

off, 7) = [ou(f, 7)., Oxaa(F, DT, (39)
WEER(F) o WEEA(T)

Wica(f) = : : , (40)

Wica(f) -+ Wic()
where the unmixing matri}V,ca(f) is optimized by (11). Note that the number
of ICAs outputs becomeK& + 1 and thus the number of sensods,is equal to
more tharK + 1 because it is supposed that the additive noi$é, 7) is not negli-
gible. The additive noise cannot be perfectly estimated because the additive noise
is deformed by the filter optimized by ICA. Moreover other components cannot
also be estimated perfectly when the additive noigd, 7) exists. However, it is
possible to estimate at least that noises (including interference sounds that can be
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regarded as point sources, and the additive noise) that do not involve the target
speech signal, as denoted in Sect. 3.2. Therefore, the estimated noise signal is still
beneficial.

Next, DOAs are estimated from the unmixing mawikca(f) [19, 34]. This
procedure is represented by

[Wiea(Dlju )
ar (—
g Wca(fljru

27TfSC_1(dj - djr) ’

6, = sim? (41)

whereé, is the DOA of theuth sound source. Thehklth source signal which is
nearest the front of the microphone array are chosen, and the DOA of the chosen
source signal is designated@sin this paper. This is because almost all users will
stand in front of the microphone array in a speech-oriented human-machine inter-
face, e.g., a public guidance system, which is one of my target applications. Other
strategies for choosing target speech signal can be considered (see Appendix B).

Next, in the reference path, no target speech signal is required because it is
desired to estimate only noise. Therefore, the user’s signal from the ICA's output
signalo(f, 7) is eliminated. This can be written as

C](f, T) = [Ol(f, T), oo OU_l(f, T), 0, OU+1(f, T), oo OK+1(f,T)]T s (42)

whereq(f, 7) is the “noise-only” signal vector that contains only noise compo-
nents. Next, the projection back (PB) [16] method is performed to remove the
ambiguity of amplitude. This procedure can be represented as

a(f.7) = Wiea(H)a(f, ), (43)

whereM™* denotes the Moore-Penrose pseudo inverse mati.ofhus,§(f, 7)
IS a good estimate of the received noise signals at the microphone positions, i.e.,

4(f,7) = A(F)n(f, 1) + WA (F)Na(f, 7), (44)

wheref,(f, 7) contains the deformed additive noise signal and separation error
due to an additive noise. Finally, the estimated noise sigfiat) is constructed
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by applying DS as

z(f,7) = wig(f)a(f. 7).
~ whs(H)A(f)n(f, 7)
+WES(f)WrCA(f)ﬁa(f,r). (45)

This equation means thztf, 7) is a good candidate for noise terms of the primary
path output/ps(f, 7) (see the 2nd and 3rd terms on the right-hand side of (35)). Of
course this noise estimation is not perfect, but it is still possible to enhance the tar-
get speech signal via oversubtraction in the power-spectrum domain as described
in Sect. 4.2.3. Note th& f, 7) is a function of the frame index, unlike the con-

stant noise prototype in the traditional SS method [5]. Therefore, the proposed
BSSA can deal witmonstationarynoise.

4.2.3 Noise reduction processing in BSSA

In the proposed BSSA, noise reduction is carried out by subtracting the estimated
noise power spectrum (45) from the partly enhanced target speech signal power
spectrum (35). This procedure is given as

(ivos(f, DI - 8- (f, D)
essa(f.7) =1 (if Iyos(f.7)2—B-1«(f,7)?>0), (46)
1 - Yps(f, 7)l| (otherwise)

whereygssa(f, 7) is the final output of BSSA3 is an oversubtraction parameter,
andn is a flooring parameter. This is an extended formulation of SS [40]. The
appropriate setting, e.g3,> 1 andny <« 1, gives an #icient noise reduction. For
example, too larger oversubtraction paramegers( 1) leads the larger SNR im-
provement. However, the target signal would be distorted. On the other hand, the
smaller oversubtraction parametgr<« 1) gives the low-distorted target signal.
However the SNR improvement is decreased. In the end, the tfatbetaveen

SNR improvement and the distortion of the output signal exists with respect to the
parametep; 1 < 8 < 2 is usually used.
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The system switches in two equations depending on the conditions in (46).
If the calculated noise components using ICA in (45) are underestimated, i.e.,
Ivos(f, 7)I? > Blz(f, )2, the resultant outpwisssa( f, 7) corresponds to the power-
spectrum-domain subtraction among primary and reference paths with an over-
subtraction rate of. On the other hand, if the noise components are overes-
timated in ICA, i.e.,lyps(f,7)[? < Blz(f,7)|? the resultant outpusssa(f,7) is
floored with a small positive value to avoid the negative-valued unrealistic spec-
trum. Theseoversubtractiorandflooring procedures promise us an error-robust
speech enhancement in the proposed BSSA rather than a simple linear subtraction.
Although the nonlinear processing in (46) often generates an artificial distortion so
calledmusical noiseit is still applicable in the speech recognition system because
the speech decoder is not very sensitive to such a distortion.

In BSSA, DS and SS are processed in addition to ICA. In HO-ICA or SO-ICA,
to calculate the correlation matrix, at least the hundreds of product-sum operations
are required in each frequency subband. On the other hand, in DS, atimost
product-sum operations are required in each frequency subband. A mere 4 or 5
products are required for SS. Therefore, the complexity of BSSA does not increase
by as much as 10% compared with ICA.

The proposed BSSA involves a mel-scale filter bank analysis and directly
outputs mel-frequency cepstrum ¢daent (MFCC) [41] for speech recognition.
Therefore, the proposed BSSA requires no transformation into the time-domain
waveform for speech recognition. The detailed process is shown in Appendix C.

4.3. Permutation-robustness analysis in BSSA

In this section, | present a permutation-robustness analysis in BSSA architecture.
In conventional FDICA, when the permutation arises, we directijesdrom a
permuted noise component that is wrongly regarded as the target signal. Thus,
the conventional FDICA has no robustness against permutation. For the permuta-
tion problem, FDICA requires special processing, i.e., permutation solvers [42].
On the other hand, in BSSA, the adverskeet of permutation is mitigated be-
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cause the SS-based source extraction process in (46) reduces the power of per-
muted components (details will be shown in Sect. 4.3.1, and DS defocuses the
component arriving from the out of look direction (details will be described in
Sect. 4.3.2). These are performed without any special processing like permutation
solvers. Therefore, it can be conclude that the BSSA architecture is a permutation-
robust structure. Note that BSSA is not just a permutation solver but a mitigation
of residual permutationfiect. Indeed, BSSA can utilize any permutation solvers

in ICA part. The BSSA structure can reduce remaining permuted components
after permutation solver. The detailed analysis is shown below.

4.3.1 Permutation robustness by oversubtraction

Here, it is supposed that source separation was performed perfectly by FDICA
except for the permutation that arises in the frequencyfpinMoreover, it is
assumed that the additive noieg(f, ) can be made negligible to simplify dis-
cussion. Consequently, the observed signal in (1) can be rewritten as

X(f,7) = A(F){s(f,7) + n(f,7)}. (47)

Under this assumption, the estimated target speech signal in the frequerfgy bin
by ICA (including PB processing) can be described as

y|CA(fp’ T) = A(fp) ne( fp’ T)’ (48)
Ne(fp, 7) = [0,...,0,ny(f,,7),0,...,0], (49)
V-1 K-V

wherey,ca(fp, 7) is the output signal vector as a target speech signal by ICA,
ne(fp, 7) is the noise signal vector estimated as the target speech signal vector by
mistake,ny(f,, 7) is the noise component estimated as the target speech compo-
nent by mistake, andf(# U) expresses the component number of noise. More-
over, sinceng(f,, 7) is composed of zero components except the specific noise
componentw (f,, 7), y,ca(fp, 7) can be rewritten as

Yica(fo. 7) = h(fo)nv(fp, 7), (50)
h(fo) = [Aw(fp), .-, Aw(fo)l, (51)
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where h(f,) is a transfer function vector of the noise componegtf,, ), and
Ajj(f) expresses an element of the mixing mawi{f).

On the other hand, the estimated noise signal in the reference path of BSSA,
(fp, 7), can be represented by

(o, 7) = Wps( ) A(To) G( fo, ), (52)
q(fp, T) = [n]_(fp, T), ce n\/_]_(fp, T), 0, nV+1(fp, T), cee
nU—l(fp’ T)’ SU(fp’ T)a nU+1(fp’ T)’ SRR nK(fp’ T)]T’ (53)

whered(fp, 7) is the estimated noise component vector including the target signal
by mistake (her& < U for simplification). Note that the observed sig&éf,, 7)
can be rewritten as

X(fp, 7) = A(T{G(Fo, T) + Ne(fp, 7)) (54)

Moreover, since the additive noise can be negligible in this section, the output of
the primary path in BSSA (35) can be written as

¥os(fo 7) = Whs(fp)X( 5. 7)
= WE)S( fo) ACEG(fp, 7) + ne(fp, T} (55)

When|¥os(fp, ) — B - 1Z(f,, 7)I? > 0, form (52) and (55), the expectation of the
power spectrum of BSSA outpugssa( o, ) can be represented by

E [lyBSSA( fo T)|2]
= E|os(f, 1) = B [2( Ty, 7]
= E|Whs(fo) ACf) {(fp. 7) + ne(Fp )} 2]
— E[B- (o) A(Tp) 6 fo 7P|
= (1- ) - E [Whs(fo) Alf)a( for 7)P?]
+ E | b fo) A(f)ne( . 7). (56)

whereE[-] denotes the expectation operator. | use the relation showing that the
cross terms among the distinct noise components are negligible with taking ex-
pectation. Since the oversubtraction parameter is usually get tb, it is evident
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that the first term on the right-hand side of (56) is a negative quantity and the
following relation holds:

E | Fessalfor 7P| < E [Whs( fo) A(Tp) (. )P
= E [Ws(f) (o) (fo, 7). (57)

4.3.2 Permutation robustness by defocusing in DS

Under reverberant conditionb( f,) can be expressed by the superposition of all
reflection components. Therefon¢f,) can be rewritten as

h(f,) = Z r@a(f,, 6@), (58)
q

where () is used to express the index of thh reflection component(@ is the
reflection coéficient,60@ is the DOA of the reflection component of the permuted
noiseny(f,, 7), anda(f, 0) is the steering vector described in (29). From (58), the
resultant power of DS can be obtained by

Whs(fo) h(fo)nv (fo, 7)I7
= | > rOwlg(fp)al Ty, 69 (fp, 7]
q

= Z |rOwhs(fo)a( fo, 6D)ny (£, T)|2 +Cy, (59)
q

whereC; is a term that contains all the cross terms among reflection components.
Also, the power of the conventional ICAs output in the specific microphpne
(o, 7), can be written as

. 2
Wieallo D = | D, rVa(fp, 69 (fy, 7)
q

= 3 |r@ay(fy. 6Ny (. 1) + Ca (60)
q

wherea;(f, 6) is the jth entry ofa(f, 8), andC, also expresses all the cross terms
among reflection components. Here, the directivity gain of the DS fillg¢f) is
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unity only wheng equals the focus direction of D&;, and it is less than one (i.e.,
defocused) in the other directions. This is represented by

whs(f)a(f,6)| < 1. (61)
Thus, the power of each reflection component satisfies

Wos( fo)al fo, 6V)Pr Dy (£, 7)I2

< laj(fo, 69)PIr@ny (o, 1), (62)

becausea;(f,0)| = 1. Here | assume that almost all the reflection components
of ny(fp, 7) come from around the noise DOA and outsid&gf Hence, the fol-
lowing relation holds for almost all the reflection components except the specific
reflection component arriving frody, a(f,, 6)ny(f,, 7), whered @) = 6;

IrQwps(fp)alfp, 6V)ny (fo, 7)I?

< [r@a(f,, 6V)ny(f,, 7). (63)

Moreover, if the interference with each reflection component arises statistically at
random, it can be expected that in (59) andC, in (60) become statistically the
same. Therefore, the following equation holds:

D IrOWg(f)alfo, 6Dy (fy, TP + Cy
q
< Z Ir@ay(f,, 69)ny (fp, 7)% + Ca. (64)
q
This equation can be replaced by

wps(fo)n(fo)ny (o, T2 < | IgA(fp,T)|2. (65)

From (57) and (65), the following relation is valid:

E | essal fp 7)P| < E [WEs(f)h(f)nv (fo, 7]
< E[yi2\(f )R] (66)

This relation indicates that the power of the BSSA output is less than that of the
ICA output in the permutation-arising frequency Wi
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On the other hand, whelfips(fy, 7)I7 - B - 1Z(fp, 7)I* < 0, the resultant power
spectrum of BSSA is floored by the flooring parameteif » is suficiently small,
Yessa(fp, 7) becomes smaller than the error component of permutation.

From the above-mentioned fact, it can be concluded that BSSA is permutation-
robust compared with ICA. However, we must pay attention to the setting of the
oversubtraction parametgr Although the oversized oversubtraction parameter
B can suppress permutation perfectly, such a parameter reduces not only noise
components but also the target component in other innocent (nonpermuted) fre-
qguency bins. Therefore, we should use an appropriate oversubtraction parameter,
B, because such an oversized parameter causes artificial distortion.

4.4. Evaluation of proposed blind speech extraction
method

In this section, | carry out the following experiments to show theaiveness of
the proposed BSSA.

e Evaluation of permutation robustness in BSSA
In this experiment, | make a comparison between the conventional ICA and
proposed BSSA from the viewpoint of permutation robustness.

e Experiment in reverberant room
In this experiment, | represent a comparison result of ICA-based BSS, and
the traditional SS cascaded with ICA, and the proposed BSSA under the
reverberant room condition. The comparison is performed on the basis of
NRR, cepstral distortion (CD), and speech recognition test.

e Experimentin an actual world
The above evaluations are conducted in the experiment room. On the other
hand, | evaluate the performance of the proposed BSSA in an actual railway-
station in this experiment. Thefectiveness of the proposed BSSA under
an actual environment is revealed through this experiment.
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4.4.1 Evaluation of permutation robustness in BSSA

In this experiment, | mainly evaluate permutation-robustness ability in BSSA.
First, | compare ICA and BSSA on the basis of NRR. As well, HO-ICA algo-
rithm is utilized as the conventional ICA [17]. Hereafter, the ‘ICA simply indi-
cates HO-ICA. It is supposed that source separation is performed perfectly except
for the permutation generated artificially in randomly selected frequency bins. |
increase the percentage of permutation-arising frequency bins to assess the robust-
ness against the permutation problem. Figure 10 shows a layout of the reverberant
room used in this experiment, where the reverberation time is 200 ms; this cor-
responds to mixing filters of 3200 taps with 16 kHz sampling. | use 3-s speech
signals (male and female) as an original speech, and input SNR is set to 0 dB at
the array. The target signal is a male’s speech, the noise is a female’s speech, and
the noise direction is 50 degrees. A four- or eight-element array with an interele-
ment spacing of 2 cmis used, and DFT size is 512. The oversubtraction parameter
B is 1.2 and the flooring cd@icienty is 0.0. Such parameters are experimentally
determined. Figure 11 shows the resultant curve of the NRRs of ICA and BSSA
with increasing the percentage of permutation-arising frequency bins. From these
results, we can confirm that the NRR of BSSA outperforms that of ICA even

if the percentage of permutation-arising frequency bins increases. These results
evidently indicate that BSSA involves a permutation-robust structure.

Although the previous NRR results are positive for BSSA, one might specu-
late that sound distortion is enhanced; certainly, we can see musical noise in the
resultant output of the proposed BSSA. Consequently, | show results of CD and
speech recognition that is the final goal of BSSA, in which the separated sound
quality is completely considered. | use an eight-element array, and | generate 5%
or 10% permutations artificially. 1 use 46 speakers (200 sentences) as the origi-
nal source and | use a male’s speech (1 sentence) as an interference noise source.
Noise direction is 50 or 80 degrees. The speech recognition task and conditions
are shown in Table 1.

CD [43] is a measure of the degree of distortion via the cepstrum domain. CD
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indicates distortion among two signals, which is defined as

T B

CD [dB] = % DD J 2 2Coulp; ) - Creloi D)2, (67)
=1 p=1

b= Iogzgolo’ (68)

whereT is the frame lengthC,.(o; 7) is thepth cepstrum ca@cient of the output
signal in the framer, Cef(0; 7) is thepth cepstrum cao@cient of the speech sig-

nal convoluted with impulse response, ddglis the constant that transforms the
measure into dB. BesideB,is the number of dimensions of the cepstrum used in
the evaluation. Moreover, | use word accuracy (WA) score as a speech recognition
performance. This index is defined as

Wiva — Swa — Dwa — |
WA [%] = —2 WCV WA WA «100Q, (69)
WA

whereWa is the number of wordSy, is the number of substitution errofByp
is the number of dropout errors, ahgh is the number of insertion errors.

Figures 12(c) and (d) illustrate the CD score under each condition. We can see
that the proposed BSSA increases the degree of distortion slightly due to spectral
oversubtraction. Figures 12(e) and (f) show the word accuracy under each con-
dition. From these results, however, we can confirm that the word accuracy of
the proposed BSSA is higher that of ICA under all conditions; this means that
the marked improvement in NRR can dominantly contribute to word accuracy in
BSSA.

4.4.2 Experiment in reverberant room

In this experiment, | present a comparison of typical blind noise reduction meth-
ods, namely, the conventional ICA [17] and the traditional SS [5] cascaded with
ICA (ICA+SS). In ICA+SS, first, noise estimation is performed from the speech

pause interval in the target speech estimation by ICA. The noise reduction is
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Figure 10. Layout of reverberant room used in experiment which simulates per-
mutation problem.

Table 1. Conditions for Speech Recognition

Database JNAS [44], 306 speakers (150 sen-
tencegspeaker)

Task 20 k words newspaper dictation

Acoustic model phonetic tied mixture (PTM) [44],
clean model

Number of training speakers for260 speakers (150 sen-
acoustic model tencegspeaker)
Decoder JULIUS [44] ver 3.5.1
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Figure 11. Curves of NRR with increasing the percentage of permutation-arising
frequency bins by (a) four-element and (b) eight-element arrays.

achieved by SS as

{loy(f,7) = Blfvemar( )2’
Yicasss(f, 7) = (Whel'e|OU(f,T)|2 _ﬂ|ﬁremair(f’7)|2 > 0), (70)

vlou(f,7)| (otherwise)
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Figure 12. Experimental results of simulating permutation problem artificially.
(a) and (b) are results of noise reduction rate, where 5% and 10% permutations
arose, respectively. (c) and (d) indicate results of cepstral distortion, where 5%
and 10% permutations arose, respectively. (e) and (f) show speech recognition
results, where 5% and 10% permutations arose, respectively.

whereriemai f) is the estimated noise signal from the speech pause in the target
speech estimation by ICA. Moreover, DOA-based permutation solver[19] is used
in the conventional ICA and ICA part in BSSA.

| used 16 kHz-sampled signals as test data; the original speech (6 s) convo-
luted with impulse responses recorded in an actual environment, and to which
cleaner noise or a male’s interfering speech that was recorded in an actual envi-
ronment were added. Figure 13 shows the layout of the reverberant room used in
the experiment. The reverberation time of the room is 200 ms; this corresponds to
mixing filters of 3200 taps in 16 kHz sampling. The cleaner noise is not a simple
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point source signal but consists of sevanahstationarynoises emitted from a
motor, air duct and nozzle. Also, a male’s interfering speech is not a simple point
source but is slightly moving. In addition, these interference noises involve back-
ground noise. The SNR of background noise (power ratio between target speech
and background noise) is about 28 dB. | use 46 speakers (200 sentences) as the
source of the target speech. The input SNR is set to 10 dB at the array. | use a
four-element microphone array with an interelement spacing of 2 cm. The DFT
size is 512. The oversubtraction paramgtés 1.4 and the flooring caécienty

is 0.2. Such parameters are experimentally determined. The speech recognition
task and conditions are the same as those in Sect. 4.4.1 as shown in Table 1.

First, | show actual separation results by ICA for the cleaner noise and in-
terference speech cases in Fig. 14. We can confirm the imbalanced performance
between target estimation and noise estimation similarly to the simulation-based
results (see Sect. 3.3).

Next, | make a discussion of the NRR-based experimental result shown in
Figs. 15(a) and 16(a). From the result, we can confirm that the NRRs of the
proposed BSSA are greater than those of the conventional ICA and3SAy
more than 3 dB. However, we can see that the distortion of the proposed BSSA
increases slightly from Figs. 15(b) and 16(b). This is due to the fact that the noise
reduction of the proposed BSSA is performed based on SS. However, the amount
of increase in the degree of distortion is expected to be negligible.

Finally, we can see the speech recognition result in Figs. 15(c) and 16(c). Itis
evident that the proposed BSSA is superior to the conventional ICA and 85A

4.4.3 Experiment in actual world

Finally, I conduct an experiment in an actual railway-station environment. Fig-
ure 17 shows a layout of the railway-station environment used in my experiment,
where the reverberation time is about 1000 ms; this corresponds to mixing filters
of 16000 taps in 16 kHz sampling. | used 16 kHz-sampled signals as test data;
the original speech (6 s) convoluted with impulse responses that were recorded in
an actual railway-station environment, and to which a real-recorded noise in the
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Figure 13. Layout of reverberant room used in my experiment.

environment was added. | use 46 speakers (200 sentences) as the original source
of the target speech. The noise in the environment is nonstationary and is al-
most a non-point-source; consists of various kinds of interference noise, namely,
background noise, and the sounds of trains, ticket-vending machines, automatic
ticket wickets, foot steps, cars, and wind. Figure 18 shows two typical noises,
noise 1 and noise 2, which are recorded in distinct time periods, and used in my
experiment. A four-element array with an interelement spacing of 2 cm is used.
Figure 19 shows the real separation results by ICA in a railway-station envi-
ronment. We can ascertain an imbalanced performance between target estimation
and noise estimation similarly to the simulation-based results (see Sect. 3.3).
In the next experiment, | compare the conventional ICA, 55, and BSSA
in terms of NRR, cepstral distortion, and speech recognition performance. Fig-
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Figure 15. Results of (a) noise reduction rate, (b) cepstral distortion, and (c)
speech recognition test for each method (cleaner noise case).

ure 20(a) shows the results of the average of NRR in whole sentences. From these
results, we can see that the NRR of BSSA that utilizes ICA as a noise estimator
is superior to those of the conventional methods. Figure 21 shows the waveform
examples of each method. From this result, we can also see that the noise reduc-
tion performance of the proposed BSSA is better than those of the conventional

44



ICA ] ICA+SS ll BSSA

—10 _. 5

) 5 69
o 9 = 45 ®

© S > 66
c 8 € 4 ()

5] fe) o

=] >

5 7 % 3.5 3 63
g6 g 3 B 60
» _ 24 o

2 5 g 25 2 .
=z 4 L )

(a) (b) (0

Figure 16. Results of (a) noise reduction rate, (b) cepstral distortion, and (c)
speech recognition test using each method (interference speech case).
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Figure 17. Layout of railway-station environment used in my experiment.

methods. However, we can find that the cepstral distortion in BSSA is increased
compared with that in ICA from Fig. 20(b).

Finally, | show results of speech recognition, where the extracted sound quality
is completely considered, in Fig. 20(c). The speech recognition task and condi-
tions are the same as those in Sect. 4.4.1, as shown in Table 1. From this result, |
conclude that the target-enhancement performance of BSSA, i.e., the method that
uses ICA as a noise estimator, is evidently superior to the method that uses ICA
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Figure 19. NRR-based noise reduction performance of conventional ICA in
railway-station environment.

directly as well as ICASS.
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Figure 20. Experimental results of (a) noise reduction rate, (b) cepstral distortion,
and (c) speech recognition test, in railway-station environment.

4.5. Conclusion

In this chapter, | proposed the new blind speech extraction method, i.e., BSSA.
The proposed BSSA introduces the following two aspects:

BSSA can treat non-point-source noiselhe conventional ICA, which is the most
popular blind source separation method, can work in the limited case such as
a speech-speech mixing condition, i.e., all sound sources are point sources.
However, an actual environment involves not only point-source interference
signals but also non-point-source noise signals. On the other hand, the pro-
posed BSSA architecture can work even under such the realistic acoustic
condition. This is because that ICA is proficient in noise estimation un-

der non-point-source noise condition and is utilized as a noise estimator in
BSSA.

Permutation-robustness Moreover, the proposed BSSA has permutation-robust
structure rather than the the conventional ICA. In the conventional ICA, a
special processing is needed to solve the permutation problem. On the other
hand, in the proposed BSSA, the structure itself has the robustness against
the permutation problem. That is to say, the proposed BSSA can mitigate

47



(a) Observed signal

2000

1000

Amplitude
o

-1000

-2000
0

1 2 3 4 5 6

(b) |CA Time [s]

2000

1000

Amplitude
o

-1000

-2000 1 1 1 1 1
0 2 3 4 5 6

1
(c) ICA+SS Time

2000

1000

Amplitude
o

-1000

2000 1 1 1 1
0 3 4 5 6

1 2
(d) Proposed BSSA Time [s]

2000

1000

Amplitude
o

-1000

2000 1 1 1 1 1 1
0 1 2 3 4 5 6
Time [s]

Figure 21. Examples of waveform; (a) observed signal, (b) output signal by ICA,
(c) output signal by ICASS, and (d) output signal by proposed BSSA.

the negative fect of permutation problem without any special processing.
Furthermore, this aspect does not conflict with any conventional permu-
tation solvers. This means that any permutation solvers are available in
the ICA part of the proposed BSSA. BSSA reduces the remained permuted
components which could not be solved by a permutation solver.

In order to evaluate thefécacy of the proposed BSSA, three experiments were
carried out. In the experiments including computer-simulation-based and real-
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recording-based data, the SNR improvement and speech recognition results of
the proposed BSSA were superior to those of conventional methods. These facts
evidently indicate that the proposed BSSA is beneficial to speech enhancement in
adverse environments.
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CHAPTER 5
ROBUSTNESS AGAINST REVERBERATION AND

M 1cROPHONE ELEMENT ERRORS IN BSSA

5.1. Introduction

In the previous chapter, | proposed a new blind source extraction method, BSSA.
In the previous chapter, | explained the proposition of BSSA is motivated by the
fact that ICA is proficient in noise estimation under non-point-source noise con-
dition. On the other hand, in this chapter, | give an alternative interpretation, i.e.,
the proposed BSSA is the extension of spatial subtraction array (SSA) [27].

The proposed BSSA involves an ICA-based noise estimation part, and non-
linear subtraction based on the estimated noise is applied to slightly-enhanced-
speech signal by DS. Actually, this structure is similar to the conventional SSA[27].
The diference of SSA and BSSA is whether NBF or ICA is utilized for noise es-
timation part. In this chapter, | give an alternative interpretation of BSSA, i.e.,
BSSA is an extension of SSA, and | reveal that the proposed BSSA provides the
robustness against reverberation and microphone element errors that is the impor-
tant properties for the real world application.

The chapter is constructed as follows. In the following Sect.5.1, | review the
conventional SSA. Next, | bring up the problem of the conventional SSA, and |
theoretically analyze the behavior of the noise estimation filter by NBF in SSA
and ICA in the proposed BSSA at Sect. 5.3. In the analysis, | give another inter-
pretation of ICA-based noise estimation in the proposed BSSA. As a result of the
analysis, | clarify that the proposed BSSA has the robustness against reverbera-
tion and microphone element errors. The validity of the analysis is shown via a
computer simulation and a speech recognition test in Sect. 5.4. Finally, Sect. 5.5
concludes the chapter.
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Figure 22. Block diagram of conventional SSA.

5.2. Spatial subtraction array

In this section, | present the conventional SSA [27]. SSA is a kind of non-linear
microphone array processing and specifically designed for hands-free speech recog-
nition. Firstly, | exposit the structure and the detailed signal processing of SSA.
Next, | point out that the problems of the conventional SSA.

The conventional SSA consists of a DS-based primary path and a reference
path via the NBF-based noise estimation (see Fig. 22). The estimated noise com-
ponent by NBF is fiiciently subtracted from the output of the primary path in
the power spectrum domain without phase information. Like this, the structure of
BSSA is similar to SSA. However, in SSA, the target-speech direction and speech
break interval are needed to be known in advance. Thus, SSA is not a blind source
extraction method. Detailed signal processing is shown below.

5.2.1 Partial speech enhancement in primary path

The target speech signal is partly enhanced in advance by DS. Thus, the output
signal of the primary path is the same as that of BSSA. This procedure can be
given as

yos(f, 1) = wps(f)X(F, 7). (71)
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Note that the look direction ofips(f) is known in advance in SSA unlike BSSA.

5.2.2 Noise estimation in reference path

In the reference path, the estimated noise signal is derived by using NBF. This
procedure is given as

Zuer(f, 7) = Wige(F)X(f,7), (72)
wyer(f) = {[1,0] - [a(f, 6o), a(f, 8u)] )", (73)

wherezyge(f, 7) is the estimated noise by NBlyge(f) is a NBF-filter codficient
vector which steers the directional null against the DOA of the target spégch,
and steers unit gain in the arbitrary directi@s(# 6y). This processing can sup-
press the target speech arriving frégy which is equal to an extraction of noises
from sound mixtures if iections of sensor errors and reverberations are not con-
sidered. Thus, we can estimate the noise signals by NBF under ideal conditions.
Note thatzygr(f, 7) is the function of the frame numbet unlike the constant
noise prototype estimated in the traditional SS. Therefore, SSA can also deal with
anon-stationarynoise such as the proposed BSSA.

5.2.3 Noise reduction part

In SSA, noise reduction is carried out by subtracting the estimated noise power
spectrum from the partly enhanced target speech power spectrum in power do-
main. This can be designated as

1
2

{Ivos(f, 7) = B - lzner(f, 7)I2]
Yssa(f,7) = (if Iyos(f,7)I* — B - |zuee(f, 7)* = 0) (74)
1 - Yps(f,7)| (otherwise)

Like this, signal processing in SSA is almost the same as in BSSA except for the
NBF-based noise estimation part.
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5.3. Interpretation of BSSA as extended SSA

5.3.1 Problems of SSA

In this section, | denote the problem of the conventional SSA. The NBF-based
noise estimator is used in the conventional SSA, but NBfessi from the ad-

verse #ect of the microphone element error and the room reverberation. NBF is
a technique to suppress an interference source signal by generating a null against
the direction of the interference source signal [19]. If the interference source sig-
nal arrives from the same direction as the generated null, we can suppress the
interference source signal perfectly. In a reverberant environment, however, the
interference source signal arrives from not only the null’s direction but also out-
side of the direction. Therefore, we cannot suppress the interference source signal
suficiently in the reverberant room. In addition, a generic microphone for prod-
ucts, which is not specialized for measurement, often comprises an element error.
For some microphones, 3-dB-gain error is permissible in their design [45]. NBF
is designed under the ideal assumption in that all elements have the same char-
acteristics. In the real environment, however, the characteristics of each element
are diferent. For these reasons, the directivity pattern shaped by NBF in the ideal
environment is apart from that of in the real environment.

Figure 24 illustrates directivity patterns which are shaped by two-element NBF
in the ideal (solid line) and the real (dotted line) environment (see Fig. 23) where
the reverberation time is 200 ms. In this figure, the null direction is set to zero
degree. Here, the ideal directivity patté€Bpea(6) is derived by

1
Gigeal(t) = 1010Gio 3+ ) Miier(f) - a(F. O)F. (75)
f
On the other hand, the directivity pattern in a real environment is given as
1
Greal) = 10l0g0 = Z Wiee (1) - hreal f. 6)F (76)

wherehrea(f,6) = [hD (F,6),...,hY (f,6)]T is the transfer function vector from
a sound source signal to microphones observed in the experimental room illus-
trated in Fig 23. Beside&,q is the gain compensation parameter which makes
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Figure 23. Acoustical environment used in my simulation.

the spatially gain at -90 degrees become zero. From Fig 24, we can see that the
depth of the null in the real environment which contains the element error and
the reverberation shallows. Therefore, we cannot suppress the interference source
signal completely in the real environment by using NBF. Indeed, in SSA, we per-
form noise estimation via NBF which steers null against the target speech signal,
but we cannot suppress the target speech sigtiatisumtly. In fact, NBF cannot
estimate noise signal completely.

5.3.2 Alternative interpretation of ICA in BSSA

In this section, | make an alternative interpretation of ICA-based noise estimation
in the proposed BSSA. In the proposed BSSA, ICA is utilizes as a noise estimator
instead of NBF. In this section, | point out that ICA can adapt reverberation and
microphone element errors which are the problems of NBF in SSA. In this section,
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Figure 24. Directivity patterns shaped by NBF in ideal environment and real
environment which contains element error and reverberation.

the following observation model as a matter of convenience:

X(f,7) = hg,(F)s(f, 7) + hgo (F)N(F, 7), (77)

where §(f, 7) is the target speech signai(f, ) is the noise signal. Besides,
he, (f) = [W(F),...,h")()]T is the transfer function vector from the target
speech signal to microphones, amg(f) = [n%)(f),...,h%(f)]T is the transfer
function vector from the noise to microphones. These transfer function vectors
hg, (f) andhg, () involve element errors and room reverberation.

In the proposed BSSA, the source separation is performed by optimized filter
by ICA to estimate noise signal. For simplicity, | consider the two-output ICA,
namely the mixed observations are separated into a target speech and a noise.
Here, the demixing process of ICA defined in (38) and (40) can be rewritten as

o(f, 1) = [on(f, 7), 0s(f, )" = Wica(F)X(F, 7), (78)
WIEI(H) - W)

Wica(f) = ,
TR e W)

(79)
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whereo,(f, 7) is the estimated noise signal angf, 7) is the estimated speech
signal.

In the following, | compare the ICA-based noise estimation filter in BSSA and
NBF-based noise estimation filter in SSA. Here, (78) can be modified as

o(f) = D(HW(F)[hgo (), he, (DIIN(F, 7), S(F, D], (80)
where D(f) is a diagonal matrix that expresses the source-gain ambiguity, and
Wica(f) is the unmixing matrix removing the source-gain ambiguity from the
unmixing matrixWca(f), namelyW,ca(f) = D(f)W,ca(f). Here, if the source
separation by ICA is completely accomplished, the following relation holds:

Wica(f) = D(f)[hgo(F), ha, ()] (81)

Consequently, the noise estimation filter by IG#a (f), corresponds to the first
row of Wca(f), and it can be given as

Wica(f) = {[1,0] - Wica(f)}'

= {[or(£), 0] - [hao (), e ()]} (82)

whereo(f) is the entry of the first row in the diagonal matriX(f). Note that
the source-gain ambiguity(f) is removed by PB method in the proposed BSSA.
Here, | compare (82) and (73). The noise estimation filigk (f) does not utilize
the ideal steering vectaa(f, 6) unlike wyge(f). Instead ofa(f, 8), the transfer
function vectorshy, (f) and hg,(f) which involve reverberation and microphone
element errors are usedwca(f). Therefore, ICA-based noise estimation filter
can adapt reverberation and microphone element error. Furthermore, this ICA-
based noise estimation filter is automatically optimized without pre-measured
transfer functions. That is to say, such the ICA-based noise estimation filter is
robust against reverberation and microphone element errors. Therefore, the pro-
posed BSSA can be also explained as the extension of the conventional SSA.

5.4. Evaluation

In order to confirm the validity of the above-mentioned analysis, | conduct a com-
puter simulation and a speech recognition test. In the computer simulation, |
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compare the accuracy of NBF-based noise estimation and ICA-based noise esti-
mation. Moreover, in the speech recognition test, the comparison result of SSA
and the proposed BSSA is shown and | reveal that the speech recognition perfor-
mance of the proposed BSSA outperforms that of the conventional SSA.

5.4.1 Setup

Figure 23 shows the experimental room used in the simulation and speech recog-
nition test. In the experiments, | use the following 16 kHz-sampled signals as test
data; the original speech convoluted with impulse responses that were recorded
in the experimental room, and to which a real-recorded cleaner noise in the ex-
perimental room was added. The cleaner noise is nonstationary and not a point
source but consists of several non-stationary noises emitted from, e.g., a motor,
air duct and nozzle. Besides, the cleaner noise includes background noise because
it is real recorded noise. The input SNR is set to be 5 dB, 10 dB, or 15 dB, and
a four-element array with an interelement spacing of 2 cm is used. Moreover,
DFT size is 512 points, window size is 256 points, and shift size is 128 points.
As for parameters in S$, = 1.4 andnp = 0.2 are chosen. These parameters are
determined so that the speech recognition performance is maximum.

5.4.2 Comparison of noise estimation accuracy

First, | compare directivity pattern shaped by ICA and NBF in the real environ-
ment. The broken line in Fig. 25 is the spatial directivity pattern shaped by ICA
in the environment. From this result, we can confirm that the null shaped by ICA
becomes deep compared with that of the NBF-based conventional SSA (dotted
line in Fig. 25). Therefore, it can be expected that the noise estimation accuracy
of ICA is better than that of NBF.

Next, | compare the accuracy of noise estimation by ICA and NBF. | use NRR
and the signal-to-distortion ratio (SDR) to compare the noise estimation accuracy,
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Figure 25. Directivity patterns shaped by ICA in real environment, NBF in real
environment, and NBF in ideal environment.

which is defined as

DI )P
T f
DA D)1 = In(F )
T f

wheren(f, ) is the true noise signal amif, ) is the estimated noise signal.

SDR [dB] = 10log,, (83)

Here, | consider the target speech signal as interference signal and derive NRR to
compare the noise estimation performance in ICA and NBF.

The comparison result is shown in Table 2. The result is the averaged NRR and
SDR over 200 utterances. From this result, both NRR and SDR of ICA overtake
those of NBF. Therefore, it can be concluded that the noise estimation perfor-
mance of ICA is better than that of NBF. Moreover, Fig. 26 illustrates an example
of long-term-averaged power spectra of estimated noise by ICA and NBF. In the
Fig. 26, the black solid line indicates the power spectrum of the noise signal in the
primary path, and this power spectrum is needed to be estimated. The gray solid
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Table 2. Comparison of noise estimation accuracy by NBF and ICA on the basis
of NRR and SDR

NRR [dB] | SDR [dB]
NBF 494 | -106
ICA | 124 4.09

line represents the power spectrum of the estimated noise signal by NBF, and the
dotted line shows the power spectrum of the estimated noise signal by ICA. We
can see that the power spectrum of the estimated noise signal by NBF is not accu-
rate. This is due to that the target speech component still remains in the output of
NBF because the null shaped by NBF is shallow. On the other hand, we can see
that the power spectrum of the estimated noise signal by ICA is a good estimation
because the depth of the null shaped by ICA is enough for suppressing the target
speech. From these results, | conclude that ICA-based noise estimation is more
accurate than NBF-based one and is robust against reverberation and microphone
element errors.

5.4.3 Speech recognition test

Finally, | compare DS, the conventional SSA, and the proposed BSSA on the basis
of word accuracy scores. Table 1 describes the conditions for speech recognition,
and | use 46 speakers (200 sentences) as original speech. Figure 27 shows the
word accuracy in each method. Here, “Unprocessed” refers to the result with-
out any noise reduction processing. From this result, we can see that the word
accuracy of the proposed method is obviously superior to those of the conven-
tional methods. This is a promising evidence that the proposed BSSA has the
robustness against reverberation and microphone element errors compared to the
conventional SSA.
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Figure 26. Comparison of long-term averaged power spectra estimated by NBF
and ICA.

Table 3. Experimental conditions for speech recognition
Database JNAS [44], 306 speakers (150 sen-
tencey 1 speaker)

Speech recognition task 20 k words newspaper dictation
Acoustic model phonetic tied mixture (PTM) [44],
clean model

Number of training speakers for260 speakers (150 sentencgsl
acoustic model speaker)
Decoder Julius [44] ver 3.5.1

5.5. Conclusion

In this chapter, | gave an alternative interpretation of the proposed BSSA, i.e., the
proposed BSSA is an extension of SSA. Th&eatence of the proposed BSSA
and the conventional SSA is whether ICA or NBF is utilized for noise estimation.
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Figure 27. Results of word accuracy in various methods, unprocessed, DS, SSA,
and robust SSA, used in simulation experiment.

Then, | analyzed the fference of the behavior of ICA-based noise estimation and
NBF-based noise estimation. As a result of the analysis, | revealed that ICA-based
noise estimation introduces the robustness against reverberation and microphone
element errors, which is one important property for actual world applications. The
propriety of the analysis was confirmed by a computer simulation and a speech
recognition tests. As a result of experiments, ICA could estimate noise signals ac-
curately compared with NBF. Moreover, the proposed BSSA could achieve better
speech recognition performance than the speech recognition performance of the
conventional SSA. Therefore, let me conclude that the proposed BSSA provides
the robustness against reverberation and microphone element error because the
proposed BSSA utilizes ICA as a noise estimator.
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CHAPTER 6
REAL-TIME | MPLEMENTATION OF PrOPOSED BSSA
FOR HANDS-FREE SPOKEN-ORIENTED GUIDANCE

SYSTEM

6.1. Introduction

In Chapter 4, | proposed a new blind speech extraction method, i.e. BSSA, and
gave strong evidences of thiéieacy of the proposed BSSA thorough experiments.
However, the proposed algorithm described in Chapter 4 is basically a batch algo-
rithm. That is to say, the proposed BSSA itself cannot be applied to applications
require real-time processing, e.g., hands-free spoken-oriented guidance system.
To work in real-time is one of the indispensable factors for a hands-free spoken-
oriented system. Indeed BSSA can reduce naieiently, but BSSA is dficult

to work in real-time because ICA part of BSSA consumes huge amount of com-
putational complexities. Thus, it is required to develop a real-time architecture of
BSSA.

In this chapter, | newly propose the real-time architecture of BSSA and im-
plement the real-time BSSA. Moreover, | introduce the implemented real-time
BSSA into the spoken-oriented guidance system “Kitarobo” which has already
been installed at an actual railway station, and construct a hands-free spoken-
oriented dialogue system. Although many real-time robot audition systems have
been proposed [3], the behavior and performance are not explicitly analyzed under
heavy widespread noise condition, e.g., an actual railway-station, as far as | know.
Then, | evaluate the constructed hands-free spoken dialogue system with the real-
time BSSA in an experimental room simulating actual railway-station environ-
ment based on the speech recognition test, and 6% improvement of the speech
recognition result can be confirmed compared with the conventional speech en-
hancement methods.
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This chapter is constructed as follows. In the following Sect. 6.2, | describe
the strategy of the real-time architecture of BSSA. Next, detailed algorithm of
the proposed real-time BSSA is explained in Sect. 6.3, and then the constructed
hands-free spoken-oriented guidance system with the proposed real-time BSSA
is illustrated in Sect 6.4. The following Sect. 6.5 gives evaluation results, and
Sect. 6.6 concludes the chapter.

6.2. Strategy of real-time implementation of BSSA

The proposed BSSA can be decomposed to the following parts:

e Partial speech enhancement part in primary path
In the primary path, DS is applied to the multichannel observation, and the
partly-enhanced speech signal is obtained.

¢ Noise estimation part in reference path
In the reference path, noise estimation is performed based on ICA. Then,
the noise estimation part in reference path is additionally decomposed to
the following parts:

— ICA optimization part
In the ICA optimization part, noise estimation filter is optimized by
ICA.

— Noise estimation part by optimized filter
In this part, noise estimation is performed by the optimized noise esti-
mation filter by ICA.

e SS part for final output
In this part, the final output signal of BSSA is yielded by subtracting the
power spectrum of estimated noise signal in reference path from the power
spectrum of partly-speech-enhanced signal in primary path.

DS part in the primary math, filtering optimized noise estimation filter to obser-
vation in the reference path, and the SS part for the final output are possible to
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Figure 28. Signal flow in real-time implementation of proposed method.

work in real-time because these parts are enough simple and low-complexity sig-
nal processing. However, it is toilsome to optimize (update) the separation filter
in real-time because the optimization of the unmixing matrix by ICA consumes
huge amount of computational costs. Therefore, | introduce a strategy in that the
separation filter optimized by using the past time period data is applied to the cur-
rent data. Figure 28 illustrates a configuration of a real-time implementation for
BSSA. Signal processing in this implementation is performed via the following
manner.

S1. Inputted signals are converted into time-frequency domain series by using a
frame-by-frame fast Fourier transform (FFT).

S2. ICA is conducted using the past 1.5-s-duration data for estimating separa-
tion filter while the current 1.5 s. The optimized separation filter is applied
to the next ot curren} 1.5 s samples. This staggered relation is due to the
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fact that the filter update in ICA requires substantial computational com-
plexities and cannot provide the optimal separation filter for the current 1.5
s data.

S3. Inputted data is processed in two paths. In the primary path, target speech is
partly enhanced by DS. In the reference path, ICA-based noise estimation
is conducted. Again, note that the separation filter for ICA is optimized by
using the past time period data.

S4. Finally, we obtain the target-speech-enhanced signal by subtracting the power
spectrum of the estimated noise signal in the reference path from the power
spectrum of the primary path’s output.

Although the separation filter update in the ICA part is not real-time processing
but involves totally a latency of 3.0 seconds, the entire system still seems to run in
real-time because DS, SS and separation filtering can work in the current segment
with no delay. In the system, the performance degradation due to the latency
problem in ICA is mitigated by oversubtraction in SS. Detaitedl-time signal
processing is shown in the following sections.

6.3. Algorithm

In this section, | represent detailed signal processing of the real-time architecture
of the proposed BSSA. Since the ICA part of the proposed BSSA needs huge
amount of complexities, | divide the parts of BSSA into the part of ICA and the
other parts. Consequently, the signal processing parts in the proposed BSSA are
classified into the following two blocks:

e Optimization of noise estimation filter by ICA
This is a part of reference path. In this part, the noise estimation filter is
optimized by ICA.

e Noise reduction part
This part includes the primary path, noise estimation with using optimized
filter by ICA, and SS for final output.
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Figure 29. Relation between time index and block indgxe= 5 case).

These blocks are parallelly and independently executed in the proposed real-time
architecture. In the following, | described the detailed signal processing of each
block.

6.3.1 ICA partin real-time algorithm

In the ICA part of this algorithm, a sequential time-series input is divided into
fixed-length blocks, and ICA is performed in each block. The number of samples
in one block {umple is defined as

(84)

lsec” |
gsample: { b s| >

Tshift

wherelsecis block length in seconds (I use 1.5 s in this study), is frame shift
size for short-time Fourier transform, afd is the floor function. Thus, a set of
time frame index belonging to a blotk(= 0, 1,2,...), T, can be given as

To={7|b-lsampe< T < (b + 1) lsampid- (85)

Figure 29 shows the relation between a time frame index and a block index, where,
e-g-afsample: S.

The unmixing matrix for a block, Wig*(f), is optimized by the following
iterative update equation:

][p+1]

[Wigh(f) "

= u[l = <@(O(f, )& (£, 7))eer,] [ Wi (F)
+[wigrn] ™, (86)

where(-).ct, IS the time-averaging operator which is localized within bldgk
ando(f, 7) = [0.(f,7),...,0k(f,7)]" is the temporal separated signal vector given
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as
o(f,7) = WA (F)x(f,7) (7 € o). (87)

Here, if the average power of the specific bldis very small, the unmixing ma-

trix should not be updated because the low-power block which does not contains
any dominant signals leads to an unstable convergence of the unmixing matrix.
Thus, the unmixing matrix is not updated in such a blbgkthe average power

of the blockb is very small. This can be represented by

WG (F) = WA (F) (I (IX(F, ) Phrer, < thpow), (88)

whereth,, is the threshold for the average power.
Moreover, the initial value of the unmixing matrix in the optimization at each
block is represented by

[Wl(g)A(f)][O] _ Winitial(f) (if b m.Od breset: 0), (89)
Wig'y(f)  (otherwise)
wherebyesetiS the reset period of the unmixing matrix, aWbhiia () is the initial
value of the unmixing matrix given in advance. This initial value is ordinarily
generated using the observed signal via some methods, e.g., principle component
analysis or beamforming. Thus, the optimized unmixing matrix is reset into the
given initial value every,esetblocks.
Furthermore, we can estimate DOAs from the unmixing mawvig®(f) as
described in (41). This procedure is represented by

([ O3 /Wt (n ],
ZﬂfSC_l(dj - dj/) ’

Oup = SIN (90)
wheref,, is the DOA of theu-th sound source in the blodk Then, | choose
theU-th source signal which is the nearest the front of the microphone array, and
designate the DOA of the chosen source signé},gn this study. This is because
almost all users often stand in front of the microphone array in a spoken-oriented
human-machine interface.
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6.3.2 Noise reduction part in real-time algorithm

Noise reduction is carried out according to the following three steps;
1. First, DS is performed to enhance the target signal (primary path).
2. Next, we estimated noise signal based on ICA (reference path).

3. Finally, we obtain the target speech enhanced signal by subtracting the
power spectrum of the estimated noise from the power spectrum of the pri-
mary path’s output.

In the primary path, DS is performed to enhance the target speech signal. This
procedure can be represented by

VRS(F,7) = wlo(F, bup 2)X(F,7) (r € To), (91)

whereypS(f, 7) is the primary path’s output in a blodk
In the reference path, first, the signal separation is performed. This can be

designated as
O (f, 1) = WI(E_AZ)(f)X(f,T) (reTy), (92)

where oy (f,7) = [016(f,7),...,0kp(f,7)]" is the separated signal vector in a
blockb. Next, we obtain the estimated noise signal in a block,(f, 7), as

Zwy(f.7) = 90s(f, Oup-2) [W'(Ef‘z)(f)r Ay (f. 7) (7 € Ty), (93)
Ay (F,7) = [00p(f, 7), ..., 0u-1b(F, 7). 0,
0U+l,b(fa T)a ey OK,b(f’ T)]T’ (94)

whereqg,(f, 7) is the vector in which the target speech component is removed.
Finally, we obtain the target speech enhanced siggidf(f,7) by SS. This
can be given as

(R3(F, 702 = - Lz (£, D)
Yoy B D) =1 (if YRS - B+ lzm(F.7)2 2 0) (95)
y- |y(Db)5(f, 7)|  (otherwise)
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Figure 30. Configuration of updating separation filter.

In (91) and (93), note that we have only to use the estimated DOA and the
optimized unmixing matrix in the previous blotk- 2. This is due to data Itier-
ing and optimization process for ICA. ICA optimization requires a certain length
of data, e.g., 1.5 s. data. Thus, we musfiéua certain length of input data
for ICA optimization. Consequently, ICA optimization just starts after thiédvu
ing. Moreover, ICA optimization cannot finish in no time at all because ICA
optimization consumes huge amount of computations. Thus ICA optimization is
performed while one block. As a result, in a current blbcive are only admitted
to utilize the separation filter optimized in the blobk- 2 (see Fig. 30). By the
same manner, we can only apply the estimated DOA of the lleckto a current
blockb.

6.3.3 Algorithmic delay

For a real-time system, delay-time is a crucial factor. Hereinafter, | asses the
algorithm delay of the proposed real-time BSSA.

The algorithmic delay of the proposed real-time BSSA only depends on the
following; (a) DS filtering, (b) noise estimation by the separation filter, and (c)
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buffer size. Although ICA optimization is parallelly performed, the optimization
result cannot be applied to current block. Thus, ICA optimization does not yield
the algorithmic delay. In DS and the separation filter, for reducing ffeeteof

the circular convolution, the main pulse of the filter is located at the center of the
filter. Thus, the resultant signal of the filtering is delayed, and its delay is the half
of the filter length. Note that the noise estimation is performed in parallel with
DS. Therefore, the total delay of DS filtering and noise estimation is also the half
of the filter length. Moreover, the Ifier size for reading data from the hardware
cannot be negligible. Consequently, the algorithm delay of the final output can be
given by

Delay [points]= Buffer Size+ Filter Size/2. (96)

For instance, supposed that thétbusize is 512 points and the filter length is also
512 points, the algorithmic delay of the final output of the real-time BSSA is 768
points. This corresponds to 48 ms delay with 16 kHz sampling.

6.3.4 Robustness against acoustical environment change

Under an actual world, the change of acoustical environment, i.e., user's move, the
change of noise environment, and so on, is considerable factor. However, it cannot
be regarded that a user moves while the user talks to a hands-free spoken-oriented
guidance system. Furthermore, we can easily classify target voice or interference
voice by asking users to locate themselves in front of the system. Consequently,
the gravest problem on the change of acoustical environment is the change of
noise environment.

By the way, the proposed BSSA is subtracting the estimated noise by removing
target speech signal, from the partly-enhanced-speech signal via DS. Thus, the
proposed BSSA can reduce noises even if the noise environment is momentarily
changing while an appropriate noise estimation filter is optimized. In the real-
time BSSA, the noise estimation filter is learned with the past data block, e.g. 3.0
s. Since that filter removes the target speech signal, the filter can estimate noise
accurately even if the noise environment of a block for optimizing noise estimation
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filter and a current block are fierent. For these reasons, it can be expected that
the noise reduction performance of the real-time BSSA is not so degraded.

6.4. Hands-free robot spoken-oriented dialogue sys-
tem with real-time BSSA

| introduce the real-time BSSA into the robot spoken-oriented dialogue system
“Kitarobo” [46] which has already been installed in an actual railway station. In
this study, | replace the input device of Kitarobo, i.e., a close-talking microphone,
with the real-time BSSA to construct the hands-free robot spoken-oriented dia-
logue system. Figures 31 and 32 show an overview of the system and appearance
of the hands-free robot spoken-oriented dialogue system with the real-time BSSA.
Unlike the conventional Kitarobo, the input device is substituted with the real-time
BSSA. Detalils of Kitarobo are described in the following subsection.

6.4.1 Brief review of spoken-oriented dialogue system “Kitarobo”

The spoken-oriented guidance robot “Kitarobo” is working in an actual railway
station since end of March 2006. The system is installed besides the ticket gate
and is adjacent to each other. Everybody can use the systems while the station is
open. Since the station faces to a road, an automobile engine sound and sound of a
bus horn are also inputted to the system. Kitarobo provides guidance information
to visitors regarding issues on the station or around the station without resting. Ki-
tarobo only can exchange one question and one answer, that is to say, any dialogue
histories are not taken into account. The input device of the original Kitarobo is a
close-talking microphone. Thus the original Kitarobo is not a hands-free system
and is weak against the surrounding noises.

In original Kitarobo, firstly, an input signal is classified into valid speech or
non-speech based on Gaussian mixture model [47]. If the input signal is regarded
as non-speech, the input signal is dropped. Next, the voice activity detection
(VAD) is applied to the input signal and the voice period of the input signal is
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Figure 31. Overview of hands-free robot spoken-oriented dialogue system with
real-time BSSA.

clipped. In Kitarobo, speech-decoder-based VAD by Sakai et al. [48], that is ro-
bust against noise contaminated signals, is adopted. In the speech-decoder-based
VAD, the speech recognition and VAD is performed at the same time. According

to the result of speech recognition, responses are generated. Finally, based on the
generated response, response sound is synthesized by text-to-speech synthesizer
and information demand on the input speech is displayed. Reference [46] helps
you to understand further details of Kitarobo.

6.4.2 Implementation of real-time BSSA

The proposed real-time BSSA is implemented B¢-€+ on DebialGNU Linux [49]
4.0 platform. Also, I utilize the computer with Intel Xeon X5355 processor 2.66 G
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Figure 32. Appearance of my hands-free robot spoken-oriented dialogue system
with real-time BSSA.

Hz for the implementation. The implemented real-time BSSA consumes about
52 M Bytes RAM. Moreover, | use RME Hammerfall DSP Multiface for AIA
converter. In the implementation, the configuration of/BB is 16 kHz sampling
frequency and 16 bits quantization. The parameters for frame-by-frame DFT anal-
ysis are the following; DFT size is 512 points, window size is 256 points, and
shift size is 128 points. Although it seems to require high-spec hardware, Mori
et al. have succeeded at the real-time implementation of ICA on a general pur-
pose DSP [22]. The computational complexity of the proposed real-time BSSA is
almost the same as the real-time ICA, i.e., DS and SS are only added compared
with the real-time ICA. Thus, it can be expected that the real-time BSSA is also
implemented on general purpose DSP.

Though the computational complexities of the proposed real-time BSSA de-
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pend on the number of filter update in ICA, the implemented real-time BSSA
updates noise estimation filter to the maximum extent within the current 1.5 s.
That is to say, the real-time factor always becomes 1.0 in the implementation. As
a result of the implementation, 61 times filter update is performed on average with
the utilized computer.

| adjust the bffer size and the filter size in the real-time BSSA so that the
delay-time in the real-time BSSA becomes about 5% of that in the original Ki-
tarobo. In the original Kitarobo, the averaged response time, i.e., the delay-time
from a speech input to a response output, is about 994 ms. Thus,fibe $ine
is fixed to 512 points and filter size is also fixed to 512 points so that the algo-
rithmic delay-time of the real-time BSSA becomes 48 ms. The actual delay-time
of the implemented real-time BSSA is about 56.5 ms. There exists 8.5ffas di
ence between algorithmic delay and measured delay. Tiieseice is caused by
hardware latency.

6.4.3 Simulating railway-station noise

The main task of Kitarobo is station guidance, and always working in an actual
railway-station. Thus, it is dlicult to conduct various BSSA experiments in an
arbitrary time. Therefore, | have a necessity to construct the noise environment
simulator of railway-station for experiments. To solve the problem, our labora-
tory has constructed the experimental room for hands-free spoken dialogue sys-
tem with the real-time BSSA. The experimental room contains Kitarobo with the
real-time BSSA and railway-station noise simulator. The noise simulation is per-
formed in the following;

1. Record noises in an actual railway station. In the experiment, eight-channel
directional microphones are used to record the multi-channel railway-station
noise.

2. Playback the multi-channel recorded railway-station noise by eight sur-
rounded loudspeaker (see Fig. 33).
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Figure 33. Layout of reverberant room in my experiment.

This noise consists of various kinds of interference noises, namely, background
noise, sounds of trains, ticket-vending machines, automatic ticket wickets, foot
steps, cars, and wind. In addition, this noise is highly nonstationary.

6.5. Evaluation of implemented system

6.5.1 Configurations of evaluation

To evaluate the hands-free spoken dialogue system with the real-time BSSA, the
speech recognition test is conducted. In the experiment, in order to evaluate only
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the speech recognition performance of the real-time BSSA, the dialogue part in
the system is stopped. Since Kitarobo exchanges one question and one answer,
each response is independently-generated of each input speech. Thus, we can
evaluate the hands-free Kitarobo by speech recognition test. | compare the speech
recognition performance of the proposed real-time BSSA, ffibne BSSA, the
real-time ICA, and DS. In thefBdline BSSA, the number of filter update in ICA

part is aligned to that of real-time BSSA, i.e., 61 times.

Figure 33 depicts a layout of a reverberant room in our experiment where
the reverberation time is about 400 ms. The following real-recorded 16 kHz-
sampled signals were used in the experiments. The target signal is real-recorded
user’s speech which is talked in front of a microphone array and 1.5 m apart from
the array. The contents of the target utterances are all related to Kitarobo task,
I.e., questions about transfer, station’s facilities, sights around the station, and
so on. As for noise, two noises were added simultaneously. First noise is the
real-recorded noise in an actual railway-station noise (it simulates railway-station
noise) emitted from surrounded 8 loudspeakers. Second noise is an interference
speech located at 50 degrees in the right direction of the microphone array, and
its distance is 2.0 m. | use 5 speakers (250 words) as target user, and Julius [44]
ver. 4.0 RC2 as speech decoder. An eight-element array with the interelement
spacing of 2.15 cm is used. The array consists of directional microphone SHURE
MX-184.

6.5.2 Experimental result

Figure 34 shows speech recognition result. In the result, | describe the word cor-
rect (WC) score in addition to WA score. The WC score is defined as

WC [96] = ‘Mwe = \;ch ~Dwe 100 (97)
C

whereW,,c is the number of wordsSy,c is the number of substitution errors, and

Dwc is the number of dropout errors. In the WC score, the number of insertion
errors is neglected unlike WA score defined in (69). In a spoken-oriented dia-
logue system, whether ‘words’ are properly decoded or not is crucially important.
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Figure 34. Result of speech recognition test in (a) word correct, and (b) word
accuracy.

Hence, | show the WC score along with the WA score.

From this result, we can see that both the WC score and the WA score of the
proposed BSSA are obviously superior to those of DS and the conventional ICA.
In particular, 8% (in WC) or 6% (in WA) improvement of the speech recognition
result can be confirmed. Besides, the WC performance is over 80% thdliis su
cient speech recognition performance to construct spoken-oriented guidance sys-
tem. Furthermore, we can confirm that the speech recognition performance of the
proposed real-time BSSA and th&-tine BSSA is almost the same. This results
implies robustness of the proposed real-time BSSA against the change of noise
environment described in Sect. 6.3.4. From the result, it can be concluded the
proposed real-time BSSA can achievéfisient speech recognition performance
for hands-free spoken-oriented guidance system.

6.6. Conclusion

In this chapter, | proposed a real-time architecture of the proposed BSSA. Based
on the proposed real-time BSSA, | constructed hands-free spoken-oriented guid-
ance system. As a speech recognition test, the speech recognition performance
of the proposed real-time BSSA outperformed those of conventional methods.
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Also, the speech recognition performance of the proposed real-time BSSA was
almost the same as that of thg-bne BSSA. Furthermore, the proposed real-time
BSSA could realize diicient short delay of its algorithm with keeping enough
speech recognition performance, e.g., about 50 ms in the implementation. For
these reasons, | conclude that the proposed BSSA can accomplish hands-free
spoken-oriented guidance system.
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CHAPTER 7

M usicAL NOISE AND | TS OBJECTIVE M EASURE

7.1. Introduction

In the previous chapter, it was demonstrated that the proposed BSSA integrating
ICA and SS can achieve good noise reduction performance. However, a serious
problem still exists in BSSA; artificial distortion (the so-calledsical noisg[29]

due to nonlinear SS. Since the artificial distortion causes discomfort to users, it is
desirable that we control musical noise through signal processing. However, in al-
most all nonlinear noise reduction methods, the strength parameter to mitigate the
musical noise in nonlinear signal processing is determined heuristically. Although
there have been some studies on reducing musical noise [29] and on nonlinear
signal processing with less musical noise [30], evaluations mainly depended on
subjective tests by humans, and no objective evaluations have been performed to
the best of my knowledge.

In recent years, it was reported that the amount of generated musical noise is
strongly related to the ffierence between higher-order statistics (HOS) before and
after nonlinear signal processing [35]. This fact enables us to analyze the amount
of musical noise arising through nonlinear signal processing. Furthermore, on the
basis of HOS, a mathematical metric for musical-noise generation in an objective
manner has been established [35]. Uemura et al. have analyzed single-channel
nonlinear signal processing based on the objective metric and clarified features of
the amount of musical noise. Hereafter, | give an analysis of the amount of musical
noise generated via methods of integrating microphone array signal processing
and SS on the basis of HOS.

Methods of integrating microphone array signal processing and nonlinear sig-
nal processing such as the proposed BSSA can be basically classified into two
types. Figure 35 shows a typical architecture used for the integration of micro-
phone array signal processing and SS, where SS is performed after beamforming.
Thus, | call this type of architectuf8F+SS The proposed BSSA can be classi-
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Figure 36. Block diagram of architecture for channelwise SS before beamforming
(chSS-BF).

fied into this BR-SS. Such a structure is adopted in many integration methods,
e.g., [25, 27]. On the other hand, the integration architecture illustrated in Fig. 36
is an alternative architecture used when SS is performed before beamforming.
Such a structure is less commonly used, but some integration methods use this
structure [26, 28]. In this architecture, channelwise SS is performed before beam-
forming, and | call this type of architectuohSS-BF.

In the following chapters, | would analyze these two architectures on the basis
of HOS and obtain the following results:

e The amount of musical noise generated strongly depends on not only the
oversubtraction parameter of SS but alke statistical characteristics of
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the input signal

e Except for the specific condition that the input signal is Gaussian, the noise
reduction performances of the two methods are not equivalent even if we
set the same SS parameters.

e As a result of analysis under equivalent noise reduction performance con-
ditions, chSSBF generates less musical noise than+BIS for almost all
practical cases.

The most important contribution is that these findings are mathematically proved.
In particular, the amount of musical noise generated and the noise reduction per-
formance resulting from the integration of microphone array signal processing
and SS are analytically formulated on the basis of HOS. Although there have been
many studies on optimization methods based on HOS, this is the first time they
have been used for musical-noise assessment. The validity of the analysis based
on HOS, is demonstrated via a computer simulation and a subjective evaluation by
humans. Moreover, this analysis can be applied to BSSA as well as other methods
of integrating microphone array signal processing and SS.

In this chapter, first, | describe the two methods of integrating microphone
array and SS in Sect. 7.2. Next | give a brief review of musical noise and its ob-
jective metric based on HOS in Sect 7.3. Finally, Sect. 7.4 concludes this chapter.
The musical-noise analysis of SS, microphone array signal processing, and their
integration methods are discussed in the next chapter.

7.2. Methods of integrating microphone array signal
processing and SS

In this section, the formulations of the two methods of integrating microphone
array signal processing and SS are described. FirstSBF which is a typical
method of integration, is formulated. Next, an alternative method of integration,
chSS-BF, is introduced.
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7.2.1 Sound mixing model

In this and the next chapters, | consider one target speech signal and an additive
interference signal. Hence, the sound mixing model defined in (1) can be rewritten
as

X(f,7) = h(f)s(f, 7) + na(f, 7), (98)

whereh(f) = [hy(f),...,hy(f)]" is the transfer function vector of target speech
signals(f, 7).

7.2.2 SS after beamforming

In BF+SS, the single-channel target-speech-enhanced signal is first obtained by
beamforming, e.g., DS. Next, single-channel noise estimation is performed by a
beamforming technique, e.g., null beamformer [19] or adaptive beamforming [39].
Finally, we extract the resultant target-speech-enhanced signal via SS. The full de-
tails of signal processing are given below.

To enhance the target speech, DS is applied to the observed signal. This can
be represented by

yos(f,7) = wos(f, u)TX(f, 7). (99)

Finally, we obtain the target-speech-enhanced spectral amplitude based on SS.
This procedure can be expressed as

Vyos(f, 1) - 8- E-[IA(f, )]
lyss(f, 7)l = (wherelyps(f,7)?2 - 8- E-[|A(f,7)7] = 0),  (100)
1 - Iyos(f, 7)l (otherwise)

whereg is the oversubtraction parametgirs the flooring parameter, amgf’ 7) is

the estimated noise signal, which can be generally obtained by some beamforming
techniques, e.g., fixed or adaptive beamforming. In BSSA, noise estimation is
performed through ICA. E-] denotes the expectation operator with respect to the
time-frame index.
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7.2.3 Channelwise SS before beamforming

In chSS-BF, we first perform SS independently in each input channel then we
derive a multichannel target-speech-enhanced signal by channelwise SS. This can
be expressed as

VIXi(f, )2 = B - E[IR(f, 7)7]
S ) = (wherelx;(f,7)2 - 8- E[If(f.7)2] = 0),  (101)
n-1x;(f, 1)l (otherwise)

wherey!™"*{f, 1) is the target-speech-enhanced signal obtained by SS at a spe-
cific channelj andrij(f, 7) is the estimated noise signal in th#h channel. For
instance, the multichannel noise can be estimated by single-input multiple-output
ICA (SIMO-ICA) [50] or a combination of ICA and the projection back method [16].
These techniques can provide the multichannel estimated noise signal, unlike tra-
ditional ICA. SIMO-ICA can separate mixed signals not into monaural source
signals but into SIMO-model signals at the microphone. Here “SIMO” represents
the specific transmission system in which the input signal is a single source sig-
nal and the outputs are its transmitted signals observed at multiple microphones.
Thus, the output signals of SIMO-ICA maintain the rich spatial qualities of the
sound sources. Also the projection back method provides SIMO-model-separated
signals using inverse of an optimized ICA filter.

Finally, the target-speech-enhanced signal can be extracted by applying DS to
Yensd F.7) = YIS, 7). ...y "S5 £, 7)] . This procedure can be expressed by

y(f, 7) = Wps(f, 6u)Yensd . 7), (102)

wherey(f, 7) is the final output of chSEBF.

Such a chS$&BF structure performs DS after (multichannel) SS. Since DS is
basically signal processing in which the summation of the multichannel signal is
taken, it can be considered that interchannel smoothing is applied to the multi-
channel spectral-subtracted signal. On the other hand, the resultant output signal
of BF+SS remains as it is after SS. That is to say, it can be expected that the out-
put signal of chS$BF is more natural (contains less musical noise) than that of
BF+SS.
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Figure 37. (a) Observed spectrogram and (b) processed spectrogram.

7.3. Kurtosis-based musical-noise generation metric

7.3.1 Introduction

Uemura et al. have been reported that the amount of musical noise generated is
strongly related to the ffierence between the kurtosis of a signal before and after
signal processing [35]. Thus, | can analyze the amount of musical noise generated
through BR-SS and chS8BF on the basis of the change in the measured kurtosis.
Hereinafter, | give details of the kurtosis-based musical-noise metric.

7.3.2 Relation between musical-noise generation and kurtosis

Generally, musical noise can be considered as the audible isolated spectral com-
ponents generated through signal processing. Figure 37(b) shows an example of
a spectrogram of musical noise in which many isolated components can be ob-
served. Then, it can be speculated that the amount of musical noise is strongly
related to the number of such isolated components and their level of isolation.
Hence, Uemura et al. have introduced kurtosis to quantify the isolated spec-
tral components, and they focus their attention on the changes in kurtosis. Since
isolated spectral components are dominant, they are heard as tonal sounds, which
results in our perception of musical noise. Therefore, it is expected that obtaining
the number of tonal components will enable us to quantify the amount of musical
noise. However, such a measurement is extremely complicated, so instead they
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have introduced a simple statistical estimate, i.e., kurtosis.

This strategy allows us to obtain the characteristics of tonal components. The
adopted kurtosis can be used to evaluate the width of the probability density func-
tion (p.d.f.) and the weight of its tails, i.e., kurtosis can be used to evaluate the
percentage of tonal components among the total components. A larger value in-
dicates a signal with a heavy tail in its p.d.f., meaning that it has a large number
of tonal components. Also, kurtosis has the advantageous property that it can be
easily calculated in a concise algebraic form.

7.3.3 Kurtosis

Kurtosis is one of the most commonly used HOS for the assessment of non-
Gaussianity. Kurtosis is defined as
Ha

=,
Hy

kurt, = (203)

wherex is a random variable, kyris the kurtosis ofx, andyu, is the nth-order
moment ofx. Herey, is defined as

fn = j: - X"P(x)dx, (104)

(o)

whereP(x) denotes the p.d.f. of. Note that thig., is not a central momerndut

a raw momentThus, (103) is not kurtosis according to the mathematically strict
definition, but a modified version; however, | refer to (103) as kurtosis in this
study.

7.3.4 Kurtosis ratio

Although we can measure the number of tonal components by kurtosis, it is worth
mentioning that kurtosis itself is not Sicient to measure musical noise. This

is because that the kurtosis of some unprocessed signals such as speech signals
is also high, but we do not perceive speech as musical noise. Since we aim to
count only the musical-noise components, we should not consider genuine tonal
components. To achieve this aim, we should focus on the fact that musical noise
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is generated only in artificial signal processing. Hence, we should consider the
change in kurtosis during signal processing. Consequently, the folldwirigsis
ratio [35] has been proposed to measure the kurtosis change:

KUrtproc

kurtosis ratio= ,
Kurtinput

(105)

where Kurfoc is the kurtosis of the processed signal and jgrtis the kurtosis

of the input signal. A larger kurtosis ratiex( 1) indicates a marked increase in
kurtosis as a result of processing, implying that a larger amount of musical noise
is generated. On the other hand, a smaller kurtosis ratid)(implies that less
musical noise is generated. It has been confirmed that this kurtosis ratio closely
matches the amount of musical noise in a subjective evaluation based on human
hearing [35].

7.4. Conclusion

In this chapter, | pointed out the problem of the methods of integrating microphone
array signal processing and SS such as the proposed BSSA, i.e., musical noise
problem. Next, | mentioned the typical methods of integrating microphone array
and SS. Finally, | gave a brief explanation of objective measure of musical noise
on the basis of HOS.
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CHAPTER 8
K URTOSIS-BASED M USICAL-NOISE ANALYSIS FOR

M ICROPHONE ARRAY SIGNAL PROCESSING AND SS

8.1. Introduction

In the previous chapter, the objective measure for the amount of musical noise
generated on the basis of HOS, which is kurtosis ratio, was described. In this chap-
ter, | perform an analysis on musical-noise generation ir 8% and chS8BF on
the basis of kurtosis.

The analysis is composed of the following three parts:

e First, an analysis on musical-noise generation i+BB and chSE&BF

based on kurtosis that does not take noise reduction performance into ac-
count is performed in Sect. 8.3.

e The noise reduction performance is analyzed in Sect. 8.4, and | reveal that
the noise reduction performances of B5S and chS&BF are not equiv-
alent. Moreover, a flooring parameter design to align the noise reduction
performances of BFSS and chS8BF is also derived for the fair compari-
son of BF+SS and chS8BF.

e The kurtosis-based comparison between+BBE and chS8BF under the
same noise reduction performance condition is carried out in Sect. 8.5.

Note that my analysis has no limitations regarding assumptions on the statistical
characteristics of noise, thus, all noises including Gaussian and super-Gaussian
noise can be considered.

8.2. Signal model used for analysis

Musical-noise components generated from the noise-only period are dominant in
spectrograms (see Fig. 37); hence, | mainly focus my attention on musical-noise
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components originating from input noise signals.

Moreover, to evaluate the resultant kurtosis of SS, we introduce a gamma dis-
tribution to model the noise in the power domain [51, 52, 53]. The p.d.f. of the
gamma distribution for random variabas defined as

cxet exp{—l(} , (106)
()0 0
wherex > 0, > 0, andd > 0. Here o denotes the shape parametds the scale

Pem(X) =

parameter, andi(-) is the gamma function. The gamma distribution with= 1
corresponds to the chi-square distribution with two degrees of freedom. Moreover,
it is well known that the mean of for a gamma distribution is K] = a6, where
E[-]is the expectation operator. Furthermore, the kurtosis of a gamma distribution,
kurtgy, can be expressed as [35]

(@ +2)(@+3)
kurtGM = W (107)

Moreover, let me consider the power-domain noise sigaln the frequency
domain, which is defined as

Xp = [Xre + i Ximl2 = (Xre +i- Xim)(xre +1- Xim)* = sze + Xﬁna (108)

wherexX. is the real part of the complex-valued signal aqpgdis the imaginary part

of the complex-valued signal. They are independent and identically distributed
(i.i.d.) with each other, and the superscripexpresses complex conjugation.
Thus, the power-domain signal is the sum of two squares of random variables
with the same distribution.

Hereinafter, lek. andx be the signals after DFT analysis»{j = 1,...,J),
and we suppose that the statistical propertieg efjual tox,. andx,. Moreover,
we assume the following; is i.i.d. in each channel, the p.d.f. ®f is symmetri-
cal, and its mean is zero. These assumptions mean that the odd-order cumulants
and moments are zero except for the first order.

Although kurt, = 3 if xis a Gaussian signal, note that the kurtosis of a Gaus-
sian signal in the power spectral domain is 6. This is because a Gaussian signal in
the time domain obeys the chi-square distribution with two degrees of freedom in
the power spectral domain; for such a chi-square distributigtu; = 6.
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Figure 38. Deformation of original p.d.f. of power-domain signal via SS.
8.3. Kurtosis analysis on BRHSS and chSSBF

8.3.1 Resultant kurtosis after SS

In this section, | analyze the kurtosis after SS. In traditional SS, the long-term-
averaged power spectrum of a noise signal is utilized as the estimated noise power
spectrum. Then, the estimated noise spectrum multiplied by the oversubtraction
parametep is subtracted from the observed power spectrum. When a gamma
distribution modeling is used to model the noise signal, its meard.isThus,

the amount of subtraction gx6. The subtraction of the estimated noise power
spectrum in each frequency band can be considered as a shift of the p.d.f. to the
zero-power direction (see Fig. 38). As a result, negative-power components with
nonzero probability arise. To avoid this, such negative components are replaced
by observations that are multiplied by a small positive val(the so-called floor-

ing technique). This means that the region corresponding to the probability of the
negative components, which form a section cut from the original gamma distribu-
tion, is compressed by thdfect of the flooring. Finally, the floored components
are superimposed on the laterally shifted p.d.f. (see Fig. 38). Thus, the resultant
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p.d.f. after SSPs«2), can be written as

1 o1 Z+ Bab 2
iy (2 et exp| =T (2> panr’e)
Pss(2) = Z+ Bab 1 z
a-1 -1
A e A i exp{‘n_ze}
(0 < z < Ban?6),

(109)

wherez is the random variable of the p.d.f. after SS. The derivatioR%{2) is
described in Appendix D.
From (109), the kurtosis after SS can be expressed as

kurtSS:: Iﬂ@I)EZiggifﬁlzz (1:[0)

G, B,n)’

where
G(a,B,n) =T(@)'(Ba, a + 2) — 2Bal’ (Ba, a + 1) + ﬁzazf(ﬁa, a) + n4y(ﬁa, a+2),
(111)
F (o, B,1) = T(Ba, a + 4) — 4BaT (Ba, a + 3) + 68%a°T (Ba, @ + 2)
— 48%a°T (B, a + 1) + BT (Ba, @) + nBy(Ba, a + 4). (112)

Here,I'(b, @) is the upper incomplete gamma function defined as

I'(b,a) = f ) 21 exp(—t}dt, (113)
b

andy(b, a) is the lower incomplete gamma function defined as

b
y(b,a) = f 2 exp(—t)dt. (114)
0

The detailed derivation of (110) is given in Appendix E. Although Uemura et

al. have given an approximated form (lower bound) of the kurtosis after SS in

Ref. [35], (110) involves no approximation throughout its derivation. Further-

more, (110) takes into accouthie gfect of the flooring techniquenlike Ref. [35].
Figure 39(a) depicts the theoretical output kurtosis ratio after SSiktirtgy,

for various values of oversubtraction paramgtand flooring parametey. In the
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figure, the kurtosis of the input signal is fixed to 6.0, which corresponds to a
Gaussian signal. From this figure, it is confirmed that the output kurtosis ratio is
basically proportional to the oversubtraction paramg@teétowever, kurtosis does
not monotonically increase when the flooring parameter is nonzero. For instance,
the output kurtosis ratio is smaller than the peak value when4 andn = 0.4.
This phenomenon can be explained as follows. For a large oversubtraction pa-
rameter, almost all the spectral components become negative due to the larger
lateral shift of the p.d.f. by SS. Since flooring is applied to avoid such negative
components, almost all the components are reconstructed by flooring. Therefore,
the statistical characteristics of the signal do not change except for its amplitude
if n # 0. Generally, kurtosis does not depend on the change in amplitude; con-
sequently, it can be considered that kurtosis does not markedly increase when a
larger oversubtraction parameter and a larger flooring parameter are set.

The relation between the theoretical output kurtosis ratio and the kurtosis of
the original input signal is shown in Fig. 39(b). In the figuneis fixed to 0.0.
It is revealed that the output kurtosis ratio after SS rapidly decreases as the input
kurtosis increases, even with the same oversubtraction parameldrerefore,
the output kurtosis ratio after SS, which is related to the amount of musical noise,
strongly depends on the statistical characteristics of the input signal. That is to
say, SS generates a larger amount of musical noise for a Gaussian input signal
than for a super-Gaussian input signal. This fact has been reported in Ref. [35].

8.3.2 Resultant kurtosis after DS

In this section, | analyze of the kurtosis after DS, and | reveal that DS can reduce
the kurtosis of input signals. Since | assume that the p.dXof X, corresponds
to the time-domain signat;, the dfect of DS on the change in kurtosis can be
derived from the cumulants and momentspf

For cumulants, wheiX andY are independent random variables it is well
known that the following relation holds:

cumy(@X + by) = a" cumy(X) + b" cumy(Y), (115)
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Figure 39. (a) Theoretical output kurtosis ratio after SS for various values of
oversubtraction parametgrand flooring parametey. In this figure, kurtosis of
input signal is fixed to 6.0. (b) Theoretical output kurtosis ratio after SS for various
values of input kurtosis. In this figure, flooring parametés fixed to 0.0.

where cum(-) denotes theith-order cumulant. The cumulants of the random
variableX, cum,(X), are defined by a cumulant-generating function, which is the
logarithm of the moment-generating function. The cumulant-generating function
C(2) is defined as

C() = log(E[expZX)]) = ) cum(X). (116)
n=1 ’

where/ is an auxiliary variable and E[exgX}] is the moment-generating func-
tion. Thus, thenth-order cumulant cup(X) is represented by

cumy(X) = c™(0), (117)

whereC™(¢) is thenth-order derivative o€(¢).

Now | consider the DS beamformer, which is steered o= 0 and whose
array weights are /1. Using (115), the resultamith-order cumulant after DS,
K,, can be expressed by

1

Wn = F ns (118)

whereK, is thenth order cumulant ok;. Therefore, using (118) and the well-
known mathematical relation between cumulants and moments, the power-spectral-
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Figure 40. Relation between input kurtosis and output kurtosis after DS. Solid
lines indicate simulation results, broken lines express theoretical plots obtained
by (119), and dotted lines show approximate results obtained by (120).

domain kurtosis after DS, kg can be expressed by

Ks + 38KZ + 32>Ks + 288K2Ky + 192K,
2KZ + 16K2Ks + 32K '

The detailed derivation of (119) is described in Appendix F.

katDS =

(119)

Regarding the power-spectral components obtained from a gamma distribu-
tion, the relation between input kurtosis and output kurtosis after DS is illustrated
in Fig. 40. In the figure, solid lines indicate simulation results and broken lines
show theoretical relations given by (119). The simulation results are derived as
follows. First, multichannel signals with various values of kurtosis are generated
artificially from a gamma distribution. Next, DS is applied to the generated sig-
nals. Finally, kurtosis after DS is estimated from the signal resulting from DS.
From this figure, it is confirmed that the theoretical plots closely fit the simula-
tion results. The relation between inpauitput kurtosis behaves as follows: (1)
The output kurtosis is very close to a linear function of the input kurtosis, and (I1)
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Figure 41. Simulation result for noise with interchannel correlation (solid line)
and theoreticalféect of DS assuming no interchannel correlation (broken line) in
each frequency subband.

the output kurtosis is almost inversely proportional to the number of microphones.
These behaviors result in the following simplified (but useful) approximation with
an explicit function form:

Kurtps =~ J7%7 - (kurt,, —6) + 6, (120)

where kurg, is the input kurtosis. The approximated plots also match the simula-
tion results in Fig. 40.

When input signals involve interchannel correlation, the relation between in-
put kurtosis and output kurtosis after DS approaches that for only one microphone.
If all input signals are identical signals, i.e., the signals are completely correlated,
the output after DS also becomes the same as the input signal. In such a case,
the dfect of DS on the change in kurtosis corresponds to that for only one mi-
crophone. However, the interchannel correlation is not completely unit within all
frequency subbands for affilise noise field that is a typically considered noise
field. It is well known that the intensity of the interchannel correlation is strong
in lower-frequency subbands and weak in higher-frequency subbands feusedi
noise field [39]. Therefore, in lower-frequency subbands, it can be expected that
DS does not significantly reduce the kurtosis of the signal.

As it is well known that the interchannel correlation for th&wuke noise field
between two measurement locations can be expressed by the sinc function [39],
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Figure 42. Simulation result for noise with interchannel correlation (solid line),
and theoretical ffect of DS assuming no interchannel correlation (broken line),
and observed kurtosis (dotted line), in eight-microphone case.

we can state how array signal processingffeded by the interchannel corre-
lation. However, we cannot know exactly how cumulants are changed by the
interchannel correlation because (115) only holds when signals are mutually in-
dependent. Therefore, we cannot formulate how kurtosis is changed via DS for
signals with interchannel correlation. For this reason, | experimentally investigate
the dfect of interchannel correlation in the following.

Figures 41 and 42 show preliminary simulation results of DS. In this sim-
ulation, SS is first applied to a multichannel Gaussian signal with interchannel
correlation. Next, DS is applied to the signal after SS. In the preliminary simula-
tion, the interelement distance between microphones is 2.15 cm each. From the
results shown in Fig. 41(a) 42, we can confirm that tifea of DS on kurtosis
is weak in lower-frequency subbands, although it should be noted thaffduw e
does not completely disappear in lower-frequency subbands. Also, the theoretical
kurtosis curve is in good agreement with the actual results in higher-frequency
subbands (see Figs. 41(b) 42). This is because interchannel correlation is weak
in higher-frequency subbands. Consequently, for tifi@is noise field, DS can
reduce the kurtosis of the input signal even if interchannel correlation exists.
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If input noise signals contain no interchannel correlation, the distance between
microphones does noffact the results. That is to say, the kurtosis change via DS
can be well fit to (120). Otherwise, in lower-frequency subbands, it is expected
that the mitigation ffect of kurtosis by DS degrades with decreasing of the micro-
phone distance. This is because the interchannel correlation in lower-frequency
subbands increases with decreasing distance between microphones. In higher-
frequency subbands, thé&ect of distance between microphones is thought to be
small.

8.3.3 Resultant kurtosis: BRSS vs. chS$BF

In the previous subsections, | discussed the resultant kurtosis after SS and DS.
In this subsection, | analyze the resultant kurtosis for two types of composite
systems, i.e., BFSS and chS&BF, and compare theirfiect on musical-noise
generation. As described in Sect. 7.3, it can be expected that a smaller increase in
kurtosis leads to a smaller amount of musical noise generated.

In BF+SS, DS is first applied to a multichannel input signal. At this point,
the resultant kurtosis in the power spectral domain,ggudan be represented by
(120). Using (107), we can derive a shape parameter for the gamma distribution
corresponding to kust, @, as

\/kurtﬁ,S +14 kurps +1 — Kurtps +5
2 kurtps -2 '

(121)

a =

The derivation of (121) is shown in Appendix G. Consequently, using (110) and
(121), the resultant kurtosis after BBS, kurgg, ss, can be written as

o F @B
InchSS-BF, SSisfirst applied to each input channel. Thus, the output kurtosis

after channelwise SS, kidfts can be given by

F (.B,1n)

G for) (123)

Kurtehss = I'(@)
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Finally, DS is performed and the resultant kurtosis after cHSS kurthss.sr, Can
be written as

F (., 1)

k - J—O.? 1—* Z NPT
Urtehss-BF (@) G2(@.B.n)

6|+, (124)

where | use (120).

| should compare kugt,ss and kurtnss.gr here. However, one problem still
remains: comparison under equivalent noise reduction performance; the noise
reduction performances of BISS and chS&BF are not equivalent as described
in the next section. Moreover, the design of a flooring parameter so that the noise
reduction performances of both methods become equivalent will be discussed in
the next section. Therefore, kptssand kurtnss.ge Will be compared in Sect. 8.5
under equivalent noise reduction performance conditions.

8.4. Noise reduction performance analysis

In the previous section, | did not discuss the noise reduction performances of
BF+SS and chS8BF. In this section, a mathematical analysis of the noise reduc-
tion performances of BFSS and chS8BF is given. As a result of this analysis,

it is revealed that the noise reduction performances cf&% and chS8BF are

not equivalent even if the same parameters are set in the SS part. | then derive a
flooring-parameter design strategy for aligning the noise reduction performances
of BF+SS and chS&BF.

8.4.1 Noise reduction performance of SS

| utilize the following index to measure the noise reduction performance (NRP),
E[Nin]
0 E[Noud”
wheren, is the power-domain (noise) signal of the input agg is the power-
domain (noise) signal of the output after processing.
First, | derive the average power of the input signal. | assume that the input

NRP = 10log,

(125)

signal in the power domain can be modeled by a gamma distribution. Then, the
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average power of the input signal can be given as
Elnin] = E[X]
= f XPem(X)dx
0

_ * 1 v—1 _l(
_fo X ewr(a))( eXp{ 9} dx

= 9<’l“1(a) j:o Xt exp{—g} dx. (126)

Here, lett = x/0, thenddt = dx. Thus,

1 - « _
Elnin] = mj; (6t)* exp{—t} oat

9(1+1 00
6T (a) Jo
_l(a+1)
T I(a)
= fa. (127)

t* exp{-t} dt

This corresponds to the mean of a random variable with a gamma distribution.
Next, the average power of the signal after SS is calculated. Herzhéete
the p.d.f. of the signal after S®s<(2), defined by (109), then the average power

of the signal after SS can be expressed as

E[noud = E[Z]
= f mzPss(z)dz
0
SH- N
= fo e (z+ Bab) 1exp{—

Bar’6 7 . AW
+ —  7Trexp{—-—;dz 128
fo 726)T(@) p{ n29} (128)

I now consider the first term of the right-hand side in (128). Heré ek + Ba0,

Z+ﬁa@} 4z
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then d = dz. As a result,

fo ) Hﬂl"z(a) (z+ Bab)*t exp{ —~

_ 00 1 a-1 _E
= M(t Bab) F (@) t exp{ G}dt

< 1 o t © Pabd t
- fﬁag FT(@) eXp{_é} dt - 00 0°T (@) o eXp{_é} dt
0-T'(Ba,a+1) I'(Ba, @)
T @ M T
Also, | deal with the second term of the right-hand side in (128).tl-etz/ (?0)
thenn?6dt = dz, resulting in

Bam?*6 z L Z | 4
— 7" ex - VA
fo (26T (@) p{ 7729}

1 B 20
= AT J, (700" - expl=tinodt = %’y(ﬂa,a +1). (130)
Using (127), (129), and (130), the noise reduction performance of SSgINEd?

be expressed by

Z+ﬁa9} dz
0

(129)

NRPss = 10log 1({%)
B I'Ba,a +1) I'(Ba, @) v(Ba,a + 1)
=10 '0910[ es) P T rern || 18D

Figure 43(a) shows the theoretical value of NRfr various values of over-
subtraction paramet@rand flooring parametey, where the kurtosis of the input
signal is fixed to 6.0, corresponding to a Gaussian signal. From this figure, it is
confirmed that NRE% is proportional tg3. However, NRRs hits a peak whenmy
is nonzero even for large values@fThe relation between the theoretical NRP
and the kurtosis of the input signal is illustrated in Fig. 43(b). In this figuis,
fixed to 0.0. It is revealed NRR2 decreases as the input kurtosis increases. This
is because the mean of a high-kurtosis signal tends to be small. Since the shape
parameter of a high-kurtosis signal is small, the mea# corresponding to the
amount of subtraction, also becomes small. As a result,JNB&creases as the
input kurtosis increases. That is to say, NRBtrongly depends on the statistical
characteristics of the input signal as well as the values of the oversubtraction and
flooring parameters.
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Figure 43. (a) Theoretical noise reduction performance of SS with various over-
subtraction parametegs and flooring parameters. In this figure, kurtosis of
input signal is fixed to 6.0. (b) Theoretical noise reduction performance of SS
with various values of input kurtosis. In this figure, flooring parameterfixed

to 0.0.

8.4.2 Noise reduction performance of DS

It is well known that the noise reduction performance of DS (N§Rs pro-
portional to the number of microphones. In particular, for spatially uncorrelated
multichannel signals, NRR is given as [39]

NRP,s = 10 logy, J. (132)

8.4.3 Resultant noise reduction performance: BESS vs. chS$BF

In the previous subsections, the noise reduction performances of SS and DS were
discussed. In this subsection, | derive the resultant noise reduction performances
of the composite systems of SS and DS, i.e.+BB and chS&BF.

The noise reduction performance of BES is analyzed as follows. In BSS,
DS is first applied to a multichannel input signal. If this input signal is spatially
uncorrelated, its noise reduction performance can be represented by, LD log
After DS, SS is applied to the signal after DS. Note that [®as the kurtosis
of the input signal. As described in Sect. 8.3.2, the resultant kurtosis after DS
can be approximated as®’ - (kurt, —6) + 6. Thus, SS is applied to the kurtosis-
modified signal. Consequently, using (121), (131), and (132), the noise reduction
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performance of BFSS, NRRE,ss, iS given as

MGaa+1) |, TE&d)  ,y(pad+1)
T@+1) r@ " r@+)
1 [F(ﬁ&,& +1) ,y(B&, 6 + 1)

:—10|0910JT(&) = -B-T'(Ba,a)+n

NRPsg,ss = 10 |Og_|_0 J-10 |Oglo [

b

(133)

wherec is defined by (121).

In chSSBF, SS is first applied to a multichannel input signal, then DS is
applied to the resulting signal. Thus, using (131) and (132), the noise reduction
performance of chS&F, NRRss.sF, Can be represented by

1 I'Ba,a +1
NRP.hsgee = =10 |0910 3. F(a/) (B )

>Y(Ba, a + 1)
-B-T(Ba,a) +n — |

(0

(134)

Figure 44 depicts the theoretical values of NRRs and NRRss.gr. From
this result, we can see that the noise reduction performances of both methods are
equivalent when the input signal is Gaussian. However, if the input signal is super-
Gaussian, NREt, ss exceeds NRRss.gr. This is due to the fact that DS is first
applied to the input signal in BFSS; thus, DS reduces the kurtosis of the signal.
Since NRRsfor a low-kurtosis signal is greater than that for a high-kurtosis signal
(see Fig. 43(b)), the noise reduction performance of 8§ is superior to that of
chSS-BF.

This discussion implies that the NBRss and NRRss gr are not equivalent
under some conditions. Thus the kurtosis-based analysis described in Sect. 8.3 is
biased and requires some adjustment. In the following subsection, | will discuss
how to align the noise reduction performances oS and chSEBF.

8.4.4 Flooring-parameter design in BR-SS for equivalent noise
reduction performance

In this section, we describe the flooring-parameter design id8-so that NRgt:, ss
and NRRyss sr become equivalent.
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Figure 44. Comparison of noise reduction performances of €B&ESwith
BF+SS. In this figure, flooring parameter is fixed to 0.2 and number of micro-
phones is 8.

Using (133) and (134), the flooring parameje¢hat makes NRE-, ssequal to
NRPehss s, IS

= \/ T [rg s - 1@ a3

where
Hiawpon) = -0 0D g r(ga,a) ¢ pTERCED (13
1@p) = BRI D 5 rgs ). (137)

The detailed derivation of (135) is given in Appendix H. By replacing (100)
with this new flooring parametey, wWe can align NRE:,ss and NRRyssgr O
ensure a fair comparison.
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8.5. Output kurtosis comparison under equivalent NRP
condition

In this section, using the new flooring parameter fort3S, 7, | compare the
output kurtosis of BESS and chS&BF.

Settingry'to (122), the output kurtosis of BFSS is modified to
F@p.m)
G*(a.B. 1)
Here, | adopt the following index to compare the resultant kurtosis afte/SE-
and chS$BF:

Kurtgr,ss = I'(@) (138)

Kurtgr,ss
R=In——=,
Kurtchsser

whereR expresses the resultant kurtosis ratio betweer®¥and chS8BF. Note

(139)

that a positiveR indicates that chSSBF reduces the kurtosis more than-B%S,
implying that less musical noise is generated in chBS The behavior oRis de-

picted in Figs. 45 and 46. Figure 45 illustrates theoretical valu&sfof various
values of input kurtosis. In this figurg,is fixed to 2.0 and the flooring param-

eter in chS$BF is set top = 0.0, 0.1, 0.2, and 04. The flooring parameter for
BF+SS is automatically determined by (135). From this figure, we can confirm
that chSSBF reduces the kurtosis more than-B%S for almost all input signals

with various values of input kurtosis. Theoretical valueRdbr various over-
subtraction parameters are depicted in Fig. 46. Figure 46(a) shows that the output
kurtosis after chS8BF is always less than that after BES for a Gaussian signal,
even ifp is nonzero. On the other hand, Fig. 46(b) implies that the output kurtosis
after BR+SS becomes less than that after chBB for some parameter settings.
However, such phenomena only occur for a large oversubtraction parameter, e.g.,
B > 7, which is not often applied in practical use. Therefore, it can be considered
that chSS-BF reduces the kurtosis and musical noise more than$8-in almost

all cases.
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Figure 45. Theoretical kurtosis ratio between+HS and chS8BF for various
values of input kurtosis. In this figure, oversubtraction paramefer=s2.0 and
flooring parameter in chSBF is (a)n = 0.0, (b)n = 0.1, (¢)n = 0.2, and (d)
n=0.4.

| N=0.0—— n=0.1--- n=0.2—-— n:oA4------------|
4 4 = <.
3t 3r R
o~ A}
2t o | \,\ .
.. Y
| T~ REN | | \' \
[ ! \’\. T 84 ! \ *
0 ~. S S 0 \ *
‘\ \‘
ol . | ol . \
(a) Input kurtosis = 6.0 (b) Input kurtosis = 20.0 \,
3 . . . 3 . . AN
0 5 10 15 20 0 5 10 15 20
Oversubtraction parameter Oversubtraction parameter

Figure 46. Theoretical kurtosis ratio between+5S and chS8BF for various
oversubtraction parameters. In this figure, number of microphones is fixed to 8,
and input kurtosis is (a) 6.0 (Gaussian) and (b) 20.0 (super-Gaussian).
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8.6. Evaluation

8.6.1 Computer simulations

First, | compare BFSS and chS8BF in terms of kurtosis ratio and noise reduc-

tion performance. | use 16-kHz-sampled signals as test data, in which the target
speech is the original speech convoluted with impulse responses recorded in a
room with 200 ms reverberation (see Fig. 47), and to which an artificially gen-
erated spatially uncorrelated white Gaussian or super-Gaussian signal is added.
| use six speakers (six sentences) as sources of the original clean speech. The
number of microphone elements in the simulation is varied from 2 to 16, and their
interelement distance is 2.15 cm each. The oversubtraction pargsristset to

2.0 and the flooring parameter for BBS,n, is set to 0.0, 0.2, 0.4, or 0.8. Note

that the flooring parameter in ch&BF is set to 0.0. In the simulation, | assume
that the long-term-averaged power spectrum of noise is estimated perfectly in ad-
vance.

Here, | utilize the kurtosis ratio defined in Sect. 7.3.4 to measure the kurtosis
difference, which is related to the amount of musical noise generated. The kurtosis
ratio is given by
kurt(nprod( f, 7))

Kurtosis ratio= ,
kurt(norg(f, 7))

(140)

wheren, o f, 7) is the power spectra of the residual noise signal after processing,
andng(f, ) is the power spectra of the original noise signal before processing.
This kurtosis ratio indicates the extent to which kurtosis is increased with pro-
cessing. Thus, a smaller kurtosis ratio is desirable. Moreover, the noise reduction
performance is measured using (125).

Figures 48-50 show the simulation results for a Gaussian input signal. From
Fig. 48(a), we can see that the kurtosis ratio of chBIS is decreases almost
monotonically with increasing number of microphones. On the other hand, the
kurtosis ratio of BR-SS does not exhibit such a tendency regardless of the floor-
ing parameter. Also, the kurtosis ratio of ch&5- is lower than that of BFSS
for all cases except for = 0.8. Moreover, we can confirm from Fig. 48(b) that the
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values of noise reduction performance for#S with flooring parameter= 0.0

and chS$BF are almost the same. When the flooring parameter for38-is
nonzero, the kurtosis ratio of BfSS becomes smaller but the noise reduction
performance degrades. On the other hand, for Gaussian signals;BR$38n re-

duce the kurtosis ratio, i.e., reduce the amount of musical noise generated, without
degrading the noise reduction performance. Indeed®Fwithn = 0.8 reduces

the kurtosis ratio more than ch$BF, but the noise reduction performance of
BF+SS is extremely degraded. Furthermore, we can confirm from Figs. 49 and
50 that the theoretical kurtosis ratio and noise reduction performance closely fit
the experimental results. These findings also support the validity of the analysis
in Sects. 8.3, 8.4, and 8.5.

Figures 51-53 illustrate the simulation results for a super-Gaussian input sig-
nal. It can be confirmed from Fig. 51(a) that the kurtosis ratio of eHE¥Salso
decreases monotonically with increasing the number of microphones. Unlike the
case of the Gaussian input signal, the kurtosis ratio cf 8% withn = 0.8 also
decreases with increasing number of microphones. However, for a lower value of
the flooring parameter, the kurtosis ratio of B¥S is not degraded. Moreover,
the kurtosis ratio of chSSBF is lower than that of B¥SS for almost all cases.

For the super-Gaussian input signal, in contrast to the case of the Gaussian input
signal, the noise reduction performance of+ES withn = 0.0 is greater than

that of chSSBF (see Fig. 51(b)). That is to say, the noise reduction performance
of BF+SS is superior to that of chS8F for the same flooring parameter. This
resultis consistent with the analysis in Sect. 8.4. The noise reduction performance
of BF+SS withn = 0.4 is comparable to that of ch$8F. However, the kurtosis

ratio of chSS-BF is still lower than that of BFSS withny = 0.4. This result also
coincides with the analysis in Sect. 8.5. On the other hand, the kurtosis ratio of
BF+SS withn = 0.8 is almost the same as that of chEF-. However, the noise
reduction performance of BFSS withn = 0.8 is lower than that of chSSBF.

Thus, it is confirmed that chSBF reduces the kurtosis ratio more than+8S

for a super-Gaussian signal under the same noise reduction performance. Further-
more, the theoretical kurtosis ratio and noise reduction performance closely fit the
experimental results in Figs. 52 and 53.
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Figure 47. Reverberant room used in my simulations.

| also compare speech distortion originating from+8S and chS8BF on
the basis of cepstral distortion (CD) [43] for the four-microphone case. The com-
parison is made under the condition that the noise reduction performances of both
methods are almost the same. For the Gaussian input signal, the same parameters
B = 2.0 andn = 0.0 are utilized for BRSS and chS8BF. On the other hand,
B = 2.0 andn = 0.0 are utilized for chS&BF andg = 2.0 andnp = 0.4 are
utilized for BF+SS for the super-Gaussian input signal. Table 4 shows the result
of the comparison, from which we can see that the amount of speech distortion
originating from BRSS and chS&BF is almost the same for the Gaussian in-
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Figure 48. Results for Gaussian input signal. (a) Kurtosis ratio and (b) noise
reduction performance for BFSS with various flooring parameters.

Table 4. Speech distortion comparison of455 and chSEBF on the basis of
CD for four-microphone case
Input noise type chSS-BF BF+SS
Gaussian 6.15dB 6.45dB
Super-Gaussian 6.17dB 5.12dB

put signal. For the super-Gaussian input signal, the speech distortion originating
from BF+SS is less than that from ch$BF. This is owing to the dierence in
the flooring parameter for each method.

In conclusion, all of these results are strong evidence for the validity of the
analysis in Sects. 8.3, 8.4, and 8.5. These results suggest the following:

e Although BF+SS can reduce the amount of musical noise by employing a
larger flooring parameter, it leads to a deterioration of the noise reduction
performance.

e In contrast, chS8BF can reduce the kurtosis ratio, which corresponds to
the amount of musical noise generated, without degradation of the noise
reduction performance.

e Under the same level of noise reduction performance, the amount of musical
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Figure 49. Comparison between experimental and theoretical kurtosis ratios for
Gaussian input signal.

noise generated via ch$BF is less than that generated via-B¥S.

e Thus, the chS8BF structure is preferable from the viewpoint of musical-
noise generation.

e However, the noise reduction performance oS is superior to that of
chSSkBF for a super-Gaussian signal when the same parameters are set in
the SS part for both methods.

e These results imply a tradefdetween the amount of musical noise gener-
ated and the noise reduction performance. Thus, we should use an appro-
priate structure depending on the application.

These results should be applicable undéfedent SNR conditions because our
analysis is independent of the noise level. In the case of more reverberation, the
observed signal tends to become Gaussian because many reverberant components
are mixed. Therefore, the behavior of both methods under more reverberant con-
ditions should be similar to that in the case of a Gaussian signal.
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Figure 50. Comparison between experimental and theoretical noise reduction per-
formances for Gaussian input signal.
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Figure 51. Results for super-Gaussian input signal. (a) Kurtosis ratio and (b) noise
reduction performance for BFSS with various flooring parameters.
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8.6.2 Subjective evaluation

Next, | conduct a subjective evaluation to confirm that chBE can mitigate
musical noise. In the evaluation, | presented two signals processed b$BF
and by chS$BF to seven male examinees in random order, who were asked to
select which signal they considered to contain less musical noise (the so-called AB
method). Moreover, | instructed examinees to evaluate only the musical noise and
not to consider the amplitude of the remaining noise. Here, the flooring parameter
in BF+SS was automatically determined so that the output SNR efS8-and
chSS-BF was equivalent. | used the preference score as the index of evaluation,
which is the frequency of the selected signal.

In the experiment, three types of noise, (a) artificial spatially uncorrelated
white Gaussian noise, (b) recorded railway-station noise emitted from 36 loud-
speakers, and (c) recorded human speech emitted from 36 loudspeakers, were
used. Note that noises (b) and (c) were recorded in the room shown in Fig. 47,
and therefore include interchannel correlation because they were recordings of
actual noise signals.

Each test sample is 16-kHz-sampled signal, and the target speech is the orig-
inal speech convoluted with impulse responses recorded in a room with 200 ms
reverberation (see Fig. 47) and to which the above-mentioned recorded noise sig-
nal is added. Ten pairs of signals per type of noise, i.e., a total of 30 pairs of
processed signals, were presented to each examinee.

Figure 54 shows the subjective evaluation results, which confirm that the out-
put of chSS-BF is preferred to that of BFSS, even for actual acoustic noises
including non-Gaussianity and interchannel correlation properties.

8.6.3 Subjective evaluation in BSSA architecture

Finally, | compare the amount of musical noise generated via two methods, i.e.,
the original BSSA and BSSA with channel-wise SS (chBSSA), on the basis of the
informal listening test.

Figure 55 depicts the block diagram of chBSSA. In chBSSA, channel-wise
spectral subtraction is performed before DS unlike the original BSSA.
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Figure 54. Subjective evaluation results: £5S vs. chS$BF.

In the evaluation, | also presented two signals processed by BSSA and by
chBSSA to seven male examinees in random order, who were asked to choose
which signal they considered to contain less musical noise. The experimental
configurations are the same as the configurations of Sect. 8.6.2 except for the
number of displayed signals to examinees. In this evaluation, 20 pairs of signals
per type of noise, i.e., a total of 60 pairs of processed signals, were presented to
each examinee.

Figure 56 illustrates the subjective evaluation result, and Fig. 57 shows exam-
ple spectrograms of signals processed by BSSA and by chBSSA. From Fig 56,
we can confirm that the output signal of chBSSA is preferred to that of the orig-
inal BSSA. Actually, it is confirmed that chBSSA reduces isolated components
in time-frequency domain sequences, which is a factor of musical noise, rather
than BSSA from Fig. 57. Therefore | conclude that the chBIS structure is ap-

plicable to less-musical noise methods integrating microphone array and spectral
subtraction.

8.7. Conclusion

In this chapter, | carried out the analysis on the amount of musical noise generated
via BF+SS and chS8BF on the basis of kurtosis. First, | conducted an analysis on
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Figure 55. Block diagram of chBSSA.

the amount of musical noise generation thorough88 and chS&BF without
consideration of noise reduction performance. However, | also revealed that the
noise reduction performance of both methods are not equivalent even if the same
parameters are set in SS part. Therefore, | introduced the new flooring parameter
so that the noise reduction performance of both methods become equivalent. As
a result of the analysis under the same noise reduction performance condition, it
could be concluded that ch$BF reduces the kurtosis and musical noise more
than BRSS for almost all cases. Moreover, the analysis validity is supported by
computer simulations and subjective evaluations.
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CHAPTER 9

EPILOGUE

9.1. Thesis summary

In this thesis, | proposed a novel blind speech extraction method, i.e., BSSA,
that can be applied to actual world problem. Moreover, | constructed the real-
time algorithm of the proposed BSSA, and built the hands-free spoken-oriented
guidance system with the proposed real-time BSSA. As a result of computer sim-
ulations and real-world experiments, it was revealed that the proposed BSSA and
real-time BSSA improve the speech recognition performance. Furthermore, | per-
formed an analysis on the amount of musical-noise generated via methods of in-
tegrating microphone array and SS like BSSA on the basis of HOS. The analytic
result clarified that the specific integration structure, i.e., i8S is proper to
applications for human hearing.

In Chapter 3, the theoretical analysis of ICA under non-point-source noise
condition was given. As a result of the analysis, | founded out that the conven-
tional ICA is proficient in noise estimation under non-point-source noise condi-
tion. Besides, a computer simulation result that supports the analysis result was
also demonstrated.

Based on the above-mentioned findings, | proposed a novel blind source ex-
traction method, i.e., BSSA, in Chapter 4. In the chapter, | provided detailed sig-
nal processing of BSSA and the analysis of the permutation robustness in BSSA.
Moreover, | showed strong evidences of thBoacy of the proposed BSSA via
experimental results in not only an experimental room but also an actual world
scenario.

In Chapter 5, | presented an alternative analysis of the proposed BSSA with
comparing to the conventional SSA. As a result of the alternative analysis, it is
clarified that the proposed BSSA has the robustness against room reverberation
and microphone element errors.

In Chapter 6, | established the real-time algorithm of the proposed BSSA,
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and developed a hands-free spoken-oriented guidance system with the real-time
BSSA. Furthermore, the result of the speech recognition test of the proposed real-
time BSSA was also provided. The proposed real-time BSSA achieved enough
speech recognition performance, particularly over 80% word correct. Also the
delay of the proposed real-time BSSA was about 50 ms. For these reasons, |
concluded that the proposed real-time BSSA satisfies requirements of a real-time
hand-free spoken-oriented guidance system, which are both speech recognition
performance and real-time properties.

In Chapter 7, a preliminary preparation for musical-noise analysis was ex-
pounded. Firstly, | described formulae for two typical methods of integrating
microphone array and SS. Secondly, the objective metric for musical noise on the
basis of HOS was briefly reviewed.

In the following Chapter 8, HOS-based musical-noise analysis in methods of
integrating microphone array signal processing and SS were conducted. In that
analysis, first, the amount of musical noise generated via DS and SS including the
effect of the flooring technique was firstly investigated. Next, the musical-noise
generation in two methods of integrating DS and SS, i.e+ 8% and chS8BF,
were analyzed based on the above-mentioned investigation under the same noise
reduction performance condition. The analytic result suggested that-&SS
outputs less-musical noise signals. Also, the informal listening test advocated the
analytic result. These results let me conclude that the €éB&EStructure is proper
to applications for human hearing.

In summary, the acquired conclusions of the study are outlined in the following
points:

e It is theoretically clarified that the conventional ICA is proficient in noise
estimation rather than in target speech estimation under non-point-source
noise condition.

e The proposed BSSA that utilizes ICA as an accurate noise estimator achieves
better noise reduction performance than that by the conventional ICA.

e Also the proposed BSSA has a remarkable property that is the robustness
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against reverberation and microphone element errors.

e The proposed real-time BSSA accomplishes enough speech recognition per-
formance and low-latency blind source extraction for hand-free systems.

e The chSSBF structure is preferable for human-hearing application.

9.2. Future work

In the thesis, | have improved the source extraction performance for hand-free sys-
tems, and the proposed algorithm has realized enough performance for developing
spoken-oriented speech guidance systems. However, the following problems are
still opened.

For human-hearing applications, the output sound quality including not only
noise reduction performance but also listenability is the most important factor.
However, musical noise always deteriorates listenability of the output signal. This
problem cannot be avoided in methods utilizing nonlinear signal processing like
SS. Indeed, | have provided the less musical noise structure for methods of in-
tegrating microphone array signal processing and SS, but it cannot control the
amount of musical noise generated. Then, a method can take control of the
musical-noise generation is needed to develop. Fortunately, | have gained the
objective metric for musical noise, i.e. kurtosis-based musical noise metric. On
the basis of this objective metric, we would establish the optimization techniques
from the viewpoint of not only noise reduction performance but also the amount
musical noise generated.

Moreover, in this dissertation, | have analyzed the amount of musical noise
generated through only methods of integrating microphone array and spectral sub-
traction. However, there exists various kinds of method using another nonlinear
signal processing. For instance, Okamoto et al. have proposed the methods of
integrating ICA and MMSE STSA estimator, it has been reported that the inte-
gration method is proper to human hearing [54]. In the future, it is needed that
the analysis in terms of another nonlinear signal processing and its integration
methods.
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Appendix

A. When |argr’ — argrg > =x/2, higher-order cross
correlation is not minimized

In this section, | clarify that higher-order cross correlation betwgéh v) and
Ya(f,7) is not minimized wheyy(f, r) andy,(f, r) are orthogonalized. However,
it is difficult to give the generalized proof, | give the analysis for the specific case
below.
Here, | consider the case where the 2nd-order cross correlatidincezrg of
the ICA's outputys(f, 7) andy,(f, 7) is completely zero. The followings andr,
make the 2nd-order cross correlation fmgent zero:
(D),
(f, 8, 7)),
rs =1, (142)

(141)

where| argr;, — argrg| = n(> 7/2). Actually, using these; andry,,

Ys(f, Dyn(f, 1)), = (&(F, 7) + 1A, D)) (A(F, 7) + raS(F, 7)),
= rs(A(f, 7)"(f, 7)), + rn (&(F, 7)§'(F, 7)),

_(AF DA BEDE D ae o
= (A(f, D)A*(f, 7)), - &5, (¥f, )8 (f, 7)),

=0. (143)

Anyway, the nonlinear functiop(x) = tanh&®) + itanh®) (x € C) can be
expanded by Tailor expansion as,

o(X) = X — %(Re MKE+i-Im[X°)+---. (144)
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Therefore, the nonlinear cross correlation matrix is

H[VS“’T)D [aCF, i, ) >

Yn(f,7)
_ ys(faT) - %(R(E[ys(f,T)]3 +i-Im [ys(f,T)]3) 4. >
) <[y”(f’7) - %(Re[yn(f,r)f’ +i-lm [yn(f,T)]3) . [ys(f, 7). yn(f, )] T
(145)

To analyze the higher-order cross correlationfioent, | focus my attention on
the 1st row and 2nd column factor of (148),. C;, is represented by

Crz = (ys(f, D)ya(f, 7)), - <% (Relys(f.7)]° +i-Im [ys(fn)]‘*’)y;(f,r)} o
(146)

The 4th-order cross correlation dbeient is

2 ((Rely<(f. 0 + - I [ys(£, ) (1, 7).
- % ((Relys(f. I +i - Im[ys(f, D))" + 18 (. 7)),
_ _%(<Re[ys(f,7)]3 A'(f.7)) +i-(Im[ys(f. P A (f. 7))

+rs(Rely(f. D)’ §(f, 7)) +i-rs(Imy(f, )’ é*(f,r))T)

_ A, o (f, 7). 3 o : 3 o
= 308 (1,0, (REDAEAPE(F.0) o1 (Imly(f. 0P S (1) )
+0 (where(A(f, 7)A*(f, 7)), # 0). (147)

Consequently, indeed andr, which satisfyl argr’ —argrs > 7/2 lety(f, r) and
Yn(f, 7) be orthogonalized but those let higher-order cross correlation not be zero.

B. Strategy of Selecting Target Speech Signal

For noise estimation in BSSA, the target speech must be removed from the sepa-
ration results of ICA. Therefore, a method of choosing the target speech from ICA
outputs is required in BSSA. Some methods of choosing the target speech signal
from ICA outputs are considered as follows:
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e If an approximate location of a target speaker is known in advance, we can
utilize the location of a target speaker. For instance, we can know the ap-
proximate location of the target speaker at a hands-free speech recognition
system in a car or of a public guidance system in advance. Then, the DOA of
the target speech signal is approximately known. For such systems, we can
choose the target speech signal, selecting the specific component in which
the estimated DOA by ICA is nearest the known target-speech DOA. the
basis of the estimated DOA by ICA.

e For an interaction robot system, we can utilize image information from a
camera mounted on a robot. Therefore, we can estimate DOA from this
information, and we can choose the target speech signal on the basis of this
estimated DOA.

e If the only target signal is speech, i.e., all noises are not speech, we can
choose the target speech signal on the basis of the Gaussian mixture model
(GMM) that can classify sound signals into voices and nonvoices [47].

C. Mel-Scale Filter Bank Analysis

The proposed BSSA involves mel-scale filter bank analysis, and directly outputs
MFCC. The triangular windoWVne(f;1) (I = 1,---, L) for performing mel-scale
filter bank analysis is designated as

i (e=T<E)

We(f;1) = ¢ T3 Fofl) (148)
) = 1) (fe()=f<fwi(l)),

where fo(l), (1), and fi(l) are the lower, center, and higher frequency bins of

each triangle window, respectively. Furthermdras the dimension of the mel-

scale filter bank. They satisfy the relation among adjacent windows as

fe(l) = fi(l = 1) = fio(I + 1). (149)
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Figure 58. Configuration of mel-scale filter bank.

Moreover, f.(l) is arranged at regular intervals on a mel-frequency domain. The
mel-scale frequenciel; ) for fc(I) is calculated using

Melq) = 2595 log{1 + f(1) fs/(700M)}. (150)

The mel-scale filter bank analysis is given by

fhi(l)
m(l,7) = Z Whnel(f; 1)Ysssa(f, 7), (151)

f=f|o(|)
wherem(l, 7) is the output of the mel-scale filter bank. Moreover, the logarithm
transform and discrete cosine transform are performed in the mel-scale filter bank
domain to obtain the MFCC for the speech recognizer; this processing can be

MFCC(x,7) = \E ZL: log(m( ,T)}co{(l _ %%} (152)
=1

wherek denotes the dimension of MFCC. The proposed BSSA requires no trans-

written as

formation into the time-domain waveform.

D. Derivation of (109)

When we assume that the input signal of the power domain can be modeled by
a gamma distribution, the amount of subtractiod®. The subtraction of the
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estimated noise power spectrum in each frequency subband can be considered as
a lateral shift of the p.d.f. to the zero-power direction (see Fig. 38). As a result of
this subtraction, the random variabtas replaced withx + a6 and the gamma
distribution becomes

lf)GM(X) =

X+ Bab
0

O (X + Bab)*t exp{— } (X > —Bab). (153)

Since the domain of the original gamma distributiorxis 0, the domain of the
resultant p.d.f. isx > —Baf. Thus, negative-power components with nonzero
probability arise, which can be represented by
X+ Bab
['(a)6” 0
wherePegaidX) is part of Peu(x). To remove the negative-power components,

Bregaid ) = (X + Bab)* exp{— } (—Baf < x<0), (154)

the signals corresponding éhegaﬁve(x) are replaced by observations multiplied
by a small positive valug. The observations corresponding to (154),{x), are
given by

Pond(X) = - R exp{—g} (0 < X < Bab). (155)

Since a small positive flooring parametgs applied to (155), the scale parameter

6 becomes;?d and the range is changed from<Ox < Ba# to 0 < X < Ban?6.
Then, (155) is modified to

Prioor(X) = Wlnze)“ ()t exp{—n—)z(g} (0 < x < Ban?6), (156)

wherePyoor(X) is the probability of the floored components. TRigo(X) is su-
perimposed on the p.d.f. given by (153) within the range & < Ban?6. By
considering the positive range of (153) aPg.:(x), the resultant p.d.f. of SS can

be formulated as
Z+ Bab

(z+ Ba)*? exp{—
0 1

N S N TP )

(0 < z < Ban?),

0°T ()
Pss(2) =

0°T ()

where the variable is replaced wittz for convenience.
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E. Derivation of (110)

To derive the kurtosis after SS, the 2nd- and 4th-order mometarefrequired.
For Psg(2), the 2nd-order moment can be given by

Uo = fom Z - Psg2)dz
= fwzz 1 (z+,8a9)“‘1exp{—z+9ﬁa9}dz
0

0°T ()
parp’0 1 r—1 z

We now expand the first term of the right-hand side of (158). Herd, de{z +
Bab)/6, thenddt = dzandz = 6(t — Ba). Consequently,

S| . 2+ Bad
fozzear(a)(z+ﬁa0) exp{— . }dz

(T 2 a2 1 a-1 _
_ fﬁ (- o g (0" expl-tct

6° *
B F(Q) Ba

= 0—2 [F(ﬁa, a + 2) — 2B8aT (Ba, a + 1) + 2a’T(Ba, a)] : (159)
@)

Next we consider the second term of the right-hand side of (158). Here=let
z/(n%0) thenn?6dt = dz. Thus,

Bar0 2 1 L v4 d
e — ex - Z
fo (726 (a) p{ 7729}

Ba
= 20t ———— (n?0t)* L exp{—t} n?0dt
; (n )(n29)ar(a)(’7 ) p{-tin

_ n402 107
I'(@) Jo

_ .4 27(ﬁa’a + 2)
= o (160)

As a result, the 2nd-order moment after &?,3), is a composite of (159) and
(160), and can be given as

(t? — 2Bat + BPa®)t* L exp(—t}dt

to*! exp{—t} dt

ﬂ(zss) = % [F(ﬁa, a + 2) — 28al (Bar, a + 1) + B2a’T(Ba, @) + n'y(Ba, a + 2)] .
(161)
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In the same manner, the 4th-order moment aften&S), can be represented
by
ss)_ 0
ui ) = m[l“(ﬁa/, a + 4) — 4BaT (Ba, @ + 3) + 682a°T (Ba, a + 2)
(01
— 483 T (Ba, a + 1) + B* T (Ba, @) + y(Ba, a + 4)] (162)

Consequently, using (161) and (162), the kurtosis after SS can be given as

F (a.5,7)

Kurtss = [(@) =
Urtss = 1) e o)

(163)
where

G(a.B.1) = T(@)T(Ba, @ + 2) — 28aT (Ba, a + 1) + 2a’T (Ba, @) + 1y (Ba, a + 2),
(164)

F(a,B,1) = T(Ba, a + 4) — 4BaT (Ba, a + 3) + 682a°T (Ba, a + 2)
— 483°T (Ba, a + 1) + BT (Ba, @) + n®y(Bar, a + 4). (165)

F. Derivation of (119)

As described in (108), the power-domain signal is the sum of two squares of ran-
dom variables with the same distribution. Using (115), the power-domain cumu-
lants Kr(]p) can be written as

P) _ ok
K® = 2k @,
P) _ ok
K = 2Kk,
P _ oKk (2
KP = 2k,

KP = 2Kk®,

power-domain cumulants (166)

whereK®? is thenth square-domain moment. Here, the p.d.f. of such a square-
domain signal is not symmetrical and its mean is not zero. Thus, we utilize the
following relations between the moments and cumulants around the origin:

M1 = Kz,
moments i, = kp + 2, (167)

_ 2 2, 4
M4 = Ka + 4Ksky + K5 + BkokT + KT,
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whereu, is thenth-order raw moment ang is thenth-order cumulant. Moreover,
the square-domain moment$’ can be expressed by
@ _

/’l]_ _/l27
squared-domain momentsu) = u,, (168)
My @ = = Ms-

Using (166)—(168), the power-domain moments can be expressed in terms of the
4th- and 8th-order moments in the time domain. Therefore, to obtain the kurtosis
after DS in the power domain, the moments and cumulants after DS up to the
8th-order are needed.

The 3rd-, 5th-, and 7th-order cumulants are zero because we assume that the
p.d.f. ofx; is symmetrical and that its mean is zero. If these conditions are satis-
fied, the following relations between moments and cumulants hold

u1 =0,
Uz = K,
moments 1, = k4 + 34, (169)

Me = Ke + 15K4K2 + 15/(3,
Mg = Kg + 35!(?1 + 28K2K6 + 210(§K4 + :I.OS(;1

Using (118) and (169), the time-domain moments after DS are designated as
,U(ZDS) Ko,
1P = %K, + 3%,
pP® = 56 + 1575, + 1553,
<DS> = Kg + 35K2 + 28K2Ks + 210KZ%K, + 105K,
(170)

moments after D

whereygDS) is thenth-order raw moment after DS in the time domain.

Using (167), (168) and (170), the square-domain cumulants can be written as
Ky = %,

_ KD = I + 2KZ,

square-domain cumulants 2
7(3 = (}(6 + 127(47(2 + 87(3,

KD = I + 32K2 + 24K, K + LA4K2K, + 48K,

(171)
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wherek? is thenth-order cumulant in the square domain.
Moreover, using (166), (167), and (171), the 2nd- and 4th-order power-domain
moments can be written as

1y =2(%, + 4%3). (172)
1P = 2(Ks + 38K + 32KeK, + 288K, KE + 192K3). (173)

As a result, the power-domain kurtosis after DS, kgirtan be given as

Ks + 38K? + 32K, K5 + 288K2K, + 192K2

Kurtgg =
for 2K2 + 16K2K,, + 32K?

(174)

G. Derivation of (121)

According to (107), the shape parameterotresponding to the kurtosis after DS,
kurtps, is given by the solution of the quadratic equation

_(@+2)@+3)
kurtDS = W (175)

This can be expanded as

&2(kurtps —1) + &(kurtpg —5) + 6 = 0. (176)

Using the quadratic formula,

— Kurtps +1 + \/kurtzDS +14 Kurps +1
2kurtps -2 ’

a =

(a77)

whose denominator is larger than zero becausgwtl. Here, sincex™> 0, we
must select the appropriate numerator of (177). First, suppose that

— Kkurtps +1 + \/kurtﬁ,S +14kurps+1 > 0. (178)

This inequality clearly holds when & kurtps < 5 because- kurtps+5 > 0 and
JkurBss +14 kurps +1 > 0. Thus,

—Kkurtps +5 > — \/kurtés +14 kurbs +1. (179)
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When kurps > 5, then the following relation also holds:

(- kurtps +5)% < kurtig +14 kurps +1,
— 24kurps > 24. (180)

Since (180) is true when kyd > 5, (178) holds. In summary, (178) always holds
for 1 < kurtps < 5 and 5< kurtps. Thus,

—kurtps +5 + \/kunZDS +14kurps+1 >0 for kurps > 1. (181)

Overall,

— Kurtps +5 + \/kurtéS +14 kurps +1
2 Kurtps —2 ~

0. (182)

On the other hand, let

— KUrtps +5 = Jkur3s +14 kurbs +1 > 0, (183)

then this inequality i:ot satisfied when kugk > 5 because- kurtps +5 < 0 and
\/kurt%5+14 kurbs+1 > 0. Now (183) can be modified as

—kurtps +5 > \/ kurthg +14 kurps +1, (184)
then the following relation also holds ford kurtps < 5;

(- kurtps +5)% > kurtg +14 kurps +1,
— 24Kkurps < 24. (185)

This isnottrue for 1< kurtps < 5. Thus, (183) is not appropriate for kggt> 1.
Thereforep corresponding to kugt can be given by

— kurtps +5 + \/kurlfjs +14 kurps +1
2 kUI’tDS -2 .

a =

(186)
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H. Derivation of (135)

For 0 < a < 1, which corresponds to a Gaussian or super-Gaussian input signal,
it is revealed that noise reduction performance of+BE is superior to that of
chSS-BF from the numerical simulation in Sect. 8.4. Thus, the following relation
holds:

1 [I(Ba,a+1) A 2Y(Ba, &+ 1)
-101 -B-T e
OglOJl—-(&) [ & ﬁ (501,0/)"'77 &
1 I'Ba,a + 1) >Y(Ba, a + 1)
-101 -B-T .
> OOglOJ-F(a)[ > B-T(Ba,a)+n -
(187)
This inequality corresponds to
1[\ F(ﬁ“»fl + 1) _ﬁ X r(ﬁa’, a/) + UZ’Y(ﬁa”? + 1)
I'(a) a a
< 1 F(,Ba/,a/+1)_ﬁ.r(ﬁa,a)+n2y(ﬁa,a+l) . (188)
I'() a a

Then, the new flooring parametgiin BF+SS, which makes the noise reduction
performance of BFSS equal to that of chSBF, satisfies;> n (> 0) because

y(pa,a +1) > 0. (189)

@

Moreover, the following relation fog also holds:

1A [F(ﬁ&,fx +1) BT84 + ﬁzy(ﬁ&,A& + l)]
I'(a) @ a
_ 1 [F(,Ba/,a+1)_B'F(ﬁa,a)+n2y(ﬂa,a+l) ' (190)
['(a) a o

This can be rewritten as

ol'(@) y(Ba, & + 1)

ra)  a
_ [M ~ B -T(Ba, ) +UZM
_ T [F(B&, fx +1) 8- T(B4, @)], (191)
() a
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and consequently
a2 a ([T(@)
T pa e+ 1) |T(a)
whereH (a, B, n) is defined by (136) and(a,8) is given by (137). Using (189)
and (190), the right-hand side of (191) is clearly greater than or equal to zero.
Moreover, sincd (@) > 0,I'(@) > 0, @ > 0, andy(Ba, @ + 1) > 0, the right-hand
side of (192) is also greater than or equal to zero. Therefore,

7—{(&’:89 77) - I(&’B) ’ (192)

>

S e @ A
- \/ D |rg s - 168 (193)
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1. An Encouraging Prize on the young researchers meetings of the Acoustical Soci-
ety of Japan Kansai section, Yu Takahadiimoya Takatani, Hiroshi Saruwatari,
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2. 2006 Technical Report Award on the Japanese Society for Artificial Intelligence,
Yu TakahashiTomoya Takatani, Hiroshi Saruwatari, Kiyohiro Shikano, July 2007.
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Open Source Software

1. OpenICA
An implementation of blind source separation for acoustic sound sources based on
frequency-domain independent component analysis

httpy/openica.sourceforge/jp
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