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Abstract

A hands-free speech recognition system and a hands-free telecommunica-

tion system are essential for realizing an intuitive, unconstrained, and stress free

human-machine interface. In an actual acoustic environment, however, not only

user’s speech but also interference source signals such as background noise and

interference speech are existing. Such interferences disturb high-quality speech

recognition or telecommunication. Therefore, a source extraction method is needed

to realize high-quality hands-free systems. Particularly, blind source extraction

methods are spotlighted. Since blind source extraction does not require any su-

pervision, it can be applied to wide-area applications.

Independent component analysis (ICA) is a successful candidate of blind source

extraction methods. There have been many studies on ICA, and they have pro-

vided strong evidences that ICA can extract blindly source signals from noisy

observations. However, almost all studies on ICA only treat the limited case, i.e.,

all sound sources are point source like speech. Such an acoustic condition is very

unrealistic; interferences are often widespread in an actual world.

In the thesis, I mainly deal with generalized noise that cannot be regarded as a

point source. Then, first, I analyze ICA under a non-point-source noise condition,

and theoretically point out that ICA is proficient in noise estimation rather than in

speech estimation under such a noise condition. Namely, we cannot utilize ICA

as a target speech estimator. However, we can still use ICA as an accurate noise
†Doctoral Dissertation, Department of Information Processing, Graduate School of Informa-

tion Science, Nara Institute of Science and Technology, NAIST-IS-DD0761017, March 24, 2010.
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estimator. Based on the above-mentioned findings, I propose a new blind source

extraction architecture, i.e., blind spatial subtraction array (BSSA). The proposed

BSSA comprises an ICA-based noise estimator, and noise reduction is carried out

by subtracting the power spectrum of the estimated noise via ICA from the power

spectrum of the partly-speech-enhanced signal by microphone array technique.

This “power-spectrum-domain subtraction” procedure accomplishes better noise

reduction than the conventional ICA.

Furthermore, the proposed BSSA provides robustness against the permutation

problem inherent in ICA. The frequency-domain ICA often causes source per-

mutation ambiguity problem in each frequency bin, and the permutation problem

markedly degrades the resultant signal quality. Therefore, it is indispensable for us

to align the permutation problem so that each extracted signal contains frequency

components from the same source. Indeed the proposed BSSA partially involves

the permutation problem in the ICA-based noise estimator part. However, the pro-

posed BSSA can efficiently reduce the negative affection of the permutation owing

to the over-subtraction in the spectral subtraction and defocusing properties in the

speech enhancement part. In addition, the proposed BSSA has a remarkable prop-

erty that is the robustness against reverberation and microphone element errors.

This fact is given by an alternative interpretation of the proposed BSSA.

These effectiveness of the proposed BSSA are shown several experiments.

First, I gives an evidence of permutation robustness of the proposed BSSA in

an artificial computer simulation. Next, I conduct experiments in a experimen-

tal room and an actual rail-way station. As a result of the experiments, it can

be confirmed that the noise reduction and speech recognition performance of the

proposed BSSA outperforms those of the conventional ICA. From these results, I

conclude that the proposed BSSA is well applicable to the noise-robust hands-free

system.

Next, I propose the real-time algorithm of the proposed BSSA. As for hand-

free speech recognition system and telecommunication system, “real-time” prop-

erty is a crucial factor. Indeed the proposed BSSA can reduce noises efficiently,

BSSA is difficult to work in real-time because ICA-based noise estimation part

consumes huge amount of computational complexities. Therefore, I take a strat-
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egy in that the separation filter optimized by using the past time period data is

applied to the current data. Although the separation filter update in the ICA part

is not real-time processing but involves some latency, the entire system still seems

to run in real-time because the other parts of BSSA can work in the current seg-

ment with no delay. Based on the real-time BSSA algorithm, I develop a hands-

free spoken-oriented guidance system. The developed system can realize enough

speech recognition performance, over 80% word correct, and low-latency, partic-

ularly about 50 ms, blind source extraction.

Next, I focus my attention to “musical-noise problem.” Musical noise is an

artificially generated noise through nonlinear signal processing, and makes users

uncomfortable. Unfortunately, the proposed BSSA suffers from the musical-noise

problem because the proposed BSSA includes nonlinear spectral subtraction in

its own structure. In the thesis, I analyze how much musical noise are generated

through methods of integrating microphone array signal processing and spectral

subtraction like the proposed BSSA on the basis of higher-order statistics. As a

result of the analysis, I clarify that the specific integration structure can mitigate

the musical-noise generation. The validity of the analysis is demonstrated via

computer simulations and subjective listening tests.

Keywords:

Speech enhancement, blind source separation, independent component analysis,

spectral subtraction, musical noise, higher-order statistics
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Chapter 1

Prologue

1.1. Background

These days, hands-free speech recognition systems (see Fig. 1), e.g., human-robot

speech interaction system [1, 2, 3], and hands-free telecommunication systems [4]

are in demand because such systems are essential for the realization of an intuitive,

unconstrained, and stress-free human-machine interface. In such hands-free sys-

tems, however, not only the user’s speech but also interference sounds such as

background noise and interference speech are observed by the microphones in the

systems. Thus, it is difficult to achieve high-quality speech recognition or telecom-

munication systems compared with the case of using a close-talking microphone

(see Fig. 2) such as a headset microphone or a hand microphone. Therefore, in-

terference sounds must be suppressed to realize a noise-robust hands-free system.

In order to remove interference sound sources, there have been many studies

on source separation. Source separation for acoustic signals is the estimation of

the original sound source signals from the mixed signals observed in each input

channel. Various methods have been presented for acoustic source signal separa-

tion, which can be classified into two groups: methods based on single-channel in-

put, e.g., spectral subtraction (SS) [5], and those based on multichannel input, e.g.,

microphone array signal processing [6]. There have been various studies on mi-

crophone array signal processing; in particular, the delay-and-sum (DS) [7, 8, 9]

array and the adaptive beamformer (ABF) [10, 11, 12] are the most commonly

used microphone arrays for source separation and noise reduction. The ABF can

achieve higher performance than the DS array. However, the ABF requiresa

priori information, e.g., the look direction and speech break interval. These re-

quirements are due to the fact that the conventional ABF is based onsupervised

adaptive filtering, which significantly limits its applicability of ABF to source

separation in practical applications. Indeed, the ABF cannot work well when the

interfering signal is nonstationary noise.
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Recently, alternative approaches to acoustic source signal separation have been

proposed. Blind source separation (BSS) is an approach to estimating original

source signals using only the mixed signals observed in each input channel. In

particular, BSS based on independent component analysis (ICA) [13], in which

the independence among source signals is mainly used for the separation, has

been studied actively [14, 15, 16, 17, 18, 19, 20, 21, 22]. Indeed, conventional

ICA can work particularly in the case of speech-speech mixing, i.e., all sources

can be regarded as point sources, but such a mixing condition is very rare and

unrealistic; real noises are oftenwidespreadsources.

Furthermore, many methods of integrating microphone array signal process-

ing and nonlinear signal processing such as SS have been studied with the aim of

achieving better noise reduction [23, 24, 25, 26, 27, 28]. It has been well demon-

strated that such integration methods can achieve higher noise reduction perfor-

mance than that obtained using conventional adaptive microphone arrays [27],

e.g., the Griffith-Jim array [11]. However, a serious problem exists in such meth-

ods: artificial distortion (so-calledmusical noise[29]) due to nonlinear signal

processing. Since the artificial distortion causes discomfort to users, it is de-

sirable that musical noise is controlled through signal processing. However, in

almost all nonlinear noise reduction methods, the strength parameter to mitigate

musical noise in nonlinear signal processing is determined heuristically. Although

there have been some studies on reducing musical noise [29] and on nonlinear sig-

nal processing with less musical noise [30], evaluations have mainly depended on

subjective tests by humans, and no objective evaluations have been performed to

the best of my knowledge.

1.2. Scope of thesis

The aim of this study is to establish a blind source extraction method with the

following three aspects.

• Good source extraction performance in the real world:

The conventional ICA-based BSS cannot treat a realistic acoustical condi-
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Figure 1. Configuration of hands-free speech recognition system.

tion that involves widespread noise. Thus, it is desirable that a blind source

extraction method can deal with widespread noise. Hence, I propose a blind

source extraction method that is a combination of conventional ICA and

nonlinear SS in this study. The proposed blind source extraction method

can handle widespread noise.

• Real-time processing:

As for hand-free speech recognition and telecommunication systems, a real-

time property is a crucial factor. In this study, I construct a real-time archi-

tecture for the proposed blind source extraction method that can be applied

to real-world source extraction problem.

• Good sound quality for human hearing:

In applications involving human hearing such as mobile phones, teleconfer-

ence systems and a hearing-aid systems, the sound quality of the output is

extremely important. In particular, an artificial distortion such as musical

3



(a) Headset microphone (b) Hand microphone
Figure 2. Example of close-talking microphones: (a) a headset microphone and

(b) a hand microphone.

noise originating from nonlinear signal processing is a critical weak point

in such applications. Therefore, I analyze the generation of musical noise

in methods of integrating microphone array signal processing and nonlinear

signal processing, and clarify the type of integration structure that is suitable

for human hearing.

In the following sections, I describe my approach to each aspect.

1.2.1 Approach to blind source extraction method in real world

Problems of ICA-based BSS in real world

Although conventional ICA-based BSS techniques can separate acoustic sound

sources in the particular case that all sources can be approximated as point sources,

such an acoustic condition is very rare and unrealistic. In actual environments,

not only a point-source interference source signal but also non-point-source noise

(widespread noise) often exists.

In this study, I mainly deal with generalized noise that cannot be regarded as

a point source. Moreover, I assume this noise to be nonstationary noise that arises

in many acoustical environments; however, ABF cannot treat this noise well.
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Although ICA is not affected by nonstationarity of signals unlike ABF, the

assumed noise environment is still a very challenging task that conventional ICA-

based BSS cannot effectively address because ICA cannot separate widespread

sources. In order to improve the performance of BSS, some techniques combining

conventional ICA and beamforming have been proposed [31, 21]. However, these

studies still deal with the separation of point sources, and the behavior of such

methods under a non-point-source condition has not been explicitly analyzed to

the best of my knowledge.

Approach

In this study, I first analyze ICA under a non-point-source noise condition and

theoretically point out that ICA is effective for noise estimation rather than for

speech estimation under such a noise condition. This analysis implies that we can

still utilize ICA as an accurate noise estimator.

Next, I propose a new blind spatial subtraction array (BSSA). The proposed

BSSA consists of an ICA-based noise estimator, and noise reduction in the pro-

posed BSSA is achieved by subtracting the power spectrum of the noise esti-

mated via ICA from the power spectrum of the noisy observations. This “power-

spectrum-domain subtraction” procedure provides better noise reduction than con-

ventional ICA with estimation-error robustness.

Another advantage of the proposed BSSA architecture is “permutation robust-

ness.” In frequency-domain ICA, a source permutation ambiguity arises in each

frequency bin and markedly decreases the resultant quality. Therefore, it is in-

dispensable to align the permutations so that each separated signal contains fre-

quency components from the same source. Although various permutation solvers,

e.g., spectral-continuity-based methods [16, 32], methods based on direction of ar-

rival (DOA) [19, 33], and the method integrating spectral continuity and DOA [34],

have been proposed, the permutation problem cannot be solved completely.

In addition, an increase in the permutation-salvaging accuracy requires an in-

crease in computational cost. Permutation robustness indicates how little the BSS

method is affected for a certain probability of a permutation arising, and such an
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important property has not yet been investigated in ICA studies. Note that per-

mutation robustness in the BSSA does not conflict with any permutation solver.

That is to say, all permutation solvers can be used in the ICA part of the BSSA.

The BSSA reduces the number of remaining permuted components that cannot be

solved by a permutation solver.

1.2.2 Approach to realizing real-time processing

Problems of real-time processing of proposed method

Although BSSA can reduce noises efficiently, it is difficult to operate in real-time

because the ICA part of the BSSA requires a huge amount of computations. Thus,

it is necessary to develop a real-time architecture for the BSSA.

Approach

In the proposed BSSA, it is toilsome to optimize the separation filter by ICA

in real-time. In other words, the other parts of the BSSA operate in real-time.

Therefore, I introduce a strategy in which the separation filter optimized using the

data of the previous time period is applied to the current data. Although the update

of the separation filter in the ICA part is not real-time processing and involves

some latency, the entire system still appears to run in real-time because the other

parts of the BSSA can operate in the current segment with no delay. In the system,

the performance degradation due to the latency problem in ICA is mitigated by

oversubtraction in the spectral subtraction.

1.2.3 Approach to obtaining good sound quality for human hear-

ing

Problems of nonlinear signal processing

Although nonlinear signal processing such as by SS is a powerful noise reduc-

tion technique, it generates an artificial musical noise. It is desirable to reduce or
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control the amount of musical noise because it is unpleasant for users. Unfortu-

nately, the proposed BSSA also suffers from the problem of musical noise because

it involves SS in its structure. However, in almost all nonlinear signal processing

methods, the strength parameter in the processing is determined heuristically to

mitigate musical noise. This is because there are no objective criteria to measure

the amount of musical noise generated via nonlinear processing.

Approach

Recently, it was reported that the amount of generated musical noise is strongly

related to the difference between higher-order statistics (HOS) before and after

nonlinear signal processing [35]. Moreover, an objective metric for the amount

of musical noise generated has been established [35]. Furthermore, a detailed

analysis of the amount of musical noise generated through SS has been given and

the features of musical-noise generation in SS have been clarified [35].

In this study, I perform a musical-noise analysis on methods of integrating

microphone array signal processing and SS on the basis of HOS, and I reveal that

a specific integration structure can mitigate the amount of musical noise generated.

1.3. Overview of thesis

The thesis is organized as follows.

First, the sound-mixing model used in this study is described in Chapter 2. In

this chapter, conventional ICA is also explained.

In Chapter 3, a theoretical investigation of ICA under non-point-source noise

condition is presented. As a result of the investigation, I reveal that conventional

ICA is proficient in noise estimation under a non-point-source noise condition.

Moreover, a computer simulation result that supports this result is also demon-

strated.

On the basis of the above-mentioned findings, I propose a novel blind source

extraction method, i.e., the BSSA, in Chapter 4. In this chapter, I discuss signal

processing on BSSA in detail and analyze its permutation robustness. Moreover,
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I provide strong evidence of the efficacy of the proposed BSSA via experimental

results in not only an experimental room but also a real-world scenario.

Next, I give an alternative explanation of the proposed BSSA in Chapter 5. In

this chapter, I first introduce the spatial subtraction array (SSA), which is a method

of nonlinear microphone array signal processing and has a similar structure to

the proposed BSSA. Next, I describe the problem of the SSA, and then perform

the alternative analysis of the noise estimation part of the proposed BSSA by

comparing it with the noise estimation part in the SSA. As a result of the analysis,

I reveal that the proposed BSSA is robust against reverberation and microphone

element errors.

In Chapter 6, I establish a real-time algorithm for the proposed BSSA, and

construct a hands-free spoken-oriented guidance system using the real-time BSSA.

Moreover, a result of the speech recognition test of the proposed real-time BSSA

is also given.

In Chapter 7, the preliminaries to the musical-noise analysis in Chapter 8 are

presented. First, I give formulations for two typical methods of integrating a mi-

crophone array and SS. Second, the objective metric for musical noise on the basis

of HOS proposed in [35] is described.

In Chapter 8, HOS-based musical-noise analysis is carried out, and I reveal

that a specific integration structure is preferable for applications involving human

hearing. Moreover, several simulation results and the result of subjective listening

test are illustrated in the chapter.

Finally, Chapter 9 concludes this thesis and clarifies remaining open problems.
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Chapter 2

DataModel and Conventional BSS Methods

with ICA

2.1. Introduction

In this chapter, I describe data model of speech enhancement problem in this study

and conventional BSS methods with ICA applied to acoustical source separation

problems. In recently years, many types of ICA-based BSS methods have been

researched. Then, I review two typical ICA algorithms, second-order statistics-

based ICA (SO-ICA) and higher-order statistics-based ICA (HO-ICA), in this

chapter.

The chapter is organized as follows. Firstly, the sound mixing model to define

the speech enhancement problem in Sect. 2.2. Next, I review the two types of

ICA-based BSS methods in Sect. 2.3.

2.2. Sound mixing model

In this section, I represent the sound mixing model. I treat the convolutive sound

mixing model which takes account into a time delay and a room reverberation.

In this study, a straight-line array is assumed. The coordinates of the elements

are designateddj( j = 1, . . . , J), and the DOAs of multiple sound sources are des-

ignatedθk(k = 1, . . . ,K) (see Fig. 3). Then, I consider that only one target speech

signal, some interference signals that can be regarded as point sources, and addi-

tive noise exist. This additive noise represents noises that cannot be regarded as

point sources, e.g., spatially uncorrelated noises, background noises, and leakage

of reverberation components outside the frame analysis. Multiple mixed signals

are observed at microphone array elements, and a short-time analysis of the ob-

served signals is conducted by frame-by-frame discrete Fourier transform (DFT).
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Figure 3. Configurations of microphone array and signals.

The observed signals are given by

x( f , τ) = A( f ) {s( f , τ) + n( f , τ)} + na( f , τ), (1)

wheref is the frequency bin, andτ is the time index of DFT analysis. Also,x( f , τ)

is the observed signal vector,A( f ) is the mixing matrix,s( f , τ) is the target speech

signal vector in which only theUth entry holds the signal componentsU( f , τ) (U

is the target source number),n( f , τ) is the interference signal vector which con-

tains signal components except theUth component, andna( f , τ) is the nonstation-

ary additive noise signal term that generally represents non-point-source noises.
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These are defined as

x( f , τ) = [x1( f , τ), . . . , xJ( f , τ)]T, (2)

s( f , τ) = [0, . . . , 0︸  ︷︷  ︸
U−1

, sU( f , τ),0, . . . , 0︸  ︷︷  ︸
K−U

]T, (3)

n( f , τ) = [n1( f , τ), . . . ,nU−1( f , τ),0, nU+1, . . . , nK( f , τ)]T, (4)

na( f , τ) = [n(a)
1 ( f , τ), . . . ,n(a)

J ( f , τ)]
T
, (5)

A( f ) =


A11( f ) · · · A1K( f )
...

...

AJ1( f ) · · · AJK( f )

 . (6)

2.3. Conventional BSS methods with frequency-domain

ICA

In this section, I describe the BSS methods using ICA. In ICA algorithm, it is

assumed that source signals are mutually independent, and an appropriate sepa-

ration filter is optimized so that output signals are mutually independent. Indeed

there exists many types of ICA, the filter is optimized by various iterative or non-

iterative approaches. In this section, I review two typical types of ICA, SO-ICA

and HO-ICA, on frequency-domain.

2.3.1 Demixing process

Here, I consider a case where the number of sound sources,K, equals the number

of microphones,J, i.e.,J = K. In addition, similarly to that in the case of the con-

ventional ICA context, it is assumed that the additive noisena( f , τ) is negligible

in (1). In the frequency-domain ICA (FDICA), signal separation is expressed as

o( f , τ) = [o1( f , τ), . . . ,oK( f , τ)]T =WICA( f )x( f , τ), (7)

WICA( f ) =


W(ICA)

11 ( f ) · · · W(ICA)
1J ( f )

...
...

W(ICA)
K1 ( f ) · · · W(ICA)

KJ ( f )

 , (8)
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Figure 4. Blind source separation procedure in FDICA in case ofJ = K = 2.

whereo( f , τ) is the resultant output of the separation, andWICA( f ) is the complex-

valued unmixing matrix (see Fig. 4).

2.3.2 Optimization of unmixing matrix

The unmixing matrixWICA( f ) is optimized by ICA so that the output entries of

o( f , τ) become mutually independent. Indeed, many kinds of ICA algorithms

have been proposed. In SO-ICA [18, 20], the separation filter is optimized by

joint diagonalization of co-spectra matrices using nonstationarity and coloration

of the signal. For instance, the following iterative updating equation based on

SO-ICA has proposed by Parra[18]:

W[p+1]
ICA ( f )

= − µ
∑
τb

χ( f ) off-diag(Roo ( f , τb)) W[p]
ICA( f )Rxx( f , τb) +W[p]

ICA( f ), (9)

whereµ is the step-size parameter, [p] is used to express the value of thepth step

in iterations, off-diag[X] is the operation for setting every diagonal element of

the matrixX to zero, andχ( f ) = (
∑
τb ∥Rxx( f , τb)∥2)−1 is a normalization factor

(∥ · ∥ represents the Frobenius norm).Rxx( f , τb) andRoo( f , τb) are the cross-power
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spectra of the inputx( f , τ) and the outputo( f , τ), respectively, which are calcu-

lated around the multiple time blocksτb. Also, Pham et al. have proposed the

following improved criterion for SO-ICA [20];∑
τb

{
1
2

log det diag[WICA( f )Roo( f , τb)WICA( f )H] − log det[WICA( f )]

}
, (10)

where the superscript H denotes Hermitian transposition. This criterion is to be

minimized with respect toWICA( f ).

On the other hand, a higher-order-statistics-based approach exists. In HO-

ICA, the separation filter is optimized based on the non-Gaussianity of the signal.

The optimalWICA( f ) in HO-ICA is obtained using the iterative equation;

W[p+1]
ICA ( f ) = µ[ I − ⟨φ(o( f , τ))oH( f , τ)⟩τ]W[p]

ICA( f ) +W[p]
ICA( f ), (11)

whereI is the identity matrix,⟨·⟩τ denotes the time-averaging operator, andφ(·) is

the nonlinear vector function. Many kinds of nonlinear functionφ( f , τ) have been

proposed. Considering a batch algorithm of ICA, it is well-known that tanh(·)
or the sigmoid function is appropriate for super-Gaussian sources such as speech

signals [36]. In this study, I define the nonlinear vector functionφ(·) as

φ(o( f , τ)) ≡ [φ(o1( f , τ)), . . . , φ(oK( f , τ))]T, (12)

φ(ok( f , τ)) ≡ tanho(R)
k ( f , τ) + i tanho(I)

k ( f , τ), (13)

where the superscripts (R) and (I) denote the real and imaginary parts, respec-

tively. The nonlinear function given by (12) indicates that the nonlinearity is

applied to the real and imaginary parts of the complex-valued signals separately.

This type of complex-valued nonlinear function has been introduced by Smaragdis [17]

for the FDICA, where it can be assumed in speech signals that the real (or imag-

inary) parts of the time-frequency representations of sources are mutually inde-

pendent.

According to Refs. [22, 37], the source separation performance of HO-ICA is

almost the same as or superior to that of SO-ICA. Thus, I utilize HO-ICA as basic

ICA algorithm in simulations of this study.
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2.3.3 Scaling and permutation problem

In FDICA, separation matrices are updated independently in each frequency bin.

Therefore, source-gain ambiguity and source-order ambiguity arise in each fre-

quency bin. The former problem is known as ascaling problem, and the latter

problem is referred to as apermutation problem. The scaling problem can be

solved by projection back (PB) method [16]. On the other hand, the permuta-

tion problem heavily decreases the resultant quality. Therefore, it is indispensable

for us to align the permutation so that each separated signal contains frequency

components from the same source. There have been several methods of solving

permutation problem, e.g., a method based on correlations among neighbor fre-

quency bins [16], a method based on DOA clustering [19, 33] and a integrated

method of above mentioned methods [34]. However, the permutation problem

cannot be solved completely. In addition, increase of the permutation-salvaging

accuracy requires higher computational costs.

2.4. Conclusion

In this chapter, first, data model of speech enhancement system was denoted. Next

two typical ICA algorithms for BSS were reviewed.
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Chapter 3

Analysis of ICA under Non-Point-Source

Noise Condition

3.1. Introduction

In this chapter, I investigate the proficiency of ICA under a non-point-source noise

condition. In relation to the performance analysis of ICA, Araki et al. has men-

tioned that ICA-based BSS has equivalence to parallelly constructed ABFs [38].

However, this investigation was focused on separation with a non-singular mixing

matrix, and thus was valid for only point sources.

First, I analyze beamformers that are optimized by ICA under a non-point-

source condition in Sect. 3.2. In the analysis, I clarify that the beamformers op-

timized by ICA become specific beamformers that maximize the signal-to-noise

ratio (SNR) in each output (so-calledSNR-maximize beamformers). In particu-

lar, the beamformer for target speech estimation is optimized to be a DS beam-

former, and the beamformer for noise estimation is likely to be a null beamformer

(NBF) [19].

Next, a computer simulation is conducted in Sect. 3.3, and its result also in-

dicates that ICA is proficient in noise estimation under a non-point-source noise

condition. Then, I conclude that ICA is suitable for noise estimation such a con-

dition.

3.2. Analysis of ICA under non-point-source noise con-

dition

3.2.1 Can ICA separate any source signals?

Many previous studies of BSS provided strong evidence in that conventional ICA

could work in source separation, particularly in the special case of speech-speech
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mixing, i.e., all sound sources are point sources. However, such sound mixing

is not realistic under common acoustic conditions; indeed the following scenario

and problem are likely to arise (see Fig. 5):

• The target sound is the user’s speech, which can be approximately regarded

as apoint source. In addition, the user themselves locates relativelynear

the microphone array(e.g., 1 m apart), and consequently the accompanying

reflection and reverberation components are moderate.

• As for the noise, we are often confronted with interference sound(s) which

is not a point sourcebut a widespread source. Also the noise is usually far

from the array and heavily reverberant.

In such an environment, can ICA separate the user’s speech signal and a widespread

noise signal? The answer isno. It is well expected that conventional ICA can sup-

press the user’s speech signal to pick up the noise source, but ICA is very weak in

picking up the target speech itself via the suppression of a far widespread noise.

This is due to the fact that ICA with small numbers of sensors and filter taps often

provides only directional nulls against undesired source signals. Results of the

detailed analysis of ICA for such a noise case are shown in the following subsec-

tions.

3.2.2 SNR-Maximize beamformers optimized by ICA

In this subsection, I consider beamformers that are optimized by ICA in the fol-

lowing acoustic scenario; the target signal is the user’s speech and the noise is not

a point source. Then, the observed signal contains only one target speech signal

and an additive noise. In this scenario, the observed signal is defined as

x( f , τ) = A( f )s( f , τ) + na( f , τ). (14)

Note that the additive noisena( f , τ) cannot be negligible in this scenario. Then,

the output of ICA contains two components, i.e., estimated speech signalys( f , τ)

and estimated noise signalyn( f , τ); these are given by

[ys( f , τ), yn( f , τ)]T =WICA( f )x( f , τ). (15)
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Figure 5. Expected directivity patterns that are shaped by ICA.

Therefore, ICA optimizes two beamformers; these can be written as

WICA( f ) = [ gs( f ), gn( f )]T, (16)

where gs( f ) = [g(s)
1 ( f ), . . . ,g(s)

J ( f )]T is the coefficient vector of the beamformer

to pick up the target speech signal, andgn( f ) = [g(n)
1 ( f ), . . . , g(n)

J ( f )]T is the co-

efficient vector of the beamformer to pick up the noise. Therefore, (15) can be

rewritten as

[ys( f , τ), yn( f , τ)]T = [ gs( f ), gn( f )]Tx( f , τ). (17)

In SO-ICA, the multiple second-order correlation matrices of distinct time block

outputs,

⟨o( f , τb)oH( f , τb)⟩τb, (18)
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are diagonalized through the joint diagonalization.

On the other hand, in HO-ICA, the higher-order correlation matrix is also

diagonalized. Using Tailor expansion, a factor of the nonlinear vector function of

HO-ICA, φ(ok( f , τ)), can be expressed as

φ(ok( f , τ)) = tanho(R)
k ( f , τ) + i tanho(I)

k ( f , τ),

=

o(R)
k ( f , τ) −

(
o(R)

k ( f , τ)
)3

3
+ · · ·

 + i

o(I)
k ( f , τ) −

(
o(I)

k ( f , τ)
)3

3
+ · · ·

 ,
= ok( f , τ) −


(
o(R)

k ( f , τ)
)3

3
+ i

(
o(I)

k ( f , τ)
)3

3

 + · · · . (19)

Thus, the calculation of higher-order correlation in HO-ICA,φ(o( f , τ))oH( f , τ),

can be decomposed to a second-order correlation matrix and the summation of

higher-order correlation matrices of each order. This is shown as

⟨φ(o( f , τ))oH( f , τ)⟩τ = ⟨o( f , τ)oH( f , τ)⟩τ + Ψ( f ), (20)

whereΨ( f ) is a set of higher-order correlation matrices. In HO-ICA, separation

filters are optimized so that the all order correlation matrices become diagonal

matrices. Then, at least the second-order correlation matrix is diagonalized by

HO-ICA. Either ways in SO-ICA and HO-ICA, at least second-order correlation

matrix is diagonalized. In the following, hence, I prove that ICA optimizes beam-

formers as SNR-maximize beamformers focusing on only the part of second-order

correlation. Then an absolute value of normalized cross-correlation coefficient

(off-diagonal entries) of second-order correlation,C, is defined by

C =

∣∣∣⟨ys( f , τ)y∗n( f , τ)⟩τ
∣∣∣√

⟨|ys( f , τ)|2⟩τ
√
⟨|yn( f , τ)|2⟩τ

, (21)

ys( f , τ) = ŝ( f , τ) + rsn̂( f , τ), (22)

yn( f , τ) = n̂( f , τ) + rnŝ( f , τ), (23)

whereŝ( f , τ) is a target speech component in ICA’s output, ˆn( f , τ) is a noise com-

ponent in ICA’s output,rs is a coefficient of the residual noise component,rn is
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a coefficient of the target-leakage component, and superscript∗ represents conju-

gate complex number. Therefore, the SNRs ofys( f , τ) andyn( f , τ) can be respec-

tively represented by

Σs = ⟨|ŝ( f , τ)|2⟩τ/(|rs|2⟨|n̂( f , τ)|2⟩τ), (24)

Σn = ⟨|n̂( f , τ)|2⟩τ/(|rn|2⟨|ŝ( f , τ)|2⟩τ), (25)

whereΣs is the SNR ofys( f , τ) andΣn is the SNR ofyn( f , τ). Using (22), (23),

(24) and (25), we can rewrite (21) as

C =

∣∣∣1/√Σs · ej argrs + 1/
√
Σn · ej argr∗n

∣∣∣
√

1+ 1/Σs
√

1+ 1/Σn

=

∣∣∣1/√Σs+ 1/
√
Σn · ej(argr∗n−argrs)

∣∣∣
√

1+ 1/Σs
√

1+ 1/Σn

, (26)

where argr represents the argument ofr. Thus,C is a function of onlyΣs andΣn.

Therefore, the cross-correlation betweenys( f , τ) andyn( f , τ) only depends on the

SNRs of beamformersgs( f ) andgn( f ).

Now, I considerC minimization, which is identical with the second-order

correlation matrix diagonalization in ICA. When| argr∗n − argrs| > π/2 where

−π < argrs ≤ π and−π < argr∗n ≤ π, it is possible to makeC zero or mini-

mization independently ofΣs andΣn. This case is proper to the orthogonalization

betweenys( f , τ) andyn( f , τ), which is related to the principal component analy-

sis (PCA) unlike ICA. However, SO-ICA imposes that all correlation matrices in

the different time blocks are diagonalized (joint diagonalization) to maximize in-

dependence among all outputs. Also, HO-ICA imposes that all order correlation

matrices are diagonalized, i.e., not only⟨o( f , τ)oH( f , τ)⟩τ butΨ( f ) in (20) is also

diagonalized. These result in the prevention of the orthogonalization ofys( f , τ)

andyn( f , τ) (see Appendix A); consequently, hereafter we can consider only the

case of|argr∗n − argrs| ≤ π/2. Then, partial differential ofC2 by Σs is given by

∂C2

∂Σs
=

(1− Σs)
(Σs+ 1)2(Σn + 1)

+
Σs
√
ΣsΣn(1− Σs)

(Σs+ 1)2(Σn + 1)
· 2Re

[
ej(argr∗n−argrs)

]
< 0, (27)
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whereΣs > 1 andΣn > 1. As for the partial differential ofC2 by Σn, I can also

prove∂C2/∂Σn < 0, whereΣs > 1 andΣn > 1 in the same manner. Therefore,C

is a monotonically decreasing function ofΣs andΣn. The above-mentioned fact

indicates the following in ICA.

• The absolute value of cross-correlation only depends on the SNRs of beam-

formers spanned by each row of an unmixing matrix.

• The absolute value of cross-correlation is a monotonically decreasing func-

tion of SNR.

• Therefore, the diagonalization of a second-order correlation matrix leads to

SNR maximization.

Thus, I conclude that ICA, in a parallel manner, optimizes multiple beamformers,

i.e., gs( f ) andgn( f ), so that the SNR of the output by each beamformer becomes

maximum.

3.2.3 What beamformers are optimized under non-point-source

noise condition?

In the previous subsection, it has been proved that ICA optimizes beamformers as

SNR-maximize beamformers. In this subsection, I analyze what beamformers are

optimized by ICA particularly under a non-point-source noise condition, where

I assume a two-source separation problem. The target speech can be regarded

as a point source, and the noise is a non-point-source noise. First, I focus my

attention on the beamformergs( f ) that picks up the target speech signal. The

SNR-maximize beamformer forgs( f ) is minimizing the undesired signal’s power

under the condition that the target signal’s gain is kept constant. Thus the desired

beamformer should satisfy the following

min
gs( f )

gT
s( f )R( f )gs( f ) subject togT

s ( f )a( f , θs) = 1, (28)

a( f , θs( f )) = [exp(i2π( f /M) fsd1 sinθs/c), . . . , exp(i2π( f /M) fsdJ sinθs/c)]T,

(29)
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wherea( f , θs( f )) is the steering vector,θs( f ) is the direction of the target speech,

M is the DFT size,fs is the sampling frequency,c is the sound velocity, and

R( f ) = ⟨na( f , τ)nH
a ( f , τ)⟩τ is the correlation matrix ofna( f , τ). Note thatθs( f ) is

a function of frequency because the DOA of the source varies in each frequency

subband under a reverberant condition. Here, using the Lagrange-multiplier, the

solution of (28) is

gs( f )T =
a( f , θs( f ))HR−1( f )

a( f , θs( f ))HR−1( f )a( f , θs( f ))
. (30)

This beamformer is called a minimum variance distortionless response (MVDR)

beamformer [39]. Note that the MVDR beamformer requires the true DOA of the

target speech and the noise-only time interval. However, we cannot determine the

true DOA of the target source signal and noise-only interval because ICA is an

unsupervisedadaptive technique. Thus, the MVDR beamformer is expected to be

the upper limit of ICA in the presence of non-point-source noises.

Although the correlation matrix is often not diagonalized in lower-frequency

subbands [39], e.g., diffuse noise, I approximate that the correlation matrix is

almost diagonalized in whole frequency subbands. Then, regarding the power

of noise signal as approximatelyδ2( f ), the correlation matrix results inR( f ) =

δ2( f ) · I . Therefore, the inverse of correlation matrixR−1( f ) = I/δ2( f ) and (30)

can be rewritten as

gs( f )T =
a( f , θs( f ))H

a( f , θs( f ))Ha( f , θs( f ))
. (31)

Sincea( f , θs( f ))Ha( f , θs( f )) = J, we finally obtain

gs( f ) =
1
J

[exp(−i2π( f /M) fsd1 sinθs( f )/c) ,

. . . , exp(−i2π( f /M) fsdJ sinθs( f )/c)]T. (32)

This filter gs( f ) is approximately equal to a DS beamformer [7]. Note that the

filter gs( f ) is not a simple DS beamformer but areverberation-adapted DS beam-

former because it is optimized for distinctθs( f ) in each frequency bin. The re-

sultant noise power isδ2( f )/J when the noise is spatially uncorrelated and white

Gaussian. Consequently the noise-reduction performance of the DS beamformer
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optimized by ICA under a non-point-source noise condition is proportional to

10 log10 J [dB]; this performance is not so good.

Next, I consider the other beamformergn( f ) which picks up the noise source.

As for the noise signal, the beamformer which removes the target signal arriving

from θs( f ) is the SNR-maximize beamformer. Thus, the beamformer which steers

the directional null toθs( f ) is the desired one for the noise signal. Such a beam-

former is called NBF [19]. This beamformer compensates the phase of the signal

arriving from θs( f ), and takes subtraction. Thus, the signal from arriving from

θs( f ) is removed. For instance, NBF with two-element array is designed as

gn( f ) = [exp(−i2π( f /M) fsd1 sinθs( f )/c),

− exp(−i2π( f /M) fsd2 sinθs( f )/c)]T · σ( f ), (33)

whereσ( f ) is the gain compensate parameter. This beamformer surely satisfies

gT
n( f ) · a( f , θs( f )) = 0. The steering vectora( f , θs( f )) expresses the wavefront

of the plane wave arriving fromθs( f ). Thus,gn( f ) actually steers directional null

to θs( f ). Note that this always holds regardless of the number of microphones

(at least two microphones). Hence, this beamformer achieves quite high, ideally

infinite, SNR for the noise signal.

Also, note that the filtergn( f ) is not a simple NBF but areverberation-adapted

NBF because it is optimized for distinctθs( f ) in each frequency bin. Overall, the

performance of enhancing the target speech is very poor and that of estimating the

noise source is good.

3.3. Computer simulation

I conduct computer simulations to confirm the performance of ICA under a non-

point-source noise condition. Here, I used HO-ICA [17] as the ICA algorithm.

I used the following 8 kHz-sampled signals as ICA’s input; the original target

speech (3 seconds) convoluted with impulse responses that were recorded in an

actual environment, and to which three types of noise from 36 loudspeakers were

added. The reverberation time (RT60) is 200 ms; this corresponds to mixing fil-
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Figure 6. Layout of reverberant room in my simulation.

ters with 1600 taps in 8 kHz sampling. The three types of noise are an indepen-

dent Gaussian noise, an actually recorded railway-station noise, and interference

speech by 36 people. Figure 6 illustrates the reverberant room used in the simu-

lation. I use 12 speakers (6 males and 6 females) as sources of the original target

speech, and the input SNR of test data is set to 0 dB. I use a two-, three-, or

four-element microphone array with an interelement spacing of 4.3 cm.

The simulation results are shown in Figs. 7 and 8. Figure 7 shows the result

for the average noise reduction rate (NRR) [19] of all the target speakers. NRR

is defined as the output SNR in dB minus the input SNR in dB. This measure
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Figure 7. Simulation-based separation results under non-point-source noise con-

dition.

indicates the objective performance of noise reduction. NRR is given by

NRR [dB] =
1
J

J∑
j=1

(OSNR− ISNRj), (34)

where OSNR is the output SNR and ISNRj is the input SNR of microphonej.

From this result, we can see an imbalance between the target speech estima-

tion and the noise estimation in every noise case; the performance of the target

speech estimation is significantly poor, but that of noise estimation is very high.

This result is consistent with the theory previously stated. Moreover, Fig. 8 shows

directivity patterns shaped by the beamformers optimized by ICA in the simu-

lation. It is clearly indicated that the beamformergs( f ) that picks up the target

speech resembles the DS beamformer, and the beamformergn( f ) that picks up

the noise becomes NBF. From these results, we can confirm that the previously

stated theory, i.e., the beamformers optimized by ICA under a non-point-source

noise condition are DS and NBF, is valid.
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shaped by ICA at 2 kHz and two-element array in white Gaussian noise case.

3.4. Conclusion

In this chapter, I gave the analysis of ICA under non-point-source noise condi-

tion. As a result of the analysis, I founded out that ICA optimizes SNR-maximize

beamformers. Therefore, ICA generates NBF for target speech reduction, and DS

for non-point-source noise reduction. That is to say, since the signal reduction

performance of NBF is significantly high, ideally infinity, ICA is proficient in

noise estimation that is equivalent to reduction of target speech. Also, the validity

of this analysis was shown via a computer simulation. As a result of the simula-

tion, it could be confirmed that ICA is proficient in estimation of non-point-source

noise signal. Also, it could be shown that ICA generates DS for non-point-source

signals and NBF for point source signals. For these reasons, I conclude that ICA

is proficient in noise estimation under non-point-source noise condition.
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Chapter 4

Blind Speech Extraction Method

with ICA- based Noise Estimator

4.1. Introduction

In this chapter, I propose a new blind speech extraction method with using ICA-

based noise estimator. In the previous chapter, I have clarified that ICA is profi-

cient in noise estimation rather than in target-speech estimation under a non-point-

source noise condition. This analytic result implies that ICA cannot be directly

applied to the source separation problem which involves non-point-source noise

signals. However, this analysis also insists that ICA can be still utilized as an accu-

rate noise estimator. This fact motivates me to propose a new speech-enhancement

strategy, i.e., BSSA. The proposed BSSA consists of a DS-based primary path

and a reference path including ICA-based noise estimation (see Fig. 9). The es-

timated noise component in ICA is efficiently subtracted from the primary path

in the power-spectrum domain without phase information. This procedure can

yield better target-speech enhancement than the simple ICA, even with a benefit

of estimation-error robustness in speech recognition applications.

Furthermore, the proposed BSSA has another advantage, i.e.,permutation ro-

bustness. In frequency-domain ICA, source permutation ambiguity arises in each

frequency bin, and markedly decreases the source separation quality. Therefore

it is indispensable for us to align permutation so that each separated signals con-

tains frequency components from the same source. Although various permuta-

tion solvers have been proposed, e.g., spectral-continuity-based methods [16, 32],

DOA-based methods [19], and the integration method of spectral continuity and

DOA [34], have been proposed, the permutation problem cannot be solved com-

pletely. In addition, an increase of the permutation-salvaging accuracy requires an

increase in computational cost. Permutation robustness indicates how much the

BSS method is not affected under a certain probability of arising permutation, and
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Figure 9. Block diagram of proposed blind spatial subtraction array.

such an important property has never been studied so far in previous ICA studies.

Note that permutation robustness in BSSA does not conflict with any permutation

solver. That is to say, any permutation solvers are available in ICA part of BSSA.

BSSA reduces the remained permuted components which could not be solved by

a permutation solver. An improvement in permutation robustness through small

computations is a novel and efficient way of increasing BSS quality.

The chapter is organized as follows. In the following Sect. 4.2, I give a detailed

signal processing in proposed BSSA. Next, the discussion about permutation ro-

bustness is described in Sect. 4.3. Next, the effectiveness of the proposed BSSA

is shown via experimental results in Sect. 4.4. Finally, Sect. 4.5 concludes the

chapter.

4.2. Algorithm

4.2.1 Partial speech enhancement in primary path

I consider the generalized form of the observed signal as described in (1) again.

The target speech signal is partly enhanced in advance by DS. This procedure can
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be given as

yDS( f , τ) = wT
DS( f )x( f , τ)

= wT
DS( f )A( f )s( f , τ) + wT

DS( f )A( f )n( f , τ)

+ wT
DS( f )na( f , τ), (35)

wDS = [w(DS)
1 ( f ), . . . ,w(DS)

J ( f )]
T
, (36)

w(DS)
j ( f ) =

1
J

exp
(
−i2π( f /M) fsdj sinθU/c

)
, (37)

whereyDS( f , τ) is the primary-path output that is a slightly enhanced target speech,

wDS( f ) is the filter coefficient vector of DS, andθU is the estimated DOA of the

target speech given by the ICA part in Sect. 4.2.2. In (35), the second and third

terms on the right-hand side express the remaining noise in the output of the pri-

mary path.

4.2.2 ICA-based noise estimation in reference path

The proposed BSSA provides ICA-based noise estimation. First, source separa-

tion by ICA is applied to the observed signal, and we obtain the separated signal

vectoro( f , τ) is obtained as

o( f , τ) =WICA( f )x( f , τ), (38)

o( f , τ) = [o1( f , τ), . . . , oK+1( f , τ)]T, (39)

WICA( f ) =


W(ICA)

11 ( f ) · · · W(ICA)
1J ( f )

...
...

W(ICA)
(K+1)1( f ) · · · W(ICA)

(K+1)J( f )

 , (40)

where the unmixing matrixWICA( f ) is optimized by (11). Note that the number

of ICA’s outputs becomesK + 1 and thus the number of sensors,J, is equal to

more thanK+1 because it is supposed that the additive noisena( f , τ) is not negli-

gible. The additive noise cannot be perfectly estimated because the additive noise

is deformed by the filter optimized by ICA. Moreover other components cannot

also be estimated perfectly when the additive noisena( f , τ) exists. However, it is

possible to estimate at least that noises (including interference sounds that can be
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regarded as point sources, and the additive noise) that do not involve the target

speech signal, as denoted in Sect. 3.2. Therefore, the estimated noise signal is still

beneficial.

Next, DOAs are estimated from the unmixing matrixWICA( f ) [19, 34]. This

procedure is represented by

θu = sin−1
arg

(
[W−1

ICA ( f )] ju

[W−1
ICA ( f )] j′u

)
2π fsc−1(dj − dj′)

, (41)

whereθu is the DOA of theuth sound source. Then,Uth source signal which is

nearest the front of the microphone array are chosen, and the DOA of the chosen

source signal is designated asθU in this paper. This is because almost all users will

stand in front of the microphone array in a speech-oriented human-machine inter-

face, e.g., a public guidance system, which is one of my target applications. Other

strategies for choosing target speech signal can be considered (see Appendix B).

Next, in the reference path, no target speech signal is required because it is

desired to estimate only noise. Therefore, the user’s signal from the ICA’s output

signalo( f , τ) is eliminated. This can be written as

q( f , τ) =
[
o1( f , τ), ..., oU−1( f , τ),0,oU+1( f , τ), ..., oK+1( f , τ)

]T , (42)

whereq( f , τ) is the “noise-only” signal vector that contains only noise compo-

nents. Next, the projection back (PB) [16] method is performed to remove the

ambiguity of amplitude. This procedure can be represented as

q̂( f , τ) = W+
ICA( f )q( f , τ), (43)

whereM+ denotes the Moore-Penrose pseudo inverse matrix ofM . Thus,q̂( f , τ)

is a good estimate of the received noise signals at the microphone positions, i.e.,

q̂( f , τ) ≃ A( f )n( f , τ) +W+
ICA( f )n̂a( f , τ), (44)

where n̂a( f , τ) contains the deformed additive noise signal and separation error

due to an additive noise. Finally, the estimated noise signalz( f , τ) is constructed
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by applying DS as

z( f , τ) = wT
DS( f )q̂( f , τ),

≃ wT
DS( f )A( f )n( f , τ)

+ wT
DS( f )W+

ICA( f )n̂a( f , τ). (45)

This equation means thatz( f , τ) is a good candidate for noise terms of the primary

path outputyDS( f , τ) (see the 2nd and 3rd terms on the right-hand side of (35)). Of

course this noise estimation is not perfect, but it is still possible to enhance the tar-

get speech signal via oversubtraction in the power-spectrum domain as described

in Sect. 4.2.3. Note thatz( f , τ) is a function of the frame indexτ, unlike the con-

stant noise prototype in the traditional SS method [5]. Therefore, the proposed

BSSA can deal withnonstationarynoise.

4.2.3 Noise reduction processing in BSSA

In the proposed BSSA, noise reduction is carried out by subtracting the estimated

noise power spectrum (45) from the partly enhanced target speech signal power

spectrum (35). This procedure is given as

yBSSA( f , τ) =


{
|yDS( f , τ)|2 − β · |z( f , τ)|2

} 1
2

( if |yDS( f , τ)|2 − β · |z( f , τ)|2 ≥ 0 ),

η · |yDS( f , τ)| (otherwise),

(46)

whereyBSSA( f , τ) is the final output of BSSA,β is an oversubtraction parameter,

andη is a flooring parameter. This is an extended formulation of SS [40]. The

appropriate setting, e.g.,β > 1 andη ≪ 1, gives an efficient noise reduction. For

example, too larger oversubtraction parameter (β ≫ 1) leads the larger SNR im-

provement. However, the target signal would be distorted. On the other hand, the

smaller oversubtraction parameter (β ≪ 1) gives the low-distorted target signal.

However the SNR improvement is decreased. In the end, the trade-off between

SNR improvement and the distortion of the output signal exists with respect to the

parameterβ; 1 < β < 2 is usually used.
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The system switches in two equations depending on the conditions in (46).

If the calculated noise components using ICA in (45) are underestimated, i.e.,

|yDS( f , τ)|2 > β|z( f , τ)|2, the resultant outputyBSSA( f , τ) corresponds to the power-

spectrum-domain subtraction among primary and reference paths with an over-

subtraction rate ofβ. On the other hand, if the noise components are overes-

timated in ICA, i.e.,|yDS( f , τ)|2 < β|z( f , τ)|2, the resultant outputyBSSA( f , τ) is

floored with a small positive value to avoid the negative-valued unrealistic spec-

trum. Theseoversubtractionandflooring procedures promise us an error-robust

speech enhancement in the proposed BSSA rather than a simple linear subtraction.

Although the nonlinear processing in (46) often generates an artificial distortion so

calledmusical noise, it is still applicable in the speech recognition system because

the speech decoder is not very sensitive to such a distortion.

In BSSA, DS and SS are processed in addition to ICA. In HO-ICA or SO-ICA,

to calculate the correlation matrix, at least the hundreds of product-sum operations

are required in each frequency subband. On the other hand, in DS, at mostJ

product-sum operations are required in each frequency subband. A mere 4 or 5

products are required for SS. Therefore, the complexity of BSSA does not increase

by as much as 10% compared with ICA.

The proposed BSSA involves a mel-scale filter bank analysis and directly

outputs mel-frequency cepstrum coefficient (MFCC) [41] for speech recognition.

Therefore, the proposed BSSA requires no transformation into the time-domain

waveform for speech recognition. The detailed process is shown in Appendix C.

4.3. Permutation-robustness analysis in BSSA

In this section, I present a permutation-robustness analysis in BSSA architecture.

In conventional FDICA, when the permutation arises, we directly suffer from a

permuted noise component that is wrongly regarded as the target signal. Thus,

the conventional FDICA has no robustness against permutation. For the permuta-

tion problem, FDICA requires special processing, i.e., permutation solvers [42].

On the other hand, in BSSA, the adverse effect of permutation is mitigated be-
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cause the SS-based source extraction process in (46) reduces the power of per-

muted components (details will be shown in Sect. 4.3.1, and DS defocuses the

component arriving from the out of look direction (details will be described in

Sect. 4.3.2). These are performed without any special processing like permutation

solvers. Therefore, it can be conclude that the BSSA architecture is a permutation-

robust structure. Note that BSSA is not just a permutation solver but a mitigation

of residual permutation effect. Indeed, BSSA can utilize any permutation solvers

in ICA part. The BSSA structure can reduce remaining permuted components

after permutation solver. The detailed analysis is shown below.

4.3.1 Permutation robustness by oversubtraction

Here, it is supposed that source separation was performed perfectly by FDICA

except for the permutation that arises in the frequency binfp. Moreover, it is

assumed that the additive noisena( f , τ) can be made negligible to simplify dis-

cussion. Consequently, the observed signal in (1) can be rewritten as

x̃( f , τ) = A( f ){s( f , τ) + n( f , τ)}. (47)

Under this assumption, the estimated target speech signal in the frequency binfp

by ICA (including PB processing) can be described as

yICA( fp, τ) = A( fp)ne( fp, τ), (48)

ne( fp, τ) = [0, . . . , 0︸  ︷︷  ︸
V−1

,nV( fp, τ), 0, . . . , 0︸  ︷︷  ︸
K−V

]T, (49)

where yICA( fp, τ) is the output signal vector as a target speech signal by ICA,

ne( fp, τ) is the noise signal vector estimated as the target speech signal vector by

mistake,nV( fp, τ) is the noise component estimated as the target speech compo-

nent by mistake, andV(, U) expresses the component number of noise. More-

over, sincene( fp, τ) is composed of zero components except the specific noise

componentnV( fp, τ), yICA( fp, τ) can be rewritten as

yICA( fp, τ) = h( fp)nV( fp, τ), (50)

h( fp) = [A1V( fp), . . . ,AJV( fp)]
T, (51)
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whereh( fp) is a transfer function vector of the noise componentnV( fp, τ), and

Ai j ( f ) expresses an element of the mixing matrixA( f ).

On the other hand, the estimated noise signal in the reference path of BSSA,

z̃( fp, τ), can be represented by

z̃( fp, τ) = wT
DS( fp)A( fp)q̃( fp, τ), (52)

q̃( fp, τ) = [n1( fp, τ), . . . , nV−1( fp, τ),0,nV+1( fp, τ), . . . ,

nU−1( fp, τ), sU( fp, τ),nU+1( fp, τ), . . . , nK( fp, τ)]
T, (53)

whereq̃( fp, τ) is the estimated noise component vector including the target signal

by mistake (hereV < U for simplification). Note that the observed signalx̃( fp, τ)

can be rewritten as

x̃( fp, τ) = A( fp){q̃( fp, τ) + ne( fp, τ)}. (54)

Moreover, since the additive noise can be negligible in this section, the output of

the primary path in BSSA (35) can be written as

ỹDS( fp, τ) = wT
DS( fp)x̃( fp, τ)

= wT
DS( fp)A( f ){q̃( fp, τ) + ne( fp, τ)}. (55)

When |ỹDS( fp, τ)|2 − β · |z̃( fp, τ)|2 ≥ 0, form (52) and (55), the expectation of the

power spectrum of BSSA output ˜yBSSA( fp, τ) can be represented by

E
[
|ỹBSSA( fp, τ)|2

]
= E

[
|ỹDS( fp, τ)|2 − β · |z̃( fp, τ)|2

]
= E

[
|wT

DS( fp)A( fp)
{
q̃( fp, τ) + ne( fp, τ)

}
|2
]

− E
[
β · |wT

DS( fp)A( fp)q̃( fp, τ)|2
]

≃ (1− β) · E
[
|wT

DS( fp)A( fp)q̃( fp, τ)|2
]

+ E
[
|wT

DS( fp)A( fp)ne( fp, τ)|2
]
, (56)

whereE[·] denotes the expectation operator. I use the relation showing that the

cross terms among the distinct noise components are negligible with taking ex-

pectation. Since the oversubtraction parameter is usually set toβ > 1, it is evident
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that the first term on the right-hand side of (56) is a negative quantity and the

following relation holds:

E
[
|ỹBSSA( fp, τ)|2

]
< E

[
|wT

DS( fp)A( fp)ne( fp, τ)|2
]

= E
[
|wT

DS( fp)h( fp)nV( fp, τ)|2
]
. (57)

4.3.2 Permutation robustness by defocusing in DS

Under reverberant conditions,h( fp) can be expressed by the superposition of all

reflection components. Thereforeh( fp) can be rewritten as

h( fp) =
∑

q

r (q)a( fp, θ
(q)), (58)

where (q) is used to express the index of theqth reflection component,r (q) is the

reflection coefficient,θ(q) is the DOA of the reflection component of the permuted

noisenV( fp, τ), anda( f , θ) is the steering vector described in (29). From (58), the

resultant power of DS can be obtained by

|wT
DS( fp)h( fp)nV( fp, τ)|2

=
∣∣∣∑

q

r (q)wT
DS( fp)a( fp, θ

(q))nV( fp, τ)
∣∣∣2

=
∑

q

∣∣∣r (q)wT
DS( fp)a( fp, θ

(q))nV( fp, τ)
∣∣∣2 +C1, (59)

whereC1 is a term that contains all the cross terms among reflection components.

Also, the power of the conventional ICA’s output in the specific microphonej,

y[ j]
ICA( fp, τ), can be written as

|y[ j]
ICA( fp, τ)|2 =

∣∣∣∑
q

r (q)aj( fp, θ
(q))nV( fp, τ)

∣∣∣2
=

∑
q

∣∣∣r (q)aj( fp, θ
(q))nV( fp, τ)

∣∣∣2 +C2, (60)

whereaj( f , θ) is the jth entry ofa( f , θ), andC2 also expresses all the cross terms

among reflection components. Here, the directivity gain of the DS filterwT
DS( f ) is
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unity only whenθ equals the focus direction of DS,θU , and it is less than one (i.e.,

defocused) in the other directions. This is represented by∣∣∣wT
DS( f )a( f , θ)

∣∣∣ ≤ 1. (61)

Thus, the power of each reflection component satisfies

|wT
DS( fp)a( fp, θ

(q))|2|r (q)nV( fp, τ)|2

≤ |aj( fp, θ
(q))|2|r (q)nV( fp, τ)|2, (62)

because|aj( f , θ)| = 1. Here I assume that almost all the reflection components

of nV( fp, τ) come from around the noise DOA and outside ofθU . Hence, the fol-

lowing relation holds for almost all the reflection components except the specific

reflection component arriving fromθU , a( fp, θ(q
′))nV( fp, τ), whereθ(q

′) = θU ;

|r (q)wT
DS( fp)a( fp, θ

(q))nV( fp, τ)|2

< |r (q)aj( fp, θ
(q))nV( fp, τ)|2. (63)

Moreover, if the interference with each reflection component arises statistically at

random, it can be expected thatC1 in (59) andC2 in (60) become statistically the

same. Therefore, the following equation holds:∑
q

|r (q)wT
DS( fp)a( fp, θ

(q))nV( fp, τ)|2 +C1

<
∑

q

|r (q)aj( fp, θ
(q))nV( fp, τ)|2 +C2. (64)

This equation can be replaced by

|wT
DS( fp)h( fp)nV( fp, τ)|2 < |y[ j]

ICA( fp, τ)|2. (65)

From (57) and (65), the following relation is valid:

E
[
|ỹBSSA( fp, τ)|2

]
< E

[
|wT

DS( fp)h( fp)nV( fp, τ)|2
]

< E
[
|y[ j]

ICA( fp, τ)|2
]
. (66)

This relation indicates that the power of the BSSA output is less than that of the

ICA output in the permutation-arising frequency binfp.
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On the other hand, when|ỹDS( fp, τ)|2 − β · |z̃( fp, τ)|2 < 0, the resultant power

spectrum of BSSA is floored by the flooring parameterη. If η is sufficiently small,

ỹBSSA( fp, τ) becomes smaller than the error component of permutation.

From the above-mentioned fact, it can be concluded that BSSA is permutation-

robust compared with ICA. However, we must pay attention to the setting of the

oversubtraction parameterβ. Although the oversized oversubtraction parameter

β can suppress permutation perfectly, such a parameter reduces not only noise

components but also the target component in other innocent (nonpermuted) fre-

quency bins. Therefore, we should use an appropriate oversubtraction parameter,

β, because such an oversized parameter causes artificial distortion.

4.4. Evaluation of proposed blind speech extraction

method

In this section, I carry out the following experiments to show the effectiveness of

the proposed BSSA.

• Evaluation of permutation robustness in BSSA

In this experiment, I make a comparison between the conventional ICA and

proposed BSSA from the viewpoint of permutation robustness.

• Experiment in reverberant room

In this experiment, I represent a comparison result of ICA-based BSS, and

the traditional SS cascaded with ICA, and the proposed BSSA under the

reverberant room condition. The comparison is performed on the basis of

NRR, cepstral distortion (CD), and speech recognition test.

• Experiment in an actual world

The above evaluations are conducted in the experiment room. On the other

hand, I evaluate the performance of the proposed BSSA in an actual railway-

station in this experiment. The effectiveness of the proposed BSSA under

an actual environment is revealed through this experiment.
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4.4.1 Evaluation of permutation robustness in BSSA

In this experiment, I mainly evaluate permutation-robustness ability in BSSA.

First, I compare ICA and BSSA on the basis of NRR. As well, HO-ICA algo-

rithm is utilized as the conventional ICA [17]. Hereafter, the ‘ICA’ simply indi-

cates HO-ICA. It is supposed that source separation is performed perfectly except

for the permutation generated artificially in randomly selected frequency bins. I

increase the percentage of permutation-arising frequency bins to assess the robust-

ness against the permutation problem. Figure 10 shows a layout of the reverberant

room used in this experiment, where the reverberation time is 200 ms; this cor-

responds to mixing filters of 3200 taps with 16 kHz sampling. I use 3-s speech

signals (male and female) as an original speech, and input SNR is set to 0 dB at

the array. The target signal is a male’s speech, the noise is a female’s speech, and

the noise direction is 50 degrees. A four- or eight-element array with an interele-

ment spacing of 2 cm is used, and DFT size is 512. The oversubtraction parameter

β is 1.2 and the flooring coefficientγ is 0.0. Such parameters are experimentally

determined. Figure 11 shows the resultant curve of the NRRs of ICA and BSSA

with increasing the percentage of permutation-arising frequency bins. From these

results, we can confirm that the NRR of BSSA outperforms that of ICA even

if the percentage of permutation-arising frequency bins increases. These results

evidently indicate that BSSA involves a permutation-robust structure.

Although the previous NRR results are positive for BSSA, one might specu-

late that sound distortion is enhanced; certainly, we can see musical noise in the

resultant output of the proposed BSSA. Consequently, I show results of CD and

speech recognition that is the final goal of BSSA, in which the separated sound

quality is completely considered. I use an eight-element array, and I generate 5%

or 10% permutations artificially. I use 46 speakers (200 sentences) as the origi-

nal source and I use a male’s speech (1 sentence) as an interference noise source.

Noise direction is 50 or 80 degrees. The speech recognition task and conditions

are shown in Table 1.

CD [43] is a measure of the degree of distortion via the cepstrum domain. CD
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indicates distortion among two signals, which is defined as

CD [dB] ≡ 1
T

T∑
τ=1

Db

√√√ B∑
ρ=1

2(Cout(ρ; τ) −Cref(ρ; τ))2, (67)

Db =
20

log 10
, (68)

whereT is the frame length,Cout(ρ; τ) is theρth cepstrum coefficient of the output

signal in the frameτ, Cref(ρ; τ) is theρth cepstrum coefficient of the speech sig-

nal convoluted with impulse response, andDb is the constant that transforms the

measure into dB. Besides,B is the number of dimensions of the cepstrum used in

the evaluation. Moreover, I use word accuracy (WA) score as a speech recognition

performance. This index is defined as

WA [%] ≡ WWA − SWA − DWA − IWA

WWA
× 100, (69)

whereWWA is the number of words,SWA is the number of substitution errors,DWA

is the number of dropout errors, andIWA is the number of insertion errors.

Figures 12(c) and (d) illustrate the CD score under each condition. We can see

that the proposed BSSA increases the degree of distortion slightly due to spectral

oversubtraction. Figures 12(e) and (f) show the word accuracy under each con-

dition. From these results, however, we can confirm that the word accuracy of

the proposed BSSA is higher that of ICA under all conditions; this means that

the marked improvement in NRR can dominantly contribute to word accuracy in

BSSA.

4.4.2 Experiment in reverberant room

In this experiment, I present a comparison of typical blind noise reduction meth-

ods, namely, the conventional ICA [17] and the traditional SS [5] cascaded with

ICA (ICA+SS). In ICA+SS, first, noise estimation is performed from the speech

pause interval in the target speech estimation by ICA. The noise reduction is
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Figure 10. Layout of reverberant room used in experiment which simulates per-

mutation problem.

Table 1. Conditions for Speech Recognition

Database JNAS [44], 306 speakers (150 sen-

tences/speaker)

Task 20 k words newspaper dictation

Acoustic model phonetic tied mixture (PTM) [44],

clean model

Number of training speakers for

acoustic model

260 speakers (150 sen-

tences/speaker)

Decoder JULIUS [44] ver 3.5.1
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Figure 11. Curves of NRR with increasing the percentage of permutation-arising

frequency bins by (a) four-element and (b) eight-element arrays.

achieved by SS as

yICA+SS( f , τ) =


{
|oU( f , τ)|2 − β|n̂remain( f )|2

} 1
2

(where|oU( f , τ)|2 − β|n̂remain( f , τ)|2 ≥ 0),

γ|oU( f , τ)| (otherwise),

(70)
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Figure 12. Experimental results of simulating permutation problem artificially.

(a) and (b) are results of noise reduction rate, where 5% and 10% permutations

arose, respectively. (c) and (d) indicate results of cepstral distortion, where 5%

and 10% permutations arose, respectively. (e) and (f) show speech recognition

results, where 5% and 10% permutations arose, respectively.

wheren̂remain( f ) is the estimated noise signal from the speech pause in the target

speech estimation by ICA. Moreover, DOA-based permutation solver[19] is used

in the conventional ICA and ICA part in BSSA.

I used 16 kHz-sampled signals as test data; the original speech (6 s) convo-

luted with impulse responses recorded in an actual environment, and to which

cleaner noise or a male’s interfering speech that was recorded in an actual envi-

ronment were added. Figure 13 shows the layout of the reverberant room used in

the experiment. The reverberation time of the room is 200 ms; this corresponds to

mixing filters of 3200 taps in 16 kHz sampling. The cleaner noise is not a simple
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point source signal but consists of severalnonstationarynoises emitted from a

motor, air duct and nozzle. Also, a male’s interfering speech is not a simple point

source but is slightly moving. In addition, these interference noises involve back-

ground noise. The SNR of background noise (power ratio between target speech

and background noise) is about 28 dB. I use 46 speakers (200 sentences) as the

source of the target speech. The input SNR is set to 10 dB at the array. I use a

four-element microphone array with an interelement spacing of 2 cm. The DFT

size is 512. The oversubtraction parameterβ is 1.4 and the flooring coefficientγ

is 0.2. Such parameters are experimentally determined. The speech recognition

task and conditions are the same as those in Sect. 4.4.1 as shown in Table 1.

First, I show actual separation results by ICA for the cleaner noise and in-

terference speech cases in Fig. 14. We can confirm the imbalanced performance

between target estimation and noise estimation similarly to the simulation-based

results (see Sect. 3.3).

Next, I make a discussion of the NRR-based experimental result shown in

Figs. 15(a) and 16(a). From the result, we can confirm that the NRRs of the

proposed BSSA are greater than those of the conventional ICA and ICA+SS by

more than 3 dB. However, we can see that the distortion of the proposed BSSA

increases slightly from Figs. 15(b) and 16(b). This is due to the fact that the noise

reduction of the proposed BSSA is performed based on SS. However, the amount

of increase in the degree of distortion is expected to be negligible.

Finally, we can see the speech recognition result in Figs. 15(c) and 16(c). It is

evident that the proposed BSSA is superior to the conventional ICA and ICA+SS.

4.4.3 Experiment in actual world

Finally, I conduct an experiment in an actual railway-station environment. Fig-

ure 17 shows a layout of the railway-station environment used in my experiment,

where the reverberation time is about 1000 ms; this corresponds to mixing filters

of 16000 taps in 16 kHz sampling. I used 16 kHz-sampled signals as test data;

the original speech (6 s) convoluted with impulse responses that were recorded in

an actual railway-station environment, and to which a real-recorded noise in the

42



1.0 m

40
o

Loudspeaker

 (Height: 1.5 m)

Cleaner (moving on the ground)

Microphones

 (Height: 1.5 m)

0.9 m2.4 m

4.2 m
3
.5

 m

Reverberation time: 200 ms

1.5 m

2.0 m

Interference speech

(slightly moving)

Figure 13. Layout of reverberant room used in my experiment.

environment was added. I use 46 speakers (200 sentences) as the original source

of the target speech. The noise in the environment is nonstationary and is al-

most a non-point-source; consists of various kinds of interference noise, namely,

background noise, and the sounds of trains, ticket-vending machines, automatic

ticket wickets, foot steps, cars, and wind. Figure 18 shows two typical noises,

noise 1 and noise 2, which are recorded in distinct time periods, and used in my

experiment. A four-element array with an interelement spacing of 2 cm is used.

Figure 19 shows the real separation results by ICA in a railway-station envi-

ronment. We can ascertain an imbalanced performance between target estimation

and noise estimation similarly to the simulation-based results (see Sect. 3.3).

In the next experiment, I compare the conventional ICA, ICA+SS, and BSSA

in terms of NRR, cepstral distortion, and speech recognition performance. Fig-
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Figure 15. Results of (a) noise reduction rate, (b) cepstral distortion, and (c)

speech recognition test for each method (cleaner noise case).

ure 20(a) shows the results of the average of NRR in whole sentences. From these

results, we can see that the NRR of BSSA that utilizes ICA as a noise estimator

is superior to those of the conventional methods. Figure 21 shows the waveform

examples of each method. From this result, we can also see that the noise reduc-

tion performance of the proposed BSSA is better than those of the conventional
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methods. However, we can find that the cepstral distortion in BSSA is increased

compared with that in ICA from Fig. 20(b).

Finally, I show results of speech recognition, where the extracted sound quality

is completely considered, in Fig. 20(c). The speech recognition task and condi-

tions are the same as those in Sect. 4.4.1, as shown in Table 1. From this result, I

conclude that the target-enhancement performance of BSSA, i.e., the method that

uses ICA as a noise estimator, is evidently superior to the method that uses ICA
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directly as well as ICA+SS.
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4.5. Conclusion

In this chapter, I proposed the new blind speech extraction method, i.e., BSSA.

The proposed BSSA introduces the following two aspects:

BSSA can treat non-point-source noiseThe conventional ICA, which is the most

popular blind source separation method, can work in the limited case such as

a speech-speech mixing condition, i.e., all sound sources are point sources.

However, an actual environment involves not only point-source interference

signals but also non-point-source noise signals. On the other hand, the pro-

posed BSSA architecture can work even under such the realistic acoustic

condition. This is because that ICA is proficient in noise estimation un-

der non-point-source noise condition and is utilized as a noise estimator in

BSSA.

Permutation-robustness Moreover, the proposed BSSA has permutation-robust

structure rather than the the conventional ICA. In the conventional ICA, a

special processing is needed to solve the permutation problem. On the other

hand, in the proposed BSSA, the structure itself has the robustness against

the permutation problem. That is to say, the proposed BSSA can mitigate
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the negative effect of permutation problem without any special processing.

Furthermore, this aspect does not conflict with any conventional permu-

tation solvers. This means that any permutation solvers are available in

the ICA part of the proposed BSSA. BSSA reduces the remained permuted

components which could not be solved by a permutation solver.

In order to evaluate the efficacy of the proposed BSSA, three experiments were

carried out. In the experiments including computer-simulation-based and real-
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recording-based data, the SNR improvement and speech recognition results of

the proposed BSSA were superior to those of conventional methods. These facts

evidently indicate that the proposed BSSA is beneficial to speech enhancement in

adverse environments.
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Chapter 5

Robustness against Reverberation and

M icrophone Element Errors in BSSA

5.1. Introduction

In the previous chapter, I proposed a new blind source extraction method, BSSA.

In the previous chapter, I explained the proposition of BSSA is motivated by the

fact that ICA is proficient in noise estimation under non-point-source noise con-

dition. On the other hand, in this chapter, I give an alternative interpretation, i.e.,

the proposed BSSA is the extension of spatial subtraction array (SSA) [27].

The proposed BSSA involves an ICA-based noise estimation part, and non-

linear subtraction based on the estimated noise is applied to slightly-enhanced-

speech signal by DS. Actually, this structure is similar to the conventional SSA[27].

The difference of SSA and BSSA is whether NBF or ICA is utilized for noise es-

timation part. In this chapter, I give an alternative interpretation of BSSA, i.e.,

BSSA is an extension of SSA, and I reveal that the proposed BSSA provides the

robustness against reverberation and microphone element errors that is the impor-

tant properties for the real world application.

The chapter is constructed as follows. In the following Sect.5.1, I review the

conventional SSA. Next, I bring up the problem of the conventional SSA, and I

theoretically analyze the behavior of the noise estimation filter by NBF in SSA

and ICA in the proposed BSSA at Sect. 5.3. In the analysis, I give another inter-

pretation of ICA-based noise estimation in the proposed BSSA. As a result of the

analysis, I clarify that the proposed BSSA has the robustness against reverbera-

tion and microphone element errors. The validity of the analysis is shown via a

computer simulation and a speech recognition test in Sect. 5.4. Finally, Sect. 5.5

concludes the chapter.
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5.2. Spatial subtraction array

In this section, I present the conventional SSA [27]. SSA is a kind of non-linear

microphone array processing and specifically designed for hands-free speech recog-

nition. Firstly, I exposit the structure and the detailed signal processing of SSA.

Next, I point out that the problems of the conventional SSA.

The conventional SSA consists of a DS-based primary path and a reference

path via the NBF-based noise estimation (see Fig. 22). The estimated noise com-

ponent by NBF is efficiently subtracted from the output of the primary path in

the power spectrum domain without phase information. Like this, the structure of

BSSA is similar to SSA. However, in SSA, the target-speech direction and speech

break interval are needed to be known in advance. Thus, SSA is not a blind source

extraction method. Detailed signal processing is shown below.

5.2.1 Partial speech enhancement in primary path

The target speech signal is partly enhanced in advance by DS. Thus, the output

signal of the primary path is the same as that of BSSA. This procedure can be

given as

yDS( f , τ) = wT
DS( f )x( f , τ). (71)
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Note that the look direction ofwDS( f ) is known in advance in SSA unlike BSSA.

5.2.2 Noise estimation in reference path

In the reference path, the estimated noise signal is derived by using NBF. This

procedure is given as

zNBF( f , τ) = wT
NBF( f )x( f , τ), (72)

wNBF( f ) =
{
[1, 0] · [a( f , θO), a( f , θU)]+

}T
, (73)

wherezNBF( f , τ) is the estimated noise by NBF,wNBF( f ) is a NBF-filter coefficient

vector which steers the directional null against the DOA of the target speech,θU,

and steers unit gain in the arbitrary directionθO(, θU). This processing can sup-

press the target speech arriving fromθU, which is equal to an extraction of noises

from sound mixtures if affections of sensor errors and reverberations are not con-

sidered. Thus, we can estimate the noise signals by NBF under ideal conditions.

Note thatzNBF( f , τ) is the function of the frame numberτ, unlike the constant

noise prototype estimated in the traditional SS. Therefore, SSA can also deal with

anon-stationarynoise such as the proposed BSSA.

5.2.3 Noise reduction part

In SSA, noise reduction is carried out by subtracting the estimated noise power

spectrum from the partly enhanced target speech power spectrum in power do-

main. This can be designated as

ySSA( f , τ) =


{
|yDS( f , τ)|2 − ·β · |zNBF( f , τ)|2

} 1
2

( if |yDS( f , τ)|2 − ·β · |zNBF( f , τ)|2 ≥ 0)

η · |yDS( f , τ)| (otherwise).

(74)

Like this, signal processing in SSA is almost the same as in BSSA except for the

NBF-based noise estimation part.
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5.3. Interpretation of BSSA as extended SSA

5.3.1 Problems of SSA

In this section, I denote the problem of the conventional SSA. The NBF-based

noise estimator is used in the conventional SSA, but NBF suffers from the ad-

verse effect of the microphone element error and the room reverberation. NBF is

a technique to suppress an interference source signal by generating a null against

the direction of the interference source signal [19]. If the interference source sig-

nal arrives from the same direction as the generated null, we can suppress the

interference source signal perfectly. In a reverberant environment, however, the

interference source signal arrives from not only the null’s direction but also out-

side of the direction. Therefore, we cannot suppress the interference source signal

sufficiently in the reverberant room. In addition, a generic microphone for prod-

ucts, which is not specialized for measurement, often comprises an element error.

For some microphones, 3-dB-gain error is permissible in their design [45]. NBF

is designed under the ideal assumption in that all elements have the same char-

acteristics. In the real environment, however, the characteristics of each element

are different. For these reasons, the directivity pattern shaped by NBF in the ideal

environment is apart from that of in the real environment.

Figure 24 illustrates directivity patterns which are shaped by two-element NBF

in the ideal (solid line) and the real (dotted line) environment (see Fig. 23) where

the reverberation time is 200 ms. In this figure, the null direction is set to zero

degree. Here, the ideal directivity patternGideal(θ) is derived by

Gideal(θ) = 10 log10
1
M

∑
f

|wT
NBF( f ) · a( f , θ)|2. (75)

On the other hand, the directivity pattern in a real environment is given as

Greal(θ) = 10 log10
1

Cadj · M
∑

f

|wT
NBF( f ) · hreal( f , θ)|2, (76)

wherehreal( f , θ) = [h(1)
real( f , θ), . . . ,h(J)

real( f , θ)]T is the transfer function vector from

a sound source signal to microphones observed in the experimental room illus-

trated in Fig 23. Besides,Cadj is the gain compensation parameter which makes
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Figure 23. Acoustical environment used in my simulation.

the spatially gain at -90 degrees become zero. From Fig 24, we can see that the

depth of the null in the real environment which contains the element error and

the reverberation shallows. Therefore, we cannot suppress the interference source

signal completely in the real environment by using NBF. Indeed, in SSA, we per-

form noise estimation via NBF which steers null against the target speech signal,

but we cannot suppress the target speech signal sufficiently. In fact, NBF cannot

estimate noise signal completely.

5.3.2 Alternative interpretation of ICA in BSSA

In this section, I make an alternative interpretation of ICA-based noise estimation

in the proposed BSSA. In the proposed BSSA, ICA is utilizes as a noise estimator

instead of NBF. In this section, I point out that ICA can adapt reverberation and

microphone element errors which are the problems of NBF in SSA. In this section,
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the following observation model as a matter of convenience:

x( f , τ) = hθU( f )s( f , τ) + hθO( f )n( f , τ), (77)

where s( f , τ) is the target speech signal,n( f , τ) is the noise signal. Besides,

hθU( f ) = [h(θU)
1 ( f ), . . . ,h(θU)

J ( f )]T is the transfer function vector from the target

speech signal to microphones, andhθO( f ) = [h(θO)
1 ( f ), . . . ,h(θO)

J ( f )]T is the transfer

function vector from the noise to microphones. These transfer function vectors

hθU( f ) andhθO( f ) involve element errors and room reverberation.

In the proposed BSSA, the source separation is performed by optimized filter

by ICA to estimate noise signal. For simplicity, I consider the two-output ICA,

namely the mixed observations are separated into a target speech and a noise.

Here, the demixing process of ICA defined in (38) and (40) can be rewritten as

o( f , τ) = [on( f , τ), os( f , τ)]T =WICA( f )x( f , τ), (78)

WICA( f ) =

W(ICA)
11 ( f ) · · · W(ICA)

1J ( f )

W(ICA)
21 ( f ) · · · W(ICA)

2J ( f )

 , (79)
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whereon( f , τ) is the estimated noise signal andos( f , τ) is the estimated speech

signal.

In the following, I compare the ICA-based noise estimation filter in BSSA and

NBF-based noise estimation filter in SSA. Here, (78) can be modified as

o( f ) = D( f )W̃( f )[hθO( f ), hθU( f )][n( f , τ), s( f , τ)]T, (80)

where D( f ) is a diagonal matrix that expresses the source-gain ambiguity, and

W̃ICA( f ) is the unmixing matrix removing the source-gain ambiguity from the

unmixing matrixWICA( f ), namelyWICA( f ) = D( f )W̃ICA( f ). Here, if the source

separation by ICA is completely accomplished, the following relation holds:

WICA( f ) = D( f )[hθO( f ), hθU( f )]+. (81)

Consequently, the noise estimation filter by ICA,wICA( f ), corresponds to the first

row of WICA( f ), and it can be given as

wICA( f ) = {[1,0] ·WICA( f )}T

=
{
[σ( f ),0] · [hθO( f ), hθU( f )]+

}T (82)

whereσ( f ) is the entry of the first row in the diagonal matrixD( f ). Note that

the source-gain ambiguityD( f ) is removed by PB method in the proposed BSSA.

Here, I compare (82) and (73). The noise estimation filterwICA( f ) does not utilize

the ideal steering vectora( f , θ) unlike wNBF( f ). Instead ofa( f , θ), the transfer

function vectorshθO( f ) andhθU( f ) which involve reverberation and microphone

element errors are used inwICA( f ). Therefore, ICA-based noise estimation filter

can adapt reverberation and microphone element error. Furthermore, this ICA-

based noise estimation filter is automatically optimized without pre-measured

transfer functions. That is to say, such the ICA-based noise estimation filter is

robust against reverberation and microphone element errors. Therefore, the pro-

posed BSSA can be also explained as the extension of the conventional SSA.

5.4. Evaluation

In order to confirm the validity of the above-mentioned analysis, I conduct a com-

puter simulation and a speech recognition test. In the computer simulation, I
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compare the accuracy of NBF-based noise estimation and ICA-based noise esti-

mation. Moreover, in the speech recognition test, the comparison result of SSA

and the proposed BSSA is shown and I reveal that the speech recognition perfor-

mance of the proposed BSSA outperforms that of the conventional SSA.

5.4.1 Setup

Figure 23 shows the experimental room used in the simulation and speech recog-

nition test. In the experiments, I use the following 16 kHz-sampled signals as test

data; the original speech convoluted with impulse responses that were recorded

in the experimental room, and to which a real-recorded cleaner noise in the ex-

perimental room was added. The cleaner noise is nonstationary and not a point

source but consists of several non-stationary noises emitted from, e.g., a motor,

air duct and nozzle. Besides, the cleaner noise includes background noise because

it is real recorded noise. The input SNR is set to be 5 dB, 10 dB, or 15 dB, and

a four-element array with an interelement spacing of 2 cm is used. Moreover,

DFT size is 512 points, window size is 256 points, and shift size is 128 points.

As for parameters in SS,β = 1.4 andη = 0.2 are chosen. These parameters are

determined so that the speech recognition performance is maximum.

5.4.2 Comparison of noise estimation accuracy

First, I compare directivity pattern shaped by ICA and NBF in the real environ-

ment. The broken line in Fig. 25 is the spatial directivity pattern shaped by ICA

in the environment. From this result, we can confirm that the null shaped by ICA

becomes deep compared with that of the NBF-based conventional SSA (dotted

line in Fig. 25). Therefore, it can be expected that the noise estimation accuracy

of ICA is better than that of NBF.

Next, I compare the accuracy of noise estimation by ICA and NBF. I use NRR

and the signal-to-distortion ratio (SDR) to compare the noise estimation accuracy,
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which is defined as

SDR [dB]= 10 log10

∑
τ

∑
f

|n( f , τ)|2∑
τ

∑
f

(|n̂( f , τ)| − |n( f , τ)|)2
, (83)

wheren( f , τ) is the true noise signal and ˆn( f , τ) is the estimated noise signal.

Here, I consider the target speech signal as interference signal and derive NRR to

compare the noise estimation performance in ICA and NBF.

The comparison result is shown in Table 2. The result is the averaged NRR and

SDR over 200 utterances. From this result, both NRR and SDR of ICA overtake

those of NBF. Therefore, it can be concluded that the noise estimation perfor-

mance of ICA is better than that of NBF. Moreover, Fig. 26 illustrates an example

of long-term-averaged power spectra of estimated noise by ICA and NBF. In the

Fig. 26, the black solid line indicates the power spectrum of the noise signal in the

primary path, and this power spectrum is needed to be estimated. The gray solid
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Table 2. Comparison of noise estimation accuracy by NBF and ICA on the basis

of NRR and SDR
NRR [dB] SDR [dB]

NBF 4.94 −10.6

ICA 12.4 4.09

line represents the power spectrum of the estimated noise signal by NBF, and the

dotted line shows the power spectrum of the estimated noise signal by ICA. We

can see that the power spectrum of the estimated noise signal by NBF is not accu-

rate. This is due to that the target speech component still remains in the output of

NBF because the null shaped by NBF is shallow. On the other hand, we can see

that the power spectrum of the estimated noise signal by ICA is a good estimation

because the depth of the null shaped by ICA is enough for suppressing the target

speech. From these results, I conclude that ICA-based noise estimation is more

accurate than NBF-based one and is robust against reverberation and microphone

element errors.

5.4.3 Speech recognition test

Finally, I compare DS, the conventional SSA, and the proposed BSSA on the basis

of word accuracy scores. Table 1 describes the conditions for speech recognition,

and I use 46 speakers (200 sentences) as original speech. Figure 27 shows the

word accuracy in each method. Here, “Unprocessed” refers to the result with-

out any noise reduction processing. From this result, we can see that the word

accuracy of the proposed method is obviously superior to those of the conven-

tional methods. This is a promising evidence that the proposed BSSA has the

robustness against reverberation and microphone element errors compared to the

conventional SSA.
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Table 3. Experimental conditions for speech recognition

Database JNAS [44], 306 speakers (150 sen-

tences/ 1 speaker)

Speech recognition task 20 k words newspaper dictation

Acoustic model phonetic tied mixture (PTM) [44],

clean model

Number of training speakers for

acoustic model

260 speakers (150 sentences/ 1

speaker)

Decoder Julius [44] ver 3.5.1

5.5. Conclusion

In this chapter, I gave an alternative interpretation of the proposed BSSA, i.e., the

proposed BSSA is an extension of SSA. The difference of the proposed BSSA

and the conventional SSA is whether ICA or NBF is utilized for noise estimation.
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Then, I analyzed the difference of the behavior of ICA-based noise estimation and

NBF-based noise estimation. As a result of the analysis, I revealed that ICA-based

noise estimation introduces the robustness against reverberation and microphone

element errors, which is one important property for actual world applications. The

propriety of the analysis was confirmed by a computer simulation and a speech

recognition tests. As a result of experiments, ICA could estimate noise signals ac-

curately compared with NBF. Moreover, the proposed BSSA could achieve better

speech recognition performance than the speech recognition performance of the

conventional SSA. Therefore, let me conclude that the proposed BSSA provides

the robustness against reverberation and microphone element error because the

proposed BSSA utilizes ICA as a noise estimator.
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Chapter 6

Real-time Implementation of Proposed BSSA

for Hands-Free Spoken-Oriented Guidance

System

6.1. Introduction

In Chapter 4, I proposed a new blind speech extraction method, i.e. BSSA, and

gave strong evidences of the efficacy of the proposed BSSA thorough experiments.

However, the proposed algorithm described in Chapter 4 is basically a batch algo-

rithm. That is to say, the proposed BSSA itself cannot be applied to applications

require real-time processing, e.g., hands-free spoken-oriented guidance system.

To work in real-time is one of the indispensable factors for a hands-free spoken-

oriented system. Indeed BSSA can reduce noise efficiently, but BSSA is difficult

to work in real-time because ICA part of BSSA consumes huge amount of com-

putational complexities. Thus, it is required to develop a real-time architecture of

BSSA.

In this chapter, I newly propose the real-time architecture of BSSA and im-

plement the real-time BSSA. Moreover, I introduce the implemented real-time

BSSA into the spoken-oriented guidance system “Kitarobo” which has already

been installed at an actual railway station, and construct a hands-free spoken-

oriented dialogue system. Although many real-time robot audition systems have

been proposed [3], the behavior and performance are not explicitly analyzed under

heavy widespread noise condition, e.g., an actual railway-station, as far as I know.

Then, I evaluate the constructed hands-free spoken dialogue system with the real-

time BSSA in an experimental room simulating actual railway-station environ-

ment based on the speech recognition test, and 6% improvement of the speech

recognition result can be confirmed compared with the conventional speech en-

hancement methods.
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This chapter is constructed as follows. In the following Sect. 6.2, I describe

the strategy of the real-time architecture of BSSA. Next, detailed algorithm of

the proposed real-time BSSA is explained in Sect. 6.3, and then the constructed

hands-free spoken-oriented guidance system with the proposed real-time BSSA

is illustrated in Sect 6.4. The following Sect. 6.5 gives evaluation results, and

Sect. 6.6 concludes the chapter.

6.2. Strategy of real-time implementation of BSSA

The proposed BSSA can be decomposed to the following parts:

• Partial speech enhancement part in primary path

In the primary path, DS is applied to the multichannel observation, and the

partly-enhanced speech signal is obtained.

• Noise estimation part in reference path

In the reference path, noise estimation is performed based on ICA. Then,

the noise estimation part in reference path is additionally decomposed to

the following parts:

– ICA optimization part

In the ICA optimization part, noise estimation filter is optimized by

ICA.

– Noise estimation part by optimized filter

In this part, noise estimation is performed by the optimized noise esti-

mation filter by ICA.

• SS part for final output

In this part, the final output signal of BSSA is yielded by subtracting the

power spectrum of estimated noise signal in reference path from the power

spectrum of partly-speech-enhanced signal in primary path.

DS part in the primary math, filtering optimized noise estimation filter to obser-

vation in the reference path, and the SS part for the final output are possible to
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Figure 28. Signal flow in real-time implementation of proposed method.

work in real-time because these parts are enough simple and low-complexity sig-

nal processing. However, it is toilsome to optimize (update) the separation filter

in real-time because the optimization of the unmixing matrix by ICA consumes

huge amount of computational costs. Therefore, I introduce a strategy in that the

separation filter optimized by using the past time period data is applied to the cur-

rent data. Figure 28 illustrates a configuration of a real-time implementation for

BSSA. Signal processing in this implementation is performed via the following

manner.

S1. Inputted signals are converted into time-frequency domain series by using a

frame-by-frame fast Fourier transform (FFT).

S2. ICA is conducted using the past 1.5-s-duration data for estimating separa-

tion filter while the current 1.5 s. The optimized separation filter is applied

to the next (not current) 1.5 s samples. This staggered relation is due to the
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fact that the filter update in ICA requires substantial computational com-

plexities and cannot provide the optimal separation filter for the current 1.5

s data.

S3. Inputted data is processed in two paths. In the primary path, target speech is

partly enhanced by DS. In the reference path, ICA-based noise estimation

is conducted. Again, note that the separation filter for ICA is optimized by

using the past time period data.

S4. Finally, we obtain the target-speech-enhanced signal by subtracting the power

spectrum of the estimated noise signal in the reference path from the power

spectrum of the primary path’s output.

Although the separation filter update in the ICA part is not real-time processing

but involves totally a latency of 3.0 seconds, the entire system still seems to run in

real-time because DS, SS and separation filtering can work in the current segment

with no delay. In the system, the performance degradation due to the latency

problem in ICA is mitigated by oversubtraction in SS. Detailedreal-timesignal

processing is shown in the following sections.

6.3. Algorithm

In this section, I represent detailed signal processing of the real-time architecture

of the proposed BSSA. Since the ICA part of the proposed BSSA needs huge

amount of complexities, I divide the parts of BSSA into the part of ICA and the

other parts. Consequently, the signal processing parts in the proposed BSSA are

classified into the following two blocks:

• Optimization of noise estimation filter by ICA

This is a part of reference path. In this part, the noise estimation filter is

optimized by ICA.

• Noise reduction part

This part includes the primary path, noise estimation with using optimized

filter by ICA, and SS for final output.
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These blocks are parallelly and independently executed in the proposed real-time

architecture. In the following, I described the detailed signal processing of each

block.

6.3.1 ICA part in real-time algorithm

In the ICA part of this algorithm, a sequential time-series input is divided into

fixed-length blocks, and ICA is performed in each block. The number of samples

in one block,ℓsample, is defined as

ℓsample=

⌊
ℓsec · fs
Tshift

⌋
, (84)

whereℓsec is block length in seconds (I use 1.5 s in this study),Tshift is frame shift

size for short-time Fourier transform, and⌊·⌋ is the floor function. Thus, a set of

time frame index belonging to a blockb (= 0,1,2, . . . ), Tb, can be given as

Tb = { τ | b · ℓsample≤ τ < (b+ 1) · ℓsample}. (85)

Figure 29 shows the relation between a time frame index and a block index, where,

e.g.,ℓsample= 5.

The unmixing matrix for a blockb, WICA
(b) ( f ), is optimized by the following

iterative update equation:[
WICA

(b) ( f )
][p+1]

= µ[ I − ⟨φ(ô( f , τ))ôH( f , τ)⟩τ∈Tb]
[
WICA

(b) ( f )
][p]

+
[
WICA

(b) ( f )
][p]
, (86)

where⟨·⟩τ∈Tb is the time-averaging operator which is localized within blockTb,

andô( f , τ) = [ô1( f , τ), . . . , ôK( f , τ)]T is the temporal separated signal vector given
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as

ô( f , τ) =WICA
(b) ( f )x( f , τ) (τ ∈ Tb). (87)

Here, if the average power of the specific blockb is very small, the unmixing ma-

trix should not be updated because the low-power block which does not contains

any dominant signals leads to an unstable convergence of the unmixing matrix.

Thus, the unmixing matrix is not updated in such a blockb if the average power

of the blockb is very small. This can be represented by

WICA
(b) ( f ) =WICA

(b−1)( f ) (If ⟨|x( f , τ)|2⟩τ∈Tb < thpow), (88)

wherethpow is the threshold for the average power.

Moreover, the initial value of the unmixing matrix in the optimization at each

block is represented by

[
WICA

(b) ( f )
][0]
=

Winitial( f ) (if b modbreset= 0),

WICA
(b−1)( f ) (otherwise),

(89)

wherebreset is the reset period of the unmixing matrix, andWinitial( f ) is the initial

value of the unmixing matrix given in advance. This initial value is ordinarily

generated using the observed signal via some methods, e.g., principle component

analysis or beamforming. Thus, the optimized unmixing matrix is reset into the

given initial value everybresetblocks.

Furthermore, we can estimate DOAs from the unmixing matrixWICA
(b) ( f ) as

described in (41). This procedure is represented by

θu,b = sin−1


[
[WICA

(b) ( f )]−1
]

ju
/
[
[WICA

(b) ( f )]−1
]

j′u

2π fsc−1(dj − dj′)

 , (90)

whereθu,b is the DOA of theu-th sound source in the blockb. Then, I choose

theU-th source signal which is the nearest the front of the microphone array, and

designate the DOA of the chosen source signal asθU,b in this study. This is because

almost all users often stand in front of the microphone array in a spoken-oriented

human-machine interface.
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6.3.2 Noise reduction part in real-time algorithm

Noise reduction is carried out according to the following three steps;

1. First, DS is performed to enhance the target signal (primary path).

2. Next, we estimated noise signal based on ICA (reference path).

3. Finally, we obtain the target speech enhanced signal by subtracting the

power spectrum of the estimated noise from the power spectrum of the pri-

mary path’s output.

In the primary path, DS is performed to enhance the target speech signal. This

procedure can be represented by

yDS
(b) ( f , τ) = wT

DS( f , θU,b−2)x( f , τ) (τ ∈ Tb), (91)

whereyDS
(b) ( f , τ) is the primary path’s output in a blockb.

In the reference path, first, the signal separation is performed. This can be

designated as

o(b)( f , τ) =WICA
(b−2)( f )x( f , τ) (τ ∈ Tb), (92)

where o(b)( f , τ) = [o1,b( f , τ), . . . , oK,b( f , τ)]T is the separated signal vector in a

blockb. Next, we obtain the estimated noise signal in a blockb, z(b)( f , τ), as

z(b)( f , τ) = gT
DS( f , θU,b−2)

[
WICA

(b−2)( f )
]+

q(b)( f , τ) (τ ∈ Tb), (93)

q(b)( f , τ) = [o1,b( f , τ), . . . , oU−1,b( f , τ), 0,

oU+1,b( f , τ), . . . , oK,b( f , τ)]T, (94)

whereq(b)( f , τ) is the vector in which the target speech component is removed.

Finally, we obtain the target speech enhanced signalyBSSA
(b) ( f , τ) by SS. This

can be given as

yBSSA
(b) ( f , τ) =


{
|yDS

(b) ( f , τ)|2 − β · |z(b)( f , τ)|2
} 1

2
,

( if |yDS
(b) ( f , τ)|2 − β · |z(b)( f , τ)|2 ≥ 0 )

γ · |yDS
(b) ( f , τ)| (otherwise).

(95)
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Figure 30. Configuration of updating separation filter.

In (91) and (93), note that we have only to use the estimated DOA and the

optimized unmixing matrix in the previous blockb− 2. This is due to data buffer-

ing and optimization process for ICA. ICA optimization requires a certain length

of data, e.g., 1.5 s. data. Thus, we must buffer a certain length of input data

for ICA optimization. Consequently, ICA optimization just starts after the buffer-

ing. Moreover, ICA optimization cannot finish in no time at all because ICA

optimization consumes huge amount of computations. Thus ICA optimization is

performed while one block. As a result, in a current blockb, we are only admitted

to utilize the separation filter optimized in the blockb − 2 (see Fig. 30). By the

same manner, we can only apply the estimated DOA of the blockb−2 to a current

blockb.

6.3.3 Algorithmic delay

For a real-time system, delay-time is a crucial factor. Hereinafter, I asses the

algorithm delay of the proposed real-time BSSA.

The algorithmic delay of the proposed real-time BSSA only depends on the

following; (a) DS filtering, (b) noise estimation by the separation filter, and (c)
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buffer size. Although ICA optimization is parallelly performed, the optimization

result cannot be applied to current block. Thus, ICA optimization does not yield

the algorithmic delay. In DS and the separation filter, for reducing the effect of

the circular convolution, the main pulse of the filter is located at the center of the

filter. Thus, the resultant signal of the filtering is delayed, and its delay is the half

of the filter length. Note that the noise estimation is performed in parallel with

DS. Therefore, the total delay of DS filtering and noise estimation is also the half

of the filter length. Moreover, the buffer size for reading data from the hardware

cannot be negligible. Consequently, the algorithm delay of the final output can be

given by

Delay [points]= Buffer Size+ Filter Size/2. (96)

For instance, supposed that the buffer size is 512 points and the filter length is also

512 points, the algorithmic delay of the final output of the real-time BSSA is 768

points. This corresponds to 48 ms delay with 16 kHz sampling.

6.3.4 Robustness against acoustical environment change

Under an actual world, the change of acoustical environment, i.e., user’s move, the

change of noise environment, and so on, is considerable factor. However, it cannot

be regarded that a user moves while the user talks to a hands-free spoken-oriented

guidance system. Furthermore, we can easily classify target voice or interference

voice by asking users to locate themselves in front of the system. Consequently,

the gravest problem on the change of acoustical environment is the change of

noise environment.

By the way, the proposed BSSA is subtracting the estimated noise by removing

target speech signal, from the partly-enhanced-speech signal via DS. Thus, the

proposed BSSA can reduce noises even if the noise environment is momentarily

changing while an appropriate noise estimation filter is optimized. In the real-

time BSSA, the noise estimation filter is learned with the past data block, e.g. 3.0

s. Since that filter removes the target speech signal, the filter can estimate noise

accurately even if the noise environment of a block for optimizing noise estimation
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filter and a current block are different. For these reasons, it can be expected that

the noise reduction performance of the real-time BSSA is not so degraded.

6.4. Hands-free robot spoken-oriented dialogue sys-

tem with real-time BSSA

I introduce the real-time BSSA into the robot spoken-oriented dialogue system

“Kitarobo” [46] which has already been installed in an actual railway station. In

this study, I replace the input device of Kitarobo, i.e., a close-talking microphone,

with the real-time BSSA to construct the hands-free robot spoken-oriented dia-

logue system. Figures 31 and 32 show an overview of the system and appearance

of the hands-free robot spoken-oriented dialogue system with the real-time BSSA.

Unlike the conventional Kitarobo, the input device is substituted with the real-time

BSSA. Details of Kitarobo are described in the following subsection.

6.4.1 Brief review of spoken-oriented dialogue system “Kitarobo”

The spoken-oriented guidance robot “Kitarobo” is working in an actual railway

station since end of March 2006. The system is installed besides the ticket gate

and is adjacent to each other. Everybody can use the systems while the station is

open. Since the station faces to a road, an automobile engine sound and sound of a

bus horn are also inputted to the system. Kitarobo provides guidance information

to visitors regarding issues on the station or around the station without resting. Ki-

tarobo only can exchange one question and one answer, that is to say, any dialogue

histories are not taken into account. The input device of the original Kitarobo is a

close-talking microphone. Thus the original Kitarobo is not a hands-free system

and is weak against the surrounding noises.

In original Kitarobo, firstly, an input signal is classified into valid speech or

non-speech based on Gaussian mixture model [47]. If the input signal is regarded

as non-speech, the input signal is dropped. Next, the voice activity detection

(VAD) is applied to the input signal and the voice period of the input signal is
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Figure 31. Overview of hands-free robot spoken-oriented dialogue system with

real-time BSSA.

clipped. In Kitarobo, speech-decoder-based VAD by Sakai et al. [48], that is ro-

bust against noise contaminated signals, is adopted. In the speech-decoder-based

VAD, the speech recognition and VAD is performed at the same time. According

to the result of speech recognition, responses are generated. Finally, based on the

generated response, response sound is synthesized by text-to-speech synthesizer

and information demand on the input speech is displayed. Reference [46] helps

you to understand further details of Kitarobo.

6.4.2 Implementation of real-time BSSA

The proposed real-time BSSA is implemented by C/C++ on Debian/GNU Linux [49]

4.0 platform. Also, I utilize the computer with Intel Xeon X5355 processor 2.66 G
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Figure 32. Appearance of my hands-free robot spoken-oriented dialogue system

with real-time BSSA.

Hz for the implementation. The implemented real-time BSSA consumes about

52 M Bytes RAM. Moreover, I use RME Hammerfall DSP Multiface for AD/DA

converter. In the implementation, the configuration of AD/DA is 16 kHz sampling

frequency and 16 bits quantization. The parameters for frame-by-frame DFT anal-

ysis are the following; DFT size is 512 points, window size is 256 points, and

shift size is 128 points. Although it seems to require high-spec hardware, Mori

et al. have succeeded at the real-time implementation of ICA on a general pur-

pose DSP [22]. The computational complexity of the proposed real-time BSSA is

almost the same as the real-time ICA, i.e., DS and SS are only added compared

with the real-time ICA. Thus, it can be expected that the real-time BSSA is also

implemented on general purpose DSP.

Though the computational complexities of the proposed real-time BSSA de-
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pend on the number of filter update in ICA, the implemented real-time BSSA

updates noise estimation filter to the maximum extent within the current 1.5 s.

That is to say, the real-time factor always becomes 1.0 in the implementation. As

a result of the implementation, 61 times filter update is performed on average with

the utilized computer.

I adjust the buffer size and the filter size in the real-time BSSA so that the

delay-time in the real-time BSSA becomes about 5% of that in the original Ki-

tarobo. In the original Kitarobo, the averaged response time, i.e., the delay-time

from a speech input to a response output, is about 994 ms. Thus, the buffer size

is fixed to 512 points and filter size is also fixed to 512 points so that the algo-

rithmic delay-time of the real-time BSSA becomes 48 ms. The actual delay-time

of the implemented real-time BSSA is about 56.5 ms. There exists 8.5 ms differ-

ence between algorithmic delay and measured delay. This difference is caused by

hardware latency.

6.4.3 Simulating railway-station noise

The main task of Kitarobo is station guidance, and always working in an actual

railway-station. Thus, it is difficult to conduct various BSSA experiments in an

arbitrary time. Therefore, I have a necessity to construct the noise environment

simulator of railway-station for experiments. To solve the problem, our labora-

tory has constructed the experimental room for hands-free spoken dialogue sys-

tem with the real-time BSSA. The experimental room contains Kitarobo with the

real-time BSSA and railway-station noise simulator. The noise simulation is per-

formed in the following;

1. Record noises in an actual railway station. In the experiment, eight-channel

directional microphones are used to record the multi-channel railway-station

noise.

2. Playback the multi-channel recorded railway-station noise by eight sur-

rounded loudspeaker (see Fig. 33).
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Figure 33. Layout of reverberant room in my experiment.

This noise consists of various kinds of interference noises, namely, background

noise, sounds of trains, ticket-vending machines, automatic ticket wickets, foot

steps, cars, and wind. In addition, this noise is highly nonstationary.

6.5. Evaluation of implemented system

6.5.1 Configurations of evaluation

To evaluate the hands-free spoken dialogue system with the real-time BSSA, the

speech recognition test is conducted. In the experiment, in order to evaluate only

75



the speech recognition performance of the real-time BSSA, the dialogue part in

the system is stopped. Since Kitarobo exchanges one question and one answer,

each response is independently-generated of each input speech. Thus, we can

evaluate the hands-free Kitarobo by speech recognition test. I compare the speech

recognition performance of the proposed real-time BSSA, the off-line BSSA, the

real-time ICA, and DS. In the off-line BSSA, the number of filter update in ICA

part is aligned to that of real-time BSSA, i.e., 61 times.

Figure 33 depicts a layout of a reverberant room in our experiment where

the reverberation time is about 400 ms. The following real-recorded 16 kHz-

sampled signals were used in the experiments. The target signal is real-recorded

user’s speech which is talked in front of a microphone array and 1.5 m apart from

the array. The contents of the target utterances are all related to Kitarobo task,

i.e., questions about transfer, station’s facilities, sights around the station, and

so on. As for noise, two noises were added simultaneously. First noise is the

real-recorded noise in an actual railway-station noise (it simulates railway-station

noise) emitted from surrounded 8 loudspeakers. Second noise is an interference

speech located at 50 degrees in the right direction of the microphone array, and

its distance is 2.0 m. I use 5 speakers (250 words) as target user, and Julius [44]

ver. 4.0 RC2 as speech decoder. An eight-element array with the interelement

spacing of 2.15 cm is used. The array consists of directional microphone SHURE

MX-184.

6.5.2 Experimental result

Figure 34 shows speech recognition result. In the result, I describe the word cor-

rect (WC) score in addition to WA score. The WC score is defined as

WC [%] ≡ WWC − SWC − DWC

WWC
× 100, (97)

whereWWC is the number of words,SWC is the number of substitution errors, and

DWC is the number of dropout errors. In the WC score, the number of insertion

errors is neglected unlike WA score defined in (69). In a spoken-oriented dia-

logue system, whether ‘words’ are properly decoded or not is crucially important.
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Figure 34. Result of speech recognition test in (a) word correct, and (b) word

accuracy.

Hence, I show the WC score along with the WA score.

From this result, we can see that both the WC score and the WA score of the

proposed BSSA are obviously superior to those of DS and the conventional ICA.

In particular, 8% (in WC) or 6% (in WA) improvement of the speech recognition

result can be confirmed. Besides, the WC performance is over 80% that is suffi-

cient speech recognition performance to construct spoken-oriented guidance sys-

tem. Furthermore, we can confirm that the speech recognition performance of the

proposed real-time BSSA and the off-line BSSA is almost the same. This results

implies robustness of the proposed real-time BSSA against the change of noise

environment described in Sect. 6.3.4. From the result, it can be concluded the

proposed real-time BSSA can achieve sufficient speech recognition performance

for hands-free spoken-oriented guidance system.

6.6. Conclusion

In this chapter, I proposed a real-time architecture of the proposed BSSA. Based

on the proposed real-time BSSA, I constructed hands-free spoken-oriented guid-

ance system. As a speech recognition test, the speech recognition performance

of the proposed real-time BSSA outperformed those of conventional methods.
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Also, the speech recognition performance of the proposed real-time BSSA was

almost the same as that of the off-line BSSA. Furthermore, the proposed real-time

BSSA could realize sufficient short delay of its algorithm with keeping enough

speech recognition performance, e.g., about 50 ms in the implementation. For

these reasons, I conclude that the proposed BSSA can accomplish hands-free

spoken-oriented guidance system.
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Chapter 7

Musical Noise and Its Objective Measure

7.1. Introduction

In the previous chapter, it was demonstrated that the proposed BSSA integrating

ICA and SS can achieve good noise reduction performance. However, a serious

problem still exists in BSSA; artificial distortion (the so-calledmusical noise) [29]

due to nonlinear SS. Since the artificial distortion causes discomfort to users, it is

desirable that we control musical noise through signal processing. However, in al-

most all nonlinear noise reduction methods, the strength parameter to mitigate the

musical noise in nonlinear signal processing is determined heuristically. Although

there have been some studies on reducing musical noise [29] and on nonlinear

signal processing with less musical noise [30], evaluations mainly depended on

subjective tests by humans, and no objective evaluations have been performed to

the best of my knowledge.

In recent years, it was reported that the amount of generated musical noise is

strongly related to the difference between higher-order statistics (HOS) before and

after nonlinear signal processing [35]. This fact enables us to analyze the amount

of musical noise arising through nonlinear signal processing. Furthermore, on the

basis of HOS, a mathematical metric for musical-noise generation in an objective

manner has been established [35]. Uemura et al. have analyzed single-channel

nonlinear signal processing based on the objective metric and clarified features of

the amount of musical noise. Hereafter, I give an analysis of the amount of musical

noise generated via methods of integrating microphone array signal processing

and SS on the basis of HOS.

Methods of integrating microphone array signal processing and nonlinear sig-

nal processing such as the proposed BSSA can be basically classified into two

types. Figure 35 shows a typical architecture used for the integration of micro-

phone array signal processing and SS, where SS is performed after beamforming.

Thus, I call this type of architectureBF+SS. The proposed BSSA can be classi-
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Figure 35. Block diagram of architecture for SS after beamforming (BF+SS).
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Figure 36. Block diagram of architecture for channelwise SS before beamforming

(chSS+BF).

fied into this BF+SS. Such a structure is adopted in many integration methods,

e.g., [25, 27]. On the other hand, the integration architecture illustrated in Fig. 36

is an alternative architecture used when SS is performed before beamforming.

Such a structure is less commonly used, but some integration methods use this

structure [26, 28]. In this architecture, channelwise SS is performed before beam-

forming, and I call this type of architecturechSS+BF.

In the following chapters, I would analyze these two architectures on the basis

of HOS and obtain the following results:

• The amount of musical noise generated strongly depends on not only the

oversubtraction parameter of SS but alsothe statistical characteristics of
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the input signal.

• Except for the specific condition that the input signal is Gaussian, the noise

reduction performances of the two methods are not equivalent even if we

set the same SS parameters.

• As a result of analysis under equivalent noise reduction performance con-

ditions, chSS+BF generates less musical noise than BF+SS for almost all

practical cases.

The most important contribution is that these findings are mathematically proved.

In particular, the amount of musical noise generated and the noise reduction per-

formance resulting from the integration of microphone array signal processing

and SS are analytically formulated on the basis of HOS. Although there have been

many studies on optimization methods based on HOS, this is the first time they

have been used for musical-noise assessment. The validity of the analysis based

on HOS, is demonstrated via a computer simulation and a subjective evaluation by

humans. Moreover, this analysis can be applied to BSSA as well as other methods

of integrating microphone array signal processing and SS.

In this chapter, first, I describe the two methods of integrating microphone

array and SS in Sect. 7.2. Next I give a brief review of musical noise and its ob-

jective metric based on HOS in Sect 7.3. Finally, Sect. 7.4 concludes this chapter.

The musical-noise analysis of SS, microphone array signal processing, and their

integration methods are discussed in the next chapter.

7.2. Methods of integrating microphone array signal

processing and SS

In this section, the formulations of the two methods of integrating microphone

array signal processing and SS are described. First, BF+SS, which is a typical

method of integration, is formulated. Next, an alternative method of integration,

chSS+BF, is introduced.
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7.2.1 Sound mixing model

In this and the next chapters, I consider one target speech signal and an additive

interference signal. Hence, the sound mixing model defined in (1) can be rewritten

as

x( f , τ) = h( f )s( f , τ) + na( f , τ), (98)

whereh( f ) = [h1( f ), . . . , hJ( f )]T is the transfer function vector of target speech

signals( f , τ).

7.2.2 SS after beamforming

In BF+SS, the single-channel target-speech-enhanced signal is first obtained by

beamforming, e.g., DS. Next, single-channel noise estimation is performed by a

beamforming technique, e.g., null beamformer [19] or adaptive beamforming [39].

Finally, we extract the resultant target-speech-enhanced signal via SS. The full de-

tails of signal processing are given below.

To enhance the target speech, DS is applied to the observed signal. This can

be represented by

yDS( f , τ) = wDS( f , θU)Tx( f , τ). (99)

Finally, we obtain the target-speech-enhanced spectral amplitude based on SS.

This procedure can be expressed as

|ySS( f , τ)| =


√
|yDS( f , τ)|2 − β · Eτ[|n̂( f , τ)|2]

(where|yDS( f , τ)|2 − β · Eτ[|n̂( f , τ)|2] ≥ 0),

η · |yDS( f , τ)| (otherwise),

(100)

whereβ is the oversubtraction parameter,η is the flooring parameter, and ˆn( f , τ) is

the estimated noise signal, which can be generally obtained by some beamforming

techniques, e.g., fixed or adaptive beamforming. In BSSA, noise estimation is

performed through ICA. Eτ[·] denotes the expectation operator with respect to the

time-frame index.
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7.2.3 Channelwise SS before beamforming

In chSS+BF, we first perform SS independently in each input channel then we

derive a multichannel target-speech-enhanced signal by channelwise SS. This can

be expressed as

|y(chSS)
j ( f , τ)| =


√
|xj( f , τ)|2 − β · Eτ[|ñj( f , τ)|2]

(where|xj( f , τ)|2 − β · Eτ[|ñj( f , τ)|2] ≥ 0),

η · |xj( f , τ)| (otherwise),

(101)

wherey(chSS)
j ( f , τ) is the target-speech-enhanced signal obtained by SS at a spe-

cific channel j and ñj( f , τ) is the estimated noise signal in thejth channel. For

instance, the multichannel noise can be estimated by single-input multiple-output

ICA (SIMO-ICA) [50] or a combination of ICA and the projection back method [16].

These techniques can provide the multichannel estimated noise signal, unlike tra-

ditional ICA. SIMO-ICA can separate mixed signals not into monaural source

signals but into SIMO-model signals at the microphone. Here “SIMO” represents

the specific transmission system in which the input signal is a single source sig-

nal and the outputs are its transmitted signals observed at multiple microphones.

Thus, the output signals of SIMO-ICA maintain the rich spatial qualities of the

sound sources. Also the projection back method provides SIMO-model-separated

signals using inverse of an optimized ICA filter.

Finally, the target-speech-enhanced signal can be extracted by applying DS to

ychSS( f , τ) = [y(chSS)
1 ( f , τ), . . . , y(chSS)

J ( f , τ)]
T
. This procedure can be expressed by

y( f , τ) = wT
DS( f , θU)ychSS( f , τ), (102)

wherey( f , τ) is the final output of chSS+BF.

Such a chSS+BF structure performs DS after (multichannel) SS. Since DS is

basically signal processing in which the summation of the multichannel signal is

taken, it can be considered that interchannel smoothing is applied to the multi-

channel spectral-subtracted signal. On the other hand, the resultant output signal

of BF+SS remains as it is after SS. That is to say, it can be expected that the out-

put signal of chSS+BF is more natural (contains less musical noise) than that of

BF+SS.
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Figure 37. (a) Observed spectrogram and (b) processed spectrogram.

7.3. Kurtosis-based musical-noise generation metric

7.3.1 Introduction

Uemura et al. have been reported that the amount of musical noise generated is

strongly related to the difference between the kurtosis of a signal before and after

signal processing [35]. Thus, I can analyze the amount of musical noise generated

through BF+SS and chSS+BF on the basis of the change in the measured kurtosis.

Hereinafter, I give details of the kurtosis-based musical-noise metric.

7.3.2 Relation between musical-noise generation and kurtosis

Generally, musical noise can be considered as the audible isolated spectral com-

ponents generated through signal processing. Figure 37(b) shows an example of

a spectrogram of musical noise in which many isolated components can be ob-

served. Then, it can be speculated that the amount of musical noise is strongly

related to the number of such isolated components and their level of isolation.

Hence, Uemura et al. have introduced kurtosis to quantify the isolated spec-

tral components, and they focus their attention on the changes in kurtosis. Since

isolated spectral components are dominant, they are heard as tonal sounds, which

results in our perception of musical noise. Therefore, it is expected that obtaining

the number of tonal components will enable us to quantify the amount of musical

noise. However, such a measurement is extremely complicated, so instead they
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have introduced a simple statistical estimate, i.e., kurtosis.

This strategy allows us to obtain the characteristics of tonal components. The

adopted kurtosis can be used to evaluate the width of the probability density func-

tion (p.d.f.) and the weight of its tails, i.e., kurtosis can be used to evaluate the

percentage of tonal components among the total components. A larger value in-

dicates a signal with a heavy tail in its p.d.f., meaning that it has a large number

of tonal components. Also, kurtosis has the advantageous property that it can be

easily calculated in a concise algebraic form.

7.3.3 Kurtosis

Kurtosis is one of the most commonly used HOS for the assessment of non-

Gaussianity. Kurtosis is defined as

kurtx =
µ4

µ2
2

, (103)

wherex is a random variable, kurtx is the kurtosis ofx, andµn is thenth-order

moment ofx. Hereµn is defined as

µn =

∫ +∞

−∞
xnP(x)dx, (104)

whereP(x) denotes the p.d.f. ofx. Note that thisµn is not a central momentbut

a raw moment. Thus, (103) is not kurtosis according to the mathematically strict

definition, but a modified version; however, I refer to (103) as kurtosis in this

study.

7.3.4 Kurtosis ratio

Although we can measure the number of tonal components by kurtosis, it is worth

mentioning that kurtosis itself is not sufficient to measure musical noise. This

is because that the kurtosis of some unprocessed signals such as speech signals

is also high, but we do not perceive speech as musical noise. Since we aim to

count only the musical-noise components, we should not consider genuine tonal

components. To achieve this aim, we should focus on the fact that musical noise
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is generated only in artificial signal processing. Hence, we should consider the

change in kurtosis during signal processing. Consequently, the followingkurtosis

ratio [35] has been proposed to measure the kurtosis change:

kurtosis ratio=
kurtproc

kurtinput
, (105)

where kurtproc is the kurtosis of the processed signal and kurtinput is the kurtosis

of the input signal. A larger kurtosis ratio (≫ 1) indicates a marked increase in

kurtosis as a result of processing, implying that a larger amount of musical noise

is generated. On the other hand, a smaller kurtosis ratio (≃ 1) implies that less

musical noise is generated. It has been confirmed that this kurtosis ratio closely

matches the amount of musical noise in a subjective evaluation based on human

hearing [35].

7.4. Conclusion

In this chapter, I pointed out the problem of the methods of integrating microphone

array signal processing and SS such as the proposed BSSA, i.e., musical noise

problem. Next, I mentioned the typical methods of integrating microphone array

and SS. Finally, I gave a brief explanation of objective measure of musical noise

on the basis of HOS.
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Chapter 8

Kurtosis-Based Musical-Noise Analysis for

M icrophone Array Signal Processing and SS

8.1. Introduction

In the previous chapter, the objective measure for the amount of musical noise

generated on the basis of HOS, which is kurtosis ratio, was described. In this chap-

ter, I perform an analysis on musical-noise generation in BF+SS and chSS+BF on

the basis of kurtosis.

The analysis is composed of the following three parts:

• First, an analysis on musical-noise generation in BF+SS and chSS+BF

based on kurtosis that does not take noise reduction performance into ac-

count is performed in Sect. 8.3.

• The noise reduction performance is analyzed in Sect. 8.4, and I reveal that

the noise reduction performances of BF+SS and chSS+BF are not equiv-

alent. Moreover, a flooring parameter design to align the noise reduction

performances of BF+SS and chSS+BF is also derived for the fair compari-

son of BF+SS and chSS+BF.

• The kurtosis-based comparison between BF+SS and chSS+BF under the

same noise reduction performance condition is carried out in Sect. 8.5.

Note that my analysis has no limitations regarding assumptions on the statistical

characteristics of noise, thus, all noises including Gaussian and super-Gaussian

noise can be considered.

8.2. Signal model used for analysis

Musical-noise components generated from the noise-only period are dominant in

spectrograms (see Fig. 37); hence, I mainly focus my attention on musical-noise

87



components originating from input noise signals.

Moreover, to evaluate the resultant kurtosis of SS, we introduce a gamma dis-

tribution to model the noise in the power domain [51, 52, 53]. The p.d.f. of the

gamma distribution for random variablex is defined as

PGM(x) =
1

Γ(α)θα
· xα−1 exp

{
− x
θ

}
, (106)

wherex ≥ 0, α > 0, andθ > 0. Here,α denotes the shape parameter,θ is the scale

parameter, andΓ(·) is the gamma function. The gamma distribution withα = 1

corresponds to the chi-square distribution with two degrees of freedom. Moreover,

it is well known that the mean ofx for a gamma distribution is E[x] = αθ, where

E[·] is the expectation operator. Furthermore, the kurtosis of a gamma distribution,

kurtGM, can be expressed as [35]

kurtGM =
(α + 2)(α + 3)
α(α + 1)

. (107)

Moreover, let me consider the power-domain noise signal,xp, in the frequency

domain, which is defined as

xp = |xre+ i · xim|2 = (xre+ i · xim)(xre+ i · xim)∗ = x2
re+ x2

im, (108)

wherexre is the real part of the complex-valued signal andxim is the imaginary part

of the complex-valued signal. They are independent and identically distributed

(i.i.d.) with each other, and the superscript∗ expresses complex conjugation.

Thus, the power-domain signal is the sum of two squares of random variables

with the same distribution.

Hereinafter, letxre andxim be the signals after DFT analysis ofxj ( j = 1, . . . , J),

and we suppose that the statistical properties ofxj equal toxre andxim. Moreover,

we assume the following;x j is i.i.d. in each channel, the p.d.f. ofx j is symmetri-

cal, and its mean is zero. These assumptions mean that the odd-order cumulants

and moments are zero except for the first order.

Although kurtx = 3 if x is a Gaussian signal, note that the kurtosis of a Gaus-

sian signal in the power spectral domain is 6. This is because a Gaussian signal in

the time domain obeys the chi-square distribution with two degrees of freedom in

the power spectral domain; for such a chi-square distribution,µ4/µ
2
2 = 6.
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Figure 38. Deformation of original p.d.f. of power-domain signal via SS.

8.3. Kurtosis analysis on BF+SS and chSS+BF

8.3.1 Resultant kurtosis after SS

In this section, I analyze the kurtosis after SS. In traditional SS, the long-term-

averaged power spectrum of a noise signal is utilized as the estimated noise power

spectrum. Then, the estimated noise spectrum multiplied by the oversubtraction

parameterβ is subtracted from the observed power spectrum. When a gamma

distribution modeling is used to model the noise signal, its mean isαθ. Thus,

the amount of subtraction isβαθ. The subtraction of the estimated noise power

spectrum in each frequency band can be considered as a shift of the p.d.f. to the

zero-power direction (see Fig. 38). As a result, negative-power components with

nonzero probability arise. To avoid this, such negative components are replaced

by observations that are multiplied by a small positive valueη (the so-called floor-

ing technique). This means that the region corresponding to the probability of the

negative components, which form a section cut from the original gamma distribu-

tion, is compressed by the effect of the flooring. Finally, the floored components

are superimposed on the laterally shifted p.d.f. (see Fig. 38). Thus, the resultant
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p.d.f. after SS,PSS(z), can be written as

PSS(z) =



1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
(z≥ βαη2θ),

1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
+

1
(η2θ)αΓ(α)

zα−1 exp

{
− z
η2θ

}
(0 < z< βαη2θ),

(109)

wherez is the random variable of the p.d.f. after SS. The derivation ofPSS(z) is

described in Appendix D.

From (109), the kurtosis after SS can be expressed as

kurtSS= Γ(α)
F (α, β, η)
G2(α, β, η)

, (110)

where

G(α, β, η) = Γ(α)Γ(βα, α + 2)− 2βαΓ(βα, α + 1)+ β2α2Γ(βα, α) + η4γ(βα, α + 2),

(111)

F (α, β, η) = Γ(βα, α + 4)− 4βαΓ(βα, α + 3)+ 6β2α2Γ(βα, α + 2)

− 4β3α3Γ(βα, α + 1)+ β4α4Γ(βα, α) + η8γ(βα, α + 4). (112)

Here,Γ(b,a) is the upper incomplete gamma function defined as

Γ(b,a) =
∫ ∞

b
ta−1 exp{−t}dt, (113)

andγ(b,a) is the lower incomplete gamma function defined as

γ(b,a) =
∫ b

0
ta−1 exp{−t}dt. (114)

The detailed derivation of (110) is given in Appendix E. Although Uemura et

al. have given an approximated form (lower bound) of the kurtosis after SS in

Ref. [35], (110) involves no approximation throughout its derivation. Further-

more, (110) takes into accountthe effect of the flooring techniqueunlike Ref. [35].

Figure 39(a) depicts the theoretical output kurtosis ratio after SS, kurtSS/ kurtGM,

for various values of oversubtraction parameterβ and flooring parameterη. In the
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figure, the kurtosis of the input signal is fixed to 6.0, which corresponds to a

Gaussian signal. From this figure, it is confirmed that the output kurtosis ratio is

basically proportional to the oversubtraction parameterβ. However, kurtosis does

not monotonically increase when the flooring parameter is nonzero. For instance,

the output kurtosis ratio is smaller than the peak value whenβ = 4 andη = 0.4.

This phenomenon can be explained as follows. For a large oversubtraction pa-

rameter, almost all the spectral components become negative due to the larger

lateral shift of the p.d.f. by SS. Since flooring is applied to avoid such negative

components, almost all the components are reconstructed by flooring. Therefore,

the statistical characteristics of the signal do not change except for its amplitude

if η , 0. Generally, kurtosis does not depend on the change in amplitude; con-

sequently, it can be considered that kurtosis does not markedly increase when a

larger oversubtraction parameter and a larger flooring parameter are set.

The relation between the theoretical output kurtosis ratio and the kurtosis of

the original input signal is shown in Fig. 39(b). In the figure,η is fixed to 0.0.

It is revealed that the output kurtosis ratio after SS rapidly decreases as the input

kurtosis increases, even with the same oversubtraction parameterβ. Therefore,

the output kurtosis ratio after SS, which is related to the amount of musical noise,

strongly depends on the statistical characteristics of the input signal. That is to

say, SS generates a larger amount of musical noise for a Gaussian input signal

than for a super-Gaussian input signal. This fact has been reported in Ref. [35].

8.3.2 Resultant kurtosis after DS

In this section, I analyze of the kurtosis after DS, and I reveal that DS can reduce

the kurtosis of input signals. Since I assume that the p.d.f. ofxre or xim corresponds

to the time-domain signalx j, the effect of DS on the change in kurtosis can be

derived from the cumulants and moments ofxj.

For cumulants, whenX and Y are independent random variables it is well

known that the following relation holds:

cumn(aX+ bY) = an cumn(X) + bn cumn(Y), (115)
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Figure 39. (a) Theoretical output kurtosis ratio after SS for various values of

oversubtraction parameterβ and flooring parameterη. In this figure, kurtosis of

input signal is fixed to 6.0. (b) Theoretical output kurtosis ratio after SS for various

values of input kurtosis. In this figure, flooring parameterη is fixed to 0.0.

where cumn(·) denotes thenth-order cumulant. The cumulants of the random

variableX, cumn(X), are defined by a cumulant-generating function, which is the

logarithm of the moment-generating function. The cumulant-generating function

C(ζ) is defined as

C(ζ) = log(E[exp{ζX}]) =
∞∑

n=1

cumn(X)
ζn

n!
, (116)

whereζ is an auxiliary variable and E[exp{ζX}] is the moment-generating func-

tion. Thus, thenth-order cumulant cumn(X) is represented by

cumn(X) = C(n)(0), (117)

whereC(n)(ζ) is thenth-order derivative ofC(ζ).

Now I consider the DS beamformer, which is steered toθU = 0 and whose

array weights are 1/J. Using (115), the resultantnth-order cumulant after DS,

Kn, can be expressed by

Kn =
1

Jn−1
Kn, (118)

whereKn is thenth order cumulant ofxj. Therefore, using (118) and the well-

known mathematical relation between cumulants and moments, the power-spectral-
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Figure 40. Relation between input kurtosis and output kurtosis after DS. Solid

lines indicate simulation results, broken lines express theoretical plots obtained

by (119), and dotted lines show approximate results obtained by (120).

domain kurtosis after DS, kurtDS can be expressed by

kurtDS =
K8 + 38K2

4 + 32K2K6 + 288K2
2K4 + 192K4

2

2K2
4 + 16K2

2K4 + 32K4
2

. (119)

The detailed derivation of (119) is described in Appendix F.

Regarding the power-spectral components obtained from a gamma distribu-

tion, the relation between input kurtosis and output kurtosis after DS is illustrated

in Fig. 40. In the figure, solid lines indicate simulation results and broken lines

show theoretical relations given by (119). The simulation results are derived as

follows. First, multichannel signals with various values of kurtosis are generated

artificially from a gamma distribution. Next, DS is applied to the generated sig-

nals. Finally, kurtosis after DS is estimated from the signal resulting from DS.

From this figure, it is confirmed that the theoretical plots closely fit the simula-

tion results. The relation between input/output kurtosis behaves as follows: (I)

The output kurtosis is very close to a linear function of the input kurtosis, and (II)
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Figure 41. Simulation result for noise with interchannel correlation (solid line)

and theoretical effect of DS assuming no interchannel correlation (broken line) in

each frequency subband.

the output kurtosis is almost inversely proportional to the number of microphones.

These behaviors result in the following simplified (but useful) approximation with

an explicit function form:

kurtDS ≃ J−0.7 · (kurtin −6)+ 6, (120)

where kurtin is the input kurtosis. The approximated plots also match the simula-

tion results in Fig. 40.

When input signals involve interchannel correlation, the relation between in-

put kurtosis and output kurtosis after DS approaches that for only one microphone.

If all input signals are identical signals, i.e., the signals are completely correlated,

the output after DS also becomes the same as the input signal. In such a case,

the effect of DS on the change in kurtosis corresponds to that for only one mi-

crophone. However, the interchannel correlation is not completely unit within all

frequency subbands for a diffuse noise field that is a typically considered noise

field. It is well known that the intensity of the interchannel correlation is strong

in lower-frequency subbands and weak in higher-frequency subbands for a diffuse

noise field [39]. Therefore, in lower-frequency subbands, it can be expected that

DS does not significantly reduce the kurtosis of the signal.

As it is well known that the interchannel correlation for the diffuse noise field

between two measurement locations can be expressed by the sinc function [39],
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Figure 42. Simulation result for noise with interchannel correlation (solid line),

and theoretical effect of DS assuming no interchannel correlation (broken line),

and observed kurtosis (dotted line), in eight-microphone case.

we can state how array signal processing is affected by the interchannel corre-

lation. However, we cannot know exactly how cumulants are changed by the

interchannel correlation because (115) only holds when signals are mutually in-

dependent. Therefore, we cannot formulate how kurtosis is changed via DS for

signals with interchannel correlation. For this reason, I experimentally investigate

the effect of interchannel correlation in the following.

Figures 41 and 42 show preliminary simulation results of DS. In this sim-

ulation, SS is first applied to a multichannel Gaussian signal with interchannel

correlation. Next, DS is applied to the signal after SS. In the preliminary simula-

tion, the interelement distance between microphones is 2.15 cm each. From the

results shown in Fig. 41(a) 42, we can confirm that the effect of DS on kurtosis

is weak in lower-frequency subbands, although it should be noted that the effect

does not completely disappear in lower-frequency subbands. Also, the theoretical

kurtosis curve is in good agreement with the actual results in higher-frequency

subbands (see Figs. 41(b) 42). This is because interchannel correlation is weak

in higher-frequency subbands. Consequently, for the diffuse noise field, DS can

reduce the kurtosis of the input signal even if interchannel correlation exists.
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If input noise signals contain no interchannel correlation, the distance between

microphones does not affect the results. That is to say, the kurtosis change via DS

can be well fit to (120). Otherwise, in lower-frequency subbands, it is expected

that the mitigation effect of kurtosis by DS degrades with decreasing of the micro-

phone distance. This is because the interchannel correlation in lower-frequency

subbands increases with decreasing distance between microphones. In higher-

frequency subbands, the effect of distance between microphones is thought to be

small.

8.3.3 Resultant kurtosis: BF+SS vs. chSS+BF

In the previous subsections, I discussed the resultant kurtosis after SS and DS.

In this subsection, I analyze the resultant kurtosis for two types of composite

systems, i.e., BF+SS and chSS+BF, and compare their effect on musical-noise

generation. As described in Sect. 7.3, it can be expected that a smaller increase in

kurtosis leads to a smaller amount of musical noise generated.

In BF+SS, DS is first applied to a multichannel input signal. At this point,

the resultant kurtosis in the power spectral domain, kurtDS, can be represented by

(120). Using (107), we can derive a shape parameter for the gamma distribution

corresponding to kurtDS, α̂, as

α̂ =

√
kurt2DS+14 kurtDS+1− kurtDS+5

2 kurtDS−2
. (121)

The derivation of (121) is shown in Appendix G. Consequently, using (110) and

(121), the resultant kurtosis after BF+SS, kurtBF+SS, can be written as

kurtBF+SS= Γ(α̂)
F (α̂, β, η)
G2(α̂, β, η)

. (122)

In chSS+BF, SS is first applied to each input channel. Thus, the output kurtosis

after channelwise SS, kurtchSS, can be given by

kurtchSS= Γ(α)
F (α, β, η)
G2(α, β, η)

. (123)
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Finally, DS is performed and the resultant kurtosis after chSS+BF, kurtchSS+BF, can

be written as

kurtchSS+BF = J−0.7

[
Γ(α)

F (α, β, η)
G2(α, β, η)

− 6

]
+ 6, (124)

where I use (120).

I should compare kurtBF+SS and kurtchSS+BF here. However, one problem still

remains: comparison under equivalent noise reduction performance; the noise

reduction performances of BF+SS and chSS+BF are not equivalent as described

in the next section. Moreover, the design of a flooring parameter so that the noise

reduction performances of both methods become equivalent will be discussed in

the next section. Therefore, kurtBF+SSand kurtchSS+BF will be compared in Sect. 8.5

under equivalent noise reduction performance conditions.

8.4. Noise reduction performance analysis

In the previous section, I did not discuss the noise reduction performances of

BF+SS and chSS+BF. In this section, a mathematical analysis of the noise reduc-

tion performances of BF+SS and chSS+BF is given. As a result of this analysis,

it is revealed that the noise reduction performances of BF+SS and chSS+BF are

not equivalent even if the same parameters are set in the SS part. I then derive a

flooring-parameter design strategy for aligning the noise reduction performances

of BF+SS and chSS+BF.

8.4.1 Noise reduction performance of SS

I utilize the following index to measure the noise reduction performance (NRP),

NRP= 10 log10
E[nin]
E[nout]

, (125)

wherenin is the power-domain (noise) signal of the input andnout is the power-

domain (noise) signal of the output after processing.

First, I derive the average power of the input signal. I assume that the input

signal in the power domain can be modeled by a gamma distribution. Then, the
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average power of the input signal can be given as

E[nin] = E[x]

=

∫ ∞

0
xPGM(x)dx

=

∫ ∞

0
x · 1
θαΓ(α)

xα−1 exp
{
−x
θ

}
dx

=
1

θαΓ(α)

∫ ∞

0
xα exp

{
− x
θ

}
dx. (126)

Here, lett = x/θ, thenθdt = dx. Thus,

E[nin] =
1

θαΓ(α)

∫ ∞

0
(θt)α exp{−t} θdt

=
θα+1

θαΓ(α)

∫ ∞

0
tα exp{−t} dt

=
θΓ(α + 1)
Γ(α)

= θα. (127)

This corresponds to the mean of a random variable with a gamma distribution.

Next, the average power of the signal after SS is calculated. Here, letz have

the p.d.f. of the signal after SS,PSS(z), defined by (109), then the average power

of the signal after SS can be expressed as

E[nout] = E[z]

=

∫ ∞

0
zPSS(z)dz

=

∫ ∞

0

z
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
dz

+

∫ βαη2θ

0

z
(η2θ)αΓ(α)

zα−1 exp

{
− z
η2θ

}
dz. (128)

I now consider the first term of the right-hand side in (128). Here lett = z+ βαθ,
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then dt = dz. As a result,∫ ∞

0

z
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
dz

=

∫ ∞

βαθ

(t − βαθ) · 1
θαΓ(α)

· tα−1 exp
{
− t
θ

}
dt

=

∫ ∞

βαθ

1
θαΓ(α)

· tα exp
{
− t
θ

}
dt −

∫ ∞

βαθ

βαθ

θαΓ(α)
· tα−1 exp

{
− t
θ

}
dt

=
θ · Γ(βα, α + 1)

Γ(α)
− βαθ · Γ(βα, α)

Γ(α)
. (129)

Also, I deal with the second term of the right-hand side in (128). Lett = z/(η2θ)

thenη2θdt = dz, resulting in∫ βαη2θ

0

z
(η2θ)αΓ(α)

zα−1 exp

{
− z
η2θ

}
dz

=
1

(η2θ)αΓ(α)

∫ βα

0
(η2θt)α · exp{−t} η2θdt =

η2θ

Γ(α)
γ(βα, α + 1). (130)

Using (127), (129), and (130), the noise reduction performance of SS, NRPSS, can

be expressed by

NRPSS= 10 log 10

(
E[z]
E[x]

)
= −10 log10

[
Γ(βα, α + 1)
Γ(α + 1)

− β · Γ(βα, α)
Γ(α)

+ η2γ(βα, α + 1)
Γ(α + 1)

]
. (131)

Figure 43(a) shows the theoretical value of NRPSS for various values of over-

subtraction parameterβ and flooring parameterη, where the kurtosis of the input

signal is fixed to 6.0, corresponding to a Gaussian signal. From this figure, it is

confirmed that NRPSS is proportional toβ. However, NRPSS hits a peak whenη

is nonzero even for large values ofβ. The relation between the theoretical NRPSS

and the kurtosis of the input signal is illustrated in Fig. 43(b). In this figure,η is

fixed to 0.0. It is revealed NRPSS decreases as the input kurtosis increases. This

is because the mean of a high-kurtosis signal tends to be small. Since the shape

parameterα of a high-kurtosis signal is small, the meanαθ corresponding to the

amount of subtraction, also becomes small. As a result, NRPSS decreases as the

input kurtosis increases. That is to say, NRPSS strongly depends on the statistical

characteristics of the input signal as well as the values of the oversubtraction and

flooring parameters.
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Figure 43. (a) Theoretical noise reduction performance of SS with various over-

subtraction parametersβ and flooring parametersη. In this figure, kurtosis of

input signal is fixed to 6.0. (b) Theoretical noise reduction performance of SS

with various values of input kurtosis. In this figure, flooring parameterη is fixed

to 0.0.

8.4.2 Noise reduction performance of DS

It is well known that the noise reduction performance of DS (NRPDS) is pro-

portional to the number of microphones. In particular, for spatially uncorrelated

multichannel signals, NRPDS is given as [39]

NRPDS = 10 log10 J. (132)

8.4.3 Resultant noise reduction performance: BF+SS vs. chSS+BF

In the previous subsections, the noise reduction performances of SS and DS were

discussed. In this subsection, I derive the resultant noise reduction performances

of the composite systems of SS and DS, i.e., BF+SS and chSS+BF.

The noise reduction performance of BF+SS is analyzed as follows. In BF+SS,

DS is first applied to a multichannel input signal. If this input signal is spatially

uncorrelated, its noise reduction performance can be represented by 10 log10 J.

After DS, SS is applied to the signal after DS. Note that DS affects the kurtosis

of the input signal. As described in Sect. 8.3.2, the resultant kurtosis after DS

can be approximated asJ−0.7 · (kurtin −6)+ 6. Thus, SS is applied to the kurtosis-

modified signal. Consequently, using (121), (131), and (132), the noise reduction
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performance of BF+SS, NRPBF+SS, is given as

NRPBF+SS= 10 log10 J − 10 log10

[
Γ(βα̂, α̂ + 1)
Γ(α̂ + 1)

− β · Γ(βα̂, α̂)
Γ(α̂)

+ η2γ(βα̂, α̂ + 1)
Γ(α̂ + 1)

]
= −10 log10

1
J · Γ(α̂)

[
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂) + η2γ(βα̂, α̂ + 1)

α̂

]
,

(133)

whereα̂ is defined by (121).

In chSS+BF, SS is first applied to a multichannel input signal, then DS is

applied to the resulting signal. Thus, using (131) and (132), the noise reduction

performance of chSS+BF, NRPchSS+BF, can be represented by

NRPchSS+BF = −10 log10
1

J · Γ(α)

[
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α

]
.

(134)

Figure 44 depicts the theoretical values of NRPBF+SS and NRPchSS+BF. From

this result, we can see that the noise reduction performances of both methods are

equivalent when the input signal is Gaussian. However, if the input signal is super-

Gaussian, NRPBF+SS exceeds NRPchSS+BF. This is due to the fact that DS is first

applied to the input signal in BF+SS; thus, DS reduces the kurtosis of the signal.

Since NRPSS for a low-kurtosis signal is greater than that for a high-kurtosis signal

(see Fig. 43(b)), the noise reduction performance of BF+SS is superior to that of

chSS+BF.

This discussion implies that the NRPBF+SS and NRPchSS+BF are not equivalent

under some conditions. Thus the kurtosis-based analysis described in Sect. 8.3 is

biased and requires some adjustment. In the following subsection, I will discuss

how to align the noise reduction performances of BF+SS and chSS+BF.

8.4.4 Flooring-parameter design in BF+SS for equivalent noise

reduction performance

In this section, we describe the flooring-parameter design in BF+SS so that NRPBF+SS

and NRPchSS+BF become equivalent.
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Figure 44. Comparison of noise reduction performances of chSS+BF with

BF+SS. In this figure, flooring parameter is fixed to 0.2 and number of micro-

phones is 8.

Using (133) and (134), the flooring parameter ˆη that makes NRPBF+SS equal to

NRPchSS+BF, is

η̂ =

√
α̂

γ(βα̂, α̂ + 1)
·
[
Γ(α̂)
Γ(α)
H(α, β, η) − I(α̂, β)

]
, (135)

where

H(α, β, η) =
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α
, (136)

I(α̂, β) =
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂). (137)

The detailed derivation of (135) is given in Appendix H. By replacingη in (100)

with this new flooring parameter ˆη, we can align NRPBF+SS and NRPchSS+BF to

ensure a fair comparison.
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8.5. Output kurtosis comparison under equivalent NRP

condition

In this section, using the new flooring parameter for BF+SS, η̂, I compare the

output kurtosis of BF+SS and chSS+BF.

Settingη̂ to (122), the output kurtosis of BF+SS is modified to

kurtBF+SS= Γ(α̂)
F (α̂, β, η̂)
G2(α̂, β, η̂)

. (138)

Here, I adopt the following index to compare the resultant kurtosis after BF+SS

and chSS+BF:

R= ln
kurtBF+SS

kurtchSS+BF
, (139)

whereRexpresses the resultant kurtosis ratio between BF+SS and chSS+BF. Note

that a positiveR indicates that chSS+BF reduces the kurtosis more than BF+SS,

implying that less musical noise is generated in chSS+BF. The behavior ofR is de-

picted in Figs. 45 and 46. Figure 45 illustrates theoretical values ofR for various

values of input kurtosis. In this figure,β is fixed to 2.0 and the flooring param-

eter in chSS+BF is set toη = 0.0, 0.1, 0.2, and 0.4. The flooring parameter for

BF+SS is automatically determined by (135). From this figure, we can confirm

that chSS+BF reduces the kurtosis more than BF+SS for almost all input signals

with various values of input kurtosis. Theoretical values ofR for various over-

subtraction parameters are depicted in Fig. 46. Figure 46(a) shows that the output

kurtosis after chSS+BF is always less than that after BF+SS for a Gaussian signal,

even ifη is nonzero. On the other hand, Fig. 46(b) implies that the output kurtosis

after BF+SS becomes less than that after chSS+BF for some parameter settings.

However, such phenomena only occur for a large oversubtraction parameter, e.g.,

β ≥ 7, which is not often applied in practical use. Therefore, it can be considered

that chSS+BF reduces the kurtosis and musical noise more than BF+SS in almost

all cases.
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Figure 45. Theoretical kurtosis ratio between BF+SS and chSS+BF for various

values of input kurtosis. In this figure, oversubtraction parameter isβ = 2.0 and

flooring parameter in chSS+BF is (a)η = 0.0, (b) η = 0.1, (c) η = 0.2, and (d)
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8.6. Evaluation

8.6.1 Computer simulations

First, I compare BF+SS and chSS+BF in terms of kurtosis ratio and noise reduc-

tion performance. I use 16-kHz-sampled signals as test data, in which the target

speech is the original speech convoluted with impulse responses recorded in a

room with 200 ms reverberation (see Fig. 47), and to which an artificially gen-

erated spatially uncorrelated white Gaussian or super-Gaussian signal is added.

I use six speakers (six sentences) as sources of the original clean speech. The

number of microphone elements in the simulation is varied from 2 to 16, and their

interelement distance is 2.15 cm each. The oversubtraction parameterβ is set to

2.0 and the flooring parameter for BF+SS,η, is set to 0.0, 0.2, 0.4, or 0.8. Note

that the flooring parameter in chSS+BF is set to 0.0. In the simulation, I assume

that the long-term-averaged power spectrum of noise is estimated perfectly in ad-

vance.

Here, I utilize the kurtosis ratio defined in Sect. 7.3.4 to measure the kurtosis

difference, which is related to the amount of musical noise generated. The kurtosis

ratio is given by

Kurtosis ratio=
kurt(nproc( f , τ))

kurt(norg( f , τ))
, (140)

wherenproc( f , τ) is the power spectra of the residual noise signal after processing,

andnorg( f , τ) is the power spectra of the original noise signal before processing.

This kurtosis ratio indicates the extent to which kurtosis is increased with pro-

cessing. Thus, a smaller kurtosis ratio is desirable. Moreover, the noise reduction

performance is measured using (125).

Figures 48–50 show the simulation results for a Gaussian input signal. From

Fig. 48(a), we can see that the kurtosis ratio of chSS+BF is decreases almost

monotonically with increasing number of microphones. On the other hand, the

kurtosis ratio of BF+SS does not exhibit such a tendency regardless of the floor-

ing parameter. Also, the kurtosis ratio of chSS+BF is lower than that of BF+SS

for all cases except forη = 0.8. Moreover, we can confirm from Fig. 48(b) that the

105



values of noise reduction performance for BF+SS with flooring parameterη = 0.0

and chSS+BF are almost the same. When the flooring parameter for BF+SS is

nonzero, the kurtosis ratio of BF+SS becomes smaller but the noise reduction

performance degrades. On the other hand, for Gaussian signals, chSS+BF can re-

duce the kurtosis ratio, i.e., reduce the amount of musical noise generated, without

degrading the noise reduction performance. Indeed BF+SS withη = 0.8 reduces

the kurtosis ratio more than chSS+BF, but the noise reduction performance of

BF+SS is extremely degraded. Furthermore, we can confirm from Figs. 49 and

50 that the theoretical kurtosis ratio and noise reduction performance closely fit

the experimental results. These findings also support the validity of the analysis

in Sects. 8.3, 8.4, and 8.5.

Figures 51–53 illustrate the simulation results for a super-Gaussian input sig-

nal. It can be confirmed from Fig. 51(a) that the kurtosis ratio of chSS+BF also

decreases monotonically with increasing the number of microphones. Unlike the

case of the Gaussian input signal, the kurtosis ratio of BF+SS withη = 0.8 also

decreases with increasing number of microphones. However, for a lower value of

the flooring parameter, the kurtosis ratio of BF+SS is not degraded. Moreover,

the kurtosis ratio of chSS+BF is lower than that of BF+SS for almost all cases.

For the super-Gaussian input signal, in contrast to the case of the Gaussian input

signal, the noise reduction performance of BF+SS withη = 0.0 is greater than

that of chSS+BF (see Fig. 51(b)). That is to say, the noise reduction performance

of BF+SS is superior to that of chSS+BF for the same flooring parameter. This

result is consistent with the analysis in Sect. 8.4. The noise reduction performance

of BF+SS withη = 0.4 is comparable to that of chSS+BF. However, the kurtosis

ratio of chSS+BF is still lower than that of BF+SS withη = 0.4. This result also

coincides with the analysis in Sect. 8.5. On the other hand, the kurtosis ratio of

BF+SS withη = 0.8 is almost the same as that of chSS+BF. However, the noise

reduction performance of BF+SS withη = 0.8 is lower than that of chSS+BF.

Thus, it is confirmed that chSS+BF reduces the kurtosis ratio more than BF+SS

for a super-Gaussian signal under the same noise reduction performance. Further-

more, the theoretical kurtosis ratio and noise reduction performance closely fit the

experimental results in Figs. 52 and 53.
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Figure 47. Reverberant room used in my simulations.

I also compare speech distortion originating from BF+SS and chSS+BF on

the basis of cepstral distortion (CD) [43] for the four-microphone case. The com-

parison is made under the condition that the noise reduction performances of both

methods are almost the same. For the Gaussian input signal, the same parameters

β = 2.0 andη = 0.0 are utilized for BF+SS and chSS+BF. On the other hand,

β = 2.0 andη = 0.0 are utilized for chSS+BF andβ = 2.0 andη = 0.4 are

utilized for BF+SS for the super-Gaussian input signal. Table 4 shows the result

of the comparison, from which we can see that the amount of speech distortion

originating from BF+SS and chSS+BF is almost the same for the Gaussian in-

107



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2  4  6  8  10  12  14  16

K
u

rt
o

s
is

 r
a

ti
o

Number of microphones

 5

 10

 15

 20

 2  4  6  8  10  12  14  16

N
o

is
e

 r
e

d
u

c
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 [
d

B
]

Number of microphones

(a) (b)

chSS+BF
BF+SS (η=0.0)

BF+SS (η=0.4)

BF+SS (η=0.8)

BF+SS (η=0.2)

Figure 48. Results for Gaussian input signal. (a) Kurtosis ratio and (b) noise

reduction performance for BF+SS with various flooring parameters.

Table 4. Speech distortion comparison of BF+SS and chSS+BF on the basis of

CD for four-microphone case

Input noise type chSS+BF BF+SS

Gaussian 6.15 dB 6.45 dB

Super-Gaussian 6.17 dB 5.12 dB

put signal. For the super-Gaussian input signal, the speech distortion originating

from BF+SS is less than that from chSS+BF. This is owing to the difference in

the flooring parameter for each method.

In conclusion, all of these results are strong evidence for the validity of the

analysis in Sects. 8.3, 8.4, and 8.5. These results suggest the following:

• Although BF+SS can reduce the amount of musical noise by employing a

larger flooring parameter, it leads to a deterioration of the noise reduction

performance.

• In contrast, chSS+BF can reduce the kurtosis ratio, which corresponds to

the amount of musical noise generated, without degradation of the noise

reduction performance.

• Under the same level of noise reduction performance, the amount of musical
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Figure 49. Comparison between experimental and theoretical kurtosis ratios for

Gaussian input signal.

noise generated via chSS+BF is less than that generated via BF+SS.

• Thus, the chSS+BF structure is preferable from the viewpoint of musical-

noise generation.

• However, the noise reduction performance of BF+SS is superior to that of

chSS+BF for a super-Gaussian signal when the same parameters are set in

the SS part for both methods.

• These results imply a trade-off between the amount of musical noise gener-

ated and the noise reduction performance. Thus, we should use an appro-

priate structure depending on the application.

These results should be applicable under different SNR conditions because our

analysis is independent of the noise level. In the case of more reverberation, the

observed signal tends to become Gaussian because many reverberant components

are mixed. Therefore, the behavior of both methods under more reverberant con-

ditions should be similar to that in the case of a Gaussian signal.
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Figure 50. Comparison between experimental and theoretical noise reduction per-

formances for Gaussian input signal.
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Figure 51. Results for super-Gaussian input signal. (a) Kurtosis ratio and (b) noise

reduction performance for BF+SS with various flooring parameters.
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Figure 52. Comparison between experimental and theoretical kurtosis ratios for

super-Gaussian input signal.
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Figure 53. Comparison between experimental and theoretical noise reduction per-

formances for super-Gaussian input signal.
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8.6.2 Subjective evaluation

Next, I conduct a subjective evaluation to confirm that chSS+BF can mitigate

musical noise. In the evaluation, I presented two signals processed by BF+SS

and by chSS+BF to seven male examinees in random order, who were asked to

select which signal they considered to contain less musical noise (the so-called AB

method). Moreover, I instructed examinees to evaluate only the musical noise and

not to consider the amplitude of the remaining noise. Here, the flooring parameter

in BF+SS was automatically determined so that the output SNR of BF+SS and

chSS+BF was equivalent. I used the preference score as the index of evaluation,

which is the frequency of the selected signal.

In the experiment, three types of noise, (a) artificial spatially uncorrelated

white Gaussian noise, (b) recorded railway-station noise emitted from 36 loud-

speakers, and (c) recorded human speech emitted from 36 loudspeakers, were

used. Note that noises (b) and (c) were recorded in the room shown in Fig. 47,

and therefore include interchannel correlation because they were recordings of

actual noise signals.

Each test sample is 16-kHz-sampled signal, and the target speech is the orig-

inal speech convoluted with impulse responses recorded in a room with 200 ms

reverberation (see Fig. 47) and to which the above-mentioned recorded noise sig-

nal is added. Ten pairs of signals per type of noise, i.e., a total of 30 pairs of

processed signals, were presented to each examinee.

Figure 54 shows the subjective evaluation results, which confirm that the out-

put of chSS+BF is preferred to that of BF+SS, even for actual acoustic noises

including non-Gaussianity and interchannel correlation properties.

8.6.3 Subjective evaluation in BSSA architecture

Finally, I compare the amount of musical noise generated via two methods, i.e.,

the original BSSA and BSSA with channel-wise SS (chBSSA), on the basis of the

informal listening test.

Figure 55 depicts the block diagram of chBSSA. In chBSSA, channel-wise

spectral subtraction is performed before DS unlike the original BSSA.
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Figure 54. Subjective evaluation results: BF+SS vs. chSS+BF.

In the evaluation, I also presented two signals processed by BSSA and by

chBSSA to seven male examinees in random order, who were asked to choose

which signal they considered to contain less musical noise. The experimental

configurations are the same as the configurations of Sect. 8.6.2 except for the

number of displayed signals to examinees. In this evaluation, 20 pairs of signals

per type of noise, i.e., a total of 60 pairs of processed signals, were presented to

each examinee.

Figure 56 illustrates the subjective evaluation result, and Fig. 57 shows exam-

ple spectrograms of signals processed by BSSA and by chBSSA. From Fig 56,

we can confirm that the output signal of chBSSA is preferred to that of the orig-

inal BSSA. Actually, it is confirmed that chBSSA reduces isolated components

in time-frequency domain sequences, which is a factor of musical noise, rather

than BSSA from Fig. 57. Therefore I conclude that the chSS+BF structure is ap-

plicable to less-musical noise methods integrating microphone array and spectral

subtraction.

8.7. Conclusion

In this chapter, I carried out the analysis on the amount of musical noise generated

via BF+SS and chSS+BF on the basis of kurtosis. First, I conducted an analysis on
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Figure 55. Block diagram of chBSSA.

the amount of musical noise generation thorough BF+SS and chSS+BF without

consideration of noise reduction performance. However, I also revealed that the

noise reduction performance of both methods are not equivalent even if the same

parameters are set in SS part. Therefore, I introduced the new flooring parameter

so that the noise reduction performance of both methods become equivalent. As

a result of the analysis under the same noise reduction performance condition, it

could be concluded that chSS+BF reduces the kurtosis and musical noise more

than BF+SS for almost all cases. Moreover, the analysis validity is supported by

computer simulations and subjective evaluations.
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Figure 57. Example spectrograms of signals processed by (a) BSSA and by (b)

chBSSA.
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Chapter 9

Epilogue

9.1. Thesis summary

In this thesis, I proposed a novel blind speech extraction method, i.e., BSSA,

that can be applied to actual world problem. Moreover, I constructed the real-

time algorithm of the proposed BSSA, and built the hands-free spoken-oriented

guidance system with the proposed real-time BSSA. As a result of computer sim-

ulations and real-world experiments, it was revealed that the proposed BSSA and

real-time BSSA improve the speech recognition performance. Furthermore, I per-

formed an analysis on the amount of musical-noise generated via methods of in-

tegrating microphone array and SS like BSSA on the basis of HOS. The analytic

result clarified that the specific integration structure, i.e., chSS+BF, is proper to

applications for human hearing.

In Chapter 3, the theoretical analysis of ICA under non-point-source noise

condition was given. As a result of the analysis, I founded out that the conven-

tional ICA is proficient in noise estimation under non-point-source noise condi-

tion. Besides, a computer simulation result that supports the analysis result was

also demonstrated.

Based on the above-mentioned findings, I proposed a novel blind source ex-

traction method, i.e., BSSA, in Chapter 4. In the chapter, I provided detailed sig-

nal processing of BSSA and the analysis of the permutation robustness in BSSA.

Moreover, I showed strong evidences of the efficacy of the proposed BSSA via

experimental results in not only an experimental room but also an actual world

scenario.

In Chapter 5, I presented an alternative analysis of the proposed BSSA with

comparing to the conventional SSA. As a result of the alternative analysis, it is

clarified that the proposed BSSA has the robustness against room reverberation

and microphone element errors.

In Chapter 6, I established the real-time algorithm of the proposed BSSA,
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and developed a hands-free spoken-oriented guidance system with the real-time

BSSA. Furthermore, the result of the speech recognition test of the proposed real-

time BSSA was also provided. The proposed real-time BSSA achieved enough

speech recognition performance, particularly over 80% word correct. Also the

delay of the proposed real-time BSSA was about 50 ms. For these reasons, I

concluded that the proposed real-time BSSA satisfies requirements of a real-time

hand-free spoken-oriented guidance system, which are both speech recognition

performance and real-time properties.

In Chapter 7, a preliminary preparation for musical-noise analysis was ex-

pounded. Firstly, I described formulae for two typical methods of integrating

microphone array and SS. Secondly, the objective metric for musical noise on the

basis of HOS was briefly reviewed.

In the following Chapter 8, HOS-based musical-noise analysis in methods of

integrating microphone array signal processing and SS were conducted. In that

analysis, first, the amount of musical noise generated via DS and SS including the

effect of the flooring technique was firstly investigated. Next, the musical-noise

generation in two methods of integrating DS and SS, i.e., BF+SS and chSS+BF,

were analyzed based on the above-mentioned investigation under the same noise

reduction performance condition. The analytic result suggested that chSS+BF

outputs less-musical noise signals. Also, the informal listening test advocated the

analytic result. These results let me conclude that the chSS+BF structure is proper

to applications for human hearing.

In summary, the acquired conclusions of the study are outlined in the following

points:

• It is theoretically clarified that the conventional ICA is proficient in noise

estimation rather than in target speech estimation under non-point-source

noise condition.

• The proposed BSSA that utilizes ICA as an accurate noise estimator achieves

better noise reduction performance than that by the conventional ICA.

• Also the proposed BSSA has a remarkable property that is the robustness
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against reverberation and microphone element errors.

• The proposed real-time BSSA accomplishes enough speech recognition per-

formance and low-latency blind source extraction for hand-free systems.

• The chSS+BF structure is preferable for human-hearing application.

9.2. Future work

In the thesis, I have improved the source extraction performance for hand-free sys-

tems, and the proposed algorithm has realized enough performance for developing

spoken-oriented speech guidance systems. However, the following problems are

still opened.

For human-hearing applications, the output sound quality including not only

noise reduction performance but also listenability is the most important factor.

However, musical noise always deteriorates listenability of the output signal. This

problem cannot be avoided in methods utilizing nonlinear signal processing like

SS. Indeed, I have provided the less musical noise structure for methods of in-

tegrating microphone array signal processing and SS, but it cannot control the

amount of musical noise generated. Then, a method can take control of the

musical-noise generation is needed to develop. Fortunately, I have gained the

objective metric for musical noise, i.e. kurtosis-based musical noise metric. On

the basis of this objective metric, we would establish the optimization techniques

from the viewpoint of not only noise reduction performance but also the amount

musical noise generated.

Moreover, in this dissertation, I have analyzed the amount of musical noise

generated through only methods of integrating microphone array and spectral sub-

traction. However, there exists various kinds of method using another nonlinear

signal processing. For instance, Okamoto et al. have proposed the methods of

integrating ICA and MMSE STSA estimator, it has been reported that the inte-

gration method is proper to human hearing [54]. In the future, it is needed that

the analysis in terms of another nonlinear signal processing and its integration

methods.
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Appendix

A. When | argr∗n − argrs| > π/2, higher-order cross

correlation is not minimized

In this section, I clarify that higher-order cross correlation betweenys( f , τ) and

yn( f , τ) is not minimized whenys( f , τ) andyn( f , τ) are orthogonalized. However,

it is difficult to give the generalized proof, I give the analysis for the specific case

below.

Here, I consider the case where the 2nd-order cross correlation coefficient of

the ICA’s outputys( f , τ) andyn( f , τ) is completely zero. The followingrs andrn

make the 2nd-order cross correlation coefficient zero:

rn = −
⟨n̂( f , τ)n̂∗( f , τ)⟩τ
⟨ŝ( f , τ)ŝ∗( f , τ)⟩τ

, (141)

rs = 1, (142)

where|argr∗n − argrs| = π(> π/2). Actually, using thesers andrn,⟨
ys( f , τ)y∗n( f , τ)

⟩
τ = ⟨(ŝ( f , τ) + rsn̂( f , τ))(n̂( f , τ) + rnŝ( f , τ))⟩τ
= rs ⟨n̂( f , τ)n̂∗( f , τ)⟩τ + rn ⟨ŝ( f , τ)ŝ∗( f , τ)⟩τ

= ⟨n̂( f , τ)n̂∗( f , τ)⟩τ −
⟨n̂( f , τ)n̂∗( f , τ)⟩τ
⟨ŝ( f , τ)ŝ∗( f , τ)⟩τ

⟨ŝ( f , τ)ŝ∗( f , τ)⟩τ

= 0. (143)

Anyway, the nonlinear functionφ(x) = tanh(x(R)) + i tanh(x(I)) (x ∈ C) can be

expanded by Tailor expansion as,

φ(x) = x− 1
3

(Re [x]3 + i · Im [x]3) + · · · . (144)
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Therefore, the nonlinear cross correlation matrix is⟨
φ


ys( f , τ)

yn( f , τ)


 [y∗s( f , τ)y∗n( f , τ)

] ⟩
τ

=

⟨ ys( f , τ) − 1
3(Re

[
ys( f , τ)

]3
+ i · Im [

ys( f , τ)
]3) + · · ·

yn( f , τ) − 1
3(Re

[
yn( f , τ)

]3
+ i · Im [

yn( f , τ)
]3) + · · ·

 [y∗s( f , τ), y∗n( f , τ)
] ⟩
τ

(145)

To analyze the higher-order cross correlation coefficient, I focus my attention on

the 1st row and 2nd column factor of (145),C12. C12 is represented by

C12 =
⟨
ys( f , τ)y∗s( f , τ)

⟩
τ −

⟨
1
3

(
Re

[
ys( f , τ)

]3
+ i · Im [

ys( f , τ)
]3
)
y∗n( f , τ)

⟩
τ

+ · · · .

(146)

The 4th-order cross correlation coefficient is

−1
3

⟨(
Re

[
ys( f , τ)

]3
+ i · Im [

ys( f , τ)
]3
)
y∗n( f , τ)

⟩
τ

= −1
3

⟨
(Re

[
ys( f , τ)

]3
+ i · Im [

ys( f , τ)
]3)(n̂∗ + rsŝ

∗( f , τ))
⟩
τ

= −1
3

( ⟨
Re

[
ys( f , τ)

]3 n̂∗( f , τ)
⟩
τ
+ i ·

⟨
Im

[
ys( f , τ)

]3 n̂∗( f , τ)
⟩
τ

+ rs

⟨
Re

[
ys( f , τ)

]3 ŝ∗( f , τ)
⟩
τ
+ i · rs

⟨
Im

[
ys( f , τ)

]3 ŝ∗( f , τ)
⟩
τ

)
=
⟨n̂( f , τ)n̂∗( f , τ)⟩τ
3 ⟨ŝ( f , τ)ŝ∗( f , τ)⟩τ

(⟨
Re

[
ys( f , τ)

]3 ŝ∗( f , τ)
⟩
τ
+ i ·

⟨
Im

[
ys( f , τ)

]3 ŝ∗( f , τ)
⟩
τ

)
, 0 (where ⟨n̂( f , τ)n̂∗( f , τ)⟩τ , 0). (147)

Consequently, indeedrs andrn which satisfy| argr∗n−argrs| > π/2 letys( f , τ) and

yn( f , τ) be orthogonalized but those let higher-order cross correlation not be zero.

B. Strategy of Selecting Target Speech Signal

For noise estimation in BSSA, the target speech must be removed from the sepa-

ration results of ICA. Therefore, a method of choosing the target speech from ICA

outputs is required in BSSA. Some methods of choosing the target speech signal

from ICA outputs are considered as follows:
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• If an approximate location of a target speaker is known in advance, we can

utilize the location of a target speaker. For instance, we can know the ap-

proximate location of the target speaker at a hands-free speech recognition

system in a car or of a public guidance system in advance. Then, the DOA of

the target speech signal is approximately known. For such systems, we can

choose the target speech signal, selecting the specific component in which

the estimated DOA by ICA is nearest the known target-speech DOA. the

basis of the estimated DOA by ICA.

• For an interaction robot system, we can utilize image information from a

camera mounted on a robot. Therefore, we can estimate DOA from this

information, and we can choose the target speech signal on the basis of this

estimated DOA.

• If the only target signal is speech, i.e., all noises are not speech, we can

choose the target speech signal on the basis of the Gaussian mixture model

(GMM) that can classify sound signals into voices and nonvoices [47].

C. Mel-Scale Filter Bank Analysis

The proposed BSSA involves mel-scale filter bank analysis, and directly outputs

MFCC. The triangular windowWmel( f ; l) (l = 1, · · · , L) for performing mel-scale

filter bank analysis is designated as

Wmel( f ; l) =


f − flo(l)

fc(l) − flo(l)
(
flo(l)≤ f≤ fc(l)

)
,

fhi(l) − f
fhi(l) − fc(l)

(
fc(l)≤ f≤ fhi(l)

)
,

(148)

where flo(l), fc(l), and fhi(l) are the lower, center, and higher frequency bins of

each triangle window, respectively. Furthermore,L is the dimension of the mel-

scale filter bank. They satisfy the relation among adjacent windows as

fc(l) = fhi(l − 1) = flo(l + 1). (149)
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Figure 58. Configuration of mel-scale filter bank.

Moreover, fc(l) is arranged at regular intervals on a mel-frequency domain. The

mel-scale frequencyMelfc(l) for fc(l) is calculated using

Melfc(l) = 2595 log10{1+ fc(l) fs/(700·M)}. (150)

The mel-scale filter bank analysis is given by

m(l, τ) =
fhi(l)∑

f= flo(l)

Wmel( f ; l)yBSSA( f , τ), (151)

wherem(l, τ) is the output of the mel-scale filter bank. Moreover, the logarithm

transform and discrete cosine transform are performed in the mel-scale filter bank

domain to obtain the MFCC for the speech recognizer; this processing can be

written as

MFCC(κ,τ)=

√
2
L

L∑
l=1

log
{
m(l,τ)

}
cos

{(
l−1

2

)
κπ

L

}
, (152)

whereκ denotes the dimension of MFCC. The proposed BSSA requires no trans-

formation into the time-domain waveform.

D. Derivation of (109)

When we assume that the input signal of the power domain can be modeled by

a gamma distribution, the amount of subtraction isβαθ. The subtraction of the
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estimated noise power spectrum in each frequency subband can be considered as

a lateral shift of the p.d.f. to the zero-power direction (see Fig. 38). As a result of

this subtraction, the random variablex is replaced withx + βαθ and the gamma

distribution becomes

P̂GM(x) =
1

Γ(α)θα
· (x+ βαθ)α−1 exp

{
− x+ βαθ

θ

}
(x ≥ −βαθ). (153)

Since the domain of the original gamma distribution isx ≥ 0, the domain of the

resultant p.d.f. isx ≥ −βαθ. Thus, negative-power components with nonzero

probability arise, which can be represented by

P̂negative(x) =
1

Γ(α)θα
· (x+ βαθ)α−1 exp

{
− x+ βαθ

θ

}
(−βαθ ≤ x ≤ 0), (154)

whereP̂negative(x) is part of P̂GM(x). To remove the negative-power components,

the signals corresponding tôPnegative(x) are replaced by observations multiplied

by a small positive valueη. The observations corresponding to (154),P̂obs(x), are

given by

P̂obs(x) =
1

Γ(α)θα
· (x)α−1 exp

{
− x
θ

}
(0 ≤ x ≤ βαθ). (155)

Since a small positive flooring parameterη is applied to (155), the scale parameter

θ becomesη2θ and the range is changed from 0≤ x ≤ βαθ to 0 ≤ x ≤ βαη2θ.

Then, (155) is modified to

P̂floor(x) =
1

Γ(α)(η2θ)α
· (x)α−1 exp

{
− x
η2θ

}
(0 ≤ x ≤ βαη2θ), (156)

whereP̂floor(x) is the probability of the floored components. ThisP̂floor(x) is su-

perimposed on the p.d.f. given by (153) within the range 0≤ x ≤ βαη2θ. By

considering the positive range of (153) andP̂floor(x), the resultant p.d.f. of SS can

be formulated as

PSS(z) =



1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
(z≥ βαη2θ),

1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
+

1
(η2θ)αΓ(α)

zα−1 exp

{
− z
η2θ

}
(0 < z< βαη2θ),

(157)

where the variablex is replaced withz for convenience.
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E. Derivation of (110)

To derive the kurtosis after SS, the 2nd- and 4th-order moments ofz are required.

For PSS(z), the 2nd-order moment can be given by

µ2 =

∫ ∞

0
z2 · PSS(z)dz

=

∫ ∞

0
z2 1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
dz

+

∫ βαη2θ

0
z2 1

(η2θ)αΓ(α)
zα−1 exp

{
− z
η2θ

}
dz. (158)

We now expand the first term of the right-hand side of (158). Here, lett = (z+

βαθ)/θ, thenθdt = dz andz= θ(t − βα). Consequently,∫ ∞

0
z2 1
θαΓ(α)

(z+ βαθ)α−1 exp
{
−z+ βαθ

θ

}
dz

=

∫ ∞

βα

θ2(t − βα)2 1
θαΓ(α)

(θt)α−1 exp{−t}θdt

=
θ2

Γ(α)

∫ ∞

βα

(t2 − 2βαt + β2α2)tα−1 exp{−t}dt

=
θ2

Γ(α)

[
Γ(βα, α + 2)− 2βαΓ(βα, α + 1)+ β2α2Γ(βα, α)

]
. (159)

Next we consider the second term of the right-hand side of (158). Here, lett =

z/(η2θ) thenη2θdt = dz. Thus,∫ βαη2θ

0
z2 1

(η2θ)αΓ(α)
zα−1 exp

{
− z
η2θ

}
dz

=

∫ βα

0
(η2θt)2 1

(η2θ)αΓ(α)
(η2θt)α−1 exp{−t} η2θdt

=
η4θ2

Γ(α)

∫ βα

0
tα+1 exp{−t}dt

= η4θ2
γ(βα, α + 2)
Γ(α)

. (160)

As a result, the 2nd-order moment after SS,µ(SS)
2 , is a composite of (159) and

(160), and can be given as

µ(SS)
2 =

θ2

Γ(α)

[
Γ(βα, α + 2)− 2βαΓ(βα, α + 1)+ β2α2Γ(βα, α) + η4γ(βα, α + 2)

]
.

(161)

126



In the same manner, the 4th-order moment after SS,µ(SS)
4 , can be represented

by

µ(SS)
4 =

θ4

Γ(α)

[
Γ(βα, α + 4)− 4βαΓ(βα, α + 3)+ 6β2α2Γ(βα, α + 2)

− 4β3α3Γ(βα, α + 1)+ β4α4Γ(βα, α) + η8γ(βα, α + 4)
]
. (162)

Consequently, using (161) and (162), the kurtosis after SS can be given as

kurtSS= Γ(α)
F (α, β, η)
G2(α, β, η)

, (163)

where

G(α, β, η) = Γ(α)Γ(βα, α + 2)− 2βαΓ(βα, α + 1)+ β2α2Γ(βα, α) + η4γ(βα, α + 2),

(164)

F (α, β, η) = Γ(βα, α + 4)− 4βαΓ(βα, α + 3)+ 6β2α2Γ(βα, α + 2)

− 4β3α3Γ(βα, α + 1)+ β4α4Γ(βα, α) + η8γ(βα, α + 4). (165)

F. Derivation of (119)

As described in (108), the power-domain signal is the sum of two squares of ran-

dom variables with the same distribution. Using (115), the power-domain cumu-

lantsK(p)
n can be written as

power-domain cumulants


K(p)

1 = 2K(2)
1 ,

K(p)
2 = 2K(2)

2 ,

K(p)
3 = 2K(2)

3 ,

K(p)
4 = 2K(2)

4 ,

(166)

whereK(2)
n is thenth square-domain moment. Here, the p.d.f. of such a square-

domain signal is not symmetrical and its mean is not zero. Thus, we utilize the

following relations between the moments and cumulants around the origin:

moments


µ1 = κ1,

µ2 = κ2 + κ
2
1,

µ4 = κ4 + 4κ3κ1 + 3κ22 + 6κ2κ21 + κ
4
1,

(167)
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whereµn is thenth-order raw moment andκn is thenth-order cumulant. Moreover,

the square-domain momentsµ(2)
n can be expressed by

squared-domain moments


µ(2)

1 = µ2,

µ(2)
2 = µ4,

µ(2)
4 = µ8.

(168)

Using (166)–(168), the power-domain moments can be expressed in terms of the

4th- and 8th-order moments in the time domain. Therefore, to obtain the kurtosis

after DS in the power domain, the moments and cumulants after DS up to the

8th-order are needed.

The 3rd-, 5th-, and 7th-order cumulants are zero because we assume that the

p.d.f. of xj is symmetrical and that its mean is zero. If these conditions are satis-

fied, the following relations between moments and cumulants hold

moments



µ1 = 0,

µ2 = κ2,

µ4 = κ4 + 3κ22,

µ6 = κ6 + 15κ4κ2 + 15κ32,

µ8 = κ8 + 35κ24 + 28κ2κ6 + 210κ22κ4 + 105κ42.

(169)

Using (118) and (169), the time-domain moments after DS are designated as

moments after DS


µ(DS)

2 = K2,

µ(DS)
4 = K4 + 3K2

2 ,

µ(DS)
6 = K6 + 15K2K4 + 15K3

2 ,

µ(DS)
8 = K8 + 35K2

4 + 28K2K6 + 210K2
2K4 + 105K4

2 ,

(170)

whereµ(DS)
n is thenth-order raw moment after DS in the time domain.

Using (167), (168) and (170), the square-domain cumulants can be written as

square-domain cumulants


K (2)

1 = K2,

K (2)
2 = K4 + 2K2

2 ,

K (2)
3 = K6 + 12K4K2 + 8K3

2 ,

K (2)
4 = K8 + 32K2

4 + 24K2K6 + 144K2
2K4 + 48K4

2 ,

(171)
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whereK (2)
n is thenth-order cumulant in the square domain.

Moreover, using (166), (167), and (171), the 2nd- and 4th-order power-domain

moments can be written as

µ
(p)
2 = 2

(
K4 + 4K2

2

)
, (172)

µ
(p)
4 = 2

(
K8 + 38K2

4 + 32K6K2 + 288K4K2
2 + 192K4

2

)
. (173)

As a result, the power-domain kurtosis after DS, kurtDS, can be given as

kurtBF =
K8 + 38K2

4 + 32K2K6 + 288K2
2K4 + 192K4

2

2K2
4 + 16K2

2K4 + 32K4
2

. (174)

G. Derivation of (121)

According to (107), the shape parameter ˆα corresponding to the kurtosis after DS,

kurtDS, is given by the solution of the quadratic equation

kurtDS =
(α̂ + 2)(α̂ + 3)
α̂(α̂ + 1)

. (175)

This can be expanded as

α̂2(kurtDS−1)+ α̂(kurtDS−5)+ 6 = 0. (176)

Using the quadratic formula,

α̂ =
− kurtDS+1±

√
kurt2DS+14 kurtDS+1

2 kurtDS−2
, (177)

whose denominator is larger than zero because kurtDS > 1. Here, since ˆα > 0, we

must select the appropriate numerator of (177). First, suppose that

− kurtDS+1+
√

kurt2DS+14 kurtDS+1 > 0. (178)

This inequality clearly holds when 1< kurtDS < 5 because− kurtDS+5 > 0 and√
kurt2DS+14 kurtDS+1 > 0. Thus,

− kurtDS+5 > −
√

kurt2DS+14 kurtDS+1. (179)
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When kurtDS ≥ 5, then the following relation also holds:

(− kurtDS+5)2 < kurt2DS+14 kurtDS+1,

⇐⇒ 24 kurtDS > 24. (180)

Since (180) is true when kurtDS ≥ 5, (178) holds. In summary, (178) always holds

for 1 < kurtDS < 5 and 5≤ kurtDS. Thus,

− kurtDS+5+
√

kurt2DS+14 kurtDS+1 > 0 for kurtDS > 1. (181)

Overall,

− kurtDS+5+
√

kurt2DS+14 kurtDS+1

2 kurtDS−2
> 0. (182)

On the other hand, let

− kurtDS+5−
√

kurt2DS+14 kurtDS+1 > 0, (183)

then this inequality isnot satisfied when kurtDS > 5 because− kurtDS+5 < 0 and√
kurt2DS+14 kurtDS+1 > 0. Now (183) can be modified as

− kurtDS+5 >
√

kurt2DS+14 kurtDS+1, (184)

then the following relation also holds for 1< kurtDS ≤ 5;

(− kurtDS+5)2 > kurt2DS+14 kurtDS+1,

⇐⇒ 24 kurtDS < 24. (185)

This isnot true for 1< kurtDS ≤ 5. Thus, (183) is not appropriate for kurtDS > 1.

Therefore, ˆα corresponding to kurtDS can be given by

α̂ =
− kurtDS+5+

√
kurt2DS+14 kurtDS+1

2 kurtDS−2
. (186)
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H. Derivation of (135)

For 0< α ≤ 1, which corresponds to a Gaussian or super-Gaussian input signal,

it is revealed that noise reduction performance of BF+SS is superior to that of

chSS+BF from the numerical simulation in Sect. 8.4. Thus, the following relation

holds:

−10 log10
1

J · Γ(α̂)

[
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂) + η2γ(βα̂, α̂ + 1)

α̂

]
≥ −10 log10

1
J · Γ(α)

[
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α

]
.

(187)

This inequality corresponds to

1
Γ(α̂)

[
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂) + η2γ(βα̂, α̂ + 1)

α̂

]
≤ 1
Γ(α)

[
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α

]
. (188)

Then, the new flooring parameter ˆη in BF+SS, which makes the noise reduction

performance of BF+SS equal to that of chSS+BF, satisfies ˆη ≥ η (≥ 0) because

γ(βα̂, α̂ + 1)
α̂

≥ 0. (189)

Moreover, the following relation for ˆη also holds:

1
Γ(α̂)

[
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂) + η̂2γ(βα̂, α̂ + 1)

α̂

]
=

1
Γ(α)

[
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α

]
. (190)

This can be rewritten as

η̂2Γ(α)
Γ(α̂)

γ(βα̂, α̂ + 1)
α̂

=

[
Γ(βα, α + 1)

α
− β · Γ(βα, α) + η2γ(βα, α + 1)

α

]
− Γ(α)
Γ(α̂)

[
Γ(βα̂, α̂ + 1)

α̂
− β · Γ(βα̂, α̂)

]
, (191)
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and consequently

η̂2 =
α̂

γ(βα̂, α̂ + 1)
·
[
Γ(α̂)
Γ(α)
H(α, β, η) − I(α̂, β)

]
, (192)

whereH(α, β, η) is defined by (136) andI(α, β) is given by (137). Using (189)

and (190), the right-hand side of (191) is clearly greater than or equal to zero.

Moreover, sinceΓ(α) > 0, Γ(α̂) > 0, α̂ > 0, andγ(βα̂, α̂ + 1) > 0, the right-hand

side of (192) is also greater than or equal to zero. Therefore,

η̂ =

√
α̂

γ(βα̂, α̂ + 1)
·
[
Γ(α̂)
Γ(α)
H(α, β, η) − I(α̂, β)

]
. (193)
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Open Source Software

1. Open ICA
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frequency-domain independent component analysis

http://openica.sourceforge.jp/

153


