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Techniques for Improving Voice Conversion

Based on Eigenvoices∗

Yamato Ohtani

Abstract

Voice conversion (VC) is a technique for converting a source speaker’s voice into

another speaker’s voice without changing linguistic information. As a typical ap-

proach to VC, a statistical method based on the Gaussian mixture model (GMM)

is widely used. A GMM is trained as a conversion model using a parallel data set

composed of many utterance-pairs of source and target speakers. Although this

framework works reasonably well, the converted speech quality is still insufficient

and the training process of the conversion model is less flexible.

Eigenvoice conversion (EVC) is an effective method for making the training

process more flexible. An eigenvoice GMM (EV-GMM) is trained in advance with

multiple parallel data sets consisting of the single pre-defined speaker and many

pre-stored speakers. Then, a conversion model for a new speaker is flexibly built

by adapting the EV-GMM using a few arbitrary utterances of the new speaker.

Two main frameworks have been proposed based on EVC: 1) one-to-many EVC,

which allows the conversion from a single source speaker’s voice into an arbitrary

target speaker’s voice; and 2) many-to-one EVC, which allows the conversion

in reverse. Although these frameworks achieve much higher flexibility than the

traditional VC, there remain limitations in building the conversion model between

an arbitrary speaker-pair. In addition, the conversion performance of the EVC is

significantly degraded because the EV-GMM captures acoustic variations among

the pre-stored target speakers. To make VC applications more practical, it is

indispensable to improve the conversion performance and develop a more flexible

training framework.
∗Doctoral Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0761009, March 31, 2010.

i



This thesis addresses two issues in the traditional methods: 1) the insufficient

converted speech quality and 2) the insufficient flexibility in model training. To

address the former issue, we first improve the excitation modeling accuracy in

the traditional VC framework. The traditional VC employs the simple excitation

model based on selecting a phase-manipulated pulse train and a noise signal. This

excitation model is too simple to capture acoustic characteristics of the excitation

signal. To address this issue, we introduce a more precise excitation model, i.e.,

STRAIGHT (Speech Transformation and Representation using Adaptive Inter-

polation of weiGHTed spectrum) mixed excitation (STME), which is generated

by frequency-dependent-weighted sum of a phase-manipulated pulse train and

a noise signal. Then, we also improve the conversion performance of the EV-

GMM. The inferior conversion performance is caused by the inter-speaker acous-

tic variations captured by the EV-GMM. To alleviate this problem, we propose

an adaptive training method for the EV-GMM to effectively reduce the inter-

speaker acoustic variations. Moreover, we develop an enhanced EVC system by

integrating the above proposed methods and the conversion algorithm consider-

ing global variance (GV) into the conventional EVC system. The experimental

results demonstrate that each proposed method yields significant improvements

in the conversion performance, and the enhanced EVC system dramatically out-

performs the conventional one in terms of both converted speech quality and

conversion accuracy for speaker individuality.

To address the latter issue, we propose many-to-many EVC for achieving a

very flexible training process of the conversion model. Many-to-many EVC is

a technique for converting an arbitrary source speakers’ voice into an arbitrary

target speaker’s voice. This framework is achieved by performing many-to-one

EVC and one-to-many EVC sequentially with a single EV-GMM through a refer-

ence speaker’s voice, which is considered as a hidden variable. Moreover, we also

propose a refining method of the EV-GMM using non-parallel data sets by ex-

tending the many-to-many EVC method. The experimental results demonstrate

the effectiveness of these proposed methods.

Keywords:

speech synthesis, voice conversion, Gaussian mixture model, eigenvoice, many-

to-many
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Chapter 1

Introduction

1.1. General background and problem definition

Speech is one of the principal ways for people to communicate. Speech conveys not

only textual information but also emotion, a speaking style, speaker individuality,

and so on. Therefore, speech plays an important role in human communication.

Recently, our access to computers has increased with the development of com-

puter technology. It is necessary to develop a useful man-machine interface to

support communication between people and computers. As one of the methods of

achieving this, speech interfaces have been studied for several decades. There are

two important technologies for developing man-machine speech interfaces, i.e.,

speech recognition and speech synthesis. Speech recognition is a technique for

information input. In this technology, the textual information is extracted from

speech, and it is converted into data that a computer can understand. On the

other hand, speech synthesis is a technique for information output. This process

is the reverse of speech recognition. Output speech includes diverse information

such as linguistic content, prosody, emotion, and speaker individuality. These

technologies are essential for developing a more natural and usable communica-

tion system between people and computers.

In this thesis, we focus on voice conversion (VC) [1], which is one of the speech

synthesis techniques. VC is a technique for converting a source speaker’s voice

quality into another speaker’s voice quality without changing linguistic informa-

tion. There have been various proposed applications using this technique, e.g.,

1



cross-language conversion [2][3], bandwidth extension for mobile phones [4][5]

and conversion from body-conducted speech to air-conducted speech [6] with a

non-audible murmur microphone [7].

In recent years, a statistical method using the Gaussian mixture model (GMM)

as a conversion model has been widely used [8] in the VC framework. In this

method, joint probability density of source and target acoustic features is mod-

eled by a GMM [9]. The GMM is trained with a parallel data set consisting of

utterance-pairs of source and target speakers. The trained GMM allows us to con-

vert the source features into the target features based on minimum mean square

error (MMSE) [8] or the maximum likelihood (ML) criterion [10]. Although the

traditional VC framework works reasonably well, it is difficult to develop practical

VC applications because there are still many problems to be solved.

The insufficient converted speech quality is caused by the improper excitation

model, and the training process of the conversion model is less flexible due to the

use of a large amount of parallel data.

To ameliorate the lower flexibility of the conversion model training, eigenvoice

conversion (EVC) has been proposed [11]. EVC is one effective approach to using

voices of other speakers as prior knowledge for building a conversion model for a

new speaker. This method has brought novel VC frameworks, i.e., one-to-many

EVC and many-to-one EVC [12]. The one-to-many EVC framework allows the

conversion from a specific source speaker’s voice into an arbitrary target speaker’s

voice and many-to-one EVC allows the conversion in reverse. In the one-to-many

EVC framework, an eigenvoice GMM (EV-GMM) is trained in advance with mul-

tiple parallel data sets consisting of a single source speaker and many pre-stored

target speakers. The GMM between the source speaker and an arbitrary target

speaker is flexibly developed by estimating a small number of free parameters

of the EV-GMM, i.e., weights for eigenvectors, using only a few utterances from

the adapted speaker in a text-independent manner. Although these EVC frame-

works are very flexible compared to the conventional VC framework, there are

still some issues to be addressed as follows: 1) it is still hard to flexibly perform

the conversion between arbitrary speaker-pairs; 2) the converted speech quality

of the EVC is still not high enough; and 3) the use of parallel data is inevitable

for the EV-GMM training. Therefore, it is necessary to work out these problems.

2



1.2. Thesis scope

This thesis describes two main approaches to addressing the issues of the conven-

tional EVC framework as shown in Figure 1.1. One is an approach to improving

the converted speech quality and the other is an approach to improving the flex-

ibility of building the conversion model.

1.2.1 Improvement of converted speech quality

The converted speech quality is affected by the following elements: 1) the quality

of the excitation model, 2) the performance of the conversion algorithm, and 3)

the quality of the conversion model. The excitation model strongly affects the

converted speech quality. The STRAIGHT (Speech Transformation and Rep-

resentation of weiGHTed spectrum) simple excitation (STSE) model based on

switching a phase-manipulated pulse train and white noise [13] is often used but

is too simple to model the human excitation signal appropriately. Moreover, the

spectral conversion algorithm without considering global variance (GV) [10] em-

ployed in the conventional EVC frameworks usually makes the converted spectral

parameters over-smoothed. The use of the EV-GMM with the target-speaker-

independent GMM (TI-GMM) parameters [11] also causes quality degradation of

the adapted conversion model because it improperly captures acoustic variations

among many pre-stored target speakers. These techniques often make the con-

verted speech sound buzzy and muffled. In this thesis, three effective techniques

for addressing these issues are applied to the standard VC framework and the

EVC framework in order to improve the converted speech quality. Experimen-

tal results of objective and subjective evaluations demonstrate that the proposed

techniques yield significant quality improvements in the converted speech.

1.2.2 Improvement of flexibility of model training

The conventional EVC framework can perform only one-to-many VC, which is the

conversion from a specific source speaker to arbitrary target speakers, or many-

to-one VC, which is the conversion from arbitrary source speakers to a specific

target speaker. This is because we use parallel data sets between a specified

3



speaker and various pre-stored speakers in the EV-GMM training. In order to

achieve many-to-many VC capable of the conversion between arbitrary source and

target speakers, we propose an approach based on many-to-one EVC and one-

to-many EVC. In our proposed approach, many-to-one EVC and one-to-many

EVC are performed sequentially using a single EV-GMM. In addition, in order to

make many-to-many EVC more effective, we consider voices of a single reference

speaker (i.e., the target speaker in many-to-one EVC and the source speaker in

one-to-many EVC) as hidden variables.

We also propose a method for refining the canonical EV-GMM using various

non-parallel data sets by developing the basic idea of the many-to-many EVC. In

this method, the initial EV-GMM is trained using the existing multiple parallel

data sets, and then it is refined using only non-parallel data sets including a larger

number of speakers while considering speech data of the single reference speaker

in the existing multiple parallel data sets as hidden variables. Note that these

non-parallel data sets are much more easily available than the multiple parallel

data sets. Therefore, the proposed method allows us to extract more informative

prior knowledge from a much larger number of speakers in EV-GMM training.

The experimental results of objective and subjective evaluations demonstrate that

our proposed methods are very effective.

1.3. Thesis overview

This thesis is organized as follows.

In Chapter 2, the traditional VC frameworks based on the statistical ap-

proaches are described. We describe state-of-the-art conversion methods for the

standard VC framework. We also describe the EVC framework and review the

conventional one-to-many EVC system. Finally, we describe the problems of the

conventional one-to-many EVC framework.

In Chapter 3, we address the improvement of the excitation model in the

traditional VC framework. As the proposed excitation model, we introduce

STRAIGHT mixed excitation (STME) [14] to the standard VC framework based

on a GMM. Objective and subjective results show that the proposed method

significantly outperforms the conventional method.
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Figure 1.1. Overview of thesis scope.

In Chapter 4, we propose the adaptive training method of the EV-GMM.

This proposed method is based on speaker adaptive training (SAT) [15], which

has been developed for speech recognition. Moreover, we describe a problem

of the proposed adaptive training method and present methods for alleviating

it. Experimental results demonstrate that the proposed training method yields

quality improvements of the adapted conversion model in EVC.

In Chapter 5, we describe the proposed one-to-many system into which some

promising techniques such as the state-of-the-art conversion method, STME and

adaptive training of the EV-GMM are integrated. Experimental results of ob-

jective and subjective evaluations demonstrate that our proposed system outper-

forms the conventional system.

In Chapter 6, we propose a novel EVC framework, many-to-many EVC. In

addition, we describe the proposed method for refining the EV-GMM using non-

5



parallel data sets. Objective and subjective results demonstrate the effectiveness

of our proposed methods.

In Chapter 7, we summarize the contributions of this thesis and suggest future

work.
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Chapter 2

Traditional Techniques for Voice

Conversion

Voice conversion (VC) is a technique that allows us to convert a source speaker’s

voice into another speaker’s voice. Currently, VC frameworks based on a sta-

tistical model are studied widely. Although the traditional frameworks work

reasonably well, they have limitations of the conversion model training. To ame-

liorate these limitations, eigenvoice conversion (EVC) has been proposed as one

of the VC frameworks using model adaptation techniques. In this chapter, we

review the traditional VC techniques and present some problems to be solved.

2.1. Introduction

VC is a technique for modifying non-linguistic information such as voice char-

acteristics without changing linguistic information. Two main approaches have

been studied. One is the rule-based approach and the other is the statistical

approach. In the rule-based approach, voice quality is changed by directly mod-

ifying acoustic parameters such as spectral envelope and fundamental frequency.

As a typical application, voice morphing [16][17][18] has been proposed. This

technique can generate intermediate voices among some different speakers’ voices

by linear interpolation of the acoustic parameters of those speakers. Moreover,

the extended voice morphing method to generate a specified speaker’s voice has

been proposed [19][20][21]. In this approach, we need to determine rules for mod-
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ifying the acoustic parameters but it is difficult to find proper and generic rules.

Therefore, the performance of the rule-based framework depends on developers’

abilities.

On the other hand, in the statistical approach, voice quality is changed based

on the statistical model constructed with a large amount of speech data. In the

early statistical VC approach, the codebook mapping method was proposed by

Abe et al. [1]. This technique is based on a speaker adaptation method using vec-

tor quantization (VQ) [22]. In this method, the mapping codebook representing

the correspondence between source and target speakers’ codebooks is constructed.

Then the source speaker’s voice is converted into the target speaker’s voice with

that mapping codebook. As another VC framework using a statistical model,

Kim et al. have proposed VC using the hidden Markov model (HMM) [23]. In

this framework, we train the target speaker’s HMM and the mapping function

of two state-dependent codebooks [24] in advance. These are called recognition-

codebook and synthesis-codebook respectively. In the conversion process, the

recognition-codewords are generated from the source feature sequence with the

recognition-codebook, and a state sequence for the target speaker’s HMM is de-

termined by translating these recognition-codewords into the synthesis-codewords

with the mapping function. Then, the converted feature sequence is generated

from the target speaker’s HMM based on this state sequence.

In recent years, VC using the Gaussian mixture model (GMM) has been

proposed by Stylianou et al. [8]. In this framework, the GMM is trained with

a source speaker’s acoustic features. The conversion function from the source

features to the target features is determined based on the minimum mean square

error (MMSE) criterion [8] with the source utterance set and its counterpart

set of the target speaker. In the conversion process, arbitrary utterances of the

source speaker’s voice are converted into those of the target speaker’s voice frame-

by-frame with the trained conversion function. Kain et al. have proposed an

improved GMM training method [9]. In their proposed method, a GMM of

joint probability density of source and target acoustic features is trained using a

parallel data set consisting of utterance-pairs of the source and target speakers.

The conversion function constructed from the trained GMM can transform the

source features into the target features based on the MMSE criterion. Toda

8



et al. have applied STRAIGHT (Speech Transformation and Representation of

weiGHTed spectrum) [13] to the GMM-based VC [25] to improve the converted

speech quality. STRAIGHT is a high quality analysis-synthesis system. In this

method, a GMM is trained with acoustic features analyzed by STRAIGHT.

The GMM-based VC using the MMSE criterion has two essential problems.

One is inappropriate spectral movements often caused by the MMSE-based con-

version because inter-frame feature correlation is ignored in the conversion pro-

cess. The other is the over-smoothing of the converted acoustic feature sequence

because the statistical modeling often removes the detail of spectral structures.

In order to consider inter-frame correlation of the converted features, Toda et

al. have proposed a conversion method based on the maximum likelihood cri-

terion [10] inspired by the parameter generation algorithm for speech synthesis

based on the HMM [26][27]. In this conversion method, an acoustic feature se-

quence is converted considering dynamic features [28][29][30]. In order to alleviate

the over-smoothing of the converted features, Toda et al. have also proposed an

ML-based conversion method considering global variance (GV) [10]. The GV is

defined as a variance over a time sequence of the acoustic features. These two

ideas achieve a significant quality improvement of the converted acoustic features.

Although the GMM-based VC framework works reasonably well, this training

framework using the parallel data set causes many limitations on VC applica-

tions due to its lower flexibility. To relax the use of the parallel data set, several

approaches to flexibly building a GMM for a desired speaker-pair by effectively

using another GMM for a different speaker-pair have been studied. Mouchtaris

et al. [31] have proposed an unsupervised training method based on ML con-

strained adaptation [32]. In this training method, a previously trained GMM

between certain source and target speakers is adapted to different source and

target speakers with linear transformation for the source speaker and that for the

target speaker, which are estimated independently. Lee et al. [33] have proposed

a training method based on maximum a posteriori (MAP) [34]. In this method,

the mean parameters of the reference speaker included in a GMM between source

and reference speakers are updated to a new target speaker’s mean parameters

by unsupervised MAP estimation.

In order to use more informative prior knowledge extracted from many other

9



speakers, we have proposed eigenvoice conversion (EVC) [11]. The eigenvoice

technique [35] was originally proposed as a model adaptation technique in the

speech recognition area. In the speech synthesis area, eigenvoice has been applied

to HMM-based text-to-speech (TTS) in order to achieve speaker adaptation using

a small amount of speech data [36]. This technique also achieves HMM-based TTS

capable of voice quality control [37] or speaking style control [38]. EVC is similar

to the speaker interpolation technique proposed by Iwahashi and Sagisaka [39]

and the speaker generation system based on STRAIGHT morphing proposed by

Ohtani et al. [19][20][21] in terms of using the information of various pre-stored

speakers. The speaker interpolation technique can convert only feature segments

included in the pre-stored database, and the speaker generation system requires

expert knowledge to give pre-stored spectra anchor-points for morphing. On the

other hand, EVC is capable of converting any source utterance into a target one

because speaker interpolation is performed on the model parameter space.

EVC has brought novel VC frameworks, i.e., many-to-one EVC and one-to-

many EVC [12]. Many-to-one EVC framework is a technique for converting an

arbitrary source speaker’s voice into a pre-determined target speaker’s voice. It

is possible to rapidly adapt the EV-GMM to a new source speaker using only

an input utterance to be converted. The rapid adaptation performance is signif-

icantly improved by applying MAP adaptation to the unsupervised weight esti-

mation [40]. On the other hand, the one-to-many EVC framework enables the

conversion from a pre-determined source speaker’s voice into an arbitrary target

speaker’s voice. One of the interesting applications of one-to-many EVC is voice

quality control [41]. This application allows us to intuitively control the con-

verted voice quality by manipulating voice quality control scores capturing voice

characteristics represented by several primitive words such as gender and age.

As another application for each EVC framework, cross-language EVC has been

proposed [42]. In this method, the EV-GMM is adapted to a new speaker whose

language is different from that used in training of the EV-GMM. The adapted

EV-GMM allows the conversion between the pre-determined speaker’s voice and

the new speaker’s voice while keeping the language of input speech unchanged.

Therefore, even if languages of two speakers are different from each other, this

method can effectively build the conversion model between them.
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Figure 2.1. Overview of GMM-based voice conversion.

This chapter has described various traditional voice conversion (VC) frame-

works such as statistical VC based on the Gaussian mixture model (GMM). In

section 2.2, we describe the basic GMM-based VC frameworks. In section 2.3,

the basic one-to-may EVC framework is described. In section 2.4, problems of

one-to-many EVC system are described. Finally, we summarize this chapter in

section 2.5.

2.2. Voice conversion based on Gaussian mixture

model

Figure 2.1 shows the overview of the GMM-based VC, which includes the training

process and the conversion process. In this section, we describe two types of

the GMM-based VCs such as VC based on MMSE and VC based on maximum

likelihood estimation (MLE).
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2.2.1 Voice conversion based on minimum mean square er-

ror

We use D-dimensional acoustic features, the source speaker’s feature xt at the

tth frame and a target speaker’s feature yt at the tth frame. A GMM models

joint probability density of time-aligned source and target features determined

by dynamic time warping (DTW) and is described as follows:

P (xt,yt|λ) =
M∑

m=1

αmN
([

x⊤
t ,y

⊤
t

]⊤
;µ(x,y)

m , Σ(x,y)
m

)
, (2.1)

where N (x;µ,Σ) denotes Gaussian distribution with mean vector µ and covari-

ance matrix Σ. M represents the number of mixture components and αm is

weight for the mth component of the GMM. λ is parameter set of GMM, which

includes αm, µ
(x,y)
m and Σ(x,y)

m . And ⊤ denotes transposition of the vector. The

mth mean vector µ
(x,y)
m and Σ(x,y)

m are written as follows:

µ(x,y)
m =

[
µ

(x)
m

µ
(y)
m

]
, Σ(x,y)

m =

[
Σ(xx)

m Σ(xy)
m

Σ(yx)
m Σ(yy)

m

]
, (2.2)

where, µ
(x)
m and µ

(y)
m denote the mth source mean vector and target mean vector,

respectively. Σ(xx)
m and Σ(yy)

m are mth covariance matrices of source and target

speakers, respectively. Σ(xy)
m andΣ(yx)

m represent themth cross-covariance matrices

for source and target speakers, respectively. This GMM is trained with the EM

algorithm [43] using parallel data set composed of utterance-pairs of source and

target speakers as follows:

λ̂ = argmax
λ

T∏
t=1

P (xt,yt|λ) . (2.3)

In the conversion process based on MMSE [8][9], the converted target feature

ŷt is determined by the following conversion function formulated as the condi-

tional expectation E[yt|xt]:

ŷt = E[yt|xt]

=

∫
P (yt|xt, λ)ytdyt, (2.4)
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where P (yt|xt, λ) is the conditional probability density of yt given xt which

modeled by a GMM as follows:

P (yt|xt, λ) =
M∑

m=1

P (m|xt, λ)P (yt|xt,m, λ) , (2.5)

P (m|xt, λ) =
αmN

(
xt;µ

(x)
m ,Σ(xx)

m

)
M∑

m=1

αmN
(
xt;µ

(x)
m ,Σ(xx)

m

) , (2.6)

P (yt|xt,m, λ) = N
(
yt;E

(y)
mt,t,D

(y)
mt

)
. (2.7)

The mean vector E
(y)
m,t and covariance matrix D(y)

m of the mth conditional distri-

bution are written as follows:

E
(y)
m,t = µ(y)

mt
+Σ(yx)

mt
Σ(xx)−1

mt

(
xt − µ(x)

mt

)
, (2.8)

D(y)
m = Σ(yy)

mt
−Σ(yx)

mt
Σ(xx)−1

mt
Σ(xy)

mt
. (2.9)

Therefore, Eq. (2.4) is rewritten as follows:

ŷt =

∫ M∑
m=1

P (m|xt, λ)P (yt|xt,m, λ)ytdyt,

=
M∑

m=1

P (m|xt, λ)E
(y)
mt,t. (2.10)

2.2.2 Voice conversion based on maximum likelihood esti-

mation

In the MMSE-based method, the conversion process is performed frame-by-frame.

Therefore, the converted acoustic feature sequence often includes discontinuities.

In contrast, the MLE-based conversion alleviates these discontinuities by convert-

ing feature vectors in all frames over a time sequence.

In the MLE-based conversion, we use 2D-dimensional acoustic features, a

source speaker’s feature X t =
[
x⊤
t ,∆x⊤

t

]⊤
and a target speaker’s feature Y t =[

y⊤
t ,∆y⊤

t

]⊤
, consisting of D-dimensional static and dynamic features. In the
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same manner as the MMSE-based VC, we models joint probability density of

source and target speakers with a GMM as follows:

P (X t,Y t|λ) =
M∑

m=1

αmN
([

X⊤
t ,Y

⊤
t

]⊤
;µ(X,Y )

m , Σ(X,Y )
m

)
, (2.11)

µ(X,Y )
m =

[
µ

(X)
m

µ
(Y )
m

]
, Σ(X,Y )

m =

[
Σ(XX)

m Σ(XY )
m

Σ(Y X)
m Σ(Y Y )

m

]
. (2.12)

In this conversion, a time sequence of converted static feature vectors ŷ =[
ŷ⊤
1 , ŷ⊤

2 , · · · , ŷ⊤
T

]⊤
are obtained as follows:

ŷ = argmax
y

P (Y |X, λ)

= argmax
y

∑
allm

P (m|X, λ)P (Y |X,m, λ) ,

= argmax
y

T∏
t=1

M∑
m=1

P (m|X t, λ)P (Y t|X t,m, λ) , (2.13)

subject to Y = Wy, (2.14)

where X =
[
X⊤

1 ,X
⊤
2 , · · · ,X⊤

T

]⊤
and Y =

[
Y ⊤

1 ,Y
⊤
2 , · · · ,Y ⊤

T

]⊤
are a time

sequence of the source features and that of the target features, respectively.

m = {m1,m2, · · · ,mT} is a mixture component sequence. Then, W denotes

the matrix to extend the static feature sequence to the static and dynamic fea-

ture sequence. In this thesis, we employ W written as follows

W =
[
w⊤

1 ,w
⊤
2 , · · · ,w⊤

T

]⊤
, (2.15)

where

wt =

[
0D×(t−1)D I 0D×(T−t)D

0D×(t−2)D − 0.5I 0D×D 0.5I 0D×(T−t−1)D

]
, (2.16)

and the matrix I is a D ×D identity matrix. Figure 2.2 shows the relationship

between y and Y . The conditional probability density P (Y |X, λ) is modeled as

a GMM and the mth component weight P (m|X t, λ) and conditional probability
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Figure 2.2. Overview of relationship between a sequence of the static feature

vectors y and that of the static and dynamic feature vectors Y .
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P (Y t|X t,m, λ) at the tth frame are given as follows:

P (m|X t, λ) =
αmN

(
X t;µ

(X)
m ,Σ(XX)

m

)
M∑

m=1

αmN
(
X t;µ

(X)
m ,Σ(XX)

m

) , (2.17)

P (Y t|X t,m, λ) = N
(
yt;E

(Y )
m,t,D

(Y )
m

)
, (2.18)

where

E
(Y )
m,t = µ(Y )

mt
+Σ(Y X)

mt
Σ(XX)−1

mt

(
X t − µ(X)

mt

)
, (2.19)

D(Y )
m = Σ(Y Y )

mt
−Σ(Y X)

mt
Σ(XX)−1

mt
Σ(XY )

mt
. (2.20)

A converted static feature sequence ŷ is determined as follows:

ŷ =
(
W⊤D(Y )−1

W
)−1

W⊤D(Y )−1
E(Y ), (2.21)

where

D(Y )−1
= diag

[
D

(Y )−1

1 ,D
(Y )−1

2 , · · · ,D(Y )−1

T

]
, (2.22)

D(Y )−1
E(Y ) =

[
D

(Y )−1

1 E
(Y )
1

⊤
,D

(Y )−1

2 E
(Y )
2

⊤
, · · · ,D(Y )−1

T E
(Y )
T

⊤]⊤
, (2.23)

D
(Y )−1

t =
M∑

m=1

γm,tD
(Y )−1

m , (2.24)

D
(Y )−1

t E
(Y )
t =

M∑
m=1

γm,tD
(Y )−1

m E
(Y )
m,t, (2.25)

γm,t = P (m|X t,Y t, λ) (2.26)

.

In addition, this likelihood function is approximated with the suboptimum

mixture component sequence m̂ = [m̂1, m̂2, · · · , m̂T ], which is determined by

m̂ = argmax
m

P (m|X, λ) . (2.27)

We determined the converted static feature sequence ŷ as follows:

ŷ = argmax
y

P (Y |X, m̂, λ) . (2.28)
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The conditional probability P (Y |X, m̂, λ) is written as

P (Y |X, m̂, λ) =
T∏
t=1

N
(
Y t;E

(Y )
m̂t,t

,D
(Y )
m̂t

)
, (2.29)

E
(Y )
m̂t,t

= µ
(Y )
m̂t

+Σ
(Y X)
m̂t

Σ
(XX)−1

m̂t

(
X t − µ

(X)
m̂t

)
, (2.30)

D
(Y )
m̂t

= Σ
(Y Y )
m̂t

−Σ
(Y X)
m̂t

Σ
(XX)−1

m̂t
Σ

(XY )
m̂t

. (2.31)

The converted static feature sequence ŷ is given by

ŷ =
(
W⊤D

(Y )−1

m̂ W
)−1

W⊤D
(Y )−1

m̂ E
(Y )
m̂ , (2.32)

where

E
(Y )
m̂ =

[
E

(Y )
m1,1

, E
(Y )
m2,2

, · · · , E
(Y )
mT ,T

]
, (2.33)

D
(Y )−1

m̂ = diag
[
D(Y )−1

m1
, D(Y )−1

m2
, · · · , D(Y )−1

mT

]
. (2.34)

Figure 2.3 shows the graphical representation in the MLE-based conversion pro-

cess. In the MLE-based conversion without considering dynamic features, the

converted feature at a certain frame is independently modified by only source

feature and mixture component information at the same frame. Therefore, this

conversion is performed frame-by-frame and inconsistencies between converted

features are arisen. On the other hand, in the MLE-based conversion considering

dynamic features, the converted static feature at a certain frame is modified by

using all of source static and dynamic features and mixture components informa-

tion. Consequently, this conversion is performed in each trajectory.

2.2.3 MLE-based conversion considering global variance

Although the discontinuity of converted feature sequence has been improved by

the MLE-based conversion using dynamic feature, the problem of over-smoothed

converted features still remains. To alleviate this problem, GV is introduced to

the MLE-based conversion. The GV of the target static feature vectors over a

time sequence is written as

vy = [vy(1), vy(2), · · · , vy(D)]⊤ , (2.35)

vy(d) =
1

T

T∑
t=1

(
yt(d)−

1

T

T∑
t=1

yt(d)

)2

, (2.36)
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Figure 2.3. Graphical representation of relationship between individual variables

in MLE-based conversion process. Left graph is MLE-based conversion without

considering dynamic features and right figure is MLE-based conversion consider-

ing dynamic features.

where, yt(d) is the d
th component of the target static feature at the tth frame. We

calculate the GV utterance by utterance. In this conversion, the converted target

static feature sequence ŷ is determined by maximizing the following likelihood

function:

ŷ = argmax
y

{∑
allm

P (m|X, λ)P (Y |X,m,λ)

}ω

P (vy|λv) , (2.37)

where P (vy|λv) is modeled by the single Gaussian which includes a mean vector

µ(v) and a covariance matrix Σ(vv) as follows:

P (vy|λv) = N
(
vy;µ

(v),Σ(vv)
)
. (2.38)

Then, ω is a weight parameter for controlling the two likelihoods. In this thesis,

ω is set 1
2T

which is determined by the ratio of the number of dimensions between

target acoustic feature sequence and GV.

The same as in section 2.2.2, Eq. (2.37) can be approximated with the sub-
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optimum mixture component sequence m̂ as follows:

ŷ = argmax
y

L, (2.39)

L = ω logP (Y |X, m̂, λ) + logP (vy|λv)

= ω

(
−1

2
y⊤W⊤D

(Y )−1

m̂ Wy + y⊤W⊤D
(Y )−1

m̂ E
(Y )
m̂

)
− 1

2
v⊤
y Σ

(vv)−1

vy + v⊤
y Σ

(vv)−1

µ̂(v) +K, (2.40)

where K denotes the independent invariable of Y . In this conversion method,

the converted feature ŷ is updated by using steepest descent method as follows:

y(i+1)th = y(i)th + θ · δy(i)th , (2.41)

where θ is the step size. δy(i)th is the first derivative of L described as follows:

δy(i)th =
∂L
∂y

∣∣∣∣
y=y(i)th

, (2.42)

∂L
∂y

= ω
(
−W⊤D

(Y )−1

m̂ Wy +W⊤D
(Y )−1

m̂ E
(Y )
m̂

)
+
[
v′⊤
1 , v′⊤

2 , · · · ,v′⊤
T

]⊤
, (2.43)

v′
t = [v′t(1), v′t(2), · · · , v′t(D)]

⊤
, (2.44)

v′t(d) = − 2

T
p(d)⊤

v

(
vy−µ̂(v)

)
(yt(d)−ȳ(d)) , (2.45)

where p
(d)
v is the dth column vector of Σ(vv)−1

.

2.3. Eigenvoice conversion

In the EVC framework, there are two frameworks, one-to-many EVC and many-

to-one EVC [12]. In this thesis, we describe overall EVC framework by using

one-to-many EVC framework. Figure 2.4 shows an overview of one-to-many EVC

framework. EVC has three main processes: training, adaptation and conversion.

In the training process, an eigenvoice GMM (EV-GMM) is trained in advance

using multiple parallel data sets consisting of the specified source speaker and
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Figure 2.4. Overview of one-to-many EVC framework.

many pre-stored target speakers. In the adaptation process, the trained EV-

GMM is capable of being flexibly adapted to a new target speaker using only a

few arbitrary utterances of the target speaker. A few adaptive parameters are

estimated in a completely text-independent manner. Moreover, the EV-GMM

allows us to control voice quality of the converted speech by manipulating those

adaptive parameters. In the conversion process, arbitrary utterances of the source

speaker’s voice are converted into those of the new target speaker’s voice using

adapted EV-GMM.

In following subsections, the EV-GMM’s structure and above processes are

described in detail.
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2.3.1 One-to-many eigenvoice Gaussian mixture model

We use 2D-dimensional acoustic features, source speaker’s featureX t =
[
x⊤
t ,∆x⊤

t

]⊤
and the sth target speaker’s feature Y

(s)
t =

[
y
(s)⊤

t ,∆y
(s)⊤

t

]⊤
, consisting of D-

dimensional static and dynamic features. The joint probability density of time-

aligned source and target features determined by DTW is modeled with EV-GMM

as follows:

P
(
X t,Y

(s)
t |λ(EV ),w(s)

)
=

M∑
m=1

αmN
([

X⊤
t ,Y

(s)⊤

t

]⊤
;µ(X,Y )

m,s ,Σ(X,Y )
m

)
, (2.46)

µ(X,Y )
m,s =

[
µ

(X)
m

Bmw
(s) + b(0)m

]
, (2.47)

In EV-GMM, a target mean vector is modeled as linear combination with the bias

vector b(0)m , representative vectors Bm =
[
b(1)m , b(2)m , · · · , b(J)m

]
and the weight

vector w(s). Voice characteristics of various target speakers are effectively mod-

eled by setting w(s) to appropriate values. The other parameters λ(EV ), such

as mixture component weights, source mean vectors, bias vectors, representative

vectors and covariance matrices, are tied for every target speaker.

2.3.2 Training of EV-GMM based on principal component

analysis

First, a target-speaker-independent GMM (TI-GMM) λ(0) is trained with multiple

parallel data sets consisting of utterance-pairs of the source speaker and multiple

pre-stored target speakers as follows:

λ̂(0) = argmax
λ(0)

S∏
s=1

Ts∏
t=1

P
(
X t,Y

(s)
t |λ(0)

)
. (2.48)

Then, using only the parallel data set for the sth pre-stored target speaker, the

sth target-speaker-dependent GMM (TD-GMM) λ(s) is trained by only updating
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target mean vectors µ(Y )(s) of λ(0) based on maximum likelihood (ML) estimate

as follows:

λ̂(s) = arg max
µ(Y )(s)

Ts∏
t=1

P
(
X,Y

(s)
t |λ(0)

)
. (2.49)

After training the TD-GMMs for all pre-stored target speakers, a 2DM -dimensional

supervector SV (s) =
[
µ

(Y )⊤

1 (s), µ
(Y )⊤

2 (s), · · · , µ
(Y )⊤

M (s)
]⊤

is constructed for each

pre-stored target speaker by concatenating the updated target mean vectors{
µ

(Y )
1 (s),µ

(Y )
2 (s), · · · ,µ(Y )

M (s)
}

of λ(s). Finally, bias vector b(0)m and representa-

tive vectors Bm are extracted by performing principal component analysis (PCA)

for the supervectors for all pre-stored target speakers
{
SV (1), SV (2), · · · , SV (S)

}
,

where S denotes the number of pre-stored target speakers. Each supervector is

approximated as follows:

SV (s) ≃
[
B⊤

1 , B⊤
2 , · · · , B⊤

M

]⊤
w(s) +

[
b
(0)⊤

1 , b
(0)⊤

1 , · · · , b
(0)⊤

M

]⊤
, (2.50)

b(0)m =
1

S

S∑
s=1

µ(Y )
m (s), (2.51)

where w(s) is J(< S ≪ 2DM) principle components for the sth target speaker.

2.3.3 Unsupervised adaptation of trained EV-GMM

We adapt the EV-GMM to an arbitrary target speaker by estimating the optimum

weight vector for their given speech samples without any linguistic information.

We apply maximum likelihood eigen-decomposition (MLED) [35] to the weight

vector estimation. In one-to-many EVC, the weight vector w is estimated so that

likelihood of the marginal distribution for a time sequence of the given target

features
{
Y

(tar)
1 ,Y

(tar)
2 , · · · ,Y (tar)

T

}
is maximized [11] as follows:

ŵ = argmax
w

T∏
t=1

∫
P
(
X t, Y

(tar)
t |λ(EV ),w

)
dX t

= argmax
w

T∏
t=1

P
(
Y

(tar)
t |λ(EV ),w

)
. (2.52)
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This adaptation process is performed with EM algorithm by maximizing the

following auxiliary function:

Q (w, ŵ) =
T∑
t=1

M∑
m=1

P
(
m|Y (tar)

t , λ(EV ),w
)
logP

(
Y

(tar)
t ,m|λ(EV ), ŵ

)
. (2.53)

The ML estimate of the weight vector for a target speaker ŵ is determined as

follows:

ŵ =

{
M∑

m=1

γ(tar)
m B⊤

mΣ
(Y Y )−1

m Bm

}−1 M∑
m=1

B⊤
mΣ

(Y Y )−1

m Y
(tar)

m , (2.54)

where

γ(tar)
m =

T∑
t=1

P
(
m|Y (tar)

t , λ(EV ),w
)
, (2.55)

Y
(tar)

t =
T∑
t=1

P
(
m|Y (tar)

t , λ(EV ),w
)(

Y
(tar)
t − b(0)m

)
. (2.56)

Note that this process is completely unsupervised adaptation using only arbitrary

utterances of the target speaker. We also need to use only a small amount of

adaptation data because there are a few parameters to be adapted.

2.3.4 Conversion with adapted EV-GMM

We use the conversion method based on MLE considering dynamic features [10]

described in section 2.2.2. Converted static feature vectors ŷ are obtained as

follows:

ŷ=argmax
y

∑
all m

P
(
m|X, λ(EV )

)
P
(
Y |X,m, λ(EV ), ŵ

)
. (2.57)

Furthermore, using the approximated MLE-based conversion method, the con-

verted static feature sequence ŷ is determined as follows:

ŷ = argmax
y

P
(
Y |X, m̂, λ(EV ), ŵ

)
, (2.58)
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where P
(
Y |X, m̂, λ(EV ), ŵ

)
is written as

P
(
Y |X, m̂, λ(EV ), ŵ

)
=

T∏
t=1

N
(
Y t;E

(Y )
m̂t,t

,D
(Y )
m̂t

)
, (2.59)

E
(Y )
m̂t,t

= Bm̂tŵ + b
(0)
m̂t

+Σ
(Y X)
m̂t

Σ
(XX)−1

m̂t

(
X t − µ

(X)
m̂t

)
, (2.60)

D
(Y )
m̂t

= Σ
(Y Y )
m̂t

−Σ
(Y X)
m̂t

Σ
(XX)−1

m̂t
Σ

(XY )
m̂t

. (2.61)

The converted static feature sequence ŷ is given by

ŷ =
(
W⊤D

(Y )−1

m̂ W
)−1

W⊤D
(Y )−1

m̂ E
(Y )
m̂ , (2.62)

where,

E
(Y )
m̂ =

[
E

(Y )
m1,1

, E
(Y )
m2,2

, · · · , E
(Y )
mT ,T

]
, (2.63)

D
(Y )−1

m̂ = diag
[
D(Y )−1

m1
, D(Y )−1

m2
, · · · , D(Y )−1

mT

]
. (2.64)

2.4. Issues of the conventional one-to-many EVC

system

Figure 2.5 shows an overview of the conventional one-to-many EVC system that

includes training, adaptation and conversion processes. In this system, we train

the EV-GMM only for spectral features and employ the adapted EV-GMM for

the spectral conversion.

In the conversion process for fundamental frequency, we convert source fun-

damental frequency F0 to target one as follows:

log F̃0 =
σ(y)

σ(x)

(
logF0 − µ(x)

)
+ µ(y), (2.65)

where µ(x) and σ(x) denote mean and standard deviation of log-scaled source F0,

and µ(y) and σ(y) denote those of log-scaled target F0. In this system, these

statistics for the source speaker are calculated from the training data and those

for the target speaker are calculated from the adaptation data.

In the process of synthesizing converted speech, the excitation signal is gen-

erated with STRAIGHT simple excitation (STME) [13]. Figure 2.6 shows the
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Figure 2.5. Conventional one-to-many EVC system which includes training, adap-

tation and conversion processes.
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generation process of STSE. In order to alleviate buzz sounds caused by using a

pulse train for generating a voiced excitation signal, phase components in high-

frequency bands (e.g., over 3 kHz) are dispersed with an all-pass filter [44]. A

one-pitch waveform is generated by selecting the phase-manipulated pulse train

based on the converted F0 for voiced segments or white noise for unvoiced seg-

ments. Then, an excitation signal is generated by PSOLA (Pitch Synchronous

OverLap Add) technique [45]. Then, the converted speech is synthesized by fil-

tering the generated excitation with the converted spectral sequence.

Although this one-to-many EVC system achieves the flexible training of con-

version model, this converted speech quality is still not high enough. This degra-

dation of the converted speech quality is caused by employing three materials,

i.e., the excitation model, the conversion algorithm and the EV-GMM.

2.4.1 Problem of excitation model

Figure 2.7 shows a comparison of the STSE constructed from F0 information and

the residual signal extracted from natural speech. In the unvoiced segment, the

simple excitation models that residual signal well because the simple excitation is

modeled as white noise train and then the residual signal looks noisy. In the voiced

segment, while the simple excitation is composed of only phase-manipulated pulse

train, the residual signal includes noise and pulse-like signals. This means that the
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Voiced segment Unvoiced segmentVoiced segment Unvoiced segment

Figure 2.7. Comparison of excitation signals of the identical speaker, in which

top is STRAIGHT simple excitation and bottom is the residual signal.

simple excitation cannot model the voice segment of the residual signal accurately

and causes the buzzy sound of the converted speech. Therefore, we need to employ

better excitation model than the simple excitation.

2.4.2 Problem of conversion algorithm

Figure 2.8 shows the comparison between the converted spectrum of the conven-

tional one-to-many EVC system and the correspondent target spectrum. The

converted spectral shape is not clearer than the target spectral one. This is be-

cause the over-smoothing is caused by employing the MLE-based conversion not

considering the GV in the conventional one-to-many EVC system. Therefore, the

conventional one-to-many EVC system gives us a muffled speech. In order to al-

leviate the over-smoothing, we need to use the MLE-based conversion algorithm

considering the GV.

2.4.3 Problem of EV-GMM

The tied-parameters of the PCA-based EV-GMM are from the TI-GMM mod-

eling joint probability density of acoustic features of the source speaker and all

27



Frequency [Hz]

L
og

 m
ag

ni
tu

de
 [

dB
]

(a) Converted spectrum (b) Target spectrum

Frequency [Hz]

L
og

 m
ag

ni
tu

de
 [

dB
]

(a) Converted spectrum (b) Target spectrum

Figure 2.8. Comparison of converted spectrum and target spectrum.

pre-stored target speakers as mentioned. They capture not only intra-speaker

acoustic variations but also inter-speaker acoustic variations of pre-stored target

speakers. To demonstrate the impact of these tied-parameters on the EV-GMM

adaptation, Figure 2.9 shows marginal distributions of the TI-GMM, two TD-

GMMs and two adapted EV-GMMs on the 2nd dimensional coefficient of target

features. We can see that variance values of the adapted EV-GMMs are much

larger than those of the TD-GMMs although their mean values are close to those

of the TD-GMMs. These mismatches in modeling probability density would cause

performance degradation of the adapted EV-GMM.

2.5. Summary

This chapter has described various traditional voice conversion (VC) frameworks

and we have focused on statistical VC based on the Gaussian mixture model

(GMM). We have reviewed some conversion algorithms used in the GMM-based

VC framework. Also, we have described eigenvoice conversion (EVC) capable of

making the conversion model training more flexible compared with the traditional
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GMM-based VC. The EVC framework brings two novel VC frameworks, i.e., one-

to-many EVC and many-to-one EVC. Moreover, we have also explained some

problems in the conventional one-to-many EVC system: i.e., quality degradation

of the converted speech is caused by the use of the simple excitation model, the

conversion algorithm not considering the global variance, and the training method

of the EV-GMM.
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Chapter 3

Voice Conversion with

STRAIGHT Mixed Excitation

In this chapter, we describe the improved traditional VC framework, which is

achieved by introducing STRAIGHT mixed excitation (STME). The performance

of the traditional VC has been improved by applying spectral feature conver-

sion to the MLE-based conversion algorithm with GV. However, the converted

speech still contains traces of artificial sounds. To alleviate this, it is necessary

to statistically model a source sequence as well as a spectral sequence. Thus,

we introduce STME to the traditional VC framework. STME is generated by

frequency-dependent weighted sum of white noise and a pulse train with phase

manipulation based on aperiodic component, which represents noise barometer

included in spectral features. In this framework, aperiodic component is modeled

by GMM and converted aperiodic components are employed for STME build-

ing. Moreover, objective and subjective evaluation results demonstrate that the

proposed source conversion produces strong improvements in both the converted

speech quality and the conversion accuracy for speaker individuality.

3.1. Introduction

The converted speech quality of the GMM-based VC has been improved by ap-

plying spectral features to MLE-based conversion [10]. However, artificial sound

is still evident in the converted speech. This problem is caused by employing not
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so good excitation model, e.g., STSE shown in Figure 2.7. In speech synthesis,

an excitation plays a very important role to generate more natural synthesized

speeches. In VC frameworks, it is also important to build the better target exci-

tation model. Therefore, it is necessary to statistically model a source sequence

as well as a spectral sequence in order to alleviate the artificial sound.

Several researchers have proposed the source conversion methods such as the

residual codebook [46], residual selection [47], and phase prediction [48]. The

residual codebook, proposed by Kain et al., uses speech coders with a speaker-

dependent excitation codebook. In training process, one-pitch-period residual

waveforms, which are extracted target training data, are clustered by correspon-

dent spectral information. Then, each centroid is designed by the averaged resid-

ual spectrum and pitch information extracted from the nearest sample. In the

conversion process, the converted excitation is generated from weighted mean of

centroid residual spectra based on the converted spectrum and centroid phase

selected from the ML class. Residual selection, proposed by Sündermann et al.,

is a refinement of the residual codebook. This method selects appropriate resid-

uals from a database extracted from the target speaker’s training data. In phase

prediction proposed by Ye et al., the codebook which consists of one-pitch-period

waveforms based on spectral information is determined by MMSE. Then the

required phases are obtained from the predicted waveform shapes of converted

spectra. In these methods, when analyzing, we need to extract one-pitch-period

waveforms accurately because we directly treat waveform information, i.e., spec-

tral features and phase features. Moreover, these frameworks are based on select-

ing optimal residual waveforms from training data. Therefore, these performances

strongly depend on training data size and it is difficult to introduce statistical

methods.

In order to achieve the statistical solution of excitation problem, we employ

STRAIGHT mixed excitation (STME) as a source model. Advantages of STME

are that 1) the extracted features are statistically modeled in the same manner

as that for spectral modeling, and 2) robust feature extraction is possible with-

out pitch marks because of not using phase information. This source model is

also used in the Nitech HTS system [49]. In this chapter, we introduce STME

to maximum likelihood voice conversion based on GMM [10]. We convert both
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Figure 3.1. Generation process for STRAIGHT mixed excitation.

spectral and source feature sequences by MLE-based conversion algorithm. The

proposed conversion’s effectiveness is demonstrated through objective and sub-

jective evaluations.

This chapter is organized as follows. In Section 3.2, we describe STME. In

Section 3.3, the VC introducing STME is briefly explained, and in Section 3.4, we

evaluate the experimental results. Finally, we summarize this chapter in Section

3.5.

3.2. STRAIGHT mixed excitation

Figure 3.1 shows a generation process of the STME [13]. Voiced segments of

STME are defined as the frequency-dependent weighted sum of white noise and

a phase-manipulated pulse train based on the converted F0. The weight is deter-

mined based on an aperiodic component in each frequency bin [14]. On the other

hand, unvoiced segments are generated white noise. Finally, an excitation signal

is generated by PSOLA technique [45].
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3.2.1 Aperiodic component analysis

Aperiodic component [14] is defined as the ratio between a periodic component

and a noise component in each frequency band. The process of aperiodic compo-

nent extraction is performed as follows: 1) A waveform which includes constant

fundamental frequency is generated from an original speech waveform by DTW, 2)

the time-warped waveform is transformed to frequency domain with the window

function which is set zero-point between harmonic components of spectra gener-

ated by short-time Fourier transform, and 3) Log-scaled power spectra generated

in 2) are liftered by suppressing quefrency components higher than fundamental

period.

Figure 3.2 depicts aperiodic component extraction from a liftered power spec-

trum keeping the periodicity. The aperiodic component is calculated as a sub-

traction of an upper spectral envelope from a lower spectral envelope, where the

upper one shows periodic components and the lower one represents noise compo-

nents. Because the subtracted value should be less than 0 dB, the range of the

aperiodic component is between 0 and 1. In the figure, aperiodicity is large when

the lower envelope is close to the upper one. In order to reduce the dimension-

ality of the parameter to be statistically modeled, the aperiodic components are

averaged on five frequency sub-bands, i.e., 0 to 1, 1 to 2, 2 to 4, 4 to 6, and 6 to

8 kHz, in the same manner as described in [49]. Figure 3.3 shows a normalized

frequency distribution of aperiodic components in each frequency band. These

normalized frequency distributions are calculated by using utterance data of a

female speaker (FKN) which is included in A subset of ATR phoneme-balanced

sentences [50]. The horizontal axis of this figure represents values of aperiodic

components. Periodicity is stronger on pints closer to zero and noise component

is stronger on points near to one. There is a noticeable tendency indicating that

periodicity is dominant in the lower frequency bands and that aperiodicity is

dominant in the higher ones.
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3.2.2 Design of excitation

The aperiodic component at each frequency bin is converted to the weight for a

noise signal used in the mixed excitation as follows:

s(af ) =
1

1 + exp{−ρ (af − 0.25)}
, (3.1)

Ω(af ) =
s (af )− s (0)

s (1)− s (0)
, (3.2)

where af denotes the aperiodic component at each frequency bin and Ω(af ) is

a mapping function. This mapping function varies according to the mapping

parameter ρ as shown in Figure 3.4. As the mapping component ρ is larger, the

aperiodic component is mapped onto the larger weight.

35



The mixed excitation is defined as follows:

S (f ) =

√
1− Ω(af )

2P̃ (f ) + Ω(af )N (f ) , (3.3)

where P̃ (f ) denotes a pulse train with phase manipulation [13], and N (f ) denotes

a white noise signal.

Figure 3.5 shows an example of a residual signal, STSE, STME and each

excitation parameter, i.e., an F0 contour and aperiodic component sequences in

individual frequency sub-band. STSE is quite different from the residual signal

especially at voiced segments with less periodicity, e.g., around 1.7–2.0 [sec].

Because a voiced excitation signal is generated using only the phase-manipulated

pulse train, the strength of periodicity depends on the pre-defined all-pass filter

for phase dispersion and it doesn’t vary frame-by-frame. On the other hand,

STME is more similar to the residual signal than STSE because STME is capable

of modeling the strength of periodicity at voiced frames. We can observe that

aperiodic components in lower frequency sub-bands are inversely correlated with

the strength of periodicity of the residual signal. These properties of aperiodic

components are very helpful for generating an excitation signal with more similar

characteristics to the residual signal.

3.3. Voice conversion with STRAIGHT mixed

excitation

In order to introduce STME to the GMM-based VC framework, aperiodic com-

ponents are modeled by the GMM of joint probability density between source

and target speakers as defined in Eq. (2.11).

Figure 3.6 shows the process of the proposed voice conversion. Our proposed

method employs two GMMs. One is used for the spectral conversion and the other

is for the aperiodic conversion. Both conversions are performed with MLE. We

consider GV only in the spectral conversion because GV does not cause any large

difference to the converted speech in the aperiodic conversion. We synthesize the

mixed excitation from the converted aperiodic components. Finally, we synthesize

the convert speech by filtering the excitation with the converted spectra.
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Figure 3.5. An example of (a) residual signal, (b) STRAIGHT simple excitation

(STSE), (c) STRAIGHT mixed excitation (STME), (d) F0 contour, and (e)–(i)

aperiodic components. ”Sil”, ”V” and ”U” denote silent, voiced and unvoiced

segments, respectively.
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Figure 3.6. Process of the proposed voice conversion.

3.4. Experimental evaluation

3.4.1 Experimental conditions

We used the speech data of two male speakers and two female speakers from

ATR’s phonetically balanced sentence database [50]. We considered 50 sentences

for training data, and another 50 sentences for the evaluation. The total number

of combinations of source and target speakers was 12.

For the spectral feature, we take the first through the 24th mel-cepstral co-

efficients from the STRAIGHT smoothed spectrum. For the aperiodic feature,

we used average dB values of the aperiodic components on five frequency bands

described in Section 3.2.1.

In each feature conversion, we used full covariance matrices, and set the num-

ber of mixtures for the spectral conversion to 32 based on our preliminary exper-

iment.

As an objective metric for aperiodic component, we employ RMSE between
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two aperiodic component sequences written as follows:

RMSE [dB] =
1

T

T∑
t=1

√√√√1

5

5∑
f=1

(
a
(X)
f,t − a

(Y )
f,t

)2
, (3.4)

where a
(X)
f,t and a

(Y )
f,t denote time-aligned source and target aperiodic components

on the f th frequency band at t frame, respectively.

3.4.2 Optimization of mapping parameter

To optimize the mapping parameter ρ for each speaker, we evaluated the aperiodic

component distortion between natural speech and analysis-synthesized speech.

Figure 3.7 shows the aperiodic component distortion as a function of the mapping

parameter ρ. It is apparent that 8 is the optimal value for every speaker, thus we

designed STRAIGHT mixed excitation using this value.

To demonstrate the effectiveness of the mixed excitation in the analysis-

synthesis, we evaluated the speech quality of natural speech, analysis-synthesized

speech without mixed excitation, and analysis-synthesized speech with mixed

excitation. Figure 3.8 shows the result of a preference test. The number of lis-

teners in this case was five. The figure shows that the speech quality of analysis-

synthesized speech using mixed excitation is higher than that without mixed

excitation

3.4.3 Objective evaluation

We evaluated the distortion between the target aperiodic component and the

converted one. Figure 3.9 shows RMSE on aperiodic components as a function

of the number of mixtures. The aperiodic conversion causes a reduction of the

aperiodic distortion. Therefore, the conversion causes the source signal to have

characteristics much more similar to those of the target speaker, compared to

those of the source speaker. The optimum number of mixtures is 32. However, it

is shown that the conversion performance is not very sensitive to the number of

mixtures.
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Figure 3.7. The aperiodic component distortion as a function of the mapping

parameter ρ.
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Figure 3.8. Result of preference test on speech quality comparing natural speech,

analysis-synthesized speech includes STSE, with that includes STME.
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Figure 3.9. The aperiodic component distortion as a function of the number of

mixture components.

3.4.4 Subjective evaluation

We subjectively evaluated the converted speech quality and the conversion accu-

racy for the speaker individuality. In this evaluation, we employed the following

converted voices: 1) converted voice with STSE; 2) converted voice with STME

based on source speaker’s aperiodic component; and 3) converted voice with the

mixed excitation based on the converted aperiodic component.

In the preference test for speech quality, we randomly presented a pair of voices

from three kinds of voice to listeners. In the XAB test on speaker individuality,

we presented the target speaker’s voice and after that a pair of converted voices

randomly. Then we asked listeners which converted voice is similar to the target

speaker’s. The number of listeners was eight and each listener evaluated 72

sample-pairs which combine 12 types of voices and three types of conversion

methods.
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Figure 3.10. Result of preference test on speech quality on STME evaluation.
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uality on STME evaluation.
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Figure 3.10 shows the result of the preference test. The STRAIGHT mixed ex-

citation greatly improved speech quality when using mixed excitation. Moreover,

the results reveal that the aperiodic conversion slightly improves the converted

speech quality.

Figure 3.11 shows the result of the XAB test. We can see that the conversion

accuracy for speaker individuality was also improved by using STRAIGHT mixed

excitation. In addition, we can improve it further by converting the aperiodic

components.

From these results, it is possible that the improvement of the converted speech

quality using STME affects that of conversion accuracy, because the converted

speech with source STME, which is not reflected target voice quality, outperforms

that with STSE, which is also not reflected target voice quality. However, there

are significant differences between converted speech with source STME and with

converted STME in the speech quality test. Therefore, we consider that the sig-

nificant improvement of conversion accuracy for speaker individuality is caused

by the factor which differs from speech quality. To bring out the improving factor,

we compared converted speeches with converted STME with those with source

STME by a preference test. In this result, preference score of converted speeches

with converted STME is 61.46% (95% confidence interval is 54.18% to 68.38%).

Therefore, the converted STME outperforms the source STME significantly on

conversion accuracy for speaker individuality. Thus, aperiodic components in-

clude speaker-dependent characteristics and the statistical conversion of aperi-

odic components achieves the generation of the more proper excitation model.

Objective and subjective results demonstrate that converted speech is improved

by introducing STME to the GMM-based VC framework.

3.5. Summary

In this chapter, we have introduced STRAIGHT mixed excitation (STME) to

MLE-based voice conversion with a Gaussian Mixture model (GMM) in order

to improve the converted speech quality and the conversion accuracy for speaker

individuality. The STME is constructed by the weighted sum of white noise and

a phase-manipulated pulse train in each frequency bin. The weight is determined
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based on an aperiodic component which represents the ratio between a periodic

component and a noise component in each frequency band. We have statistically

converted an aperiodic component sequence as well as a spectral sequence.

In addition, we have subjectively evaluated the proposed conversion method,

finding that the proposed method improved both converted speech quality and

conversion accuracy for speaker individuality.
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Chapter 4

Adaptive Training for Eigenvoice

Conversion

In this chapter, we describe a novel model training method for EVC. In the con-

ventional one-to-many EVC framework, the canonical EV-GMM is based on the

target-speaker-independent GMM, which includes inter-speaker variation of the

pre-stored target speakers. Therefore, this is one of the factors that degrade con-

version performance in the conventional EVC. In order to improve the conversion

performance in one-to-many EVC, we propose an adaptive training method of the

EV-GMM. In the proposed training method, both of the fixed parameters and

the adaptive parameters are optimized by maximizing a total likelihood function

of the EV-GMMs adapted to individual pre-stored target speakers. Moreover, we

also propose improved adaptive training methods to alleviate the problem which

is caused with a small number of representative vectors. We conducted objective

and subjective evaluations to demonstrate the effectiveness of the proposed train-

ing method. The experimental results show that the proposed adaptive training

yields significant quality improvements in the converted speech.

4.1. Introduction

As a method to alleviate limitations of the conversion model training, we have

proposed EVC [11][12]. In the conventional training method of the EV-GMM,

we build the EV-GMM using parameters from a TI-GMM. These parameters are
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strongly affected by acoustic variations among many pre-stored target speakers.

They usually cause significant degradation of the conversion performance of the

adapted EV-GMM.

This is a well-known problem often observed in speech recognition. In general,

a speaker-dependent acoustic model is often constructed by adapting speaker-

independent model to a desired speaker using maximum likelihood linear regres-

sion (MLLR) [51], MAP adaptation [34], and so on, because we need a large

amount of speech data for achieving better speech recognition. Although the

speaker-independent model includes various acoustic information, it also includes

acoustic variations among speakers, which is a factor that degrades speech recog-

nition ratio. One of the alleviating methods is to use a pseudo-normalized speaker

model, called the canonical model, rather than a speaker-independent model as

an initial model for speaker adaptation. It has been reported that adaptive train-

ing, such as speaker adaptive training (SAT) [15] or cluster adaptive training

(CAT) [52], is a very effective paradigm for training the canonical model. In

SAT, proposed by Anastasakos et al., the canonical model parameters are esti-

mated by maximizing a total likelihood of adapted models, which are adapted to

pre-stored speakers for training by using MLLR in a supervised manner. CAT,

proposed by Gales, is an extension method of speaker cluster scheme. In this

framework, the canonical model parameters are determined by maximizing like-

lihoods of adapted models, which are constructed from data included in each

cluster. Thus, CAT framework includes SAT framework.

Inspired by these studies, we propose an adaptive training method of the

EV-GMM in one-to-many EVC.Moreover, we propose methods for alleviating

the local optimum problem often caused in the proposed adaptive training when

the number of adaptive parameters is set to be low. The experimental results

of objective and subjective evaluations demonstrate that the proposed adaptive

training yields significant quality improvements in converted speech.

This chapter is organized as follows. In Section 4.2, we describe basic algo-

rithms of the proposed adaptive training method for the EV-GMM. In Section

4.3, the problem of the basic adaptive training is described. In Section 4.4, we

describe improved adaptive training methods. In Section 4.5, we discuss our

proposed adaptive training method by comparing with other adaptive training
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methods in speech recognition area. In Section 4.6, we describe experimental

evaluations. Finally, this chapter is summarized in Section 4.7.

4.2. Basic adaptive training algorithm

In order to alleviate the mismatch issues observed in the PCA-based EV-GMM,

we propose an adaptive training method for the one-to-many EV-GMM. A canon-

ical EV-GMM for the EV-GMM adaptation is trained in the adaptive training

paradigm so that the performance of the adapted EV-GMMs is improved.

The canonical EV-GMM is trained by maximizing the total likelihood of the

adapted EV-GMMs for individual pre-stored target speakers with respect to both

canonical EV-GMM parameters (i.e., the tied-parameters of the EV-GMM λ(EV ))

and target-speaker adaptive parameters (i.e., the weight vector w(s) for each pre-

stored target speaker) as follows:

{
λ̂(EV ), ŵS

1

}
=argmax

λ(EV ),wS
1

S∏
s=1

Ts∏
t=1

P
(
X tY

(s)
t |λ(EV ),w(s)

)
, (4.1)

where wS
1 is a set of weight vectors for individual pre-stored target speakers{

w(1), w(2), · · · , w(S)
}
. The training process is performed with the EM algo-

rithm [43] by maximizing the following auxiliary function,

Q
({

λ(EV ),wS
1

}
,
{
λ̂(EV ), ŵS

1 )
})

=
S∑

s=1

Ts∑
t=1

M∑
m=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
logP

(
X t,Y

(s)
t ,m|λ̂(EV ), ŵ(s)

)
,

(4.2)

where the first variable in the auxiliary function (i.e.,
{
λ(EV ),wS

1

}
in Eq. (6.18))

is a parameter set used in E-step for calculating the following posterior proba-

bility P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
and the other variable in it (i.e.,

{
λ̂(EV ), ŵS

1

}
in Eq. (6.18)) is a parameter set to be updated in M-step, which is used for

calculating the log-scaled likelihood logP
(
X t,Y

(s)
t ,m|λ̂(EV ), ŵ(s)

)
. It is difficult

to update all parameters simultaneously because some of them depend on each
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other. Therefore, each parameter of EV-GMM is updated as follows:

Q
({

λ(EV ),wS
1

}
,
{
λ(EV ),wS

1

})
≤Q

({
λ(EV ),wS

1

}
,
{
αm,Σ

(X,Y )
m ,Bm, b

(0)
m ,µ(X)

m , ŵS
1

})
≤Q

({
λ(EV ),wS

1

}
,
{
αm,Σ

(X,Y )
m , B̂m, b̂

(0)

m , µ̂(X)
m , ŵS

1

})
≤Q

({
λ(EV ),wS

1

}
,
{
α̂m, Σ̂

(X,Y )

m , B̂m, b̂
(0)

m , µ̂(X)
m , ŵS

1

})
. (4.3)

It is sufficient to ensure these updates to satisfy

S∏
s=1

Ts∏
t=1

P
(
Z

(s)
t ,m|λ(EV ),w(s)

)
≤

S∏
s=1

Ts∏
t=1

P
(
Z

(s)
t ,m|

{
αm,Σ

(ZZ)
m ,Bm, b

(0)
m ,µ(X)

m

}
, ŵ(s)

)
≤

S∏
s=1

Ts∏
t=1

P
(
Z

(s)
t ,m|

{
αm,Σ

(ZZ)
m , B̂m, b̂

(0)

m , µ̂(X)
m

}
, ŵ(s)

)
≤

S∏
s=1

Ts∏
t=1

P
(
Z

(s)
t ,m|

{
α̂m, Σ̂

(ZZ)

m , B̂m, b̂
(0)

m , µ̂(X)
m

}
, ŵ(s)

)
. (4.4)

These update processes are iteratively performed in each M-step for improving

parameter estimation accuracy. ML estimate of the weight vector for the sth

pre-stored target speaker is written as

ŵ(s) =

(
M∑

m=1

γ(s)
m B⊤

mP
(Y Y )
m Bm

)−1

×

[
M∑

m=1

B⊤
m

{
P (Y X)

m

(
X

(s)

m − γ(s)
m µ(X)

m

)
+ P (Y Y )

m

(
Y

(s)

m − γ(s)
m b(0)m

)}]
,

(4.5)
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where

γ(s)
m =

Ts∑
t=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
, (4.6)

X
(s)

m =
Ts∑
t=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
X t, (4.7)

Y
(s)

m =
Ts∑
t=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
Y

(s)
t , (4.8)

Σ(X,Y )−1

m =

[
P (XX)

m P (XY )
m

P (Y X)
m P (Y Y )

m

]
. (4.9)

ML estimates of the tied-parameters for mean vectors are written as

ν̂m =

(
S∑

s=1

γ(s)
m Ŵ

⊤
s Σ(X,Y )−1

m Ŵs

)−1( S∑
s=1

Ŵ
⊤
s Σ(X,Y )−1

m Z
(s)

m

)
, (4.10)

where

Z
(s)

m =
[
X

(s)⊤

t ,Y
(s)⊤

t

]⊤
(4.11)

ν̂m =

[
µ̂(X)⊤

m , b̂
(0)⊤

m , b̂
(1)⊤

m , · · · , b̂
(J)⊤

m

]⊤
, (4.12)

Ŵs =

[
I 0 0 0 · · · 0

0 I ŵ
(s)
1 I ŵ

(s)
2 I · · · ŵ

(s)
J I

]
. (4.13)

Then, mixture component weights and covariance matrices are determined as

follows:

α̂m =

S∑
s=1

γ(s)
m

M∑
m=1

S∑
s=1

γ(s)
m

, (4.14)

Σ̂
(X,Y )

m =
1

S∑
s=1

γ(s)
m

S∑
s=1

{
V

(X,Y )

m,s + γ(s)
m µ̂(X,Y )

m,s µ̂(X,Y )⊤

m,s −
(
µ̂(X,Y )

m,s Z
(s)⊤

m +Z
(s)

m µ̂(X,Y )⊤

m,s

)}
,

(4.15)
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where

V
(X,Y )

m,s =
Ts∑
t=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

) [
X⊤

t ,Y
(s)⊤

t

] [
X⊤

t ,Y
(s)⊤

t

]⊤
, (4.16)

µ̂(X,Y )
m,s = Ŵ s ν̂m =

[
µ̂(X)

m

B̂mŵ
(s) + b̂

(0)

m

]
. (4.17)

Note that each estimating process is described Appendix A in detail.

4.3. Local optimum problem of adaptive training

In the canonical EV-GMM training, it is essential to estimate the representative

vectors spanning a sub-space effectively modeling acoustic variations among all of

pre-stored target speakers in each mixture component. To achieve this, individual

mixture-component occupancies calculated by Eq. (4.6) have to be largely enough

for every pre-stored target speakers. Figure 4.1 shows an example of the occu-

pancies for one pre-stored target speaker, which are sorted in descending order.

We can see that the occupancies calculated with the TI-GMM are more biased

compared with those calculated with the TD-GMM for the same pre-stored target

speaker. Because the TI-GMM needs to model wide varieties of acoustic features

of all pre-stored target speakers, some mixture components model only acoustic

features of a part of pre-stored target speakers. Consequently, a larger number

of mixture components with lack of occupancies are observed in the TI-GMM,

compared to the TD-GMM. Figure 4.1 also shows the occupancies of the canon-

ical EV-GMMs with 159 representative vectors and with only one representative

vector, which are iteratively updated from the TI-GMM with the EM algorithm.

Even if the occupancies are biased in the first E-step as observed in the TI-GMM,

the trained canonical EV-GMM with a largely enough number of representative

vectors has an occupancy distribution similar to that of the TD-GMM. However,

if the number of representative vectors is very small, the occupancy distribution of

the trained canonical EV-GMM remains biased. Namely, the initial occupancies

strongly affect the final canonical EV-GMM unless the number of representative

vectors is large enough to precisely model acoustic features of individual pre-

stored target speakers. This problem is critical because there are some situations
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Figure 4.1. Mixture-component occupancies for one pre-stored speaker using

several models.

where we prefer to train the EV-GMM with a small number of representative

vectors, e.g., for keeping the computational cost of the adaptation process as low

as possible or for reducing the model size as much as possible. In order to allevi-

ate this local optimum problem, we propose two approaches: 1) the TD-GMMs

using for calculating the occupancies in the first E-step; and 2) the deterministic

annealing EM (DAEM) algorithm using for the EV-GMM.

4.4. Improved adaptive training of alleviating lo-

cal optimum problem

4.4.1 First E-step approximation with target-speaker-dependent

models

Each of the TD-GMMs models the joint probability density for the source speaker

and each pre-stored target speaker. Therefore, they generally yield more unbiased
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occupancies in each mixture component for every pre-stored speaker as shown in

Figure 4.1. The use of these occupancies for estimating the representative vectors

is supposed to be helpful for alleviating the local optimum problem. Therefore,

we propose an occupancy approximation method using the TD-GMMs for cal-

culating the occupancies only in the first E-step. Note that the correspondence

of each mixture component between every TD-GMM and the PCA-based EV-

GMM is known because only target mean vectors are updated with parallel data

in building each TD-GMM in order to preserve the correspondence of each mix-

ture component in a phonemic space [12]. We update the PCA-based EV-GMM

parameters in the first M-step based on the occupancies calculated with the TD-

GMMs. Therefore, the first E-step and M-step are no longer regarded as the EM

algorithm. In all steps that follow, we use the updated EV-GMM parameters for

calculating the occupancies as in the EM algorithm.

4.4.2 Deterministic annealing EM algorithm

In order to alleviate the local optimum problem, we apply the deterministic an-

nealing EM (DAEM) algorithm [53] to the adaptive training of the EV-GMM. The

DAEM algorithm reformulates a maximization process of a likelihood function

as a minimization process of free energy. In adaptive training of the EV-GMM

based on the DAEM algorithm, parameters are estimated as follows:

λ̂(EV ), ŵS
1 = arg min

λ(EV ),wS
1

Fβ (4.18)

Fβ = − 1

β
log

S∏
s=1

Ts∏
t=1

M∑
m=1

P
(
X t,Y

(s)
t ,m|λ(EV ),w(s)

)β
, (4.19)

where 1
β
is called the “temperature.” The free energy given by Eq. (4.19) is

minimized by maximizing the following auxiliary function,

Qβ

({
λ(EV ),wS

1

}
,
{
λ̂(EV ), ŵS

1 )
})

=
S∑

s=1

Ts∑
t=1

M∑
m=1

γ
(s)
m,t,βlogP

(
X t,Y

(s)
t ,m|λ̂(EV ), ŵ(s)

)
, (4.20)
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where

γ
(s)
m,t,β =

P
(
X t,Y

(s)
t ,m|λ(EV ),w(s)

)β
M∑

m=1

P
(
X t,Y

(s)
t ,m|λ(EV ),w(s)

)β . (4.21)

In the algorithm, we gradually decrease the temperature and deterministically

optimize the function at each temperature. First β is set to nearly zero so that

the free energy function has a single global maximum, and the canonical model

parameters and the adaptive parameters are iteratively updated by maximizing

the auxiliary function. Then, we decrease 1
β
and update the parameters while

fixing β. As β gradually changes from nearly zero to 1, the posterior distribution

shown in Eq. (4.21) also gradually changes from a nearly uniform distribution to

the original posterior distribution. Finally, we decrease 1
β
to 1 and update the

parameters by maximizing the auxiliary function in Eq. (4.20), which is equivalent

to the auxiliary function used in the EM algorithm.

4.5. Discussion

CAT [52] has been proposed as an adaptive training method for HMM-based

speech recognition using the eigenvoice technique. There are some differences

between CAT and the proposed method. The proposed adaptive training adapts

only parameters on a part of the model space, i.e., the target feature space rather

than the joint space. Consequently, the update formulas shown in Eq. (4.5) and

(4.10) are different from those used in CAT. Moreover, the proposed method

uses a GMM rather than HMMs. This makes an adaptation process much easier

because the decoding process is inevitable if using HMMs. Consequently, the

proposed method enables unsupervised adaptation in a linguistically independent

manner.
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Table 4.1. Number of pre-stored target speakers uttering each subset A, B, · · · ,
or G. Each subset consists of 50 phonetically balanced sentences

Sub-sets A B C D E F G Total

Number of male speakers 15 11 15 13 15 11 0 80

Number of female speakers 15 11 15 13 12 0 14 80

4.6. Experimental evaluations

4.6.1 Experimental conditions

We objectively and subjectively evaluated the conversion performance of the pro-

posed canonical EV-GMM compared with that of the conventional PCA-based

EV-GMM in one-to-many EVC. We used parallel data sets of a single source

male speaker and 160 pre-stored target speakers consisting of 80 male and 80

female speakers for training the EV-GMM. These speakers were included in the

Japanese Newspaper Article Sentences (JNAS) database [54]. Each pre-stored

target speaker uttered 50 phoneme-balanced sentences included in one of seven

subsets as shown in Table 4.1. The source male speaker was not included in JNAS

and uttered all of the seven subsets and an additional subset used for evaluation.

We prepared parallel data sets between the source and each pre-stored target

speaker by performing DTW automatically.

In evaluation, we used 10 target speakers consisting of five male and five

female speakers not included in the pre-stored target speakers. We used 1 to 32

utterances for adapting the EV-GMM, and 21 utterances for evaluation. In the

first E-step to estimate the adaptive parameters, i.e., the weight vector, we used

TI-GMM as an initial model.

We used 24-dimensional mel-cepstrum as a spectral feature, which was ex-

tracted from smoothed spectrum analyzed by STRAIGHT [13]. We trained sev-

eral EV-GMMs while changing the number of representative vectors as shown in

Table 4.2. The number of mixture components was 128.
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Table 4.2. Relationship between number of representative vectors and contribu-

tion rate

Number of representative vectors Contribution rate [%]

1 22.49

3 42.85

8 61.95

26 80.00

159 100.0

4.6.2 Objective evaluations

To investigate the effectiveness of the proposed adaptive training for alleviating

the mismatches of probability density as mentioned in Section 2.4.3, we compared

static feature components of the target covariance matrices Σ(Y Y )
m of the conven-

tional PCA-based EV-GMM with those of the proposed canonical EV-GMM. In

the proposed adaptive training, we set the number of representative vectors to

159 and used the TI-GMM as an initial model. Figure 4.2 shows mean values of

those covariance components over all mixture components. It also shows those

values averaged over traditional GMMs separately trained using individual par-

allel data sets of the source and the target speakers. The covariance values of the

PCA-based EV-GMM are larger than those of the traditional GMMs because the

PCA-based EV-GMM models acoustic variations among many pre-stored target

speakers. On the other hand, the covariance values of the canonical EV-GMM

are almost equal to those of the traditional GMMs. This result shows that the

proposed adaptive training is capable of effectively reducing the influence of the

inter-speaker variations on the EV-GMM training.

To demonstrate the effectiveness of the proposed adaptive training in spectral

conversion accuracy, we evaluated mel-cepstral distortion between the target and

converted features when using the conventional PCA-based EV-GMM and the
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proposed canonical EV-GMM. Mel-cepstral distortion is calculated as

Mel-CD [dB] =
10

ln 10

√√√√2
24∑
d=1

(
mc

(X)
d −mc

(Y )
d

)
, (4.22)

wheremc
(X)
d andmc

(Y )
d represent the dth dimensional component of converted mel-

cepstrum and that of target mel-cepstrum, respectively. Note that the average

of mel-cepstral distortion between source and target speakers is 8.11 [dB]. These

EV-GMMs were the same as those evaluated in Figure 4.2. Figure 4.3 shows mel-

cepstral distortion as a function of the number of adaptation utterances. We can

see that the proposed canonical EV-GMM always outperforms the conventional

PCA-based EV-GMM. Therefore, the proposed adaptive training is effective for

improving spectral conversion accuracy in one-to-many EVC.

To investigate the influence of a local optimum problem as described in Sec-

tion 4.3, we evaluated spectral conversion accuracy using the four EV-GMMs:

1) PCA-based EV-GMM “Conventional”; 2) the canonical EV-GMM “Proposed

(TI-GMM)” trained using the TI-GMM as an initial model; 3) the canonical

EV-GMM “Proposed (TD-GMM)” trained with the occupancy approximation as

mentioned in Section 4.4.1; and 4) the canonical EV-GMM “Proposed (DAEM)”

trained with DAEM algorithm. Figure 4.4 shows results of mel-cepstral distor-

tion as a function of the contribution rate of the representative vectors as shown

in Table 4.2. Although the “Proposed (TI-GMM)” method yields performance

improvement when the contribution rate is 100%, it causes performance degra-

dation when the contribution rate is less than 60%. If using a largely enough

number of the representative vectors so that acoustic characteristics of individ-

ual pre-stored target speakers are modeled well, the EV-GMM training doesn’t

cause a severe local optimum problem. On the other hand, if the number of

representative vectors is too small to span a subspace modeling those acous-

tic characteristics precisely, the EV-GMM training significantly suffers from a

local optimum problem. This problem is effectively addressed by introducing

the occupancy approximation “Proposed (TD-GMM)” or the DAEM algorithm

“Proposed (DAEM)” to the EV-GMM training. It is interesting that the occu-

pancy approximation outperforms the DAEM algorithm in particular when the

contribution rate is 20%. It would be expected that the mixture-component oc-
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(a) Number of adapting utterances is 1.
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(c) Number of adapting utterances is 4.
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(e) Number of adapting utterances is 16.
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(b) Number of adapting utterances is 2.
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(d) Number of adapting utterances is 8.
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(f) Number of adapting utterances is 32.

Figure 4.4. Mel-cepstral distortion as a function of the number of contribution

rate in each proposed adaptive training method and the conventional training

method.
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cupancies calculated by the TD-GMM would give better ML estimates of model

parameters since they are quite similar to those calculated by reasonable model

parameters such as the canonical EV-GMM with 159 representative vectors as

shown in Figure 4.1. Although the occupancy approximation is a heuristic ap-

proach not supported mathematically, it is more computationally efficient than

the DAEM algorithm. Therefore, it is a very effective approach for alleviating

the local optimum problem.

4.6.3 Subjective evaluations

To demonstrate the effectiveness of the proposed method, we conducted a prefer-

ence test on speech quality and an XAB test on conversion accuracy for speaker

individuality. In these tests, the proposed canonical EV-GMM evaluated in Fig-

ure 4.2 was compared with the conventional PCA-based EV-GMM. In the pref-

erence test, a pair of two different types of the converted speech was presented to

listeners, and then they were asked which voice sounded better. In the XAB test,

a pair of two different types of the converted speech was presented to them after

presenting the target speech as a reference. Then, they were asked which voice

sounded more similar to the reference target. The number of listeners was five and

each speaker evaluated 60 sample-pairs. The number of adaptation utterances

was set to two in each evaluation.

Figure 4.5 shows the results of each subjective evaluation. We can see that

1) the proposed method yields significant improvement in speech quality and 2)

conversion accuracy for speaker individuality by the proposed method is almost

equal to that by the conventional method. These results suggest that the proposed

adaptive training is very effective for improving the performance of one-to-many

EVC.

We also conducted another preference test on speech quality to evaluate the

effectiveness of the proposed methods for alleviating the local optimum problem.

The four EV-GMMs evaluated in Figure 4.4 were compared with each other. In

this test, the number of representative vectors was set to one and the number of

adaptation sentences was set to two. The number of listeners was 10 and each

speaker evaluated 48 sample-pairs.

Figure 4.6 shows the result of the preference test on speech quality. “Pro-
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posed (TI-GMM)” causes performance degradation because of a local optimum

problem. On the other hand, the local optimum problem is effectively alleviated

by “Proposed (TD-GMM)” or “Proposed (DAEM)”. These results are consistent

with those observed in Figure 4.4.

4.7. Summary

In order to improve the performance of one-to-many eigenvoice conversion (EVC),

we have proposed an adaptive training method for the eigenvoice Gaussian mix-

ture model (EV-GMM). The conventional EV-GMM, parameters were affected

by inter-speaker acoustic variations because they were determined based on a

target-speaker-independent GMM (TI-GMM). These parameters often caused the

degradation of the conversion performance. To address this problem, we have ap-

plied the proposed adaptive training to the EV-GMM. In the proposed method,

we can construct the canonical EV-GMM which includes the parameters of the

pseudo-normalized speaker.

Moreover, we have also proposed two approaches to alleviate the local opti-

mum problem observed in the EV-GMM training using a small number of eigen-

voices. One is the first E-step approximation method in which we calculate the

occupancies of the first E-step with target-speaker-dependent GMMs. And the

other is adaptive training using Deterministic annealing EM algorithm which

reformulates a maximization process of a likelihood function as a minimization

process of free energy.

We have evaluated the effectiveness of the proposed methods objectively and

subjectively. The experimental results have demonstrated that the proposed

training method is very effective for improving the performance of the one-to-

many EVC.

61



Chapter 5

Improvements of One-to-Many

Eigenvoice Conversion System

In this chapter, we describe the proposed one-to-many EVC system. In Chapter

2, It is mentioned that the conventional one-to-many EVC system includes three

factors causing the degradation of the converted speech quality, i.e., STRAIGHT

simple excitation (STSE), the conversion algorithm not considering the global

variance (GV), and inter-speaker variations of the EV-GMM. In order to solve

these problems of the conventional one-to-many EVC framework, three promising

techniques are introduced, i.e., STRAIGHT mixed excitation (STME), conversion

algorithm considering the GV and adaptive training method for EVC frameworks

which have been respectively described in Chapter 2, 3 and 4. Experimental

results demonstrate that the proposed system causes significant improvements in

the performance of EVC.

5.1. Introduction

Although EVC frameworks [11][12] achieve more flexible conversion training,

these converted speech qualities are not still high enough because these tech-

niques often make the converted speech buzzing and muffled. In the one-to-many

EVC, the factor of the insufficient converted speech quality is caused by employ-

ing the following techniques:
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• STRAIGHT simple excitation (STSE) based on switching a phase-manipulated

pulse train and white noise [13], which is too simple to model the excitation

signal appropriately;

• The EV-GMM based on the target-speaker-independent GMM (TI-GMM),

which usually causes the conversion model improperly capturing acoustic

variations among many pre-stored target speakers;

• The spectral conversion algorithm not considering the GV, which often

causes over-smoothed spectral parameters.

Therefore, there remains room to improve the conventional one-to-many EVC

system.

This thesis has already described the following promising techniques:

• In Chapter 3, the converted speech quality of the traditional VC was im-

proved by employing STRAIGHT mixed excitation (STME), which repre-

sents the actual excitation signal more properly than the STME;

• The conversion performance of one-to-many EVC was improved by applying

the adaptive training for the EV-GMM described in Chapter 4, which can

reduce the inter-speaker variations included in the EV-GMM;

• In the research described in Chapter 2, the conversion algorithm considering

the GV was introduced, which improves the over-smoothing of converted

spectral features.

Using these promising techniques, we improve the one-to-many EVC system.

Moreover, we clear up which elements contribute the improvement of our proposed

one-to-may EVC in the experimental evaluations.

This chapter is organized as follows. In Section 5.2, we describe the many-

to-many EVC conversion algorithms. In Section 5.3, the proposed EV-GMM

training with non-parallel data sets is described. Finally, we summarize this

chapter in Section 5.4
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5.2. Improved one-to-many EVC system

In order to improve the converted speech quality of EVC, we apply STME, the

conversion algorithm considering the GV and the adaptive training method to

the conventional one-to-many EVC system.

5.2.1 STRAIGHT mixed excitation for one-to-many EVC

We have proposed the conversion of aperiodic components based on a GMM

in order to apply STME to VC and have demonstrated its effectiveness in the

conventional VC framework in Chapter 3. In this chapter, aperiodic components

are modeled by EV-GMM for applying STME to the one-to-many EVC system.

The EV-GMM for aperiodic components is defined as the same described in

Section 2.3.1. Then, the proposed adaptive training addressed in Chapter 4 is

applied to this EV-GMM.

5.2.2 MLE-based conversion considering GV

Figure 5.1 shows a time sequence of the 7th mel-cepstral coefficient extracted

from the target speech and that of the converted coefficient by the conventional

EVC system, respectively. We can observe that the GV of the converted mel-

cepstral sequence is smaller than that of the target one. This is because the

over-smoothing is caused through a statistical modeling process. It has been

reported that both the converted speech quality and conversion accuracy for

speaker individuality are dramatically improved by considering the GV of the

converted parameters in the conversion process [10].

Eigenvoice single Gaussian distribution for GV

In the MLE-based conversion considering the GV, we employ the single Gaussian

distribution, which is modeled with the probability density of the target GV. In

the one-to-many EVC system, we cannot build the single Gaussian distribution

of the desired target GV if we obtain only one utterance of that speaker because

the GV is calculated utterance by utterance. Therefore, in the proposed one-to-

many EVC system, the probability density of the GV is modeled by an eigenvoice
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Figure 5.1. Target mel-cepstrum sequence and converted sequence in the conven-

tional EVC system. Bidirectional arrows show square root of GV extracted from

each sequence. Note that duration of converted sequence is different from that of

target one.

single Gaussian distribution (EV-SG) as follows:

P
(
v(s)
y |λ(EV )

v ,w(s)
v

)
= N

(
v(s)
y ;µ(w(s)

v ),Σ(vv)
)
, (5.1)

µ(w(s)
v ) = Bvw

(s)
v + b(0)v , (5.2)

where v
(s)
y denotes the GV vector of the sth target speaker. A tied-parameter

set λ
(EV )
v includes representative vectors Bv, a bias vector b(0)v and a covariance

matrix Σ(vv). The weight vector of the sth target speaker is w
(s)
v .

Training and adaptation of EV-SG

The PCA-based EV-SG is trained using all of GV vectors extracted from individ-

ual utterances of every pre-stored target speaker in the similar manner as written

in Section 2.3.2: 1) we train a speaker-independent single Gaussian distribution
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(SI-SG) with all of pre-stored target speakers’ GV vectors; 2) we calculate GV

mean vectors of each pre-stored target speaker using each target speaker’s GV

vectors; and 3) bias vector b(0)v and representative vectors Bv of GV are extracted

from GV’s supervector, which is constructed by concatenating pre-stored target

GV mean vectors, by performing PCA.

In the same case as the EV-GMM, we apply this adaptive training to the

PCA-based EV-SG. Therefore, in the proposed system, we also apply the adap-

tive training to the EV-SG for the GV. The canonical EV-SG parameters are

estimated by maximizing a total likelihood of the adapted EV-SGs for individual

pre-stored target speakers’ GVs as follows:

{
λ̂(EV )
v , ŵv

S
1

}
= argmax

λ
(EV )
v ,wv

S
1

S∏
s=1

Ns∏
n=1

P
(
v(s)
y,n|λ(EV ),w(s)

v

)
, (5.3)

where v
(s)
y,n denotes the GV vector extracted from the nth utterance of the sth pre-

stored target speaker and wv
S
1 is a set of weight vectors for EV-SG. We do not

have to perform EM algorithm because there is no hidden variable in the EV-SG.

However, it is still difficult to update all parameters simultaneously for the same

reason as in the EV-GMM. Therefore, individual parameters of the EV-SG are

updated iteratively in the same manner as mentioned in Chapter 4.

MLE-based conversion with adapted EV-SG

The converted speech features are determined by maximizing with respect to y

as follows:

ŷ =argmax
y

{∑
all m

P
(
m|X, λ(EV )

)
P
(
Y |X,m, λ(EV ), ŵ

)}ω

P
(
vy|λ(EV )

v , ŵv

)
,

(5.4)

This conversion algorithm is solved using the same manner described in Sec-

tion 2.2.2. Note that we again approximate the objective function with the sub-

optimum mixture component sequence in Section 2.2.3.

Figure 5.2 shows an example of the converted trajectories with/without the

GV. By considering the GV, many trajectory movements are dramatically em-

phasized. However, other trajectory movements are almost same. This is because
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Figure 5.2. Examples of converted spectral trajectories with/without GV in the

one-to-many EVC.

the degree of emphasis is determined by the likelihood written in Eq. (5.4). Thus,

in the one-to-many EVC system, GV is effectively improved over-smoothing prob-

lem.

5.2.3 Overview of the proposed one-to-many EVC system

Figure 5.3 shows an overview of the proposed one-to-many EVC system.

In the training process, spectral features, aperiodic components, and GV vec-

tors are extracted from speech samples of multiple parallel data sets, and joint

feature vectors are constructed for spectral features and for aperiodic compo-

nents. We build the EV-GMM for spectral features, the EV-GMM for aperiodic

components, and the EV-SG for the GV using the PCA-based training process

described in Chapter 4 and Section 5.2.2, respectively. Then, these models are

independently optimized with the adaptive training based on the approximated

method. We also calculate mean and variance values of log-scaled F0 of the source

speaker.
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In the adaptation process, spectral features, aperiodic components, GV vec-

tors, and F0 values are extracted from adaptation data of a new target speaker.

Then, the weight vectors for the EV-GMMs for the spectral features and for the

aperiodic components are independently estimated as shown in Eq. (2.52). The

weight vector for the EV-SG is also estimated by maximizing the likelihood of

the EV-SG in Eq. (5.1) for given the GV vectors. Mean and variance values of

log-scaled F0 of the target speaker are also calculated.

In the conversion process, spectral features are converted by MLE-based con-

version considering the GV. On the other hand, aperiodic components are con-

verted by the conventional MLE-based conversion without the GV because quality

improvements yielded by considering the GV in the aperiodic conversion are not

significant. The converted F0 values are determined in Eq. (2.65). Finally, the

excitation signal is generated based on STME with the converted F0 values and

the converted aperiodic components, and then synthetic speech is generated by

filtering the excitation signal with the converted spectral features.

5.3. Experimental evaluations

5.3.1 Experimental conditions

We objectively and subjectively compared the performance of the proposed one-

to-many EVC system with that of the conventional one. In this evaluation, we

employ same training data set and evaluation data set in Section 4.6. We used

24-dimensional mel-cepstrum as a spectral feature, which were extracted from

smoothed spectrum analyzed by STRAIGHT [13], and aperiodic components

that were averaged on five frequency bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6

to 8 kHz) the same as in Chapter 3. The number of representative vectors was

159 for mel-cepstrum, 64 for aperiodic components and 4 for GV, respectively.

The number of mixture components was 128 for spectral features and 64 for the

aperiodic features, respectively. These parameters were optimized so that the

best conversion accuracy for each feature was obtained in the evaluation data.
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5.3.2 Objective evaluations

We evaluated the effectiveness of the proposed adaptive training method in the

adaptation of the EV-GMM. Note that the effectiveness of the proposed adaptive

training method in the spectral conversion has already been described in Chap-

ter 4. As evaluation measures, we used RMSE on aperiodic components and the

likelihood of the adapted EV-SG for GVs in the evaluation data. Before the con-

version, RMSE on aperiodic components between the source and target speakers

was 2.70 [dB] and the log-scaled likelihood of EV-SG was 80.64. When we used

STSE for synthesizing the converted speech, RMSE on aperiodic components

between the converted speech and the target speech was 3.05 [dB].

Figure 5.4 and 5.5 show RMSE on aperiodic components and the log-scaled

likelihood of the EV-SG for GV, respectively. We can see that the adaptation

performance of both the EV-GMM for aperiodic components and the EV-SG

for the GV is significantly improved by applying the proposed adaptive training.

Moreover, these improvements are always observed even if varying the amount

of adaptation data. These results demonstrate the effectiveness of applying the

proposed adaptive training to modeling of the aperiodic components and the GV.

5.3.3 Subjective evaluations

We conducted a preference test and an opinion test on speech quality and an XAB

test on conversion accuracy for speaker individuality. It has been reported that

a combination of STME and GV yields significant improvements in naturalness

of synthetic speech in HMM-based speech synthesis [49]. In this chapter, in

order to further demonstrate the effectiveness of a combination of STME, GV

and adaptive training, we evaluated several types of converted speech shown in

Table 5.1. In the preference test, a pair of two different types of the converted

speech was presented to listeners, and then they were asked which voice sounded

better. In the opinion test, each listener evaluated speech quality of the converted

voices using a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad). In

the XAB test, a pair of two different types of the converted speech was presented

to them after presenting the target speech as a reference. Then, they were asked

which voice sounded more similar to the reference. Each listener evaluated every
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Figure 5.4. Result of objective evaluation by RMSE on aperiodic components for

one-to-many EVC system.
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Table 5.1. Combinations of improving methods for generating converted speech.

“Y” means using method and “N” means not using method

PPPPPPPPPPPMethod

Type
i ii iii iv v vi vii viii

Adaptive training N Y N N Y Y N Y

STME N N Y N Y N Y Y

Conversion with GV N N N Y N Y Y Y

pair-combination of all types of the converted speech. The number of listeners

was 15 and each listener evaluated 56 sample pairs in the preference test and the

XAB test. In the opinion test, the number of listeners was 10 and each listener

evaluated 180 samples.

Figure 5.6 shows the result of the preference test on speech quality. Note that

type i is equivalent to the conventional one-to-many EVC system. We can see

that speech quality of the converted speech is significantly improved by applying

each of the adaptive training (type ii), STME (type iii), and the conversion with

the GV (type iv) to the conventional system. Especially, the conversion with

the GV achieves the largest quality improvement. Furthermore, further qual-

ity improvements are obtained by combining these methods. Consequently, the

proposed one-to-many EVC system (type viii) is capable of synthesizing the con-

verted speech with much higher speech quality compared with the conventional

system.

Figure 5.7 shows the result of the opinion test on speech quality. We can

see the same tendency as observed in the preference test shown in Figure 5.6.

Significant improvements in the converted speech quality are yielded by applying

each of the adaptive training, STME, and the conversion with the GV to the

conventional system, and the best quality is yielded by the type viii system.

Figure 5.8 shows the result of the XAB test of conversion accuracy for speaker

individuality. The adaptive training (type ii) does not contribute to the improve-

ment of conversion accuracy for speaker individuality. This result is consistent to

the result reported in Chapter 4. On the other hand, STME (type iii) or the con-
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EVC system.
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Figure 5.8. Subjective result of conversion accuracy for speaker individuality fro

one-to-many EVC system.

version with the GV (type iv) yields significant improvements of the conversion

accuracy, and STME is the most effective. As observed in the result of speech

quality, further improvements are yielded by combining these effective methods.

These results suggest that the proposed system yields dramatic improvements

in the performance of the one-to-many EVC system.

5.4. Summary

In order to improve converted speech quality and conversion accuracy for speaker

individuality of the one-to-many eigenvoice conversion (EVC) system, we have

applied three promising techniques, i.e., STRAIGHT mixed excitation, the con-

version algorithm considering global variance (GV) and the adaptive training

method of the eigenvoice Gaussian mixture model (EV-GMM) to the conventional
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system. In the proposed one-to-many EVC system, we train two EV-GMMs for

spectral features and for aperiodic components and an eigenvoice single Gaussian

distribution for the GV separately. These models are effectively adapted to a

new target speaker using a very small amount of adaptation data in a completely

text-independent manner.

The results of objective evaluation have demonstrated that the proposed adap-

tive training has improved adaptation performance of both the EV-GMM for

aperiodic components and the EV-SG for the GV. In the results of subjective

evaluations, we have been able to see that the conversion algorithm consider-

ing the GV is the most effective method for improving speech quality and the

STME contributes to the improvement of conversion accuracy for speaker indi-

viduality most. Moreover, the proposed one-to-many EVC system considerably

outperforms the conventional one in view of both converted speech quality and

conversion accuracy for speaker individuality.
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Chapter 6

Many-to-Many Eigenvoice

Conversion

In this chapter, we describe a novel EVC paradigm, i.e., many-to-many EVC.

This framework achieves the conversion from an arbitrary source speaker’s voice

to an arbitrary target speaker’s voice. In this framework, we perform many-

to-one EVC and one-to-many EVC sequentially through the specified speaker,

what we call “reference speaker”, using the single EV-GMM. Moreover, inspired

by this conversion framework, we propose the refining EV-GMM method using

non-parallel utterance data set. In each proposed method, we conduct objective

and subjective experimental evaluations. These results demonstrate the effective-

ness of the proposed many-to-many conversion algorithms and refining EV-GMM

method.

6.1. Introduction

In Chapter 5, the converted speech quality for the EVC framework is significantly

improved. However, it is still hard to flexibly perform the conversion between

arbitrary speaker-pairs because the conventional EVC framework has achieved

one-to-many and many-to-one VC frameworks.

In previous work, VC using ML constrained adaptation [31] achieves many-

to-many VC. In this method, unsupervised adaptation is applied to both side

of GMM based on joint probability density between specified source and target
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speaker. Masuda et al., have proposed multistep VC [55] for reducing costs

of training conversion models modeled by GMMs. If we want to achieve the

conversion from N source speakers to M target speakers in the traditional VC

framework, we must train N × M conversion models. On the other hand in

the multistep VC framework, we train only N + M conversion models between

individual speakers and a specified pre-defined speaker, which is called “reference

speaker.” In the conversion process, we convert a source speaker’s voice into a

target speaker’s voice through the reference voice. Therefore, from another point

of view, this framework is a successful framework to achieve many-to-many VC.

Inspired by multistep VC framework, we propose many-to-many VC as a much

more flexible VC framework by extending the conventional EVC frameworks. In

the proposed framework, an EV-GMM between the reference speaker and pre-

stored speakers is trained in advance in the same manner as the conventional

EVC framework. The GMMs between the reference speaker and an arbitrary

source/target speaker is flexibly developed by estimating a small amount of free

parameters of the trained EV-GMM, i.e., weights for eigenvectors, using only a

few utterances of the adapted speaker in an unsupervised manner. In the con-

version process, the proposed framework is to sequentially perform many-to-one

EVC and one-to-many EVC through the reference speaker. In this framework,

two many-to-many EVC algorithms are investigated; one is the sequential con-

version based on multistep VC [55], and the other is the sequential conversion

sharing mixture components between many-to-one EVC and one-to-many EVC

by considering the reference speaker’s voice as hidden variable.

Moreover, inspired by this proposed conversion algorithm, we propose a method

of refining the EV-GMM by additionally using any arbitrary utterance sets of a

larger number of pre-stored speakers, i.e., non-parallel data sets from various

speakers, in order to relax the use of parallel data sets in EV-GMM training. In

the proposed training method, the initial EV-GMM is trained using the existing

multiple parallel data sets. Then it is refined using only non-parallel data sets

including a larger number of speakers while considering the reference voices cor-

responding to those data sets as hidden variables. Note that these non-parallel

data sets are generally much more easily available than the multiple parallel data

sets. Therefore, the proposed method allows us to extract more informative prior
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knowledge from a much larger number of speakers in EV-GMM training.

This chapter is organized as follows. In Section 6.2, we describe the many-

to-many EVC conversion algorithms. In Section 6.3, the proposed EV-GMM

training with non-parallel data sets is described. Section 6.4 describes experi-

mental evaluations for many-to-many EVC algorithms and the proposed training

method. Finally, we summarize this chapter in Section 6.5.

6.2. Many-to-many conversion algorithm based

on eigenvoices

In order to achieve many-to-many EVC, we employ many-to-one EVC and one-to-

many EVC. Figure 6.1 shows a schematic image of the proposed many-to-many

EVC process. We use only one EV-GMM because the EV-GMM models joint

probability density, the one-to-many EV-GMM can also be used as the many-to-

one EV-GMM by just switching the source and the target features. Note that

this chapter employs a one-to-many EV-GMM in this chapter. There, the source

speaker X included in the one-to-many EV-GMM is regarded as the reference

speaker and Y (i) and Y (o) represent source and target speakers in this chapter,

respectively.

Given a small amount of adaptation data of arbitrary source and target speak-

ers, ML estimates of the weight vectors, ŵ(i) and ŵ(o), for the source Y (i) and

the target Y (o) are determined by Eq. (2.52), respectively. Then, the arbitrary

source speaker’s voice is converted into the reference voice with many-to-one EVC.

After that, the converted reference speaker’s voice is further converted into the

arbitrary target speaker’s voice with one-to-many EVC.

6.2.1 Conversion algorithm based on multistep VC

Many-to-many EVC based on multistep VC [55] simply performs two conver-

sion processes. In the first step, we convert the source voice into the reference

voice using the EV-GMM adapted to the source speaker. The ML estimate of a

static and dynamic feature sequence of the reference voice X̂ is determined by
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Figure 6.1. Overview of many-to-many EVC

maximizing the following likelihood function:

X̂ = argmax
X

∑
all m

P
(
m|Y (i), λ(EV ), ŵ(i)

)
P
(
X|Y (i),m, λ(EV ), ŵ(i)

)
. (6.1)

Since this conversion is not considering dynamic features, a converted joint feature

vector at frame t X̂ t is written as

X̂ t =
M∑

m=1

P
(
m|Y (i)

t , λ(EV ), ŵ(i)
)
E

(X)
m,t , (6.2)

where

E
(X)
m,t = µ(X)

m +Σ(XY )
m Σ(Y Y )−1

m

(
Y

(i)
t −Bmŵ

(i) − b(0)m

)
. (6.3)

In the manner described in section 2.2.2, the suboptimum mixture component

sequence m̂(i) is determined as follows:

m̂(i) = argmax
m

P
(
m|Y (i), λ(EV ), ŵ(i)

)
. (6.4)

Then, the converted reference voice is determined as follows:

X̂=argmax
X

P
(
X|Y (i), m̂(i), λ(EV ), ŵ(i)

)
. (6.5)

In this case, we can obtain E
(X)

m(i),t
as the converted reference feature X̂ t.
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In the second step, we convert the converted reference voice into the target

voice using EV-GMM adapted to the target speaker. We estimate a target static

feature sequence ŷ(o) by maximizing the following likelihood function:

ŷ(o) = argmax
y

∑
all m

P
(
m|X̂, λ(EV )

)
P
(
Y (o)|X̂,m, λ(EV ), ŵ(o)

)
. (6.6)

In the same as the first step, using approximation conversion algorithm, the

converted static feature sequence ŷ(o) is determined as follows:

ŷ(o) = argmax
y(o)

P
(
Y (o)|X̂, m̂(o), λ(EV ), ŵ(o)

)
, (6.7)

m̂(o) = argmax
m

P
(
m|X̂, λ(EV )

)
. (6.8)

In addition, we can perform the conversion algorithm with the GV by applying

Eq. (5.4) to the second step of the conversion process. Note that the mixture

component sequence in many-to-one EVC shown by Eq. (6.4) is not always the

same as that in one-to-many EVC shown by Eq. (6.8). It is possible that this

inconsistency of the mixture component sequences causes the conversion between

different phonemic spaces through the sequential conversion process.

6.2.2 Conversion algorithm with shared mixture compo-

nents

To avoid the inconsistency of the mixture component sequences, we propose a se-

quential conversion method while sharing the same mixture component sequence

in both many-to-one EVC and one-to-many EVC.

The converted static feature sequence ŷ(o) is determined by maximizing the

following likelihood function,

ŷ(o) = argmax
y

∑
all m

P
(
m|Y (i), λ(EV ), ŵ(i)

)
P
(
Y (o)|Y (i),m, λ(EV ), ŵ(i), ŵ(o)

)
,

(6.9)

where P
(
Y (o)|Y (i),m, λ(EV ), ŵ(i), ŵ(o)

)
represents conditional probability den-

sity of target features Y (o) given source features Y (i) modeled by a single Gaussian
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distribution as follows:

P
(
Y (o)|Y (i),m, λ(EV ), ŵ(i), ŵ(o)

)
=

∫
P
(
Y (o)|X,m, λ(EV ), ŵ(o)

)
P
(
X|Y (i),m, λ(EV ), ŵ(i)

)
dX

=
T∏
t=1

N
(
Y

(o)
t ; Ẽ

(Y )

m,t , D̃
(Y )

m

)
, (6.10)

Ẽ
(Y )

m,t = Bmŵ
(o) + b(0)m +AmΣ

(Y Y )−1

m

(
Y

(i)
t −Bmŵ

(i) − b(0)m

)
, (6.11)

D̃
(Y )

m = Σ(Y Y )
m −A⊤

mΣ
(Y Y )−1

m Am, (6.12)

Am = Σ(Y X)
m Σ(XX)−1

m Σ
(XY )
m̂ . (6.13)

The feature vector sequence of the reference speaker X is regarded as a hidden

variable. Therefore, this algorithm effectively converts the source speaker’s voice

into the target speaker’s voice. Also, this algorithm can be applied as the approx-

imation method described in section 2.2.2. The suboptimum mixture component

sequence m̂ is determined by

m̂ = argmax
m

P
(
m|Y (i), λ(EV ), ŵ(i)

)
. (6.14)

Then, we determine the converted static feature sequence y(o) as follows:

ŷ(o)=argmax
y(o)

P
(
Y (o)|Y (i), m̂, λ(EV ), ŵ(i), ŵ(o)

)
. (6.15)

In addition, in order to perform this conversion algorithm considering GV, we

determine the converted static feature sequence ŷ(o) by maximizing the following

likelihood function,

ŷ(o) = argmax
y

{∑
all m

P
(
m|Y (i), λ(EV ), ŵ(i)

)
P
(
Y (o)|Y (i),m, λ(EV ), ŵ(i), ŵ(o)

)}ω

× P
(
vy(o) |λ(EV )

v ,w(o)
v

)
, (6.16)

where vy(o) and w
(o)
v are target GV vector and target weight vector for represen-

tative vectors of the EV-SG, respectively. In the same as the proposed conversion

method not considering the GV, we can also approximate Eq. (6.16) with the
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Figure 6.2. Graphical representation of relationship among individual variables

in many-to-many EVC with reference voice

suboptimum mixture component sequence using the same technique described

in Section 2.2.3. Figure 6.2 shows a graphical representation of the relationship

among individual variables in the conversion process. This conversion algorithm

effectively models correlations among the target feature sequence. Consequently,

all of the source and reference feature vectors affect the determination of each

converted feature vector.

6.3. Non-parallel training for EV-GMM of many-

to-many EVC

Inspired by the conversion process in many-to-many EVC, we propose a new

training method of the EV-GMM considering the reference voice as a hidden

variable. Figure 6.3 shows an overview of the proposed training process. In the

first step, we train the initial EV-GMM using the existing multiple parallel data

sets between a single reference speaker and many pre-stored speakers in the same

manner as described in the previous section. In the second step, we refine the EV-
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Figure 6.3. Overview of proposed EV-GMM training process

GMM using non-parallel data including a larger number of pre-stored speakers

while regarding the reference features corresponding to those non-parallel data

as hidden variables. Because this process is performed in a completely text-

independent manner, any pre-stored speech data, i.e., any utterance set of any

speaker, can be used for refining the EV-GMM. Therefore, the proposed training

method allows us to use a larger amount of training data including more varieties

of texts and speakers.

In the second training process, we update the EV-GMM parameters by max-

imizing the following marginal likelihood:

{
λ̂(EV ), ŵS

1

}
=argmax

λ(EV ),wS
1

S∏
s=1

Ts∏
t=1

∫
P
(
X t,Y

(s)
t |λ(EV ),w(s)

)
dX t

=argmax
λ(EV ),wS

1

S∏
s=1

Ts∏
t=1

P
(
Y

(s)
t |λ(EV ),w(s)

)
. (6.17)

The training process is achieved with EM algorithm [43] by maximizing the fol-

lowing auxiliary function,

Q
({

λ(EV ),wS
1

}
,
{
λ̂(EV ), ŵS

1 )
})

=
S∑

s=1

Ts∑
t=1

M∑
m=1

P
(
m|Y (s)

t , λ(EV ),w(s)
)
logP

(
Y

(s)
t ,m|λ̂(EV ), ŵ(s)

)
. (6.18)
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In this proposed training, we can update the speaker-dependent weight vectorw(s)

and the EV-GMM parameters related to only the pre-stored speaker’s features,

i.e., the mixture component weight αm, the representative vectors Bm, the bias

vector b(0)m , and the covariance matrix of the pre-stored speakers Σ(Y Y )
m for each

mixture component. The ML estimates of these parameters are given by

ŵ(s) =

(
M∑

m=1

γ(s)
m B⊤

mΣ
(Y Y )−1

m Bm

)−1 M∑
m=1

{
B⊤

mΣ
(Y Y )−1

m

(
Y

(s)

m − γ(s)
m b(0)m

)}
,(6.19)

α̂m =

S∑
s=1

γ(s)
m

M∑
m=1

S∑
s=1

γ(s)
m

, (6.20)

ν̂m =

(
S∑

s=1

γ(s)
m Ŵ

(Y )⊤

s Σ(Y Y )−1

m Ŵ
(Y )

s

)−1( S∑
s=1

Ŵ
(Y )⊤

s Σ(Y Y )−1

m Y
(s)

m

)
, (6.21)

Σ̂
(Y Y )

m =
1

S∑
s=1

γ(s)
m

S∑
s=1

{
V

(Y Y )

m,s + γ(s)
m µ̂(Y )

m,sµ̂
(Y )⊤

m,s

−
(
µ̂(Y )

m,sY
(s)⊤

m + Y
(s)

m µ̂(Y )⊤

m,s

)}
, (6.22)

where

ν̂m =

[
b̂
(0)⊤

m , b̂
(1)⊤

m , · · · , b̂
(J)⊤

m

]⊤
, (6.23)

Ŵ
(Y )

s =
[
I, ŵ

(s)
1 I, ŵ

(s)
2 I, · · · , ŵ

(s)
J I
]
, (6.24)

µ̂(Y )
m,s = Ŵ

(Y )

s ν̂m. (6.25)

The sufficient statistics for these estimates are given by

γ(s)
m =

Ts∑
t=1

P
(
m|Y (s)

t , λ(EV ),w(s)
)
, (6.26)
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Y
(s)

m =
Ts∑
t=1

P
(
m|Y (s)

t , λ(EV ),w(s)
)
Y

(s)
t , (6.27)

V
(Y Y )

m,s =
Ts∑
t=1

P
(
m|Y (s)

t , λ(EV ),w(s)
)
Y

(s)
t Y

(s)⊤

t . (6.28)

Note that, in the same as the adaptive training described in Chapter 4, it is

difficult to estimate each parameter independently. Therefore, we need to per-

form these updates iteratively in each M-step for improving parameter estimation

accuracy.

6.4. Experimental evaluations

6.4.1 Experimental conditions

In experimental evaluations, we evaluated the effectiveness of proposed many-to-

many EVC algorithms and compared performance of the proposed non-parallel

training with that of the conventional parallel training separately. For the ex-

perimental evaluation of the proposed conversion algorithms, we employed the

proposed canonical one-to-many EV-GMM for spectral features and for aperi-

odic components described in Section 5.3 to perform many-to-many EVC. For

the experimental evaluation for proposed training method, we trained the EV-

GMM with the conventional parallel training using one male speaker as the refer-

ence speaker and 27 pre-stored speakers including 13 male and 14 female speakers

selected from JNAS [54]. The trained EV-GMM was further refined with the pro-

posed non-parallel training using 160 pre-stored speakers including 80 male and

80 female speakers. To demonstrate the effectiveness of increasing the number

of pre-stored speakers used in the proposed non-parallel training, we varied the

number of pre-stored speakers from 27 consisting of the same pre-stored speakers

as used in the conventional parallel training to 160.

In the evaluations, we used eight speaker pairs (two male-to-male pairs, two

female-to-female pairs, two male-to-female pairs, and two female-to-male pairs)

selected from four male and five female speakers that were not included in the

pre-stored speakers. We used 1 to 32 utterances for the adaptation, and the other

21 utterances for the evaluations.
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We used 24-dimensional mel-cepstrum analyzed by STRAIGHT [13] as a spec-

tral feature and aperiodic components [14] that were averaged on five frequency

bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6 to 8 kHz) as an excitation feature to

construct STME. Two one-to-many EV-GMMs were trained separately for these

two features. The number of representative vectors was 159 for mel-cepstrum and

64 for aperiodic components, respectively. The number of mixture components

was 128 for mel-cepstrum and 64 for the aperiodic components, respectively.

In evaluation for conversion algorithms, we compared the proposed many-to-

many EVC algorithms based on multistep VC “M-to-M (multistep)” and based

on shared mixture components “M-to-M (shared)” with traditional VC with the

parallel training “Traditional.” Note that the unsupervised adaptation was per-

formed in the many-to-many EVC while the supervised training using parallel

data was performed in the traditional VC.

6.4.2 Objective evaluations for conversion algorithms

We evaluated the conversion performance using mel-cepstral distortion for the

spectral conversion and RMSE on aperiodic component for the aperiodicity con-

version. Note that, average values of mel-cepstral distortion and RMSE between

source and target speakers are 7.23 [dB] and 2.75 [dB], respectively. Figures 6.4

and 6.5 show results when varying the number of adaptation sentences (or the

number of parallel training sentences in “Traditional”). The performance of both

“M-to-M” methods is significantly better than “Traditional” when using a small

amount of adaptation data. Moreover, we can observe that “M-to-M (shared)”

outperforms “M-to-M (multistep).” When using more then 16 adaptation sen-

tences, “Traditional” overcomes the proposed methods because a large enough

amount of parallel data to train the GMM is available. Incidentally, we have

never observed significant differences of the conversion performance between the

within-gender conversion and the cross-gender conversion.

6.4.3 Subjective evaluations for conversion algorithms

We conducted a preference test on speech quality and an XAB test on conversion

accuracy for speaker individuality. In the preference test, a pair of two different
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Figure 6.4. Result of objective evaluation by mel-cepstral distortion for many-to-

many EVC algorithms.
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many-to-many EVC algorithms.
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Figure 6.6. Results of subjective evaluations for many-to-many EVC algorithms.

types of the converted speech was presented to listeners, and then they were

asked which voice sounded better. In the XAB test, a pair of two different

types of the converted speech was presented to them after presenting the target

speech as a reference. Then, they were asked which voice sounded more similar

to the reference. Each listener evaluated every pair-combination of all types of

the converted speech. The number of listeners was ten and the number of sample

pairs evaluated by each listener was 48 in each test. Note that these converted

utterances were generated by each conversion algorithm with GV.

Figure 6.6 shows the results. When using two adaptation sentences, both

“M-to-M” algorithms outperform “Traditional”. Moreover, “M-to-M (shared)”

significantly outperforms “M-to-M (multistep)”. When using 16 adaptation sen-

tences, “M-to-M (shared)” still has the best performance in both speech quality

and conversion accuracy for speaker individuality. Although “Traditional” would

outperform the proposed methods when using a larger amount of training data,

parallel data are still indispensable. These results suggest that the proposed

many-to-many EVC with shared mixture components is very effective for flexibly
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developing conversion models for arbitrary speaker-pairs.

6.4.4 Objective evaluation for proposed training method

We evaluated spectral conversion performance using mel-cepstral distortion. Fig-

ure 6.7 shows the result when varying the number of pre-stored speakers used in

the proposed non-parallel training. When using the same 27 pre-stored speakers

as used in the conventional parallel training, the proposed non-parallel training

method causes degradation of conversion performance. This would be reasonable

because the non-parallel training data sets are less informative than the parallel

training data sets in this case. It is observed that the proposed non-parallel train-

ing yields better conversion performance as the number of pre-stored speakers in

the non-parallel data increases. This is because the proposed training method

effectively updates the EV-GMM parameters so that the EV-GMM models well

voice characteristics of a larger number of speakers; e.g., representative vectors

are updated so that a sub-space spanned by them widely covers more varieties of

speakers. Consequently, the proposed non-parallel training provides significant

improvements in conversion performance when using a much larger number of

pre-stored speakers than that used in the conventional parallel training.

6.4.5 Subjective evaluations for proposed training method

We compared the converted speech samples of the proposed non-parallel training

with those of the conventional parallel training. We used 27, 80 and 160 speakers

for the proposed non-parallel training. Note that we generated these converted

speech data using STSE and conversion algorithm not considering the GV de-

scribed in Section 6.2.2. We conducted a preference test on speech quality and

an XAB test on conversion accuracy for speaker individuality. In the preference

test, a pair of two different types of the converted speech was presented to lis-

teners, and then they were asked which voice sounded better. In the XAB test,

a pair of two different types of the converted speech was presented to them after

presenting the target speech as a reference. Then, they were asked which voice

sounded more similar to the reference target. The number of listeners was ten

and the number of sample-pairs evaluated by each listener was 48 in each test.
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Figure 6.8. Results of subjective evaluations for proposed refining EV-GMM.
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Figure 6.8 shows the experimental results. In the speech quality test, we can

see almost the same tendency as observed in the previous objective evaluation;

i.e., better speech quality is obtained by increasing the number of pre-stored

speakers in the proposed non-parallel training; and the proposed non-parallel

training yields significant quality improvements in converted speech compared

with the conventional parallel training when using 160 pre-stored speakers. On

the other hand, in the speaker individuality test, conversion accuracy of the

proposed non-parallel training is kept almost equal to that of the conventional

parallel training.

These results suggest that the proposed non-parallel training yields better con-

verted speech quality than the conventional parallel training without degradation

of conversion accuracy for speaker individuality by additionally using non-parallel

data including a larger number of pre-stored speakers.

6.5. Summary

In this chapter, we have described a novel EVC framework, many-to-many EVC.

Many-to-one EVC and one-to-many EVC has been integrated into many-to-many

EVC by using the single EV-GMM and sharing mixture components between two

EVCs. The proposed many-to-many EVC allows us to develop a conversion model

from an arbitrary source speaker to an arbitrary target speaker by the unsuper-

vised adaptation using a small amount of adaptation data of the arbitrary source

and target speakers. When converting, a source speaker’s voice is effectively con-

verted into a target speaker’s voice by considering the reference speaker’s voice

as hidden variable.

Moreover, this chapter has described the EV-GMM training method using

non-parallel data sets for many-to-many EVC. This method has been inspired by

above many-to-many conversion algorithm. In the proposed training method, an

initial EV-GMM is trained using parallel data sets consisting of a single reference

speaker and multiple pre-stored speakers. And then, the initial EV-GMM is

further refined additionally using non-parallel data sets consisting of a larger

number of pre-stored speakers while considering the reference speaker’s voices as

hidden variables.
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The experimental results have demonstrated that our proposed algorithm has

effectively performed and the proposed training method has yielded significant

quality improvements in converted speech by effectively using non-parallel data

sets including a larger number of pre-stored speakers.
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Chapter 7

Conclusions

7.1. Summary of thesis

Voice conversion (VC) is a technique for converting the source speaker’s voice into

a target speaker’s voice without changing linguistic information using a statisti-

cal conversion model. As a statistical conversion model, the Gaussian mixture

model (GMM) is trained with a parallel data set consisting of utterance-pairs

of source and target speakers. Although this framework works reasonably well,

the converted speech quality is still insufficient and the training process of the

conversion model is less flexible. Recently, eigenvoice conversion (EVC) was pro-

posed in order to make the conversion model training process more flexible. EVC

has brought two new conversion paradigms, i.e., one-to-many VC performing the

conversion from a single source speaker to arbitrary target speakers, and many-

to-one VC performing the conversion from arbitrary source speakers to a single

target speaker. However, the converted speech quality of the EVC is not high

enough. Moreover, it is desired to further improve flexibility of the conversion

model training to make VC applications more practical. In this thesis, in order to

improve the performance of EVC, we have proposed two approaches to improv-

ing the converted speech quality of EVC and achieving a more flexible conversion

paradigm.

First, we described the traditional VC and EVC frameworks in Chapter 2.

We explained the GMM training process of the traditional VC framework and

two main conversion algorithms, i.e., the conversion algorithm based on minimum
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mean square error and that based on maximum likelihood (ML) estimation. As

the state-of-the art conversion algorithms, we also explained the maximum like-

lihood conversion algorithm considering global variance (GV) that is defined as

variances of the feature vectors over a time sequence. This conversion algorithm

has dramatically improved the converted speech quality. Next, we described the

one-to-many EVC framework in detail. In this framework, the eigenvoice GMM

(EV-GMM) is trained in advance using multiple parallel data sets consisting of

the pre-defined source speaker and various pre-stored target speakers. The con-

version model from the source speaker to the desired target speaker is constructed

by adapting the trained EV-GMM to the target speaker using a small number of

arbitrary target utterances. In the conversion process, arbitrary utterances of the

source speaker are converted into those of the target speaker. We also described

issues of the converted speech quality in the conventional one-to-many EVC sys-

tem. The severe degradation of the converted speech quality is often caused

by STRAIGHT simple excitation, inter-speaker variations captured by the EV-

GMM, and the conversion algorithm not considering the GV. In addition, we

reviewed various VC techniques related to the traditional VC and EVC.

In Chapter 3, we improved the quality of the source excitation model in

the traditional GMM-based VC. We conventionally employed the STRAIGHT

simple excitation model that generates an excitation signal by switching a phase-

manipulated pulse train or white noise based on F0 information. This excitation

is too simple to precisely model an excitation signal because it generally consists

of both pulse and noise signals. In order to improve the excitation model, we

introduced the STRAIGHT mixed excitation (STME) model to the traditional

GMM-based VC. STME generates an excitation signal based on the weighted

sum of a phase-manipulated pulse train and white noise. The weighting values

vary according to aperiodic components capturing the strength of noise compo-

nents in each frequency bin. In our proposed method, joint probability density of

aperiodic components between source and target speakers is modeled by a GMM.

The aperiodic components converted from the source aperiodic components are

used for generating an excitation signal with STME. In objective evaluations,

we determined the optimal mapping parameter from the aperiodic components

into the weighting values. The experimental result has demonstrated that the
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converted aperiodic components are more similar to the target aperiodic compo-

nents compared with the source aperiodic components. The result of subjective

evaluation has demonstrated that the proposed GMM-based VC with STME sig-

nificantly outperforms the conventional GMM-based VC in view of conversion

accuracy for speaker individuality.

In Chapter 4, we proposed a novel training method for the eigenvoice GMM

(EV-GMM). In the conventional one-to-many EVC, most parameters of the EV-

GMM are from target-speaker-independent GMM (TI-GMM). TI-GMM models

not only intra-speaker variations but also inter-speaker variations. Therefore, the

adapted EV-GMM is also affected by the inter-speaker variations, and this causes

significant degradation of conversion performance. In order to improve the con-

version performance, we proposed an adaptive training method for the EV-GMM.

This training method effectively reduces inter-speaker variations. On the other

hand, a local optimum problem is caused because the EM algorithm is employed

in this training. The noticeable quality degradation in the converted speech is

caused by this problem especially when the number of adaptation parameters of

the EV-GMM decreases. In order to ameliorate this problem, we proposed two

methods, approximation of occupancy probabilities and adaptive training based

on deterministic annealing EM (DAEM). In the former method, target-speaker-

dependent GMMs (TD-GMMs) are used for calculating occupancy probabilities

in the first E-step. In the latter method, the DAEM algorithm instead of the

normal EM algorithm is applied to the adaptive training. We evaluated our pro-

posed adaptive training objectively and subjectively. In objective evaluations, we

first investigated covariance values of the EV-GMM and we confirmed that the

covariance values of the proposed EV-GMM were almost equal to those of the

GMM trained between a single speaker-pair. These results show that the pro-

posed adaptive training effectively reduces the impact of inter-speaker variations

on the EV-GMM. We have also clarified that the proposed EV-GMM outperforms

the conventional EV-GMM in terms of spectral conversion accuracy, and the pro-

posed methods for alleviating the local optimum problem are effective. In the

subjective evaluation, we compared the converted speech quality of the conven-

tional EV-GMM with that of the proposed EV-GMM. The experimental results

have demonstrated that our proposed adaptive training significantly improves the
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converted speech quality.

In Chapter 5, we have developed an improved one-to-many EVC system. In

this system, we introduced three promising techniques, i.e., STME, MLE-based

conversion considering the GV, and the adaptive training for the EV-GMM. For

using STME, we modeled aperiodic components by the EV-GMM built with the

proposed adaptive training. In the conversion algorithm, the GV was modeled by

an eigenvoice single Gaussian distribution (EV-GS) also built with the adaptive

training. We evaluated our proposed system objectively and subjectively. In the

objective evaluation, we clarified the effectiveness of the adaptive training applied

to the EV-GMM for aperiodic components and the EV-SG for the GV. In the

subjective evaluation, we demonstrated that the converted speech generated by

our proposed system has much better quality and conversion accuracy for speaker

individuality compared to that by the conventional system.

In Chapter 6, we proposed many-to-many EVC as a novel EVC framework.

Many-to-many EVC is a technique for converting an arbitrary source speaker’s

voice into an arbitrary target speaker’s voice. This framework is achieved by

performing many-to-one EVC and one-to-many EVC sequentially with a single

EV-GMM between the reference and many pre-stored speakers. In this conversion

process, using two conversion models that are constructed by respectively adapt-

ing the single EV-GMM to source and target speakers, we convert the source

speaker’s voice into the target speaker’s voice through the reference speaker’s

voice considered as a hidden variable. Moreover, inspired by this conversion algo-

rithm, we proposed refining the EV-GMM method. In this method, the canonical

EV-GMM for many-to-many EVC is retrained with a large amount of non-parallel

data sets by considering the reference voice as a hidden variable. Objective and

subjective evaluations demonstrated the effectiveness of our proposed methods in

many-to-many EVC.

In summary, our proposed one-to-many EVC system has improved the con-

verted speech quality and conversion accuracy for speaker individuality by intro-

ducing STME, the conversion algorithm considering the GV and adaptive train-

ing. Moreover, the effectiveness of our proposed many-to-many EVC algorithm

and EV-GMM refinement algorithm was confirmed by objective and subjective

evaluations.
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7.2. Future work

We have improved the flexibility of the conversion model training and the con-

verted speech quality. However, there are still several problems to be solved for

EVC applications. In this section, we describe several issues and proposals for

the many-to-many EVC framework.

• Improvement of training the EV-GMM for many-to-many voice con-

version

In Section 6.3, we have proposed to refine the EV-GMM method using non-

parallel data sets. Although the proposed training improves the EV-GMM per-

formance, mismatches between the reference and pre-stored speakers’ parameters

are caused because this training method cannot update parameters related to the

reference speaker. Therefore, we need to consider the EV-GMM refining method

and alleviate these mismatches. In addition, we have another model training

problem. In our proposed conversion algorithm, the mapping parameter written

as in Eq. (6.13) depends on the reference speaker’s information. That is, the

reference speaker’s voice characteristics affect conversion performance directly.

Therefore, we need to consider how to select the proper reference speaker.

• Improvement of speaker individuality

Speaker individuality depends not only on voice quality but also on prosody and

duration. However, in the many-to-many EVC framework, prosody and duration

of the converted speech are based on those of the source speech. Therefore, we

need to apply statistical modeling of prosody and duration to this framework

in order to improve speaker individuality. In previous studies of the traditional

GMM-based framework, Nankaku et al. proposed VC based on GMM including

time sequence matching [56] for solving the duration problem, and Uto et al.

have proposed F0 conversion using GMM based on multi-space probability dis-

tribution [57]. We consider that speaker individuality of the many-to-many EVC

can be improved by applying these ideas.
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• Various applications using many-to-many EVC

For the practical use of VC techniques, it is important to achieve real-time pro-

cessing and usability of voice quality control. For example, VC applications

for conversations such as band extension for mobile phones [4] and speech com-

munication aid systems [58] demand real-time conversion. Also, entertainment

content using voice such as singing and instant casting movies [20][21] demand

voice quality control. For the former requirement, Muramatsu et al. have pro-

posed real-time VC considering dynamic features [59] by applying a time-recursive

algorithm [60][61]. For the letter requirement, Ohta et al. have proposed a voice-

control system for one-to-many EVC [41][62]. By applying these frameworks to

many-to-many EVC, VC applications are available to more varied fields.
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Appendix

A. Parameter estimations of adaptive training

for EV-GMM

In this appendix, we describe the solution of the EV-GMM’s parameters esti-

mated by adaptive training, addressed in Chapter 4. In this adaptive training,

these parameters are estimated by maximizing the expectation of the log-scaled

likelihood written as Eq. (6.18) based on EM algorithm. Eq. (6.18) is developed

as follows:
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(A.1)

Note that this parameter estimation is updated based on Eq. (4.3), i.e., pre-stored

target speaker’s weight vectors, tied-parameter set corresponded to source and

target mean vectors, mixtures weight and covariance matrices in that order.

A.1 Estimation of weight vector for each pre-stored target

speaker

We estimate the sth target speaker’s weight for representative vectors. The op-

timal weight vector ŵ(s) is determined by maximizing the following auxiliary
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function for weight vectors:

∂
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Therefore, the estimated weight vector ŵ(s) is written as

ŵ(s) =

(
M∑

m=1

γ(s)
m B⊤

mP
(Y Y )
m Bm

)−1

×

[
M∑

m=1

B⊤
m

{
P (Y X)

m

(
X

(s)

m − γ(s)
m µ(X)

m

)
+ P (Y Y )

m

(
Y

(s)

m − γ(s)
m b(0)m

)}]
.

(A.3)

A.2 Estimations of tied-parameter set for mean vectors

We simultaneously estimate tied-parameters related to source and target mean

vectors, i.e., source mean vectors, bias vectors and representative vectors. We

set νm by concatenating source mean vector, bias vector and each representative

vector included in the mth mixture component. We determine optimal source

mean vectors, bias vectors and representative vectors by partially differentiating

Eq. (A.1) with respect to ν̂m as follows:

∂

∂ν̂m

Q
({

λ(EV ),wS
1

}
,
{
αm,Σ

(X,Y )
m , B̂m, b̂

(0)

m , µ̂(X)
m , ŵS
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where Ws is the matrix which includes the sth speaker’s weight components for

eigenvoices written as Eq. (4.13). And then, the concatenated vector ν̂m is written
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as
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In Eq. (A.5), we need to calculate {D (J + 2)}×{D (J + 2)}-sized inverse matrix.

When using diagonal covariance matrices for Σ(XX), Σ(XY ), Σ(Y X) and Σ(Y Y ),

the computational cost is significantly reduced by calculating the ML estimate of

νm dimension by dimension as follows:
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m Ŵ ′⊤

s P
(X,Y )
m,d Ŵ ′
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(s)
2 · · · ŵ
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. (A.10)

The vector ν
(d)
m consists of the dth dimensional components of νm, and µ

(X)
m,d and

b
(j)
m,d are the dth components of µ

(X)
m and b(j)m , respectively. In Eq. (A.9), p

(XX)
m,d ,

p
(XY )
m,d , p

(Y X)
m,d and p

(Y Y )
m,d are the dth diagonal components of P (XX)

m , P (XY )
m , P (Y X)

m

and P (Y Y )
m , respectively. In Eq. (A.10), X

(s)

m,d and Y
(s)

m,d are the d
th components of

X
(s)

m and Y
(s)

m , respectively. We need to calculate {J + 2}×{J + 2}-sized inverse

matrices for each dimension.
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A.3 Estimations of covariance matrices for canonical EV-

GMM

The optimal covariance matrix Σ̂
(X,Y )

m is determined by, the partial differential

equation of Eq. (A.1) by Σ̂
(X,Y )

m written as follows:

∂

∂Σ̂
(X,Y )

m

Q
({

λ(EV ),wS
1

}
,
{
αm, Σ̂

(X,Y )

m , B̂m, b̂
(0)

m , µ̂(X)
m , ŵS

1

})
=

S∑
s=1

Ts∑
t=1

P
(
m|X t,Y

(s)
t , λ(EV ),w(s)

)
×

{
−1

2
Σ̂

(X,Y )−1

m +
1

2

([
X t

Y
(s)
t

]
− µ̂(X,Y )

m,s

)([
X t

Y
(s)
t

]
− µ̂(X,Y )

m,s

)⊤

+ Σ̂
(X,Y )−1

m Σ̂
(X,Y )−1⊤

m

}
= 0. (A.11)

This solution is written as

Σ̂
(X,Y )

m =
1

S∑
s=1

γ(s)
m

S∑
s=1

{
V

(X,Y )

m,s + γ(s)
m µ̂(X,Y )

m,s µ̂(X,Y )⊤

m,s −
(
µ̂(X,Y )

m,s Z
(s)⊤

m +Z
(s)

m µ̂(X,Y )⊤

m,s

)}
.

(A.12)

A.4 Estimations of weights for mixture components

Each mixture component weight is determined by Lagrange’s method of undeter-

mined multipliers. We define the function of {α̂1, α̂2, · · · , α̂m} and Λ, which is a

variable except zero, as follows:

F (α̂1, α̂2, · · · , α̂m,Λ)

= Q
({

λ(EV ),wS
1

}
,
{
α̂m, Σ̂

(X,Y )

m , B̂m, b̂
(0)

m , µ̂(X)
m , ŵS

1

})
− Λ

(
M∑

m=1

α̂m − 1

)
,

(A.13)

Subject to
M∑

m=1

α̂m = 1. (A.14)
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This function is partially differentiated by α̂m as follows:

∂

∂α̂m

F (α̂1, α̂2, · · · , α̂m,Λ) =

S∑
s=1

γ(s)
m

α̂m

− Λ = 0. (A.15)

We multiply both sides of Eq. (A.15) by α̂m and sum up all of Eq. (A.15) related

to each mixture component, and then we obtain Λ as follows:

Λ =
S∑

s=1

M∑
m=1

γ(s)
m . (A.16)

Thus, the optimal weight for the mth mixture component α̂m is determined as

α̂m =

S∑
s=1

γ(s)
m

S∑
s=1

M∑
m=1

γ(s)
m

. (A.17)
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