
NAIST-IS-DD0761205

Doctoral Dissertation

Studies on Methods for the Synthesis of

Quantum Circuits

Yumi Nakajima

June 25, 2009

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yumi Nakajima

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Professor Shigeru Yamashita (Ritsumeikan University)

Associate Professor Masaki Nakanishi (Yamagata University)

Studies on Methods for the Synthesis of

Quantum Circuits∗

Yumi Nakajima

Abstract

A quantum computer is expected to solve some problems far faster than to-

day’s computers and may be a promising device with low power consumption.

This computer is based on the physical theory of quantum mechanics. In the

theory of quantum mechanics, quantum states and evolutions of quantum states

are represented by vectors in a Hilbert space and unitary operators, respectively.

A unitary matrix can then be regarded as an algorithm in the conventional com-

puter. Since it is generally difficult to develop an arbitrary unitary matrix in a

quantum system, quantum computation is carried out by combining elementary

operations such as one- or two-qubit operations, where a qubit is the smallest

unit of information in quantum computation. A unitary matrix is said to be

performed effectively if there exists a quantum circuit composed of a polyno-

mial number of elementary gates. Therefore, translating a unitary matrix into

an efficient sequence of elementary gates is a fundamental problem in designing

quantum circuits.

In this dissertation, the problem involved in synthesizing minimal quantum

circuits for carrying out any (large) quantum operation is described. The author

considers two quantum systems, namely, the two-level quantum system and the

d-level quantum system, where d is any integer greater than two. Here, the

two-level quantum system can be regarded as a quantum mechanical analogue of

conventional computation, and the d-level quantum system can be regarded as a

quantum mechanical analogue of conventional multilevel logic.

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0761205, June 25, 2009.

i

First, the author proposes a new method for the synthesis of quantum cir-

cuits for the two-level quantum system, which is based on a divide-and-conquer

strategy and the KAK matrix decomposition. Using this method, an arbitrary

2n × 2n unitary matrix can be translated into a quantum circuit composed of

O(4n) elementary gates. The size of the quantum circuit synthesized by the

method described in this dissertation is the same as that of the size of the pre-

vious best-practice methods. However, the proposed method is advantageous

for the synthesis of polynomial-size quantum circuits for the radix-two quantum

Fourier transform (QFT), whereas other methods include some optimization and

simplification techniques for the synthesis of polynomial-size quantum circuit.

Second, a method for the synthesis of quantum circuits for the d-level quantum

system is described. Here, the author proposes a balanced partitioning method

that is based on the the divide-and-conquer strategy. The previous methods used

for computing the KAK decomposition are preferred for the two-level quantum

system. However, to apply the KAK decomposition to the general d-level quan-

tum system, the partition size has to be chosen carefully because the size of the

quantum circuit produced by the synthesis method increases exponentially when

an inappropriate partition size is selected. The synthesized quantum circuit is

not asymptotically optimal except when d is a power of two. However, when the

number of qudits n is small, where a qudit is the smallest unit of information

in the d-level quantum system, the proposed method can synthesize the smallest

quantum circuit as compared to those synthesized by the other synthesis methods.

Third, a new quantum circuit is developed for implementing the Aharonov-

Jones-Landau (AJL) algorithm. The AJL algorithm approximates the Jones poly-

nomial (knot invariant) at the k-th root of unity in poly(n,m, k). Here, the input

knot is given by an n-strand braid word of length m. The AJL algorithm is a

polynomial-time quantum algorithm in the input size if m and k are bounded by

polynomials in n (in this case, the input size is polynomial in n). The problem

is intractable on conventional computers even under this assumption. The au-

thor slightly improves the performance of the AJL algorithm and shows that the

performance of the AJL algorithm does not depend on k when k ≥ n/2 + 1.

Keywords:

ii

Quantum circuit synthesis, unitary matrix decomposition, quantum Fourier trans-

form (QFT), AJL algorithm, Jones polynomial

iii

Contents

1 Introduction 1

2 Preliminaries 7

1. Linear Algebra and Quantum Computation 7

1.1 The Two-Level Quantum System 7

1.2 The d-Level Quantum System 10

2. Elementary Gates and Quantum Circuits 11

3. Uniformly Controlled Gates . 13

4. The Cosine-Sine Decomposition (CSD) 17

5. Synthesis of Quantum Circuits using the CSD 18

3 Synthesis Method for the Two-Level Quantum System 21

1. Introduction . 21

2. Preliminaries . 24

2.1 Notations . 24

2.2 The G = KAK Theorem 24

2.3 The Khaneja-Glaser Decomposition (KGD) 25

3. Proposed Algorithm for Computing the KAK Decomposition . . 26

3.1 Algorithm . 26

3.2 Proof of Step 2 in Algorithm 1 27

3.3 Methods for Performing Steps 2 and 3 in Algorithm 1 . . . 30

3.4 Example 1 . 30

3.5 Example 2 . 33

4. Application to the Design of Circuits for the QFT 34

4.1 Notation . 35

v

4.2 Decomposition of the QFT by the Proposed Method . . . 35

4.3 Decomposition of the QFT by the Previous Methods . . . 37

5. Summary . 39

4 Synthesis Method for the d-Level Quantum System 41

1. Introduction . 41

2. Preliminaries . 45

2.1 The Uniformly Controlled Gates for the d-Level Quantum

System . 45

2.2 Structure of Quantum Circuit for the Uniformly Controlled

Gates . 46

2.3 The CSD-Based Approach for the d-Level Quantum System 48

2.4 Generalization of the CSD 48

3. Previous Work . 49

3.1 The Previous CSD-Based Method Proposed by Khan et al. 49

3.2 Gate Counts for Khan et al.’s Method 52

4. Description of the Proposed Method 53

4.1 Balanced Partitioning . 53

4.2 Example . 54

4.3 Estimation of Gate Counts by the Proposed Method . . . 57

5. Comparison . 62

6. Application to the Synthesis of Quantum Circuits for the Radix-d

QFT . 63

7. Summary . 67

5 Quantum Circuit for the AJL Algorithm 69

1. Introduction . 69

2. Preliminary . 71

3. Quantum Circuit for Implementing the AJL Algorithm 75

3.1 Previous Quantum Circuit Design 76

3.2 Proposed Quantum Circuit Design 77

3.3 Example . 81

4. Summary . 82

vi

6 Conclusion and Future Directions 85

Acknowledgements 89

References 91

List of Publications 97

vii

List of Figures

2.1 Representation of quantum elementary gates. 13

2.2 Quantum circuit for U defined by Eq. (2.5). 13

2.3 Example of a quantum circuit for a three-qubit system. 13

2.4 Two-fold uniformly controlled one-qubit gate, where U1, U2, U3,

U4, and U are 2 × 2 unitary matrices. 14

2.5 Quantum multiplexor decomposition of a two-fold uniformly con-

trolled one-qubit gate. 15

2.6 Quantum circuit that implements a three-fold uniformly controlled

one-qubit gate, where R = diag(Rz(ϕ1), Rz(ϕ2), Rz(ϕ3), · · · ,
Rz(ϕ8)). 16

2.7 Relationship between the locations of the controlled bit and the

Gray code. 16

2.8 The quantum circuit corresponds to the unitary matrix D which

is shown in (2.9), where Ry(ϕi) (i = 1, 2, 3, 4) is a 2 × 2 unitary

matrix shown in (2.10). 19

2.9 The synthesis of quantum circuits for the two-level quantum sys-

tem when n = 3. Here, G
(k)
i and R

(k)
i denote the gates that are

produced at the k-th recursion step. 20

3.1 Patterns of an element of k, exp(k) and m for a three-qubit system. 26

3.2 Image of decomposition of k̃ ∈ exp(k) for a three qubit system. . . 32

3.3 A quantum circuit for y ∈ exp(h1). 33

3.4 Image of a decomposition. 33

3.5 Decomposition of the QFT by the proposed algorithm. 37

3.6 Decomposition of the QFT by the QSD. 39

ix

4.1 Notation of the 2-fold uniformly controlled one-qutrit gate (d = 3),

∨2
3W , where W = {W0,W1,W2, · · · ,W8}. 46

4.2 Structure of quantum circuit for a one-fold uniformly controlled

one-qutrit gate, ∨n
2V , where V = V0, V1, V2. 47

4.3 Overview of the proposed algorithm 47

4.4 The quantum circuit corresponds to D in the CSD of G, i.e., G =

UDV , when d = 3, n = 3. 51

4.5 A quantum circuit obtained after d − 1 repetitions of the CSD

proposed by Khan et al. [30, 31]. 53

4.6 Gate structure of D obtained by the CSD with balanced partition-

ing method, when d = 3 and n = 3. 55

4.7 Structure of the quantum circuits (a) when d is odd and (b) when

d is even, after h1 = �log2 d
n−t� times of repetitions. 58

4.8 Quantum circuit for F̃4, when d = 3 and n = 4. 67

4.9 Quantum circuit for DΩ in Figure 4.8. 67

5.1 An example of (a) the trace closure and (b) the plat closure of a

braid. 73

5.2 (a) The graph Gk and (b) the path model diagram corresponding

to Gk. 74

5.3 A quantum circuit for Qj . 76

5.4 Quantum circuits for (a) the uniformly controlled operation ∨3(Uj)

and (b) U�. The scalar phase factor indicated at the end of the

quantum circuit is the total phase. 78

5.5 (a) Initial arrangement of qubits of state |ψ〉 and (b) the state of

qubits corresponding to |p|j00p|j〉 in the qubit layout. 79

5.6 Correspondence between t¡he original path encoding and the state

of qubits in the proposed model. 80

5.7 An image of operation B(j,zj) for j = 4 and its quantum circuit. . 83

5.8 A quantum circuit for B(j,�). 84

5.9 Examples of quantum circuits for (a) Q̃1, (b) Q̃2, and (c) Q̃3 in the

proposed method when n = 4 and k ≥ 5. 84

x

List of Tables

4.1 The total number of CINC gates and CINC−1 gates appearing in

the produced quantum circuit. 62

xi

Chapter 1

Introduction

The information society grows rapidly with advances in computer technology

and the Internet. The accessibility of information by the information society

is enhanced by increasing the speed of computers. However, irrespective of how

the performance of the computer is improved, there might still be many problems

that are unsolvable in polynomial time under the framework of today’s computers,

such as, problems related to genetic analysis, design of a novel drug, and weather

forecast.

A quantum computer may be a promising device for solving some problems far

faster than today’s computers. Shor’s algorithm [43] for factoring large numbers

on a quantum computer provides an exponential speed up over known conven-

tional factorization algorithms. The key component of Shor’s algorithm is the

quantum Fourier transform (QFT), which amplifies probabilistic amplitudes us-

ing quantum interference. The QFT can be implemented using a polynomial

number of elementary operations, whereas the conventional algorithms are be-

lieved to require exponential-time steps. This is the reason why Shor’s algorithm

makes it possible to exponentially speed up the factoring of very large numbers.

The quantum computer is based on the physical theory of quantum mechanics.

In the theory of quantum mechanics, quantum states and evolutions of quantum

states are represented by vectors in a Hilbert space and unitary operators, respec-

tively. A unitary matrix can then be regarded as an algorithm in the conventional

computer.

Since it is generally difficult to develop an arbitrary unitary matrix in a quan-

1

tum system, quantum computation is carried out by combining elementary op-

erations such as one- or two-qubit operations, where a qubit is the smallest unit

of information in quantum computation. The sequence of elementary operations

can be denoted by using a quantum circuit model. The concept of quantum cir-

cuits was introduced by Deutsch [17]; these circuits can be regarded as quantum

analogues of conventional circuits. Conventional circuits are used to design con-

ventional algorithms, and similarly, quantum circuits are used to design quantum

algorithms and analyze their efficiencies in computation time.

In the quantum circuit model, each operation is denoted by a quantum gate.

A set of quantum gates, which are used to develop an arbitrary unitary matrix,

is termed universal gates or elementary gates. A set of arbitrary one-qubit gates

and a two-qubit gate called the CNOT gate, where the CNOT gate is a quantum

analogue of the conventional XOR gate, is an example of elementary gates. A

unitary matrix is said to be performed effectively if there exists a quantum circuit

composed of a polynomial number of elementary gates. Therefore, translating a

unitary matrix into an efficient sequence of elementary gates is a fundamental

problem in designing quantum circuits. The details about quantum circuits and

elementary gates are provided in Chapter 2.

In this dissertation, two methods for synthesizing efficient quantum circuits

that transform an arbitrary large unitary matrix into a quantum circuit consisting

of elementary gates are proposed. Here, the author considers two quantum sys-

tems, namely, the two-level quantum system (Chapter 3) and the d-level quantum

system (Chapter 4), where d is any integer greater than two.

The two-level quantum system is a quantum mechanical analogue of conven-

tional computation. Here, the smallest unit of information in quantum compu-

tation is called a qubit, which is a quantum analogue of a conventional bit. A

qubit represents two values (|0〉 and |1〉) simultaneously. A state of qubit is then

described by a vector in the following two-dimensional space: |ϕ〉 = α0|0〉+α1|1〉,
where |α0|2 + |α1|2 = 1 for complex numbers α0 and α1, and |0〉 and |1〉 form a

basis in the two-dimensional Hilbert space. An operation that performed on a

qubit is described by a 2 × 2 unitary matrix. Consequently, a state of n qubits

can be represented by a vector with a dimension of 2n and an operation that is

performed on n qubits is described by a 2n × 2n unitary matrix.

2

The d-level quantum system can be regarded as a quantum analogue of con-

ventional multilevel logic. Note that d is any integer greater than two. The

smallest unit of information is known as a qudit, which represents the following

d values simultaneously: |0〉, |1〉, · · · , |d − 1〉. These states form a basis in the

d-dimensional Hilbert space, and that, a state of a qudit is described by a vector

in a d-dimensional space: |ϕ〉 = β0|0〉 + β1|1〉 + β2|2〉 + · · · + βd−1|d − 1〉 such

that
∑d−1

j=0 |βj|2 = 1 for complex numbers β0, β1, · · · , βd−1. An operation that is

performed on a qudit is then described by a d×d unitary matrix. Consequently, a

state of n qudits is described by a vector with a dimension of dn and an operation

that is performed on n qudits is described by a dn × dn unitary matrix.

In some cases, quantum computations such as the QFT [25] and the Schur

transform [4, 5] may be described naturally as operations that are performed on

the d-level quantum system (qudits). The number of coupled qudits used to per-

form a quantum operation is less than that used in the two-level quantum system

(qubits) [7]. In addition, the approximation of the radix-d QFT, which is the

QFT that is performed on n qudits, provides better approximation properties

than the radix-two QFT because the magnitude of error decreases exponentially

with d [50]. Therefore, in this dissertation, the author analyzes both quantum

systems. The author will explain more details about the two-level quantum sys-

tem and the d-level quantum system in Chapter 2.

Chapter 3 describes a method used for the synthesis of quantum circuits for the

two-level quantum system by the KAK decomposition. The KAK decomposition

is a generic matrix decomposition of the form G = K1AK2, derived from the

G = KAK theorem of the Lie group theory. The main objective of this chapter

is to develop a concrete algorithm for computing the KAK decomposition.

Since the KAK decomposition is a comprehensive decomposition based on

the Lie group theory, it involves Khaneja-Glaser decomposition (KGD [32, 33]),

which is a group-theoretical decomposition that translates an arbitrary operation

performed on n qubits into a time-optimal sequence of operations performed on

NMR quantum computers. If the number of qubits n is small, all parameters

appearing in the time-optimal sequence can be computed by solving a linear

equation. However, since the number of parameters increases exponentially in n,

to compute the KGD by solving linear equation does not seems be practical in

3

general.

By using the synthesis method described in Chapter 3, the KGD can be

computed by matrix decomposition. Since the KAK decomposition is a com-

prehensive decomposition, the proposed method might be useful for translating

a time-optimal sequence of operations for other physical devices. By using the

method described in this dissertation, an arbitrary 2n × 2n unitary matrix can

be translated into a quantum circuit composed of O(4n) elementary gates, which

is a best-practice result of synthesizing quantum circuits for the two-level quan-

tum system. This synthesis method is also useful for designing polynomial-size

quantum circuits for the radix-2 QFT.

Chapter 4 describes a method for the synthesis of quantum circuits for the d-

level quantum system by the Cosine-Sine decomposition (CSD). The CSD is the

generalized singular value decomposition (SVD), and the algorithm for computing

the CSD is well known in numerical linear algebra.

First, the CSD is carried out for synthesizing quantum circuit for the two-level

quantum system. During the CSD, an input matrix G is partitioned into four sub-

blocks and the CSD of G is achieved by computing the SVD of each partitioned

matrix. In the two-level quantum system, the size of an input matrix is 2n × 2n.

Therefore, the size of each partitioned matrix is identical, i.e., each partitioned

matrix is a 2n−1×2n−1 matrix. Then, a product of block-diagonal matrices, where

each block-diagonal matrix is composed of 2n−1 × 2n−1 sub-blocks, is obtained

by computing the SVD of each 2n−1 × 2n−1 unitary matrix. This leads to an

advantage in the quantum circuit design. Let G = UDV be the CSD. Then, U

and V correspond to controlled-unitary operations, which have one control qubit

and n− 1 target qubits. Furthermore, D is a controlled-unitary operation, which

has n− 1 controlled qubits and one target qubit. The formation of a sequence of

controlled unitary operations, where each controlled unitary operation involves

n− 1 controlled qubits and one target qubit, is obtained by recursively carrying

out the CSD on the sub-blocks of U and V , i.e., the matrices of size greater than

2 × 2.

The above method is preferred for synthesizing quantum circuit for the two-

level quantum system. However, to carry out the CSD in the arbitrary d-level

quantum system, G cannot be partitioned into four equally-sized sub-blocks,

4

because G is a dn × dn unitary matrix. In this case, the size of the circuit

synthesized by the CSD depends on the selection of the partition size.

The main objective of Chapter 4 is to propose a balanced partitioning method

for developing a recursive synthesis algorithm. Though the size of the quantum

circuit synthesized by the proposed method is not asymptotically optimal, except

when d is a power of two, the proposed method can synthesize the smallest

quantum circuit; this circuit is smaller than those synthesized by other synthesis

methods for the d-level quantum system. For example, when d = 3 and n = 2 (two

qudits), the number of CINC gates, which is a generalized versions of the CNOT

gate, is 36, whereas the previous method requires 156 CINC gates. In addition,

the author shows that the proposed synthesis method is useful for designing

polynomial-size quantum circuits for the radix-d QFT. The result described in

Chapter 4 is a generalization of the result described in Chapter 3.

Chapter 5 describes the development of a new quantum circuit for imple-

menting the Aharonov-Jones-Landau (AJL) algorithm. The AJL algorithm is a

quantum algorithm that approximates the Jones polynomial (knot invariant) at

a certain root of unity [3] in O(mn log2 k) time. Here, the input knot is given

by a closure of an n-strand braid word of length m. The AJL algorithm is a

polynomial-time quantum algorithm in the input size if m and k are bounded

by polynomials in n. The problem is still intractable on conventional computers

even under this assumption [3, 18, 21].

The main objective of Chapter 5 is to propose a new method for implement-

ing the AJL algorithm using O(mn) elementary gates. This result shows that

the performance of the AJL algorithm does not depend on k. Therefore, the

difference between the proposed quantum circuit and and the previous quantum

circuit for implementing the AJL algorithm has significant implication in quan-

tum computational complexity.

Jozsa stated the following conjecture: Any polynomial-time quantum algo-

rithm can be implemented with only logarithmic quantum layers interspersed

with polynomial time conventional computations [29]. Although this remains

unproven in general, Cleve and Watrous have shown that it holds for Shor’s algo-

rithm [16]. If there exists a quantum circuit with logarithmic depth in the input

size for the AJL algorithm, then Jozsa’s conjecture is affirmatively proved. Thus,

5

it is interesting to develop a polynomial-size quantum circuit that performs the

AJL algorithm. Although the proposed quantum circuit does not prove Jozsa’s

conjecture, the idea may be a step closer to the solution.

Finally, the dissertation concludes in Chapter 6 with a brief summary.

6

Chapter 2

Preliminaries

This section briefly reviews the fundamentals of quantum mechanics and quantum

computation. For more comprehensive discussions, please refer to [39].

1. Linear Algebra and Quantum Computation

1.1 The Two-Level Quantum System

A quantum computer is based on the physical theory of quantum mechanics.

In the theory of quantum mechanics, quantum states and evolutions of quantum

states are represented by vectors in a Hilbert space and unitary operators, respec-

tively. Here, vectors and unitary operators are described in a finite-dimensional

Hilbert space consisting of a finite number of orthonormal vectors.

The smallest unit of information in quantum computation is known as a qubit,

which is a quantum mechanical analogue of the conventional bit. Two possible

states of a qubit are denoted as |0〉 and |1〉, which can be regarded as 0 and 1

for a conventional bit. The notation |·〉 is known as the Dirac notation, and it is

used as a standard notation for denoting states in quantum mechanics.

In general, |0〉 and |1〉 can be denoted as orthonormal basis of a two dimen-

sional Hilbert space as follows:

|0〉 =

(
0

1

)
, |1〉 =

(
1

0

)
. (2.1)

7

An arbitrary one-qubit state can be expressed as the following linear combinations

of these two states:

|ψ〉 = α0|0〉 + α1|1〉,

where α0 and α1 are complex numbers such that |α0|2 + |α1|2 = 1. Linear com-

binations of the above states is known as superpositions. A qubit can form two

superposition states |0〉 and |1〉; this is the main difference between qubits and

bits.

Then, the basis of n qubits is described as a tensor product of the basis |0〉
and |1〉. A two-qubit system has four computational basis obtained by |0〉 ⊗ |0〉,
|0〉 ⊗ |1〉, |1〉 ⊗ |0〉, and |1〉 ⊗ |1〉, which correspond to four possible conventional

two-bit states, i.e., 00, 01, 10, and 11. Here, ⊗ denotes a tensor product. These

vectors in the basis are often denoted as |00〉, |01〉, |10〉, and |11〉. An arbitrary

state of two qubits can be denoted as

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,

where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 holds for complex numbers α00, α01, α10,

and α11. Vector notations of these four states can also be obtained by computing

the tensor product of two-dimensional vectors, as shown in (2.1), in the following

manner:

|00〉 =

(
0

1

)
⊗
(

0

1

)
=

⎛⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎠ .

Therefore, an arbitrary state of n qubits is described as

|ψ〉 =
2n−1∑
j=0

αj |j〉,

where
∑2n−1

j=0 |αj |2 = 1. Here, j is the decimal representation of a binary number.

Quantum computation is an evolution of input and output quantum states, it

can be expressed as a unitary matrix. For example, consider the quantum NOT

operation σx, which is analogous to the conventional NOT operation. Let the

8

input quantum state be |0〉. Then, the output state is |1〉. Then, the quantum

NOT operation can be expressed as the following 2 × 2 unitary matrix:

σx =

(
0 1

1 0

)
.

We can easily verify that UNOT gives a quantum NOT operation by a simple

linear algebra computation.

σx|0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
.

Some frequently performed unitary operations on a qubit are listed below.

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, (2.2)

Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, (2.3)

Rz(θ) =

(
exp

(−iθ
2

)
0

0 exp
(
iθ
2

)) . (2.4)

These operations are known as rotation operations about the x, y, and z axes.

The Hadamard gate H is the following 2 × 2 unitary matrix:

H =
1√
2

(
1 1

1 −1

)
.

H is often used to generate a quantum superposition state.

It is well known that an arbitrary 2 × 2 unitary matrix U (a single-qubit

unitary operation) can be decomposed as follows:

U = exp(−iα)Rz(β)Ry(γ)Rz(δ), (2.5)

where α, β, γ, and δ are real-valued and 0 ≤ α, β, γ < π.

The most important unitary operation on two qubits is the controlled-NOT

operation known as the CNOT, where a NOT operation is performed on a target

9

qubit when the controlled qubit is |1〉. The matrix notation of the CNOT is as

follows:

UCNOT =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠ . (2.6)

The output of the target qubit is the conventional XOR operation between the

controlled qubit and the target qubit. Therefore, the CNOT can be regarded as

an analogue of the conventional XOR operation.

The following two-qubit operations are also frequently performed in this dis-

sertation.

χ2
1 =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠ . (2.7)

χ2
1 represents the SWAP operation, which exchanges the first and the second

qubits.

Similarly, an operation performed on n qubits is expressed as a 2n×2n unitary

matrix.

1.2 The d-Level Quantum System

The d-Level Quantum System, where d is any integer greater than two, is con-

sidered as analogues of conventional multilevel logic. Here, the smallest unit of

information is known as a qudit, which forms superpositions of d states |0〉, |1〉,
|2〉, · · · , |d− 1〉, i.e.,

|ψ〉 =
d−1∑
j=0

αj |j〉,

where
∑d−1

j=0 |αj|2 = 1 for complex numbers α0, α1, · · · , αj−1. Here, a state of one

qudit is denoted by a d-dimensional vector. For example, when d = 3, since |0〉,

10

|1〉, and |2〉 correspond to vectors

|0〉 =

⎛⎜⎝1

0

0

⎞⎟⎠ , |1〉 =

⎛⎜⎝0

1

0

⎞⎟⎠ , |2〉 =

⎛⎜⎝0

0

1

⎞⎟⎠ ,

|ψ〉 can be denoted by a three-dimensional vector (α0, α1, α2)
T .

Then, an operation performed on a qudit is described by a d × d unitary

matrix. The most important operations performed on two qudits is known as

CINC [15]. CINC is the generalization of the CNOT, defined in Eq. (2.6), of the

arbitrary d-level quantum systems. Let INC be the operation on one qudit as

follows:

INC|a〉 = |(a+ 1) mod d〉.

Then, the CINC is a controlled unitary operation that applies INC to the target

qudit when the control qudit is |d− 1〉.

2. Elementary Gates and Quantum Circuits

A quantum circuit may be regarded as an analogue of a conventional logic circuit

model. In a conventional computation, an arbitrary operation performed on n

bits is realized by combining a set of elementary operations such as AND, OR, and

NOT gate. A set of {AND, OR, NOT} gates or {NAND} is known as universal

gates in conventional computation. Similarly, there are some sets of elementary

quantum operations, which can form an arbitrary quantum operation that acts

on n qubits. This set of elementary operation is known as universal quantum

gates or elementary gates in quantum computation.

In the two-level quantum system, a set of arbitrary one-qubit operations and

a two-qubit operation termed the CNOT is known as universal gates in quantum

computation. The notation of quantum circuits was proposed by Deutsch [17].

As already mentioned in the previous section, since an arbitrary one-qubit op-

eration is composed of three single-qubit rotations, as shown in (2.5), a set of

arbitrary single-qubit rotations and the CNOT such as {Rz(α), Ry(β), CNOT}
is also known as universal quantum gates.

11

In a quantum circuit model, each elementary gate is represented by a symbol,

as shown in Fig. 2.1. Each line in the quantum circuit represents a wire in the

quantum circuit. A wire corresponds to one qubit, and not a physical wire. Each

symbol on each wire represents a quantum operation (gate), which is performed

on a qubit that corresponds to the wire. An arbitrary unitary operation can be

described in terms of a quantum circuit by combining the above symbols. For

example, a single qubit operation U , defined in (2.5), can be described in terms of

a quantum circuit such as that shown in Fig. 2.2. A quantum circuit is to be read

from left to right. Therefore, in Fig. 2.2, Rz(δ),Ry(γ), and exp(−iα)Rz(β) are

applied in this order. Note that the order of operations is reverse in the quantum

circuit model.

Fig. 2.3 shows a simple example of a quantum circuit for a three-qubit system.

Here, first, a one-qubit unitary operation U1 is performed on the first qubit. Then,

the CNOT is applied between the first qubit and the second qubit, and so on.

Gates that are independently applied on different qubits, such as U2 and U3 shown

in Fig. 2.3, can be applied in parallel. The size of the quantum circuit is equal

to the number of gates appearing in the quantum circuit. As shown in Fig. 2.3,

the size of the quantum circuit is 5. A unitary operation is efficient if there exist

a quantum circuit composed of a polynomial number of elementary gates.

Since evolutions of quantum states are expressed by unitary matrices, these

matrices can be regarded as an algorithm in a conventional computer. Since it is

generally difficult to develop an arbitrary unitary matrix in a quantum system,

quantum computation is carried out by combining elementary gates. An arbitrary

operation performed on n qubits, i.e., 2n × 2n unitary matrix, involves O(4n)

elementary gates. However, specific unitary operations such as the QFT, which

is a key operation in Shor’s factoring algorithm [43], involves a polynomial number

of elementary gates. The QFT is implemented in O(n2) elementary operations.

Therefore, a quantum computer can factor large integers in polynomial time.

Therefore, quantum circuits are fundamental tools for evaluating the efficiency

of quantum algorithms and for determining the advantages and limitations of

quantum computation.

In the case of the arbitrary d-level quantum systems, a set of arbitrary op-

erations performed on one qudit and CINC forms universal gates. A quantum

12

Controlled qubit

Target qubit

U

(a) One-qubit gate (b) CNOT gate

Figure 2.1. Representation of quantum elementary gates.

Rz(δ) Ry(β) exp(−iα)Rz(β)

Figure 2.2. Quantum circuit for U defined by Eq. (2.5).

circuit can be described in a manner similar to that used to describe the quantum

circuit model for the two-level quantum system, as described above. In the two-

level quantum system, the QFT is well-known as a unitary operation that can be

performed in polynomial time. On the other hand, the Schur transform [4,5] is a

well-known operation that can be performed on the d-level quantum system; this

operation can be performed to solve a hidden subgroup problem.

3. Uniformly Controlled Gates

Uniformly controlled gates play a key role throughout this thesis. Fig. 2.4 shows

an example of a two-fold uniformly controlled one qubit gate in the two-level

quantum system. Here, the black circle represents a controlled qubit of state |1〉,
and the white circle represents a controlled qubit of state |0〉. As shown in this

Fist qubit

Second qubit

Third qubit

U1

U2

U3

Figure 2.3. Example of a quantum circuit for a three-qubit system.

13

=
U1 U2 U3 U4 U

Figure 2.4. Two-fold uniformly controlled one-qubit gate, where U1, U2, U3, U4,

and U are 2 × 2 unitary matrices.

figure, the uniformly controlled gate is a sequence of adjacent controlled gates

with slightly different control node configurations. All possible combinations of

the controlled states, such as |00〉, |01〉, |10〉, and |11〉, appearing in a uniformly

controlled gate are shown in Fig. 2.4. In general, this sequence of controlled

unitary operations can be denoted as a gate with half-moon controlled qubits as

shown in the right-hand size of Fig. 2.4. The concept of uniformly controlled gates,

half-moon controlled symbols, and an efficient implementation of a uniformly

controlled gate was first introduced by Möttönen et al. in [37].

A uniformly controlled gate can be expressed by a block-diagonal unitary

matrix. For example, Fig. 2.4 corresponds to the following matrix.⎛⎜⎜⎜⎝
U1 0 0 0

0 U2 0 0

0 0 U3 0

0 0 0 U4

⎞⎟⎟⎟⎠ ,

where 0 is a 2 × 2 matrix with all zero elements.

To decompose a uniformly controlled gate into a sequence of elementary gates,

Möttönen et al. carried out quantum multiplexor decomposition [42], which is

expressed as follows:(
U1 0

0 U2

)
=

(
V 0

0 V

)(
D 0

0 D†

)(
W 0

0 W

)
.

Here, 0 represents a zero matrix, that is, a matrix with all zero elements. Since

U1U
†
2 = V DWW †DV † = V D2V †, V and D2 are obtained by computing the

14

=
U W

Rz(θ)

V

Figure 2.5. Quantum multiplexor decomposition of a two-fold uniformly con-

trolled one-qubit gate.

eigenvalue decomposition of U1U
†
2 . Then, W can be obtained from D†V †U1 or

DV †U2.

The effect of quantum multiplexor decomposition is to cause decomposition,

which involves gates with a reduced number of control nodes. Fig. 2.5 shows a

quantum circuit obtained by carrying out quantum multiplexor decomposition on

a two-fold uniformly controlled one-qubit gate, as shown in Fig. 2.4. Here, Rz(θ)

is a 2 × 2 unitary matrix defined by Eq. (2.4).

Möttönen et al. carried out the above concept of decomposition of uniformly

controlled gates on the basis of quantum multiplexor decomposition, as shown in

Fig. 2.6.

During their effective decomposition, the locations of the controlled bits in the

sequence of CNOT gates were determined by binary reflected Gray codes [40], as

shown in Fig. 2.6. For example, in Fig. 2.6, consider a three-bit Gray code {000,

001, 011, 010, 110, 111, 101, 100 }. Then, the locations of the controlled bits

correspond to the bits that change their states, as shown in Fig. 2.7. Note that

similar decomposition holds for the other one-parameter rotation such as Rx(θ)

and Ry(θ). The quantum circuit for an arbitrary (n−1)-fold uniformly controlled

one-qubit gate is given in a similar manner. Furthermore, they showed that an

arbitrary (n − 1)-fold uniformly controlled one-qubit gate is composed of O(2n)

elementary gates.

They also described a method to compute the rotation angles of the uniformly

controlled one-qubit gates during effective decomposition, such as θ1, θ2, θ3, · · · ,
θ8, as shown in Fig. 2.6. These parameters can be computed by solving a linear

15

=

R Rz(θ1) Rz(θ2) Rz(θ3) Rz(θ4) Rz(θ5) Rz(θ6) Rz(θ7) Rz(θ8)

Figure 2.6. Quantum circuit that implements a three-fold uniformly controlled

one-qubit gate, where R = diag(Rz(ϕ1), Rz(ϕ2), Rz(ϕ3), · · · , Rz(ϕ8)).

0

0

0

0

0

1

0

1

1

0

1

0

1

1

0

1

1

1

1

0

1

1

0

0

0

0

0

First qubit

Second qubit

Third qubit

Figure 2.7. Relationship between the locations of the controlled bit and the Gray

code.

equation. Consider the following uniformly controlled Rz gate ∨n−1
n Rz:

∨k
nRz = diag (Rz(α1), Rz(α2), Rz(α3), ·, Rz(α2k)) ,

which results from controlled-unitary operation performed on n qubits with k-

controlled qubits. Consider the matrix Mk, where each (i, j) element is defined

as follows:

Mk
i,j = (−1)bi−1·gj−1 .

Here, bj is the standard binary code representation of the integer i, and the dot

in the exponent denotes the bitwise inner product of the binary vectors. gj is

the j-th gray code, such as g0 = 000, g1 = 001, g2 = 011, g3 = 010, as shown in

Fig. 2.7. Then, all the parameters θ1, θ2, · · · , θ2k appearing in the sequence of

16

one-qubit rotations, as those shown in Fig. 2.6 can be computed as follows:⎛⎜⎜⎜⎜⎜⎜⎝
θ1

θ2

θ3
...

θ2k

⎞⎟⎟⎟⎟⎟⎟⎠ = Mk

⎛⎜⎜⎜⎜⎜⎜⎝
α1

α2

α3

...

α2k

⎞⎟⎟⎟⎟⎟⎟⎠ .

For more details, please see Ref. [37].

Uniformly controlled gates also play a key role in synthesizing a quantum

circuit for the d-level quantum system. Details about the definition of these gates

and the quantum circuit for uniformly controlled gates of the d-level quantum

system will be discussed in Chapter 4.

4. The Cosine-Sine Decomposition (CSD)

The CSD is a well-known algorithm in numerical linear algebra that is used for

computing the generalized singular value decomposition (GSVD). The CSD is

the first matrix decomposition carried out for synthesis of quantum circuits [46].

Here, the two-level quantum system is considered. The CSD of an input

matrix G can be expressed as follows:

(2n−1 2n−1

2n−1 G11 G12

2n−1 G21 G22

)
=

(
U1 0

0 U2

)(
C −S
S C

)(
V1 0

0 V2

)
= UΣV,

(2.8)

where

C = diag [cos(ζ1), cos(ζ2), · · · , cos(ζ2n−1)] ,

S = diag [sin(ζ1), sin(ζ2), · · · , sin(ζ2n−1)] .

Then, G11 = U1CV1, G12 = −U1SV2, G21 = U2SV1, and G22 = U2CV2 are the

SVD. Therefore, the CSD can be computed by applying the SVD to each sub-

matrices.

17

5. Synthesis of Quantum Circuits using the CSD

In this section, the basic idea of the synthesis method for the two-level quantum

system by means of the CSD is described. For more details, please see [13,37,42,

46, 47].

When the CSD (2.8) is used to synthesize quantum circuit for the two-level

quantum system, if the input matrix is a 2n × 2n matrix, where n is the number

of qubits, then the input matrix is partitioned into four equally sized matrices,

i.e., m = 2n and = 2n−1 in (2.8). For example when n = 3, the input matrix is

an 8 × 8 unitary matrix, then in (2.8), each sub-block is of size 4 × 4 and

D11 = D22 = diag(cosϕ1, cosϕ2, cosϕ3, cosϕ4),

D21 = −D21 = diag(sinϕ1, sinϕ2, sinϕ3, sinϕ4).

where the middle part D is an 8 × 8 block-diagonal matrix as follows:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosϕ1 0 0 0 − sinϕ1 0 0 0

0 cosϕ2 0 0 0 − sinϕ2 0 0

0 0 cosϕ3 0 0 0 − sinϕ3 0

0 0 0 cosϕ4 0 0 0 − sinϕ4

sinϕ1 0 0 0 cosϕ1 0 0 0

0 sinϕ2 0 0 0 cosϕ2 0 0

0 0 sinϕ3 0 0 0 cosϕ3 0

0 0 0 sinϕ4 0 0 0 cosϕ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.9)

Note that D is a sequence of unitary operations as shown in Fig. 2.8, where

Ry(ϕi) =

(
cosϕi − sinϕi

sinϕi cosϕi

)
, (2.10)

for 0 ≤ ϕi < 2π. This sequence of controlled unitary operations is called the

uniformly controlled one-qubit operation, which is firstly introduced by Möttönen

et al. [37].

Similarly, the rest of matrices U and V are also uniformly controlled oper-

ations, as shown in Fig. 2.9 (b). Since U1, U2, V1, and V2 are 4 × 4 unitary

18

0

1

1 1

10

0

0

= =D

RRy(ϕ1) Ry(ϕ2) Ry(ϕ3) Ry(ϕ4)

Figure 2.8. The quantum circuit corresponds to the unitary matrix D which is

shown in (2.9), where Ry(ϕi) (i = 1, 2, 3, 4) is a 2 × 2 unitary matrix shown in

(2.10).

matrices, the CSD is recursively applied to these sub-matrices. Finally, a se-

quence of uniformly controlled one-qubit operations, as shown in Fig. 2.9 (c), is

obtained. Thus, the uniformly controlled operation is the fundamental gates for

synthesizing quantum circuits by means of the CSD based approach.

As shown in Fig. 2.9, the size of the target qubits, i.e., the number of qubits

that the target operationG
(k)
j is applied, decreases 1 as the recursion proceeds. On

the other hand, the number of controlled unitary operations increases exponen-

tially as the recursion proceeds. Let the input matrix be a 2n×2n unitary matrix,

i.e., an operation on n qubits, then the number of uniformly controlled one-qubit

gates appearing in the quantum circuit produced by the synthesis method is

2n − 1.

To obtain a quantum circuit composed of elementary gates such as a sequence

of CNOT gates and one-qubit operations, the translation method between a uni-

formly controlled one-qubit gate and a sequence of elementary gates proposed in

[37] is needed.

As described above, to synthesize a quantum circuit from a 2n × 2n unitary

matrix, the CSD is first recursively applied to the sub-matrices appearing in

matrix products until each matrix corresponds to a uniformly controlled one-

qubit operation, and then the translation method between a uniformly controlled

one-qubit operation and a sequence of elementary gates is used.

19

=

0 01 1

=

(a)

=

(c)

(b)

G

U1 U2

R
(1)
1R

(1)
1

V3 V4 G
(1)
1 G

(1)
2

G
(2)
1

R
(2)
1

G
(2)
2

R
(1)
1

G
(2)
3

R
(2)
2

G
(2)
4

Figure 2.9. The synthesis of quantum circuits for the two-level quantum system

when n = 3. Here, G
(k)
i and R

(k)
i denote the gates that are produced at the k-th

recursion step.

20

Chapter 3

Synthesis Method for the

Two-Level Quantum System

1. Introduction

Decomposing a unitary matrix into an efficient sequence of elementary gates is

a fundamental problem in designing quantum circuits. There are two types of

decomposition: One is exact decomposition where an arbitrary unitary matrix is

decomposed precisely into a sequence of elementary gates, such as arbitrary single-

qubit rotations and the CNOT gate. The other involves approximate strategies by

which an arbitrary unitary matrix is decomposed approximately into a sequence

of a fixed set of elementary gates, as shown in Solovay-Kitaev theorem (cf. [39],

Appendix 3). In this chapter, exact decomposition is treated.

An exact decomposition based on the Cosine-Sine decomposition (CSD) has

been studied [36,37,42,44,47]. The CSD-based algorithms are easy to implement

on a computer because algorithms for calculating the generalized singular decom-

position (GSVD) are well-known, and software libraries including the GSVD are

available. Some CSD-based algorithms have been investigated with the aim of

improving Barenco’s result that an arbitrary 2n × 2n unitary matrix is composed

of O(n24n) elementary gates [6]. And improvement to O(4n) elementary gates

has been reported by Möttönen et al. [37, 47] and by Shende et al. [42].

On the other hand, Khaneja and Glaser provided another kind of decomposi-

tion [33], which was later named the KGD. The KGD lies within the framework

21

of the G = KAK theorem (cf. [24], Theorem 8.6) in Lie group theory. This

theorem shows that an element g ∈ SU(2n) is decomposed into matrix products

k1ak2 for some k1, k2 ∈ exp(k) and a ∈ exp(h). Here, su(2n) = k ⊕ m is a Cartan

decomposition in Lie algebra su(2n), k and m = k⊥ are orthogonal vector spaces,

and h is a maximal Abelian subalgebra (a Cartan subalgebra) contained in m

(cf. [34], §VI.2). Matrices k1, a, and k2 are not uniquely determined from g.

They depend on the selections of the bases of k, m, and h; besides, they are not

determined even if bases are selected. Khaneja and Glaser provided a particular

selection of bases of k, m, and h in Ref. [33] so that the selection matches an

NMR system, and they proved that a time-optimal control on a two-qubit NMR

quantum computer can be obtained from the decomposition [32]. Thus, the KGD

can be regarded as the G = KAK theorem on the particular bases. It should be

noted that the KGD does not give a unique translation of the input matrix into

a quantum circuit.

Bullock [12] showed that the CSD can also be regarded in the framework of the

G = KAK theorem; i.e., the CSD uses the type-AIII KAK decomposition with

the global Cartan decomposition Θ defined as Θ(X) = σ1zXσ1z for X ∈ SU(2n),

where σjz denotes that the operation defined as the Pauli matrix σz acts on the

j-th qubit. He also introduced a method that translates matrices U , Σ, and V in

(2.8) into k1 ∈ exp(k), a ∈ exp(h), and k2 ∈ exp(k), respectively, where k and h

are the ones defined in the KGD. Here, the KGD corresponds to the G = KAK

decomposition with the selection of Θ defined as Θ(X) = σnzXσnz. Thus, the

KGD-based quantum circuit can be obtained by combining Bullock’s translation

and the CSD-based algorithms.

The author introduces a new algorithm that translates a 2n×2n unitary matrix

into a quantum circuit according to the G = KAK theorem. The algorithm can

derive any matrix decomposition corresponding to the type-AIII KAK decom-

positions for the given global Cartan involution Θ. The algorithm contains, as its

special cases, both the CSD and the KGD in the sense that it derives the same

quantum circuits as the ones calculated by them if suitable Cartan involutions and

square root matrices are selected. The author finds that Θ(X) = σ1zXσ1z derives

the CSD and Θ(X) = σnzXσnz derives the KGD, where X ∈ SU(2n). The strat-

egy utilized in the proposed algorithm is related to those used in Refs. [13, 14].

22

However, those strategies provided methods for computing the type-AII KAK

decomposition; no translation between the type-AII KAK decompositions and

the type-AIII KAK decompositions was provided. Furthermore, the method

utilized in Ref. [13] is different from those presented here in the square root ma-

trix calculations, i.e., methods for calculating m from m2 (where g = km is a

global Cartan decomposition of the input matrix g). In the method proposed in

Ref. [13], first, a square root matrix is calculated in Lie algebra level. And then

it is translated into an element in Lie group level via exponential mapping. In

contrast, a square root matrix is calculated directly at the Lie group level using

the algorithm presented here.

Although the proposed algorithm contains the CSD and derives any matrix

decomposition corresponding to the type-AIII KAK decompositions according

to the given Cartan involution, the efficiency for calculating a decomposition is

not sacrificed. The reason is as follows: Roughly speaking, to decompose g into

k1ak2, the CSD-based algorithms apply the SVD to four 2n−1×2n−1 matrices (G11,

G12, G21, and G22 in Eq. (2.8)), while the proposed algorithm applies eigenvalue

decomposition to 2n × 2n matrix. Therefore, the efficiencies for computing the

SVD on four 2n−1 × 2n−1 matrices and for computing eigenvalue decomposition

on one 2n × 2n matrix are the same.

In addition, to determine a class of quantum circuits for a give class of ma-

trices, the proposed algorithm might have an advantage over the CSD. In the

CSD-based algorithms, it is difficult to formulate a class of matrices U1, U2, V1,

and V2 such that relation (2.8) holds for a given class of input matrices. Actually,

to reproduce the well-known QFT circuit by using the CSD [45,46], Tucci changes

the rows and columns of the QFT matrices beforehand and makes each subma-

trix hold a convenient form, which can be written by the (n − 1)-qubit QFT. It

would not be possible to describe the general form of the decomposition when the

input matrix does not have a convenient form like the QFT. On the other hand,

the proposed algorithm does not require such a preliminary change of rows and

columns. All matrices appearing through the algorithm can be described using

the input matrix g, the given global Cartan involution Θ, and the eigenvalues

and eigenvectors of these matrix products. This will be shown explicitly as an

example of the QFT decomposition (Section 4).

23

This chapter is organized as follows: In the following section, some prelimi-

naries about notations, the G = KAK theorem, and the KGD will be covered.

Section 3 describes a new algorithm for computing the decomposition follows from

the G = KAK theorem. Section 4 presents decompositions of the n-qubit QFT

using the new algorithm and the previous CSD-based algorithms. The author

shows that the new algorithm can produce the well-known QFT circuit by using

these matrix decompositions.

2. Preliminaries

2.1 Notations

Let σx, σy, and σz denote the Pauli matrices and I⊗s be a 2s × 2s identity matrix

(I = 21 × 21). Here, σjα is used to denote the Pauli matrix acting on the j-th

qubit; σjα = I⊗(j−1) ⊗ σα ⊗ I⊗(n−j), (α = x, y, or z). Let UCNOT denote the

standard CNOT gate, H denote a Hadamard gate, and Rx(ζ) = exp(−iζσx). All

these notations follow those in Ref. [39].

2.2 The G = KAK Theorem

The G = KAK theorem for compact groups (cf. [24], Theorem 8.6) provides a

framework for decomposing g ∈ SU(2n) into the following matrix products:

g = k1ak2, k1, k2 ∈ exp(k), a ∈ exp(h) ⊂ exp(m). (3.1)

Here, su(2n) = k ⊕ m is a Cartan decomposition, where k and m = k⊥ are or-

thogonal vector spaces, and h is a Cartan subalgebra, that is, a maximal Abelian

subalgebra contained in m.

Let θ denote the Cartan involution of its Lie algebra su(2n); i.e., (i) θ2 = I⊗n

(θ �= I⊗n) and (ii) θ is an automorphism of the Lie algebra su(2n). And let the

global Cartan involution (cf. [34], p. 362) of SU(2n) be Θ. Then k and m have

the following property:

θ(x) =

⎧⎨⎩x if x ∈ k

−x if x ∈ m
, Θ(X) =

⎧⎨⎩X if X ∈ exp(k)

X† if X ∈ exp(m)
. (3.2)

24

Three types of k-algebra, named AI, AII, and AIII, arise for su(2n). Here,

AI, AII, and AIII correspond to k = so(2n), k = sp(2n), and s[u(p) ⊕ u(q)]

(p+ q = 2n), respectively (cf. [24], p. 518).

2.3 The Khaneja-Glaser Decomposition (KGD)

Khaneja and Glaser provided a particular selection of bases of k, m, and h (cf. [33],

Notation 3 and 5) so that the selection matches an NMR system. Notice that h

is used instead of h(n). Here, generators of k, m, and h, are denoted to be tensor

products of the Pauli matrices;

k = span {A ⊗ σz/2,B ⊗ I, iσnz/2 | A,B ∈ su(2n−1)}, (3.3)

m = span {A ⊗ σx/2,B ⊗ σy/2, iσnx/2, iσny/2 | A,B ∈ su(2n−1)}. (3.4)

Here, generators of k and m have a specific operation on the last qubit; i.e., σz or

I for generators of k and σx or σy for generators of m. Thus, to determine k and

m, the Cartan involution θ and the global Cartan involution Θ can be chosen as

follows:

θ(x) = σnzxσnz , Θ(X) = σnzXσnz. (3.5)

Since θ(σz) = σz, θ(I) = I, θ(σx) = −σx, θ(σy) = −σy, then it can be checked

that the above k and m satisfy relation (3.2) when θ and Θ are chosen as (3.5).

For the number of qubits n ≥ 3, k and m have specific patterns, as shown

in Fig. 3.1, because all generators defined in (3.3) and (3.4) have these patterns.

In Fig. 3.1, each square represents an element of an 8 × 8 matrix. The white

elements are always zero, and the black elements take some value that depends

on the input matrix. Note that in contrast to an element of exp(k) taking the

same pattern as an element of k, an element of exp(m) does not take the same

pattern as m. Therefore, the KAK decomposition can be applied recursively.

25

k and exp(k) m

Figure 3.1. Patterns of an element of k, exp(k) and m for a three-qubit system.

3. Proposed Algorithm for Computing the KAK

Decomposition

3.1 Algorithm

In this section, a new constructive algorithm that computes a decomposition

based on the G = KAK theorem is presented. Here, a Cartan subalgebra is cho-

sen as h̃, which is different from the h used in the KGD. Since Cartan subalgebras

are Abelian, they can translate each other by h̃ = AdT∈exp(k)(h). Here, T is fixed

for given h̃ and h. It should be noted that the G = KAK decomposition for the

fixed input g ∈ SU(2n) is not unique. The following theorem is the key to the

new algorithm.

Theorem 1 Let g ∈ SU(2n) be the input matrix. If g has a global Cartan de-

composition g = km (k ∈ exp(k),m ∈ exp(m)), then m2 is uniquely determined

by m2 = Θ(g†)g.

Proof. From (3.2), Θ(g†)g = Θ(m†k†)km = Θ(m†) Θ(k†)km = mk†km = m2.

�

Theorem 1 shows that the fixed global Cartan involution Θ only determines

m2. Therefore, arbitrariness remains in the selection of m, and also k. Further-

more, a in (3.1) has also arbitrariness because it follows from a decomposition

of m, m = k̃†ak̃, where k̃ ∈ exp(k). (See, [34], §AII.3). With Theorem 1, the

decomposition in (3.1) is computed as follows:

Algorithm 1 (The KAK decomposition)

Step 1 Compute m2 = Θ(g†)g.

26

Step 2 Decompose m2 = pbp† such that p ∈ exp(k) and b ∈ exp(h̃).

Such decomposition always exists because m2 ∈ exp(m) (cf. [34], Proposi-

tion 7.29). Then, p is obtained by computing eigenvectors of m2. Examples

will be shown in Section 3.3.

Step 3 Find y such that y2 = b and y ∈ exp(h̃).

The y can be computed by replacing the diagonal blocks of b, when a suitable

h̃ is chosen. Examples of selections of h̃ will be described in Section 3.3.

Step 4 Computem = pyp†. Here, m ∈ exp(m) because Θ(m) = Θ(p)Θ(y)Θ(p†) =

py†p† = m†.

Step 5 Compute k = gm†. Then, k always satisfies k ∈ exp(k) because (m2)† =

g†Θ(g) and Θ(gm†) = Θ(g)Θ(m†) = g(m2)†m = gm†.

Steps 2–4 provide a method for computing the square root of a matrix to find

m from m2. After these procedures,

g = kpyp† = k̃yp†. (3.6)

Here, Θ(k̃) = k̃, Θ(y) = y†, and Θ(p†) = p†, so that the decomposition follows

the G = KAK theorem. All matrices that appear through the algorithm can be

described by using g and Θ. T By using this property, the author shows that

the proposed algorithm can automatically reproduce the well-known QFT circuit

(See, Section 4.2).

3.2 Proof of Step 2 in Algorithm 1

In the previous section, the author shows that b is a block-diagonal matrix, each

block of which is Rx(2ζ), where h̃ = span{|j〉〈j| ⊗ iσx | j = 0, · · · , 2n−1 − 1} ⊂ m.

Here, the author provides two lemmas and proofs for the eigenvalues of m2 =

Θ(G†)G, where G ∈ SU(2n) to prove that. Let X = m2 = Θ(G†)G.

Lemma 1 (Properties of complex eigenvalues of X)

1. The number of the complex eigenvalues of X, with multiplicity counted,

is even. They are of the form α1, α1, α2, α2, . . . , αt, αt, repeated with

multiplicity.

27

2. There exists unit length vectors u1, . . . , u2t that are mutually orthogonal

and satisfy σnzu2j−1 = u2j−1 and σnzu2j = −u2j. Furthermore, there exists

ζ1, . . . , ζt ∈ R satisfying Xu2j−1 = cos(ζj)u2j−1 − i sin(ζj)u2j and Xu2j =

−i sin(ζj)u2j−1 + cos(ζj)u2j.

Proof. Let α1, . . . , α2n be the eigenvalues of X, repeated with multiplicity.

Then, except for the order, the elements of the sequence α1, . . . , α2n are equal

to α1, . . . , α2n because Θ(X) = X†. Therefore, the number of the complex

eigenvalues, counted with multiplicity, is even. Let the number of the complex

eigenvalues be 2t and the complex eigenvalues be α1, α1, . . . , αt, αt. That is,

the first statement holds.

Let u be an eigenvector of X corresponding to the eigenvalue α, then σnzu

is an eigenvector of X corresponding to the eigenvalue α because X(σnzu) =

σnzX
†u = αj(σnzu). Now, let W be the eigenspace corresponding to a complex

eigenvalue α and β1, . . . , βr be an orthonormal basis of W . Then, let σnzβ1, . . . ,

σnzβr be an orthonormal basis of the eigenspace corresponding to the eigenvalue

α. Therefore, u2j−1 = βj + σnzβj and u2j = βj − σnzβj for j = 1, · · · , r, span the

eigenspace of X corresponding to the eigenvalues α and α. Furthermore, they are

eigenvectors of σnz because σnzu2j−1 = u2j−1 and σnzu2j = −u2j . On the other

hand, the following relations hold:

Xu2j−1 = αβj + ασnzβj =
α + α

2
u2j−1 +

α− α

2
u2j = Re(α)u2j−1 + iIm(α)u2j,

Xu2j = αβj − ασnzβj =
α− α

2
u2j−1 +

α + α

2
u2j = iIm(α)u2j−1 + Re(α)u2j.

Therefore, put ζ = − arg(α). Then cos(ζ) = Re(α) and sin(ζ) = −Im(α). That

is,

Xu2j−1 = cos(ζ)u2j−1 − i sin(ζ)u2j, Xu2j = −i sin(ζ)u2j−1 + cos(ζ)u2j.

Similar arguments hold for the other complex eigenvalues. �

Lemma 2 (Properties of real eigenvalues of X) Real eigenvalues of X are

±1.

1. The multiplicity of the eigenvalue 1 is even. There exists an orthonormal

basis u2t+j (j = 1, · · · , 2μ) of the eigenspace corresponding to the eigenvalue

1 that satisfies the σnzu2t+2j−1 = u2t+2j−1 and σnzu2t+2j = −u2t+2j .

28

2. The multiplicity of the eigenvalue −1 is even. There exists an orthonormal

basis u2t+2μ+j (j = 1, · · · , 2ν) of the eigenspace corresponding to the eigen-

value −1 that satisfies

σnzu2t+2μ+2j−1 = u2t+2μ+2j−1 and σnzu2t+2μ+2j = −u2t+2μ+2j .

Proof. Lemma 1 implies that the product of all the complex eigenvalues is 1, and

thus the product of all the real eigenvalues is 1. Therefore, the real eigenvalues of

X are 1 or −1, thus both of the multiplicities of the eigenvalues 1 and −1 are even.

Let W1 and W2 be the eigenspaces of X corresponding to the eigenvalues of 1 and

−1, respectively. Then σnzW1 ⊂W1 and σnzW2 ⊂W2 hold because Θ(X) = X†.

Put W = W1⊕W2. Then W⊥is the direct sum of the eigenspaces for the complex

eigenvalues of X. The trace of σnz|W is 0 because Lemma 1 implies that the trace

of σnz|W⊥ is 0, and this implies that the multiplicities of the eigenvalues of 1 and

−1 of σnz|W are equal. Let W1 = W11⊕W12 and W2 = W21⊕W22, where W11 and

W21 are the eigenspaces of σnz corresponding to the eigenvalue 1, and W12 and

W22 are the eigenspaces of σnz corresponding to the eigenvalue −1. Let dimWij

be dij . Then, d11 + d21 = d12 + d22.

The similar arguments are applied for X ′ = Θ(G)G†. Here, let W ′
1 = W ′

11 ⊕
W ′

12 and W ′
2 = W ′

21 ⊕W ′
22, where W ′

11 and W ′
21 are the eigenspaces of σnz corre-

sponding to the eigenvalue 1, and W ′
12 and W ′

22 are the eigenspaces of σnz corre-

sponding to the eigenvalue −1. Let dimW ′
ij be d′ij. Then, d′11 + d′21 = d′12 + d′22.

From Lemma 3 below, d11 = d′11, d12 = d′12, d21 = d′22, and d22 = d′21. Then,

d11 = d12 and d21 = d22. Therefore, the statements of the lemma hold. �

Lemma 3 Let X = Θ(G†)G and X ′ = Θ(G)G†.

1. If Xu = u and σnzu = u, then X ′(Gu) = Gu and σnz(Gu) = Gu.

2. If Xu = u and σnzu = −u, then X ′(Gu) = Gu and σnz(Gu) = −Gu.

3. If Xu = −u and σnzu = u, then X ′(Gu) = −Gu and σnz(Gu) = −Gu.

4. If Xu = −u and σnzu = −u, then X ′(Gu) = −Gu and σnz(Gu) = Gu.

Proof. First, the author proves the statements for the eigenvalues and eigen-

vectors of X ′. Since G†X ′G = Θ(X) holds, (X ′(Gu), Gu) = (G†X ′Gu, u) =

29

(Θ(X)u, u) = (X†u, u) = (u,Xu). Thus, the equation Xu = εu, where ε = ±1,

implies (X ′(Gu), Gu) = ε(u, u). On the other hand, the Cauchy-Schwarz in-

equality implies |(X ′(Gu), Gu)| ≤ ‖X ′(Gu)‖ · ‖Gu‖. Since the right-hand side is

equal to ‖Gu‖2 = ‖u‖2 = (u, u) = |(X ′(Gu), Gu)|, the equality |(X ′(Gu), Gu)| =

‖X ′(Gu)‖ · ‖Gu‖ holds. Therefore, X ′(Gu) = α(Gu) for some α ∈ C; that is, Gu

is an eigenvector of X ′ corresponding to the eigenvalue α. The equality α = ε

follows ε(u, u) = (X ′(Gu), Gu) = (αGu,Gu) = α(Gu,Gu) = α(u, u).

To prove the statements for the eigenvalues and eigenvectors of σnz, the fol-

lowing equations are used.

(σnz(Gu), Gu) = (G†σnzGu, u) = (σnzXu, u) = (Xu, σnzu).

The equations Xu = εu and σnzu = ε′u, where ε, ε′ = ±1, imply (σnz(Gu), Gu) =

εε′(u, u). Similar arguments are made for the eigenvalues and eigenvectors of X ′,

then σnz(Gu) = εε′(Gu). �

3.3 Methods for Performing Steps 2 and 3 in Algorithm 1

Above, a method for computing the G = KAK decomposition was provided but a

concrete method for computing p, b, and y in steps 2 and 3 was not described. To

show examples of such concrete methods, In this section, the author presents ex-

amples of such concrete methods for fixed Θ and h̃. Here, examples for computing

the KGD are treated, i.e., Θ is chosen as in (3.5) . The author shows two methods

that compute p, b, y for particular selections of h̃; i.e., h̃1 = span {|j〉〈j| ⊗ iσx | j =

0, · · · , 2n−1 − 1} and h̃2 = span {|j〉〈j| ⊗ i(σx ⊗σx +σy ⊗σy) | j = 0, · · · , 2n−2 − 1}.
Note that the second selection is not always possible because it demands that all

eigenvalues appearing in m2 in step 1 should be duplicated twice.

3.4 Example 1

Let Θ be as in (3.5), and h̃1 as span {|j〉〈j| ⊗ iσx | j = 0, · · · , 2n−1 − 1}. Then, p,

b, and y in steps 2 and 3 can be computed as follows:

(i) Compute eigenvalue decomposition of m2.

Let m2 = p̃dp̃† be eigenvalue decomposition and μ1, · · · , μN be the columns

30

of p̃, where N = 2n. Then, d is a diagonal matrix in which diagonals

have eigenvalues of m2 and all μj ’s are eigenvectors of m2 and mutually

orthogonal.

(ii) Normalize all μj’s by

ν2j−1 =
μj + σnzμj

‖μj + σnzμj‖ , ν2j =
μj − σnzμj

‖μj − σnzμj‖ . (3.7)

(iii) For all νj ’s that are associated with imaginary eigenvalues,

(a) let W1, W2, and W3 be sets of vectors such that

W1 = {νj | σnzνj = νj},
W2 = {νj | σnzνj = −νj},
W3 = {νj | σnzνj �= ±νj}.

(b) For each w ∈W3, compute

ν+ =
w + σnzw

‖w + σnzw‖ , ν− =
w − σnzw

‖w − σnzw‖ . (3.8)

Here, ‖ · ‖ denotes the length of a vector. Then,

• if all elements in W1 and u+ are linearly independent, then W1 =

W1 ∪ {ν+};
• if all elements in W2 and u− are linearly independent, then W2 =

W2 ∪ {ν−}.

(iv) Repeat steps (a) and (b) for all μj’s that are associated with positive real

eigenvalues.

(v) Repeat steps (a) and (b) for all μj’s that are associated with negative real

eigenvalues.

(vi) Let p = (υ1, υ2, · · · , υN), where υ2j−1 ∈ W1 and υ2j ∈ W2, for j =

1, · · · , N/2.

The computation procedure follows from Section 3.2 Since σnzυ2j−1 = υ2j−1

31

0 1

=

= ×

k̃ g
(0)
1 g

(1)
1

1

1

1

1

1

1

1

1

Figure 3.2. Image of decomposition of k̃ ∈ exp(k) for a three qubit system.

and σnzυ2j = −υ2j , it can easily be checked that Θ(p) = p. Then, b =

p†m2p satisfy Θ(b) = b† and b ∈ exp(h̃), where b =
∑2n−1

j=0 |j〉〈j| ⊗ Rx(2ζj)

(0 ≤ ζj < π).

(vii) Compute y by replacing all Rx(2ζj) appears in b with Rx(ζj).

Since Θ(Rx(2ζj)) = R†
x(2ζj), R

2
x(ζj) = Rx(2ζj), then y satisfies y2 = b and

y ∈ exp(h̃1).

In step (vi), one may notice that, when Rx(π) appears in b, thus Ry(π/2) is used

instead of Rx(π/2) as a replacement rule.

Since k̃ and p† ∈ are elements of exp(k) that has the specific pattern as shown

in Fig. 3.1, they have the following decomposition:

k̃ = g
(0)
1 ⊗ |0〉〈0|+ g

(1)
1 ⊗ |1〉〈1|, p† = g

(0)
2 ⊗ |0〉〈0| + g

(1)
2 ⊗ |1〉〈1|, (3.9)

where g
(j)
1 , g

(j)
2 ∈ SU(2n−1) for k̃, p† ∈ SU(2n) (j = 0 or 1). Here, g

(0)
1 and g

(0)
2

are composed of nonzero elements (black squares in Fig. 3.1) of odd rows, and

g
(1)
1 and g

(1)
2 are composed of nonzero elements of even rows. Fig. 3.2 illustrates

the decomposition of k̃ for a three-qubit system.

An elements in exp(h1) can be regarded as a uniformly controlled one-qubit

operation as shown in Fig. 3.3. The KAK decomposition that is obtained through

the above computation is then corresponds to a quantum circuit as shown in

Fig. 3.4. This figure shows the image of a decomposition in (3.1) for a three-qubit

system, when Θ is chosen as in (3.5) and a Cartan subalgebra h1 as span {|j〉〈j|⊗

32

=

0

0

0

01

1 1

1

Rx(ζ1)

Rx(ζ1)

Rx(ζ2)

Rx(ζ2)

Rx(ζ3)

Rx(ζ3)

Rx(ζ4)
Rx(ζ4)

Rx

Figure 3.3. A quantum circuit for y ∈ exp(h1).

= · ·
)(

2
jg)(

1
jg

k
~ †pg y

)(jxR z

Figure 3.4. Image of a decomposition.

iσx | j = 0, · · · , 2n−1 − 1}. The matrices uses the same notation as in Fig. 3.1 to

represent the properties. In the quantum circuit, the symbol of the control qubit

represents the uniformly controlled rotations [36, 38]. g
(j−1)
� ∈ SU(4) (, j = 1 or

2) are applied selectively; that is, g
(0)
1 and g

(0)
2 are applied when the third qubit

is |0〉, whereas g
(1)
1 and g

(1)
2 are applied when it is |1〉.

By applying the decomposition in (3.6) recursively to elements g
(j)
1 , g

(j)
2 ∈

SU(2n−1) (j=0 or 1), a sequence of uniformly controlled rotations like in Ref. [36]

(in Fig. 13) is obtained, except that Rx is used instead of Ry in the proposed

algorithm. The full decomposition of these uniformly controlled rotations into

elementary gates has been provided by Möttönen et al. [36, 38]. Also, if the

quantum multiplexor decomposition is applied to k̃ and p† in (3.1) after the

order of qubits are changed, the produced circuit is the same as that in Fig. 2 in

Ref. [42], except that rotation Ry is used instead of Rx. Therefore, the number

of elementary gates needed to compose g ∈ SU(2n) in the proposed method is

O(4n), which is the same as in Refs. [37, 42].

3.5 Example 2

Here, an another example of methods for computing p, b, and y in Section 3.1 will

be described. Here, h̃2 = span {|j〉〈j| ⊗ i(σx ⊗ σx + σy ⊗ σy) | j = 0, · · · , 2n−1 − 1}.

33

The Cartan involution Θ is the same as in (3.5). The decomposition of this type

is chosen as an example of a decomposition of the QFT. In this case, only the

steps (vi) and (vii) in Section 3.4 is replaced as follows:

(vi) Let p = (υ1, υ2, · · · , υN), for j = 1, · · · , N/4,

• ν4j−3 ∈W1 and it is associated with positive eigenvalues,

• ν4j−2 ∈W2 and it is associated with negative eigenvalues,

• ν4j−1 ∈W1 and it is associated with negative eigenvalues,

• ν4j ∈W2 and it is associated with positive eigenvalues.

Then, p also satisfies Θ(p) = p, and b = p†m2p is a block-diagonal matrix,

in which the diagonals are constructed from the 4 × 4 matrix⎛⎜⎜⎜⎝
1 0 0 0

0 cos(2ζj) i sin(2ζj) 0

0 i sin(2ζj) cos(2ζj) 0

0 0 0 1

⎞⎟⎟⎟⎠ = exp(iζj(σx ⊗ σx + σy ⊗ σy)).

Here, the middle part of the above matrix is Rx(2ζj).

(vii) Compute y by replacing Rx(2ζj) in b with Rx(ζj).

4. Application to the Design of Circuits for the

QFT

In this section, the author shows that the new algorithm presented in this chapter

can automatically reproduce the well-known QFT circuit. All the matrices that

appear through the proposed algorithm can be described using the input matrix g

and Θ. In contrast, it is difficult to describe all the matrices that appear through

the CSD-based algorithm because, as shown in (2.8), the input matrix g has

to be divided into four square matrices and the SVD has to be applied to each

partitioned matrix. It is difficult to formulate each partitioned matrix, i.e., G11,

G12, G21, and G22, and that makes it difficult to describe suitable the SVD for

each partitioned matrix.

34

Fortunately, the n-qubit QFT is a very special matrix that has the following

property: If the order of qubits is permuted, then each partitioned matrix can be

described using the (n−1)-qubit QFT. By using the feature, the author provides

a decomposition of the QFT by the CSD-based algorithm. This is shown in

Section 4.3.

4.1 Notation

The QFT on n qubits, Fn, is a 2n × 2n matrix such that

Fn =

(
1√
2n
ω(j−1)(�−1)

n

)
j�

, where ωn = exp

(
2πi

2n

)
. (3.10)

Let Qn be a 2n × 2n permutation matrix: Qn = χn
n−1 · · ·χn

2χ
n
1 , where χk

j is the

SWAP gate applied to the j-th and the k-th qubits. Let H1 = H ⊗ I⊗(n−1), then

(3.10) is written as

Fn =
1√
2

(
Fn−1 Ωn−1Fn−1

Fn−1 −Ωn−1Fn−1

)
Qn = H1Dn(I ⊗ Fn−1)Qn, (3.11)

where

Dn =

(
I⊗(n−1) 0

0 Ωn−1

)
, Ωn−1 = diag (1, ωn, · · · , ω2n−1−1

n).

This notation follows from Section 4.6.4 in Ref. [22].

4.2 Decomposition of the QFT by the Proposed Method

According to Section 3.1, the decomposition of Fn can be computed as follows:

1. Compute m2 = Θ(F †
n)Fn.

Let S be (I⊗Fn−1)Qn. Since Θ(H1) = H1, Θ(Dn) = Dn, and σ1zS = Sσnz,

then m2 = S†σ1zσnzS. All column vectors of S† are then eigenvectors of

m2 because σ1zσnz is a diagonal matrix in which diagonal elements are

eigenvalues of m2.

35

2. Decompose m2 = pbp† such that Θ(p) = p and Θ(b) = b†.

Let p be S†Qn (This selection was done so that p satisfies Θ(p) = p and

follows Section 3.5), then b = p†m2p = Q†
nσ1zσnzQn = I⊗(n−2) ⊗

diag(1, −1, −1, 1).

3. Choose y such that Θ(y) = y†. According to the step (vi) in Section 3.5, then

y = I⊗(n−2) ⊗

⎛⎜⎜⎜⎝
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

⎞⎟⎟⎟⎠ = I⊗(n−2) ⊗ exp(π(σx ⊗ σx + σy ⊗ σy)/4).

This is obtained by replacing each 4 × 4 diagonal block of v, i.e., b =

diag(1, −1, −1, 1), with y = exp(π(σx ⊗ σx + σy ⊗ σy)/4). It can easily be

checked that Θ(y) = y† and y2 = b, because Θ(y) = y† and y2 = b.

4. Compute m = pyp†.

5. Compute k = gm† = Fnm
†.

Then, k̃ = kp = (Fnpy
†p†)p = Fnpy

†, so the following decomposition is obtained.

Fn = k̃yp† = (H1DnQny
†)y(Q†

nS) = H1DnS,

= H1Dn(I ⊗ Fn−1)Qn. (3.12)

The similar decomposition is applied to Fj, for j = n − 1, n − 2, · · · , 2. Next,

the author shows a decomposition of Dn. Dn is controlled-Ωj (where j = n −
1, n − 2, · · · , 2), so it suffices to consider the decomposition of Ωj . Since Ωj ∈
exp(k) (it follows from Θ(Ωj) = Ωj), the decomposition in (3.9) is applied to

Ωj . Consider Ω3 as an example, then Ω3 = g
(0)
1 ⊗ |0〉〈0| + g

(1)
1 ⊗ |1〉〈1|, where

g
(0)
1 = diag (1, ω2, ω4, ω6) and g

(1)
1 = diag (ω, ω3, ω5, ω7) = ω · diag (1, ω2, ω4, ω6).

Then, Ω3 = diag (1, ω2, ω4, ω6) ⊗ diag (1, ω). Similarly, since diag (1, ω2, ω4, ω6)

is also an element of exp(k), it is decomposed into diag (1, ω4) ⊗ diag (1, ω2).

Therefore, Ωn−1 is composed of n− 1 single-qubit rotations as follows:

Ωn−1 =

(
1 0

0 ω2n−1−1
n

)
⊗ · · · ⊗

(
1 0

0 ω2j−1

n

)
⊗ · · · ⊗

(
1 0

0 ω2
n

)
⊗
(

1 0

0 ωn

)
.

(3.13)

36

...=Fn

Qn Dn

Fn−1

R1
n

R2
n

Rn−3
n

Rn−2
n

Rn−1
n

H

Figure 3.5. Decomposition of the QFT by the proposed algorithm.

The circuit obtained from the above decomposition is shown in Fig. 3.5. Here,

Rj
n = diag (1, ωj

n), i.e., a single-qubit rotation, and Qn is composed of n − 1

SWAP gates. A similar decomposition is applied to Fj (for j = n−1, n−2, · · · , 2).

Finally, a full decomposition of the QFT composed of nHadamard gates, 1
2
n(n−1)

controlled-rotations, and �n
2
� SWAP gates is obtained. Here, SWAP gates that

appeared in a sequence of permutations QnQn−1 · · ·Q2 were optimized. Thus,

the number of elementary gates that appear in Fig. 3.5 is O(n2).

4.3 Decomposition of the QFT by the Previous Methods

As a comparison between the proposed methods and the previous methods, this

section describes the decomposition of the QFT by the previous methods. Two

methods are treated: One is the CSD provided in [36, 37, 44, 46] and the other is

the quantum Shannon Decomposition (QSD) [42] .

Decomposition of the QFT by the CSD can easily be denoted if Q†
n is applied

to the input matrix Fn beforehand.

FnQ
†
n = UΣV

=

(
I⊗n−1 0

0 I⊗n−1

)
· 1√

2

(
I⊗(n−1) −I⊗(n−1)

I⊗(n−1) I⊗(n−1)

)
·
(
Fn−1 0

0 −Ωn−1Fn−1

)
,

= (Hσz ⊗ I⊗(n−1))(σz ⊗ I⊗(n−1))Dn(I ⊗ Fn−1) = H1S. (3.14)

37

It can easily be checked that (3.14) satisfies the definition of the CSD, where all

θj ’s appear in c and s in (2.8) are π/4. Although Q†
j have to be applied beforehand

when the CSD is recursively applied to Fj (j = 1, · · · , n−1), the well-known QFT

circuit can be obtained. Based on the feature, Tucci reproduced the well-known

QFT circuit using the CSD-based algorithm [45,46].

The QSD is a method that combines the CSD and the quantum multiplexor

decomposition. First, the CSD for the input matrix is computed and then the

quantum multiplexor decomposition (cf. [42], Theorem 12), i.e.,(
U1 0

0 U2

)
=

(
A 0

0 A

)(
D 0

0 D†

)(
B 0

0 B

)
, (3.15)

is applied to U and V in (2.8). Here, U1U
†
2 = AD2A† and B = DA†U2. In the

QFT, the decomposition in (3.15) is applied to V because U is an identity matrix

in (3.14). Then, A = I⊗(n−1), D =
√
−Ω†

n−1, and B =
√−Ωn−1Fn−1 in (3.15).

Here,
√−Ωn−1 is a 2n−1 × 2n−1 diagonal matrix whose (j, j)-th component is

iωj−1
n+1, (j = 1, · · · , 2n−1). Therefore, the decomposition of the QFT by the QSD

is as follows:

FnQ
†
n = exp(iσy ⊗ δ2) exp(−iσz ⊗ δ3)(I ⊗ v4), (3.16)

where v4 =
√−Ωn−1Fn−1 and δ2 and δ3 are 2n−1 × 2n−1 diagonal matrices. Each

element of δ2 is π/2n−1 and each (j, j)-th element of δ3 is −jπ/2n+1. Furthermore,√
Ωn−1 is composed of n− 1 single-qubit rotations as follows:

√
−Ωn−1 = i

(
1 0

0 ω2n−1

n+1

)
⊗ · · · ⊗

(
1 0

0 ω2j−1

n+1

)
⊗ · · · ⊗

(
1 0

0 ω2
n+1

)
⊗
(

1 0

0 ωn+1

)
.

Here, (3.16) is also equal to the well-known QFT decomposition (3.11) after

optimization as shown in Fig. 3.6. Here, Q†
n is moved to the right-hand-side by

inverting it. The dark-gray block in the middle circuit can be simplified. The

simplified block is described by the same color in the rightmost circuit. Here,

D =
√−Ωn−1.

To obtain the decomposition in (3.16), note that Qj (j = 0, · · · , n) must be

applied beforehand for Fj .

38

...= = ...

Fn Fn−1Fn−1 D† D ⊕ D†

σz HH

QnQn exp(I ⊗ v4)
exp(−iσz ⊗ δ3)

exp(iσy ⊗ δ2)

Ωn−1

Figure 3.6. Decomposition of the QFT by the QSD.

5. Summary

The author introduces a new algorithm for computing any type-AIII KAK de-

composition according to the given global Cartan involution Θ. Recursively per-

forming the decomposition leads to a quantum circuit composed of uniformly

controlled rotations. The proposed algorithm can derive any matrix decompo-

sition corresponding to the type-AIII KAK decomposition, and it contains the

CSD and the KGD as its special cases. This is because the proposed algorithm

contains arbitrariness in selecting the Cartan subalgebra h and a square root ma-

trix m for the given Cartan involution Θ, where m is a matrix derived from a

global Cartan decomposition g = km. Two methods for computing a square root

matrix are also presented.

Although the correctness of the proposed algorithm depends on Lie group

theory, the main methods involved are eigenvalue decomposition and a simple

replacement rule. Thus, the decomposition can be computed without knowledge

of Lie group theory.

As an example, the author shows that the new algorithm automatically re-

produces the well-known QFT circuit for arbitrary n-qubits. When using the

CSD-based algorithms, some permutations must be applied beforehand in order

to reproduce the circuit. The same technique can not always be used to describe

the canonical form of the decomposition for a given matrix because matrices do

not always have a convenient form like the QFT. The proposed algorithm might

39

be useful in showing the effectiveness of The G = KAK matrix decompositions

for other particular input matrices, because all matrices appearing through the

algorithm can be described using an input matrix g and the given Cartan invo-

lution Θ.

40

Chapter 4

Synthesis Method for the d-Level

Quantum System

1. Introduction

Quantum circuits are fundamental tools for describing quantum algorithms and

for understanding the power and limitations of quantum computation. In general,

a quantum circuit is described as a sequence of quantum operations (elementary

gates) that act on one or two qubits, where a qubit is the quantum mechanical

analogue of the conventional bit. However, in some cases, quantum computations,

e.g., the quantum Fourier transform (QFT) [25] and the Schur transform [4,

5], may be described naturally as operations that act on the d-level quantum

system (qudits). The number of coupled qudits used to implement a quantum

operation is less than that of qubits [7]. In addition, if the approximation of

the radix-d QFT, i.e., the QFT that acts on n qudits, is considered, it provides

better approximation properties than the binary one because the error magnitude

decreases exponentially with d [50].

In this chapter, the author focuses a method, which is based on matrix de-

compositions, for synthesizing quantum circuits for the d-level quantum system

(d > 2). For d = 2 (qubits), there have been many studies of quantum cir-

cuit synthesis based on matrix decompositions, such as QR decomposition [44],

the cosine-sine decomposition (CSD) [13, 37, 42, 46, 47], and the Khaneja-Glaser

decomposition (KGD) [33]. The best-practice quantum circuit for an arbitrary

41

operation on n qubits, which is composed of O(4n) elementary gates, was first

found by means of the CSD [37, 42]. Later, Bullock showed that the KGD is a

variant of the CSD and that they can be translated to each other [12]. Variants

of the CSD, such as the KGD, are also useful for synthesizing asymptotically

optimal quantum circuits for the two-level quantum system and those methods

are useful for designing a polynomial-size quantum circuit for the radix-2 QFT

in Chapter 3 and [45].

In contrast, for the arbitrary d-level quantum systems (d > 2), there have been

some studies concerning synthesis methods of quantum circuits, but whether the

CSD is useful for synthesizing quantum circuits is unclear. Non-CSD methods

were provided by Brennen et al: spectral decomposition [15] and the ‘Triangle’

algorithm [10]. The latter algorithm is based on QR decomposition and House-

holder transformation. By using these methods, they showed that an arbitrary

operation on n qudits can be implemented using O(d2n) elementary gates. They

defined the elementary gates as a set of arbitrary one-qudit operations and a two-

qudit operation called the CINC gate, where INC|a〉 = |(a+ 1) mod d〉 and the

CINC is a controlled unitary operation that applies INC to the target qudit when

the control qudit is |d − 1〉. However, in [10], they mentioned that, “Moreover,

the current best-practice n-qubit circuits exploit the CSD, yet technical difficul-

ties with the tensor product structure make it quite unclear whether this matrix

decomposition is useful for qudits.”

A synthesis method based on the CSD for the d-level quantum system has

been proposed by Khan et al. [30, 31], but it is inefficient when d > 2. The size

of the produced quantum circuit was not discussed in that paper, but it can be

checked that it is O(αnd2n), where α = 2d−1/d and n is the number of qudits.

Here, the elementary gates are the same as those in [10, 15]. The size of the

produced circuit by Khan et al.’s CSD-based method is exponentially larger than

that produced by Brennen et al.’s non-CSD based method.

Here, the author improves the CSD-based synthesis method for the d-level

quantum system by using a balanced partitioning. With the proposed method,

the size of the quantum circuit produced by the synthesis method is reduced

to O(n2+log2 dd2n) when d is odd, to O(d2n) when d is a power of two, and to

O(nd2n) otherwise, for the number n of qudits. Furthermore, when n is a small,

42

the considerable number of two-qudit operations (CINC gates) appearing in the

quantum circuit produced by the proposed method can be reduced. For example,

when d = 3 and n = 2, the number of CINC gates used in the quantum circuit

produced by the proposed method is 36, where 156 CINC gates are required in the

quantum circuit produced by the previous best-practice method (i.e., Brennen et

al.’s non-CSD based method).

The main difference between the author’s method and Khan et al.’s CSD-

based method is the partition size. Let G be an m×m unitary matrix, then the

CSD of G, denoted by G = UDV , is as follows:

(m−

 G11 G12

m− G21 G22

)
=

(
U1 0

0 U2

)(
D11 D12

D21 D22

)(
V1 0

0 V2

)
.

Throughout this chapter, let be the partition size. The input matrix is par-

titioned into four sub-blocks and the size of each sub-block depends on . In

the CSD described above, Dij (i, j = 1 or 2) is a diagonal matrix and for each

sub-block of G, Gij = UiDijVj (i, j = 1 or 2) is the singular value decomposition

(SVD).

In the CSD-based method, the CSD is recursively applied to sub-blocks of

matrices appearing in the previous applications of the CSD. For the two-level

quantum system, let the input matrix be a 2n × 2n matrix, where n denotes the

number of qubits, then is chosen as 2n−1. The input matrix is partitioned into

four equally sized sub-blocks and U1, U2, V1, and V2 in (4.1) are 2n−1×2n−1 unitary

matrices. In the next step, these 2n−1 × 2n−1 unitary matrices are decomposed

with the partition size = 2n−2 and then, 2n−2×2n−2 sub-matrices are appeared.

These procedure will be repeated until each sub-block is of size 2×2. The number

of repetitions is n−1 and the size of the quantum circuit produced by the synthesis

method is 4n−1. Note that the size of the quantum circuit produced by the CSD-

based synthesis method increases exponentially in the number of repetitions of

the CSD.

In contrast, for the arbitrary d-level quantum systems (d > 2), the input

matrix cannot partitioned into four equally sized sub-blocks. Since the CSD have

to be repeated until each sub-block is of size d × d, the number of repetitions

depends on the largest sub-block of U1, U2, V1, and V2. Thus, to reduce the

43

number of repetitions, it is better to choose the partition size such that the size

of each sub-block is nearly-balanced and is a power of d. The former condition is

required to reduce the number of repetitions. The latter condition is required to

decompose d× d sub-blocks after some repetitions.

Let n be the number of qudits and suppose that the input matrix is a dn ×
dn unitary matrix. In Khan et al.’s method, = dn−1. Thus, the size of the

largest sub-block is (d − 1)dn−1 × (d − 1)dn−1 and the size of the smallest sub-

block is dn−1 × dn−1. Here, the author proposes a new partitioning method that

is more efficient than the previous ones. The partition size is chosen as =

d�n/2��d�n/2	/2�. Then, the largest sub-block is d�n/2��d�n/2	/2� × d�n/2��d�n/2	/2�
and the smallest sub-block is d�n/2��d�n/2	/2� × d�n/2��d�n/2	/2�. Since the size

of each sub-block is nearly-balanced compared to that of Khan et al.’s method,

the considerable number of repetitions of the CSD can be reduced. The partition

size proposed here is optimal when using the CSD-based approach to synthesize

quantum circuit. The proposed algorithm for partitioning is also efficient for

other variants of the CSD, such as a generalization of the decomposition for the

two-level quantum system as shown in Chapter 3 to the d-level quantum system.

Furthermore, the CSD-based method can produce a polynomial-size quantum

circuit for the general radix-d QFT. This is because the nested structure of the

QFT is naturally represented by means of the CSD. The result was already known

for the two-level quantum system, but the author shows for the first time that

the CSD proposed in this chapter, which is based on a different partition size

from that used in the two-level quantum system, derives a similar result for

the arbitrary d-level quantum systems. The same argument does not work for

Brennen et al.’s methods because QR decomposition is not suitable for describing

a nested structure.

This chapter is organized as follows: Section 2 introduces some preliminary

knowledge related to this chapter. Section 3 describes the previous synthesis

method for the d-level quantum system proposed by Khan et al.. Section 4

describes the proposed synthesis method for the d-level quantum system by means

of the CSD with balanced partitioning. Section 5 presents a comparison between

the proposed method and the other synthesis methods for qudits. Section 6

presents an application to the design of quantum circuits for the radix-d QFT by

44

using the proposed method. The author concludes this chapter in Section 7 with

a brief summary.

2. Preliminaries

2.1 The Uniformly Controlled Gates for the d-Level Quan-

tum System

The idea of uniformly controlled gate is also important for generalizing the synthe-

sis method into the arbitrary d-level quantum systems, where d > 2. Throughout

this chapter, a generalized notation for the uniformly controlled gate for the ar-

bitrary d-level quantum systems is used.

Definition 1 A k-fold uniformly controlled gate, denoted by ∨k
nW , is defined as

follows:

∨k
nW =

dk−1∑
j=0

|j〉〈j| ⊗Wj , = diag(W0,W1, · · · ,Wdk−1),

where W = {W0,W1,W2, · · · ,Wdk−1}, which is a set of dn−k × dn−k unitary

matrices.

The uniformly controlled gate is a sequence of controlled gates that consists of

all possible control node combinations, e.g., ∨k
nW gate defined above involves dk

controlled unitary operations, where each controlled gate has k controlled qudits

and n − k target qudits, and the unitary operations W0,W1,W2, · · · ,Wdk−1 ∈
U(dn−k) are applied according to the controlled states (see Figure 4.1).

Suppose the elementary gates in the d-level quantum system are a set of one-

qudit operations and two-qudit operations called the CINC gate and the CINC−1

gate, where the CINC gate is a generalization of the CNOT gate and the CINC−1

gate is the inverse of the CINC gate. To translate a uniformly controlled one-qudit

gate into a sequence of elementary gates, the Householder transformation [10] is

applied. Details will be shown in Section 2.2. With this translation method, a

uniformly controlled one-qudit operation can be composed of O(dn) elementary

gates.

45

0

1 2 2

2 2 2

2

1 1

1

1

10

0 0

0 0=

W0 W1 W2 W3 W4 W5 W6 W7 W8

Figure 4.1. Notation of the 2-fold uniformly controlled one-qutrit gate (d = 3),

∨2
3W , where W = {W0,W1,W2, · · · ,W8}.

2.2 Structure of Quantum Circuit for the Uniformly Con-

trolled Gates

An input matrix is translated into a sequence of uniformly controlled one-qudit

gates by using the CSD. Here, the uniformly controlled one-qudit gate is denoted

by ∨n−1
n (V). Section 2.1 showed that a uniformly controlled one-qudit gate can

be composed of O(dn) elementary gates, and that this can be proved by using the

result in [10]. This section describes the details of the structure of the quantum

circuit for a uniformly controlled one-qudit gate and show that the size of the

quantum circuit is O(dn).

In the two-level quantum system, a uniformly controlled one-qubit gate can

be composed of O(4n) elementary gates. As shown in Section 3, the structure of

the quantum circuit, which is composed of a sequence of elementary gates, for a

uniformly controlled one-qubit gate is described using Gray code ordering [37].

Here, Gray code is used to define the positions of the control qubits.

A generalization of Gray code ordering for the d-level quantum system, called

♣-sequence, was provided by Brennen et al. [10]. This is also used to define the

positions of the control and target qudits. They use this ordering in the state

synthesis algorithm. However, the method is also used to describe the structure

of quantum circuits for a uniformly controlled one-qudit gate.

For example, consider when n = 2 and d = 3. The ♣-sequence for n = 2 is

{0♣, 1♣, 2♣,♣♣}. According to this ordering, a quantum circuit as shown in Fig-

ure 4.2 is obtained. Here, let U4 be a diagonal matrix of the form diag(c1, c2, c3).

46

21

U1 U2 U3

U4

Figure 4.2. Structure of quantum circuit for a one-fold uniformly controlled one-

qutrit gate, ∨n
2V , where V = V0, V1, V2.

Input Output

CSD Translation

Quantum Circuit

Our synthesis method

dn × dn

unitary matrix
Products of block-

diagonal matrices

Circuit composed of

elementary gates

Figure 4.3. Overview of the proposed algorithm

Then, the quantum circuit corresponds to the following unitary operation:

⎛⎜⎝c1U1 0 0

0 c2U2U1 0

0 0 c3U3U1

⎞⎟⎠ .

This is a uniformly controlled one-qutrit gate ∨1
2V = diag(V0, V1, V2), where V0 =

c1U1 ∈ U(d), V1 = c2U2U1 ∈ U(d), and V2 = c3U3U1 ∈ U(d).

Similarly, a sequence of controlled unitary operations defined by ♣-sequence

ordering can realize a uniformly controlled one-qudit gate. The number of ele-

ments in the ♣-sequence is (dn − 1)/(d − 1), and the sequence is composed of

operations that act on one- or two-qudit. Thus, the number of elementary gates

used to implement a uniformly controlled one-qudit gate is O(dn). The details of

the estimation of the number of elementary gates appearing in the ♣-sequence

are described in [10].

47

2.3 The CSD-Based Approach for the d-Level Quantum

System

Figure 4.3 overviews the CSD-based approach for the arbitrary d-level quantum

systems. The input is a dn×dn unitary matrix, which corresponds to an operation

on n qudits. The output is a product of the dn×dn block-diagonal matrices, where

the diagonals are composed of d×d sub-blocks. Here, each block-diagonal matrix

corresponds to a uniformly controlled one-qudit gate, ∨n−1
n U , where U is a set of

d× d unitary matrices. Thus, an input dn × dn unitary matrix is translated into

a quantum circuit composed of uniformly controlled one-qudit gates by using the

CSD.

After that, the known translation between a uniformly controlled gate and a

quantum circuit composed of elementary gates, as mentioned in Section 2.1, is

applied.

2.4 Generalization of the CSD

As shown in Chapter 3 and Section 5, the input matrix is partitioned into four

equally sized matrices in the CSD for the two-level quantum system. A problem

arises when this approach is applied to the arbitrary d-level quantum systems

because an input dn × dn unitary matrix cannot partitioned into equally sized

sub-blocks.

Thus, in this chapter a generalized versions of the CSD are treated. Let the

input matrix G be an m × m unitary matrix composed of four sub-blocks as

follows:

G =

(m−

 G11 G12

m− G21 G22

)
,

where G is partitioned into four blocks, each size of which is × , × (m −),

(m−) × , (m−) × (m−). Here, is the partition size.

48

Let G = UDV be the CSD of G, then

U =

(m−

 U1 0

m− 0 U2

)
,

D =

⎛⎜⎝
 m− 2

 C −S 0

 S C 0

m− 2 0 0 I

⎞⎟⎠,

V =

(m−

 V1 0

m− 0 V2

)
,

where C and S are diagonal matrices of the forms C = diag(cosϕ1, cosϕ2, · · · ,
cosϕ�) and S = diag(sinϕ1, sinϕ2, · · · , sinϕ�), and I is the (m− 2)× (m− 2)

identity matrix. Note that if the input matrix G is partitioned into equally sized

blocks, then the above D does not contain I, i.e., D is a block-diagonal matrix

composed of C and S blocks. Note that D can be written in the above form (4.1),

when 2 ≤ m.

3. Previous Work

3.1 The Previous CSD-Based Method Proposed by Khan

et al.

The CSD-based approach to synthesize quantum circuits for the d-level quantum

system was first introduced by Khan et al in [30, 31]. Here, they choose the

partition size = dn−1 at each recursion level.

Algorithm 2 (Matrix partition algorithm in [31])

1. Compute n1 = �logdm�, where m is the number of rows of the target

matrix.

2. Compute = dn1−1.

49

Here, the target matrix means the matrix that the CSD will be applied to. Note

that the target matrix is a square matrix, i.e., the number of rows and the number

of columns are the same size.

Let U(m) be anm×m unitary matrix and U()⊕U(m−) be a block-diagonal

matrix of the form (4.1). Consider when d = 3 and n = 3, the algorithm proceeds

as follows:

Step 1. Compute the CSD of U(27) with the partition size 9, i.e.,

U(27) = [U(9) ⊕ U(18)] · [U(3)⊗9] · [U(9) ⊕ U(18)].

Step 2.

1. Compute the CSD of U(18) appearing in Step 1 with the partition size

9, i.e.,

U(18) = [U(9) ⊕ U(9)] · [U(3)⊗6] · [U(9) ⊕ U(9)].

2. Compute the CSD of U(9) appearing in Step 1 with the partition size

3, i.e.,

U(9) = [U(3) ⊕ U(6)] · [U(3) ⊕ U(3) ⊕ U(3)] · [U(3) ⊕ U(6)].

Step 3.

1. Compute the CSD of U(9) appearing in Step 2 with the partition size

3, i.e.,

U(9) = [U(3) ⊕ U(6)] · [U(3) ⊕ U(3) ⊕ U(3)] · [U(3) ⊕ U(6)].

2. Compute the CSD of U(6) appearing in Step 2 with the partition size

3, i.e.,

U(6) = [U(3) ⊕ U(3)] · [U(3) ⊕ U(3)] · [U(3) ⊕ U(3)].

Step 4. Compute the CSD of U(6) appearing in Step 3 with the partition size

3, i.e.,

U(6) = [U(3) ⊕ U(3)] · [U(3) ⊕ U(3)] · [U(3) ⊕ U(3)].

50

0

1 2 2

2 2 2

2

1 1

1

1

10

0 0

0 0= =

eR(ϕ1) eR(ϕ2) eR(ϕ3) eR(ϕ4) eR(ϕ5) eR(ϕ6) eR(ϕ7) eR(ϕ8) eR(ϕ9)

D

Figure 4.4. The quantum circuit corresponds to D in the CSD of G, i.e., G =

UDV , when d = 3, n = 3.

In the following steps, the decompositions of sub-matrices appearing at the

previous step are described. Here, the middle part D is always of the form

[U(3)⊗9], where

[U(3)⊗9] = [U(3), U(3), U(3), U(3), U(3), U(3), U(3), U(3), U(3)],

and it is a uniformly controlled gate, as shown in Figure 4.4, where R̃(ϕj) is a

3 × 3 unitary matrix as follows:

R̃(ϕj) =

⎛⎜⎝cosϕj − sinϕj 0

sinϕj cosϕj 0

0 0 1

⎞⎟⎠ . (4.1)

Here, j = 1, 2, 3, · · · , 9 and 0 ≤ ϕj < 2π.

In general, let n be the number of qudits, then the input matrix is a dn × dn

unitary matrix. First, the CSD is applied to the input matrix with the partition

size dn−1. Then, the smallest sub-block is of size dn−1 × dn−1 and the largest

sub-block is of size (d− 1)dn−1 × (d− 1)dn−1. Next, the CSD is applied to these

(d − 1)dn−1 × (d − 1)dn−1 sub-blocks with the partition size dn−1. After d − 1

applications of the CSD, then all sub-blocks are of size dn−1 × dn−1. In the next

step, the CSD is applied to a dn−1 × dn−1 sub-block with the partition size dn−2.

Similarly, the CSD is applied to the largest sub-block with partition size dn−2

until all sub-blocks appearing in the matrix products are of size dn−2 × dn−2.

In each d − 1 repetition of the CSD, the size of each sub-block appearing in the

matrix products decreases 1/d. Thus, to decompose a dn×dn unitary matrix into

a sequence of block-diagonal matrices, where the size of each sub-block appearing

in the matrix products is d × d, (d − 1)(n − 1) times of repetitions of the CSD

51

is required. Since the uniformly controlled gate increases exponentially in the

number of repetitions, thus the number of uniformly controlled gates appearing

in the produced quantum circuit is 2(d−1)(n−1)+1 − 1. For more details, please see

in Section 3.2.

3.2 Gate Counts for Khan et al.’s Method

This section presents an estimation of the number of elementary gates appearing

in the quantum circuit produced by the CSD proposed by Khan et al. [30, 31].

Since the translation between a uniformly controlled one-qudit gate into a se-

quence of elementary gates is the same as that used in the author’s method, the

number of uniformly controlled one-qudit gates f(n) appearing in the quantum

circuit produced by the author’s method and that of the circuit produced by

Khan et al.’s will be treated in this section.

In Khan et al.’s method, the partition size of (4.1) is chosen as = dn−1.

Then, the diagonal part D is a uniformly controlled one-qudit operation, where

each one-qudit operation is of the form⎛⎜⎝cosφj − sin φj 0

sin φj cosφj 0

0 0 1

⎞⎟⎠ .

Then, U and V in the CSD (4.1) are recursively decomposed until each sub-block

size is dn−1 × dn−1. In each step, the partition size is chosen as = dn−1. Thus,

the number of repetitions is d − 1. Then, a quantum circuit shown in the first

line in Figure 4.5 is obtained.

Let f(n) be the number of uniformly controlled one-qudit operations used to

implement an arbitrary operation on n qudits. Let an be the total number of G
(d)
j

gates appearing in the circuit at the first line in Figure 4.5. Here, the number of

B
(h)
j gates is an − 1. Then,

f(n) = anf(n− 1) + an − 1, (4.2)

where an = 2d−1 and f(1) = 1.

Let g(n) = f(n) + 1. Then,

g(n) = 2d−1g(n− 1) = 2(d−1)ng(0) = 2(d−1)n.

52

.
.
. = n-1

qudits

n-2
qudits

.
.
.

.
.
.= = ...

G
(d−1)
1

G
(d−1)
2

G
(d−1)

2d

B
(d−1)
1

B
(d−1)
1

B
(d−1)
2d−1

B
(d−1)
2d−1

2d − 1 gates

Figure 4.5. A quantum circuit obtained after d−1 repetitions of the CSD proposed

by Khan et al. [30, 31].

Thus, g(n) = 2(d−1)n and f(n) = 2(d−1)n − 1 can be bounded by O(2(d−1)n).

Since a uniformly controlled one-qudit operation can be implemented using O(dn)

elementary gates, the number of elementary gates appearing in the quantum

circuit produced by Khan et al.’s method is O(2(d−1)ndn). This can be rewrited

as O(αnd2n), where α = 2d−1/d.

4. Description of the Proposed Method

4.1 Balanced Partitioning

The main difference between the previous CSD-based approach proposed by Khan

et al. [30,31] and the proposed CSD-based approach is the choice of the partition

size.

As discussed in Section 2, the number of uniformly controlled one-qudit gates

increases exponentially in the number of repetitions. Thus, the choice of partition

size has therefore significant effect to reduce the size of the quantum circuit

produced by the CSD-based synthesis methods.

To produce a sequence of uniformly controlled one-qudit operations, the CSD

is recursively applied to each sub-block until the size of each sub-block is d × d.

53

Thus, the number of repetitions will increase as the size of sub-matrix gets large.

In other words, the number of repetitions depends on the size of the largest sub-

block in the CSD. Therefore, the best way to reduce the depth is to balance the

size of each sub-block.

As mentioned in Section 2, for the two-level quantum system, the partition

size is chosen as a half of the size of the target matrix (i.e., the matrix that will be

decomposed). In other words, the partition size is balanced at each recursion step.

However, the partition size cannot be balanced perfectly when d is not a power

of two. Consider when a dn × dn unitary matrix is decomposed, an operation on

n qudits, and the partition size is chosen as �dn/2� by following the strategy

for the two-level case. Then, the size of each sub-block at this decomposition is

nearly balanced. However, it cannot reach a d× d matrix at the bottom level of

the recursion by applying this “nearly-balanced” CSD recursively. Thus, it may

be inefficient to synthesize quantum circuits for the d-level quantum system by

applying this “nearly-balanced” CSD like the two-level case.

Considering the above discussion, the author proposes an efficient partitioning

method called balanced partitioning. The partition size in (4.1) is chosen as

follows:

Algorithm 3 (Balanced partitioning)

1. Compute n′ = �logdm�, where m is the number of rows of the target

matrix.

2. If dn′
= m then compute = d�n

′/2��d�n′/2	/2�.
3. Else compute c = m/d�n

′/2� and = d�n
′/2��c/2�.

4.2 Example

Consider when d = 3 and n = 3 and the partitioning method presented in Algo-

rithm 2 is applied. The input matrix is 27× 27 unitary matrix and is partitioned

into four sub-blocks with the partition size = 12. Then, the size of sub-blocks

U
(1)
1 , V

(1)
1 are both 12×12 and the size of U

(1)
2 and V

(1)
2 are both 15×15. Here, in

the previous method described in Section. 3.1, the size of U
(1)
1 and V

(1)
1 are both

54

1 20

= =D
B0 B1 B2 B

Figure 4.6. Gate structure of D obtained by the CSD with balanced partitioning

method, when d = 3 and n = 3.

9 × 9, and the size of U
(1)
2 and V

(1)
2 are both 18 × 18, thus the size of sub-blocks

in the proposed method are balanced compared to the previous method.

Here, the middle part D is

⎛⎜⎝
12 12 3

12 C −S 0

12 S C 0

3 0 0 I

⎞⎟⎠.
To the simplicity of the notation, consider the matrix D̃ instead of D, where D̃

is the same opeartion as D if the first and the third qudits are swapped. In other

words, let χ3
n be the SWAP operation that acts on the first and the third qudits.

Then, D̃ = χ3
1Dχ

3
1 is as follows:

D̃ = diag(B0, B1, B2),

where B0, B1, and B2 are 9 × 9 unitary matrices such that

Bj = diag(Ry(ϕ4j+1), Ry(ϕ4j+2), Ry(ϕ4j+3), Ry(ϕ4j+4), 1), j = 0, 1, 2,

where Ry(ϕj) is a 2 × 2 unitary matrix defined in (2.10). Thus, D is a 1-fold

controlled unitary two-qudit operation, as shown in Figure 4.6.

Let U(m) be anm×m unitary matrix and U()⊕U(m−) be a block-diagonal

matrix of the form (4.1). Consider the case when d = 3 and n = 3, the proposed

algorithm proceeds as follows:

Step 1. Compute the CSD of U(27) with the partition size 12, i.e.,

U(27) = [U(12) ⊕ U(15)] · [U(9) ⊕ U(9) ⊕ U(9)] · [U(12) ⊕ U(15)].

55

Step 2.

1. Compute the CSD of U(15) appearing in Step 1 with the partition size

6, i.e.,

U(15) = [U(6) ⊕ U(9)] · [U(5) ⊕ U(5) ⊕ U(5)] · [U(6) ⊕ U(9)].

2. Compute the CSD of U(12) appearing in Step 1 with the partition size

6, i.e.,

U(12) = [U(6) ⊕ U(6)] · [U(4) ⊕ U(4) ⊕ U(4)] · [U(6) ⊕ U(6)].

Step 3.

1. Compute the CSD of U(9) appearing in Step 2 with the partition size

3, i.e.,

U(9) = [U(3) ⊕ U(6)] · [U(3) ⊕ U(3) ⊕ U(3)] · [U(3) ⊕ U(6)].

2. Compute the CSD of U(6) appearing in Step 2 with the partition size

3, i.e.,

U(6) = [U(3) ⊕ U(3)] · [U(2) ⊕ U(2) ⊕ U(2)] · [U(3) ⊕ U(3)].

Here, in each step of the above, the decompositions of sub-matrices appearing

at the previous step are described. The size of the sub-block appearing in the

middle part do not seem those of operations on qudits. For example, in Step

2, 5 × 5 sub-blocks appear in the decomposition of U(15) and 4 × 4 sub-blocks

appear in the decomposition of U(12). However, by combining these sub-blocks,

i.e., by combining the decomposition described in Step 2.1 and Step 2.2 as the

decomposition of [U(12) ⊕ U(15)], then the middle part is [U(9) ⊕ U(9) ⊕ U(9)],

where each U(9) = [U(4) ⊕ U(5)], thus it is a one-fold uniformly controlled two

qudit operation.

The partition size proposed here is optimal when using the CSD-based ap-

proach to synthesize quantum circuit. Consider the above example, if U(27) is

divided into U(13) ⊕ U(14), then the size of each sub-block is approximately

balanced. However, by repeating this partitioning, the produced block-diagonal

56

matrix does not correspond to a uniformly controlled one-qudit gate. Thus, by

dividing U(27) into U(12) ⊕ U(15) is the best choice under the condition that

the produced matrices correspond to uniformly controlled one-qudit gates after

repetitions.

The number of steps, where it is 3 in the above example, denotes the number

of repetitions of the CSD. Compared to the previous approach described in Sec-

tion 3.1, the balanced partitioning method can reduce the number of repetitions.

In general, for arbitrary d and the number of qudits n, the size of the circuit is

O(n2+log2 dd2n) when d is odd, to O(d2n) when d is a power of two, and to O(nd2n)

otherwise. Here, Khan et al.’s method needs O(αnd2n), where α = 2d−1/d. For

more details, please see Section 4.3.

4.3 Estimation of Gate Counts by the Proposed Method

Suppose the input matrix is a dn × dn unitary matrix, i.e., an operation on n

qudits. The dimension of I contained in D (4.1) is

dn − 2d�n/2��d�n/2	/2� =

⎧⎨⎩d�n/2�, when d is odd;

0, when d is even,

Then, the number of sub-blocks of the form Ry(ϕj) that are contained in D is

d�n/2��d�n/2	/2�. For example when d = 3 and n = 3, there is 12 sub-block of the

form Ry(ϕj). To the simplicity of the notation, D̃ = χn
1Dχ

n
1 is used instead of

D, then

D̃ = diag(B0, B1, · · · , Bd�n′/2�−1), (4.3)

Bj =

⎧⎨⎩diag(Ry(φjs+1), Ry(φjs+2), · · · , Ry(φjs+s), 1), for odd d;

diag(Ry(φjs+1), Ry(φjs+2), · · · , Ry(φjs+s)), for even d,
(4.4)

where s = �dn−t/2� and j = 0, 1, 2, · · · , d�n′/2� − 1. Then, D corresponds to a

�n/2�-fold uniformly controlled �n/2� qudit operation when d is odd, and to a

(n− 1)-fold uniformly controlled one-qudit operation when d is even.

Let the input matrix be dn × dn, where n is the number of qudits. In the first

step, Step 2 in Algorithm 2 is proceeded. The, next �log2(d
�n/2)�−1 repetitions,

Step 3 in Algorithm 2 is proceeded. Then, all matrices corresponding to the U

57

.
.
.

.
.
.

.
.
.

.
.
.

=

.
.
.

.
.
.

=

.
.
.

.
.
.

2h1+1 − 1 gates

2h1+1 − 1 gates

G

G

t

t

n − t

n − t

(a) For odd d

(b) For even d

G
(h1)
1

G
(h1)
1

G
(h1)
2

G
(h1)
2

G
(h1)
3

G
(h1)
3

G
(h1)

2h1

G
(h1)

2h1

B
(h1)
1

B
(h1)
1

B
(h1)
2

B
(h1)
2

B
(h1)

2h1−1

B
(h1)

2h1−1

Figure 4.7. Structure of the quantum circuits (a) when d is odd and (b) when d

is even, after h1 = �log2 d
n−t� times of repetitions.

58

and V parts of the CSD are block-diagonal matrices, where the diagonals are

composed of d�n/2� × d�n/2� unitary matrices. After these repetitions, each sub-

block corresponds to an operation on �n/2� qudits or an operation on �n/2�
qudits, as shown in Figure 4.7.

Similarly, the above CSD is applied to operations on �n/2� qudits, i.e., G
(1)
j

in Figure 4.7. As described above, when d is odd, then the middle part D in

the CSD is a �n/2�-fold uniformly controlled �n/2�-qudit operation. Thus, the

CSD is also recursively applied to operations on �n/2� qudits (denoted as B
(p)
j for

j = 1, 2, 3, · · · , 2p−1 in Figure 4.7). When d is even, the recursive decompositions

for B
(p)
j ’s are not necessary because these are already one-qudit operations (d×d

matrices). This is the reason the size of the quantum circuit produced by the

proposed method depends on the properties of d.

Let n1 = �n/2�. In the first step, Step 2 in Algorithm 2 is proceeded, and the

partition size = �n1/2�. Then, the next �log2 d
�n/4�� − 1 repetitions, Step 3 in

Algorithm 2 is proceeded. After these repetitions, each sub-block corresponds to

an operation on �n/4� qudits or an operation on �n/4� qudits.

Similarly, by repeating these procedures, the size of target operations decrease

half of that in the previous steps and the procedure will repeat until the size of

target operations are one. Let hj be the number of repetitions between the j-th

applications of Step 1 in Algorithm 2 and the (j + 1)-th applications of Step 1 in

Algorithm 2, i.e., h1 = �log2(d
�n/2)� and h2 = �log2 d

�n/4�� as mentioned above.

Therefore, when the input dn × dn unitary matrix is decomposed, the number

of repetition h is as follows:

h = h1 + h2 + · · · + h�log2 dn�

= �log2 d
�n/2�� + �log2 d

�n/4�� + �log2 d
�n/8�� + · · ·+ �log2 d�,

< �log2 d
�n/2�+�n/4�+�n/8�+···+1�,

≤ �log2 d
n+log2 n�.

As discussed in Section 3.1, if the input dn×dn unitary matrix is decomposed,

(d−1)(n−1) times of repetitions of the CSD is required. Compared to the above

result, the proposed method can reduce the number of repetitions required to

decompose a dn × dn unitary matrix into a sequence of uniformly controlled one-

qudit operations.

59

An input dn×dn unitary matrix can be translated into a sequence of uniformly

controlled one-qudit operations by using the author’s synthesis method. Then,

the known translation between a uniformly controlled one-qudit operation and a

sequence of elementary gates (cf. Section 2.2) can be applied. Here, the number of

uniformly controlled one-qudit gates appearing in the quantum circuit produced

by the proposed method is estimated as follows:

Theorem 2 By using the CSD based on the balanced partitioning (Algorithm 1),

an arbitrary dn×dn unitary matrix can be translated into a sequence of uniformly

controlled one-qudit gates. The number of those gates can be bounded by

(a) O(n2+log2 ddn) if d is odd,

(b) O(dn) if d is a power of two, and

(c) O(ndn) otherwise.

Proof. Note that the partition size according to Algorithm 1 is chosen in each

step. As shown in Figure 4.7, let G
(i)
j for j = 1, 2, 3, · · · , 2i be a matrix cor-

responding to the U (or V) part of the CSD that appears after the i repeti-

tions. Let p = �log2 d
n−t�, then the size of each diagonal sub-block of G

(p)
j is

dt × dt, where t = �n/2�. Here, the produced matrix products correspond to

a quantum circuit as in Figure 4.7. The total number of ∨t
nG

(p) gates, where

G(p) = G
(p)
1 , G(p)

, · · · , G(p)
2p , is 2p = 2�log2 dn−t	. Next, the CSD is recursively ap-

plied to each dt × dt sub-block of G
(p)
j .

Let f(n) be the number of uniformly controlled one-qudit operations used to

implement an arbitrary operation on n qudits. Let an be the number of ∨t
nG

(p)

gates appearing in Figure 4.7. The number of ∨n−t
n B(p) gates is an − 1. Then,

f(n) =

⎧⎨⎩an · f (�n/2�) + (an − 1) · f (�n/2�) , for odd d;

an · f (�n/2�) + (an − 1), for even d,
(4.5)

where

an = 2�log2 dn−t	

⎧⎨⎩= d�n/2	, when d is a power of two;

< 2d�n/2	, otherwise.

60

(a) When d is odd, f(n) can be estimated as follows:

f(n) < 2anf (�n/2�) < 4d�n/2	f (�n/2�) < 4log2 ndn+log2 n = n2+log2 ddn.

Here, note that an = (logd n)(log2 d). Theorem 2(a) is therefore true.

(b) When d is a power of two, an = d�n/2	. In (4.5), let g(n) be f(n) + 1, then

g(1) = f(1) + 1 = 1;

g(n) = d�n/2	g (�n/2�) , for n > 1.

Here, the following equation follows from mathematical induction.

g(n) = dn−1, for n ≥ 1. (4.6)

The basis is trivial, since g(1) = d0 = 1. For the induction step, assume

that (4.6) holds for any integer m < n. Then,

g(n) = d�n/2	g (�n/2�) d�n/2	d�n/2�−1 = dn−1.

Thus, (4.6) holds for n as well. Since f(n) = g(n) − 1 = dn−1 − 1, f(n) is

bounded by O(dn). Theorem 2(b) is therefore true.

(c) When d is even and is not a power of two, let g(n) be f(n) + 1, then

g(1) = f(1) + 1 = 2;

g(n) ≤ 2d�n/2	g (�n/2�) , for n > 1.

Again, mathematical induction is used to prove the following inequality.

g(n) ≤ ndn, for n ≥ 1. (4.7)

The basis is trivial, since g(1) ≤ 1 · d1 = d. For the induction step, assume

that (4.7) holds for any integer m < n. Then,

g(n) ≤ d�n/2	g (�n/2�) ≤ d�n/2	 · �n/2� · d�n/2� = �n/2�dn < ndn.

Thus, (4.7) holds for n as well. Since f(n) = g(n) − 1 ≤ ndn − 1, f(n) is

bounded by O(ndn). Theorem 2(c) is therefore true. �.

Since a uniformly controlled one-qudit operation can be composed of O(dn) el-

ementary gates, the size of the quantum circuit produced by the proposed method

can be bounded by O(n2+log2 dd2n) when d is odd, O(d2n) when d is a power of

two, and O(nd2n) otherwise.

61

Table 4.1. The total number of CINC gates and CINC−1 gates appearing in the

produced quantum circuit.

d 2 3 4 5 6 7 8

n

2 36 156 440 990 1932 3416 5616

�4 �36 �72 �280 �420 �588 �784

3 346 3969 21248 78125 226800 559433 1224704

�112 �3660 �4464 �69720 �60960 �381780 �142240

4 2208 45198 396288 2175000 8841312 29143338 82280448

�308 �20088 �40824 �670320 �1563660 �4928616 �4750256

5 10432 434484 6533120 55187500 320760000 1.4 × 109 5.3 × 109

�1560 1382952 �685440 252347440 �38074200 1.0 × 1010 �3.1 × 108

6 44416 3787884 99074048 1303750000 1.1 × 1010 6.7 × 1010 3.2 × 1011

�14364 8254764 �22254984 2476305000 �3.7 × 109 �1.4 × 1011 �3.9 × 1010

7 176896 32693463 1529020416 3.2 × 1010 3.9 × 1011 3.2 × 1012 2.0 × 1013

�60960 127837404 �357389712 1.4 × 1011 �1.8 × 1011 1.1 × 1013 �2.5 × 1012

8 677376 28022687 2.4 × 1010 7.8 × 1011 1.4 × 1013 1.6 × 1014 1.3 × 1015

�125476 465572880 �2.9 × 109 8.8 × 1011 �4.2 × 1012 �9.8 × 1013 �8.0 × 1013

9 2579456 2.4 × 109 3.7 × 1011 1.9 × 1013 4.9 × 1014 7.6 × 1015 8.2 × 1016

�512040 3.1 × 1010 �4.6 × 1010 6.6 × 1014 �1.0 × 1014 8.1 × 1017 �5.2 × 1015

10 9811968 2.1 × 1010 5.9 × 1012 4.8 × 1014 1.8 × 1016 3.7 × 1017 5.3 × 1018

�2070572 1.8 × 1011 �7.3 × 1011 6.5 × 1015 �2.4 × 1015 1.1 × 1019 �3.3 × 1017

11 37580800 1.9 × 1011 9.4 × 1013 1.2 × 1016 6.3 × 1017 1.8 × 1019 3.4 × 1020

�8331312 3.2 × 1012 �1.2 × 1013 1.9 × 1017 �1.2 × 1017 4.7 × 1020 �2.1 × 1019

12 145154048 1.7 × 1012 1.5 × 1015 3.0 × 1017 2.3 × 1019 8.9 × 1020 2.2 × 1022

�66879540 1.3 × 1013 �3.8 × 1014 1.3 × 1018 �1.1 × 1019 4.4 × 1021 �2.7 × 1021

5. Comparison

The result presented here is asymptotically worse than the non-CSD approaches

proposed by Brennen et al. [10, 15] except when d is a power of two. However,

for a small number of qudits, the proposed method can produce more efficient

quantum circuits than those produced by Brennen et al.’s methods. Table 4.1

shows total number of CINC gates and CINC−1 gates appearing in the produced

quantum circuits. Here, in each cell, the upper line denotes the count obtained

using the most efficient methods from Brennen et al.’s methods, i.e., the triangle

algorithm or the spectral decomposition. The bottom line denotes the count

obtained using the author’s method. Here,
 means the count in the author’s

method is better than in the others.

As shown in Table 4.1, when d is odd, the proposed method is better than

62

the othersonly when n ≤ 4. However, when d is even, the proposed method is

better than the other methods at least when n ≤ 12. For example, the proposed

method is advantageous when n < 67 for d = 6 and n < 105 for d = 10. Since

matrix decomposition cannot treat large operations (Note that the matrix size

grows exponentially with the number of inputs of qudits), it is useful for small

number of qudits n. In such a case, the proposed method can produce the smallest

circuits compared to the others.

In addition, the CSD-based methods have an advantage in producing polynomial-

size quantum circuits for some efficient quantum computation. See, Section 6.

6. Application to the Synthesis of Quantum Cir-

cuits for the Radix-d QFT

This section presents that the CSD is useful for producing a polynomial-size

quantum circuit for the QFT. The QFT that acts on n qudits, Fn, is a dn × dn

unitary matrix such that

Fn|x〉 =
1√
dn

∑
y∈{0,1,··· ,d−1}n

ωjk
n |y〉, ωn = exp

(−2πi

dn

)
.

Here, the bit reversal versions of Fn is denoted as F̃n. Let χk
j be the SWAP

operation that acts on the j-th and the k-th qudits and let Pn = χn
n−1χ

n
n−2 · · ·χn

1 .

Then, F̃n = P †
nFnPn.

Let DΩ be a dn × dn diagonal matrix of the form

DΩ = diag(Ωd−1
n ,Ωd−2

n , · · · ,Ωn, Idn−1), (4.8)

where Ωn = diag(ωdn−1−1, ωdn−1−2, · · · , ω, 1), and Ik denotes the k × k identity

operation. Then, F̃n can be written as follows:

F̃n = (Idn−1 ⊗ F1)DΩ(F̃n−1 ⊗ I)Pn.

Claim 1 Let Im−� is the (m−)× (m−) identity matrix, σ is the × diagonal

matrix of the form diag(1,−1, 1,−1, · · ·) with alternative positive and negative

63

signs, and ρ = σ ⊗ Im−�. Then, the CSD of F̃n with the balanced partitioning

presented in this chapter is as follows:

F̃n = UDV,

where,

U = (Idn−1 ⊗ F1)DΩPn

√
ρρ̃

†
,

D =
√
ρ̃ρ,

V = P †
n(F̃n−1 ⊗ I)Pn.

Proof. This can be shown as an extension of the result for decomposing the radix-

2 QFT in Chapter 3. Here, a Lie theoretic interpretation of the CSD is applied.

As discussed in [12], the CSD is an example of the KAK decomposition in the Lie

group theory. Suppose that the input matrix G ∈ SU(m) is decomposed. Then,

the CSD can be given as follows:

G = UDV, where U,V ∈ GK and D ∈ GA.

Here, GK and GA are subgroups of SU(m) such that GA ⊂ GM and

GK = {X |X ∈ SU(m) and Θ(X) = X},
GM = {X |X ∈ SU(m) and Θ(X) = X†}.

These relations are derived from the relation between the KAK decomposition

and the Cartan decomposition. Here, Θ(X) is called the global Cartan involution,

which induces the Cartan involution θ of the Lie algebra su(m) with associated

Cartan decomposition.

In the proposed CSD, let be the partition size, then Θ(x) can be given as

follows:

Θ(x) = ρxρ, ρ = σ ⊗ Im−�, (4.9)

where Im−� is the (m −) × (m−) identity matrix and σ is the × diagonal

matrix of the form diag(1,−1, 1,−1, · · ·) with alternative positive and negative

signs.

64

Then, for F̃n, the following relations in terms of Θ are hold.

Θ(Idn−1 ⊗ F1) = Idn−1 ⊗ F1, Θ(DΩ) = DΩ.

Let ρ̃ be P †
nρPn.

The CSD can be computed in terms of the global Cartan involution. Details

of the algorithm are presented in Chapter 3 for the two-level quantum system.

According to the algorithm, a decomposition of F̃n can be computed as follows:

1. Compute M2 = Θ(F̃ †
n)F̃n.

M2 = P †
n(F̃ †

n−1 ⊗ I)ρ̃ρ(F̃n−1 ⊗ I)Pn.

2. Decompose M2 = K1A1K
†
1 such that Θ(K1) = K1 and Θ(B1) = B†

1. Then,

K1 = P †
n(F̃ †

n−1 ⊗ I)Pn,

A1 = P †
nρ̃ρPn = ρ̃ρ.

3. Compute D such that D2 = A1 and Θ(D) = D†. Thus, D =
√
ρ̃ρ.

4. Compute M = K1DK
†
1.

5. Compute K2 = FnM
†. Thus, K2 = (Idn−1 ⊗ F1)DΩ

√
ρρ̃

†
(F̃ †

n−1 ⊗ I)Pn.

6. Let U = K2K1, V = K†
1, then Fn = UDV gives the KAK decomposition.

Then, the CSD of F̃n can be written as F̃n = UDV , where

U = (Idn−1 ⊗ F1)DΩ

√
ρ̃ρ

†
Pn = (Idn−1 ⊗ F1)DΩPn

√
ρ̃ρ

†
,

D =
√
ρ̃ρ,

V = P †
n(F̃n−1 ⊗ I)Pn.

Note that the circuit of Fn is obtained by turning the circuit of F̃n upside down,

i.e., by reversing the order of qudits.

For a general dn × dn unitary matrix, both sides of the CSD, i.e., U and

V in (4.1), are uniformly controlled operations. However, in decomposition of

the QFT, these are operations that act on one-qudit F1 and on (n − 1)-qudit

65

Fn−1, respectively. Figure 4.8 shows a quantum circuit for F̃4, when d = 3 and

n = 4. Therefore, the proposed method can reduce the number of repetitions of

the recursive steps. Furthermore, the produced matrices contain some identity

operations and a sequence of conjugate operations, such as D†
ρ and Dρ.

Next, a decomposition of DΩ is considered. As shown in (4.8), DΩ can be

seen as a block-diagonal matrix, where the diagonals composed of dn−1 × dn−1

diagonal matrices.

Consider when Ωn, which is the second diagonal block of DΩ, is decomposed.

Here, Ωn can be seen as a block-diagonal matrix, with the diagonals composed of

d× d unitary matrices. Let β1 = diag(1, ω, ω2, ω3, · · · , ωd−1), then

Ωn = diag(β1, ω
dβ1, ω

2dβ1, ω
3dβ1, · · · , ωdn−2

β1),

= diag(1, ωd, ω2d, ω3d, · · · , ωdn−2

) ⊗ β1.

Similarly, the diagonal matrix diag(1, ωd, ω2d, ω3d, · · · , ωdn−2
) can be seen as

a block-diagonal matrix, with the diagonals composed of d× d unitary matrices.

Repeating this process, Ωn can be written as follows:

Ωn = βn−1 ⊗ βn−2 ⊗ · · · ⊗ β1,

βj = diag(1, ωdj−1

, ω2dj−1

, ω3dj−1

, · · · , ω(d−1)dj−1

).

Thus, the sub-block Ωn can be composed of n− 1 one-qudit operations.

The rest of the diagonal blocks of DΩ are a power of Ωn. Thus,

Ωk
n = βk

n−1 ⊗ βk
n−2 ⊗ · · · ⊗ βk

1 .

Then, DΩ is written as a sequence of controlled unitary operations. Figure 4.9

shows a quantum circuit for DΩ when d = 3 and n = 4. In general, the number

of controlled unitary operations appearing in the circuit is (d− 1)(n− 1).

Let f(n) be the number of one- or two-qudit operations used to implement

Fn. Then,

f(n) = f(n− 1) + (d− 1)(n− 1) + 1

=
1

2
(d− 1)(n2 − n) + n.

Since the number of elementary gates needed to implement a two-qudit operation

is a constant, the size of the quantum circuit for Fn is O(n2).

66

1

2

3

4

x

x

x

x

x

x

F̃4

F1

DΩ
F̃3

Figure 4.8. Quantum circuit for F̃4, when d = 3 and n = 4.

1 1 1 2 2

=

2

DΩ

β1

β2

β3

β2
1

β2
2

β2
3

Figure 4.9. Quantum circuit for DΩ in Figure 4.8.

7. Summary

The size of the quantum circuit produced by the non-CSD based approach pro-

posed by Brennen et al., is asymptotically optimal. However, the number of

two-qudit operations appearing in the produced quantum circuit by the method

is not optimal. In this chapter, a new method, which is based on the CSD, for

synthesizing quantum circuits for the d-level quantum system is proposed. To

produce efficient quantum circuits, the author introduces the new CSD based

on balanced partitioning. The proposed method can save considerable number

of two-qudit operations appearing in the produced quantum circuit, when the

number of qudits n is small. For example, when n = 2 and d = 3, the pro-

posed method can reduce the number of CINC gates appearing in the produced

quantum circuit from 156 to 36.

As described in section 4, the CSD for the two-level quantum system is suitable

for designing a polynomial-size quantum circuit for the radix-2 QFT. Similarly,

the CSD for the d-level quantum system provided in this chapter has the same

67

advantage in producing polynomial-size quantum circuits for the general radix-d

QFT.

Future directions will include improving the size of the circuit toO(d2n). In the

two-level quantum system, the quantum multiplexor decomposition [42] is useful

for reducing the number of CNOT gates. A generalization of this multiplexor

decomposition to the d-level quantum system will provide the same effect. In

addition, the CSD has some redundancy in decomposed matrices. For example,

consider the decomposition of the QFT described in Section 6. The matrices

U = (F1 ⊗ In−1)DΩD
†
ρ and D = D†

ρ have redundant (conjugate) elements D†
ρ and

Dρ. Those elements do not appear in the produced quantum circuit. Thus, it is

important to provide a simplification technique that eliminates the redundancy.

To find a novel polynomial-size quantum circuit by using the proposed synthesis

method will also be included in the future directions.

68

Chapter 5

Quantum Circuit for the AJL

Algorithm

1. Introduction

After Shor’s discovery of his celebrated quantum algorithm, new efficient quan-

tum algorithms that would be exponentially faster than any known conventional

algorithm have been sought. A natural strategy to find such quantum algorithms

is to select a concrete problem believed to be impossible to solve in polynomial

time using a conventional computer and then explore a quantum algorithm that

solves the problem in polynomial time. Although NP-complete problems were

considered to be hopeful candidates in the early stage, no efficient quantum al-

gorithm for the NP-complete problems seems to exist. Instead of NP-complete

problems, BQP-complete problems [9], which are the hardest problems in the class

of languages accepted by bounded-error quantum Turing machines in polynomial

time, have been focused on recently.

A natural (non-artificial) BQP-complete problem was found by Freedman et

al [19,20]. They proved the equivalence between quantum field theory and quan-

tum computation and consequently showed that a problem of approximating the

Jones polynomial at the fifth root of unity is BQP-complete. The Jones poly-

nomial [2, 27, 28], VL(t), is an invariant of an oriented link L and is given as a

Laurent polynomial in the variable
√
t with integer coefficients. For example,

69

L1: L2:

VL1(t) = 1, VL2(t) =
√
t(1 + t2).

It is known that the problem of computing the Jones polynomial is #P-

hard [18, 26] in conventional complexity theory. The procedure for computing

the Jones polynomial works inductively on the number m of crossings in the

given oriented link and seems to grow exponentially as m gets large. The known

algorithm for computing the Jones polynomial on a conventional computer is

O(2O(
√

m)) time when the input knot is given by a link diagram (the input length

depends on m) [41]. Another algorithm for computing the 2-variable polyno-

mial, which contains the Jones polynomial as its special case, for knots requires

O(n!m3) time [35], where the input knot is given by a closure of an n-strand braid

word of length m (thus, the input size is m log(n)). To approximate the Jones

polynomial at a certain value except for some trivial values is also considered to

be intractable on conventional computers [3, 18, 21].

A concrete quantum algorithm that approximates the Jones polynomial at

the kth root of unity was given by Aharonov, Jones, and Landau [3]. Their

algorithm will be called the AJL algorithm in this chapter. In the AJL algorithm,

an oriented link is assumed to be given as the trace or the plat closures of an

n-strand braid word of length m. Then, the complexity of the AJL algorithm is

poly(n,m, k). Although the precise order is not given in the original paper, it

can be checked that the algorithm runs in time O(mn log2 k) on an O(n+log 2k)-

qubit quantum computer. If m and k are bounded by polynomials in n, then the

algorithm is a polynomial-time quantum algorithm in the input size (in this case,

the input size is polynomial in n). The problem is still intractable on conventional

computers even under this assumption. Later, Wocjan and Yard showed that the

running time of the AJL algorithm is O(poly(m)), i.e., it depends only on the

number of crossings m [49].

In this chapter, the author focuses on the quantum circuit design that effi-

ciently performs the AJL algorithm rather than the complexity-theoretic result.

A new quantum circuit that implements the AJL algorithm in time O(mn) for

k ≥ n/2 + 1 and in time O(mk) for k < n/2 + 1 will be presented, where O(n2)

qubits are necessary to perform this method. The main idea is to change the

70

encoding scheme that assigns qubit states to every path in the path model. The

original quantum circuit comprises operations that have many control qubits,

while the proposed quantum circuit consists of operations on at most four qubits.

This means that the proposed method has an advantage in implementation. The

proposed method is useful in a practical sense, because the Jones polynomial is

known as a useful knot invariant.

This research direction is also interesting in the theoretical sense. In [29],

Jozsa stated a conjecture that “Any polynomial time quantum algorithm can

be implemented with only O(logn) quantum layers interspersed with polyno-

mial time classical computations.” Although the conjecture remains unproven in

general, Cleve and Watrous have shown that it holds for Shor’s algorithm [16].

Jozsa’s conjecture is affirmatively answered, if there exists a quantum circuit with

logarithmic depth (in the input length of poly(n)) for the AJL algorithm.

This chapter is organized as follows: Section 2 describes notations and give

some brief background about the AJL algorithm. Section 3 presents two explicit

quantum circuits for Qj based on Ref. [3] and on the author’s method. Section 4

concludes with a brief summary.

2. Preliminary

Let b be an n-strand braid. In the AJL algorithm, a knot (or a link) is given as

the trace closure or as the plat closure of b. Fig. 5.1 shows an example of the

trace closure (a) and the plat closure (b). The trace closure of the braid b is a

closed braid obtained by connecting the jth point on the top bar to the jth point

on the bottom bar, where j = 1, 2, · · · , n. The plat closure of b is a closed braid

obtained by connecting the (2j − 1)th to the (2j)th points on the top bar and

the bottom bar, respectively. The Jones polynomial is evaluated at the kth root

of unity, t = exp(2πi/k). In this case, b is presented as a unitary operation ρ(b),

which acts on the Hilbert space Hn,k. Here, Hn,k is a subspace of the Hilbert

space of dimension 2n.

The structure of Hn,k is described by paths on the graphGk, which is a straight

line graph with k− 1 vertices ordered from bottom to top beginning with one, as

shown in Fig. 5.2(a). Then, all possible n-step paths over the graph Gk starting

71

from the vertex 1 and never leave Gk are considered. These paths can be viewed

as a two-dimensional diagram, as shown in Fig. 5.2(b). All possible paths move

right along the grid line in Fig. 5.2(b) starting from (1, 1) and ending at (n,),

where 1 ≤ ≤ k − 1. Each n-step path is associated with an n-qubit state by

encoding a movement in the upper direction (the walk from vertices j to j + 1)

by |1〉 and a movement in the lower direction (the walk from vertices j to j − 1)

by |0〉. For example, the paths shown in Fig. 5.2(b), which is an eight-step path

that walks 1 → 2 → 3 → 2 → 3 → 4 → 3 → 4 → 5, is encoded as |11011011〉.
Then, Hn,k is the space spanned by all the legitimate n-step paths. A unitary

representation ρ(b) can be defined on the path model.

Let σj be a crossing between the jth and the (j + 1)th strands as

... ...
, .

... ...σj = σ−1
j =

jj j + 1j + 1 nn 11

Now, let

a = −i exp

(
πi

2k

)
, λ� =

⎧⎨⎩sin(π/k), 1 ≤ ≤ k − 1;

0, otherwise,
(5.1)

then, ρj can be defined as follows:

Definition 2 Let q be an encoded path on Gk, i.e., |q〉 is a basis state of Hn,k.

Let q|j be the first j − 1 bit string of q, q|j be the last n − j − 1 bit string of q,

and zj = zj(q) be a label of the vertex reached after q|j. Then,

ρj |q|j 00 q|j〉 = a−1 |q|j 00 q|j〉,
ρj |q|j 01 q|j〉 = α(zj ,−) |q|j 01 q|j〉+β(zj) |q|j 10 q|j〉,
ρj |q|j 10 q|j〉 = α(zj ,+) |q|j 10 q|j〉+β(zj) |q|j 01 q|j〉,
ρj |q|j 11 q|j〉 = a−1 |q|j 11 q|j〉,

where α(�,±) = aλ�±1/λ� + a−1 and β(�) = a
√
λ�−1λ�+1/λ�.

Definition 3 A unitary operation Qj, which acts on the 2n-dimensional Hilbert

space, can be defined as Qj = I⊕ρj, where I is the identity operation, which acts

on the orthogonal complement of the subspace Hn,k.

72

(a) (b)

Figure 5.1. An example of (a) the trace closure and (b) the plat closure of a

braid.

An n-strand braid b can be constructed by iteratively applying the σj (j =

1, 2, · · · , n − 1) operator. For example, the braid shown in Fig. 5.1(a) can be

denoted as σ†
1σ2σ

†
1σ3. Thus, Q(b) can be given as products of the Qj operators,

such as Q(b) = Q†
1Q2Q

†
1Q3. Let btr and bpl be closed braids obtained as the trace

closure of b and as the plat closure of b. Let m be the number of crossings in

b. The AJL algorithm is provided for the plat closure and for the trace closure,

respectively. The AJL algorithm for the plat closure can be described as follows:

Step 1. For j = 1 to poly(n,m, k), repeat the following procedure.

i. Generate a state |ψ〉 = |1010 · · ·10〉.
ii. Output a random variable xj whose expectation value is

Re〈ψ|Q(b)|ψ〉 using the Hadamard test.

Step 2. Do the same but for random variable yj whose expectation value

is Im〈ψ|Q(b)|ψ〉 using the variant of the Hadamard test.

Step 3. Let r be the average over all xj + iyj achieved in steps 1 and 2.

Compute an approximation value of (−a)−3w(bpl)d3n/2−1λ1r/η.

In the algorithm, steps 1 and 2 are done on a quantum computer and the final

step is done on a conventional computer. Here, d = −a2 − a−2 = 2 cos(π/k)

and η =
∑

� λ� dim(Hn,k,�), where Hn,k,� is the subspace spanned by all the

73

1−k

2 3 4

4

3

2

1
)1,1(

)5,8(

91=+n

)(a)(b

Figure 5.2. (a) The graph Gk and (b) the path model diagram corresponding to

Gk.

legitimate n-step paths starting from (1, 1) and ending at (n,). The writhe of

a link L, denoted by w(L), is defined as the total number of positive crossings

minus the total number of negative crossings in the given link. For the trace

closure, a path |p〉 ∈ Hn,k is chosen, where the location the path ends on (k) is

chosen according to some specific probabilities, instead of |ψ〉 and compute the

expectation values. More precisely, the input states are not chosen uniformly

at random from all possible paths, but rather the location the path ends on is

chosen according to some specific probabilities. Then, an approximation value of

the Jones polynomial can be computed by (−a)−3w(btr)dn−1r.

Aharonov, Jones, and Landau showed that an n-qubit unitary operation Q(b)

can be implemented using poly(n,m, k) elementary gates. Although the AJL al-

gorithm applies the Hadamard test (steps 1 and 2) recursively up to poly(n,m, k)

times, these recursive quantum computations can be parallelized; thus, the AJL

algorithm can be performed in time polynomial in n, m and k. For details of the

algorithm and the Hadamard test, see e.g., Ref. [3, 11].

74

3. Quantum Circuit for Implementing the AJL

Algorithm

In this section, the implementation of a unitary operation Q(b), which is an im-

portant operation in the AJL algorithm, is discussed. Here, the author studies

the implementation of Qj, which is a unitary operation corresponding to a cross-

ing between the jth and the (j + 1)th strands. Designing a quantum circuit for

Qj is sufficient for designing a quantum circuit for Q(b) because Q(b) is given

as products of elements of {Q1, Q2, · · · , Qn−1}. To compare the performance be-

tween the original quantum circuit and the proposed quantum circuit, Section 3.1

will presents the details of implementation of Qj based on the method provided

in Ref. [3]. Then, Section 3.2 provides a new quantum circuit for implementing

Qj. An example will be given in Section 3.3. Throughout the rest of this chapter,

the following notations are used.

Definition 4 Let U be a 2 × 2 unitary matrix. For x1, x2, · · · , xs, xs+1 ∈ {0, 1},
an s-fold controlled unitary operation, denoted by ∧s(U), is defined as follows:

∧s(U) =

⎧⎨⎩|x1, x2, · · · , xs〉 ⊗ U |xs+1〉, if |x1, x2, · · ·xs〉 = |2s − 1〉;
|x1, x2, · · · , xs, xs+1〉, otherwise.

Definition 5 Let Uj’s (j = 0, 1, 2 · · · , 2s −1) be 2×2 unitary matrices. A s-fold

uniformly controlled gate, denoted by ∨s(U(2)), is defined as follows:

∨s(U(2)) =
2s−1∑
j=0

|j〉〈j| ⊗ Uj = diag(U0, U1, U2, U3, · · · , U2s−1).

A uniformly controlled unitary operation was first introduced in Ref. [37] and is

regarded as a sequence of controlled unitary operations that applies Uj to the

target qubits when the target qubits are in the state |j〉.

75

l
U

・

・

・

・・・

Aml

・

・

・

・

・

・

)(

)2log(

qubitsancillary

qubitsk

1
q

3
q

2
q

1−jq

jq

1+jq

n
q

qubitsn

AmAmAm Am
†

Am
†

Am
†
Am

†

・・・

Figure 5.3. A quantum circuit for Qj .

3.1 Previous Quantum Circuit Design

In this section, the author investigates an explicit quantum circuit for Qj , which

is based on the design proposed in Ref. [3] (Claim 3.2). Let

U� =

⎛⎜⎜⎜⎝
a−1 0 0 0

0 α(�,−) β(�) 0

0 β(�) α(�,+) 0

0 0 0 a−1

⎞⎟⎟⎟⎠ = diag(a−1, R�, a
−1), (5.2)

R� =

(
α(zj ,−) β(zj)

β(zj) α(zj ,+)

)
.

Claim 2 The unitary operation Qj in Definition 3 can be implemented using

O(n log2 k) elementary gates.

Proof. Fig. 5.3 shows a quantum circuit for implementing Qj . Here, O(log 2k)

ancillary qubits are used as a counter. The counter |〉 is initially set to |1〉 and

the ∧1(Am) gate acts as follows: ∧1(Am)|qj〉|〉 = |qj〉|−(−1)qj mod 2k〉. Thus,

76

|〉 increases by one when the control qubit |qj〉 = |1〉 (a movement in the upper

direction in Fig. 5.2), and decreases by one when the control qubit |qj〉 = |0〉 (a

movement in the opposite direction in Fig. 5.2). After applying the sequence of

∧1(Am) gates, the counter |〉 equals zj .

Then, the two qubit operation U� is applied on the jth and the (j + 1)th

qubits. Since various U�’s are applied depending on the value of the counter

|〉, this operation can be regarded as ∨O(log 2k)(U�) gates, which is a sequence of

∧O(log 2k)(U�) gates as shown in Fig. 5.4(a). In practice, not all the ∧O(log 2k)(U�)

gates, where = 0, 1, · · · , 2O(log 2k) − 1, are used because the number of (= zj)’s

appearing in Qj , i.e., the number of vertices reached after the first j − 1 steps

paths in the path model diagram, is min(�j/2�, k − 1). Finally, a sequence of

∧1(A
†
m) gates is used to initialize the counter.

Here, the number of elementary gates used in the quantum circuit can be

estimated as follows: A sequence of ∧1(Am) and ∧1(A
†
m) gates can be implemented

using O(j log2 k) elementary gates because ∧1(Am) can be implemented using

O(log2 k) elementary gates [8, 48] and the number of ∧1(Am) and ∧1(A
†
m) gates

used in the circuit is 2(j−1), where 1 ≤ j ≤ n−1. Thus, the number of elementary

gates needed to implement a sequence of ∧1(Am) gates and a sequence of ∧1(A
†
m)

gates is bounded by n log2 k.

The two qubit unitary operation U� can be implemented using the two CNOT

gates and one controlled unitary gate ∧1(a · R�) as shown in Fig. 5.4(b), so the

∧O(log 2k)(U�) gate is transformed into a sequence of ∧O(log 2k)+1(X) and ∧O(log 2k)+1(a·
R�) gates, where X is the NOT gate. Thus, the ∧O(log 2k)(U�) gate can be im-

plemented using O(log2 k) elementary gates using the result in Ref. [6]. The

number of ∧O(log 2k)(U�) gates appearing in Qj is j/2 for k ≥ n/2 + 1 and k − 1

for k < n/2 + 1. Therefore, the number of elementary gates used to implement

Qj can be bounded by n log2 k. �

3.2 Proposed Quantum Circuit Design

In the previous method, an n-step path is encoded as an n-qubit state. In the pro-

posed new design, qubits are arranged at each vertex in the path model diagram.

The number of qubits required to encode n-step paths is
∑n+1

j=1 min(�j/2�, �k/2�).
If n ≤ k+1, then the number of qubits is (n/2+1)2 for even n and n2/4+3n/2+2

77

5
U

6
U

7
UU

=

j
z 4

U
3

U
0

U
1
U

2
U

l
U

=

l
Ra ⋅

1−
a

)(a)(b

Figure 5.4. Quantum circuits for (a) the uniformly controlled operation ∨3(Uj)

and (b) U�. The scalar phase factor indicated at the end of the quantum circuit

is the total phase.

for odd n. The qubits on the path are encoded as |1〉 and the rest of qubits are

encoded as |0〉. For example, for n = 8 and k > 7, |ψ〉 = |10101010〉 is encoded as

|ψ̃〉 = |110101001001000100010000〉. Here, qubits are indexed from the lower left

to the upper right beginning with one. Fig. 5.5(a) shows the initial arrangement

of qubits of state |ψ〉. Here, each circle represents a qubit. A black circle denotes

a qubit of state |1〉 and a white circle denotes a qubit of state |0〉.
Let qj be the j-th qubit in the original qubit layout and |qj〉 denotes the state

of qj . Let p(j,�) be the qubit at (j,) in the proposed qubit layout. Consider the

case that |qjqj+1〉 is |00〉, i.e., |q|j00q|j〉 in the original encoding scheme. In　 the

proposed qubit layout, |p(j,zj)p(j+1,zj−1)p(j+2,zj−2)〉 are set to |111〉 because these

qubits are on the path |q|j00q|j〉 [see Fig. 5.5(b)]. Similarly, depending on the

states of qj and qj+1, the states of some qubits around p(j,zj) on the proposed

qubit layout is determined. Fig. 5.6 shows correspondence between the original

path encodings and the state of qubits in the proposed qubit layout. Then, Qj

can be redefined as follows:

Definition 6 Let p(j,�) be the qubit at (j,) in the proposed qubit layout. Then,

Qj, which is defined in Definition 3, can be rewritten as an operation that acts

on the four qubits, p(j,zj), p(j+2,zj), p(j+1,zj−1), and p(j+1,zj+1). The state of the

qubits is denoted as |p(j,zj), p(j+2,zj)〉 ⊗ |p(j+1,zj−1), p(j+1,zj+1)〉, where the former

78

1 1

0

0

k

n + 1n + 1

zj − 2

zj − 1

zj

path: q|jpath: q|j

j j − 1 j − 2

· · · A qubit of state |0〉

· · · A qubit of state |1〉

Figure 5.5. (a) Initial arrangement of qubits of state |ψ〉 and (b) the state of

qubits corresponding to |p|j00p|j〉 in the qubit layout.

two qubits are the control qubits and the latter two qubits are the target qubits.

Q̃j |10〉 ⊗ |10〉 = |10〉 ⊗ a−1 |10〉, (5.3)

Q̃j |11〉 ⊗ |10〉 = |11〉 ⊗ (α(zj ,−) |10〉 + β(zj) |01〉) , (5.4)

Q̃j |11〉 ⊗ |01〉 = |11〉 ⊗ (α(zj ,+) |01〉 + β(zj) |10〉
)
, (5.5)

Q̃j |10〉 ⊗ |01〉 = |10〉 ⊗ a−1|01〉, (5.6)

For the rest of states of the target qubits, Q̃j acts as the identity operation.

Note that if zj = 1, ρ1 can be defined as follows:

Q̃j |10〉 ⊗ |0〉 = |10〉 ⊗ |0〉, Q̃j |11〉 ⊗ |0〉 = |11〉 ⊗ |0〉,
Q̃j |10〉 ⊗ |1〉 = |10〉 ⊗ a−1|1〉, Q̃j |11〉 ⊗ |1〉 = |11〉 ⊗ α(1,+) |1〉,

where the target qubit is p(j+1,zj+1).

79

j j

j j

q|j00q|j q|j01q|j

q|j10q|j q|j11q|j zjzj

zjzj

Control = |10〉

Control = |10〉
Target = |10〉Target = |10〉

Control = |11〉

Control = |11〉

Target = |01〉Target = |01〉

Original path
encoding

State of qubits
in the proposed model

Original path
encoding

State of qubits
in the proposed model

Figure 5.6. Correspondence between t¡he original path encoding and the state of

qubits in the proposed model.

Claim 3 The unitary operation Q̃j in Definition 6 can be implemented using

O(n) elementary gates for k ≥ n/2 + 1 and using O(k) elementary gates for

k < n/2 + 1.

Proof. Let T = diag(1, a−1, a−1, 1) and V� = diag(1, R̃�, 1), where R̃� = XR�X

(X is the NOT gate). The operation defined in (5.3) and (5.6) can be imple-

mented as a controlled unitary operation that applies T to the target qubits

(q(j,zj−1), q(j,zj+1)) when the control qubits (q(j,zj) and q(j+2,zj)) are in the state

|10〉. Similarly, the operation defined in (5.5) and (5.4) can be implemented

as a controlled unitary operation that applies Vzj
to the target qubits (q(j,zj−1)

and q(j,zj+1)) when the control qubits (q(j,zj) and q(j+2,zj)) are in the state |11〉.
Let a sequence of ∧2(T) and ∧2(Vzj

) gates that applied on the four vertices

{(j, zj), (j + 1, zj − 1), (j + 1, zj + 1), (j + 2, zj)} be B(j,zj). Then, the operation

Q̃j is replaced by a sequence of B(j,zj)’s on the subspace of the qubits spanned by

legitimate paths.

For example, consider when j = 4. Fig. 5.7 shows an image of operation B(j,zj)

in the proposed qubit layout and the quantum circuit for Q̃j for j = 4. In the

qubit layout, vertices (qubits) are indexed from the bottom-left to the top-right.

There are two qubits of length j = 4, i.e., the fifth and the sixth qubits. The

operation B(4,2) is applied on four qubits, where the controlled qubits are indexed

80

by 5 and 10 and the target qubits are indexed by 7 and 8. Similarly, the operation

B(4,4) is applied on the controlled qubits of indices 6 and 11 and the target qubits

of indices 8 and 9.

In general, the number of B(j,zj) gates used to implement Q̃j is min(�j/2�, k−
1), which is equal to the number of vertices of length j in the proposed qubit

layout, i.e., the number of vertices reached after the first j − 1 steps paths in

the path model diagram. Here, Fig. 5.8(a) shows a quantum circuit for B(j,�).

Here, P = diag(1, a−1) and R� is the single-qubit operation defined in (5.2).

The two qubit gates T and V� can be implemented using the two CNOT gates

and one single-qubit operation P (or one controlled unitary operation ∧1(R�)).

After simplifying the quantum circuit, B(j,�) can be implemented using three

∧3(W) gates and two ∧2(W) gates, where W is a single-qubit operation, e.g.,

P , R�, and X. It is known that ∧n−1(W) gate can be implemented using O(n)

elementary gates with one ancillary qubit. Therefore, the number of elementary

gates needed to implement B(j,zj) can be regarded as a constant. Thus, the

number of elementary gates used to implement Q̃j can be bounded by O(n) for

k ≥ n/2 + 1 and by O(k) for k < n/2 + 1. �

3.3 Example

As an example, consider a 4-strand braid (n = 4). Assume that k > 5, then

legitimate paths in Gk are as follows:

{|1010〉, |1100〉} ∈ Hn,k,1,

{|1011〉, |1101〉, |1110〉} ∈ Hn,k,3,

{|1111〉} ∈ Hn,k,5.

Thus, η = 2λ1 + 3λ3 + λ5. The unitary operations ρ1, ρ2 and ρ3, which work in

the basis ordered as above, are as follows.

ρ1 = diag
(
α(1,+), a−1, α(1,+), a−1, a−1, a−1

)
,

ρ2 = diag
(
R2, R2, a−1, a−1

)
,

ρ3 =
(
α(1,+), a−1, a−1, R3, a−1

)
.

81

Now, let Q̃1, Q̃2, and Q̃3 be extensions of ρ1, ρ2, and ρ3 in the proposed qubit

layout. Fig. 5.9 shows quantum circuits for Q̃1, Q̃2, and Q̃3.

Consider when a unitary representation of the braid is as shown in Fig. 5.1(a).

Since ρ(b) is obtained by ρ−1
1 ρ2ρ−1ρ3, a quantum circuit for Q̃(b) is obtained by

concatenating a quantum circuit for Q̃3, Q̃
†
1, Q̃2, and Q̃†

1 in this order.

4. Summary

In this chapter, the author presents a new method for implementing Q(b), which

is a unitary operation used to compute the Jones polynomial approximation using

the AJL algorithm. If the given n-strand braid b hasm crossings, then the original

method by Aharonov, Jones, and Landau can implement Q(b) using O(mn log2 k)

elementary gates. In the proposed method, Q̃(b) is used instead of Q(b), and Q̃(b)

can be implemented using O(mn) or O(mk) elementary gates for k ≥ n/2 + 1

or k < n/2 + 1, respectively, by arranging qubits as a two-dimensional array.

Thus, the proposed method requires O(n2) qubits, whereas the original one uses

n + O(log 2k) qubits. The proposed method has an advantage in speed if k is a

large number.

In general, the number of elementary gates used to implement Q̃(b) can be

bounded by O(mn) because O(mk) holds only when k < n/2 + 1, i.e., O(k) <

O(n). Thus, the performance does not depend on k in the proposed method. This

means that the AJL algorithm can be implemented in polynomial time when m

is bounded by a polynomial in n.

In addition, the cost of transforming a unitary operation Q(b) into a sequence

of elementary gates in the proposed method is smaller than that in the original

method. In the proposed method, Q̃j can be written as a sequence of B(j,zj)

gates, which is a sequence of controlled unitary operations, where the number of

controlled qubits is two or three. But, in the original method, Qj can be written

as a sequence of unitary operations, where the number of controlled qubits is

O(log 2k) (for the ∨O(log 2k)(U�) gate). Thus, as the number of controlled qubits

increases, it is costly to determine each rotation angle of one-qubit rotations

appearing in the decomposed quantum circuit.

82

1

2

3

4

5

6

7

8

9

10

11

12

8

1

2

3

4

5

7

2

4

1

9

6

10

11

12

8

2 3 4 5 6

· · · The �-th qubit

· · · A target qubit

· · · A control qubit

(j)

B(4,4)

B(4,2)

B(4,4)B(4,2)

V2

V4T

T

�

Figure 5.7. An image of operation B(j,zj) for j = 4 and its quantum circuit.

83

)1,1(++ lj
p

),(lj
p

＝ ＝

l
R

),(lj
B

)1,1(−+ lj
p

),2(l+j
p

T
l

V
P P

l
R

Figure 5.8. A quantum circuit for B(j,�).

3

5

7

8

9

6

5

2

4

1

5

1

2

3

4

5

6

7

8

9

S

3

5

7

8

9

6

5

2

4

1

5

1

2

3

4

5

6

7

8

9

3=j
1=j

R
3

3

5

7

8

9

6

5

2

4

1

5

1

2

3

4

5

6

7

8

9

2=j

R
2

)(a

1

1

1

1

1

2

3

P

P

)(b)(c

P

P

S

… A controlled qubit

… A target qubit

Figure 5.9. Examples of quantum circuits for (a) Q̃1, (b) Q̃2, and (c) Q̃3 in the

proposed method when n = 4 and k ≥ 5.

84

Chapter 6

Conclusion and Future Directions

In this thesis, the author describes two methods for the synthesis of quantum

circuits by matrix decomposition. One method for the synthesis of the two-level

quantum system (Chapter 3) involves the KAK matrix decomposition. Here,

a generic algorithm for computing the KAK decomposition is presented. The

KAK decomposition involves variants of decomposition, and the quantum circuits

synthesized by the author’s synthesis methods differ depending on which variant

(Cartan involution) is chosen for the KAK decomposition.

The second method is used for the synthesis of the d-level quantum system

(Chapter 4). Here, a new partitioning method termed balanced partitioning was

introduced. This method also involves the KAK decomposition, and it is based

on a divide-and-conquer strategy. The KAK decomposition is preferred in the

two-level quantum system, because it is roughly the SVD of each partitioned

matrix, where the input matrix is partitioned into four sub-blocks. However, to

apply the KAK decomposition to a dn×dn unitary matrix, the size of partitioning

is an important factor for achieving computational efficiency and a suitable size

of quantum circuits synthesized by the above methods.

Balanced partitioning results in the most appropriate partition sizes in each

step of the KAK decomposition. This method can reduce the considerable num-

ber of repetitions of the KAK decomposition in order to effectively synthesize

quantum circuit. Therefore, the method reduces the number of elementary gates

appearing in the quantum circuit synthesized by the proposed method.

The author also shows that the proposed method is useful for synthesizing

85

polynomial-size quantum circuits for the radix-d QFT, where d is any integer

greater than or equal to two. In general, to synthesize an efficient quantum circuit,

some simplification or optimization techniques are required after the proposed

synthesis method. In future, the author intends to develop such techniques.

However, it is difficult to develop efficient and effective simplification methods for

the synthesis of arbitrary quantum circuits. To synthesize quantum circuit for the

radix-d QFT, no such techniques are required, and a polynomial-size quantum

circuit is automatically synthesized. This is an advantage of the author’s synthesis

method compared to those of the other synthesis methods that involve another

matrix decomposition, such as the QR decomposition and spectral decomposition.

An interesting problem is to determine the families of unitary operators that

can be computed effectively, i.e., in polynomial time in the quantum circuit

model. Such a family of unitary operators includes the Clifford group Cn =

{U ∈ SU(2n)|UPU † ∈ Pn, ∀P ∈ Pn}, where Pn is the Pauli group Pn =

{±1,±i} · {I,X, Y, Z}⊗n for the identity matrix I and the Pauli matrices X,

Y , and Z. Any Clifford operation can be implemented by combining Hadamard

gate, phase gate, and the CNOT gate. The size of the quantum circuit is at

most O(n2/ logn) [1, 23, 39]. As already mentioned, the radix-d QFT is also an

example of the unitary operation contained in such a family. However, other

families of unitary operators that can be computed effectively is not known, and

to determine or describe the properties of such families in quantum circuit model

is still an open problem.

Since the KAK decomposition have reference to Lie group theory, the matrices

(gates) produced by the decomposition have some reference to Lie group theory.

Therefore, the proposed synthesis method can be a useful tool for describing the

properties of families of unitary operators (input unitary matrices) that can be

translated into polynomial-size quantum circuits. This is a future applicability

of the proposed synthesis method.

In Chapter 5, the author synthesizes a novel quantum circuit that executes

the AJL algorithm. The AJL algorithm approximates the problem of evaluating

the Jones polynomial at the k-th root of unity. The problem is considered to be

intractable on conventional computers. The author presents a new quantum cir-

cuit that executed the AJL algorithm in O(mn), whereas the previous quantum

86

circuit required O(mn log2 k) elementary gates and O(n + log 2k) qubits, where

m is the number of crossings and n is the number of strands of the input knot.

Thus, the result shows that the efficiency of the AJL algorithm does not depend

on k. If a logarithmic-depth quantum circuit that implements the AJL algorithm

is synthesized, the important conjecture, which states that any polynomial time

quantum algorithm can be implemented with only O(logn) (where n is the input

length) quantum layers interspersed with polynomial time conventional compu-

tations [29], can be affirmatively proved. It is an interesting future direction to

synthesize such a quantum circuit by developing the idea described in Chapter 5.

87

Acknowledgements

The author would like to gratefully acknowledge Professor Yasuhiko Nakashima

of Nara Institute of Science and Technology (NAIST) for supervising this dis-

sertation. The author would like to sincerely appreciate his continuous support,

guidance and encouragement.

The author wishes to express her gratitude to Professor Hiroyuki Seki of

NAIST for proof reading this dissertation. The author would like to sincerely

appreciate for his valuable comments and critical comments.

The author would like to especially thank Associate Professor Shigeru Ya-

mashita of NAIST (at present, who is a professor of Ritsumeikan University) for

his continuous guidance, support, and for proof reading this dissertation. The

author would also like to thank Assistant Professor Masaki Nakanishi of NAIST

(at present, who is a associate professor of Yamagata University) for his continu-

ous guidance, support, and for proof reading this dissertation. This dissertation

owes much to their thoughtful and helpful comments.

The author also like to express her appreciation to Dr. Hiroshi Nishimura and

Dr. Takayuki Yasuno of Nippon Telegraph and Telephone Corporation (NTT) for

their support and encouragement. This dissertation could not be accomplished

without their understanding.

This dissertation is based on the studies that was carried out at NTT Com-

munication Science Laboratories (NTT CS Labs.). The author would like to

express her appreciation to Dr. Yoshinobu Tonomura, Dr. Tatsuya Hirahara,

Dr. Takehiro Moriya, Dr. Eisaku Maeda, Dr. Kiyoshi Shirayanagi, Dr. Toshiharu

Sugawara, and Dr. Yoshifumi Manabe for giving her the opportunity to complete

this work at NTT CS Labs.

The author would like to express her appreciation to the members of the

89

Computing Theory Research Group of NTT CS Labs. The author would like to

especially thank Dr. Hiroshi Sekigawa and Dr. Yasuhito Kawano for their fruitful

collaborations. All this work could not be carried out without their continuous

guidance and valuable advices. The author would also like to thank Dr. Seiichiro

Tani, Dr. Yasuhiro Takahashi, Dr. Go Kato, and Dr. Ken Mano for fruitful discus-

sions and valuable advices. The author is also indebted to Dr. Fumiaki Morikoshi

of NTT Basic Research Laboratories for his valuable comments.

The author would like to appreciate Professor Akio Hosoya of Tokyo Insti-

tute of Technology, Professor Mikio Nakahara of Kinki University, Dr. Juha J.

Vartiainen, Dr. Mikko Möttönen, and Dr. Ville Bergholm of Helsinki University

of Technology for their helpful discussions and suggestions related to Chapter 3.

Also, the author would like to appreciate the helpful discussions with Associate

Professor Igor Markov of University of Michigan on several points in Chapter 4.

The author also would like to thank Assistant Professor Takashi Nakada and

the other members of NAIST Nakashima Laboratory for fruitful discussions and

helpful advices.

Finally, the author would like to thank her husband and her parents from the

bottom of her heart for continuous support and encouragement.

90

References

[1] Aaronson, S. and Gottesman, D.: Inproved simulation of stabilizer circuits,

Phys. Rev. A, Vol. 70, p. 052328 (2004).

[2] Adams, C. C.: The Knot Book: An Elementary Introduction to the Mathe-

matical Theory of Knots, W. H. Freeman & Co., New York (1994).

[3] Aharonov, D., Jones, V. and Landau, Z.: A Polynomial Quantum Algorithm

for Approximating the Jones Polynomial, Proc. of the 38th annual ACM

symposium on Theory of Computing (STOC’06), Seattle, WA, USA, pp.

427–436 (2006). quant-ph/0511096.

[4] Bacon, D., Chuang, I. L. and Harrow, A. W.: The quantum Schur transform:

I. Efficient qudit circuits. quant-ph/0601001.

[5] Bacon, D., Chuang, I. L. and Harrow, A. W.: Efficient quantum circuits for

Schur and Clebsh-Gordan transforms, Phys. Rev. Lett., Vol. 97, p. 170502

(2006).

[6] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N.,

Shor, P., Sleator, T., Smolin, J. A. and Weinfurter, H.: Elementary gates for

quantum computation, Phys. Rev. A, Vol. 52, No. 5, pp. 3457–3467 (1995).

[7] Bartlett, S. D., de Guise, H. and Sanders, B. C.: Quantum encodings in spin

systems and harmonic oscillators, Phys. Rev. A., Vol. 65, p. 052316 (2002).

[8] Beauregard, S., Brassard, G. and Fernandez, J. M.: Quantum arithmetic on

Galois Fields. quant-ph/0301163.

91

[9] Bernstein, E. and Vazirani, U.: Quantum Complexity Theory, SIAM Journal

of Computation, Vol. 26, No. 5, pp. 1411–1473 (1997).

[10] Brennen, G. K., Bullock, S. S. and O’Leary, D. P.: Efficient circuits for exact-

universal computation with qudits, Quantum Inf. Comput., Vol. 6, No. 4 &

5, pp. 436–454 (2006).

[11] Buhrman, H., Cleve, R., Watrous, J. and de Wolf, R.: Quantum fingerprint-

ing, Phys. Rev. Lett., Vol. 87, No. 16, p. 167902 (2001).

[12] Bullock, S. S.: Note on the Khaneja Glaser decomposition, Quantum Inf.

Comput., Vol. 4, No. 5, pp. 396–400 (2004).

[13] Bullock, S. S., Brennen, G. K. and O’Leary, D. P.: Time reversal and n-qubit

canonical decomposition, J. Math. Phys., Vol. 46, p. 062105 (2005).

[14] Bullock, S. S. and Markov, I.: Arbitrary two-qubit computation in 23 ele-

mentary gates, Phys. Rev. A, Vol. 68, p. 012318 (2003).

[15] Bullock, S. S., O’Leary, D. P. and Brennen, G. K.: Asymptotically optimal

quantum circuits for d-level systems, Phys. Rev. Lett., Vol. 94, p. 230502

(2005).

[16] Cleve, R. and Watrous, J.: Fast parallel circuits for the quantum Fourier

transform, Proc. of the 41st annual symposium on Foundations of Computer

Science, Redondo Beach, CA, USA, pp. 526–536 (2000). quant-ph/0006004.

[17] Deutsch, D.: Quantum computational networks, Proc. Roy. Soc. London

Ser. A, Vol. 425, pp. 73–90 (1989).

[18] Freedman, M. H.: P/NP, and the quantum field computer, Proc. Natl. Acad.

Sci., Vol. 95, pp. 98–101 (1998).

[19] Freedman, M. H., Kitaev, A. and Wang, Z.: Simulation of topological field

theories by quantum computers, Comm. Math. Phys, Vol. 227, No. 3, pp.

587–603 (2002).

92

[20] Freedman, M. H., Larsen, M. and Wang, Z.: A modular functor which is

universal for quantum computation, Comm. Math. Phys., Vol. 227, pp. 605–

622 (2002).

[21] Garnerone, S., Marzuoli, A. and Rasetti, M.: Quantum knitting, Laser

Physics, Vol. 16, No. 11, pp. 1582–1594 (2006). quant-ph/0606137.

[22] Golub, G. H. and VanLoan, C. F.: Matrix Computations, Johns Hopkins

Studies In The Mathematical Sciences, Baltimore, MD, USA, 3rd edition

(1996).

[23] Gottesman, D.: Stabilizer Codes and Quantum Error Correction, PhD The-

sis, California Institute of technology, Pasadena, CA (1997).

[24] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Aca-

demic Press (1978).

[25] Høyer, P.: Efficient quantum transforms. quant-ph/9702028.

[26] Jaeger, F., Vertigan, D. L. and Welsh, D. J. A.: On the computational

complexity of the Jones and Tutte polynomials, Math. Proc. Camb. Phil.

Soc., Vol. 108, pp. 35–53 (1990).

[27] Jones, V. F. R.: Jones Polynomial. http://math.berkeley.edu/˜vfr/.

[28] Jones, V. F. R.: A Polynomial Invariant for Knots via von Neumann Alge-

bras, Bull. Am. Math. Soc., Vol. 12, pp. 103–111 (1985).

[29] Jozsa, R.: An introduction to measurement based quantum computing,

NATO Science Series, III: Computer and Systems Sciences, Vol. 199, pp.

137–158 (2006). quant-ph/0508124.

[30] Khan, F. S. and Perkowski, M. M.: Synthesis of ternary quantum logic

circuits by decomposition. quant-ph/0511041.

[31] Khan, F. S. and Perkowski, M. M.: Synthesis of multi-qudit hybrid and d-

valued quantum logic circuits by decomposition, Theoretical Computer Sci-

ence, Vol. 367, No. 3, pp. 336–356 (2006).

93

[32] Khaneja, N., Blockett, R. and Glaser, S.: Time optimal control in spin

systems, Phys. Rev. A, Vol. 63, p. 032308 (2001).

[33] Khaneja, N. and Glaser, S.: Cartan decomposition of SU(2n), constructive

controllability of spin systems and universal quantum computing, Chem.

Phys., Vol. 267, pp. 11–23 (2002).

[34] Knapp, A. W.: Lie Groups Beyond an Introduction, Brikhäuser, 2nd edition

(2005).

[35] Morton, H. R. and Short, H. B.: Calculating the 2-variable polynomial for

knots presented as closed braids, Journal of Algorithms, Vol. 11, pp. 117–131

(1990).

[36] Möttönen, M. and Vartiainen, J. J.: Decompositions of general quantum

gates. quant-ph/0504100.

[37] Möttönen, M., Vartiainen, J. J., Bergholm, V. and Salomaa, M.: Quantum

circuits for general multiqubit gates, Phys. Rev. Lett., Vol. 93, No. 13, p.

130502 (2004).

[38] Möttönen, M., Vartiainen, J. J., Bergholm, V. and Salomaa, M.: Transfor-

mation of quantum states using uniformly controlled rotations, Quantum.

Inf. Comput, Vol. 5, pp. 467–473 (2005).

[39] Nielsen, M. A. and Chuang, I. L.: Quantum Computation and Quantum

Information, Cambridge University Press, New York, NY, USA, 2nd edition

(2000).

[40] Savage, C.: A survey of combinatorial Gray codes, SIAM Review, Vol. 39,

No. 4, pp. 605–629 (1997).

[41] Sekine, K., Imai, H. and Imai, K.: Computation of Jones polynomial (In

Japanese), Transactions of the JSIAM, Vol. 8, No. 3, pp. 341–354 (1998).

[42] Shende, V. V., Markov, I. L. and Bullock, S. S.: Synthesis of quantum logic

circuits, IEEE Trans. on Computer-Aided Design, Vol. 25, No. 6, pp. 1000–

1010 (2006).

94

[43] Shor, P. W.: Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer, SIMAM J. Comput, Vol. 26, No. 5, pp.

1484–1509 (1994).

[44] Svore, K. M.: Compiling quantum circuits into elementary unitary opera-

tions (2004). QIP2004, Waterloo, Canada.

[45] Tucci, R.: Quantum fast Fourier transform viewed as a special case of recur-

sive application of Cosine-Sine decomposition. quant-ph/0407010.

[46] Tucci, R.: A rudimentary quantum computer. quant-ph/9902062.

[47] Vartiainen, J. J.: Unitary Transformations for Quantum Computing, PhD

Thesis, Helsinki University of Technology, Espoo, Finland (2005).

[48] Vedral, V., Barenco, A. and Ekert, A.: Quantum networks for elementary

arithmetic operations, Phys. Rev. A, Vol. 54, No. 1, pp. 147–153 (1996).

[49] Wocjan, P. and Yard, J.: The Jones polynomial: quantum algorithms and

applications in quantum complexity theory (2008). quant-ph/0603069.

[50] Zilic, Z. and Radecka, K.: Scaling and better approximating quantum Fourier

transform by higher radices, IEEE Transactions on Computers, Vol. 56,

No. 2, pp. 202–207 (2007).

95

List of Publications

Journal Papers

1. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: A new algorithm

for producing quantum circuits using KAK decompositions, Quantum Infor-

mation & Computation, Vol. 6, No. 1, pp. 67–80 (2006). quant-ph/0509196

2. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: Efficient quan-

tum circuits for approximating the Jones polynomial, Quantum Information

& Computation, Vol. 8, No. 5, pp. 489–500 (2008).

3. Yumi Nakajima, Yasuhito Kawano, Hiroshi Sekigawa, Masaki Nakanishi,

Shigeru Yamashita, and Yasuhiko Nakashima: Synthesis of quantum cir-

cuits for d-level systems by using cosine-sine decomposition, Quantum In-

formation & Computation, Vol. 9, No. 5 & 6, pp. 423–443 (2009).

Conferences and Workshops (Refereed)

1. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: An algorithm for

generating quantum circuits using the Khaneja-Glaser decomposition, The

Eighth Workshop on Quantum Information Processing (QIP2005), Cam-

bridge, MA, USA (2005).

2. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: An algorithm

for decomposing unitary matrices using Cartan decomposition, Conference

on Applications of Computer Algebra (ACA2005), Nara, Japan (2005).

97

3. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: A new algorithm

for producing quantum circuits using KAK decompositions, The Nineth

Workshop on Quantum Information Processing (QIP2006), Paris, France

(2006).

4. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: A quantum cir-

cuit for approximating the Jones polynomial of the plat closure, The Tenth

Workshop on Quantum Information Processing (QIP2007). Brisbane, Aus-

tralia (2007).

5. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: Synthesis of

quantum circuits for d-level systems, Asian Conference on Quantum In-

formation Science (AQIS2007), pp. 135–136, Kyoto, Japan (2007).

6. Yumi Nakajima, Yasuhito Kawano, Hiroshi Sekigawa, Masaki Nakanishi,

Shigeru Yamashita, and Yasuhiko Nakashima: Synthesis of quantum cir-

cuits for d-level systems using KAK decomposition, The Eleventh Workshop

on Quantum Information Processing (QIP2008), NewDelhi, India (2007).

Conferences and Workshops (Not Refereed)

1. Yumi Murakami, Yasuhito Kawano, and Hiroshi Sekigawa: Generating Quan-

tum Circuits using Cartan Decomposition, The Tenth Quantum Informa-

tion Technology Symposium (QIT10), pp. 123–126 (2004). (In Japanese)

2. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: Design automa-

tion for quantum circuit using Cartan decomposition, Workshoop on Quan-

tum Computing 2005 – Algorithms, Physical Realizations and Beyond,

Kinki University –, Osaka, Japan (2005).

3. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: A quantum cir-

cuit for approximating Jones polynomial, The Fifteenth Quantum Informa-

tion Technology Symposium (QIT15), pp. 170–173 (2006). (In Japanese)

98

Review Articles

1. Yumi Nakajima, Yasuhito Kawano, and Hiroshi Sekigawa: Quantum Cir-

cuit Design, Information Processing Society of Japan (IPSJ) Magazine,

Vol. 47, No. 12, pp. 1335–1340 (Dec. 2006). (In Japanese)

99

