
NAIST-IS-DD0661022

Doctoral Dissertation

Enhancing End-System Capabilities on the Internet
with a Large-Scale Observational Approach

Kenji Masui

January 29, 2009

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Kenji Masui

Thesis Committee Members:

Suguru Yamaguchi (supervisor)
Professor, Nara Institute of Science and Technology

Hideki Sunahara
Professor, Nara Institute of Science and Technology

Hiroshi Esaki
Professor, The University of Tokyo

Youki Kadobayashi
Assosicate Professor, Nara Institute of Science and Technology

Enhancing End-System Capabilities on the Internet
with a Large-Scale Observational Approach*

Kenji Masui

Abstract

This dissertation focuses on a new paradigm of network measurement, called application-
oriented measurement, which intends the enhancement of end-system capabilities by collect-
ing and providing network characteristics information on the Internet. The Internet provides an
easy-to-use pipe for the communication between end systems, concealing the complicated struc-
tures and characteristics of its internal components. Such a design principle, so to say that dumb
networks simply connect intelligent end systems, has proven its success in the scalable deploy-
ment of the Internet, and should be kept in the future. However, asmodern network applications
running on end systems (e.g., peer-to-peer applications) involvemore nodes and networks, they
come to realize that the information on network characteristics is indispensable for sustaining
and scaling up their services according to the dynamic state of the involved entities. Since the
current Internet architecture does not have a mechanism for explicitly providing such informa-
tion to end systems, these applications have been experiencing diculties in grasping the state of
the Internet. For supportingmore flexible activities of network applicationswith keeping the de-
sign principle above, we choose an approach of the large-scale Internet observation for collecting
network characteristics information for the applications.

The ultimate goal of our study is the actual deployment of a network service of application-
oriented measurement. Towards this goal, we mainly contribute in the following three topics:
measurement platform,measurementmethodology, and its application. Wefirst explore the fun-
damental requirements of application-orientedmeasurementwith referring the kinds of network
characteristics required by existing and future large-scale applications. Considering these re-
quirements, we design and implement an application-oriented measurement platform (AOMP),
which forms an overlay network for measurement activities, as a case study. We validate its fea-
sibility by the performance evaluation on actual networks and the demonstration of an applica-
tion that utilizes our AOMP. Additionally, we implement an algorithm for the network topology
discovery in a cooperative manner named Doubletree on this platform, and investigate its ad-
vantages for the large-scale Internet observation. Through these research and experiments, we
finally lead a comprehensive discussion about our contribution, related work, and open issues
for the ultimate goal.

Keywords:

Internet observation, network measurement, peer-to-peer network, application-oriented mea-
surement platform, cooperative measurement methodology.

*Doctoral Dissertation, Department of Information Processing, Graduate School of Information Science, Nara In-
stitute of Science and Technology, NAIST-IS-DD0661022, January 29, 2009.

Acknowledgements

This dissertation is a milestone for my research project on the Internet observation. Since its
launch at Nara Institute of Science and Technology (NAIST) in 2005, a lot of people have kindly
given help, support and guidance inmy doctoral work, and I could never have reached the current
stage without them. I would like to acknowledge these people here.

First, I wish to express my gratitude to my mentor, Dr. Suguru Yamaguchi, for his energetic
encouragement, depthful insights, and generosity. His presence really encouraged me to be en-
gaged in the research of the Internet and networking technology. I also wish to express my grat-
itude to another mentor, Dr. Youki Kadobayashi, for his excellent guidance, providing me with
research opportunities and environments, and showing his researcher’s spirit. I learned much
from him in logical thinking, scientific writing, being confident in my work, and so on. I would
like to thank my committee members, Dr. Hideki Sunahara and Dr. Hiroshi Esaki, for their help-
ful support in the improvement of this dissertation. Their comments and suggestions brought a
broader point of view on me.

I warmly thank the faculty members of Internet Engineering Laboratory (IPLab) at NAIST:
Mr. Takeshi Okuda, Dr. Shigeru Kashihara, and Dr. Hiroaki Hazeyama, for their guidance on my
research activities. I would like to thank the past and present IPLab members, with whom I
spent a stimulating laboratory life. The precious experience for four and a quarter years at IPLab
is unforgettable and cannot be gained elsewhere.

During my stay in Paris in 2006 as an exchange student in the CNRS-WIDE collaboration
project, Dr. Timur Friedman at Laboratoire d’informatique de Paris 6 (LIP6), Université Pierre et
Marie Curie (UPMC) in France, and Dr. Kavé Salamatian at Lancaster University in the United
Kingdom (he was formerly a member of LIP6, too), supported both my research activities and
daily life in Paris. I wish to thank these two mentors, and other students and stas who met
through this project as well. Moreover, I would like to send a note of gratitude to Dr. Kenjiro
Cho at Internet Initiative Japan (IIJ) for arranging the student exchange program as a leader of
the measurement team in the project.

I am truly indebted to Dr. Olivier Bonaventure and Dr. Benoit Donnet, who kindly invitedme
to aone-month research collaborationwith their researchgroup, IPNetworkingLab atUniversité
catholique de Louvain (UCL) in Belgium. I would also like to thank other members for fruitful
collaboration and discussion.

A part of my research activities was supported by the following programs: Strategic Inter-
national Cooperative Program by Japan Science and Technology Agency (JST), Creative and In-
ternational Competitiveness Project (CICP) 2007 by NAIST, and Research Fellowship for Young
Scientists by Japan Society for the Promotion of Science (JSPS). Thanks to the parties concerned
in the respective programs.

I cannot conclude this dissertation without my appreciative words for the chefs and stas of

Tentenyu, a ramen restaurant located at Ichijoji, Kyoto. Their ramen has been a building block of
me for nearly a decade, of course longer than the period of my research activities. It has been a
place of relaxing and rechargingmy batteries. I only regret that they don’t yet have any restaurant
in Tokyo.

Finally, my very special thanks to my family. I’m here now, thanks to you.

January 29, 2009

i

Contents

1 Introduction 1
1.1 The Internet and the End-to-End Principle . 1
1.2 The Rise of Autonomic Network Applications . 3
1.3 A Boundary of End-System Capabilities on the Current Internet 6
1.4 How Should We Support the Autonomic Applications? 7
1.5 Positions and Contributions . 8
1.6 Organization of this Dissertation . 9

2 Application-Oriented Measurement Platform 11
2.1 Network Characteristics Information . 11
2.2 Internet Observation . 13
2.3 Application-Oriented Network Measurement . 15

2.3.1 Requirements from Autonomic Applications 15
2.3.2 Summary of the Requirements . 19

2.4 Designing an Application-Oriented Measurement Platform 20
2.5 Summary . 23

3 N-TAP: An AOMP Built on a Role-Based P2P Network 25
3.1 Design Choices . 25

3.1.1 Concepts . 26
3.1.2 Architecture . 27
3.1.3 Correspondence to the AOMP Design . 29
3.1.4 Measurement Network Models . 30
3.1.5 Implementation and Experience . 32
3.1.6 Reasons for Using a Role-Based Peer-to-Peer Network as a Measurement

Network . 38
3.2 Performance Evaluation of the Core Network . 38

3.2.1 Measurement Overlay Network . 39
3.2.2 Local Database . 40
3.2.3 Shared Database and Communication Channels 41

3.3 Performance Evaluation of the overall N-TAP Network 43
3.3.1 Experiment . 43
3.3.2 Evaluation . 45

3.4 Discussion . 50
3.5 Related Work . 52

3.5.1 Cooperative Measurement . 53

3.5.2 Measurement Platforms . 53
3.6 Summary . 54

4 Unleashing a Cooperative Measurement Methodology 57
4.1 Background . 57
4.2 DTM Systems Requirements . 59

4.2.1 Control Plane . 59
4.2.2 Data Plane . 60

4.3 Design and Implementation . 60
4.3.1 Global View of DTS . 60
4.3.2 Control Plane . 63
4.3.3 Data Plane . 64
4.3.4 Adaptation to N-TAP . 64

4.4 Evaluation . 65
4.4.1 Flexibility . 65
4.4.2 Robustness . 71
4.4.3 Scalability . 75
4.4.4 Modularity . 76
4.4.5 Revisit the Global Requirements . 76

4.5 Related Work . 76
4.6 Summary . 77

5 Towards the Deployment of an Application-Oriented Measurement Service 79
5.1 Reviewing the Fundamental Requirements . 79

5.1.1 Responsiveness . 79
5.1.2 Accuracy . 81
5.1.3 Coverage . 81

5.2 Enhancements of End-System Capabilities . 82
5.3 Deployment Scenarios . 82
5.4 Open Issues . 85

5.4.1 Fault Tolerance . 85
5.4.2 Unimplementable Measurement Methodologies 85
5.4.3 Incorrect Network Characteristics Information 86
5.4.4 Actual Utilization from a Real Autonomic Application 86

5.5 Future Direction . 86

6 Conclusions 89

Bibliography 91

iii

List of Figures

1.1 Designs of computer network. 2
1.2 Application’s autonomy. 4
1.3 Recovery from path failure with the aid of a data forwarder. 4

2.1 An application-oriented measurement platform as a service provider. 21
2.2 Building blocks of an application-oriented measurement platform. 21

3.1 Relationships among the entities that appear in N-TAP. 28
3.2 Architecture of an N-TAP agent . 29
3.3 Correspondence between an N-TAP agent and the AOMP components. 29
3.4 Horizontal division approach of the AOMP functions. 30
3.5 Components in the measurement network and relationships among them. 31
3.6 Algorithm for data storage. 32
3.7 Algorithm for collecting network characteristics information. 34
3.8 Measurement network formations with the scheme of core and stub agents. . . . 36
3.9 Example of request and response messages for obtaining RTT data. 37
3.10 Turn around time for the requests of finding a responsible agent. 39
3.11 Turn around time for handling a local database. 40
3.12 Turn around time for handling the shared database. 41
3.13 Fairness of the distribution of data entries. 42
3.14 Distribution of exchanged messages among 128 N-TAP agents 46
3.15 Number of exchanged messages. 47
3.16 Turn-around time for a measurement request. 49

4.1 Relationship between information shared among DTS monitors. 60
4.2 DTS and the dedicated DHTs. 61
4.3 DTS’ control plane. 62
4.4 Implementation of DTS on N-TAP. 65
4.5 Average time for probing and the number of probing in the case of respective sets

of monitors. 68
4.6 Distribution of the contribution values. 70
4.7 Required time for retrieving one chunk from PT DHT. 72
4.8 Impact of the failure of monitors and the chunk size on the number of probes. . . 74

5.1 Deployment scenario: pure End-system-based service. 83
5.2 Deployment scenario: ISP-supported core agents. 84

v

List of Tables

2.1 Instances of network characteristic information. 12

3.1 Required time for the procedures. 50
3.2 Considerable cases on utilizing N-TAP with the “local-first and remote-last” rule. . 51

4.1 Contribution index. 69

1

Chapter 1

Introduction

The Internet has evolved together with a ton of appealing network applications and services.
Since its first appearance in the 1980s, the Internet has continued to become larger and more
casual. In the beginning, it was a communication network only for the particular groups of peo-
ple like academia and military personnel, however, today it provides universal communication
for people throughout the world. After the success of the popularization of the Internet in the
1990s, we have seen lots of interesting Internet-based services and communication among peo-
ple on the services, even though it was an event in a few decades. Electronic mail (email) and
content distribution on World Wide Web (WWW) are traditional but still fundamental appli-
cations for most people. Additionally, the recent improvement of network environments has
brought the rise of new services such as media streaming, peer-to-peer file sharing and multi-
person audio/video conference. These applications, which make the Internet vivid, energetic,
and amusing, basically provide their services by the interaction between end systems, on which
users reside. The Internet is just a pipe without the applications.

Our study described in this dissertation supports such activities by the end systems with an
approach of large-scale network measurement. What if existing applications get a hint for better
performance and stability? Or what if a new application is struggling with the realization of its
innovative service on the Internet? Our answer is “knowledge is power.” Letting the applications
know more about the state of the Internet, we expect the improvement of existing applications
and the emergence of novel applications. And one of the ways for acquiring such knowledge
is the network measurement at the Internet scale. We focus on how to collect and provide the
knowledge on the Internet for enhancing the capabilities of applications running on end systems.
Put simply, we believe that an observation satellite for the Internet can bring the change in the
potential of the Internet.

1.1 The Internet and the End-to-End Principle

Why has the Internet succeeded in its large-scale deployment? One of the reasons lies in its
design principle. Before talking about the current trend of large-scale network applications, we
start with referring to the design of the underlying network.

For thedesignof computer network, there exist two contrastingmodels; one is dumbnetwork
and the other is intelligent network, as respectively depicted in Figures 1.1(a) and 1.1(b). The
word “intelligence” heremeans a capability of processing network trac and controlling network
structure more than just transmitting trac from point to point. In the model of dumb network,

2 Introduction 1.1

Network (as a pipe)

Service provider User

interact

(a) Dumb network

Network (as a service provider)

User interact

interact

Network facility

(b) Intelligent network

Figure 1.1: Designs of computer network.

a network itself has little intelligence and is kept simple. Therefore, the network dedicates itself
to the transmission of network trac, and basically does nothing other than that. From the end
system’s view, the dumb network looks like a pipe that just carries user trac as they desire, and
two end systems are directly connected through the network and can interact between them, as
shown in the figure. They also have tomanage to coordinate among other end systems explicitly
or implicitly in case of sharing the network resource (and theymay even have a power to corrupt
the network). On the other hand, in themodel of intelligent network, a network doesmore than
that if needed; providing application services, managing resource allocation voluntarily, estab-
lishing a special route for the trac from prioritized customer, blocking bad users automatically,
and so on. Under the centralized management by the intelligent network, a burden on end sys-
tems is generally lighter than that in the case of the dumb network; because some tasks such as
resource allocation can be handled within the intelligent network. In the complete intelligent
network, the network works as a service provider or a gateway for destination, and makes the
coordination of all components in the network, hence, an end system, which is basically dumb,
does not directly interact with other end systems but interact via the network, as shown in the
figure.

The Internet, which is one of the operational computer networks, was designed based on
the “end-to-end principle [1].” This principle states that a communication system and its proto-
cols should be designed as the processes involved in communication are done at end systems
rather than intermediate components as possible. The idea can be clearly found in the Internet
protocol suite, or TCP/IP. IP (Internet Protocol) [2] is a protocol which essentially provides a fea-
ture of the point-to-point transmission of network trac, or packets in other words. Meanwhile,
TCP (Transmission Control Protocol) [3] has more intelligent features such like error detection,
retransmission, and flow control. In the Internet, networks handle only the IP, and TCP and
other higher-layer protocols are implemented only on end systems; i.e., the Internet assumes
that the networks are dumb and the end systems are intelligent. As just described, the choice of
the Internet is the model of dumb network, naturally resulting from its design principle.

Eventually, the end-to-end principle contributed in the large-scale deployment of the Inter-
net. The simplicity of networks and the decentralization of intelligence among end systems have
proven that this principle can apply to a design of an operational network. Moreover, the Inter-

1.2 Introduction 3

net looks simple to end systems, because it provides an easy-to-use and operational function of
packet transmission. End systems do not have to care what and how the internal components of
the Internet are, but just have to throw their packets to the network. Such a convenient pipe is
attractive enough for end systems and they can concentrate on constructing their services.

Actually, the current Internet adopts a hybrid model of the dumb and intelligent network
models. For example, some ISPs (Internet Service Providers)will restrict the available bandwidth
for the flows from some applications by identifying them from user trac. Or we can see a lot of
firewalls and load balancers, which inspect the headers of transmission protocols and payloads,
on actual networks. However, we can say that the Internet has continued to grow prioritizing the
end-to-end principle, because these intermediate systems usually perform additional processes
for packet transmission, and an end system still does the interaction among other end systems as
a service provider or a consumer. On the other hand, we come to see that some researchers have
begun to explore an architecture of new generation network [4, 5]. They sometimes mention
that we should once discard the current design of the Internet and reconstruct it with a clean-
slate approach or an intelligent network approach. However, this trend cannot be immediately a
negative stu against the end-to-end principle, because there does not yet exist another design
principle that excels the current one in terms of the actual deployment. The end-to-end principle,
whose success was proven by the history of the Internet, will be worth of being kept in the future
Internet.

1.2 The Rise of Autonomic Network Applications

As the Internet grows larger, applications running on end systems have also become more var-
ious in their forms and purposes. Especially, one of the big transitions is the rise of autonomic
network applications. Reviewing the transition from traditional applications to autonomic ones,
we summarize the autonomy of network applications in this section.

Traditional network applications, such as email andWWW, work under the rules of the clear
division of roles and the disinterest towards networks. This matter is depicted in Figure 1.2(a).
The first rule means that the infrastructure for the application’s service is relatively fixed and the
roles of involved nodes are preliminarily defined. This manner is often referred to as the client-
server model. In the case of WWW, an HTTP (Hypertext Transfer Protocol) [6] server is usually
placed at the side of a service provider, and a user behaves as a client by accessing to the server
from start to end. The second rule means that servers and clients do not care how the intermedi-
ate network carries their packets, as presented in the explanation of dumbnetwork in Section 1.1.
Actually these applications do not know the structure or characteristics of the internal compo-
nents of the Internet like nodes and links, but try to send their application messages only by
specifying destinations. This is the most simple manner of utilizing the Internet as a universal
communication platform.

On the other hand, we have seen the rise of the network applications that involvemore com-
plicated autonomic procedures for several years [7]. An autonomic network application decides
its future behavior according to the structure and status of networks. We show some cases that
indicate the autonomy of network applications. For the content distribution on the Internet, if
multiple nodes (suppliers) have same content wanted by a node, the node can select a supplier
basedon themeasurement result of thebandwidthbetween thenode and suppliers so as tofinish
downloading the content faster (shown in Figure 1.2(b)). Or if the application finds that a path

4 Introduction 1.2

Client

access

Server?
The nodes do not care the inside.

Content

(a) Traditional client-server application

The nodes grasp the network and
decide their actions.

End node
Download from
the fastest node.

Content

(b) Autonomic application

Figure 1.2: Application’s autonomy.

Forwarder

Source Destination
A

B (down)

C

D

E

F

☠
Figure 1.3: Recovery from path failure with the aid of a data forwarder.

1.3 Introduction 5

from itself to a destination node is not working well for a reason that a part of the path is broken,
it will try to send a message to other node and ask it to forward the message to the destination
node. If the paths from the source to the forwarder and from the forwarder to the destination do
not contain the broken path, the message will be sent successfully. This behavior can be simply
explained with Figure 1.3. The source node in the figure tries to send some packets from itself to
the destination, and the packets traverse the links A, B and C on the IP network. When the link
B fails, the source will sense the failure by some anomalies like the drops of TCP ACK packets
from the destination, and try to find an alternative path for delivering packets to the destination
node. If the source node has a cooperative node that forwards received packets to another node
(usually called a forwarder) and the source knows the IP topology among the source, destination
and forwarder nodes, the source can findwhether its packets can be deliveredwith help from the
forwarder. In the case of the figure, if the path from the source to the forwarder is A–D–E and
the path from the forwarder to the destination is E– F–C, the packets from the source can be
delivered via the forwarder even if the link B is down because such a path, i.e., A–D–E–F–C,
does not contain the link B. Even though the IP network itself often tries to recover from the
path failure with IP dynamic routing protocols such as OSPF [8], such a procedure usually takes
a considerable amount of time for the convergence of IP network paths (usually from several
minutes to a few hours). The autonomic applications do not need to wait this convergence but
can immediately take an action with the knowledge of underlying networks. Another example
of autonomic behaviors is These actions are often seen in the research of large-scale peer-to-peer
network applications, with which end nodes aggressively interact each other.

These applications do not necessarily have the same characteristics as the traditional ones
stated above, because the autonomic applications have dynamism on their behavior rather than
that the traditional ones work statically. For example, in peer-to-peer network applications, a
node can be both a client and a server, and its role dynamically changes. In such a situation, the
infrastructure for these services cannot be fixed and end users and their systems can also be a
part of the infrastructure. Additionally, the Internet is not just a pipe for these applications. For
the autonomic actions described above, the applications have to know the status of the Internet,
such as available bandwidth and link failure. That is, beyond the naive utilization of the Internet,
these applications behave in sophisticated ways for more attractive and complicated purposes.

Here we define the term “network characteristics” for further discussion. Network character-
istics indicate the information that characterizes network elements, such as a node and a link.
The typical instances of the network characteristics information include IP-level network topol-
ogy, round-trip time (RTT) of the communication between two nodes, and the number of an
AS to which a node belongs. As stated in Section 1.2, the network characteristics information is
utilized by the autonomic applications as the criteria for their behavior. The detail of network
characteristics will be described in Section 2.1.

In the future, more autonomic applications will appear on the Internet and they will serve
attractive and innovative services that cannot be realized by existing applications. For supporting
these services, the Internet will be expected to be more powerful in its performance and have a
supportive service for the applications.

6 Introduction 1.4

1.3 A Boundary of End-System Capabilities on the Current Internet

Even though the network characteristics information is indispensable for the autonomic applica-
tions as stated in Section 1.2, these applications have been experiencing diculties in obtaining
such information. This situation canbeunderstood from the fact that a lot of researchers aremak-
ing eorts in the field of the application’s autonomy [9, 10, 11] by the theoretical verification and
simulation experiments but these results are seldom implemented on actual applications. More
precisely, existing autonomic applications sometimes performs the simple measurement of the
network characteristics information such as RTT, and utilize it for the decisions of their behav-
iors, but there is disjunction between the researches and the applications. The researches on the
autonomy of applications often insists that the applications can be improved given that the tar-
get network characteristics information can be obtained, that is, how to obtain these information
is left. The applications do not know how to collect the information, or know how dicult the
collection is, so the research results are hardly reflected to the applications.

This is because the Internet itself does not provide amechanismwhich explicitly informs end
systems of such information. When an end system communicates on the Internet, it usually uses
a simplified interface like a network socket, which is implemented on most of the modern op-
erating systems. The socket is easy-to-use because an end system can communicate with other
systems only by specifying destination addresses, however, such a simplified interface conceals
the structure and characteristics of the internal components of the Internet, or the network char-
acteristics information, at the same time. For instance, in case where an application running on
an end system establishes a TCP connection between another node with a socket, what the ap-
plication has to know is only the destination IP address and port number. The application does
not (and basically cannot) know the complicated structure of the overall Internet, or even does
not know what kind of intermediate nodes there are on the path.

Under such a trade-o between simplicity and informativeness, the most common interface
adopts the side of simplicity. According to the design principle of the Internet, the current sit-
uation is a natural result. Networking, or transmitting packets is an explicit role for networks,
not end systems, on the Internet. Under this circumstance, a socket is the simplest interface that
works with a few kinds of identifiers, i.e., a node’s address and a port number. Its minimum
functionality is good enough from a perspective of functional partition in system design, and has
surely supported the deployment of traditional applications.

However, considering the continuous growth of the Internet, large-scale network services
provided by autonomic applications will become more vital than ever, and a mechanism that
supports these services should be prepared. If the Internet continues to ignore the requirements
from these applications, the applications on end systemsmay stop their evolution due to that the
ideas in a phase of research are not actually leveraged. Given that the services by the applications
have made the Internet attractive for a lot of people, we still believe that the Internet platform
should be improved so as to let network applications behave without bonds.

In summary, what the current Internet lacks is a function of exporting its status. Due to this,
end systems and autonomic applications running on themhas been experiencing the diculty of
the operation responding to the state of the Internet, or the network characteristics information.
Currently, for obtaining this information, an additional procedure such as networkmeasurement
should be done by some entities. For a lacking piece, now it’s time to seek an answer.

1.4 Introduction 7

1.4 How Should We Support the Autonomic Applications?

Because of the constraints presented in Section 1.3, we have not yet witnessed the behavior of
responding to the dynamic state of the Internet in large-scale network applications. Then how
should we support this kind of behavior? In this section, we argue on this subject.

First, even if we have to modify the current architecture of the Internet or add a new compo-
nent for supporting the autonomic applications, we believe that the end-to-end principle should
be still kept as referred to in Section 1.2. The model of intelligent systems interconnected on
dumb networks is reasonable for better scalability of a network system. Since the most of auto-
nomic applications assume that they work with involving a number of end systems residing in
multiple administrative domains, their scalability is an important factor to be considered. There-
fore, the expansion should be done without destroying the idea of the end-to-end principle.
Moreover, and we have a lot of existing technologies and facilities designed for this model in
the fields of application, performance, security, and so on. Keeping this model will have an ad-
vantage in leveraging these resources.

Secondly, the support should not expect the unrealistic capability of end systems. Of course,
once forgetting existing boundaries is often important for researches to produce a novel idea.
However, we are now facing the problem of the boundary of the actual system, therefore, such
the expectation may be so rash. At the same time, no one can assure that the same kind of the
problem still occurs in such the imaginary world. Learning what the current Internet can do and
cannot do, and accordingly planning a strategy for solving the problem are important. In short,
evolutionary progress is preferred for the contribution to actual systems.

Thirdly, the support should be independent and easy-to-use for the autonomic applications.
This thought comes from a lesson frommost of the existing Internet protocols and applications.
For example, well-deployed services such as email, WWW, and Domain Name System (DNS) do
not interfere in the internal state of other services, and they keep to the utilization of public inter-
faces of other services. In addition, though these applications handle complicated procedures in
their internals, they just provide simple input/output interfaces, which motivate users in using
their services.

Considering these thoughts, our choice is a service of application-oriented networkmeasure-
ment for end systems, which involves the large-scale Internet observation. By observing the In-
ternet in large-scale, we can expect that the network characteristics information required by auto-
nomic applications will be collected and the service can provide it for the applications. Though
the procedures of the large-scale network measurement are generally complicated, abstracting
them into a service will make them easy-to-use for users, or autonomic applications. Moreover,
themanner of an independent network service will not be against the end-to-end principle if the
service itself is composed of end systems.

However, unlike themeasurementperformed in traditionalmeasurementplatforms, application-
oriented measurement has dierent requirements for its goal. For example, the traditional mea-
surement takes mid-term or long-term period (e.g., from a few hours to several years) for collect-
ing the network characteristics information, however, the autonomic applications cannotwait for
such a long time because they have to make a judgment about their future behaviors as soon as
possible. Considering the gap between traditional measurement and application-oriented mea-
surement, we have to carefully design a service platform for application-oriented measurement.
These considerations will be described in Chapter 2.

8 Introduction 1.6

Consequently, our approach for supporting the autonomic applications, which results in the
enhancement of end-system capabilities, is the large-scale Internet observation. For the better
environment for applications, we study on a large-scale networkmeasurement service, consider-
ing its actual deployment, believing that the knowledge acquired by measurement brings power
on the applications.

1.5 Positions and Contributions

The ultimate goal of our study is the actual deployment of a network service of application-
orientedmeasurement. Before the deployment, we need to design this totally novel system care-
fully. For this process, we consider the following rules according to the arguments so far.

• For supporting the autonomic applications, we adopt an approach of a network service
of the Internet observation, or the large-scale network measurement for enhancing end-
system capabilities.

• The design of our networkmeasurement service emphasizes the current architecture of the
Internet and the end-to-end principle.

• Our network measurement service does not disrupt existing services on the Internet. The
service concentrates on collecting and providing the network characteristics information.

Towards the ultimate goal, in this dissertation, we make the contributions below which will
be steps forward for the improvement of the current situation:

• Weexplore the requirements of application-orientednetworkmeasurement, and formulate
a guideline for its deployment on the actual network environment. Since the requirements
for the measurement for autonomic applications are yet to be clearly defined, this will be a
basis for the future research in this field.

• Based on the defined requirements, we propose a measurement network for a service of
application-oriented network measurement. With the implementation of our application-
orientedmeasurement platformwhich utilizes thismeasurement network, we evaluate the
capability and performance of this platform on the actual network, and we discuss the fea-
sibility of a network measurement service built upon our proposedmeasurement network.

• On our platform, we actually implement one of the large-scale measurement methodolo-
gies, and investigate its behavior on the actual network. Given that most of such kind of
themeasurementmethodologies are only validatedwith simulation experiments, ourwork
will show findings for their actual deployment.

• Through these investigations and experiments, we extract realistic open issues for the ac-
tual deploymentof application-orientednetworkmeasurement services fromamacroscopic
view.

We agree that our approach is not one and only answer to the problem described above. We
also agree that our study does not provide a perfect answer to the ultimate goal, or the actual
deployment, which is dicult to be evaluated with specific indices. However, we summarize our
research contributions in this dissertation in order to take a step forward, for a new paradigm of
network measurement and autonomic applications.

1.6 Introduction 9

1.6 Organization of this Dissertation

In this chapter, we have described the nature of the Internet, its merits, problems caused by the
nature, and our motivation and position for improving the current Internet. The rest of this dis-
sertation continues as follows. Chapter 2 investigates what kind of network characteristics in-
formation is needed by autonomic applications and then defines the fundamental requirements
of our approach, the application-oriented network measurement, based on the investigation.
In Chapter 3, we introduce the design and implementation of an application-oriented measure-
ment platform called N-TAP, which leverages a peer-to-peer networking technique for deploy-
ing a large-scale measurement network. We evaluate its capability and performance in the actual
network environment, and validate whether N-TAP can be deployed as an actual network service
according to the requirements presented in the previous chapter. Next, Chapter 4 is a part for the
field work of large-scale application-oriented measurement with the Doubletree algorithm [12].
We investigate the basic characteristics and behavior of theDoubletree algorithm, whichwas not
yet tested on the actual network. Chapter 5 followswith a comprehensive discussion towards the
our ultimate goal. We review the fundamental requirements for application-oriented network
measurement and discuss open issues and future work. And finally, Chapter 6 concludes this
thesis in point of our contributions and the future direction of the application-oriented network
measurement.

10 Introduction 1.6

11

Chapter 2

Application-Oriented Measurement
Platform

Application-orientednetworkmeasurement is a new trendof networkmeasurement. For its goal,
i.e., the provision of the network characteristics information to applications, we will see its new
and dierent requirements, compared to the ones of the traditional network measurement. On
its scalability, responsiveness, measurement accuracy and so on, the requirements are more se-
vere and the procedures of the measurement are also complicated. Due to that these require-
ments are not yet explicitly defined, the preliminary analysis of these requirements is significant
for future study.

In this chapter, we start with the definitions of network characteristics and Internet observa-
tion for further discussions. Then, consulting the requirements, we design a platform on which
application-orientedmeasurement is performed. We call such a platform an application-oriented
measurementplatform, or anAOMP in short. AOMP is an infrastructure for a service of application-
oriented network measurement. Through these desk studies, we prepare the implementation of
an actual AOMP system.

2.1 Network Characteristics Information

The term “network characteristics information” generally means the information that character-
izes the entities on the Internet. The entities include a node, a link, a group of them, and the
communication between nodes. In other words, the network characteristics information indi-
cates the state of the entities on the Internet. As stated in Section 1.2, the network character-
istics information is indispensable for autonomic applications because they utilize this kind of
information for making decisions on their future behavior.

We have a various instances of the network characteristics information. Here we categorize
them into several groups as shown in Table 2.1 and explain them respectively. In this table, we
present the types of the network characteristics information, their descriptions, and their in-
stances. The entities in brackets are the targets of respective instances, and an instance give the
information on its target. The categories are the following five: identifier, specification, config-
uration, performance, and structure. The identifier provides the information that distinguishes
one entity among others of the same sort. Generally, the identifier is unique within a specific
area so as to distinguish an entity correctly. The identifier includes a MAC address for a network

12 Application-Oriented Measurement Platform 2.1

Table 2.1: Instances of network characteristic information.

Type Description and examples
Identifier Information that recognizes an entity correctly among entities of the same sort

Examples: MAC address [network interface]
IP address [device (node)]
Port number [service on a node]
AS number [a group of nodes and links in the same administrative
domain]

Specification Information that indicates a predefined function utilized for a specific purpose
Examples: Media type [link]

Protocol [communication between multiple nodes]
Configuration Information given to run a function

Examples: MTU [link]
OSPF cost [link]
TCP receive buer size [node]

Performance Quality index of a given function
Examples: Packet loss rate [communication path]

Round-trip time (RTT) [communication path]
Available bandwidth [communication path]
Service uptime [service]

Structure Information of the relationship among multiple entities
Examples: IP hop count [two nodes]

IP topology [multiple nodes]
AS topology [multiple ASes]

2.2 Application-Oriented Measurement Platform 13

interface card (NIC), an IP address for a node in a network, and so on. The second one is specifica-
tion, which showswhat kind of functions is used for providing a target feature. The specifications
of these functions are usually predefined. One instance of the specification information is pro-
tocol, for example, TCP or UDP for realizing the transport feature. The third is the configuration
information, or the parameters for the specification. The configuration information cannot exist
by itself, but can with some predefined functions, or specifications. This information determines
the detailed behavior of the procedures in the specification. For example, OSPF (Open Shortest
Path First) [8] cost values are given to the links managed with the OSPF protocol in order to de-
termine the preference of its utilization for transferring packets. The fourth is the performance
information. This information can be regarded as the indices of the quality of provided func-
tions. Packet loss rate is often used to indicate whether a target link or path is working correctly
or not, and RTT is also used in the similar situation. The last one is the structure information,
which presents the relationships among multiple entities. IP topology, one of this kind of the
network characteristics, is the data in graph form, which describes how the nodes identified by IP
addresses are directly connected for packet transmission. As seen above, we have various kinds
of network characteristics information, and they are dierent in their roles.

On the Internet, the network characteristics informationdynamically changes over time. One
of its reasons is the fact that the Internet is naturally a distributed system in point of administra-
tion. No one can manage the entire Internet but everyone can manage some nodes and links
within at least his or her administrative domain, e.g., from a personal device to an enterprise
network. Therefore, we can change the identifier, specification, configuration, or structure infor-
mation anytime and this may bring the change of the performance information. Additionally,
since the Internet is a best-eort service, its quality tends to fluctuate, and this brings the changes
on the performance and structure information. The Internet is a quite large system, hence the
continuous changes are produced as the results of the activities of a great number of entities.

2.2 Internet Observation

Internet observation is the process of discovering, investigating, and revealing the structure and
characteristics of the components of the Internet such as nodes and links, and its coverage is
basically the entire Internet. Thinking of the arguments so far, the Internet observation can be
regarded as a procedure of collecting network characteristics information. In this section, we first
introduce three methodologies of the Internet observation.

The first one is the access to the information itself. This methodology acquires the target
data with accessing a storage where the data is contained or using some APIs (Application Pro-
gram Interfaces). The storage can be an area of memory, a configuration file in a disk, and so
on, and the APIs for fetching these data are often provided, too. In this case, the target data is
preliminarily defined and we fetch it with some methods. Therefore, this methodology is often
used for obtaining the identifier, specification, and configuration information of a local system.
Or sometimes it involves an access through a network such as obtaining a node’s status with
SNMP (Simple Network Management Protocol) [13].

The rest of the methodologies are the passive measurement and active measurement, which
are often called network measurement collectively. The procedures of passive measurement ba-
sically do not involve the produce or modification of network trac, but try to obtain the target
data just with watching the target’s state. A simple example of the passive measurement is the

14 Application-Oriented Measurement Platform 2.2

network trac monitoring. With the monitoring, we can obtain the information such as the
amount of received/sent trac. The active measurement, in contrast, produces some trac for
obtaining the target data. As onemethodology of the activemeasurement, we often use the tech-
nique of ping. By leveraging the echo request/response features of the ICMP [14] protocol, it can
find the required time for the packet’s both-way travel between the nodes, and packet loss rate
on the path, too.

After collecting the target information, the Internet observation sometimes involves a pro-
cedure of statistical calculation. This procedure occurs if the target data is calculated from the
collected data. We use various algorithms for the computation, and their complexity also varies
respectively. One of the simple examples is the calculation of the moving average of RTT. In this
case, we continuously collect the RTT data between twonodes, and at a certain point, we calculate
the mean value of the recent values of measured RTT.

Here we note that all of these observationmethodologies have impacts on the network char-
acteristics information, whether the information is the target one or not. This can be explained
by a natural law, which insists that a procedure of observation brings more or less changes in a
system. The degree of the impacts are generally less in the case of the passivemeasurement com-
pared to the case of the active measurement, because the passive measurement does not bring
any touch in a network system and the active measurement does. However, the degree possibly
changes in respective cases andwe cannot present a grand theory for its order. Giving an extreme
case, what if amethodology of the passivemeasurement requires the quite frequent access to the
local disk and the calculation that spends 24 hours even though it does not involve any network
access? Itmay slowdownor panic the computer, and thiswill bemore serious change in a system
than just performing one-time ping.

Recently, there is a trend of more sophisticated measurement methodologies, called coop-
erative measurement. Commonly, the procedures of traditional measurement methodologies
are completed within the proactive activities by one node. For example, in the technique of
ping, only one source node has a motivation to measure RTT, and it throws a ping packets into
a network. Though a destination node receives these packets and respond with pong packets,
it does neither know why the source node threw the packets nor have the same motivation.
On the other, the cooperative measurement involves two or more nodes and they interact with
each other according to a specific algorithm for the achievement of the same goal. The coopera-
tive measurement methodologies are dierent from the above three traditional methodologies
in point of involving multiple proactive nodes, and the procedures of the cooperative ones are
sometimes composed of one or more of the traditional ones.

With the cooperative measurement, we can obtain more various kinds of the network char-
acteristics in a larger scale, owing to the involvement of multiple proactive nodes. The simplest
cooperative measurement is to ask other nodes for collecting the target data. Though one mon-
itoring node cannot know RTT from another source node to others by itself with the technique
of ping, it can know if it can ask the source node to measure the target RTT and provide the mea-
sured data. Moreover, the cooperation among multiple nodes and estimation algorithms bring
a power of large-scale network measurement. Let us say, the Vivaldi algorithm [15] is one of
the cooperativemeasurementmethodologies. Its goal is to obtain thematrix of full-meshed RTT
data for a group of monitoring nodes. Since the number of the matrix elements is n2, where n
denotes the number of the monitoring nodes, measuring RTT data for all elements will be dif-
ficult when n becomes larger. In Vivaldi, they measure RTT only for a part of the elements and

2.3 Application-Oriented Measurement Platform 15

try to estimate RTT for the rest of the elements. Their key idea is to plot the monitoring nodes
in Euclidean space and define the distance on it as RTT between two nodes, and continuously
modify their coordinates with the physical mass-spring model and measured RTT data. Each
monitoring node communicates with other nodes for exchanging their position data in order to
fix node’s positions on the coordinate. With their simulation results, they confirmed that the
positions of the nodes converge become stable after a period and the distance values can provide
estimated RTT with a good accuracy. We can also find a cooperative measurement methodology
with the passive measurement of the IP TTL values of arriving packets [16]. This methodology
realizes the inference of the macroscopic network topology through the collection of TTL values
observed on monitoring nodes. As seen above, the cooperative measurement is expected to be a
good solution of the Internet observation, especially in the large-scale one.

2.3 Application-Oriented Network Measurement

So far, we have referred to the network characteristics information and the Internet observation,
or the collection of the network characteristics information. In this section, more concretely, we
describe application-oriented network measurement and its requirements.

The term “application-orientednetworkmeasurement”means thenetworkmeasurementwhose
purpose is to collect and provide the network characteristics information for network applica-
tions, especially autonomic ones as described in Chapter 1. The application-oriented network
measurement is a subset of networkmeasurement from the viewpoint of the classification based
on its purpose. Each applicationhas its ownobjective and the provided information is utilized for
achieving the objective. The types of the required network characteristics information depends
on these objectives, so we start with investigating them.

2.3.1 Requirements from Autonomic Applications

Here we enumerate several purposes for which autonomic applications utilize network charac-
teristics information. For each case, we analyze the requirements for obtaining such information.

Optimization of Structured Peer-to-Peer Networks

A structured peer-to-peer network locates its participant nodes employing a common rule for
ecient routing on the peer-to-peer network. Themost popular structured peer-to-peer network
is the distributed hash table (DHT),which provides a function of storing and retrieving key/value
pairs in a manner of a decentralized network system. DHT-based systems often try to optimize
their overlay networks for improving the performance of querying.

In CAN [17, 18], a DHT implementation, they found that the mismatch between the under-
lying topology (i.e., IP topology) and the overlay topology causes slower querying on CAN, and
introduced the topologically-sensitive construction of its overlay network. This methodology
first makes each CAN node measures the RTTs to multiple landmark nodes, and finds an order
of the RTTs. Based on the order, each CAN node is located in the corresponding zone in the
CAN’s coordinate space, which results in neighbors in the coordinate space being topologically
close on the underlying network. For improving the responsiveness on the Chord [19] network
as well, they propose an idea that lets each Chord node have a set of alternate nodes for each fin-
ger in addition to ordinary fingers. By measuring the RTTs from the Chord node to the alternate

16 Application-Oriented Measurement Platform 2.3

nodes, they calculate the values of network proximitymetric for respective alternate nodes. They
proved that selecting a successor based on the network proximity metric instead of selecting the
largest finger considerably improves the latency of the Chord’s overlay querying. Tapestry [20]
exploits the RTT and loss-late information among its participant nodes for the optimization as
well. Pastry [21] also puts weight on the locality of overlay nodes and adopts the scalar value
called distance which determines the locality between the overlay nodes. The Pastry algorithm
itself does not specify what kind of information should be chosen for the distance value and let its
applications decide, however they showed several metrics such as IP routing hops, IP topology
among the overlay nodes. Xu et al. also proposed a methodology for building topology-aware
overlay networks based on the RTT measurement among overlay nodes [22].

For the structured peer-to-peer networks, we can summarize the requirements for obtaining
network characteristics information as follows:

Procedure Modificationof thenodes’ locationor routing table informationbasedon the locality
metrics.

Purpose To improve the latency of overlay querying, which causes the overall performance
degradation on their applications.

Required Information

• Type — RTT, IP hop count, IP topology, loss-rate, and other performance metrics.

• Targets — Overlay nodes, or sometimes include special nodes such as landmark nodes.

• Accuracy — Information that reflects the current status. This may involve the collection
of the current value of the target information, or the estimation of it from the previously-
collected time-series data.

• Time — ASAP. The optimization procedure cannot be started until the measurement fin-
ishes.

Construction of Application-Layer Multicast Trees

The technique of the application-layermulticast (ALM) [23] is often used for delivering contents
to multiple destinations. The type of the delivered contents changes by the applications, for
example, live-streaming videos, large files, and short messages. Depending on the applications’
purposes, they construct their ownmulticast trees on top of the underlying networks, which does
not need the support of the multicast function on the layer of the IP network.

Overcast [24] is an ALM application designed for transferring large-size contents. Its multi-
cast tree is rooted at the source and the tree is constructed so as to maximize the available band-
width between root and other nodes. In particular, the overlay nodes first measure the available
bandwidth among them and select faster nodes as their neighbors. If the values of the available
bandwidth to two nodes are almost same, then a node probes IP topology with the technique of
traceroute and finds more proximate node. Scribe [25] is an event-notification overlay and also
measures end-to-end bandwidth for the construction of its multicast tree. On the other hand,
Narada [26] is intended for an infrastructure of delay-sensitive applications such as VoIP and live

2.3 Application-Oriented Measurement Platform 17

streaming. They measure the end-to-end RTTs among its participant nodes and add or remove
links to/from its multicast tree based on the results of the measurement. Liu et al. introduced
Adaptive Connection Establishment (ACE), an algorithm that builds an overlay multicast tree
among each source node and the peers within a certain diameter from the source peer. They
utilize the minimum spanning tree algorithm for the tree construction and the cost on links is
calculated from network delay, therefore, the RTT measurement among overlay nodes will be
needed in an actual system. Other metrics that have linearity can be adopted as the cost metric
in ACE. We can find other studies [27, 28] that use the topology data for optimizing the ALM
tree.

For the ALM applications, we can summarize the requirements for obtaining network char-
acteristics information as follows:

Procedure Construction or modification of the application-layer multicast tree based on the
proximity metrics.

Purpose To improve a specific performance for delivering contents, such as latency and band-
width.

Required Information

• Type — RTT, IP hop count, IP topology, available bandwidth, and other performance met-
rics.

• Targets — Overlay nodes.

• Accuracy — Information that reflects the current status.

• Time — ASAP. The tree construction procedure cannot be started until the measurement
finishes.

Proximity-Based Node Selection

Many existing applications try to find a proximate node among candidate nodes so as to increase
the performance of the applications. The term “proximate” heremeans that nodes are proximally
located in the space of a specific performance metric such as RTT, available bandwidth, and ser-
vice uptime. This technique is sometimes a part of the procedures of the overlay network opti-
mization and multicast tree construction stated above, but is dierent in point of that it does not
include further optimization procedures and starts the procedures for application’s services just
after the selection. Gnutella and some other peer-to-peer file sharing applications select nearby
nodes as peering nodes according to the RTTmeasurement results between the source node and
candidate nodes.

Another popular way to find a proximate node is to exploit the node’s location by looking
up the list of subnets that is preliminarily prepared. For example, the Akamai [29]’s DNS ser-
vice replies the IP address of a proximate service host among all the service hosts distributed in
multiple locations by checking the IP address of a client node and finding its location from the
address list. However, the end-to-end measurement has several advantages against such a well-
prepared approach. By performing the end-to-end measurement, no one needs to maintain the

18 Application-Oriented Measurement Platform 2.3

information such as the address list. Additionally, the end-to-end measurement approach can
select more appropriate metrics for improving the application’s performance because such met-
rics directly aect the performance while the address list information can be obsolete and does
not directly indicate performance.

For the applications that take an approach of the proximity-based node selection, we can
summarize the requirements for obtaining network characteristics information as follows:

Procedure Measurement just before starting the procedures for an application service.

Purpose To improve the performance of an application service.

Required Information

• Type — RTT, available bandwidth, and other performance metrics.

• Targets — Nodes involved in a service.

• Accuracy — Information that reflects the current status.

• Time — ASAP. The service procedure cannot be started until the measurement finishes.

Failure Monitoring

The failure monitoring is an important process for autonomic applications to take a recovery ac-
tion against the unexpected failure. RON (Resilient Overlay Network) [30], which was intro-
duced by D. Andersen, et al., provides an architecture for constructing an overlay network with
the durability against path failures and periods of degraded performance. RONmonitors its own
virtual links with measuring RTT and packet loss rate of the links as a performance index. In ad-
dition, we can suppose the switch of overlay routes in the case of the performance degradation
on specific links.

For the application’s failure monitoring, we can summarize the requirements for obtaining
network characteristics information as follows:

Procedure Finding a failure and taking an action against it.

Purpose To sustain an application service.

Required Information

• Type — RTT, available bandwidth, and other performance metrics.

• Targets — Nodes involved in a service.

• Accuracy — Information that reflects the current status.

• Time — ASAP. The service may stop while being unaware of the failure.

2.3 Application-Oriented Measurement Platform 19

General Discussions

Nakao et al. presented several primitive operations for constructing an ecient and scalable
overlay network in point of the less redundancy between an overlay topology and an underlay
topology [31]. In their paper, they referred to the path information and the hop count infor-
mation in the granularity of AS and IP. In [32], Seetharaman et al. argued that a repository for
routing services, high-level performance measurements and BGP information is needed for con-
structing an overlay-friendly underlying network. The repository is prepared for being used to
provide optimized routes between peers by exploiting knowledge of underlying network char-
acteristics.

2.3.2 Summary of the Requirements

As seen above, autonomic applications frequently utilize the network characteristics informa-
tion of performance and structure, which also contains the identifier information. This can be
explained by the fact that the performance and structure information has a great impact on the
applications’ behavior, whose purpose is to improve their quality and performance. And these
kinds of information are obtained by network measurement, therefore, we can say that the net-
work measurement matters to the applications a great deal. Additionally, because of selfish be-
haviors by overlay network applications, the overload and outage of network resources can oc-
cur [32, 33, 34, 35, 36], therefore, overlay network applications basically have to construct their
own networks with care about this problem andmany researchers have tackled a problem on the
construction of overlay networks so as to improve their quality and performance and to suppress
their selfish activities that disturb other applications.

After the confirmation of the importance of the network measurement for the autonomic
applications, the next question is how the measurement should be performed. Traditionally,
networkmeasurement has been performed for the statistical analysis of network trac and struc-
ture. And the analysis is basically performed after the mid-term or long-term collection of the
network characteristics information. Like the public analysis data from CAIDA [37], the target
data is generated after a certain period of collection, not immediately after the collection. How-
ever, the autonomic applications cannot wait for such a long term because they have to decide
their future behavior with the collected network characteristics information. So one of the re-
quirements for the application-oriented network measurement is the better responsiveness of
collecting the target information. Another requirement is accuracy. If collected data lacks its
accuracy, applications using this data will be misled on the decision of their behavior. For exam-
ple, choosing a proximate nodewill fail if measured RTT data is wrong. Additionally, wewill have
to consider the possibility of the falsification of collected data. One more requirement is about
the coverage of measurement. Since autonomic applications usually involve a number of nodes
in multiple administrative domains, the measurement methodologies should have an ability for
collecting the network characteristics information targeting these nodes.

The requirements for application-oriented network measurement is summarized as follows:

Responsiveness The collection of the network characteristics information should be done as
rapidly as possible.

Accuracy The collected data should be accurate enough for not misleading applications. Usu-
ally the informationmust indicate the current status of a targetwhenan application receives

20 Application-Oriented Measurement Platform 2.4

the information.

Coverage Methodologies for application-orientednetworkmeasurement should cover the range
of nodes that an application cares. Basically the required coverage is all the nodes involved
in an application service.

Considering these requirements, we present a fundamental design of a platform on which
the application-oriented measurement is performed.

2.4 Designing an Application-Oriented Measurement Platform

As stated in Chapter 1, our approach for enhancing end-system capabilities is to provide an in-
dependent network service of the application-oriented measurement platform. We have several
design choices for performing the application-oriented measurement. There are some reasons
why we package the procedures of the application-oriented measurement into a service. Let us
start with introducing them.

The first reason is that an independent network service does not disturb the end-to-end prin-
ciple with which the current autonomic applications work. We now see that many large-scale
autonomic applications are working with the end-to-end principle, and also see that their be-
havior can be improved with the application-oriented measurement. If the application-oriented
measurement is provided as an independent network service, they just have to utilize it in the
sequence of existing procedures. The term “independent” means that the service does not de-
pends on any specific application or procedure, but completes its work within its territory, i.e.,
an independent service of networkmeasurement just collects the requested network characteris-
tics information and provides it to the application. The independent service does neither disturb
the application’s behavior nor force its utilization, therefore, such a service keeps the end-to-end
principle.

The second reason is that an independent network service can serve any end systemswithout
major changes in these systems. An independent network service is literally accessible from any
network nodes on the Internet if they keep some rules for the access such as a communication
protocol. This characteristic leads the ease of its utilization, and it is quite important because the
application-oriented network measurement is usually performed in a wide area and involves a
number of end systems. So the ease of the utilization has a big impact for motivating a number
of the systems to utilize it.

The third reason is that an independent network service enables the easy and shared uti-
lization of complicated measurement procedures. Even in the case of traditional and popular
measurement methodologies such as ping and traceroute, writing a code for their procedures is
just a burden for programmers because their true target is not themeasurement but the provision
of application services. Considering the measurement is just an assistant role, the measurement
procedures must be provided in a convenient way. Additionally, some sophisticated measure-
mentmethodologies have their own complicated procedures, which keep ordinary programmers
away. But once such the complicated procedures are implemented on an independent network
service, everyone can commonly utilize them. In point of recycling the codes of measurement
methodologies, an approach of an independent network service must be attractive.

Based on these ideas, we design a platform on which a service of the application-oriented
measurement is constructed. We here call such a platform an application-oriented measurement

2.4 Application-Oriented Measurement Platform 21

Application-Oriented Measurement Platform (AOMP)

Application

interact

Service Interface

Figure 2.1: An application-oriented measurement platform as a service provider.

Application-Oriented Measurement Platform (AOMP)

Application

interact

Measurement Network
manage measurement resources

Command Center
handle requests and direct measurement resources

Service Interface
send/receive messages to/from applications

(resources)

(algorithms)

(interface)

Figure 2.2: Building blocks of an application-oriented measurement platform.

platform, or an AOMP in short. Through designing an architecture of the platform, we will have
several design choices. With explaining the reasons of our choice, we gradually focus on the
detail of the architecture.

First, we define two fundamental entities involved in the scenario of the utilization of AOMP.
One entity is, of course, our AOMP, and the other is a network application that utilizes the
AOMP. Since the AOMP provides a service of the application-oriented measurement, it must
have an interface for the provision. We call the interface a service interface, and the applica-
tion interacts with the AOMP through the service interface. Basically, the contents exchanged
through the interface are request messages for network measurement from applications to an
AOMP and collected network characteristics information from an AOMP to applications. This
relationship is depicted in Figure 2.1.

Next, we divide the AOMP into two building blocks; one is a measurement network and the
other is a command center. The measurement network provides several features of primitive
measurement operations such as sending a specific packet and finding resources on the plat-
form. The command center utilizes these features so that a target measurement algorithm cor-
rectly works. In other words, measurementmethodologies are described in the command center
and actual measurement procedures are performed on the measurement network. The service
interface is attached to the command center, and the command center also interprets requests
from applications and determine the behavior of the platform. Simply stated, the measurement

22 Application-Oriented Measurement Platform 2.4

network holds resources for measurement procedures, the command center has algorithms that
leverage these resources, and the service interface is an gateway between applications and an
AOMP. These are also explained in Figure 2.2. The reason why we divide the platform as above
is that the management of resources and a neat command channel are quite important for an
AOMP, considering the large-scale measurement like cooperative measurement methodologies.
With these two layers, we can perform the intelligent behavior for measurement procedures, or
in other words, we can manage the state information for network measurement. We can expect
that this feature accelerates the implementation of sophisticated measurement methodologies
that meet the requirements described in Section 2.3.

At last, we define the required functions for the respective layers. The functions are listed
below.

1. Service Interface

(a) The service interface receives amessage from an application, and also sends amessage
to an application.

(b) The service interface interprets amessage froman application, and covert it to a proper
format in which the command center can understand.

(c) The service interface throws amessage to the command center, and receives amessage
from the command center.

(d) The service interface receives interprets amessage from the command center, and con-
vert it to a proper format in which an application can understand.

2. Command Center

(a) The command center receives a message from the service interface, and also sends a
message to the service interface.

(b) The command center interprets a message from the service interface.

(c) The command center decides how to utilize the measurement resources for achieving
a goal requested in a message from the service interface.

(d) Basedon thedecision, the command center controls themeasurement resources through
the functions provided by the measurement network.

(e) The command center receives a message from the measurement network as a result
of a utilized function. The message usually contains the measurement data.

(f) For the application’s goal, the command center calculates the target values from the
measured data contained in the messages from the measurement network.

(g) The target data is converted to a proper format in which the service interface can un-
derstand.

(h) A programmer can write his or her measurement and computation algorithms in the
command center.

3. Measurement Network

(a) The measurement network provides primitive functions of network measurement for
the command center.

2.5 Application-Oriented Measurement Platform 23

(b) The measurement network accepts a command from the command center, and per-
form a procedure as preliminarily defined.

(c) The measurement network provides the result of a performed procedure as a mes-
sage to the command center. The format of the message can be understood by the
command center.

Anotable point is 3a in the above list. At thismoment, wedefine several primitive functions of
networkmeasurement considering the actual measurement procedures. The primitive functions
that should be implemented on the measurement network are summarized as below.

• Generate and send a packet

• Receive and read a packet

• Find other measurement resources

• Exchange messages among monitoring nodes

• Share the data among the measurement resources

In order to perform a measurement procedure, the handling of packets is necessary. The first
two items are defined for this reason. The third, fourth, and fifth items are defined especially for
the cooperative measurement. In cooperative measurement, monitoring nodes basically cooper-
ates by communicatingwith other nodes and sharing the collected data. These items are required
for such procedures.

2.5 Summary

In this chapter, we defined the fundamental requirements for the application-oriented network
measurement, considering the current form of the utilization of the network characteristics in-
formation and actual measurement methodologies. Since the requirements for the application-
oriented network measurement was not yet defined explicitly, we expect that our analysis is-
sues a guideline for such measurement. Then we presented a design of the architecture of an
application-oriented measurement platform (AOMP). Our design is unique in point of the con-
sideration for implementing cooperative measurement methodologies on a platform. For the
verification of the reasonability of our design, we construct an actual AOMP and evaluate its ca-
pability in the following Chapter.

24 Application-Oriented Measurement Platform 2.5

25

Chapter 3

N-TAP: An Application-Oriented
Measurement Platform Built on a
Role-Based Peer-to-Peer Network

In the previous chapter, we described a fundamental concept of application-oriented network
measurement and summarized some its requirements. Based on them,wenow focus on an actual
system for application-oriented network measurement. For constructing such a system, we will
have a lot of design choices. Revealing our choices, we introduce a distributed measurement
platform called “N-TAP,” as an instance of AOMP.

A key feature of N-TAP is its emphasis on constructing the system in a distributed manner.
Considering the variety of measurement nodes for the Internet observation, such as their sta-
bility and performance, N-TAP’s measurement nodes are connected as sparsely as possible. This
means that the nodes can arbitrarily perform their tasks, but that we have to prepare a coordi-
nation scheme for their activities at the same time. As one solution to this concept, we adopt
a role-based peer-to-peer network for N-TAP’s measurement network, and implemented some
fundamental features for an AOMP service on it, according to the AOMP design presented in the
previous chapter.

The fundamental features include the shared storage and agents search. While N-TAP acts as
an independent measurement service for autonomic applications, it also works as a platform on
which cooperative measurement methodologies can be implemented. We also highlight the for-
mation of measurement networks and provide a first look at measurement activities performed
on those networks. From the viewpoint that the rapid provision of network characteristics in-
formation is an important requirement for an application-oriented measurement platform, we
conduct a performance evaluation of the essential features of N-TAP through the experiment on
PlanetLab. Based on this evaluation, we also discuss the tactics for improving the measurement
activities on a peer-to-peer measurement platform.

3.1 Design Choices

We present the design of N-TAP and the reasons for the design choices in the following subsec-
tions. We first outline the concepts of N-TAP. Based on the concepts, we design the architecture
of N-TAP and describe how its components work. The last subsection presents the details of our

26 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

implementation of N-TAP.

3.1.1 Concepts

The design concepts for N-TAP are broadly divided into three components: independent service,
platform for cooperative measurement, and tactical measurement.

Independent Service

The first concept is “independent service”, whose purpose is to construct N-TAP as an indepen-
dent service in order to increase the ease of handling network characteristics information for a
variety of applications. Currently we don’t have a simple way for collecting network characteris-
tics information, which will make application developers avoid to utilize such information. For a
solution to this problem, we choose to abstract commonmeasurement procedures to one frame-
work. If the framework can provide a simple interface that can invoke complicatedmeasurement
procedures, we can expect that the developers’ burden will be reduced by using it. Additionally,
with an independent measurement service, we can expect that some of network characteristics
information collected for one application will be reusable in other applications, which will result
in the reduction of measurement overhead. This concept is naturally derived from the one of
AOMP.

Based on this concept, we now define some requirements. First, N-TAP must provide an in-
terface for interacting with applications, and the interface should weakly connect N-TAP and the
applications so that a variety of applications can utilizeN-TAP. At the same time, the communica-
tion protocol and the formats of network characteristics information must be defined for general
use. This is for expanding the range of people who can utilize N-TAP. Secondly, N-TAP must ab-
stract the details of its measurement procedures, i.e., N-TAP must be simple to use from outside
the system. This allows applications to obtain network characteristics information very easily,
not unlike getting content from a web server.

Platform for Cooperative Measurement

The second concept is “platform for cooperative measurement,” which accelerates the deploy-
ment of sophisticated methodologies by providing fundamental features for such measurement.
Compared to classical measurement methodologies, cooperative measurement methodologies
are more attractive from the viewpoints of lower measurement overhead, the wide variation of
collected network characteristics information and so on. As described later in Section 3.5.1, com-
munication among measurement nodes and the sharing of collected data are often required as
the common features in cooperativemeasurement. The provision of ameasurement platform on
which we can utilize these features will make the implementation of such methodologies eas-
ier. If a number of cooperative measurement methodologies are implemented on N-TAP, they
increase its measurement capability, especially for large-scale measurement like on overlay net-
works. Therefore it will appeal to developers to utilize network characteristics information in
their applications. Thiswill also appeal to the researchers ofmeasurementmethodology because
N-TAP can be a large-scale testbed of cooperative measurement in the actual network environ-
ment.

As the common features stated above, N-TAPmust prepare the mechanisms for communica-
tion channels among measurement nodes and shared databases of collected network character-

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 27

istics information. The communication channel allows a measurement node to exchange mes-
sages with other measurement nodes. For example, this feature will be used for the synchro-
nization of measurement procedures, or a request to other nodes for obtaining specific data. The
shared database realizes the utilization of network characteristics information that other nodes
collected. These common features can be expected to help the implementation of cooperative
measurement methodologies on N-TAP and make them available for applications.

Tactical Measurement

The last concept is “tactical measurement,” which is important as an application-oriented mea-
surement platform. Since the requirements for collecting network characteristics information
depend on each application, N-TAP must interpret such requirements carefully and make a de-
cision on the action of collecting requested data. For example, we should not provide only the
topology data which was collected 10 years ago to an application that intends the reconstruction
of its overlay multicast tree because the topology may not reflect the current topology. How-
ever, if such topology data have been collected over a long period and we can estimate that the
topology might not change from the long-term observation, the old data still counts. Especially
for autonomic applications, the provision of network characteristics information should be done
rapidly as stated in Section 2.3.2.

As just described, N-TAPmust prepare amechanism that enables applications to specify their
requirements for network characteristics information such as the freshness of collected data.
Based on such requirements, N-TAPhas tomake the tactics for the collection of desired character-
istics information including the choice of measurement methodologies with the consideration
of their properties like accuracy, overhead and responsiveness.

3.1.2 Architecture

Based on the concepts described in Section 3.1.1, we illustrate the design of N-TAP’s architecture
in this section. First we present the outside view of N-TAP and the interaction amongN-TAP and
other entities. Then we show the inside view of N-TAP and the connection among the compo-
nents of N-TAP.

Outside View

Wefirst define four entities that appear in the scenario of the utilization of N-TAP. The first entity
is the “N-TAP agent”, a program that runs on certain nodes on the Internet. We call a node on
which the N-TAP agent runs the “N-TAP node” as the second entity. The N-TAP agent performs
all kinds of procedures related to N-TAP; in other words, N-TAP is constructed with only the N-
TAP agents. We assume, in principle, that any node of the overlay application that utilizes N-TAP
runs an N-TAP agent in its local environment and requests network characteristics information
to its local agent. The third one is the “application”, which requests network characteristics infor-
mation to N-TAP for its own purposes. The last one is the “general network element”, which is a
component of the Internet such as nodes and links.

Figure 3.1 describes the relationships among these entities. In this figure, each object depicts
one of the entities and an arrowmeans the direction of actions; a “request” arrow from an object
A to an object B means that A makes requests to B. An N-TAP agent accepts the application’s re-
quest for obtaining network characteristics information fromboth the local and remote sides and

28 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

N-TAP Node

N-TAP Agent

Application

request

cooperate

N-TAP Node

N-TAP Agent

provide

General Node

Application
request

provide

General Node/Link
(Network Element)collect

characteristics

collect characteristics

Figure 3.1: Relationships among the entities that appear in N-TAP.

provides network characteristics information to the application as its response. Based on the re-
quest, N-TAP performs measurement procedures to collect network characteristics information.
Its measurement targets are general network elements including N-TAP nodes. Moreover, an
N-TAP agent cooperates in measurement with other N-TAP agents if necessary.

Inside View

The N-TAP agent has four components inside itself as shown in Figure 3.2: network characteris-
tics database, network characteristics provider, network characteristics collector and N-TAP net-
work manager. The network characteristics database is a local repository of collected network
characteristics information. Each agent has its local database and stores collected network char-
acteristics information into it. The network characteristics provider is an interface between an
N-TAP agent and other applications. The interface provides APIs by which applications can ob-
tain network characteristics information from N-TAP. Applications can request the details and
conditions of required network characteristics information (e. g., the kind of network charac-
teristics information) through the interface. After accepting the request from the application,
this component decides how to collect the requested network characteristics information and
then searches the requested network characteristics information in the network characteristics
database or requests the collection to the network characteristics collector based on its decision.
We describe the details of such decision making later. The network characteristics collector per-
forms measurement procedures in order to collect the network characteristics information re-
quested by the network characteristics provider. One collector can communicate with other col-
lectors for cooperative measurement. The N-TAP network manager is responsible for forming
the N-TAP network, a measurement overlay network among N-TAP agents. On the N-TAP net-
work, any agent can access the network characteristics information collected by other agents; in
other words, N-TAP agents can share their collected network characteristics information. It also
searches the N-TAP agents that other components (collector or provider) need for cooperation

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 29

N-TAP
Network
Manager

NC
Collector

NC Database

N-TAP Agent

N-TAP Network (Measurement Overlay Network)
rendezveous

searchApplication

store

N-TAP
Network
Manager

NC
Collector

NC
Provider

NC Database

request

provide

NC
Provider search

request

provide

collect
characteristics store

cooperate

N-TAP Agent

request

collect
characteristics

General Node

Figure 3.2: Architecture of an N-TAP agent (NC is an abbreviation for network characteristics).

Application-Oriented Measurement Platform (AOMP)

Agent

Measurement Network

Command Center

Service Interface

Agent Agent

Figure 3.3: Correspondence between an N-TAP agent and the AOMP components.

and sets up a place for their rendezvous. With these components, N-TAP realizes the indepen-
dence of its service and cooperative measurement remarked in Section 3.1.1.

3.1.3 Correspondence to the AOMP Design

Here we review the AOMP design introduced in Section 2.4 and check the correspondence be-
tween this and the N-TAP’s design. According to the design of N-TAP, the N-TAP agents play all
the roles of the service interface, the command center, and the measurement network. That is,
we vertically divide the AOMP depicted in Figure 2.2, and assign each block to perform as an N-
TAP agent, as shown in Figure 3.3. One of the advantages of adopting such the vertical division
of the functions is that we just have to provide a unitary program of the N-TAP agent for the de-
ployment. This will decrease the complexity of the entire system, and then we can expect more
wide-spread deployment. Another advantage is that this approach suits a style of the large-scale
measurement such as cooperative measurement. As peer-to-peer network applications, cooper-
ative measurement methodologies also expect an autonomic behavior of its monitoring node,

30 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

Application-Oriented Measurement Platform (AOMP)

Measurement Network

Command Center

Service Interface

Measurement Resources

Measurement Resources

Measurement Resources

Figure 3.4: Horizontal division approach of the AOMP functions.

and basically the responsibility for each node is equal among the nodes. Therefore, we suppose
that this approach is reasonable for the large-scale Internet observation.

We could also adopt a contrastive approach, i.e., the horizontal division depicted in Figure 3.4.
In that approach, dierentmeasurement resources in the platform are assigned for the respective
functions. Thiswill allow the easy trace of the procedures in the platform and provide a clear bor-
der of responsibilities. However, we have to have a burden for assigning measurement resources
to specific roles, and we can expect that it is quite dicult in case of the large-scale platformwith
massive resources. Additionally, by dividing the system horizontally, its users or programmers
for the command center may face a problem of grasping such assignments. Equipping one pro-
gram with all functions has an advantage of the simplicity coming from uniformity. For these
matters, our design prefers the vertical division approach.

3.1.4 Measurement Network Models

In this section, we first define the components of a measurement network and how they work
and interact with other entities. In Section 3.1.4, we describe two existing models of measure-
ment networks— centralized and pure peer-to-peer models. We also refer to a hybrid measure-
ment network model in the same section. Finally, we propose a methodology to allow shifting a
measurement network between these models, and we describe its implementation on an actual
measurement system.

Components of the Measurement Network

A measurement network is a network in which measurement procedures are performed accord-
ing to predefined sequences. Here we define the entities that appear in a measurement network
and its operation.

The first entity is a “monitoring node,” which performs measurement procedures in order to
collect network characteristics information. The second entity is a “management node,” which is
responsible for coordinating other entities so that the intendedmeasurement can be performed.
For example, the management node inspects and updates “management information,” such as
the list of monitoring nodes, and commands some of the monitoring nodes to performmeasure-
ment procedures. Collectively, we call a system that is composed of management information

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 31

Management Information

Control Plane
Management Node refer

update

Monitoring Node

command
(Message)

perform measurement

Figure 3.5: Components in the measurement network and relationships among them.

and management nodes a “control plane.” A control plane is, so to speak, an entity where de-
cisions for measurement procedures are made. “Control messages” are exchanged among the
monitoring and themanagement nodes to achieve the intendedmeasurement features. The con-
trol messages include ameasurement command to themonitoring nodes and the node list in the
measurement network, but donot contain thenetwork tracderived from themeasurement pro-
cedures themselves. We note that one physical node may simultaneously play the roles of both
management andmonitoring. Figure 3.5 shows the relationship among the entities described in
this paragraph.

Three Types of Models

Existing measurement networks are categorized mainly into two models— centralized and pure
peer-to-peer models. In the centralized model, one management node or a cluster of replica
nodes manages all of the management information and issues control messages to the monitor-
ing nodes. On the other hand, in the pure peer-to-peer model, all of the nodes take the roles
of both monitoring and measurement. Therefore each node has to maintain the measurement
network and has also to perform the necessary measurement procedures. The merit of the cen-
tralizedmodel is that the responsibilities of the respective nodes are clear, and it is easy to follow
the sequence of measurement operations. At the same time, a central management node has to
tolerate a heavy load caused by all themanagement operations, otherwise themeasurement sys-
tem will not function. In the pure peer-to-peer model, we can distribute such loads to all nodes;
hence this model is considered appropriate for a large-scale measurement system. However, a
frequent change in the state of the measurement network, such as nodes joining and leaving,
will result in poor stability of the control plane. These trade-os are also discussed as a general
problem existing between centralized and peer-to-peer systems.

As a middle course between these models, we now consider a hybrid measurement network
model. In the hybrid model, management operations are divided among some management
nodes, while other nodes behave asmonitoring nodes. The dierence between the hybridmodel
and the centralizedmodel is that, in thehybridmodel,multiplemanagement nodes eachperform
a dierent management operation, whereas the management operations are not clearly divided
in the centralized model even if there are multiple management nodes. By adopting this model,
we can expect to moderate both the load concentration and the instability of the measurement

32 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

a.storeCollectedData(collectedData) {
for each index of collectedData do
{Generate a data entry.}
id← a.generateEntryId(index)
entry← a.formatDataEntry(id, collectedData)
{Store the entry in the local database.}
a.storeDataEntryInLocalDatabase(entry)
{Store the entry in the databases of other agents.}
a′← a.findResponsibleAgent(id)
if a′ is not a then

a′.storeDataEntryInLocalDatabase(entry)
end if

end for

}

Figure 3.6: Algorithm for data storage.

network, which are the problems in the first two models. This model is similar to that of the
Kazaa [38] network, in which stable nodes (called “super nodes”) construct an overlay network
in a peer-to-peermanner, and ordinary nodes join the overlay network through the super nodes.

3.1.5 Implementation and Experience

In this section, we present the mechanism of N-TAP’s fundamental features including the shared
database and the communication channels. We also introduce a tactic called the “local-first and
remote-last” rule, which N-TAP adopts to improve the responsiveness on responding to the re-
quests from applications and reduce measurement overhead.

Shared Database

As stated in Section 3.1.1, the feature of shared database is essential for cooperative measure-
ment. N-TAP forms a shared database where N-TAP agents can store and retrieve the collected
data with some indices.

In order to form the measurement overlay network called “N-TAP network”, we utilize the
technique of Chord [19], which is one implementation of the distributed hash table (DHT). Since
the size of collected network characteristics information ismassive in the case of large-scalemea-
surement, we choose Chord to construct the shared database for distributing storage costs to
each node. In the N-TAP network, N-TAP agents and database entries have their own identifiers
whose length is 128 bits. An agent ID locates the agent in the Chord ring and an entry ID decides
which nodes store the entry in their own local databases. To generate a random ID from a data
stream, we apply the SHA-1 cryptographic hash function to the stream and use the first 128 bits
of its 160-bit result. The N-TAP agent uses SQLite [39] for constructing a local database.

N-TAP constructs a shared database by using the nature of Chord, i. e., the N-TAP network
is essentially a distributed database of network characteristics information. Figure 3.6 presents
an algorithm for storing collected network characteristics information. After an agent collects

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 33

network characteristics information, the collected data (collectedData in the figure) is formatted
as a database entry (entry) with an entry ID (id) obtained from the generateEntryID() function,
which generates a random ID as shown in the previous paragraph. The indices of each kind of
network characteristics information are preliminarily defined in order to let the collected data
accessible. Then the entry is stored in the local database of the agent that collected (agent a) and
in the local databases of the nodes (a′) that are responsible for the entry ID obtained from the
respective indices in the collected data. The findResponsibleAgent() function actually utilizes a
essential feature of Chord that finds a successor of a specified ID in the Chord ring. To retrieve a
data entry from the shared database, an N-TAP agent just has to search a node that is responsible
for the entry ID and request the node to send back the data entry.

For example, if a node A collects the RTT between nodes A and B and the indices of RTT data
are source IP address and destination IP address, the data is stored in a node A itself and the
nodes that are responsible for generateEntryId(IP(A)) and generateEntryId(IP(B)) in the Chord
ring, where IP(N) denotes the IP address of a nodeN. This data can be retrieved by specifying its
entry IDs that can be generated from IP(A) or IP(B).

Communication Channels

The feature of communication channels is also realized on the N-TAP network by handling the
information of N-TAP agents as entries in the shared database. Each agent puts the information
about itself into the shared database after it joins to theN-TAPnetwork in order to find each other
for cooperation. They use their IP addresses, netmasks, fully qualified domain names (FQDNs)
and so on, as the indices of the put information, and N-TAP network manager can search other
agents with these indices.

“Local-First and Remote-Last” Rule

In this section, we describe the process of decision making on measurement activities con-
ducted by the network characteristics provider. In order to reducemeasurement cost and improve
responsiveness on collecting network characteristics information, the process adopts the basis of
“local-first and remote-last.” The sequence of its procedures is described in Figure 3.7. This rule
categorizes the situation of requested network characteristics information into the following four
types if the data can be collected by N-TAP:

1. An agent has requested data: the data can be obtained from its local database.

2. An agent can measure the data by itself.

3. Other agents already have the data: the data can be obtained from the shared database.

4. The data can be measured by (cooperating with) other agents: the local agent issues a re-
quest to other agents.

N-TAPprioritizes the actions for respective situations as listed above tominimize the turn around
time for applications’ requests. First, the network characteristics provider searches the network
characteristics information thatmeet the request from application in the local database. If the re-
quested data cannot be obtained from the local database, it checks whether or not the local agent
canmeasure the data by itself. If the agent can, it requests to the network characteristics collector

34 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

a.getNetworkCharacteristics(requestedData) {
{Search the requested data in the local database.}
result← a.searchInLocalDatabase(requestedData)
return result if result is not nil
{Measure the data by itself if possible.}
if a can measure requestedData then

result← a.measureNetworkCharacteristics(requestedData)
return result if result is not nil

end if
{Search the data in the shared database.}
result← a.searchInSharedDatabase(requestedData)
return result if result is not nil
{Forward the measurement request to other agents.}
candidates← a.searchCandidates(requestedData)
for each a′ in candidates do

result← a′.getNetworkCharacteristics(requestedData)
return result if result is not nil

end for
{Cannot obtain the requested data.}
return nil

}

Figure 3.7: Algorithm for collecting network characteristics information.

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 35

to collect the data; otherwise, it searches the data in the shared database. If the data doesn’t exist
in the shared database, by asking the N-TAP network manager, it tries to find other agents that
have or can collect the data. If one or more agents are found, it requests the (cooperative) mea-
surement to the network characteristics provider of theirs. Or if not, it tells the unavailability of
the requested data to the application. The provider that accepted the request from another agent
performs the same decision-making process. However, it no longer forwards the request to other
agents and immediately replies in the case of unavailability. Through the simple steps described
above, the network characteristics provider decides what to do for collecting the requested net-
work characteristics information.

Agent’s Roles

Our key idea is the division of the agent’s roles into core agent and stub agent. The core agent,
which corresponds to themanagementnode, constructs themeasurement overlaynetwork, called
the N-TAP network, as conventional agents did: it maintains its own routing table in the Chord
ring and stores some of the shared data in a local database as a part of the shared database. The
core agent also performs measurement as a monitoring node if necessary. The stub agent, which
is equivalent to themonitoring node, does not perform the operations related to the construction
of the N-TAP network. For joining the N-TAP network, the stub agent inserts its information in
the shared agent list so that other agents can find it. It performs measurement only when a core
agent sends a request to it or when it knows that themeasurement procedures that are requested
directly from applications should be done by itself. In the case that the stub agent needs to do the
operations related to the N-TAP network, it sends a request to one of core agents, and the core
agent responds to the request. For example, suppose that a stub agent wants to find a core agent
that is responsible for a specified ID in the Chord ring so as to retrieve a shared data entry that
has this ID; the stub agent asks a core agent to find the responsible agent, and the core agent per-
forms the procedure of finding it. After the core agent obtains a result, it sends the result to the
stub agent. In this way, even a stub agent, which does not perform the management procedures
for the N-TAP network, can know the state of the N-TAP network.

By adopting the scheme of core and stub agents, we can also easily form the centralized and
pure peer-to-peermeasurement networks. Figure 3.8 shows the transitions ofmeasurement net-
works according to the allocation of the respective numbers of core and stub agents. Now we
have N agents, and C of N agents are assigned as core agents; i. e., S (= N − C) agents are stub
agents. The N-TAP network where C = 1 is equivalent to a centralized measurement network
because all of the management information is concentrated in one core agent. If we take the
value of C = N, all of the agents are core agents; therefore the N-TAP network in this situation
is a pure peer-to-peer network, which is same as the conventional N-TAP network. In case of
C = i (2 ≤ i ≤ N − 1), we can regard the N-TAP network as the hybrid measurement network.

As described in this section, we can now have three types of measurement networks on the
actual measurement system. In the following sections, we investigate the basic characteristics of
these measurement networks.

Other Implementation Topics

As collection methods, N-TAP currently can ping to measure the RTT between an N-TAP node
and another node, and can also traceroute to obtain the IP topology from an N-TAP node to an-

36 N-TAP: An AOMP Built on a Role-Based P2P Network 3.1

Core agent Stub agent

Centralized Hybrid (Bi-Layer) Pure Peer-to-Peer

C = 1, S = N - 1 C = i, S = N - i
(2 ≤ i ≤ N - 1)

C = N, S = 0

Control plane

Figure 3.8: Measurement network formations with the scheme of core and stub agents (N = 6, i =
3).

other node. Furthermore, since an N-TAP node can refer to the collected data by other N-TAP
nodes or request ping and traceroute to other nodes through N-TAP network, the N-TAP node
can also obtain the RTT and IP topology among other nodes, and the IP topology whose start
point is not the N-TAP node itself. This is a primitive method of cooperative measurement from
the standpoint that one node can obtain the network characteristics information that cannot be
collected by the node itself.

For the protocol of the interaction between an application and the N-TAP agent, we adopt
XML-RPC [40] because of its widespread deployment and description capability. In order to
request the network characteristics information, the application calls the agent’s methods for
collecting the target data while specifying the kind of network characteristics information and
certain conditions for the data. The collected data is stored with additional information such as
UNIX time stamp, the ID of the agent that collected the data, its collection method, and so on.
They are the criteria for judging whether the data can show the actual state of network entities,
and the judgment depends on the conditions oered by an application.

At this time, we have a prototype implementation of N-TAP, which is based on the design
described in this section. It works on some platforms including FreeBSD, Mac OS X and Linux
on PlanetLab [41].

Experience

Here we describe one simple scenario of retrieving network characteristics information from
N-TAP. There are three N-TAP nodes running one N-TAP agent on the respective nodes: nodes
A (IP address: 192.168.1.10), B (192.168.2.20) and C (192.168.3.30). The application running
on the node C wants to know the RTT between the nodes A and B, which is collected within 300
seconds, so it requests to the local N-TAP agent on the node C by calling the method for obtain-
ing the RTT data (ntapd.getNetworkCharacteristics.round-TripTime.IPv4). The request message
is shown in Figure 3.9. Based on the process of decision making described in Section 3.1.2, the
agent on the node C first searches the data that meets the request (RTT from A to B collected

3.1 N-TAP: An AOMP Built on a Role-Based P2P Network 37

• Request Message

<?xml version=”1.0” encoding=”UTF-8”?>
<methodCall>
<methodName>ntapd.getNetworkCharacteristics.roundTripTime.IPv4</methodName>
<params>
<param><value><struct>
<member><name>sourceIPv4Address</name><value><string>192.168.1.10</string></value>
</member>
<member><name>destinationIPv4Address</name><value><string>192.168.2.20</string>
</value></member>
<member><name>freshness</name><value><i4>300</i4></value></member>
</struct></value></param>
</params>
</methodCall>

• Response Message

<?xml version=”1.0” encoding=”UTF-8”?>
<methodResponse>
<params>
<param><value><struct>
<member><name>timestamp</name><value><i4>1122334455</i4></value></member>
<member><name>collectionMethod</name><value><string>ICMPEcho</string></value>
</member>
<member><name>roundTripTime</name><value><i4>12569</i4></value></member>
</struct></value></param>
</params>
</methodResponse>

Figure 3.9: Example of request and response messages for obtaining RTT data.

38 N-TAP: An AOMP Built on a Role-Based P2P Network 3.2

within 300 seconds) in its local database. In this case, we assume the agent on the node C can-
not find such data in the local database. Since the node C cannot measure the RTT between
nodes A and B by ping, the agent on the node C decides to search the data in shared database.
Unfortunately, such data is not in the shared database, so the agent on the node C confirms the
existence of the N-TAP node A by the list of N-TAP agents in the shared database, and forwards
the request to the agent on the node A in order to measure it. The agent on the node A performs
RTT measurement between the nodes A and B, then replies to the agent on the node C with the
result of the measurement. Finally, as shown in Figure 3.9, the agent on the node C gives the
requested data to the application with its response message.
3.1.6 Reasons for Using a Role-Based Peer-to-Peer Network as aMeasurement Network

There are some reasons for our choosing a role-based peer-to-peer network as the N-TAP’s mea-
surement network. Here we describes the reasons.

The first reason is that a peer-to-peer based nodemanagement can naturally involve end sys-
tems. As stated, autonomic applications basically require the network characteristics information
related to the end systems involved in application’s service. To obtain such information, we usu-
ally need to let these end systems collect the required network characteristics information. The
peer-to-peer network composed of the end systems can meet this coverage requirement.

The second is that we can expect to ensure the scalability with a peer-to-peer based system.
Since the autonomic applications are often deployed on a large scale, more number of measure-
ment targets and measurement nodes are also involved in the measurement service. We need to
let our service work correctly even on a large scale with the consideration for accuracy and re-
sponsiveness. Since a peer-to-peer based system has less failure points and management points,
we expect that it has a merit on scalability.

The third is its small deployment cost. With a peer-to-peer based system, we do not necessar-
ily need to prepare a fixed resource for an infrastructure of a system. This reduces the manage-
ment cost for the overall system and is eective especially in case of a large-scale system. If more
end systems are involved in our system, we can extend the coverage of measurement, therefore,
the we take notice of the small deployment cost of a peer-to-peer based system.

Additionally, the sparse connection between N-TAP agents on the role-based peer-to-peer
network, namely that the agents interact with each other through the shared database, provides
the arbitrary property to the agent’s behavior. N-TAP is designed to decrease the direct inter-
action among the agents by replacing such procedures with the shared storage feature like the
communication channels. Owing to this design, the agents less need to care the status of other
agents, for example, whether an agent is alive or not. The merit of the sparse connection will
also appear in Chapter 4.

3.2 Performance Evaluation of the Core Network

So far we have pointed out the common features for cooperativemeasurement and presented the
mechanisms that realize these features on a measurement overlay network. As stated, the rapid
provision of network characteristics information is required for an application-orientedmeasure-
ment platform. In this section, we investigate the performance of N-TAP’s fundamental features
to prepare for discussing tactics formeasurement activities. Our experiment was performedwith
the PlanetLab nodes that were randomly chosen. One N-TAP agent ran on each node, and a ran-

3.2 N-TAP: An AOMP Built on a Role-Based P2P Network 39

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

1 2 3 4 5 6 7 8

0
2

4
6

8

of hops

T
im

e
re

qu
ire

d
fo

r
fin

di
ng

 a
 r

es
po

ns
ib

le
 a

ge
nt

 /
se

c.

1
3

5
7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

Avg. # of hops = 4.55

Avg. time = 4.07 sec.

Figure 3.10: Turn around time for the requests of finding a responsible agent.

dom agent ID without overlaps was assigned to each agent.

3.2.1 Measurement Overlay Network

N-TAP forms its own measurement overlay network with the technique of Chord [19], which is
one implementationof thedistributedhash table (DHT).Anessential feature of theDHTsystems
is to find out one or more responsible nodes for a specific ID in their ID spaces. In the case of
Chord, finding a successor of a specific ID corresponds with such feature. So first in this section,
we investigate the performance of this function, which aects functions in the upper layer.

We randomly chose 128 PlanetLab nodes and let N-TAP agents run on these nodes, namely
a Chord-based network with these 128 nodes was formed. On this measurement overlay net-
work, we executed a procedure of finding a responsible agent for a random ID on a randomly
chosen node and measured required time for the procedure. After 1000 times repetition, we ob-
tained a performance trend shown in Figure 3.10. In this figure, “# of hops” means the number
of agents that received a request of finding a responsible agent recursively, i. e., if the number is
1, an original agent didn’t need to ask other agents to find a responsible agent, and if the number
is 4, the 4th agent in forwarding a request replied the information of a responsible agent. The
boxplot shows the distribution of required time to receive an answer to a request, and the line
graph shows the probably distribution of the number of hops.

The average number of hops is around 1 + 1
2

(
log2 N

)
where N is the number of overlay

nodes (agents), which coincides with the simulation result shown in [19]. The median of turn
around time exhibits linear trend as the number of hops increases. This can be understood by
considering that forwarding a request averagely takes same time at each agent. Additionally, we

40 N-TAP: An AOMP Built on a Role-Based P2P Network 3.2

10000 30000 50000 70000 90000

0
10

20
30

of existing data entries

Ti
m

e
fo

r s
to

rin
g

/ m
se

c.

(a) Store

10000 30000 50000 70000 90000

0
10

0
20

0
30

0
40

0

of existing data entries

Ti
m

e
fo

r s
ea

rc
hi

ng
 /

m
se

c.

(b) Search

Figure 3.11: Turn around time for handling a local database.

suppose somepoints plotted far fromwhiskers are causedby temporal high loadon thePlanetLab
nodes (as a shared experimental infrastructure) derived from other users’ experiments. From
these results, we can find that the required time for finding a responsible agent increases linearly
with the increase of the logarithm of the number of N-TAP agents.

3.2.2 Local Database

Each N-TAP agent has a local database that is a part of the shared database on the measurement
overlay network. Nextwemeasured the time-based performance of storing or searching in a local
database, which is another factor that influences the functions in the upper layer.

As the performance of storing a data entry in a local database, wemeasured the required time
for storing one entry of RTT data between two nodes. As for searching, wemeasured the required
time for searching an entry that has a randomly chosen ID. Figure 3.11 shows the distribution of
required time for each procedure when the local database already contains from 10000 (n − 1)

3.2 N-TAP: An AOMP Built on a Role-Based P2P Network 41

of agents

Ti
m

e
fo

r s
to

rin
g

/ s
ec

.

0.
0

0.
5

1.
0

1.
5

2.
0

8 16 32 64 128

fin
d

a
re

sp
on

si
bl

e
ag

en
t

ot
he

rs

(a) Store

of agents

Ti
m

e
fo

r s
ea

rc
hi

ng
 /

se
c.

0.
0

0.
5

1.
0

1.
5

2.
0

8 16 32 64 128

fin
d

a
re

sp
on

si
bl

e
ag

en
t

ot
he

rs

(b) Search

Figure 3.12: Turn around time for handling the shared database.

to 10000n data entries (n = 1, 2, ..., 10) as represented in the X-axis. As we can see in the figure,
turn around time for storing a data entry keeps approximately constant regardless the size of a
local database within this range. On the other hand, turn around time for searching data entries
increases linearly with the increase of the database size. The median values of turn around time
for storing and searching where n = 10 are respectively 6.33 ms and 167 ms, and we can point
out that the cost for searching a data entry in a large local database is much higher than one of
storing a data entry from the aspect of required time.

3.2.3 Shared Database and Communication Channels

The procedure of storing or searching data entries in the shared database is mainly composed of
two fundamental functions. The N-TAP agent first has to find a responsible agent for the data
entry ID and then communicate with the found agent to put or retrieve the data entries.

We measured the turn around time for storing or searching data entries with varying the
number of agents (Figure 3.12). In the respective cases where N = 8, 16, 32, 64, 128, we chose
an agent sequentially and invoked the procedure of storing or searching one data entry of RTT
information in the shared database on the agent. The graphs show the median values of turn
around time for storing or searching procedures after 1000 times repetition of this procedure.
The dark gray part of each bar is the required time for finding a responsible agent for a data entry
and the rest is the required time for other procedures including establishing a connection with

42 N-TAP: An AOMP Built on a Role-Based P2P Network 3.2

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of trials

F

N = 8

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of trials
F

N = 16

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of trials

F

N = 32

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of trials

F

N = 64

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of trials

F

N = 128

Figure 3.13: Fairness of the distribution of data entries.

the agent and sending or receiving data entries. From this result, we can find that the required
time for finding a responsible agent increases as stated in Section 3.2.1 but the time for other
procedures just shows slight change against the increase of the number of agents. Consequently
the required time for finding a responsible agent becomes dominant in the overall required time
as the number of agents grows. If the size of the measurement overlay network is constant and
the number of data entries continues to increase, the required time for the procedures related to a
local databasewill grow linearly andmay not be ignorable. For example, we can estimate that the
number of data entries in each local database will be in the order of 106, which is a considerable
amount, when the required time for searching in a local database becomes almost same as the
one for finding a responsible agent at N = 128.

Then, how does the performance related to the shared database change in case that the total
scale of N-TAP gets larger? Before considering this, we first investigate the nature of the shared
database as a distributed database.

To consult how data entries are distributed among agents, we calculated the variation of a
fairness index defined as follows on the last experiment:

F = 1 − N
N − 1

N∑
i=1

(
1
N
− pi

)2

(3.1)

In this equation, N denotes the number of N-TAP agents and pi
(
0 ≤ pi ≤ 1,

∑
pi = 1

)
is the

percentage of database entries hosted by the i-th agent (i = 1, 2, ..., N). F takes a value in [0, 1]
and the larger value of F means the better fairness from the point of view that data entries are

3.3 N-TAP: An AOMP Built on a Role-Based P2P Network 43

homogeneously distributed. The result is shown in Figure 3.13, whose X-axis shows the number
of the finished trials of storing a data entry (or we can regard it as a time series) and the Y-axis
is the value of F. After 45 trials, F becomes larger than 0.99 and keeps its growing trend until
the 1000th trial finishes in all cases. This means that collected data entries were distributed ho-
mogeneously among agents and all agents were almost equally burdened with storage cost. In
N-TAP, a data entry is stored in the local database of an agent that is a collector and also stored
in the local database of other agents that are responsible in the N-TAP’s ID space as described in
Section 3.1.5. Therefore, if a specific kind of data such as the RTT between certain two nodes is
collected more frequently than other data, more data entries are stored in the local databases of
certain agents and the fairness index is expected to be lower.

Now we come back to the question: “How does the performance of the shared database
change if the scale of N-TAP grows?” Suppose the number of agents becomes twice. Then we
can expect that turn around time for finding a responsible agent increases in O

(
log2 N

)
as with

Figure 3.10. If an application that uses N-TAP is interested in obtaining network characteristics
information of certain targets, now we can consider that the application has obtained N new
measurement points and the number of measurement targets also becomes twice. In case that
an application is interested in obtaining network characteristics information among agents (e. g.,
the IP-level topology among overlay nodes), the number ofmeasurement targets rises inO

(
N2),

so the number becomes about 4 times. Coincidentally the twice number of agentsmeans that the
fraction of data entries that each agent has to keep in its local database becomes the half. Hence
the actual number of data entries that an agent has in a local database is expected to be the con-
stant order in the former case and grow twice in the latter case. Looking back at Figure 3.11, the
required time for handling a local database is almost constant or proportional to the database
size. Namely, when the scale of the N-TAP system grows, we can expect that the required time
for finding a responsible agent will still remain dominant in the former case. And the time for
searching in a local database will overtake the one for finding a responsible agent in the latter
case if the size of a local database becomes quite large.

Lastly, we refer to another feature realized on the N-TAP’s measurement overlay network:
communication channels among N-TAP agents. To establish a communication channel with an-
other agent, theN-TAP agent has to search the data entry of the information (e. g., IP address and
port number) on the target agent and then start communication. Therefore the required time just
before the agent starts communication is same as the time for searching a data entry in the shared
database. In case that an agent uses a connection-oriented protocol such as TCP to communicate
with other agents, the required time for establishing a communication channel will include the
communication delay between agents, which depends on their network proximity and the state
of agents themselves.

3.3 Performance Evaluation of the overall N-TAP Network

3.3.1 Experiment

For this experiment, we used 128 homogeneous nodes in StarBED [42], which is a large-scale
network experiment facility. Each node had an Intel Pentium III 1GHz CPU, 512MB memory
and a 30GB ATA hard drive. These nodes were connected through 100Mbps Ethernet links in
the same network. The Debian GNU/Linux operating system with the 2.6-series kernel was

44 N-TAP: An AOMP Built on a Role-Based P2P Network 3.3

installed on each node.
WehadoneN-TAPagent run on eachnode; thereforewe constructed ameasurement network

with 128 agents (i. e., N = 128). An N-TAP ID, which puts an agent in the Chord ring, was
randomly assigned to each agent with no overlaps. The reason we chose random IDs was to
distribute the load derived from maintaining the N-TAP network among the core agents in the
hybrid and pure peer-to-peermeasurement networks. After theN-TAP networkwas constructed,
we ran a client program on one node that is in the same experimental network and did not have
an agent. The program sequentially issued 2000 requests to one of the core agents for the RTT
information between two randomly chosen experimental nodes. The program also issued the
samenumber of the requests to one of the stub agents if theN-TAPnetwork had stub agents. The
request messages were exchanged based on the XML-RPC protocol between an agent and the
client program. We note that an N-TAP agent usually tries to reuse RTT data previously collected
and stored in the shared database if a client program specifies the request on the freshness of
the RTT data. However, for simplicity in this experiment, we forced the agents not to reuse the
RTT data but to perform the actual measurement. The agents logged their operations with time
stamps, and N-TAP related packets were captured on the nodes, so we were able to analyze the
behavior of themeasurement network. We selected the values of 1, 2, 4, 8, 16, 32, 64 and 128 for
C (the number of core agents) to shift a measurement network from the centralized one to the
decentralized one. For convenience, we numbered the respective agents from 1 to 128 according
to the following rules: (a) The first agent was a core agent that accepted and processed the above
requests. (b) If there were other core agents, they were numbered from 2 to C. (c) If there were
one or more stub agents, we set a stub agent that accepted and processed the above requests as
the 128th agent. (d) If therewere other stub agents, theywere numbered fromC+1 to 127. Also
note that the 128th stub agent was configured to issue a request related to the N-TAP network
to the first core agent.

The procedures carried out by a core agent when it accepted an RTTmeasurement request are
as follows:

1. The core agent searches the source node in the requested RTTmeasurement. In this proce-
dure, the core agent issues a request to find a core agent that is responsible for storing the
data entries on the source node in the shared database. After it finds a responsible agent,
it asks the agent to send the information on the source node (for instance, whether the
source node is alive or not).

2. If the source node is alive (this condition is always true in this experiment), the core agent
asks the source node to measure the RTT. Then the source node sends the measurement
result to the core agent.

3. On receiving the result, the core agent responds to a client program with this result.

4. The core agent stores the collected RTT information in the shared database. It finds another
core agent, one that is responsible for storing this data entry, and sends the entry to the
responsible agent.

In the case of a stub agent, a control message to find a responsible agent was always sent to a
specific core agent because the stub agent did not have a routing table in the N-TAP network but
only knew the core agent that bridged between the N-TAP network and the stub agent itself.
Apart from this messaging manner, the stub agent behaved in a same way as a core agent.

3.3 N-TAP: An AOMP Built on a Role-Based P2P Network 45

After the experiment, we confirmed that no measurement error had occurred and that all of
the N-TAP related packets had been correctly captured during the experiment. The evaluation
carried out in the following section is based on the recorded behavior of the agents after the
measurement network became stable, i. e., no change in the agents’ routing tables were made.

3.3.2 Evaluation

In this section, we investigate the basic characteristics of the respective measurement networks
shown in Section 3.1.4. Our focus is the load distribution and the responsiveness to a measure-
ment request in measurement networks.

Load Distribution

First we investigate the flow of control messages in the N-TAP network. Since the N-TAP agents
have to carry out procedures according to the control messages, we can determine the distri-
bution of loads among the agents by seeing this flow. Figure 3.14 depicts the distribution of
exchanged control messages among the agents. Its horizontal axis denotes the assigned num-
bers of source agents in control messages, and the vertical axis denotes the assigned numbers
of destination agents. The colored squares in the graphs show the number of the messages by
their darkness: dark gray indicates more messages were exchanged and light gray means fewer.
Specifically, where we defineM as the logarithm of the number of exchanged messages, we di-
vide the zone of the values of M into four even intervals and assign four shades of gray to the
respective intervals so that the zone of the largest value ofM is the darkest; a white area means
that no message was exchanged between the agents. The horizontal and vertical dotted lines in-
dicate the borders between the core agents and stub agents; therefore the bottom-left area shows
themessages exchanged between two core agents, the bottom-right and top-left areas are for the
messages between a core agent and a stub agent, and the top-right area is for the messages be-
tween two stub agents.

In any case, we can confirm that the squares are plotted more densely in the bottom-left area
than in other areas, and the grays there aremostly dark. This shows that the burden ofmaintain-
ing themeasurement networkwas concentrated on the core agents, and the stub agents were rel-
atively freed from such tasks. Additionally, no message was exchanged between two stub agents
except for the cases of involving the 128th agent. The reason why the number of the messages
to/from the first and 128th agents is large is that these agents had to ask other agents to perform
the RTT measurement when they accepted measurement requests. For example, these agents
asked the 10th agent to obtain the RTT between the 10th agent and the other agents. Moreover,
after they obtained the RTT information, the first and the 128th agents had to store themeasured
RTT information in the shared database, as described in Section 3.3.1.

Secondly, we look into the exact number of exchangedmessages and its tendency. Figure 3.15
shows the total number of exchangedmessages during the 4000 requests in the respective cases
of the C values. We can find that the number of messages exchanged between two core agents
increases proportionally as the logarithm of the number of core agents grows. This number is
zero where C = 1 because there is only one core agent and it does not need to issue a control
message to another core agent. Meanwhile, the number of messages exchanged between a core
agent and a stub agent changes slightly, though it becomes zero in the case of no stub agent (C =
128). The number of messages exchanged between two stub agents decreases as the number of

46 N-TAP: An AOMP Built on a Role-Based P2P Network 3.3

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent

D
es

tin
at

io
n

A
ge

nt

(a)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent
D

es
tin

at
io

n
A

ge
nt

(b)

●

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent

D
es

tin
at

io
n

A
ge

nt

(c)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent

D
es

tin
at

io
n

A
ge

nt

(d)

●

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent

D
es

tin
at

io
n

A
ge

nt

(e)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Source Agent

D
es

tin
at

io
n

A
ge

nt

(f)

Figure 3.14: Distribution of exchanged messages among 128 N-TAP agents where (a) C = 1, (b)
C = 4, (c) C = 16, (d) C = 32, (e) C = 64, and (f) C = 128.

3.3 N-TAP: An AOMP Built on a Role-Based P2P Network 47

1 2 4 8 16 32 64 128

Stub − Stub
Core − Stub
Core − Core

of Core Agents

of

 E
xc

ha
ng

ed
 M

es
sa

ge
s

0
50

00
0

10
00

00
15

00
00

20
00

00

Figure 3.15: Number of exchanged messages.

48 N-TAP: An AOMP Built on a Role-Based P2P Network 3.3

stub agents decreases. The total number of messages tends to be larger as the number of core
agents increases.

From these tendencies, let us see the number of messages that an agent of each role has to
process as a metric of loads. It appears that the number of messages that one core agent has
to process is reduced when the proportion of core agents to the total number of agents is large,
because the growth order of the summation of the core-core and core-stub messages is lower
than that of the number of core agents. On the other hand, when this proportion of core agents
is large, the number of messages that one stub agent has to process increases but is still smaller
than the number of messages that one core agent has to process.

These facts indicate that the scheme of core and stub agents works just as we had intended,
that is, that the loads should be distributed among the core agents, and the stub agents should
have less burden. The maintainer of the measurement network can easily adjust the load distri-
bution with the proportion of core agents as he or she intends.

Responsiveness

Next we compare the responsiveness to ameasurement request in the cases of a request to a core
agent and to a stub agent. Responsiveness is an important factor as an application-orientedmea-
surement service, because it has an eect on optimization procedures performed by autonomic
applications that need network characteristics information. In Figures 3.16(a) and 3.16(b), the
boxplots that represent the distribution of the turn-around time for a measurement request are
depicted. Figure 3.16(a) represents the turn-around time in the case that a client program issued
requests to a core agent, and Figure 3.16(b) represents the turn-around time in the case of is-
suing requests to a stub agent. In both graphs, the horizontal axis denotes the number of core
agents and the vertical axis denotes the turn-around time for one request. In the case of sending
a request to a stub agent, the boxplot where C = 128 is not given because we have no stub agent
in the measurement network.

We canfind that, in both cases, the turn-around timewherewe adopted the centralizedmodel
is shorter than the turn-around time with other models. The dierence between the centralized
model and other models is that the agent that accepts a request must perform the procedures for
finding a responsible agent, retrieving the information on agents in the N-TAP network from the
shared database, and requesting other core agents to store the collected data as an entry in the
shared database. Inspecting the log files of the agents that accepted measurement requests from
a client program, we calculated the mean of required time for each procedure, and the result is
shown in Table 3.1. From this table, we see that, between the centralized model and the other
models, a considerable dierence of the time required for a measurement request is dominated
by the time required for these procedures. The time required for finding a responsible agent is
expected to increase linearly depending on the logarithm of the number of core agents. This is
because, given the nature of Chord, the number of times a control message to find a responsible
agent is forwarded among the core agents is proportional to the logarithm of the number of
core agents. In Table 3.1, the required time for finding a responsible agent seems to follow this
expectation. On the other hand, the required time for the database-related procedureswould not
significantly change while the size of local databases in respective core agents is small, and we
can confirm such a tendency from the table. We also note that the distribution of the core agents’
IDs also has an eect on the topology of the measurement overlay network, which results in the
fluctuation of the required time, as in the above table. In this experiment, the IDswere randomly

3.3 N-TAP: An AOMP Built on a Role-Based P2P Network 49

1 2 4 8 16 32 64 128

0
20

0
40

0
60

0
80

0

of Core Agents

Tu
rn

 A
ro

un
d

Ti
m

e
/ m

se
c.

(a) Request to a core agent

1 2 4 8 16 32 64 128

0
20

0
40

0
60

0
80

0

of Core Agents

Tu
rn

 A
ro

un
d

Ti
m

e
/ m

se
c.

(b) Request to a stub agent

Figure 3.16: Turn-around time for a measurement request.

50 N-TAP: An AOMP Built on a Role-Based P2P Network 3.4

Table 3.1: Required time for the procedures (in milliseconds).

The number of core agents (= C) 2 4 8 16 32 64 128
Find a responsible agent (core) 1.0 2.5 6.2 4.8 6.4 7.5 7.8

Retrieve from the shared DB (core) 5.5 5.3 7.6 3.5 3.4 3.0 3.0
Store in the shared DB (core) 52.7 53.7 49.4 58.2 55.5 60.5 62.6

Find a responsible agent (stub) 2.1 7.1 9.6 8.3 9.8 11.2 —
Retrieve from the shared DB (stub) 10.0 9.1 9.7 5.5 5.2 4.6 —

Store in the shared DB (stub) 56.5 58.5 55.0 60.3 56.4 61.5 —

assigned; therefore we suppose that the required time for these procedures is almost the same
among the agents.

The required time for finding a responsible agent in the case of sending a request to a stub
agent is longer in the order of a few milliseconds than in the case of sending a request to a core
agent. This canbe explainedby considering that a stub agent first needs to send a controlmessage
to a core agent, while a core agent can send a message directly to the next hop’s agent in its
own routing table. We can suppose that this additional procedure for a stub agent increases the
required time in the case of sending a request to a stub agent.

According to the discussion in this section, a measurement network with the centralized
model is superior to one with the hybrid or the pure peer-to-peer model in its responsiveness
to ameasurement request. In this experiment, communication delay between the agents is short
enough to be ignored, however, the communication delay will range approximately from tens to
thousands of milliseconds when the measurement network is deployed in a wide-area network.
This will have significant influence on the measurement network with the hybrid or the pure
peer-to-peer model because a larger number of control messages must be exchanged through
networks in these measurement networks. However, the centralized measurement network al-
ways has to struggle with load concentration at a core agent. These factors should be considered
in constructing a measurement network.

3.4 Discussion

First, based on the performance evaluation in Section 3.2, we discuss the tactics for the rapid
provision of network characteristics information to applications. To quicken the collection of
network characteristics information, we introduced the “local-first and remote-last” rule in Sec-
tion 3.1.5. We can summarize four procedures taken in this rule as follows: Searching in a local
database can be done relatively rapidly in most cases and does not generate extra network trac.
Required time for the actual measurement of network characteristics information depends on
respective measurement methodologies. Both searching the data collected by other agents and
requesting measurement to another agent involve the search in the shared database, therefore
the required time for these respective procedures are estimated to be longer than the one for
searching in a local database. Additionally, the procedure of requesting measurement invokes
measurement activity on another agent, thus, it must pay more time cost than just searching
in the shared database. Standing on these prospects, we can confirm that the “local-first and
remote-last” rule is a reasonable tactic in point of its time-cost based prioritization of these four

3.4 N-TAP: An AOMP Built on a Role-Based P2P Network 51

Table 3.2: Considerable cases on utilizing N-TAP with the “local-first and remote-last” rule.

LD MS SD RE [P]ros and [C]ons√
[P] Rapid provision of network characteristics information
[P]Nomeasurement overhead√ √
[P]No need for performing measurement by an application itself
[C] Slight time-cost penalty√

∗
√

[P] Provision of network characteristics information that cannot be
collected by a solo node

[C] Time-cost penalty√
∗

√ √
[P] Provision of network characteristic information that cannot be

collected by a solo node
[C]More time-cost penalty

LD: Search in a local database
MS: Measure by an agent itself
SD: Search in the shared database
RE: Request measurement to other nodes

procedures.
Looking from the viewpoint of applications, in Table 3.2, we show the pros and cons of uti-

lizing N-TAP with the “local-first and remote-last” rule compared to performing measurement
procedures by applications themselves. The tick mark in this table means that the marked pro-
cedure is done in the rule, i. e., the rowwith themarks of LDandMSmeans the case that an agent
first tried to search in a local database but failed so it performedmeasurement and then provides
collected data to applications. The asterisk shows that the corresponding procedure may not be
invoked in the sequence of procedures. In case that the “local-first and remote last” rule ends at
the point of searching in a local database, applications can receive desired network characteristics
information rapidly. In the case of ending at the point of performing measurement, applications
can retrieve network characteristics information without actually performing measurement by
themselves butwith a slight penalty of the failure of searching in a local database. If the data exist
in the shared database, applications can retrieve network characteristics information that cannot
be collected by a solo node with paying some time costs. In the case of requesting measurement
to other agents, applications also have a chance to obtain such kind of network characteristics
information, but they have to pay more time costs to complete this procedure.

As an idea for modifying the “local-first and remote-last” rule, we consider to reverse the turn
of searching in the shared database and requesting measurement to other agents. If the mea-
surement procedure can be done quickly and succeed in a higher rate than the one of finding
desired data entries from the shared database, this modification will count. Anyway since the ef-
fect of such modification depends on the characteristics of respective measurement procedures,
we have to carefully investigate the characteristics andmake tactics for performingmeasurement
in the future.

In the latter evaluation section, we described the trade-os among measurement networks
with three dierentmodels basedon the agents’ behavior in respective networks. The centralized
measurement network can get the best responsiveness in exchange for the heavy loads, which
may bring a decrease in responsiveness. In the hybrid measurement network, we can select mul-

52 N-TAP: An AOMP Built on a Role-Based P2P Network 3.5

tiple core agents according to our purposes, and the processing loads can be distributed among
the core agents. The load on one core agent will be the minimum on an average in the case
of the pure peer-to-peer measurement network. However, in the hybrid and pure peer-to-peer
measurement networks, the responsiveness will go down depending on the size of the control
planes of these networks.

The ease of adjusting the formation of a measurement network will be important in the ac-
tual deployment of a measurement service. In this paper, we first proposed the scheme of core
and stub agents in a measurement network. With this scheme, we can easily shift the measure-
ment network among the centralized network, the hybrid network and the pure peer-to-peer
network by adjusting the proportion of core and stub agents. In the case that we can control
a measurement network (e. g., when we monitor network facilities with such measurement sys-
tems), administrators should design themeasurement network tomeet their requirements. They
will benefit from the ease of adjustment to the measurement network. In the case that we can-
not know beforehand what types of agents will join a measurement network, we cannot create a
clear plan for constructing the network. Oneof the cases is that the agents runon the samenodes
as the applications (an overlay network application, etc.), whose nodes will arbitrarily join and
leave. Even in such cases, role-based adjustmentwill workwith the application nodes. For exam-
ple, in order to improve the responsiveness to a measurement request, we would choose agents
that are connected with a high-speed link and have high performance as core agents. Other met-
rics, like the continuous running time of nodes, will also be helpful in constructing the desired
measurement network.

Focusing on the application-oriented measurement service, quick responsiveness to a mea-
surement request is indispensable in a measurement system. To improve the responsiveness
in a hybrid or a pure peer-to-peer measurement network, some possible refinements of a mea-
surement system can be pointed out. One is to let an agent cache the results of finding a re-
sponsible agent so as to decrease the number of exchanged control messages. From the results
in Section 3.3.2, in a large-scale core network, we can expect that the required time for finding
a responsible agent will become dominant in the turn-around time for a measurement request.
Caching the results of this procedurewill improve the responsiveness, but the agentswill need to
handle the inconsistency between the cache and the actual topology of a measurement network,
and we will pay a waiting time penalty when such inconsistency occurs. Moreover, as described
before, choosing core agents based on the capability of agents will also be eective. In the case
of choosing core agents dynamically, we will also have to handle themigration of key-value pairs
in a distributed hash table (DHT), which is expected to be a considerable burden.

In a hybrid peer-to-peer network, each overlay node is assigned one or more node roles and
is managed in a hierarchical structure as described already in this paper. Kazaa [38, 43], a peer-
to-peer file sharing application, utilizes this scheme to connect between its unstructured peer-to-
peer network and ordinary nodes. The extension to N-TAP that we have added in this chapter is
unique in applying this scheme to a structuredmeasurement overlay network in whichmeasure-
ment procedures dierent from the ones of ordinary file sharing applications are performed.

3.5 RelatedWork

In this section, we first introduce some cooperative measurement methodologies that are ex-
pected to be implemented on N-TAP and other application-oriented measurement platforms.

3.5 N-TAP: An AOMP Built on a Role-Based P2P Network 53

Additionally, we also present existingmeasurement platforms and their positions against N-TAP.

3.5.1 Cooperative Measurement

The idea of cooperative measurement is simple. In cooperative measurement, measurement
nodes have same objectives of their measurement activities such as accelerating the speed of
measurement, extending the coverage of measurement, and estimating network characteristics
information without individual measurements to reduce measurement trac. To achieve their
objectives, they perform some cooperative actions that involve other measurement nodes ac-
cording to their common rules.

A typical example of cooperative measurement is the network proximity estimation based
on a coordinate system on which Internet nodes are plotted to obtain network characteristics
information. For instance, Vivaldi [15] is a decentralized coordinate system that enables the es-
timation of the RTT between two nodes while performing fewer measurements. In Vivaldi, each
node refers the coordinates of other nodes and calibrates its own coordinate according to a phys-
ical spring-mass system. The estimated RTT between two nodes is calculated by the Euclidean
distance between them in the coordinate system. GNP [44], NPS [45], Lighthouse [46], PIC [47]
and Netvigator [48] are also included in the systems that estimates network characteristics in-
formation based on geometric information.

To reduce measurement overhead for IP-level topology discovery, Donnet et al. introduced
theDoubletree [12] algorithm. Theynoticed the fact that the respective results of topology prob-
ing include a high number of overlapping routes and redundant probes cause extrameasurement
overhead. To address this problem, the measurement nodes of Doubletree exchange their mea-
sured topology data and extract the common portions amongmeasured topology data. Based on
such analysis, they decide which parts of the topologies do not need to be visited repeatedly. In
addition, Doubletree uses the technique of Bloom filters to reduce the bandwidth consumption
derived from the communication among measurement nodes.

We can pick out twopatterns of cooperation from thesemethodologies: one is that theirmea-
surement nodes communicate with other nodes for controlling their measurement procedures,
and the other is that the measurement nodes share their collected data. For example, in Vivaldi,
each node needs to communicate with other nodes to know their coordinates. Another example
is that the Doubletree nodes share collected topology data among them. Therefore we regard
these two features the “communication channels” and the “shared database” as the essential fea-
tures for implementing cooperative measurement methodologies.

3.5.2 Measurement Platforms

There are a number of the projects for collecting network characteristics information on their
large-scale measurement platforms. CAIDA [37] is one of the largest group performing the In-
ternet measurement and analysis. Its projects cover the collection and analysis of various kinds
of network characteristics information including IP-level and AS-level topology and the per-
formance of network services. Additionally they study on their measurement methodologies.
DIMES [49, 50] and NETI@home [51, 52] are also the famous projects of distributed measure-
ment. Their concepts resemble theoneof a distributed computingproject calledSETI@Home [53,
54]; the measurement nodes send measured data to a central server and the server performs the
analysis for the study of the Internet structure. The measurement platforms of these projects are

54 N-TAP: An AOMP Built on a Role-Based P2P Network 3.6

mainly designed with the focus on scientific and statistical analysis rather than the utilization
of network characteristics information by applications. So their objectives are dierent from the
one of N-TAP, however, the fundamentals of their studies, such as the deployment manner of
infrastructure and measurement techniques, are also informative for N-TAP.

Pandora [7] is awell-constructed programming platform for autonomic applications. Pandora
provides the programming components that simplify the procedures of networkmonitoring and
packet processing. By providing these components, Pandora approaches to its goal of encourag-
ing applications to obtain and utilize network characteristics information. On the other hand,
N-TAP takes an approach of wrapping up the procedures of measurement methodologies and
letting them available as an independent service.

Some systems such as pMeasure [55], iPlane [56] and S3 [57] have almost same goals as
N-TAP from the viewpoint of the provision of network characteristics information to applica-
tions. These systems are deployed as distributed measurement services, which collect and pro-
vide network characteristics information. While they mainly focus on measurement method-
ologies that are available on them, the investigation of basic requirements for the architecture
of an application-oriented measurement platform is still left. Such requirements definition and
the evaluation based on the requirements are also necessary along with the deployment of mea-
surement methodologies on the platform. On the architectural aspect, N-TAP diers from these
systems especially in the manner of measurement activity. Each N-TAP agent stores collected
data in both local database and the shared database, and according to the “local-first and remote-
last” rule, the agents prioritize the search in their local databases and themeasurement on a local
node in order to improve response time and reduce measurement overhead.

3.6 Summary

In this chapter, we presented the architecture of a distributed measurement platform named
“N-TAP” that works in a peer-to-peer manner. N-TAP acts as a measurement service that pro-
vides network characteristics information for autonomic applications like overlay network ap-
plications, and enables the implementation of cooperative measurement methodologies on it.
Through the performance evaluation of fundamental features that are tested in an actual network
environment, we explored the eects of each function on turn around time. From the viewpoint
that the rapid provision of network characteristics information is important for autonomic appli-
cations that utilize such information, we also discussed the tactics for measurement activities so
that these applications can rapidly retrieve network characteristics information from such kind
ofmeasurement platforms. Our investigation of the fundamental features of a peer-to-peermea-
surement platform from the aspect of time costs showed basic data tomake tactics for performing
measurement procedures on N-TAP, and we confirmed the “local-first and remote-last” tactic has
certain reasonability from this aspect.

We also focused on a methodology for constructing a measurement network, which can eas-
ily change its network formation, alternating between centralized, hybrid and pure peer-to-peer
models. By adopting this scheme andmodifying an existingmeasurement agent, we investigated
the operational flow in each of the measurement networks. As a result, we were able to confirm
that exchanging controlmessages throughnetworkshas an appreciable eect on the turn-around
time for a measurement request in the hybrid and pure peer-to-peer measurement networks. At
the same time, the processing loadswere successfully distributed among core agents in these net-

3.6 N-TAP: An AOMP Built on a Role-Based P2P Network 55

works. The consideration of such trade-os is important in constructing a desired measurement
network.

56 N-TAP: An AOMP Built on a Role-Based P2P Network 3.6

57

Chapter 4

Unleashing a Cooperative Measurement
Methodology on an Actual Network

Even though we have a number of sophisticated cooperative measurement methodologies, they
have not yet appeared as a core measurement technique on actual monitoring systems. In this
chapter, to validate that a cooperativemeasurementmethodology can be implemented onN-TAP
and it can bring advantages for the Internet observation, we build an actual topology probing
system based on one of the cooperative measurement methodologies, called Doubletree, which
discovers IP topologies in the distributed manner. The key idea of our proposal is that, by uti-
lizing a shared database as a communication method among monitors and taking advantage of
the characteristics of the Doubletree algorithm, we can get rid of a specific control point, and a
DTM system can be constructed in a decentralized manner. We describe our implementation of
distributed topology measurement (DTM) system, called Decentralized Tracing System (DTS).
Decentralization within DTS is achieved using various distributed hash tables (DHTs), each one
being dedicated to a particular plane (i.e., control or data). Through the deployment of DTS on
the PlanetLab testbed, we demonstrate that DTS presents strong advantages in terms of flexibil-
ity, robustness, scalability and modularity.

4.1 Background

The research work on the Internet topology has been emphasized for these years. The work
is based on the topology maps built by systems such as skitter [58], which probes the Internet
topology from multiple vantage points using the technique of traceroute [59]. We call these
distributed topology measurement (DTM) systems.

Amilestone result fromDTMdatawas Faloutsos et al.’s paper [60] onpower-law relationships
in the Internet. They found that the distribution of router degrees follows a power law. Theirmap
came from an early DTM, by Pansiot and Grad [61], consisting of just twelve traceroute hosts.
The solidity of a result based upon so few vantage points was put into question by Lakhina et
al.’s finding [62] that, in simulations of a network in which the degree distribution does not at
all follow a power law, traceroutes conducted from a small number of monitors can nonetheless
induce a subgraph in which the node degree distribution does follow a power law. Clauset and
Moore [63] have since demonstrated analytically that such a phenomenon is to be expected for
the specific casewhere the actual topology is anErdös-Rényi randomgraph [64], which is far from

58 Unleashing a Cooperative Measurement Methodology 4.1

a power-law graph. In order to remove potential spatial bias from the Internet maps, therefore,
we requiremuch larger scaleDTMseven thoughwe are yet to knowprecisely howmanymonitors
are needed.

Another motivation for deploying a large-scale DTM is to better track network dynamics.
Given we have more number of monitors for probing specific networks, each monitor can take a
smaller portion of the topology and probe it more frequently. Changes that might be missed by
smaller systems canmore readily be captured by the larger ones, while keeping the workload per
monitor constant.

One rapid way to deploy a large scale DTM would be to deploy traceroute monitors in an
easily downloadable and readily usable piece of software, such as a screen saver. This was first
proposedby JörgNonnenmacher, as reportedbyCheswick et al. [65]. The approach is inspired by
distributed computing tools like SETI@home [53, 54]. The first publicly downloadable DTM is
DIMES [49, 50], released in September 2004 as a daemon program that performs themonitoring
on each end node.

However, building such a large structure leads to potential scaling issues: the quantity of
probes launched might consume undue network resources and the probes sent from many van-
tage points might appear as a distributed denial-of-service (DDoS) attack on end-hosts [12, 66].
TheNSF-sponsoredCONMIWorkshop [67]urged a comprehensive approach todistributedprob-
ing, with a shared infrastructure that respects the many security concerns that active measure-
ments raise. DTMs must coordinate the eorts of their individual monitors.

Topology discovery can be enforced through a centralized or decentralized architecture. Cur-
rent systems, such as Scriptroute [68], Rocketfuel [69] and DIMES [49], are centralized. Unfor-
tunately, such an architecture brings with it necessary scalability problems and a single point
of failure. A centralized system might suer strain on its server and network link, given a large
enough number of participants and control messages. Further, if the centralized communication
entity fails, the entire system fails.

In this chapter, we propose the first decentralized architecture for a DTM. We build on our
priorwork [12] in introducing cooperation amongDTMmonitors, through theDoubletree topol-
ogy discovery algorithm. Doubletree takes advantage of the tree-like structure of routes, either
emanating from a single source to multiple destinations or routes converging from multiple
sources to a single destination, in order to avoid duplication of eort for topology discovery.
With Doubletree, tracing monitors cooperate by exchanging information about which interfaces
were previously discovered through probing specific interfaces. In other words, the key idea of
Doubletree is that the monitors share information regarding the paths that they have explored.
If one monitor has already probed a given path to a destination, then another monitor should
avoid that path. Doubletree describes what must be shared but, prior to this work, we did not
specify precisely how it should be shared in a distributed environment. By adopting the decen-
tralized architecture, we can expect the problems stated above are addressed or moderated. At
the same time, we may face a problem that the decentralized architecture has. Therefore, we
should investigate the merits and demerits of these architectures stepwise.

Because of the uncertain environment that DTMs must run in, where host machines are sus-
ceptible to varying network load and possible disconnection, they require an architecture that
is not just scalable, but is also flexible and robust. These features are found in distributed hash
tables (DHTs). One DTM that uses a DHT architecture for just this reason is N-TAP, which stores
its data in a DHT-based distributed database.

4.2 Unleashing a Cooperative Measurement Methodology 59

Our proposed architecture is called Decentralized Tracing System (DTS), which makes use
of DHTs for decentralizing the control and data planes of a DTM. The control plane concerns
how to guide a monitor’s probing while the data plane refers to collected data storage. In order
to decentralize both planes, DTS considers three DHTs, each one being dedicated to a particular
type of information that must be shared between monitors: the probing control information
(i. e., indications about paths already explored by monitors), the probing target (i. e., the list of
destinations to probe), and the probing data (i. e., the topological data collected).

We implement and deploy DTS on the PlanetLab testbed. Through this deployment, we
demonstrate themerits of DTSwith investigating the characteristics of theDoubletree algorithm
implemented on it. We mainly show that DTS is flexible (i. e., each monitor can probe at its own
pace without disadvantaging the rest of the system), robust (i. e., DTS continues to work in case
of one or several monitors fail), scalable (i. e., DTS scales against the growth of the number of
monitors), and modular (i. e., DTS is designed in a modular fashion, which divides a program
into several independent components). Finally, DTS is open-source and freely available to the
research community under a BSD-like license.

4.2 DTM Systems Requirements

In this section, we discuss the requirements for any DTM system. One can see a DTM system
being composed of two planes: the control plane and the data plane. The control plane, detailed
in Sec. 4.2.1, concerns how to guide a monitor’s probing. The data plane, discussed in Sec. 4.2.2,
refers to the collected data storage.

4.2.1 Control Plane

The control plane of a DTM system refers to the management of information regarding probing
targets as well as information needed to decide when probing must stop for a given target.

First, aDTMsystemhas to share the target list, i. e., the list of IP addresses (or names) of probe
targets, between probingmonitors. A target list must be permanent in the system. However, one
must have the opportunity to perform on the fly some changes in the list, such as adding or
removing items. For instance, a target can refuse to be probed in the future and its IP address
must be then blacklisted and removed from the current target list. For the rest of this chapter, we
refer to the target list as probing target.

Second, a DTM system has to share information to guide probing in order to make measure-
ments more ecient. This information can help a probing monitor to decide when to stop prob-
ing a given target. By definition, such an information is volatile. In the following, we refer to this
information as probing control information.

A DTM system must be dynamic. It should accept dynamic arrivals and departures (volun-
teer or not) of monitors. Monitors join and leave the system when they wish. Such a dynamic
behavior must have limited impact on the shared information. Robustness and flexibility must
also be key properties of a DTM system.

Finally, the control plane of a DTM system must ensure that each probing monitor can per-
form measurements at its own rhythm. A slower monitor cannot slowdown others monitors.

60 Unleashing a Cooperative Measurement Methodology 4.3

... ...Ti

}Probing Target

... ...CiDi

Probing Control Probing Data

} }
Figure 4.1: Relationship between information shared among DTS monitors.

4.2.2 Data Plane

The data plane of a DTM system refers to the topological data collected during probing. In the
fashion of the skitter [58] data, this data set might be accessible by the research community. A
DTM system has to keep track of each probing result, for each probing monitor, from the begin-
ning and must ensure the long-term persistence of this data set.

Storing data collected during probing can lead to scaling issues. For instance, since January
1998, CAIDA stored around3.343TBof skitter data. This data set corresponds to 59,578 trace files
containing a total of 12,271,674,523 traces. These traces have been produced by a set of monitors
evolving fromfive to 24 towards a set of several thousands destinations. Finally, note that CAIDA
keeps backup of this data, increasing therefore the storage volume needed. We expect that the
storage volume will increase as we scale up the number of probing monitors.

The DTM systemmust provide an easy access to the data storage system. On one hand, prob-
ing monitors must be able to eciently and easily store the data collected. On the other hand,
the information must be easily retrieved for research purposes.

In the following, we refer to the collected data as probing data.

4.3 Design and Implementation

In this section, we describe the Decentralized Tracing System (DTS), the first entirely distributed
topology discovery system. We design and implement DTS so that it meets the requirements
provided inSec. 4.2. Wefirst provide ahigh-level viewofDTS (Sec. 4.3.1) and, afterward,wedetail
how the control and data planes have been implemented (Sec. 4.3.2 and 4.3.3 respectively). We
finally describe N-TAP (Sec. 4.3.4), the measurement platform on the top of which DTS is built.

4.3.1 Global View of DTS

In Sec. 4.2, we explained that a DTM system has to share information for controlling probing but
also for managing the data. DTS, our implementation of a DTM system, requires three informa-
tion to be shared among monitors: the probing control information, the probing target, and the
probing data.

4.3 Unleashing a Cooperative Measurement Methodology 61

Probing Target DHT

Geti
Puti
Rmi

iPC

Monitor

Probing Control DHT Probing Data DHT

Puti

Geti iTarget

Figure 4.2: DTS and the dedicated DHTs.

Sharing probing target andprobing control informationbetween a large set ofmonitorsmight
lead to scaling issues. For instance, it could be a problem if all the monitors try to access the
probing control information (or a particular item of the probing control information) at the same
time. Further, if all monitors probe the entire destination list at the same time, it is dicult to
benefit from work performed by others and, consequently, dicult to exchange probing control
information. A way to avoid such a problem would be to divide the target list into chunks. A
chunk is a portion of the entire target list. There is no overlapping between chunks. Eachmonitor
focuses, at a given time, on its own chunk. To each probing target chunk is associated a specific
probing information chunk and a specific probing data chunk. Fig. 4.1 illustrates the relationship
between a specific probing target chunk, Ti, the related information used to guide probing, Ci,
and the topological data collected by monitors, Di.

The key idea of DTS is to enable communication between monitors through the use of dis-
tributed hash tables (DHTs). For any information to share, DTS employs a dedicated DHT. Given
that each DTSmonitor has to share three information, the whole system requires three dierent
DHTs, as depicted in Fig. 4.2.

Each value stores by a specific DHT refers to a chunk. For instance, the Probing Target DHT
on Fig. 4.2 stores target chunks. Further, a key in a DHT will serve as the identifier for a partic-
ular chunk. For consistency reasons, the key for a target chunk is the same that the key for the
corresponding probing information and data. To this end, a number is associated to each chunk
and the key of the chunk is calculated based on this number.

The DHT labeled Probing Target DHT (PT DHT) is used to store the target list chunks. A
monitor has a read-only access, in order to obtain a specific target chunk. A third party can interact
with the PT DHT by adding (the P primitive) or removing (the R primitive) IP addresses in a
chunk. Removing occurs when a particular IP address must be black-listed as its owner does not
want to receive probes.

The DHT labeled Probing Control DHT (PC DHT) is used to store probing control informa-
tion. As DTS implements the Doubletree algorithm [12], a probing control information refers to
a stop set. A stop set is a data structure that contains (interface, destination) pairs encountered
during probing (see Sec. 4.3.2 for details). Each DTSmonitor must be able to query a stop set for
the existence of a given pair as well as to populate the stop set with pairs encountered. A stop set

62 Unleashing a Cooperative Measurement Methodology 4.3

Config

Agent

Prober DHT Abstraction

Forward

Backward

Doubletree StopSet

Probes

Replies

put() / get() / remove() / merge()

DHT Client

DHT Client

1

n

Activator

DHT1

DHTn

Figure 4.3: DTS’ control plane.

is valid during a certain amount of time due to network dynamics, i. e., routing changes.

TheDHT labeled ProbingData DHT (PDDHT) is used to store topological data gathered by a
monitor after probing a specific target chunk. Currently, a monitor has a write-only access to the
PD DHT, using the P primitive. Instead of centralizing all the results, we choose to make sure
that the resulting topological information is stored in a persistent manner, so that it will remain
even if the monitor in question departs from the system. Further, it has been recently shown
that using DHTs to store huge amount of data is ecient [70, 71]. However, we are leaving for
future work the question of how one might want to organize and query a DHT that contains all
the results. The current design allows a data analyst to request chunks of data by monitor, chunk
of destinations, and rough time interval.

The advantages of the DTS infrastructure are the following:

• Flexibility: Monitors can join and leave the system at will. In addition, each monitor
probes at its own pace. A slower monitor does not disturb the system by forcing others
to adapt their rhythm.

• Robustness: If oneor severalmonitors fail, the systemcontinues to function, and relatively
little work is lost. Actually, the loss is dependent on the chunk size. The larger the chunk,
the higher the potential loss. Similarly, the smaller the chunk, the smaller the impact of a
loss. However, smaller chunksmight implymore interactions with DHTs which can lead to
an increase in the global load generated by DTS. There is thus a trade-o to find between
chunk size and robustness.

• Scalability: Due to thedistributed storageof crucial data (i. e., the stop set), as thenumber
of participants (i. e., the monitors) increases, the ability to exchange stop sets does not get
constrained by a central server.

• Modularity: DTS is designed in amodular fashion, making future extensions easy. There
is also an API for interacting with external elements such as the DHTs (see Sec. 4.3.2). It
can reuse existing infrastructure, such as existing DHTs, PlanetLab, and N-TAP.

4.3 Unleashing a Cooperative Measurement Methodology 63

4.3.2 Control Plane

The control plane of DTS is composed of several modules that interact with each other through
the Agent engine. Fig. 4.3 shows the control plane of DTS.

A DTS monitor starts by loading a configuration file. This file contains, among others, infor-
mation about the DHT gateways as well as the number of chunks in the system. To each chunk
is thus associated a number. This number will help a monitor to generate the key needed when
interacting with the DHTs. Based on the number of chunks, a monitor generates a random or-
der for browsing the various chunks. The control plane interacts with the PT DHT to obtain the
probing target corresponding to a chunk.

ADTSmonitor probes thenetworkbyusing its Prober engine. TheProber engine implements
theDoubletree algorithm [12], which aims at significantly reducing probing redundancy. It takes
advantage of the tree-like structure of routes in the Internet. Routes leading out from a monitor
towards multiple destinations form a tree-like structure rooted at the monitor. Similarly, routes
converging towards a destination from multiple monitors form a tree-like structure, but rooted
at the destination. A monitor probes hop by hop so long as it encounters previously unknown
interfaces. However, once it encounters a known interface, it stops, assuming that it has touched
a tree and the rest of the path to the root is also known. Using these trees suggests two dierent
probing schemes: backwards (monitor-rooted tree–decreasingTTLs) and forwards (destination-
rooted tree – increasing TTLs).

For both backwards and forwards probing, Doubletree uses stop sets. The one for backwards
probing, called the local stop set, consists of all interfaces already seen by that monitor. Forwards
probing uses the global stop set of (interface, destination)pairs accumulated fromallmonitors. A
pair enters the global stop set if a monitor receives a packet from the interface in reply to a probe
sent towards the destination address. As the local stop set concerts the monitor-rooted tree,
each monitor manages its own local stop set. On the contrary, the global stop set refers to the
destination-rooted tree and must thus be shared among monitors. Therefore, the control plane
of DTS interacts with the PCDHT in order to store and retrieve the global stop set corresponding
to the current chunk.

ADoubletreemonitor starts probing for a destination at some number of hops h from itself. It
will probe forwards at h+1, h+2, etc., adding to the global stop set at eachhop, until it encounters
either the destination or a member of the global stop set. It will then probe backwards at h − 1,
h − 2, etc., adding to both the local and global stop sets at each hop, until it either has reached
the distance of one hop or it encounters a member of the local stop set. It then proceeds to
probe for the next destination. When it has completed probing for all destinations, the global
stop set is communicated to the next monitor. Note that in the special case where there is no
response at distance h, the distance is halved, and halved again until there is a reply, and probing
continues forwards and backwards from that point. Interested readers might find a discussion
the calibration of h in our previous work [12].

Our approach in constructing DTS is somewhat similar to Chawathe et al. [72] who evaluate
whether it is possible to use DHTs as an application-independent building block to implement
a key component of an end-user positioning system. DTS is a DTM system that makes use of
DHTs to share information between participants. One of the key element we had in mind when
designing DTS was its ease of deployment. We therefore choose to make DTS free from DHT
specifications. Instead of associating toDTS specificDHTs, weprovide aDHTAbstraction engine,
making the DHT transparent to a monitor as it interacts only with the DHT Abstraction.

64 Unleashing a Cooperative Measurement Methodology 4.3

In particular, the DHT Abstraction engine interacts with the interfaces provided by N-TAP.
These interfaces allowsother systems toutilize the features ofN-TAP including the shareddatabase
and communication channels amongmonitors. The DHT Abstraction engine converts the infor-
mation that are exchanged between the control plane andN-TAP so that it can provide consistent
interfaces to other entities in DTS.

4.3.3 Data Plane

Our implementation of the data plane is somewhat similar to the control plane (See Fig. 4.3). The
dierence stands in the fact that the Prober engine is replaced by a Data engine. The objective of
the Data engine is to transform the raw replies (i. e., ICMP received) into well formatted data that
contains additional information useful for the research community. The data collected is, then,
sends through the DHT abstraction to the PD DHT.

For each traced target, in addition to IP addresses and RTT of intermediate hops, the following
information is stored: timestamp, stopping reason for backwards and forwards probing, and the
distance at which probing stops (backwards and forwards). We envisage four dierent stopping
reasons: a loop occurs when a given node appears at two dierent hops. A gap occurs when five
successive nodes does not reply to probes. A stop set indicates the application of a stopping rule
based on the membership to a given stop set (local stop set for backwards and global stop set
for forwards), as defined in Sec. 4.3.2). At last, a normal stopping means hitting the first hop
(backwards) or the destination (forwards).

Finally, a global information is associated to each target chunk, mainly the name of the DTS
monitor, the chunk identifier, a timestamp and the value of the parameter h (see Sec. 4.3.2).

4.3.4 Adaptation to N-TAP

According to the design presented so far, we describe how DTS is implemented on an existing
measurement platform, N-TAP. Basically, the N-TAP platform consists of a number of N-TAP
agents that are assumed to reside inmultiple administrative domains. Besides the agents perform
measurement, such as topology discovery and RTT measurement, the agents also play a role in
forming an overlay network with the technique of Chord [19], one implementation of DHT. The
overlay network is called the N-TAP network, on which N-TAP provides some high-level func-
tions such as the shared database and communication channels among agents. In N-TAP, there
are two roles of agents (see Chapter 3). One of the roles is called core, and the other is stub. The
core agents have to maintain the peer-to-peer network for the DHT service, meanwhile, the stub
agents join the network not directly but via a core agent. Therefore, the stub agents do not have
a burden on maintaining the peer-to-peer network. Being similar to the relationship between a
super node and an ordinary node in the Kazaa [38] network, these two kinds of agents form a
bi-layered peer-to-peer network.

Fig. 4.4 depicts the implementation of DTS on the N-TAP platform. First, we prepare several
nodes for core agents that can serve the shared database. The number of the core agents has an
impact on the scalability of DTS, therefore, we should carefully choose the number. We discuss
the scalability of DTS in Sec. 4.4.3. On the other hand, in principle, DTS monitors play a role of
a stub agent and do not engage in the maintenance of the DHT service. The monitors, of course,
perform topology discovery based on the Doubletree algorithm, and can utilize the dedicated
DHTs (PCDHT, PT DHT, and PDDHT) via a core agent. Briefly, core agents work as a gateway of

4.4 Unleashing a Cooperative Measurement Methodology 65

Monitor

N-TAP network
(DHT-based shared DB)

PC DHT PD DHT

PT DHT

Monitor Monitor Monitor

Core agent Stub agent

access

probe

Gateway for
the DHT service

Figure 4.4: Implementation of DTS on N-TAP.

the DHT service for stub agents. Note that, for simplicity, we let DTS monitors be core agents in
the experiments in the following sections only when the role of DTS monitors does not have an
impact on experimental results. For preparing a list of probing targets shared in DTS, we make
one agent commit the chunks of the target list into the PT DHT before monitors start topology
discovery, or we let all monitors have the same list of targets by distributing a configuration file
that contains the target list among the monitors.

The code of DTS is integrated into N-TAP and it works as one measurement module of N-
TAP. After we configure N-TAP agents (DTSmonitors) and give them essential information such
as the number of chunks, we can start DTS by issuing the dbltree start command from the
command-line interface of N-TAP. Then the monitors fetch one of the chunks randomly, and
based on the Doubletree algorithm, they begin to perform topology discovery against the prob-
ing targets included in a received chunk. When amonitor finishes the topology discovery for one
chunk, it fetches the next chunk and continue to probe. In the current implementation, a mon-
itor stops probing when it finishes the topology discovery for all chunks, or we can let it keep
running if we specify a option when starting DTS.

4.4 Evaluation

In this section, we perform the evaluation of our DTS according to the four indices presented in
Sec. 4.3.1. We first discuss the flexibility of DTS (Sec. 4.4.1). We next proof the robustness of DTS
(Sec. 4.4.2). Scalability and modularity are discussed in Sec. 4.4.3 and 4.4.4 respectively. Finally,
Sec. 4.4.5 summarizes the important conclusion drawn in this section.

4.4.1 Flexibility

The flexibility of DTS is brought by the DTS architecture and the adoption of the Doubletree
algorithm. Our architecture ensures a high degree of independence between monitors and the

66 Unleashing a Cooperative Measurement Methodology 4.4

dedicatedDHTs. Thismeans that the behavior ofmonitors does not aect the information stored
in these planes. Additionally, the nature of the Doubletree algorithm, that is, one monitor does
not need towait formeasurement results or controlmessages fromothermonitors before probing
but utilizes the results just for an ecient probing, is also inherited by DTS. In this section, we
perform the validation of some merits of flexibility stated in Sec. 4.3.1.

Monitor’s Joining and Leaving

One of the merits is that the DTS monitors can arbitrarily join and leave the system at will. This
feature can be easily explained by considering the characteristics of DTS stated in the previous
section. Moreover, a monitor decides its probing strategy by itself according to the Doubletree
algorithm, and it is not forced any kind of operations by other entities. As shown in Fig. 4.2 and
4.4, a monitor indirectly communicates with other monitors through the shared information
in the dedicated DHTs, however, it never communicates directly. Therefore, when a monitor
joins the system, it just contributes to an ecient monitoring by committing entries of the global
stop set. When a monitor leaves the system, the system loses one observation point, however,
committed probing control information and probing data are not lost and the leaving does not
cause a special operation to other monitors.

Impact of Slower Monitors

For similar reasons stated in the previous section, DTS has another merit that each monitor can
keep its ownpace for probing. Since the Internet consists of heterogeneous elements (e. g., nodes
and links), we cannot expect that all monitors have enough resource and they can probe at their
maximum paces; therefore, there must be a dierence of probing pace among monitors. Even
in such a situation, thanks to the characteristics of DTS that monitors are not forced any kind
of operation by the behavior of other monitors, slower monitors do not need to catch up faster
monitors, and faster monitors do not need to wait for the completion of probes by slower moni-
tors. For instance, even if one monitor probes at a slower pace than other, the system and other
monitors can work without considering the existing slower nodes.

From the aspect of flexibility, it is important toprove that evena slowermonitor can contribute
to the system. When the system has slower monitors, we can expect that the slower ones can
make smaller contributions to ecient probing than faster monitors can do. More particularly,
we suppose a slowermonitor can averagely commit less entries of the global stop set than a faster
monitor. However, we cannot easily estimate the fact on this matter quantitatively. We therefore
conducted an experiment on the PlanetLab testbed to investigate this matter.

For the experiment, we randomly chose 16 PlanetLab sites and picked one node from each
site, i. e. we selected 16 nodes that respectively reside in dierence sites, and we deployed DTS
on these nodes. Originally, the monitors are set to stub agents in DTS, however, for simplicity,
the roles of all agents were set to core, which performs both probing and the management of
the DHT service. This is why we do not need separate monitors and storage to investigate the
contribution from respective monitors as long as they do not fail on the way. Probing targets
were the monitors themselves, and the target list was shared in 16 chunks among the monitors,
i. e., one target in one chunk. Then, the monitors start at the same time to probe the full mesh
topology (16 × 16) among the monitors with the Doubletree algorithm. The monitors selected
the destinations in a random order, therefore, the order of topology discovery diers in respec-

4.4 Unleashing a Cooperative Measurement Methodology 67

tive iterations. Each time a monitor discovers an interface, it commits a result to the global stop
set, which is maintained in the PC DHT. The monitors logged the results of probing and the
Doubletree-related actions, such as retrieving an entry of the global stop set for a specific des-
tination or checking whether a discovered interface is contained in the stop set. The following
results were analyzed from these logs. The monitors continued to probe until probes to all des-
tinations were completed. From now, we call the monitors that probed at maximum pace “faster
monitors,” and themonitors that stopped for one second after each probe “slowermonitors.” Tak-
ing into account that one probe usually completeswithin tens to hundredsmilliseconds, the pace
of slower monitors is several times slower than the one of faster monitors. We prepared three
sets of monitors for the experiment: In set 1, all the monitors were the faster monitors. In set
2, half of the monitors were faster ones, and the rest of the monitors were slower ones. In set 3,
all the monitors were slower monitors. Monitors were distinguished by a unique ID from 1 to
16. The IDs were consistent through the experiment, and in set 2, monitors from ID 1 to 8 were
faster ones, and 9 to 16 were slower ones. For each set, we iterated this topology discovery three
times. For the following evaluation, we use the average values of respective indices in these three
iterations.

First, we look to the required time for completing probing and the number of performed
probes. These values can be regarded as the indices of the behavior of faster and slowermonitors.
Fig. 4.5 shows the average time for probing and the number of probes in three iterations for each
monitor. From Fig. 4.5(a), we can find out that both faster nodes and slower nodes had to probe
almost same number of times even if the proportion of faster and slower monitors diered. In
Fig. 4.5(b), we can see a tendency that faster nodes can complete within a certain time. However,
time cost to slower nodes increases as the proportion of slower nodes grows. Considering these
facts, we assume, in DTS, that both faster and slower monitors can find an entry of the stop set
that can reduce redundant probes at an early stage and they can contribute to ecient probing
even though slower monitors take more time to complete probing.

Secondly, to investigate how fastermonitors and slowermonitors respectively aect the over-
all eciency of topology discovery, and to obtain more concrete reasons for the analysis above,
we calculate a contribution index. We first define the contribution value with this equation:

cg,i→j =
Ug,jOg,iHg

Og,f + Og,s
. (4.1)

In this equation, g is an entry in the global stop set G, and cg,i→j is a contribution value of g that
means the contribution from i to j, where i and j are replaced with f (faster monitors) or s (slower
monitors). In this context, the term “contribution” means howmany probes that are expected to
be performed by j are reduced by a stop set entry that i originated. Hg is the hop count between a
discovered interface and a destination in g. With the technique of traceroute, amonitor can count
the number of hops from the monitor itself to a target, however, cannot directly count the one
from an intermediate node (interface) to a destination, e. g., the value of Hg. Here we calculated
the value ofHg by subtracting the hop count between themonitor and the detected interface from
the one between the source node and the destination, assuming that the route from themonitor
to the destination did not change during topology discovery. This calculation can be expressed
as the following equation:

Hg = Hop (int, dst)

= Hop (mon, dst) − Hop (mon, int) (4.2)

68 Unleashing a Cooperative Measurement Methodology 4.4

50
10

0
15

0
20

0

Monitor ID

of

 p
ro

be
s

Set of monitors
Set 1
Set 2
Set 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Number of traceroute

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
50

0
10

00
15

00

Monitor ID

Ti
m

e
/ s

ec
.

Set of monitors
Set 1
Set 2
Set 3

(b) Required time

Figure 4.5: Average time for probing and the number of probing in the case of respective sets of
monitors.

4.4 Unleashing a Cooperative Measurement Methodology 69

Table 4.1: Contribution index.

Cf→f Cf→s Cs→f Cs→s Total Nf Ns

Set 1 1422.9 — — — 1422.9 1581.3 —
Set 2 617.4 203.3 102.9 499.0 1422.6 775.3 800.3
Set 3 — — — 1361.0 1361.0 — 1598.3

In this equation, Hop (p, q) denotes the number of hops from p to q, and int, dst andmon respec-
tively mean a discovered interface, a destination and a monitor. Both numbers (Hop (mon, dst)
andHop (mon, int)) can be obtained through the topology discovery between themonitor to the
destination. In the cases of some pairs of source and destination nodes, traceroute could not be
completed because the Doubletree’s halt() function returned true, that is, a loopwas detected or
a gapwas discovered. In such case, we adopted the average of correctly calculatedHg values to the
unknownHg values. Og,i means the number of i that originated g, andUg,i is the number of i that
utilized g. Depending the timing for inserting or retrieving entries of the global stop set, multiple
monitors can originate same entries of the global stop set and insert them. Consequently, Og,i

can be larger than 1, andOg,f andOg,s can be larger than 0 at the same time. Considering this fact,
in the case that multiple monitors originate the same entry, we average the contribution value
among these monitors by dividing it by the number of these monitors (= Og,f + Og,s). Finally,
the contribution index is defined with the following equation:

Ci→j =
∑
g∈G

cg,i→j. (4.3)

Accordingly, this index means that the total number of reduced j’s probes thanks to the stop set
entries originated by i.

Table 4.1 shows the average values of the contribution index in three iterations for respective
monitor sets. Seeing the total values of the contribution index, we do not find the significant dif-
ference among them. Therefore, a mixture of slower monitors scarcely aected the eciency of
topology discovery. Paying attention to a probing pace in the case of Set 2, though the contribu-
tion from faster nodes

(
Cf→f + Cf→s

)
is slightly larger thanone fromslower nodes

(
Cs→f + Cs→s

)
,

we can see that the slower monitors still make a considerable contribution of increasing the ef-
ficiency of topology discovery. In this table, Ni denotes the number of probes that i actually
performed. Comparing the Ci→j values with the Ni values, regardless of a probing pace, we can
say that any monitor can make a contribution to the reduction of the number of probes.

For looking intomore details of the contribution index, in Fig. 4.6(a), we present the cumula-
tive distribution function (CDF) of the contribution values in respective sets of monitors. In the
case of Set 2, the roles ofmonitors (faster or slower) are not distinguished. One can see that about
80% of the stop sets were not utilized by the monitors in all the cases, and these graphs show
similar tendency. Furthermore, there are rapid rises around the contribution value of 7 in these
graphs. This is why the average values of Hg in respective cases are around 7, and unmeasurable
Hg values are replacedwith the average values. From the aspect of the overall contribution value,
we cannot see a significant dierence within this degree of the variation of the probing pace. Fo-
cusing on Fig. 4.6(b), which depicts the CDF of the contribution values with the distinction of
the monitor roles, we can see that one monitor tends to make more contributions to monitors at

70 Unleashing a Cooperative Measurement Methodology 4.4

0 20 40 60 80

0.
80

0.
85

0.
90

0.
95

1.
00

Contribution value

C
D

F

Set of monitors
Set 1
Set 2
Set 3

(a) Total contribution

0 20 40 60 80

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Contribution value

C
D

F

Set of monitors, contribution direction
Set 2, faster −> faster
Set 2, faster −> slower
Set 2, slower −> faster
Set 2, slower −> slower

(b) Contribution in each direction

Figure 4.6: Distribution of the contribution values.

4.4 Unleashing a Cooperative Measurement Methodology 71

the same pace, compared to ones to monitors at the dierent pace. For a concrete reason for this
phenomenon, we will need longer-term and larger-scale observation.

Summarizing the characteristics of DTS and the experimental results in this section, we can
say that any monitor probing at a slower pace does not intercept the actions of other monitors,
and moreover, it can enough contribute to ecient probing in the overall system. Monitors with
any characteristics, such as low performance and low-speed links, can arbitrary join DTS and
contribute to topology discovery — this is the flexibility of DTS.

4.4.2 Robustness

The robustness in DTS is related to the impact of monitor failures. When a monitor (or several
monitors) fails, the entire systemmust continue to work. Further, the information lost (probing
data and probing control) due to the failure must be limited.

In this section, we evaluate the robustness of DTS through the impact of the chunk size
(Sec. 4.4.2) and monitor failure (Sec. 4.4.2).

Impact of Chunk Size

As stated in Sec. 4.3.1, amerit concerning robustness is that DTS continues towork even if one or
severalmonitors fail. Thismerit is brought by the separation ofmonitors and the shared database
and the flow of procedures in the Doubletree algorithm. In a similar way presented in Sec. 4.4.1,
if a monitor unexpectedly disappears from DTS, other monitors need to neither stop their work
nor handle this matter as a special event.

In fact, even though DTS can maintain its function, the failure of monitors causes the loss
of data that are expected to be collected by the failed monitors. With the scheme of chunks,
the impact of data loss depends on the size of chunks; the larger size of chunks will cause the
loss of a larger part of data. Since collected data are handled in a unit of a chunk and committed
to the shared database after a monitor finishes working on the chunk, the failure of a monitor
causes the loss of the collected data contained in a working chunk. Such data loss can be avoided
by making chunks smaller, however, this will increase the burdens on monitors due to more
frequent interaction with the shared database. Therefore, the chunk size is an important factor
to decide the robustness of DTS.

In order to investigate the relationship between the chunk size and the interaction with the
shared database, we first performed an experiment that invokes the handle of various sizes of
chunks. We randomly chose 16 PlanetLab nodes and deployed DTS on them. These nodes are
set to the core agents that form aDHT-based database. We also prepared a probing target list that
contains 1024valid IPv4 addresses, andevenlydivided them intoC chunks

(
C = 2i; i = 1, 2, ..., 9

)
,

i. e., each chunk contains 1024/C IP addresses. These chunks were stored in the PT DHT, which
is a part of the shared database. In respective cases, wemade all monitors retrieve all chunks from
the PT DHT and recorded the behavior of the monitors.

Fig. 4.7(a) illustrates the distribution of required time among all monitors for retrieving one
chunk in the respective cases of C. In this figure, the bottom and top of a box respectively show
the 25th and 75th percentiles of the required time, and a bold line across a box shows themedian
value. The ends of a whisker indicate the minimum and maximum values except for the outliers
that lie more than 1.5 times IQR (inter-quartile range) lower than the 25th percentile or 1.5
times IQR higher than the 75th percentile. One can see that the required time decreases as the

72 Unleashing a Cooperative Measurement Methodology 4.4

0
50

0
15

00
25

00
35

00

of chunks

R
eq

ui
re

d
tim

e
/ m

se
c.

1 2 4 8 16 32 64 128 256 512

(a) Global time distribution

Monitor ID

R
eq

ui
re

d
tim

e
/ m

se
c.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
50

0
15

00
25

00
35

00 # of chunks
1
2
4

64
512

(b) Time distribution per monitor

Figure 4.7: Required time for retrieving one chunk from PT DHT.

4.4 Unleashing a Cooperative Measurement Methodology 73

chunk number increases from 1 to 4, however the time just shows a slight change from C = 4 to
C = 512. This is because a dominant element in the required time switches between the chunk
size and the overhead caused by the interaction with the PT DHT. In DTS, chunks are exchanged
based on the N-TAP’s messaging protocol. An N-TAP message usually contains a 16-byte length
header, a 47-byte length additional header, and user data. The message is transmitted by TCP.
The length of user data increases by 10 bytes per one target IPv4 address. Therefore, the length
of the received message for retrieving one chunk is (63 + 10240/C) bytes. Up to C = 4, when
the message length was 2,623 bytes or more, the dominant part of the required time was the
time for transferring a considerable length of a message that contains a chunk. When the value
of Cwas larger than 4, the message length became short enough, meanwhile, the overhead that
derives from a routing procedure inDHT cannot be ignored compared to the time for transferring
amessage. The prior work on the performance evaluation of N-TAP in Chapter 3 also shows that
it takes around one second for retrieving one database entry from the shared database with 16
core agents deployed on PlanetLab, and the required time is mainly dominated by the time for
finding a responsible node in DHT. This fact matches the result of this experiment. We also note
that, in the case that a monitor is a stub agent, a slight delay deriving from the communication
with a core agent will be added to the required time, and the delay is negligible, compared to the
required time for the overlay routing (see Chapter 3).

In addition, the required time for interacting with the DHT-based database is not homoge-
neous among monitors. Fig. 4.7(b) shows the average values of required time on each monitor
for retrieving one chunk in the cases of C = 1, 2, 4, 64, 512. The average time does not necessar-
ily show a consistent tendency according to the value ofC. For example, the required time on the
monitor #12 is the shortest where C = 1, though this value of Cmeans the heaviest burden on
the monitor among the values of C. One of the causes is that the required time depends on the
status of each monitor, such as its CPU load and network connectivity, and the status changes
dynamically due to the characteristics of the PlanetLab nodes as a shared testbed. Another cause
that is particular to DTS is that, in DTS’ DHTs that are constructed over N-TAP, an ID of amonitor
is assigned randomly unless it is specified, therefore, the formation of the DHT network changed
every iteration of the experiment. Consequently, there were both advantageous and disadvan-
tageous monitors for retrieving chunks, which results in the large variance of the required time
seen in Fig. 4.7(a). We have to consider that a smaller chunk does not necessarily bring the better
responsiveness.

Thus, from these results, we should carefully choose the number of chunks, or the chunk
size, on deploying DTS. If the number is too large, for example, C is 8 or more in Fig. 4.7, we
cannot expect better responsiveness anymore. Additionally, the larger number of chunks linearly
increases the number of times of the interactionwith the shared database sincemonitors commit
and retrieve shareddata in aunit of a chunk, and it results in the increment of the overallworkload
in DTS.

Impact of Monitor Failure

Then how the chunk size aects the overall workload in the case of the failure of monitors? This
is also a considerable problem because DTS ensures monitors’ arbitrary joining and leaving and
must also be robust to unexpected events, such as monitor failure. In order to deal with this
problem, we conducted an experiment that involve the failure of some monitors in process of
probing.

74 Unleashing a Cooperative Measurement Methodology 4.4

1 4 16

 5
0

10
0

15
0

20
0

25
0

0
5

10
15

of chunks

of

 fa
ilu

re
 m

on
ito

rs

Av
g.

 #
 o

f p
ro

be
s

(b
y

al
iv

e
m

on
ito

rs
)

Completed chunks on failures
0% 25% 50% 75%

Figure 4.8: Impact of the failure of monitors and the chunk size on the number of probes.

For the experiment, we randomly chose 16 PlanetLab nodes that reside in dierent sites, and
deployed DTS on these nodes. We also selected other 16 PlanetLab nodes as probing targets.
Then we made the monitors perform the procedures for topology discovery to these targets. We
prepared three sizes for chunks: one chunk, 4 chunks, and 16 chunks for 16 targets (these chunks
contain the samenumber of targetswithout overlapping). Someof themonitorswere configured
to fail and unexpectedly leave the system at one of these timings: when a monitor performed no
probe (0%), orwhen amonitor completedprobes for 25%, 50%, or 75%of chunks. For example,
the proportion of 25% in the case of 4 chunksmeans that amonitor fails after it finishes topology
probing for one of 4 chunks. We also changed the number of failure monitors between 0, 5, 10
and 15, where the value of 0 means that all monitors finished probing without failure. After the
rest of the monitors, i. e., alive monitors, finish topology discovery to the targets, we looked into
the number of probes performed by the alive monitors.

Fig. 4.8 indicates the number of probes performed on each condition. The number of probes
shown in this figure is the average values of the probes performed by alive monitors. From these
values, we can find how the failure of monitors on each condition aects the overall workload
in DTS. We note that, in the case that the number of chunks is 1, the plots when the proportion
of completed chunks is 25%, 50%, or 75% are not shown, because the monitors have only one
chunk to handle.

One significant point is that, when monitors have just one chunk, the number of probes
scarcely changes depending the number of failure monitors. In this case, the failure of a monitor
causes the complete loss of the data collected by the monitor because the data are not commit-
ted to the shared database until the monitor finishes the work for only one chunk. Therefore, a
monitor cannot expect the contribution to ecient probing from other monitors in this case.

We can also see that, in the case of the number of failuremonitors is 15 and the proportion of

4.4 Unleashing a Cooperative Measurement Methodology 75

completed chunks is 0%, the number of probes shows little change against the variation of the
number of chunks. This is because only onemonitor kept alive and othermonitors failedwithout
performing probes, the alive monitor cannot take advantage of the global stop sets originated by
othermonitors. As a result, themerit of theDoubletree algorithm is decreased, and the eciency
of topology discovery by the alive monitor was not improved so much. Except for the cases that
the number of failure monitors is 15, the number of probes decreases as the chunk size becomes
smaller (i. e., the number of chunks gets larger). This means that the smaller chunk size ensures
more rapid reflection to the global stop sets, which results in the utilization of the stop sets from
other monitors.

Additionally, even if monitors fail, the chunks that the failure monitors have already com-
pleted contribute to the overall eciency of topology discovery. As seen in this figure, the higher
proportion of completed chunks basically decreases the number of probesmore. Especially in the
cases that the proportion of completed chunks is 50% or more, its impact is notable. The reason
why we see it brings a bigger impact on the number of probes when the number of chunks is
larger (16) will be similar to the one stated in the previous paragraph, i. e., more rapid reflection
to the global stop sets.

From these results, we can say that smaller chunks will ensure less data loss and improve the
eciency of topology discovery even when monitor failures. However, as stated in Sec. 4.4.2,
the smaller chunks will cause a heavier burden on the overall system. Considering this trade-
o, it will be important to adjust the chunk size depending on respective DTS environments.
For example, if one has high-speed links between monitors and the monitors have a sucient
performance, the chunk size can be smaller.

4.4.3 Scalability

DTS should scale against the increment of the number of monitors, and such increment mainly
brings three considerations. One is the growth of the size of shared data, because the entries
of the global stop set and collected topology data increase as the system becomes larger. The
second one is the high frequency of the requests to the shared database. The last one is about
the management of monitors.

On the first topic, focusing on the scalability of its shared database, we can simply consider
that it is inherited from the one of N-TAP. N-TAP provides the Chord-based shared database [19]
formeasurementmethodologies implemented on itself. DTS utilizes this feature for storing con-
trol data and collected data, i. e., use it for three DHTs presented in Sec. 4.3.1. Chapters 3 show
that this shared database can take advantage of the nature of Chord. Indeed, the burden of hold-
ing shared data is evenly distributed among core agents. Further, the required time for finding
an entry in the shared database, which is dominated by the time for the routing procedure in the
Chord ring, increases in proportion to the logarithm of the number of core agents. Therefore, we
can expect that the shared database scales just by adding a few core agents in the case that the
size of shared data increases.

As the second topic, we have to consider that a larger number of monitors also brings more
requests to the shared database. Since a DTS monitor always accesses to the shared database via
a core agent with which themonitor connects, the workload will be concentrated on core agents.
For scaling against such the workload, we will need some mechanisms that can distribute the
workload among core agents, such as making amonitor randomly select a core agent with which
the monitor is going to connect.

76 Unleashing a Cooperative Measurement Methodology 4.5

On the last topic, the management issue is easily solved thanks to DTS and the Doubletree
algorithm. In the DTS architecture, there is no need for one entity to maintain and control mon-
itors, and a monitor can arbitrarily join and leave the system as already described. Therefore, we
can be released from such kind of tasks even if we have more number of monitors.

4.4.4 Modularity

As shown in Fig. 4.3 and Sec. 4.3.2, DTS is designed in a modular fashion, which divides a pro-
gram into several independent components. Besides this fashionmakes future extensions easier,
it also enables the interconnection betweenDTS and other systems. Looking into the details, for
example, a DHT Abstraction engine has a responsibility to connect DTS with a DHT service.
Currently DTS utilizes the N-TAP’s DHT-based database, as the result of making the DHT Ab-
straction engine to use the interfaces of N-TAP, such as the storeInSharedDatabase()method,
which performs a procedure for storing a given object in the shared database. Even if we plan
to use another DHT-based database, we just have to modify the parts of the interconnection in
the DHT Abstraction engine, and basically, we do not need to touch other components such as
Agent and Prober.

4.4.5 Revisit the Global Requirements

In this section, we evaluated the basic characteristics of DTS according to the global require-
ments stated in Sec. 4.3.1, that is, flexibility, robustness, scalability, and modularity. Finally, we
summarize our investigations here.

On flexibility, we confirmed DTS ensures that a monitor can join and leave the system at will.
Additionally, other merits are not only that a slower monitor does not disturb other monitors,
but even a slower monitor can contribute to the overall eciency of topology discovery in DTS.
On robustness, we investigated the trade-os between the chunk size and the workload on the
system from the aspect of the interaction with DHTs and monitor failure. On scalability, we see
thatDTS can take advantage of the nature of theDHT-based database, and thatDTS is superior in
less burden of maintaining a number of monitors. On modularity, we confirmed that the design
of DTS enables its easy extensions and flexible interaction with other systems.

4.5 RelatedWork

skitter [58], nowadays best known topology discovery tools, makes use of 24 monitors for trac-
ing routes towards a set of 971,080 IPv4 addresses. scamper [73] behaves like skitter on a smaller
scale and targets IPv6networks. Other systems, such asRIPENCCTTM[74] andNLANRAMP[75],
consider a larger set of monitor, several hundreds, but avoid to trace outside their own network.
A more recent tool, DIMES [49], is publicly released as a daemon. Rocketfuel [69] focuses on
the topology of a given ISP and not on the whole Internet topology as skitter does, for instance.
Finally, Scriptroute [68] is a system that allows an ordinary Internet user to perform network
measurements from several distributed vantage points. It proposes remote measurement execu-
tion on PlanetLab nodes [41], through a daemon that implements ping, traceroute, hop-by-hop
bandwidth measurement, and a number of other utilities. All of these systems operate under
central control.

4.6 Unleashing a Cooperative Measurement Methodology 77

Unlike DTS, Rocketfuel and Scriptroute assume a centralized server to share stopping infor-
mation (i. e., the list of previously observed IP addresses in RPT). Rocketfuel and Scriptroute do
not consider how the information regarding where to stop probing can be eciently encoded for
exchange between monitors.

Measurement infrastructures are not limited to network topology discovery. NIMI [76] and
Anemos [77], in the fashion of RIPE NCC TTM, work in full-mesh, i. e., measurements must be
necessarily done between participants of the infrastructure. NIMI aims at facilitating the devel-
opment of a large-scale measurement infrastructure for the Internet by using daemons as end-
points for a set of measurement tools. Anemos performs and analyzes active measurements on
several network paths through a Web-based GUI. Unlike NIMI, Anemos also provides a way to
collect measurements data into a MySQL database for later analysis, for instance. This later fea-
ture is somewhat similar to the DTM data plane. However, data storage in Anemos is centralized
into a database and encounters thus the single point of failure risk, on the contrary to DTSwhere
the data is stored in a distributed fashion.

Finally, the infrastructure might be a deployment facility. Examples of such a system are m-
coop [78], pMeasure [55], andDipZoom [79]. These solutions are complementary to DTS in the
sense that they can be used to distribute and manage DTS monitors.

4.6 Summary

Current systems for discovering the Internet topology at the IP interface level are undergoing
a radical shift. Whereas the present generation of systems operates on largely dedicated hosts,
numbering between20 and200, a newgeneration of easily downloadablemeasurement software
means that infrastructures based on thousands of hosts could spring up literally overnight. These
systems must be carefully engineered in order to avoid abuse and duplication of eorts between
tracing monitors. To this end, monitors must share information to guide probing. We stated, in
this chapter, that this sharing must be decentralized in order to be, among others, scalable and
robust. In this chapter, we identified the needs of such a system.

This chapter proposed the first distributed topologymeasurement system, DTS, that is able to
decentralize probing control, probing target and probing data information. In DTS, monitors co-
operate through the use of three distributed hash tables, each one being dedicated to a particular
probing information being shared. Through a deployment of DTS on the PlanetLab testbed, we
demonstrated in this chapter that DTS meets distributed topology measurement systems: flexi-
bility, robust, scalable, and modular.

Towards the actual deployment of a fully distributed topology measurement system, we still
have several problems to be considered. These problems include a security matter regarding the
authenticity of collected topology data, and a methodology of the actual operation. In fact, we
cannot ignore such problems of the aspects untouched in this chapter and will need to tackle on
them continuously.

78 Unleashing a Cooperative Measurement Methodology 4.6

79

Chapter 5

Towards the Deployment of an
Application-Oriented Measurement
Service

We presented several research contributions in the last chapters towards the ultimate goal, i.e.,
the actual deployment of an application-orientedmeasurement platform. In this chapter, looking
back on the fundamental requirements for an application-oriented measurement platform and
theultimate goal of our study, wediscuss the significanceof our contribution, the future direction
of application-oriented network measurement, and remaining issues.

5.1 Reviewing the Fundamental Requirements

In Section 2.3, we defined three fundamental requirements for application-oriented network
measurement: responsiveness, accuracy, and coverage. Here we investigate whether the respec-
tive requirements can be met in an actual network environment through the review of our con-
tributions.

5.1.1 Responsiveness

On the responsiveness of the application-oriented measurement service by N-TAP, its service
time is mainly divided into these elements.

• Communication delay between an application and N-TAP

• Delay of querying on the DHT-based N-TAP network

• Time for performing a measurement procedure

• Computation time for calculating the target data

• Memory access time and storage access time

In the case of deploying N-TAP in the style of shared infrastructure described in Chapter 3,
the most influential element is the delay of querying, considering the experiments in Chapter 3.

80 Towards the Deployment of an Application-Oriented Measurement Service 5.1

Basically, the DHT queries go across core nodes in multiple administrative domains, which re-
sult in high latency. In contrast, the communication delay between an application and N-TAP
can be ignorable because its messages are exchanged within a local system or systems in the
same domain. The measurement time and the computation time depend on the methodologies
used for collecting the target network characteristics information, and N-TAP is not bound by
any kind of measurement methodologies. By providing a general framework with which various
measurement methodologies can be implemented, N-TAP will be able to choose an appropriate
methodology among them for the collection. We can say that the memory and storage access
time are generally ignorable compared to the other elements from the experiments.

Thenwe should consider howwe lessen the impact of the query time. One is to construct the
N-TAP network so as to cut down the query time. There exists some related work of speeding up
the handle of queries [80], and autonomic overlay construction approaches for DHT introduced
in Section 2.3. Applying these technologies to N-TAP, we can expect that its responsiveness is
improved. Another approach is to reduce the number of queries, as we tried by creating caches
on local systems. The impact of this approach depends onmeasurement methodologies and the
bias of the measurement targets in which applications have interests. Additionally, the scale of
N-TAP will have an impact, because if N-TAP is widely deployed and many applications utilize
it, more duplication of required network characteristic information will rise among the applica-
tions. This will improve the reusability of once collected data, and the responsiveness itself. As
another solution for reducing the number of overlay queries, increasing the number of entries
in a finger table will be eective for the Chord-based overlay network, though it will consume
more computation and network resources.

An entirely-dierent approach is to abandon a peer-to-peer network for the measurement
network. Letting the N-TAP network have only one logical core agent, which is composed of
synchronized multiple core agents, the service time will be improved owing to the shared data
is accessible by one hop. However, the cost for synchronizing all shared data will be huge in the
large-scale deployment, especially in the case of deploying the core agents in multiple domains
as we assume for an AOMP. Constructing a tree-based network among core agents like DNSmay
work, but themeasurement network does not have a chain of trust and responsibility as the DNS
network. Therefore, maintaining a structure of such a tree-based network will produce an extra
burden andmay disturb the deployment. Considering these situations, we currently judge that a
peer-to-peer networkwill suit for the large-scalemeasurement for autonomic applications. Addi-
tionally, since the queries can be parallel processed, the measurement request can be also issued
in parallel. Taking this into account, a scheduling mechanism that increases the job parallelism
will be required for the part of the command center.

Furthermore, ameasurementmethodology that performs continuousmeasurementwill con-
tribute to improve the responsiveness. Vivaldi [15] is a good example; it continuously measures
RTT among a subset of target nodes and update the full-meshed RTT data. This allows the quick
retrieve of target data because the target data is basically measured at the time when it is needed.
The preference of continuousmeasurementmethodologiesmay be a good tactic for the improve-
ment of the responsiveness.

Totally, for the actual deployment of N-TAP, we will need to adopt additional techniques for
the improvement of its responsiveness. Andwe already have some existing techniques, so trying
on them can be future work. According to our experimental results, in a scale of 1000–10000
core agents, the query timewill be approximately a few seconds. We have to investigate how this

5.2 Towards the Deployment of an Application-Oriented Measurement Service 81

time scale has an impact on the behavior of a real application through the actual utilization.

5.1.2 Accuracy

The accuracy of collected data on N-TAP mainly depends on the measurement methodologies
used for the collection. Currently, we have the methodologies of ping, traceroute, Vivaldi and
Doubletree [12]. Ping and traceroute are simple methodologies and their measurement results
are accurate in terms of their approach. More specifically, ping gives the RTTof ICMPpackets and
traceroute gives forwarding paths of ICMP or UDP packets from a monitoring node to a specific
destination. On Vivaldi and Doubletree, these two cooperative measurement methodologies
increase the eciency of their measurement with the estimation of the network characteristics
information of some parts of measurement targets. Hence their estimated data may be less ac-
curate compared to the actual measurement data. On another front, we can expect that both
methodologies have considerable accuracy on their results according to the validation shown
in the papers above. Therefore, the network characteristics information obtained from N-TAP
has considerable accuracy. As the case of responsiveness, we should concentrate on creating a
platform for various measurement methodologies so that more accurate measurement method-
ologies [81, 82, 83] can be implemented on it.

Focusing on the changes of the network characteristics information in time series, the col-
lected data will lose its value as time goes by since autonomic applications basically require the
network characteristics information reflecting the current state of the Internet. Therefore, the
quick provision of measured data is one essential point. N-TAP basically gives back measure-
ment results soon after they are acquired, so we can regard that N-TAP keeps this rule. On the
other hand, each N-TAP agent has its own local caches of previously collected network charac-
teristics information and utilizes them for the quick responsiveness even though they may lose
their accuracy. At this time, the judge whether it is accurate enough for utilization for applica-
tions is transferred to the applications themselves by letting them specify the required freshness
of given information. Since covering all the requirements on the freshness is unrealistic, we took
this choice, i.e., the delegation to the applications. For the future, we will need a field test of the
impact of the age of these local caches on applications’ behavior.

5.1.3 Coverage

N-TAPdistributes its agents amongend systemsand these systems canbecomemonitoringpoints.
In our deployment scenario, autonomic applications run N-TAP agents on its local system and
utilize the local agents, all the nodes on which these applications are running can be involved
in the measurement procedures of N-TAP. Considering that an autonomic application usually
requires the network characteristic information related to the nodes on which the same appli-
cation is running, this nature of N-TAP is an advantage. Moreover, if we need more monitoring
points even though they are not application nodes, we just have to let the agent programs run
on them. This simple procedure for deployment favors the expansion of measurement targets.
For the wider coverage, we may have a choice of embedding a feature of an N-TAP agent into
commodity operating systems. Of course, as the coverage become wider, the scalability of mea-
surement procedures is required. For that, the implementation of sophisticated measurement
methodologies cannot be negligible, as repeatedly stated.

82 Towards the Deployment of an Application-Oriented Measurement Service 5.3

5.2 Enhancements of End-System Capabilities

In this section, we summarize the enhancements of end-system capabilities brought by N-TAP.
Our research contributions of the implementation of an actual AOMP system and a cooperative
topology-discovery methodology on it are targeted for enhancing the end-system capabilities.
Through reviewing the new capabilities and improved capabilities of end systems, we explore
how future end systems can behave on the Internet.

Oneof the enhancements is that applications get a powerof cooperativemeasurementmethod-
ologies. N-TAP enables one node to perform bidirectional measurement with a unidirectional
measurementmethodology. Owning to a feature of communicatingwith other agents, anN-TAP
agent can ask them to perform themeasurement, which is the simplest style of cooperative mea-
surement. For instance, traceroute is a typical unidirectional measurement methodology which
discovers only forwarding paths from an agent to destinations, and the agent cannot discover the
paths from other agents to destinations by itself. However, by using the feature of communicat-
ing with other agents, an agent can obtain a forwarding path from other agent to a specific point
with a request for traceroute. That is, a unidirectional measurement methodology can be a bidi-
rectional one with the cooperation among the agents. This enhancement brings the extension
of measurement coverage on one end systemwith ease; an application on an end system just has
to issue a request for obtaining the target data. In the case of traceroute, the sources of forward-
ing paths are limited within the end systems on which N-TAP agents run, however, considering
that an autonomic application is essentially interested in the IP topology information among the
application nodes, this enhancement will be enough attractive for autonomic applications.

Another enhancement is the simplification of measurement procedures and the acquisition
of ameasurement platform. Existing applications have to have their own code or utilize program
libraries for measurement. Aside from the problem that code-writing for measurement does not
motivate programmers, the utilization of the libraries also leave some problems becausewe basi-
cally have separate libraries for respective measurement methodologies and programmers must
have to learn their usages separately, which brings an extra burden. Meanwhile, N-TAP provides
a unifiedplatform for implementingmeasurementmethodologies and a common interface to uti-
lize these methodologies, which promotes the usage of the application-oriented measurement
from applications. Eventually, we can say that, with N-TAP, applications get a simpler way for
utilizing various network measurement methodologies as an improvement of end-system capa-
bilities.

Thinking of these enhancements, the total enhancement can be expressed as a more capabil-
ity of grasping the state of the Internet. Our approach is to enhance end-system the capabilities
through the provision of a platform that eases the utilization and implementation of measure-
ment procedures, and we have confirmed that applications running on end systems can easily
obtain the network characteristics information of more targets with N-TAP. With further im-
provements of N-TAP, the actual deployment will be accelerated and we can expect to see the
emergence of more capable network applications.

5.3 Deployment Scenarios

There will be several possible scenarios of deploying N-TAP on the Internet. Among them, we
can find some trade-os on some indices such as deployment cost andmeasurement accuracy. In

5.3 Towards the Deployment of an Application-Oriented Measurement Service 83

ISP A

ISP B

ISP C

User

Router

Core agent

Stub agent

N-TAP Network

Underlying Network

Figure 5.1: Deployment scenario: pure End-system-based service.

this section, we focus on these scenarios and discuss their merits and demerits.

The first possible scenario is to deploy N-TAP as a pure end-system-based service. Consider-
ing the architecture of N-TAP, this scenario makes all agents reside in the nodes on which appli-
cations are running regardless of agents’ role, i.e., core or stub. Figure 5.1 shows this situation; all
core and stub agents are distributed among end systems regardless of their locations on the un-
derlying network. In this case, we have amerit of less deployment cost, becausewe donot need to
prepare any fixed infrastructure such as nodes and networks. All we have to do is that the nodes
on which autonomic applications are running let an N-TAP agent run on it, too. The applications
basically utilize the agent running on a local node. At the same time, wehave somediculties for
maintaining such kind of service. One problem is the stability of the overall service. We cannot
preliminarily know which nodes are stable or unstable, therefore, if the system chose unstable
nodes as ones on which core agents run, the stability of the overall system decreases. For the
same reason, we will also have a performance problem such as worse responsiveness. In order
to deploy an AOMP in this manner, an algorithm for choosing core agents and a mechanism of
fault tolerance will be important factors.

The second scenario is to delegate core agents to ISPs and ordinary users run stub agents lo-
cally as depicted in Figure 5.2. In this case, ISPs prepare their own nodes for letting core agents
run on them, and user nodes have their own stub agents connected to the core agents in the
same or proximate ISP. We can assume that the ISP nodes are well maintained and have con-
siderable resources such as computing power and broadband network. This leads the overall

84 Towards the Deployment of an Application-Oriented Measurement Service 5.3

ISP A

ISP B

ISP C

User

Router

Core agent

Stub agent

N-TAP Network

Underlying Network

ISP node

Figure 5.2: Deployment scenario: ISP-supported core agents.

5.4 Towards the Deployment of an Application-Oriented Measurement Service 85

system to be considerably stable, compared to the scenario of the pure end-system-based sys-
tem. Additionally, since the stub agents are connected to proximate core agents, we can expect
that the performance degradation caused by network latency will be reduced. However, the rise
of deployment cost derived from the arrangement and management of ISP nodes is a demerit.

As a derivative scenario from the second one, we can also suppose that we remove measure-
ment functions from the stub agents and just let them ask core agents for measurement. To
achieve this scenario, we have to consider the granularity of network characteristics information.
We can expect that some kinds of network characteristics information such as RTT between one
node and a specific node are almost equal with the same ISP. In this case, only one node in one
ISP has to perform measurement procedures and share the results among the nodes within the
same ISP. Thoughwe need further validation for such inferencemethod, this schemewill be able
to drastically reduce measurement overhead caused by an AOMP. Considering that an AOMP is
deployed over the wire-area networks, this approach will be worth as an inference method for
large-scale measurement.

5.4 Open Issues

For the actual deployment of AOMPs, we can find several remaining issues that should be solved
before its full-scale deployment. At the last of our discussion, we inscribe them as future work.

5.4.1 Fault Tolerance

As an infrastructure system on the Internet, the fault tolerance of an AOMP is essential. In the
current design, N-TAP is weak against the crash of a core agent. By the crash, N-TAP will lose
some parts of collectedmeasurement data and a crashed agent as ameasurement resource. Addi-
tionally, the churn of the core network brings the service unavailability to a part of end systems.
This defect comes from the diculty ofmaintaining an overlay network based on theChord algo-
rithm. We already have several existing techniques for avoiding such situation. The replication
of data entries on non-responsible nodes, more finger table entries on each node, and other im-
provements ofDHT-based systems can also be applied toN-TAP. In future, wewill need to explore
a more stable methodology for constructing an overlay network.

5.4.2 Unimplementable Measurement Methodologies

We cannot leverage the structure of the measurement network for the measurement itself as a
system introduced by Tagami et al. does [84]. Their system additionally measures RTT among
overlay nodes in a Chord ring while a query traverses the nodes. Currently, N-TAP conceals
the internal structure of the measurement network to the command center, i.e., implementers of
measurement methodologies, however, if a measurement methodology that leverages such the
structural information has good characteristics for application-oriented network measurement,
it will be worth of considering the export of such information. On the other hand, such a mod-
ification will corrupt the division of roles in an AOMP and lose the generality of writing code
on the command center, because such a measurement methodology only works on a specific
measurement network and we cannot replace the measurement network without discarding the
methodology. Reviewing the current designs of N-TAP and a general AOMP will be needed for
that problem.

86 Towards the Deployment of an Application-Oriented Measurement Service 5.5

5.4.3 Incorrect Network Characteristics Information

In the current design of N-TAP, the agents are assumed to work correctly and not to perform
malicious activities. Therefore, in the case that a broken agent malfunctions or amalicious agent
appears and it provides incorrect network characteristics information for applications, an applica-
tion will be misled to unexpected behaviors. The misbehavior of applications can be a big prob-
lem especially in the case of the large-scale applications like existing autonomic applications.
One bad scenario will be an attack to systems with poor resources on the Internet. Falsifying
measurement data so that a system with poor resources looks like having rich resources, appli-
cations that received the falsified data will try to aggressively utilize the resource of that system,
which results in the overload on the system. In order to handle this kind of situation, wewill have
to prepare an authentication method among the agents and a mechanism of cross-checking of
collected data by third-party agents.

5.4.4 Actual Utilization from a Real Autonomic Application

Though we have learned that our system will work correctly as designed and have considerable
perform and features so far, the field test with a real autonomic application is still remaining.
Several unexplored topics such as an impact of the responsiveness and accuracy on the behavior
of the applications should be rapidly investigated before the actual deployment.

5.5 Future Direction

Recently we have seen more emphasis on the importance of grasping the Internet by applica-
tions. There really exists a trend of the infrastructures and services of collecting and provid-
ing network characteristics information [85, 86]. Even though these studies take dierent ap-
proaches for their goal, the goal is same as ours, i.e., the enhancement of end-system capabilities
with the network characteristic information. Our contribution is not muchmore than one of the
approaches, however, people are surely stepping forward towards the direction of the Internet
with its clearer vista.

Additionally, when more autonomic applications appear and an AOMP is deployed wider, it
will have more advantages. For example, more autonomic applications mean more overlaps of
their related nodes and networks. This will increase the reusability of collected network charac-
teristics information, which results in the better responsiveness for the provision of the infor-
mation. However, while the scale of an AOMP is small, people may not find a great merit of an
AOMP. Believing the appearance of more autonomic applications and that the better visibility
of the Internet brings a crucial networking environment, we will have to prepare an infrastruc-
ture for an AOMP service and the enlightenment to ordinary users, application developers, and
network administrators.

Even though the empowerment of end systems is like a two-edged blade, i.e., some peo-
ple may be afraid that powerful end systems could destruct the core network on the Internet,
however, we believe that such an evolution brings more profits rather than chaos with our self-
control. Such the empowerment may allow end systems to detect currently hidden vulnerabil-
ities on the Internet such as poor links. In history, radical changes on the Internet has brought
temporal tragedies such as trac overload by peer-to-peer file sharing applications, the short-
age of IPv4 addresses by the rapid deployment of the Internet, and so on. Despite that, we have

5.5 Towards the Deployment of an Application-Oriented Measurement Service 87

overcome the crises of the collapse of the Internet from the sides of management, operation, ed-
ucation and politics. For a capability of grasping the Internet on end systems, we should make a
progress with care.

Network measurement has already been a casual procedure for applications, not a niche for
researchers and network operators. Now it’s time to unveil the internal of the Internet by Internet
observation.

88 Towards the Deployment of an Application-Oriented Measurement Service 5.5

89

Chapter 6

Conclusions

In this dissertation, we first described the advantages and disadvantages of the current Internet
based on its design principle, i.e., the end-to-end principle, and introduced emerging require-
ments for the Internet from autonomic applications such as a peer-to-peer network application.
As a solution to the rise of such requirements, we defined a novel paradigm of networkmeasure-
ment called application-oriented network measurement, which collects and provides network
characteristics information for these applications. The application-oriented network measure-
ment is mainly required to have quick responsiveness, the accuracy of measurement data, and a
wide-area coverage. Considering the wide and large-scale deployment, our approach is to pro-
vide the application-oriented networkmeasurement as an independent network service. On that
basis, we designed an application-oriented measurement platform (AOMP) by defining its fun-
damental features: service interface, command center, and measurement network.

According to the design, we implemented an AOMP built on a role-based peer-to-peer net-
work calledN-TAP, and evaluated its performance and scalability in actual network environments.
The elemental component of N-TAP is an N-TAP agent, which has full features of an AOMP
and cooperates with other agents for collecting network characteristics information. The N-TAP
agents are divided into two roles: core and stub. Core agents construct and maintain the Chord-
based measurement network, called the core network, for the management of measurement re-
sources. Stub agents do not need to be involved in this operation, but both core and stub agents
cooperate for measurement. As the result of the experiments in actual network environments,
we obtained the following findings: (1) The N-TAP’s core network has good scalability owing to
the Chord algorithm. We can theoretically expect to have 1,000 core agents in theN-TAP system.
(2) The query time on the core network is dominant in the entire service time of N-TAP. (3) The
core agents must be stable and have much resources for the responsiveness and stability of the
N-TAP service. The stub agents do not need to have the stability and rich resources, and they can
even contribute in measurement and provide the measurement service for applications.

Moreover, we implemented one of the cooperativemeasurement methodologies called Dou-
bletree, which discovers IP topology with avoiding redundant probes to the parts of networks
that are already visited by other monitoring nodes. Our Double-tree based tracing system called
DTShas several advantages. First, the utilizationof theDoubletree algorithmdecreases thenum-
ber of probes and brings the quick grasp of the wide-area IP topology. This advantage is ecient
especially in the case of the large-scale measurement required by autonomic applications. Sec-
ondly, the assignment of stub agents on allmonitoringnodes, the failure of themonitoringnodes
has little impact onDTS. In otherwords, amonitoring node can have a flexibility of arbitrary join-

90 Conclusions 6.0

ing and leaving on this system. Thirdly, even slowermonitoring nodes can contribute in topology
discovery on that system. We confirmed that by the contribution index that indicates howmany
probes were reduced by the probe data collected by each node; the contribution index of slower
nodes was just a bit less than that of faster nodes. This also proves the eciency of the Dou-
bletree algorithm in an actual network environment. We also explored a trade-o between the
size of a chunk, which is a unit of managing the destinations list, and the data loss on the failure
of monitor. And totally, we succeeded in an implementation of the cooperative measurement
methodology on N-TAP with our design scheme.

Finally, reviewing our contributions, we discussed the merits and remaining problems of N-
TAP. On the service responsiveness, the accuracy of collected data, and the coverage of measure-
ment targets, we have considerably done for meeting respective requirements and suppose that
we still require minor improvements of N-TAP for its actual deployment. Our goal, enhancing
end-system capabilities of grasping the state of the Internet, is partially achieved and we could
find some open issues for the complete accomplishment of our goal. Believing that clearer vista
of the Internet counts for everyone, we continue to move forward step by step.

91

Bibliography

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design. ACM
Transactions on Computer Systems (TOCS), 2(4):277–288, November 1984.

[2] J. Postel. Internet Protocol. RFC 791, September 1981.

[3] J. Postel. Transmission Control Protocol. RFC 793, September 1981.

[4] Marjory S. Blumenthal and David D. Clark. Rethinking the design of the Internet: the end-
to-end arguments vs. the brave new world. ACMTransactions on Internet Technology (TOIT),
pages 70–109, August 2001.

[5] AKARI: Architecture Design Project for New Generation Network. http://akari-
project.nict.go.jp/.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.

[7] SimonPatarin andMesaacMakpangou. Pandora: AnEcient Platform for theConstruction
of Autonomic Applications. In Self-star Properties in Complex Information Systems, volume
3460 of Lecture Notes in Computer Science (LNCS), pages 291–306. Springer, May 2005.

[8] J. Moy. OSPF Version 2. RFC 2328, April 1998.

[9] SumanBanerjee, BobbyBhattacharjee, andChristopherKommareddy. ScalableApplication
Layer Multicast. In Proceedings of ACMSIGCOMMConference 2002, pages 205–217, August
2002.

[10] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron. Proximity neighbor
selection in tree-based structured peer-to-peer overlays. Technical Report MSR-TR-2003-
52, Microsoft Research, 2003.

[11] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPs and P2P Users Coop-
erate for Improved Performance? ACM SIGCOMMComputer Communication Review (CCR),
37(3):31–40, July 2007.

[12] Benoit Donnet, Philippe Raoult, Timur Friedman, and Mark Crovella. Ecient Algorithms
for Large-Scale Topology Discovery. In Proceedings of ACM SIGMETRICS Conference 2005,
pages 327–338, June 2005.

[13] J. Case, M. Fedor, M. Schostall, and J. Davin. A Simple Network Management Protocol
(SNMP). RFC 1157, May 1990.

92 BIBLIOGRAPHY

[14] J. Postel. Internet Control Message Protocol. RFC 792, September 1981.

[15] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A Decentralized Net-
work Coordinate System. In Proceedings of ACM SIGCOMMConference 2004, pages 15–26,
August 2004.

[16] Brian Eriksson, Paul Barford, and Robert Nowak. NetworkDiscovery fromPassiveMeasure-
ments. In Proceedings of ACM SIGCOMMConference 2008, pages 291–302, August 2008.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable
Content-Addressable Network. In Proceedings of ACM SIGCOMM Conference 2001, pages
161–172, August 2001.

[18] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Topologically-Aware
Overlay Construction and Server Selection. In Proceedings of the 21st Annual Joint Conference
of the IEEEComputer andCommunications Societies (INFOCOM2002), pages 1190–1199, June
2002.

[19] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, andHari Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACMTransactions on Networking (TON), 11(1):17–32, February 2003.

[20] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.
Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, 22(1):41–53, January 2004.

[21] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In Rachid Guerraoui, editor, Proceedings of
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), vol-
ume 2218 of Lecture Notes in Computer Science (LNCS), pages 329–350. Springer, November
2001.

[22] Zhichen Xu, Chunqiang Tang, and Zheng Zhang. Building Topology-AwareOverlays Using
Global Soft-State. In Proceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), pages 500–508, May 2003.

[23] Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi, and Nicolas D. Geor-
ganas. A Survey of Application-LayerMulticast Protocols. IEEECommunications Surveys and
Tutorials, 9(3):58–74, September 2007.

[24] John Jannotti, David K. Giord, Kirk L. Johnson, M. Frans Kaashoek, and JamesW. O’Toole,
Jr. Overcast: Reliable Multicasting with on Overlay Network. In Proceedings of the 4th Sym-
posium on Operating System Design and Implementation (OSDI 2000), October 2000.

[25] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. Scribe: The
Design of a Large-Scale Event Notification Infrastructure. In Networked Group Communi-
cation [Proceedings of Third International COST264 Workshop (NGC’2001)], volume 2233 of
Lecture Notes in Computer Science (LNCS), pages 30–43, 2001.

BIBLIOGRAPHY 93

[26] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A Case for End Sys-
temMulticast. IEEE Journal on Selected Areas in Communications, 20(8):1456–1471, October
2002.

[27] Sherlia Y. Shi and Jonathan S. Turner. Multicast Routing and Bandwidth Dimensioning
in Overlay Networks. IEEE Journal on Selected Areas in Communications, 20(8):1444–1455,
October 2002.

[28] Junghee Han, David Watson, and Farnam Jahanian. Topology Aware Overlay Networks.
In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM2005), volume 4, pages 2554–2565, March 2005.

[29] Akamai Technologies. Akamai. http://www.akamai.com/.

[30] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient Overlay
Networks. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP 2001), pages 131–145, October 2001.

[31] AkihiroNakao, Larry Peterson, andAndyBavier. ARoutingUnderlay forOverlayNetworks.
In Proceedings of ACM SIGCOMMConference 2003, pages 11–18, August 2003.

[32] Srinivasan Seetharaman andMostafa Ammar. Overlay-FriendlyNativeNetwork: AContra-
diction in Terms? In Proceedings of the FourthWorkshop onHotTopics inNetworks (HotNets-IV),
November 2005.

[33] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On Selfish Routing in Internet-
Like Environments. In Proceedings of ACMSIGCOMMConference 2003, pages 151–162, Au-
gust 2003.

[34] Yunhao Liu, Zhenyun Zhuang, Li Xiao, and Lionel M. Ni. A Distributed Approach to Solv-
ing Overlay Mismatching Problem. In Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS ’04), pages 132–139, March 2004.

[35] ThomasKaragiannis, Pablo Rodriguez, andKonstantina Papagiannaki. Should Internet Ser-
vice Providers Fear Peer-Assisted Content Distribution? In Proceedings of Internet Measure-
ment Conference 2005 (IMC 2005), pages 63–76, October 2005.

[36] Go Hasegawa, Masayoshi Kobayashi, Masayuki Murata, and TutomuMurase. “Free-riding”
Trac Problem in Routing Overlay Networks. In Proceedings of the 15th IEEE International
Conference on Networks (ICON 2007), pages 118–123, November 2007.

[37] Cooperative Association for Internet Data Analysis. CAIDA : home. http://www.caida.org/.

[38] Kazaa. http://www.kazaa.com/.

[39] SQLite Home Page. http://www.sqlite.org/.

[40] Dave Winer. XML-RPC Specification. http://www.xmlrpc.com/spec, June 2003.

[41] The PlanetLab Consortium. PlanetLab—An open platform for developing, deploying, and
accessing planetary-scale services. http://www.planet-lab.org/.

94 BIBLIOGRAPHY

[42] Toshiyuki Miyachi, Ken ichi Chinen, and Yoichi Shinoda. StarBED and SpringOS: Large-
scaleGeneral PurposeNetworkTestbed andSupporting Software. InProceedings of the1st In-
ternational Conference on Performance EvaluationMethodolgies and Tools (VALUETOOLS2006),
October 2006.

[43] Nathaniel Leibowitz,Matei Ripeanu, andAdamWierzbicki. Deconstructing theKazaaNet-
work. In Proceedings of the Third IEEE Workshop on Internet Applications (WIAPP ’03), pages
112–120, June 2003.

[44] T. S. Eugene Ng and Hui Zhang. Predicting Internet Network Distance with Coordinates-
Based Approaches. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM2002), pages 170–179, June 2002.

[45] T. S. Eugene Ng andHui Zhang. A Network Positioning System for the Internet. In Proceed-
ings of USENIX Annual Technical Conference 2004, pages 141–154, June 2004.

[46] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim Harris, and Saleem Bhatti. Lighthouses
for Scalable Distributed Location. In Proceedings of 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), volume 2735 of Lecture Notes in Computer Science (LNCS), pages
278–291. Springer, October 2003.

[47] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Practical Internet Co-
ordinates for Distance Estimation. In Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS ’04), pages 178–187, March 2004.

[48] Puneet Sharma, Zhichen Xu, Sujata Banerjee, and Sung-Ju Lee. Estimating Network Prox-
imity and Latency. ACM SIGCOMM Computer Communication Review (CCR), 36(3):39–50,
July 2006.

[49] Yuval Shavitt and Eran Shir. DIMES: Let the Internet Measure Itself. ACMSIGCOMMCom-
puter Communication Review (CCR), 35(5):71–74, October 2005.

[50] The DIMES Team. The DIMES project. http://www.netdimes.org/.

[51] The NETI@home team. NETI@home. http://www.neti.gatech.edu/.

[52] Charles Robert Simpson, Jr. and George F. Riley. NETI@home: A Distributed Approach
to Collecting End-to-End Network Performance Measurements. In Proceedings of the 5th
Anuual Passive and ActiveMeasurementWorkshop (PAM 2004), April 2004.

[53] David P. Anderson, Je Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: An Experiment in Public-Resource Computing. Communications of the ACM,
45(11):56–61, November 2002.

[54] University of California. SETI@home. http://setiathome.berkeley.edu/.

[55] Wenli Liu and Raouf Boutaba. pMeasure: A peer-to-peer measurement infrastructure for
the internet. Computer Communications, 29(10):1665–1674, June 2006.

BIBLIOGRAPHY 95

[56] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An Information Plane for Dis-
tributed Services. In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), number 367-380, November 2006.

[57] Praveen Yalagandula, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Sung-Ju Lee. S3: A
Scalable Sensing Service for Monitoring Large Networked Systems. In Proceedings of ACM
SIGCOMMWorkshop on Internet NetworkManagement (INM’06), September 2006.

[58] Bradley Huaker, Daniel Plummer, DavidMoore, and k clay. Topology discovery by active
probing. In Proceedings of Symposium on Applications and the Internet (SAINT) 2002, 2002.

[59] Van Jacobson. traceroute source code. ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[60] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On Power-Law Relationships
of the Internet Topology. In Proceedings of ACMSIGCOMMConference 1999, pages 251–262,
August 1999.

[61] Jean-Jacques Pansiot and Dominique Grad. On Routes and Multicast Trees in the Internet.
ACM SIGCOMMComputer Communication Review (CCR), 28(1):41–50, January 1998.

[62] Anukool Lakhina, JohnW. Byers,MarkCrovella, and PengXie. Sampling Biases in IP Topol-
ogy Measurements. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM2003), pages 332–341, March 2003.

[63] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the Bias of
Traceroute Sampling: or, Power-lawDegree Distributions in Regular Graphs. In Proceedings
of the 37th ACMSymposium on Theory of Computing (STOC2005), pages 694–703, May 2005.

[64] P. Erdos and A. Renyi. On the evolution of random graphs. Publ.Math. Inst. Hung. Acad. Sci,
5:17–61, 1960.

[65] Bill Cheswick and Steve Branigan. Mapping and Visualizing the Internet. In Proceedings of
USENIX Annual Technical Conference 2000, 2000.

[66] Neil Spring, David Wetherall, and Thomas Anderson. Reverse Engineering the Internet.
ACM SIGCOMMComputer Communication Review (CCR), 34(1):3–8, January 2004.

[67] kc clay, Mark Crovella, Timur Friedman, Colleen Shannon, and Neil Spring. Community-
Oriented Network Measurement Infrastructure (CONMI) Workshop Report. ACM SIG-
COMMComputer Communication Review (CCR), 36(2):41–48, April 2006.

[68] Neil Spring, David Wetherall, and Tom Anderson. Scriptroute: A Public Internet Mea-
surement Facility. In Proceedings of USENIX Symposium on Internet Technologies and Systems
(USITS) 2003, 2003.

[69] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring ISP
Topologies with Rocketfuel. IEEE/ACM Transactions on Networking (TON), 12(1):2–16,
February 2004.

96 BIBLIOGRAPHY

[70] Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth, and Roman Schmidt. UniStore:
Querying a DHT-based Universal Storage. In Proceedings of the 23rd IEEE International Con-
ference on Data Engineering (ICDE) 2007, pages 1503–1504, April 2007.

[71] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weatherspoon,
M. Frans Kaashoek, John Kubiatowicz, and Robert Morris. Ecient Replica Maintenance
for Distributed Storage Systems. In Proceedings of the 3rd Symposium on Networked Systems
Design and Implementation (NSDI ’06), pages 45–58, May 2006.

[72] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca, Scott
Shenker, and Joseph Hellerstein. A Case Study in Building Layered DHT Applications. In
Proceedings of ACM SIGCOMMConference 2005, pages 97–108, August 2005.

[73] IPv6 Scamper. http://www.wand.net.nz/ mluckie/ipv6-scamper/.

[74] Fotis Georgatos, Florian Gruber, Daniel Karrenberg, Mark Santcroos, Henk Uijterwaal, and
ReneWilhelm. Providing ActiveMeasurements as a Regular Service for ISPs. In Proceedings
of Workshop on Passive and AcriveMeasurements (PAM) 2001, April 2001.

[75] A. McGregor, H. W. Braun, and J. Brown. The NLANR Network Analysis Infrastructure.
IEEE CommunicationsMagazine, 38(5), 2000.

[76] Andrew Adams, Jamshid Mahdavi, MatthewMathis, and Vern Paxson. Creating a Scalable
Architecture for Internet Measurement. In Proceedings of INET 1998, July 1998.

[77] Antonios Danalis and Constantinos Dovrolis. ANEMOS: An Autonomous NEtworkMOn-
itoring System. In Proceedings of Passive andActiveMeasurementWorkshop (PAM) 2003, 2003.

[78] Sridhar Srinivasan and EllenZegura. NetworkMeasurement as aCooperative Enterprise. In
Proceedings of the 1st InternationalWorkshop on Peer-to-Peer Systems (IPTPS ’02), volume 2429
of Lecture Notes in Computer Science (LNCS), pages 166–177, March 2002.

[79] Zhihua Wen, Sipat Triukose, and Michael Rabinovich. Facilitating Focused Internet Mea-
surements. In Proceedings of ACM SIGMETRICS Conference 2007, pages 49–60, June 2007.

[80] Xin Li, Fang Bian, Hui Zhang, ChristopheDiot, RameshGovindan,WeiHong, andGianluca
Iannaccone. MIND: A Distributed Multi-Dimensional Indexing System for Network Diag-
nosis. In Proceedings of the 25th IEEE International Conference on Computer Communications
(INFOCOM2006), pages 1–12, April 2006.

[81] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Friedman,
Matthieu Latapy, ClemenceMagnien, and Renata Teixeira. Avoiding Traceroute Anomalies
with Paris Traceroute. In Proceedings of InternetMeasurement Conference (IMC) 2006, October
2006.

[82] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring Load-balanced Paths in
the Internet. In Proceedings of Internet Measurement Conference (IMC) 2007, pages 149–160,
October 2007.

[83] MatthewLuckie, YoungHyun, and BradHuaker. Traceroute probemethod and forward IP
path inference. In Proceedings of InternetMeasurement Conference (IMC) 2008, October 2008.

BIBLIOGRAPHY 97

[84] Atsushi Tagami, Teruyuki Hasegawa, Shigehiro Ano, and Toru Hasegawa. Evaluation of
P2P-Based Internet Measurement System on Loss Tolerance to Measurement Results. In
Proceedings of SAINT2007Workshop on InternetMeasurement Technology and its Applications to
Building Next Generation Internet, January 2007.

[85] Ionut Trestian, Supranamaya Ranjan, Aleksandar Kuzmanovi, and Antonio Nucci. Uncon-
strained Endpoint Profiling (Googling the Internet). In Proceedings of ACMSIGCOMMCon-
ference 2008, pages 279–290, August 2008.

[86] Haiyong Xie, Y. Richard Yang, Arvind Krishnamurthy, Yanbin Liu, and Abraham Silber-
schatz. P4P: Provider Portal for Applications. In Proceedings of ACM SIGCOMMConference
2008, pages 351–362, August 2008.

98 BIBLIOGRAPHY

99

Publication List

This section contains the information on the author’s publications and related research projects
as of March 2009. The items marked with asterisks (∗) have particular relevance to this doctoral
dissertation.

Papers in Refereed Journals

• ∗益井賢次，門林雄基．階層型P2Pネットワークを用いたインターネット計測基盤の性能評価と
実展開シナリオの考察．情報処理学会論文誌，Vol. 50，No. 2，pp. 709–720，2009年 2月．

Papers in International Conferences andWorkshops

• ∗ Kenji Masui and Benoit Donnet, “DTS: a Decentralized Tracing System.” In Proceedings
of the 1st InternationalWorkshop on TracMonitoring and Analysis (TMA’09), May 2009
(to appear).

• ∗ Kenji Masui and Youki Kadobayashi, “Observing the Dynamics of the Internet on Our
Laptops with an Application-Oriented Measurement Platform.” In Proceedings of ACM
SIGCOMMConference 2008, Demo Session, August 2008.

• ∗Kenji Masui andYoukiKadobayashi, “ARole-BasedPeer-to-PeerApproach toApplication-
OrientedMeasurement Platforms.” In Sustainable Internet [Proceedings of the Third Asian
Internet EngineeringConference (AINTEC2007)], Vol. 4866of LectureNotes inComputer
Science (LNCS), pp. 184–198. Springer, November 2007.

• Yuzo Taenaka, Kenji Masui, Kimihiro Suwa, Khamphao Sisaat, Shigeru Kashihara, Takeshi
Okuda, Youki Kadobayashi, and Suguru Yamaguchi, “Investigation of the Basic Characteris-
tics of Long DistanceWireless LANs.” In Proceedings of the Third International Workshop
onWireless Network Measurement (WiNMee 2007), April 2007.

• ∗ Kenji Masui and Youki Kadobayashi, “Bridging the Gap between PAMs and Overlay Net-
works: a Framework-Oriented Approach.” In Passive and Active Network Measurement
[Proceedings of the Eighth Passive andActiveMeasurement Conference (PAM2007)], Vol.
4427 of Lecture Notes in Computer Science (LNCS), pp. 265–268. Springer, April 2007.

• ∗Kenji Masui and Youki Kadobayashi, “N-TAP: A Platform of Large-Scale DistributedMea-
surement for Overlay Network Applications.” In Proceedings of the Second International
Workshop on Dependable and Sustainable Peer-to-Peer Systems (DAS-P2P 2007), January
2007.

100 PUBLICATION LIST

• Kenji Masui, Shinya Nakamura, Masashi Eto, and Youki Kadobayashi. “Policy-Based Email
System for Controlling Secondary Use of Information.” In Proceedings of the First Interna-
tional Workshop on Security (IWSEC2006), October 2006.

• Yukio Okada, Kenji Masui, and Youki Kadobayashi, “Proposal of Social Internetworking.”
InWeb and Communication Technologies and Internet-Related Social Issues [Proceedings
of the 3rd International Human.Society@Internet Conference (HSI 2005)], Vol. 3597 of
Lecture Notes in Computer Science (LNCS), pp. 114–124. Springer, July 2005.

Other Published Papers and Technical Reports

• Hieu Hanh Le, Masayoshi Shimamura, Kenji Masui, and Katsuyoshi Iida, “A Study on XCP
Routers’ Misbehaviors on Congestion Control.” In Technical Report of IEICE, Vol. 108,
No. 460, IA2008-75, pp. 49–54, March 2009.

• 三宅光太郎，益井賢次，飯田勝吉．プロキシ型モバイル通信におけるノードの位置情報漏洩の分
析と許容遅延を考慮した対策の提案．電子情報通信学会技術研究報告，Vol. 108，No. 457，
NS2008-229，pp. 483–488，2009年 3月．

• 田中彰，嶋村昌義，益井賢次，飯田勝吉．有害コンテンツ抑制を目的としたピアとコンテンツ双
方にレピュテーションを用いるP2Pコンテンツ流通手法の提案．電子情報通信学会技術研究報
告，Vol. 108，No. 457，NS2008-168，pp. 141–146，2009年 3月．

• 大溝拓也，益井賢次，飯田勝吉．重複経路の削減を目的とするAS間オーバレイ経路制御のため
のクロスレイヤアーキテクチャの一検討．電子情報通信学会技術研究報告，Vol. 108，No. 258，
NS2008-70，pp. 13–18，2008年 10月．

• ∗益井賢次，門林雄基．エンドノードからの IPトポロジ探索におけるノード検出回数に基づくトポ
ロジ特性の分析．電子情報通信学会 技術研究報告，Vol. 108，No. 120，IA2008-14，pp. 7–
12，2008年 7月．

• 妙中雄三，益井賢次，諏訪公洋，Khamphao Sisaat，樫原茂，奥田剛，門林雄基，山口英．長
距離無線LANの特性を考慮した性能指標の検討．電子情報通信学会技術研究報告，Vol. 106，
No. 578，IN2006-197，pp. 101–106，2007年 3月．

• ∗ 益井賢次，宮本大輔，門林雄基．ネットワーク特性共有のための分散型基盤の提案と設計．
第 7回インターネットテクノロジーワークショップ (WIT2005)，2005年 11月．

• 益井賢次，岡田行央，新井イスマイル，市川本浩，中村豊．ネットワークの一時利用を実現する
コンポーネント独立で可搬性の高い利用者管理システムの設計と実装．第 9回分散システム/イン
ターネット運用技術シンポジウム，2004年 12月．

Research Grants

• ∗日本学術振興会，日本学術振興会特別研究員 (DC2)．アプリケーションの多様な要求を考慮し
たネットワーク特性収集方式の研究，2008年 4月．

• 情報処理推進機構，未踏ソフトウェア創造事業 共同開発者．オーバレイネットワークを用い
たMMOGインフラストラクチャの開発，代表者飯村卓司，2004年度第 2回．

