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Abstract

This dissertation presents machine learning based detection methods against phishing.

Phishing is a fraudulent activity defined as the acquisition of personal information by

tricking an individual into believing the attacker is a trustworthy entity. Phishing

attackers lure people by using “phishing email”, as if it were sent by a legitimate

corporation. The attackers also attract the email recipients into a “phishing site”,

which is the replica of an existing web page, to fool a user into submitting personal,

financial, and/or password data. Strategies against phishing tackle to protect users

from fraud.

My research motivation is developing a method for detection of phishing sites to

prevent users from browsing phishing sites. Currently, existing detection methods are

far from suitable. URL filtering-based detection methods could not deal with new

types of phishing attacks, i.e, spear phishing. Conversely, heuristics-based detection

methods have a possibility to identify these sites. When users browse a site, the

methods calculate the likelihood of being a phishing site for the site. The methods

also classify the site as phishing if the likelihood is greater than the discrimination

threshold. The problem in heuristics-based detection methods is that the detection

accuracy is not high. Accordingly, users would become distrusting the system and

would ignore the notification from detection systems.

In this dissertation, I employ machine learning algorithms to improve the detection

accuracy, machine learning can facilitate the development of algorithms or techniques

by enabling computer systems to learn. As my preliminary experiment, I investigate

whether a machine learning algorithm is available or not. I construct a training dataset

by analyzing 50 phishing sites reported on Phishtank.com and the same number of

legitimate sites with 8 heuristics, namely, Age of Domain, Known Images, Suspicious

URL, Suspicious Links, IP Address, Dots in URL, Forms, and TF-IDF-Final heuristics.

I then let AdaBoost, one of the typical machine learning algorithms, study from the
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training dataset in a supervised-learning manner. I also construct a testing dataset

composed of 50 phishing sites and the same number of legitimate sites, and classify

them based on the model derived from the training dataset. By comparing with the

existing method, AdaBoost can provide higher detection accuracy in almost of all cases.

In some cases, overfitting problems are observed. To avoid the overfitting problems, I

attempt to increase the number of URLs in dataset by both implementing all heuristics

and monitoring Phishtank.com periodically.

In my performance evaluation, I employ 9 machine learning techniques including

AdaBoost, Bagging, Support Vector Machines, Classification and Regression Trees,

Logistic Regression, Random Forests, Neural Networks, Naive Bayes, and Bayesian

Additive Regression Trees. I let these machine learning techniques combine heuristics,

and also let machine learning-based detection method(MLBDM)s distinguish phishing

sites from others. I analyze our dataset, which is composed of 1,500 phishing sites and

the same number of legitimate sites. These 1,500 URLs of phishing sites are reported

Phishtank.com during November, 2007 – February, 2008, and are verified as phishing

sites by registered users of Phishtank.com. I then classify them using the machine

learning-based detection methods, and measure the performance. In my performance

evaluation, I decide f1 measure, error rate, and Area Under the ROC Curve (AUC) as

performance metrics along with my requirements for detection methods. The highest

f1 measure is 0.8771, the lowest error rate is 11.96%, and the highest AUC is 0.9543,

all of which are observed in the case of AdaBoost.

Next, I check whether or not MLBDMs are available even if the dataset or the set of

heuristics are different. I test another dataset which contains phishing sites reported in

different time period. I also use another dataset which contains 1,277 URLs of phishing

sites, 223 URLs which are not phishing sites but treated as phishing, and 1,500 URLs

of legitimate sites. I also change a set of heuristics and observe the performance. All

results show that almost of all MLBDMs outperform the traditional detection method.

I then discuss utilization methods for MLBDMs. First, I explore a way for deciding

the discrimination threshold for each user. Within my preliminary algorithm, I confirm

that changing threshold can customize the detection strategy. Next, I argue the another

approach which aims to cover the weak points of users by existing heuristics with

machine learning techniques. The key idea of this approach, named “HumanBoost”, is

employing users’ past trust decision as a new heuristic. As my pilot study, I conduct

subject within test by calling 10 subjects. Subjects browse 14 emulated phishing sites
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and 6 legitimate sites, and check if the site seems to be a phishing site or not. By using

such types of subjects’ judgments as a new heuristic, I let AdaBoost to incorporate

the heuristic into existing 8 heuristics. The results shows that the average error rate

in the case of HumanBoost was 9.5%, whereas the average error rate of subjects was

19.0% and that in the case of AdaBoost was 20.0%.

I also propose HTTP Response Sanitizing (HRS) which is a countermeasure against

phishing. When a phishing prevention system focuses on reducing false negative errors,

false positive errors would increase even if the system employs MLBDMs. My proposed

HRS is designed to reduce the loss of convenience arisen from false positive errors. The

key idea of HRS is removing all input forms from the sites. While users can browse

the rest of content, the loss of convenience would be lower than the existing method

which filters whole suspected web pages. I implement HRS-capable proxy servers and

verify the function of removing by browsing 100 actual phishing sites. The performance

overhead is 3.59 millisecond given content size is 10Kbytes and the content involves 13

HTML tags to be removed. I also compare HRS among existing countermeasures.

Finally, I discuss the development of MLBDM-capable phishing prevention systems.

In order to clarify the discussion, I show the stakeholders of the system and the data

flow in the system. I then introduce 3 types of implementation forms, named a security

service provider (SSP)-side model, a client-side model, and a collaborative model. I

also assume that forms of implementation should be selected after due consideration

of both the system resources and the set of the heuristics. The SSP-side model would

be suitable for thin clients such as handheld devices, and the client-side model would

facilitate to develop HumanBoost. Although there are pros and cons between these 2

models, the collaborative model is designed to cover their disadvantages.

This dissertation demonstrates that machine learning algorithms are available for

detecting phishing sites. Since MLBDMs contribute to improve the detection accuracy,

users will believe that the notification from detection methods. Accordingly, users can

easily avoid phishing sites.

Keywords:

Phishing, Web Spoofing, Machine Learning, Trust Decision, Sanitizing
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Chapter 1

Introduction

There is no human who never make mistakes. In the cyberspace, many security issues

have been arisen from human errors. For example, buffer overflow vulnerabilities are

the result of a programming error. Due to the weakness of human, “phishing”, which

is a form of identity theft whose targets are computer users, is one of the serious

threats in the cyberspace. Phishers, phishing attackers, attract victims to a spoofed

web site, a so-called “phishing site”, and attempt to persuade them to send their

personal information such as user identification, password, debit card number, credit

card number, and so much on.

The damage suffered from phishing is growing. In 2005, the Gartner Survey re-

ported 1.2 million consumers lost 929 million dollars through phishing attacks [1]. In

the modern survey conducted in 2007, they also reported 3.6 million consumers lost

3 billion dollars [2]. According to the survey, of those consumers who lost money to

phishing attacks, 47 percent said a debit or check card had been the payment method

used when they lost money or had unauthorized charges made on their accounts. This

was followed by 32 percent of respondents who listed a credit card as the payment

method, and 24 percent who listed a bank account as the method.

The number of phishing sites is also increasing. According to trend reports pub-

lished by the Anti-Phishing Working Group [3], the number of the reported phishing

sites was 25,630 in March 2008, far surpassing the 14,315 in July 2005 [4].

Phishing attacks can be separated into 5 distinct phases, and key phases are the

attraction phase and the acquisition phase. In the attraction phase, a phisher sends

victims an email as if it were sent from a legitimate corporation. I explain 5 phases in

1



2 CHAPTER 1. INTRODUCTION

� �
The security questions and answers of PayPal account were changed

on 21 Nov. 2008.

If you did not authorize this change, please contact us

immediately using the phone number found on the following page:

https://www.paypal.com/uk/login/

Thank you for using PayPal!

The PayPal Team.

Please do not reply to this email. This mailbox is not monitored

any you will not receive a response. For assistance, lo in to your

PayPal account and click the Help link located in the top right

corner of any PayPal page.

----------------------------------------------------

Copyright 1999-2008 PayPal. All rights reserved.

PayPal EmailID PP232
� �

Figure 1.1: PayPal Phishing Scams reported on millersmiles.co.uk

Section 3.1.

As an instance of a phishing attack, I present an actual phishing email, which is

reported on millersmiles.co.uk [5] and mimics PayPal, as shown in Figure 1.1. The

email sender seems to be a legitimate PayPal, and the subject shows “This security

questions and answers of PayPal account were changed” to the recipient. The email

content recommends the recipients to click the link in the email. Because this email

is HTML format, this link in the email points a phishing site even if it seems to be a

PayPal site, https://www.paypal.com/uk/login/.

The acquisition phase starts when a phisher could attract victims to browse phish-

ing sites. The phishing site is well-designed to be a look-alike of the actual PayPal

site, therefore, some victims cannot aware of being deceived. Hence, they enter their
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personal information into a phishing site.

1.1 Issues on phishing

The fundamental problem in phishing is that people are deceived. In psychology,

many research formulated “Why people are deceived” [6]. Unfortunately, I could not

found the consensus for protecting users to fraudulent claims. In cyber security, many

researchers tackle the phishing by supporting people to recognize both phishing and

legitimate sites. In other words, they attempt to support end users to make trust

decision.

Essentially, an SSL should be used for people to make trust decision. When users

visit a site which employs a valid SSL certification, the modern browsers appear a

padlock icon in the browser window. The padlock icon indicates that the trustworthy

third parties had verified the server belongs to the legitimate enterprises. The padlock

icon also indicates that users’ inputted data are encrypted to prevent anyone from

stealing while the data are transferred from a client PC to a server host. Ideally, users

should not enter personal information into any sites which do not employ a valid SSL

certification. However, some users browse Internet without knowledge of SSL. These

users are likely to make trust decision by checking web content of the site.

Unfortunately, a phishing site is well-designed to be a look-alike of the targeted

legitimate site except from the padlock icon and the address bar; attracted users easily

believe that a site is legitimate, and the users are likely to disclose their personal infor-

mation to phishers. Moreover, some site requires inputting such information without

using a valid SSL certification, even if the site is maintained by legitimate enterprises.

In the view of this, it is naturally to assume that users have a habit to enter the

password into non-SSL site. Users often assess a site’s credibility without the rigorous

criteria [7].

So, how can we, security researchers, support users to make trust decision ? Some

researchers would answer “By educating web users.”, to the question. They have

educated many end users and developed various educational materials. Ideally, to

avoid the phishing, every user should distinguish between phishing sites and legitimate

sites by themselves, and should pay attention to phishing attacks while browsing web

sites. Their education would facilitate to do so. Other researchers would answer “By

developing new interfaces”. They have created new both human and user interface
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which people can easily identify legitimate sites. Since they did not adhere the legacy

user interface, many interfaces have been developed. These novel interfaces would

instill a trusted path for browsing web sites. Other researchers would answer “By

notifying that they are just visiting phishing site”. If some browser or browser extension

could success to inform users that the site is not legitimate, users would not input their

personal information. Someone answers “By adding insurance against phishing”, that

is a way for blocking or limiting the abuse of the stolen password. Some other one

answer “By arresting a phisher’. They propose a scheme for tracing phishers’ cyber

crime [8].

1.2 Issues on detecting phishing sites

My first motivation against phishing is for supporting end users by informing that they

are just visiting phishing sites. For doing so, such system that can identify phishing

sites and can notice to end users is necessary.

There are two distinct approaches for distinguishing phishing sites. One is URL

filtering. It detects phishing sites by comparing the URL of a site where a user visits

with a URL blacklist, which is composed of the URLs of phishing sites. If the URL is

listed on the blacklist, the site is detected as a phishing site. However, the effectiveness

of URL filtering is limited. The rapid increasing of phishing sites hinders URL filtering

to work sufficiently due to the difficulty of building a perfect blacklist. Moreover, in the

case of distributed phishing attacks [9], which I will explain in Section 2.1, a phisher

prepares distinct URLs of phishing sites per each target. It is not difficult for the

phisher because there are many bot-installed PCs in the Internet [10] and several tools

such as Rock Phish Kit, facilitate to generate phishing sites on these PCs. Registering

these types of phishing sites into a blacklist is tedious work.

The other approach is a heuristic-based solution. A heuristic is an algorithm to

distinguish phishing sites from others based on users’ experience, and a heuristic checks

if a site seems to be a phishing site. Based on the detection result from each heuristic,

the heuristic-based solution calculates the likelihood of a site being a phishing site and

compares the likelihood with the defined discrimination threshold. Different from URL

filtering, a heuristic-based solution has a possibility to identify unreported phishing

sites. Notice that heuristics only give a hint to detect phishing sites, but do not

provide the accurately information. Thus, Heuristics-based solutions usually employ 2
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or more heuristics to improve the detection accuracy.

Unfortunately, the detection accuracy of existing heuristic-based solutions is far

from suitable for practical use, even if various studies [11–14] discovered heuristics.

Zhang et al. [15] mentioned that SpoofGuard [16], which is one of the heuristics-based

solutions, identified more than 90% of phishing sites correctly, but incorrectly identified

42% of legitimate sites as phishing. If a heuristic-based solution often makes mistakes

and identifies legitimate sites as phishing sites, end users may become distrusting the

system. In this case, users may not believe the notification from the heuristics-based

solution even if it could correctly identify a phishing site.

1.3 Machine learning-based approach

In this dissertation, I focus on employing machine learning [17] algorithms to calculate

the likelihood of being a phishing site. Machine learning is the study of algorithms

that enable computers to improve their performance and increase their knowledge

base. Research in machine learning has taken place since the beginning of artificial

intelligence in the mid-1950s. The first notable success was Arthur Samuel’s program

that learned to play checkers well enough to beat skilled humans. If it is available for

detection of phishing sites, I expect such system which can correctly identify whether

a site is phishing or not, rather than identifying a site by humans.

As my preliminary experiment, I test one machine learning algorithm for detecting

phishing sites and observe the weak point of machine learning. Based on the result, I

evaluate the performance of 9 machine learning algorithms including AdaBoost, Bag-

ging, Support Vector Machines(SVM), Classification and Regression Trees(CART), Lo-

gistic Regression(LR), Random Forests(RF), Neural Networks(NN), Naive Bayes(NB),

and Bayesian Additive Regression Trees(BART). I also compare the performance of

machine learning-based detection methods with that of the traditional method.

1.3.1 Preliminary evaluation

As my preliminary experiments, I employ AdaBoost, the typical one of the machine

learning algorithm, for detection of phishing sites. The key feature of AdaBoost is to

build a strong classifier by combining several weak classifiers. In the context of phishing

sites detection, a heuristics is corresponding to a classifier. Each weak classifier is only
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Table 1.1: Detection result by heuristics

H1 H2 H3 H4 H5 H6 H7 H8 Type

Site #001 1 0 1 0 1 1 1 1 phishing

Site #002 1 1 1 1 0 0 0 1 phishing

Site #003 1 1 0 0 1 1 1 0 phishing
...

...

Site #199 1 0 0 1 1 0 0 0 legitimate

Site #200 0 0 0 0 1 0 0 0 legitimate

required to make the correct detections slightly over half the time. I expect AdaBoost

and its feature to create strong heuristics-based solution, even if the detection accuracy

of each heuristic is not high.

I then prepare my training dataset, which is composed of 50 URLs of phishing sites

reported on Phishtank [18] and the same number of legitimate sites. I also construct

my testing dataset which is composed of 50 URLs of phishing sites and the same

number of legitimate sites. The URLs of the test dataset are different from those of

the training dataset.

Next, I employ 8 heuristics, presented by Zhang et al. [19], to check each site. Each

heuristic return binomial variable; If a site is deemed as legitimate, heuristics return

0. If not, they return 1. By converting the detection result from each heuristic, I make

binary vectors shown in Table 1.1, where H1, H2, · · ·H8 denote the 8 heuristics, and

Site #001 · · · Sites #200 denote the identification number of the URLs in my dataset,

1 or 0 denotes the detection result by each heuristic, Type denote the actual condition

indicating phishing or legitimate.

AdaBoost is designed for supervised learning. In the supervised learning, the train-

ing data consist of pairs of explanation variables such as H1, H2, · · ·H8, and desired

output such as Type field in Table 1.1. AdaBoost can solve two different types of

problem, that is, regression and classification. The output of the function can be a

continuous value on the regression problem or can predict a class label of the input

object on the classification problem. Of course, my purpose is classifying phishing sites

or not.

After the training, I test AdaBoost with my testing dataset and measure the accu-
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racy. The false positive rate is 0.0%, the false negative rate is 6.0%. Through my paper,

the false positive denotes labeling a legitimate site as phishing, and the false negative

denotes labeling a phishing site as legitimate. I also check the detection accuracy in

the case of existing combination method for heuristics. The false rate is 4.0%, the false

positive rate is 8.0%. By comparing the AdaBoost-based combination method with

the existing method, AdaBoost can provide higher detection accuracy.

However, I observe that AdaBoost sometime occurs overfitting [20]. When machine

learning algorithms find the very best fit to the training data, there is a risk that they

will fit the noise in the data by memorizing various peculiarities of training data rather

than finding a general predictive rule. This phenomenon is usually called “overfitting”.

In my experiment, I find one phishing site was labeled as legitimate by many heuristics

which performed better to label other sites. To identify the site, AdaBoost assigns high

weights on other heuristics which could label correctly, even if these heuristics could

not provide higher accuracy to detect other sites.

To avoid the overfitting, several regularization techniques have been proposed. Reg-

ularization often penalizes parameters and/or error terms to thwart the effectiveness

of overfitting. These types of penalization is called shrinkage in statistics, is also called

weight decay in neural networks. Support Vector Machine [21] uses soft margin to

admit classification error in training, and some extension of AdaBoost such as Mad-

aBoost [22], are often used to avoid overfitting. Removing confusing samples [23] from

the dataset also helps thwarting the overfitting.

In this dissertation, I employ the most straightforward way to avoid overfitting,

that is, increasing the number of samples in training dataset. Accordingly, I attempt

to collect much number of phishing sites and legitimate sites in long time period.

1.3.2 Performance evaluation

At first, I implement an automated system to increase the number of URLs in my

dataset. The system accesses to Phishtank.com periodically, obtains newly reported

phishing sites, checks sites with heuristics, and stores the results from heuristics for

later analysis. In my preliminary experiments, I implemented several heuristics, how-

ever, some heuristics were not implemented due to the difficulty of implementation. I

explain how to implement these heuristics in Section 7.1.

I built my dataset, which is composed of 1,500 phishing sites reported during
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November, 2007 – February, 2008, and the same number of legitimate sites. In ad-

dition, these 1,500 phishing sites are verified as phishing sites by registered users of

Phishtank.com.

In my comparative study, it is important to define reasonable metrics for evaluating

detection methods. I decide my metrics along with my 2 requirements for the detection

method. One is accuracy. User safety would obviously be compromised if detection

methods labeled phishing sites as legitimate. Users would also complain if the method

labeled legitimate sites as phishing sites because of the interruption in browsing caused

by false alarms. For this requirement, I employ both the f1 measure(higher is better)

and error rate(lower is better). The other is adjusting capability. Basically, there

are trade-off between reducing false negative errors and reducing false positive errors.

If a user is a novice, who is easily taken in by phishing attacks, detection methods

should decrease false negative errors instead of increasing false positive errors. I require

detection methods to adjust the discrimination threshold for reducing false negative

errors for novices. Conversely, if a user is a security expert, the methods focus on

decreasing false positive errors. I also require detection methods to adjust the threshold

for reducing false positive errors for experts. For these requirements, I perform ROC

analysis. With various discrimination thresholds for a binary classifier system, I plot

the true positive rate vs. false positive rate into the graph space. I then estimate

the Area Under the ROC Curve(AUC) value and use AUC(higher is better) as my

performance metrics of adjusting capability.

Then I employ 9 machine learning algorithms, including AdaBoost, Bagging, SVM,

CART, LR, RF, NN, NB, and BART. Based on these algorithms, I test 9 machine

learning-based detection method(MLBDM)s and evaluate their performance. I also

select the optimal parameters for MLBDMs. My criterion for choosing parameters

is to minimize the error rate in training. For decision tree-based machine learning

techniques such as RF, I test them using different numbers of trees. I also select the

iteration time for AdaBoost, kernel function for SVM, the number of units in hidden

layer for NN. To average out the result, I perform 4-fold cross validation 10 times in

order to perform evaluation.

The result shows that the highest f1 is 0.8777 in AdaBoost, followed by SVM(0.8770),

BART(0.8765), CART(0.8755), Bagging(0.8751), NN(0.8751), RF(0.8749), NB(0.8735),

and finally LR(0.8609). The lowest false positive rate is 06.73% in LR, and the high-

est is 14.37% in CART. The lowest error rate is 11.96% in AdaBoost, followed by
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SVM(12.03%), BART(12.19%), NN(12.21%), RF(12.34%), NB(12.58%), Bagging(12.60%),

CART(12.69%), and finally LR(13.08%). The highest AUC is 0.9543 in AdaBoost,

followed by BART(0.9540), RF(0.9539), LR(0.9523), NN(0.9518), Bagging(0.9502),

NB(0.9486), CART(0.9449), and finally SVM(0.9180). I also compare the results with

the existing detection method, and find 8 out of 9 MLBDMs outperform the traditional

detection method.

To assess the availability of machine learning, I then modify test conditions by

changing the dataset or the set of heuristics. At first, I construct the dataset whose

phishing sites are collected in different time period. I used 1,500 URLs of modern

phishing sites reported on Phishtank.com during August, 2008 – November, 2008. As

a result, the highest f1 measure is 0.8721, the lowest error rate is 12.49%, the highest

AUC is 0.9454, all of which are observed in the case of AdaBoost. By comparing with

the traditional detection method, AdaBoost, Bagging, LR, RF, NN, NB, and BART-

based detection methods outperform the traditional method. I also let MLBDMs train

from the dataset contains phishing sites reported during November, 2007 – February,

2008, and test with that contains newly created phishing sites reported during Jan-

uary, 2009 – February, 2009. In this case, MLBDMs also outperforms the traditional

detection method. Second, I test the dataset which contains 1,500 URLs of phishing

sites but these are not verified. Actually, this dataset contains 1,277 phishing sites,

223 unknown sites, and 1,500 legitimate sites. In this test, these 223 unknown sites

are not verified as phishing sites, but are treat as phishing sites. The result can be

summarized that the highest f1 measure is 0.8581, the lowest error rate is 14.15%, the

highest AUC is 0.9342, all of which are observed in the case of AdaBoost. These 7

out 9 MLBDMs also perform better than the traditional detection method. Finally,

I change serious of heuristics by adding new heuristics. In another aspect, I check

if MLBDMs can incorporate newly developed heuristics. Otherwise my 2 heuristics

are not so accurately, MLBDMs can incorporate these heuristics into the existing 8

heuristics. I observe that the highest f1 and the lowest error rate are 0.8984 and

09.91% in the case of AdaBoost, respectively. I also observe that the highest AUC

is 0.9607 in the case of RF. By comparing the traditional detection method, 7 out 9

MLBDMs outperform. I also simulate the effectiveness of newly created heuristic by

disabling the TF-IDF-Final heuristic. I compare the performance with and without

using TF-IDF-Final heuristics, and the result shows that MLBDMs can incorporate

the TF-IDF-Final heuristic. Accordingly, I assume that machine learning is available
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for detection of phishing sites.

1.4 Utilization methods for MLBDMs

I also discuss the customizing method of MLBDMs for each user. Aside from phishing,

Denial-of-Service(DoS) attacks aim both network routers and hosts. There are several

defense systems against DoS attacks, and it is different between the system for network

routers and that for hosts. In the view of this, per-user customized system against

phishing might be necessary as long as phishers aim various people. I find if novices

can accept 25.49% of false positive errors, 95.00% of phishing sites would be blocked.

Similarly, if security experts could accept 20.49% of false negative errors, 95.00% sites

of legitimate sites would be browsed normally. I also make my preliminary algorithm

for deciding threshold, and confirm that changing threshold can customize various

strategies against phishing.

Next, I explain HumanBoost, which aims to cover the weak point of human-being by

using AdaBoost. The key idea of HumanBoost is employing users’ past trust decision as

a new heuristic. As my pilot study, I conduct subject within test by calling 10 subjects.

Subjects browse 14 emulated phishing sites and 6 legitimate sites, and check if the site

seems to be a phishing site or not. By using such types of subjects’ judgments as a new

heuristic, I let AdaBoost to incorporate the heuristic into existing 8 heuristics. The

results show that the average error rate in the case of HumanBoost was 9.5%, whereas

that of subjects was 19.0% and that in the case of AdaBoost was 20.0%.

1.5 HTTP Response Sanitizing

Based on the detection results from MLBDMs, phishing prevention system can inform

end users that they are just visiting phishing sites. Some systems indicate in some

portion of web browser and/or show alerting window by interrupting users’ browsing.

However, end users can ignore such types of warning. Unfortunately, reducing both

false negative error and false positive error is difficult even if MLBDMs perform better,

so there is still possibility that end users may distrust the system due to the false

alarms. Apart from warning, proposed countermeasures against phishing attacks are

categorized as compulsory blocking. Compulsory blocking can filter whole suspected
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web pages regardless of users’ intention or wrong behavior. However, a user may

complain when a legitimate site is blocked.

I find that such system is needed that can also reduce users’ inconvenience arising

from false positive errors. I propose a method for countermeasure against phishing,

which I named HTTP Response Sanitizing (HRS). Instead of blocking the entire web

content, HRS removes the HTML tags of web content which may generate input forms,

and pads with a warning message as a substitute for the removed input forms. In this

paper, I refer to this action of removing and padding as “sanitizing”.

After I decided the target of sanitizing described in Section 9.1, I implement several

HRS-capable web proxy servers. By using these implementations, I browsed 100 phish-

ing sites to check if all input forms can be removed. The result shows that all input

forms are removed; end users cannot input any information into the site whereas they

can browse the rest of content. Next, I measure the processing overhead by browsing

a web site which is 10K bytes HTML content and contains 13 tags to be sanitized. In

addition, this site was mimicked the login page of Morgan Stanley collected in July,

2005. The processing overhead for the phishing site was 3.59 millisecond. When I

change the file size from 10Kbytes to 100Kbytes, the processing overhead increase to

43.37 millisecond. However, I confirm that the performance of users’ browsing would

penalize when users visit phishing sites. Finally, I compare HRS among warning and

blocking. When browsing phishing sites, HRS can provide higher safety than warning,

and the provided safety of HRS is as same as that of blocking. When browsing legiti-

mate sites, HRS penalize users’ convenience, however, the loss of convenience would be

lower than compulsory blocking. Thus, I assume that HRS is useful countermeasure

against phishing attacks.

1.5.1 Development of MLBDM-capable systems

I explore a suitable way for development of MLBDM-capable phishing prevention sys-

tems. The features of the system are that the system requires a dataset, learns from

the dataset, detects with the detection algorithms constructed by machine learning

techniques, and takes countermeasure.

At first, I explain the stakeholders for detecting phishing sites by showing the users’

browsing. I assume that the stakeholders are web client developers such as browser

vendors, and trustworthy third parties placed in the Internet such as security service
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providers. Next, I also show the data flow in the system by drawing a flow diagram.

As a result, I find that there are pros and cons between a web client and an SSP when

learning and detection are performed. Finally, I introduce 3 forms of implementation,

named a security service provider (SSP)-side model, a client model, and a collaborative

model which learns in the SSP and detects in the web client.

I also find that forms of implementation should be selected after due consideration

of both the system resources and the set of the heuristics. The SSP-side model is

designed to reduce the client load by performing learning and detection in the SSP. The

client-model is also designed to facilitate the development of the per-user customized

systems such as HumanBoost by performing learning and detection in the web client.

Although there are pros and cons between these 2 models, the collaborative model is

designed to cover their disadvantages; in the collaborative model, the SSP performs

learning for reducing the client load, and the client performs detection for reducing the

number of queries sent toward the SSP.

1.6 Contributions

My ultimate goal is that all web users can avoid phishing attacks. Toward the goal,

there are various ways, but I approached by improving the accuracy for detection of

phishing sites.

This dissertation’s contribution can be summarized as follows:

• Confirmation of the availability of machine learning algorithms for detecting

phishing sites

I confirm that machine learning algorithms are available for detection of phish-

ing sites. I tested several machine learning algorithms, and checked if the per-

formance would be worse by modifying the test conditions such as organize of

dataset and that of heuristics. In almost all cases, MLBDMs perform better than

the existing detection methods.

• Improvement of the detection accuracy in heuristics-based solutions

There are 2 distinct methods, URL filtering and heuristics-based solution for

detecting phishing sites. However, URL filtering cannot deal with newly created

phishing sites, and heuristics-based solution often mistakes to identify the site,

so end users may distrust the detection results from heuristics-based solutions.
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If MLBDM are widely used, the detection accuracy would increase. Accordingly,

users can believe the detection results.

• Discussion of the availability of the MLBDMs in future

I need to continue this work, but I show that MLBDMs can outperform even if

I build another dataset which contains URLs of phishing sites reported in differ-

ent time period. It means that the effectiveness of employing machine learning

algorithms would not be temporal.

• Effectiveness of cleansing dataset

I test both (i) the dataset whose phishing sites are verified as phishing by reg-

istered users of Phishtank.com and (ii) the dataset whose phishing sites are not

verified. In the case of dataset (ii), I found 223 URLs sites, which are not veri-

fied, in 1,500 URLs which are reported during November, 2007 – February, 2008.

Be comparing the performance evaluation of (i) with that of (ii), I confirm that

cleansing dataset would improve the performance.

Toward the ultimate goal, I find open issues as follows:

• Revealing all phishing sites

In this dissertation, I employed limited numbers of URLs in web. To remove the

bias in my dataset, obtaining two or more anti-phishing databases are necessary.

Aside from using existing resources, discovering newly created phishing sites with

an MLBDMs-capable web-crawler would give a hint to researchers. To reveal

the spear phishing sites, such systems that can pretend novice users to receive

phishing emails. For doing so, I would attempt to forge fictional persona, and to

expose fake personal information along with the persona.

• Collaboration with other research fields

I would incorporate other countermeasures against phishing into MLBDMs. For

example, if an email is suspected a phishing email, the detection methods for

phishing sites should perform strictly. Constructing an interconnect architecture

with other countermeasures is my open issue.
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In research fields in cyber security, there are many contributions to characterize

botnet [10]. Detecting botnet is useful to detect phishing sites, as long as phish-

ing sites are often hosted in bot-installed PCs [24]. Bots have also function of

organizing DoS attacks, virus propagation, sending mails such as SPAM, virus

attached-emails, and phishing emails. In the view of this, I have already under-

taken to detect virus emails by using AdaBoost [25]. I would collaborate with

researchers of cyber security.

• Research of human factor

In the dissertation, I discuss the optimal threshold for each user, and explain

my preliminary algorithms. I confirm that changing threshold can provide the

different strategies for each user, but not confirm the reasonability of proposed

algorithm. I need to perform subject within test for test the effectiveness. I also

continue to investigate if users’ past trust decision is used as a new heuristic.

Per user customization against phishing sites is my open issue. Imagine if a

person has never use PayPal, he/she would not disclose secret to phishing sites

which mimicked PayPal. I assumed that the user would not complain when the

sites which seem to be PayPal are labeled as phishing. Such kind of information

gives a hint to detect phishing sites for protecting particular people.

• Research of phishing prevention systems

I develop 2 heuristics but the effectiveness of these heuristics are marginal. Even

so, I confirm that MLBDMs can incorporate new heuristics into existing 8 heuris-

tics. I assume that adding novel heuristics would straightly improve the detection

accuracy in the case of MLBDMs.

My proposed HRS must sacrifice users’ convenience, but the loss of convenience

would be lower than compulsory blocking. I need to determine an index for

measuring the convenience, and conducted a test. I also need to develop a noti-

fication method for HumanBoost, since it is difficult to reverse the users’ trust

decision.
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1.7 Organization

The rest of dissertation is organized as follows: In Chapter 2, I present my related work

and analyze the problem in Chapter 3. In Chapter 4, I introduce the machine learning

techniques, and explain heuristics that I use in my evaluation in Chapter 5. I describe

my preliminary evaluation in Chapter 6, and evaluate the performance by using 9

machine learning algorithms in Chapter 7. I introduce several utilization methods

MLBDMs in Chapter 8, propose a countermeasure against phishing, named HTTP

Response Sanitizing in Chapter 9, and discuss the development of MLBDM-capable

phishing prevention systems in Chapter 10. Finally I summarize my contributions in

Chapter 11.





Chapter 2

Related Work

In this chapter, I briefly explain the tricks of phishers at first, and then explain why

the victim fall into such kind of tricks. Next, I show the countermeasure of phish-

ing attacks, including education, user interface for end users, and detection methods

against phishing attacks. Finally, I show the online anti-phishing databases and their

trends of reported phishing sites.

2.1 Analysis of phishing

There are various research contributions to characterize phishing attacks. In this sec-

tion, I introduce these contributions aspect from the tricks of phishing attackers.

2.1.1 Rewriting URLs

According to Felten et al. [26], one of the phishers’ tricks is to rewrite all of the URLs on

some web page so that they point to the phishing sites rather than to some legitimate

websites. For example, http://www.attacker.org/http://home.netscape.com is a

URLs that points www.attackers.com, but end users would think that they are just

visiting home.netscape.com.

In another case, the phisher employ IP address instead of showing the domain name.

For example, if phisher copied the content of paypal.com, the legitimate enterprise,

into angelfire.com, the free web space, and also prepare the URLs like below.

http://204.238.155.37/biz2/headlines/topfin.html

17
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IP address “202.238.155.37” points the angelfire.com, but end users would not

be aware and misunderstand that this site as legitimate. Moreover, they show the

another case which abuse URL scheme a follows:

http://paypal.com:biz@3438189349/headlines/topfin.html

In this case, “paypal.com:biz” is not treat as a hostname, but as a username

and password, and “3438189349” is a hostname. This number is decimal number of

“202.238.155.37”, and so the URL points http://204.238.155.37/biz2/headlines/

topfin.html. Accordingly, end users browses this site no awareness of being just

visiting a phishing site.

Fette [27] also surveyed that some phishing emails have a link to pages by an IP-

address. Some phishing sites are hosted in compromised PCs. These machines may

not have DNS entries, and the simplest way to refer to them is by IP address although

legitimate enterprises rarely link to pages by an IP-address.

2.1.2 Confusing URL

A spoofed website is typically made to look like a well known site with a slightly differ-

ent or confusing URL. Phishers will register a similar or otherwise legitimate-sounding

domain name such as paypal.com or paypal-update.com are increasingly common.

The one of the modern phishing techniques is IDN Spoofing [28,29]. The phishing

site bq--abyoc6lq4bwa.com is evidently different from www.paypal.com, however, it

can be shown as a www.páypàl.com in users’ web browsers. Anthony et al. also

indicated [30] that the letter “a” in Cyrillic alphabet is quite similar to the letter “a”

in the alphabet.

Type Jacking directs users to a phishing site by making a typo when typing in the

URL for a domain. For example, the attacker will substitute the letter “L” in a URL

with the letter “K” which resides next to the “L” on the keyboard. If the end-user

were to mistakenly type the wrong letter in that exact location within the URL, they

will be taken to a fraudulent website.

2.1.3 Mimicking legitimate sites

Phishers also have tricks for generating their phishing sites for convincing victims.

According to [24], one of the most successful vectors for gaining control of customer

information and resources is through man-in-the-middle attacks. In this case, a phisher
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situates themselves between the customer and the real web-based application, and

proxies all communications between the systems. From this vantage point, the attacker

can observe and record all transactions. This form of attack is successful for both

HTTP and HTTPS communications. The customer connects to the phisher’s server as

if it was the real site, while the phisher server makes a simultaneous connection to the

real site. The phisher’s server then proxies all communications between the customer

and the real web-based application server, typically in real-time.

A popup-window can be used as a trick. This trick displays the real site in the

browser but puts a border less window from the phishing site on top to request user’s

personal information. Even though the user is at the legitimate web site, this popup will

claim to be a “Security Confirmation” box for the user to login to. Their credentials

are then harvested by the popup code and sent to the phisher. In addition, if the

victims use ancient web browser, a phisher can easier hide the address bar in the

popup-window, whereas the modern web browsers have a function for showing the

URL to users.

2.1.4 Targeting the particular person

Jakobsson et al. [14] explained the model of phishers’ activities. Basically, when phisher

aimed the particular person, phisher should know or guess the person’s information

such as banks. Then prepare the phishing sites to persuade victims to input their

personal information. Jakobsson also explained the distributed phishing attacks [9],

commonly known as spear phishing. The phisher works by a per-victim personalization

of the location of sites collecting credentials and a covert transmission of credentials to

a hidden coordination center run by the phisher. Jakobsson showed how distributed

phishing attack can be simply and efficiently implemented and how it can increase the

success rate of attacks while at the same time concealing the tracks of the phisher.

Kuo [31] alerted that phishers often aim children rather than parents. In back-

ground, children likely use SNS such as MySpace. MySpace is an SNS that is partic-

ularly popular with the under-21 age group. In the second half of 2006, there were

two major phishing attacks against MySpace users. In addition to MySpace-targeted

phishing scams, there has also been a dramatic increase in Trojans that target massive

multiplayer online (MMO) games, specifically World of Warcraft (WoW), the most

popular of the genre. To infect victims’ PC by such Trojans, phisher can steal the
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victims’ accounts and can gain the game money used in WoW.

2.1.5 Poisoning

DNS cache poisoning [32] may be used to disrupt normal traffic routing by injecting

false IP addresses for domain names. For example, the attacker poisons the DNS cache

of a victim’s DNS server, so that all traffic destined for the PayPal’s IP address now

resolves to the phisher’s server. Pharming is well-known techniques of phishing. In

pharming attack, phishers try to control end users’ node to modify its hosts file [33].

If pharmers, pharming attackers, succeeded to control a hosts file, then registered a

line like this: 204.238.155.37 paypal.com. By adding this line into the host file, the

PC would connect IP address 204.238.155.37 when end user browse paypal.com, rather

than obtaining legitimate IP address of paypal.com.

Search engine poisoning also directs victims to a website by showing up in early

in search engine results. This could be for commonly used terms, could be used in

combination with typo’s in search terms.

2.1.6 Social engineering

Social engineering is a significant problem involving technical and no technical ploys in

order to acquire information from unsuspecting users. Social engineering may involve

both psychological and technological ploys in order to leverage the trust of the target.

Karakasiliotis et al. [34] described the phisher can exploit characteristics of human

behavior in order to increase the chance of the user doing what is desired. Cialdini

introduced 6 weapons of influence [6], which is 6 tendencies of human behavior that may

influence compliance with a request, namely authority, scarcity, liking, reciprocation,

commitment and social proof.

Mosley [35] analyzed some psychological factors of successful phishing. The legacy

phishing emails said “Hey buddy - want to buy a Rolex ?”. This emails intended

to input victims’ personal information for pandering victims’ greed. People’ innate

resistance to being motivated by greed, such as, “Why is the cheap Rolex watch not

actually ticking ?”, prevented themselves for being deceived. However, recent phishing

emails said “Verify your existing data or be terminated” or “Please help us update our

record” or “Confirm your account credentials to protect from fraud”. The resistance

cannot come into play.
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2.2 Analysis of victims

The targets of phishing attacks are end users, so there have various contributions

to analyze end users and their activities. Fogg et al. [7] analyzed 2,684 people and

found that when people assessed a real web site’s credibility they did not use rigorous

criteria. 46.1 percent checked by design look of the site, 26.5 percent site’s design

and/or structure. Ye et al. [36] also stated that end users would convince by the

content of HTML and URL, regardless of checking SSL padlock icons.

According to Kumaraguru et al. [37], there are the difference in the model for

making trust decision between novices and experts. In comparison to experts, novices

tended to receive meaningless signals when they made trust decision. Novices also

ignored some signals such as SSL, address bar, and so on, where experts received these

signals.

Dhamija et al. [38] reported their subject within tests for identifying phishing sites.

They found that phishing caused of lack of knowledge. For example, subjects thought

www.ebay-members-security.com belongs to www.ebay.com due to the lack of system

knowledge. Also, many subjects did not understand security indicators. They did

not know that a closed padlock icon in the browser indicates that the page they are

viewing was delivered securely by SSL. Even if they understand the meaning of that

icon, users can be fooled by its placement within the body of a web page. They also

found that the best phishing websites fooled 90% of participants. The URL of the site

is “www.bankofthevvest.com”, with two “v”s instead of a “w” in the domain name.

Wu et al. also measured the effectiveness of security toolbars, which informs end

users that they are visiting phishing sites [39]. They tested 3 types of security toolbars,

namely, Neutral-information toolbar such as NetCraft Toolbar [40], SSL-Verification

toolbar such as TrustBar [41], System-Decision toolbar such as SpoofGuard [16]. Each

of the 3 security toolbars was tested with 10 subjects, and they browsed both phishing

sites and legitimate sites with one security toolbar, and they also classified the site

was phishing or not. Wu et al. concluded that all toolbars failed to prevent users from

being spoofed by high-quality phishing attacks. Users failed to continuously check the

browser’s security indicators, since maintaining security was not the user’s primary

goal. Although users sometimes noticed suspicious signs coming from the indicators,

they either did not know how to interpret the signs or they explained them away.

Aside from these reports, Jakobsson et al. [42] mentioned their pivotal observations:
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People look at URLs. In 2007, they conducted a test with 17 subjects and succeeded,

and observed that subjects looked carefully at URLs of web pages, and on the URLs

obtained by mouse-over in emails. Subjects were also good at detecting IP addresses

as being illegitimate, but were not highly suspicious of URLs that were well-formed,

such as www.chase-alerts.com. On the other hand, subjects were good at detecting

syntactically peculiar addresses such as www-chase.com.

Possible reasons for the difference among earlier research included the demograph-

ics of the subjects and substantial media coverage about phishing and identify theft in

the intervening 2 years. However, I found some biased in the subjects; all subjects were

college students and university staff and faculty. Even if Jakobsson et al. excluded

computer science students and staff/faculty with a computer science background, how-

ever, there were still bias.

2.3 Countermeasures against phishing

In this section, I show existing countermeasures against phishing. As I mentioned in

Chapter 1, there have many research contribution against phishing attacks. Especially,

I introduce education, human interface, and detection methods against phishing.

2.3.1 Education for end users

While the phishing problem is caused by person’s knowledge, education is one of the

straightforward ways to counter phishing. There were provided much number of ed-

ucational materials . For example, Merve et al. [13] proposed educational material

prevention techniques and a strategy on preparing to avoid phishing attacks. Their

educations included that “Visit web sites by typing the URL into your address bar”,

“Use spyware detection tools to detect any intrusion by spyware” and so on. Web-

based training materials, contextual training, and embedded training have all been

shown to improve users’ ability to avoid phishing attacks.

Despite claims by security and usability experts that user education about security

does not work [43], there are some evidence that well designed user security education

can be effective. Kumaraguru et al. proposed to employ a comic as an educational

material [44]. They were tested the educational effectiveness of 30 subjects with 3 types

of educational materials. There were 10 participants in each material; The group(i)



2.3. COUNTERMEASURES AGAINST PHISHING 23

received typical security notices, the group(ii) studied with a text and graphics, and

group(iii) studied the comics for identifying phishing sites. Their results suggested

that the current practice of sending out security notices(group(i)), was ineffective.

Their results also indicated that that their comic strip format(group(iii)) was the more

effective than the text and graphics(group(ii)).

Sheng et al. [45] found that the game is a novel educational material. The main

character of the game was Phil, a young fish living in the Interweb Bay. Phil wanted to

eat worms so he can grow up to be a big fish, but has to be careful of phishers that try

to trick him with fake worms (representing phishing attacks). Phil is rewarded with 100

points if he correctly accesses a legitimate site or correctly rejected a phishing site. He

was slightly penalized for rejecting a legitimate site by losing 10 seconds off the clock

for that round. He was severely penalized if he accessed a phishing site and was caught

by phishers, losing one of his 3 lives. They developed this scoring scheme to match

the real-world consequences of falling for phishing attacks, in that correctly identifying

real and fake web sites was the best outcome, a false positive was the second best,

and a false negative was the worst. They conducted the total correctness of subjects’

classification before and after the education. By using this game, the correctness was

increased from 69%, before the education, to 87%. In the case of using existing training

materials, the correctness was increased from 66% to 74%.

Anandpara et al. [46] gave me another point of view: They mentioned that phishing

IQ tests fail to measure susceptibility to phishing attacks. They conducted a study

where 40 subjects were asked to answer a selection of questions from existing phishing

IQ tests in which I varied the portion (from 25% to 100%) of the questions that

corresponded to phishing emails. Their tests had 3 distinct stages. (i) They performed

a first phishing IQ test, then performed (ii) phishing education for subjects, and finally

they performed (iii) a second phishing IQ tests, and analysis. They did not found any

correlation between the actual number of phishing emails and the number of emails

that the subjects indicated was phishing. The number of times that subjects labeled

a stimulus as phishing increased from the first to the second test for most subjects.

Accordingly, they thought that the tests did not measure the ability of the subjects.

Ideally, to avoid the phishing, every user should distinguish between phishing sites

and legitimate sites by themselves, and should pay attention to phishing attacks while

browsing web sites. In the view of this, education is the remedy, however, the effective-

ness of education was limited to the small number of users; there can be much number
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of users who were not educated. Moreover, in real life, security is rarely user’s primary

goal [47]. The user is primarily concerned with other tasks, such as reading mail,

buying a book, or editing a document. Avoiding disclosure of passwords or personal

information may be important, but it isn’t foremost in the user’s mind.

2.3.2 Interfaces for end users

Another approach is to develop human and/or user interfaces for users to identify the

site correctly. Due to the smallness of the padlock icon in the current web browser,

users receive weak signal for SSL. There are some approaches to reinforce the signal.

For example, Herzberg et al. developed TrustBar [41] for indicating the information of

the site. If a user installs the TrustBar, user’s web browser shows the information in

the browser area. Aside from a small padlock icon, this area is highly visible. However,

such toolbars often alerted when end users browsed the legitimate sites which were not

used SSL, so subjects thought the notice of the toolbar can be ignored [39]. Extended

Validation SSL(EV SSL) certificates also present information prominently to users. If

a site used EV SSL certificates, the background of the address bar in users’ browser

turned from white to green; it can be useful to notice that users are visiting legitimate

enterprises.

To protect personal information such as a password, Kinda et al. [48] proposed to

new user interface which extends users’ web browser. This extension can register the

password of the site that users once inputted into the site. If the user inputted the same

letters of the registered password into another site, then the extension informed users

to that the site just users inputting the password was different from the site users once

registered the password. Ross et al. [49] created a browser plug-in called PwdHash.

This application hashes the password entered by a user with the domain name of the

site to which the password is being transmitted. However, many web users have habit

to share one password for roughly 6 different sites [50]. Even if users installed these

extensions, they would have a habit to ignore the alert from these extensions. It cannot

be useful to protect users who have habit of ignoring alert. In addition, PwdHash does

not defend against pharming.

Some types of multi-factor authentication reinforced the existing authentication

scheme. For example, America Online’s Passcode program was proposed as a phishing

defense [51]. This program distributes RSA SecureID devices to AOL members. The
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device generates and displays a unique 6 digit numeric code every 60 seconds, which

can be used as a secondary password during login to the AOL website. This scheme

reduces the value of collecting passwords for attackers because the passwords can not

be used for another transaction.

Probi et al. [52] proposed to employ PIN/TAN-approach with a paper-based challenge-

response-technique. It differed from PIN/TAN in the way that the user gets a list with

challenge-response-pairs instead of a list with TANs. Before completing a transaction

a challenge was presented to the user who must enter the corresponding response. If

the response was incorrect the transaction was not carried out.

In Passmark and Verified by Visa [53,54], a user provides the server with a shared

secret such as and image and/or pass phrase, in addition to his regular password. The

server presents the user with this shared secret, and the user is asked to recognize

it before providing the server with his password. In the Passmark scheme, the bank

server places a secure cookie on user machine, which must be presented at login. This

prevents a classic man-in-the middle (MITM) attack where an attacker interposes

himself between the client and the bank.

Ye et al. proposed Synchronized Random Dynamic(SRD) boundaries to make

trusted path for users’ browser [55]. This scheme uses a random number generator to

set a bit that determines whether the browser border is inset or outset. The browser

border alternates between inset and outset at a certain frequency in concert with a

reference window. Within this scheme, phishers who did not know the random number

could not provide content that changed at the right time.

In YURL solution [56], user’s browser maintains a mapping of public key hash to

pet name. When the user visits a page identified by YURL, the browser displays the

pet name the user previously associated with the public key hash contained in YURL.

If no such association exists, the browser allows the user to create one. After a site

transition, the user verifies that the expected pet name is displayed. The absence of a

pet name indicates the absence of a trust relationship between the user and the site.

Dhamija et al. [57] verified the authentication and anti-phishing schemes their 5

requirements. The scheme should be easy for a particular class of computers to pass,

and it also should be hard for other computers to pass. A scheme can meet if a specified

server can reliably authenticate itself to the user without extraordinary resources and

if it is difficult for illegitimate computers to masquerade as the legitimate server, even

after observing a number of successful authentications. Moreover, the scheme should
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Table 2.1: Analysis of authentication and anti-phishing schemes using HIP criteria

Easy for Hard for Easy for

specific other humans to Protocol Tools

Scheme computer ? computers? verify ? available ? required

SSL Yes No No Yes modified browser

Trustbar Yes No No Yes modified browser

PGP Yes Yes No Yes PGP client/plug-in

3rd Party Seals Yes No No No No

AOL Passcode Yes No No No SecureID device

SMS Passwords Yes No No No cell phone SMS

Passmark Yes No No No secure cookie

SRD Yes Yes No Yes modified browser

YURL Yes No No Yes modified browser

DSS Yes Yes Yes Yes modified browser

produce results that are easy for a human to verify, it should employ a protocol that is

publicly available, and it should not require the user to have specialized tools. The re-

sults can be summarized in Table 2.1. In short, they stated that no tools were suitable.

Thus, they [58] proposed Dynamic Security Skin(DSS) to meet all requirements.

The DSS scheme allows the remote server to generate a unique abstract image

for each user and each transaction. This image creates a “skin” that automatically

customizes the browser window or the user interface elements in the content of a remote

web page. Their extension also allowed the user’s browser to independently compute

the image that it expected to receive from the server. To authenticate content from

the server, the user can visually verify that the images match.

Aside from the web server authentication, the client authentication also studied. Fu

et al. [59] provided a description of the limitations, requirements, and security models

specific to a web client authentication. They presented a set of hints on how to design

a secure client authentication scheme, based on experience gained from our informal

survey of commercial schemes.

Using client-side SSL is generally considered the most secure option for web authen-
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tication. In the SSL specification, a server can also request client-side authentication,

where the client also presents an X.509 certificate and proves knowledge of the corre-

sponding private key. Using client-side SSL, servers can identify users with her SSL

public key and authenticate them using the SSL protocol. However, several contribu-

tions have shown there were significant usability problems with client-side SSL [60–62].

To use client-side SSL, users must import a certificate and corresponding key pair into

their browser. Legitimate sites may provide users these certificates or users may be

required to obtain their own certificate signed by a certificate authority. Regardless,

studies have shown that obtaining and installing a certificate and key pair is a cum-

bersome and confusing process for users, and when users make mistakes, they are hard

to correct.

A cookie is also used to web authentication, but they are vulnerable to pharm-

ing. Pharmers create an environment where users’ browser directed to the web server

legitimately associated with a particular domain instead connects to a spoofed site.

Pharmers can then harvest the cookies associated with the attacked domain. Cached

cookies [63] and Locked cookies [64] were designed to prevent pharmers from harvesting

cookies.

Oiwa et al. proposed [65] mutual HTTP authentication. They explained that both

users and servers must be authenticated to detect phishing, so employed Password

Authenticated Key Exchange for web authentication. This method also provides the

trusted area to input a pairs of username and password, instead of using web input

forms. If they could instill the method in all web users, the threat of phishing would be

thwarted. For doing so, they implemented extension modules for Apache and Firefox

to deploy this method in both web servers and web clients.

2.3.3 Detection of Phishing Attacks

There have been various anti-phishing extensions for web browsers. The CallingID

Toolbar [66] performs 54 different verification tests in order to determine the legitimacy

of a given site. The Cloudmark Anti-Fraud Toolbar [67] relies on user ratings. When

visiting a site, users have the option of reporting the site as good or bad. The EarthLink

Toolbar [68] are based on users’ report for suspected phishing sites to EarthLink. The

eBay Toolbar uses a combination of heuristics and blacklists. When the user visits

a site known to be operated by eBay or PayPal, the eBay Toolbar indicates that the
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sites are safety. GeoTrust’s TrustWatch [69] works with several third parties’ reputation

services and certificate authorities to verify sites as trusted. The Netcraft Anti-Phishing

Toolbar [40] uses legitimacy of a web site. The Netcraft web site explains that the

toolbar “traps suspicious URLs containing characters which have no common purpose

other than to deceive,” “enforces display of browser navigation controls (tool & address

bar) in all windows, to defend against popup windows which attempt to hide the

navigational controls,” and “clearly displays sites’ hosting location, including country

helping you to evaluate fraudulent URLs”. The Netcraft toolbar also uses a blacklist,

which consists of fraudulent sites identified by Netcraft as well as sites submitted by

users and verified by the company. SpoofGuard [16] is different from other toolbars;

it does not employ blacklist. The toolbar is a heuristics-based solution, that is, checks

a site with a set of heuristics to identify phishing pages. To detect phishing attacks,

SpoofGuard uses 3 groups of tests: stateless methods which evaluate a downloaded

page, stateful methods that evaluate a page with respect to user activity, and post

data from the page. Based off of how the page scores with these methods, the total

spoof score is calculated as a standard aggregation function, summing products of pairs,

triples and larger subsets as well as individual test results, because certain combinations

of attributes make a page drastically more suspicious. SpoofGuard applies these tests

to all downloaded pages and combines the results from heuristics using.

Aside from anti-phishing extensions, the modern web browser such as Microsoft

Internet Explorer 7, Firefox 2.0, Netscape 8.1 or later have the function of distinguish-

ing phishing sites from others. These browsers usually employ blacklist, also accepts

users’ report if the users deems the website as phishing. These web browser vendors

verified the users’ report and add them into their blacklist.

Zhang et al. [15] evaluated the detection accuracy of such kind of anti-phishing

tools. The result can be summarized in Table 2.2, where NA denoted that they did

not check the sites with the specified tool. The number denoted the successful rate

of identifying phishing sites. When a phishing site was reported, and they checked

the phishing site with these anti-phishing tools before 1 hour past. They tested 100

phishing URLs reported on Phishtank [18] in November 4-5, 2006 and same number

of phishing URLs reported on APWG in November 21 and 27, 2006. The results

indicated almost anti-phishing tools depend on blacklist is not successful to identify

phishing sites. The successful rate of SpoofGuard was higher than other tools, however,

Zhang et al. explained that SpoofGuard incorrectly classify legitimate sites as phishing.
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Table 2.2: Number of phishing sites correctly identified by anti-phishing tools

reported on reported on

Phishtank.com APWG

CallingID NA 23%

Cloudmark 68% 22%

EarthLink 83% 54%

eBay 28% 52%

IE7 68% 75%

Firefox NA 28%

Firefox/Google 70% 53%

Netcraft 77% 60%

Netscape 8% 31%

SpoofGuard 91% 96%

TrustWatch 49% 44%

They prepared a list of 516 legitimate URLs to test false positives, and they observed

that 42% of legitimate sites was classified as phishing in the case of SpoofGuard.

To improve the detection accuracy in the case of heuristics-based solution, Zhang

et al. contributed to propose a novel heuristic, named TF-IDF-Final heuristic. I

explain these heuristics that they use in Chapter 5. They incorporated TF-IDF-Final

heuristic to existing heuristics drawing primarily from SpoofGuard and PILFER [27],

and implemented anti-phishing tools, named CANTINA [19]. In CANTINA, each

heuristic returns 1 binomial variable. Based on the result of each heuristic, CANTINA

calculates the likelihood of being a phishing site (L) by weighted majority as shown

in Equation 2.1. They then classified the site by comparing L with the discrimination

threshold.

L =
∑

Wi ∗ hi (2.1)

Zhang et al. mentioned that a heuristic should have high accuracy in detecting

phishing sites while also having a low false positive rate. Accordingly, they assigned

weight by calculating the true positive rate minus the false positive rate. Given the
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effect ei of each heuristic, they calculated each weight proportionally, that is:

Wi =
ei∑
ei

(2.2)

They let all heuristics to classify if the site deems a phishing or not by using training

dataset, which composed of 100 phishing sites reported on Phishtank from November

15-16, 2006, and the same number of legitimate sites. They then assigned weights

for each heuristics and tested another 100 phishing sites reported on Phishtank from

November 17-18, 2006, and the same number of legitimate sites. The result showed

that the true positive rate of CANTINA is 89% and the false positive rate is only

1%. CANTINA did not use blacklist or whitelist, however, it could achieve the higher

accuracy in comparison to other anti-phishing tools.

To improve the detection accuracy, some researchers proposed to employ machine

learning algorithms. Machine learning can facilitate the development of algorithms or

techniques by enabling computer systems to learn. Aside from phishing sites, machine

learning has already been used to filter phishing emails. PFILTER, which was pro-

posed by Fette et al. [27], employed SVM to distinguish phishing emails from other

emails. According to [70], Abu-Nimeh et al. compared the predictive accuracy of

several machine learning methods including LR, CART, RF, NB, SVM, and BART.

They analyzed 1,117 phishing emails and 1,718 legitimate emails with 43 features for

distinguishing phishing emails. Their research showed that the lowest error rate was

7.72% in the case of Random Forests. Basnet et al. [71] performed an evaluation of

6 different machine learning-based detection methods. They analyzed 973 phishing

emails and 3,027 legitimate emails with 12 features, and showed that the lowest error

rate was 2.01%. Nevertheless the experimental conditions were different between [70]

and [71], the machine learning provided high accuracy for the detection of phishing

emails.

A machine learning method was also used to detect phishing sites. According

to [72], Pan et al. presented an SVM-based page classifier for detection of phishing

sites. They analyzed 279 phishing sites and 100 legitimate sites with 8 features, and

the results showed that the average error rate was 16%.
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2.4 Online anti-phishing databases

The biggest two online anti-phishing databases are Anti-Phishing Working Group

(APWG) [73] and Phishtank [18]. APWG has more than 3000 members from more

than 1700 companies and agencies worldwide. Member companies include leading secu-

rity companies such as Symantec, McAfee and VeriSign. Financial Industry members

include the ING Group, VISA, MasterCard and the American Bankers Association.

APWG on offers the possibility to submit emails which are considered phishing emails.

Phishtank.com is operated by OpenDNS [74], who provides a DNS resolution service

for consumers and businesses as an alternative to using their Internet service provider’s

DNS servers. Actually, Phishtank offers free submission of suspect URLs considered to

be phishing sites. The submission is limited to registered users of Phishtank.com, but

anyone can register on it. Due to the free submission to Phishtank.com, some sites are

reported phishing sites but they are not. To improve the reliability of anti-phishing

database, the reported URLs are validated by registered users of Phishtank.com. They

discuss whether the reported sites are really phishing or not.

Phishtank’s statistics about phishing activity can be shown in http://www.phishtank.

com/stats.php, and Figure 2.1 summarizes the data during January, 2008 – Decem-

ber, 2008. It shows that the number of the reported phishing sites reported in 2008,

where x axis denotes month and y axis denotes the number of the sites. The nor-

mal line denotes the number of reported phishing sites, the dotted line denotes the

number of the site which were verified as phishing sites, and the bold line denotes

the number of that were not verified as phishing sites. 73.81% of the reported sites

were verified as phishing sites, and 4.65% of the sites were not. Other sites were un-

known. I assumed the reason is that these sites were expired before registered users

attempt to check. In addition, median time to verify the site is 11.0 hours. The reports

also showed that 46.87% of verified 158,056 phishing sites were look-alike PayPal, fol-

lowed by JPMorgan(16.15%), eBay(11.54%), Bank of America(4.59%), HSBC(1.54%),

Internal Revenue Service(1.03%), and other sites. It was United States which hosts

the most numbers of phishing sites (39.63%), followed by United Kingdom(7.38%),

Germany(5.63%), Russia(5.38%), South Korea(3.75%), China(3.63%), and so on.

APWG also published the trend reports of phishing. The latest APWG report [3]

presented that the number of the reported phishing sites was 24,908 in March, 2008.

99.48% of the reported sites used HTTP port 80, and 4% of the sites’ URL used IP
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Figure 2.1: The number of the reported phishing sites, verified as phishing sites, and

verified as not phishing sites

address instead of using FQDN. 92.9% phishing sites mimicked financial services.



Chapter 3

Problem Analysis

In this chapter, I illustrate phishing attacks aspect from the activities of the phishers.

There are various stakeholders and their countermeasure. Based on my examination

of these countermeasures, I present the issues on the current countermeasures against

phishing attacks.

3.1 Approaches to counter phishing

Table 3.1 shows the activities of both phishers and stakeholders, who can thwart the

criminal activities. First, phishers would attempt email harvesting [75], that is, the

collection of valid e-mail addresses through automated web-crawlers, called spambots.

Spambots scan web pages, mailing lists or chat rooms looking for the @ symbol. In

order to avoid harvesting, address-munging (i.e. inserting random text such that spam-

bots cannot recognize email address while humans can) or the use of “at” instead of @

is recommended. Andreolini et al. proposed HoneySpam [76], which can send endless

web content against harvesting to slowdown of its process, and can return invalid email

addresses for poisoning of phishers’ email databases. Moreover, phishers also investi-

gate the particular people’s information whenever they try to perform spear phishing.

Web users should not expose their e-mail addresses, main banks, credit card companies

and so on.

Second, phishers setup their phishing sites. In some cases, phishers penetrate web

servers and setup phishing sites in penetrated web server. Unfortunately, there are

various bugs in web applications, web application frameworks, and/or programming
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Table 3.1: Stakeholders on phishing
Activities of Phishers Counter to Phishers Stakeholder

Target Victims Do not expose email addresses on web sites Web users

Set a trap against harvesting Security service provider

Setup phishing sites Prevent penetration Web server administrator

Fix vulnerability Web sites developer

Detect uploading phishing sites Web hosting service provider

Prohibit to register confusing domain DNS registrar

Hinder to setup phishing sites Legitimate enterprise

look alike official sites.

Send phishing emails Do not click links in emails Email recipient

(attraction) Reject illegitimate sender Email service provider

Provide a way to validate emails Legitimate enterprise

Filter phishing emails MUA developer

Let victims to browse Check if a site is a phishing site Web users

phishing sites Provide a way to validate websites Legitimate enterprise

(acquisition) Use stronger authentication Legitimate enterprise

Detect phishing sites Security service provider

Detect phishing sites Web client developer

Abuse stolen information Expire stolen information Legitimate enterprise

Stop and/or Detect abusing Legal Enforcement

languages for web applications. The web sites developers should fix such vulnerabilities

and server administrator should apply bug fixes to thwart penetration. In other cases,

phishers abuse the web hosting service providers. There are free web space which

anyone can setup their own web sites; of course, phishers can setup their phishing

sites. Web hosting service providers should verify if an uploaded web site is phishing

sites or not. Phishers also can prepare phishing sites in boot PCs, and assign the

confusing FQDN. According to actual criminal act, the URL “www.paypaI.com” is

used to deceive users of Papal, www.paypal.com. DNS registrar should not accept

such types of applications. Legitimate enterprises also should show the symbols which

indicate that the sites are legitimate. As I mentioned in Section 2.3.2, these interfaces

are designed for being aware of that they are visiting legitimate sites. While these

symbols are uneasy to copy, phishing sites cannot have visual appearance as same as

that of legitimate enterprises. For example, if all legitimate enterprises’ web sites could

install an EV-SSL certificate, users would identify the sites by checking whether the

background of the address bar in users’ browser is green or not.

Third, phishers sends phishing emails to attract targets. The recipients of phishing

emails should check the email is trustworthy or not. If not, they should not click

any links in the emails. If email server authenticates an email sender and rejects if
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the sender is not authorized, then phishing emails would not deliberated to targets as

long as phishers are authorized by email servers. For doing so, some methods such

as Outbound Port 25 Blocking [77], Selective SMTP Rejection [78] are widely used

in Japan. As I mentioned in Section 2.3.3, phishing email filtering schemes in MUA

would also useful to eliminate phishing emails. Legitimate enterprises should provide

a way for users to validate that the email is legitimate; the consumer should be able to

identify that the email is from the institution, not a phisher. To do that, the sending

institution must establish a policy for embedding authentication information into every

email that it sends to consumers.

Fourth, phishers induce victims to click the link in phishing emails. Web users

should check if the site is legitimate or not by checking information from their web

browsers. Legitimate enterprises should construct their websites for users to validate

that the website is legitimate. If the websites does not ask consumers for sensitive

information when logging into the sites, it would be more difficult for phishers to

obtain such information. Modern web browsers, web proxy servers and web application

firewalls can check if the URL of the sites is registered in the blacklist or not. If these

types of web proxy servers work as transparent network proxy servers, phishing sites

are not able to browse as long as the URL of the sites is listed on the blacklist. Aside

from URL filtering, heuristics-based solutions analyze the web content that are sent

from web servers where host phishing sites.

Finally, phishers obtain users’ secret such as passwords, credit card numbers, and

so on. However, there are still chances for reducing the damage suffered from phishing.

Florencio et al. [79] proposed to monitor that the stolen information was used from

other PCs. Birk et al. presented a scheme for tracing phishers’ cyber crime [8]. They

contributed to model the phishers’ activity such as money laundering, all of them are

performed after they stolen the money by abusing the stolen password. Similar to the

entrapment in police, these schemes can help arresting phishers. In order to prevent or

report money laundering activities, the financial and legal industries published anti-

money laundering softwares [80] to catch up the large cash transaction.

3.2 Issues on current approaches against phishing

My ultimate goal is that all web users can avoid phishing attacks. Due to the difficul-

ties of phishing attacks, I divide phishing attacks into 5 distinct phases to clarify in
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Figure 3.1: The ultimate goal and the goal of the dissertation

Section 3.1 and summarize in Figure 3.1.

Toward this goal, I present issues on each phase.

• Issues on the first phase

Countermeasure against email harvesting would not help people whose email

addresses have been already registered by phishers databases. Such people are

required to change their email addresses. Announcing new email address is gen-

erally intractable problem.

• Issues on the second phase

It is uneasy to prohibit phishers to setup phishing sites as long as there are

vulnerable PCs or web applications in the cyber space. Detecting and isolating

botnet and/or fixing security holes in vulnerable programs are necessary.

• Issues on the third phase

Phishers can still create domains that appear to be real and register SPF records

for those domains. Some validation methods for emails provides some protection,

but only if the recipient checks the validity. Filtering phishing emails is useful,

however, other sources such as Instant Messaging, facebook and social network

services are used to attract to phishing sites instead of phishing emails [81, 82].

According to their scenario, a victim responds to an instant message from some-

one posing as a legitimate enterprise. The fraudsters persuade victims to visit
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their sites.

• Issues on the five phase

In the case of the countermeasures against abusing stolen information, there are

some barriers such as privacy issues on tracing users’ secrets and/or authority for

tracing across the country. In another aspect, the cache flow caused by phish-

ing are estimated much less than anti-money laundering softwares. Gartner’s

reported that 3.6 million consumers lost 3 billion dollars [2] in 2007; According

to Asao [83], the target of money laundering in AML is large cash transaction,

usually 10,000 dollars whereas each victim roughly lost 833 dollars.

In this dissertation, I attempt to solve issues in the fourth phase, that is, preventing

victims for entering personal information into phishing sites. The typical approaches

are education, developing authenticate and/or user interfaces, and detecting phishing

sites.

The effectiveness of education is limited to the small number of users, whereas

the number of Internet users is dramatically increasing. Ideally, to avoid browsing

phishing sites, every user should distinguish between phishing sites and legitimate

sites by themselves, and should pay attention to phishing attacks while browsing web

sites. However, considering the growth rate of phishing attacks, many novice users are

likely to disclose their personal information into phishing sites.

Developing authentication and/or user interfaces requires long-term effort. In the

case of an EV-SSL certificate, there are few servers which have been employed an

EV-SSL certificate; there can be numerous servers which were not installed. Develop-

ing authentication and/or user interfaces would also take a long time for web users to

instill that the turning green in address bar indicates the site is legitimate. In other as-

pects, developing interfaces indiscriminately would result in users’ confusion. Interface

developers also have to standardize their interfaces even if it takes a long time.

I hereby focus on detecting phishing sites. Because phishing is a growing problem,

I cannot adhere the long-term solution such as education and/or developing interfaces.

Aside from these methods, detecting phishing sites has an immediate effect. If a detec-

tion method could distinguish phishing sites from other sites accurately, my ultimate

goal would achieve immediately.

As I mentioned in Section 1.2, URL filtering methods have a problem that reg-

istering the URLs of the sites into URL databases is tedious work. URL filtering
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methods also cannot deal with unreported phishing sites, e.g., spear phishing sites.

Heuristics-based detection methods have a possibility to identify these sites, whereas

the detection accuracy is far from sufficient.

Imagine if the heuristics-based solutions can achieve higher detection accuracy.

Every phishing sites can be detected even if the sites were not reported. I will imple-

ment the function of heuristics-based solutions into web-crawler to discover unreported

phishing sites. In addition, web hosting service providers can also detect that phishers

construct phishing sites.

My goal of this dissertation is detecting phishing sites accurately, as shown in

Figure 3.1. I find that there are two approaches. One is discovering innovative heuris-

tics. There are various studies [11–14] which discovered heuristics. However, Spoof-

Guard [16], one of heuristics-based solutions incorrectly identified 42% of legitimate

sites as phishing whereas it could identify more than 90% of phishing sites correctly [15].

The other is refining the calculation algorithm of the likelihood are important. I hy-

pothesize that the inaccuracy is caused by heuristics-based solutions that can not use

these heuristics appropriately.

My approach is employing machine learning techniques for detection of phishing

sites. In order to calculate the likelihood of being a phishing site, I assume that

machine learning facilitates the development of algorithms or techniques by enabling

computer systems to learn. I find that there are two problems in earlier research

for detection of phishing sites with machine learning. One is that the number of

features for detecting phishing sites is lesser than that for detecting phishing emails.

It indicates that the detection of phishing sites is much difficult than that of phishing

emails. Studies on discovering innovative heuristics should be continued. The other is

that no research contribution confirmed whether any kind of machine learning based

detection methods were available to distinguish phishing sites from legitimate sites. To

the best of my knowledge, earlier research tested only one machine learning technique.

In this dissertation, I check if AdaBoost, the most typical one of the machine learning,

can be applied to detect phishing sites in Chapter 6, and then evaluate 9 machine

learning-based detection methods and show their performance in Chapter 7.



Chapter 4

Overview of Machine Learning

Techniques

In this chapter, I briefly explain each machine learning technique which is used in my

evaluation.

4.1 AdaBoost

Adaptive Boosting (AdaBoost) [84,85] algorithm learns a “strong” algorithm by com-

bining a set of “weak” algorithms ht and a set of weight αt:

HAda =
∑

αt ∗ ht (4.1)

The weights are learned through supervised training off-line [86]. Formally, Ad-

aBoost uses a set of input data {xi, yi : i = 1, . . . ,m} where xi is the input and yi is

the classification.

Each weak algorithm is only required to make the correct detections slightly over

half the time. The AdaBoost algorithm iterates the calculation of a set of weight Dt(i)

on the samples. At t = 1, the samples are equally weighted so D1(i) = 1/m.

The update rule consists of 3 stages. First, AdaBoost chooses the weight as shown

in Equation 4.2.

αt =
1

2
ln

(
1− εt
εt

)
(4.2)

where εt = Pri∼Dt [ht(xi) 6= yi]. Second, AdaBoost updates the weight by Equation 4.3.

39



40 CHAPTER 4. OVERVIEW OF MACHINE LEARNING TECHNIQUES

Dt+1 =
Dt(i)

Zt
×
{
e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi
(4.3)

where Zt is a normalization factor,
∑m

i=iDt+1(i) = 1.

4.2 Bagging

Bootstrap Aggregation (Bagging) [87] is a typical ensemble learning method, and its

key feature is that dataset is perturbed by resampling with replacement. Given n

samples in dataset, bagging selects m (m <n) samples for training and constructs a

classifier h. Taking B iterations, it outputs the final classifier by majority vote of

h1, h2, . . . hB as shown in Equation 4.4.

fbagging = argmaxy

B∑
i=1

(hi = y) (4.4)

4.3 Support Vector Machines

Support Vector Machines (SVM) [21] is also one of the typical machine learning meth-

ods for classification and regression. The key idea of SVM is to map data from the

input space into a higher dimensional feature space, and to find the optimal separating

hyperplane between 2 classes by maximizing the margin between the classes’ closest

points.

A discriminating hyperplane will satisfy Equation 4.5.

w′xi + w0 ≥ 0 if ti = +1

w′xi + w0 < 0 if ti = −1
(4.5)

where the distance of any point x to a hyperplane is |w′xi + w0|/||w|| and the

distance to the origin is |w0|/||w||.

4.4 Logistic Regression

Logistic Regression (LR) [88] is a model used for binary data prediction. LR is designed

to deal with confounding variables, and its model typically uses the logit function as
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shown in Equation 4.6.

log
p(x)

1− p(x)
= β0 +

∑
βixi (4.6)

where x is a vector of predictors and β is a vector of regression parameters.

4.5 Classification and Regression Trees

Classification and Regression Trees (CART) [89] is a typical decision tree algorithm.

The modeling and prediction within the CART analysis is accomplished through a

recursive binary partitioning of a training dataset. The term “binary partitioning”

implies that the parent nodes are always split into two child nodes and “recursive”

means that the process is repeated by treating each child node as a parent node.

This process is repeated until further partitioning is impossible or is limited by some

criterion set by the user. When a node data cannot be split into additional child

nodes, it is called a terminal node. Once the first terminal node has been created, the

algorithm repeats the procedure for each set of data until all data are categorized as

terminal nodes.

CART requires a measure of node impurity and generally employs Gini Index as an

impurity function. In a node t, the Gini Index criterion assigns a sample to a class ci

with the probability p(ci|t). The estimated probability of misclassification under this

rule is as shown in Equation 4.7.

Gini Index = 1−
∑

(p(ci|t))2 (4.7)

4.6 Random Forest

Random Forest (RF) [90] is a classifier that consists of many decision trees and outputs

the class that is the mode of the classes output by individual trees. In building each

decision tree model based on a different random subset of the training dataset, a

random subset of the available variables is used to choose how best to partition the

dataset at each node. Each decision tree is built to its maximum size, with no pruning

performed.

The basic idea is similar to Bagging. The main difference between Bagging and

RF is that RF uses a random subset of the available variables whereas Bagging uses
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all available variables. So, RF is suitable for handling a very large number of input

variables.

4.7 Neural Network

Neural Network (NN) is a non-linear and parallel computation model which is referred

to a network of biological neurons. NN has overwhelming strengths in learning ability,

auto-adapting ability, generalization performance and anti-noise ability. However, it

may be easily influenced by model parameters and varieties of training data, so it has

drawbacks of instability and low predicting precision.

The neurons are organized into 3 types of layers. The input layer presents the

feature vector of input variables. The next layer is called a hidden layer; NN assumes

that there may be several hidden layers. The final layer is the output layer, where

there is one node for classification. Since interconnections do not loop back or skip

other neurons, the network is called feedforward.

4.8 Naive Bayes classifier

The Naive Bayes (NB) classifier is a simple but effective classifier that has been used in

numerous applications such as email filtering. Generally, NB’s computational time is

less than the non-naive Bayes approach because NB is based on Bayes’ theorem with the

independent feature model. The model of prediction was formulated in Equation 4.8.

fnb = argmaxyP (y)Π(xi|y) (4.8)

4.9 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) [91, 92] is designed for discovering un-

known function f that predicts an output Y using a p dimensional vector of inputs x.

The basic idea of BART is to model by a sum of regression trees,

f(x) =
∑

g(x) (4.9)
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where function g denotes a binary regression tree. Replacing f in Equation 4.9 by

modeling or approximating f(x), BART obtains Equation 4.10 where ε is the random

error.

Y =
∑

g(x) + ε, ε ∼ N(0, σ2). (4.10)

Conceptually, BART can be viewed as a Bayesian nonparametric approach which

fits a parameter rich model using a strongly influential prior distribution. BART does

not require variable selection, which is performed automatically as the trees are built.

In addition, in order to fit the sum-of-trees model, BART uses a tailored version of

Bayesian backfitting Markov Chain Monte Carlo simulation that iteratively constructs

and fits successive residuals.





Chapter 5

Heuristics

In this chapter, I explain heuristics that I used for performance evaluation. These 8

heuristics were also employed in CANTINA [19].

5.1 Age of Domain

The Age of Domain heuristic checks if the domain was registered more than 12 months

ago. If the site has been registered more than 12 months, the heuristic deems it a

legitimate site, and otherwise it deems it a phishing site.

The weak point of this heuristic was that newly created legitimate sites are not

registered in 1 year. In this case, the heuristic would fail. Another weak point is

that there are many phishing sites registered on 1 year ago. Especially, the modern

phishing sites are often discovered on the host which owned by legitimate enterprises.

Some vulnerability in the host allowed phisher to penetrate into and to setup a phishing

sites. In this case, the domain name was often registered in long time ago, thus, the

heuristic fails to classify correctly.

5.2 Known Images

The Known Images heuristic checks if a page contains inconsistent well-known logos

such as eBay, PayPal, and so on. For example, if a site contains the eBay logos but is

not on an eBay domain, the heuristic deems this site a phishing site.

In this heuristic, some legitimate sites are labeled as phishing when the site put
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the logo files of these 9 legitimate enterprises. And, some phishing sites are labeled as

legitimate which mimics the site except from these 9 sites.

5.3 Suspicious URL

The Suspicious URL heuristic checks if a URL of the site contains an “at” symbol (@)

or a “dash” (-) in the domain name. If so, the heuristics deems it a phishing site because

phishing attackers are likely to use these symbols in the domain name of a phishing

site. When “@” is used in a URL, all text before the “@” is ignored and the browser

references only the information following the “@” as a hostname. Phishing attackers

likely abuse this URL scheme: For example, if http://paypal.com@phishing.com is

used, web browsers would be directed to the phishing.com. Even if it seemed like

paypal.com, web browsers would ignore this.

The weak point is that some legitimate sites, e.g., aist-nara.ac.jp, employs “-”

for their domain name. And, several phishing sites are not altogether containing “@”

or “-” in the domain name.

5.4 Suspicious Links

Similar to the Suspicious URL heuristic, this one checks if a link on the page contains

an “at” symbol or a dash. The weak points of the heuristics are as same as that of the

Suspicious URL heuristic.

5.5 IP Address

The IP Address heuristic checks if the domain name of the site is an IP Address.

Although legitimate sites rarely link to pages by an IP address, phishers often attract

victims to phishing sites by IP address links. The heuristic fails if the URL of a

phishing site is FQDN, or that of a legitimate site is IP Address.
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5.6 Dots in URL

The Dots in URL heuristic checks if the URL of the site contains 5 or more dots.

According to [27], dots can be abused for attackers to construct legitimate-looking

URLs. One technique is to have a sub domain. Another is to use a redirection script,

which to the user may appear like a site hosted at google.com, but in reality will redirect

the browser to phishing.com. In both of these examples, either by the inclusion of a

URL into an open redirect script or by the use of a number of sub domains, there are

a large number of dots in the URL.

The heuristic fails if the number of dots in URL of phishing sites is less than 5. For

example, a phishing site, which was reported in November 30th, 2008 and was placed in

http://kitevolution.com/os/chat6/plugins/safehtml/www.paypal.com/canada/

cgi-bin/webscr.php?cmd= login-run, includes only 4 dots. Conversely, the URL of

some legitimate sites has 5 or more dots.

5.7 Forms

Checking if the page contains any web input forms. In the case of CANTINA, it scans

the HTML for <input> tags that accept text and are accompanied by labels such as

“credit card” and “password.” If so, the heuristic deems it a phishing site.

It is not strange for legitimate sites, thus the heuristic labels legitimate sites as

phishing. Instead of using such words, employing a digital image which are painted

the words are not seems to be a phishing site.

5.8 TF-IDF-Final

This heuristic checks if the site is phishing by employing TF-IDF-Final, which is an

extension of the Robust Hyperlinks algorithm [93]. When the heuristic attempts to

identify phishing sites, it feeds the mixture word lexical signatures and a domain name

of the current web site into Google. If the domain name matches the domain name of

the top 30 search results, the web site is labeled legitimate.

However, there is some possibility of manipulating Google’s search result by abuse

of search engine optimization. Even if the site is legitimate, some of them would not

be appeared in higher rank of the search result.





Chapter 6

Preliminary evaluation

In this chapter, I check if the AdaBoost, the most typical one of the machine learning

algorithms, is available to detect phishing sites. I also checked that the AdaBoost-based

combination method can improve the detection accuracy.

6.1 Implementation of heuristics in preliminary eval-

uation

At first, I implemented heuristics described in Chapter 5, because CANTINA is not

available to download yet. In this preliminary evaluation, I implemented 5 of 8 heuris-

tics that are Suspicious URL, Suspicious Links, IP Address, Dots in URL, and Forms

heuristic all of which only analyze the downloaded content or the URL of the site.

I also implemented Age of Domain and TF-IDF-Final heuristic, but some of their

functions were not implemented. In the case of Age of Domain heuristic, the format

of the WHOIS server differs in different countries, so my implementation derived the

domain name from a URL and showed me the search result of WHOIS. In the case of

TF-IDF-Final heuristic, I browsed the target URL with Firefox 2.0, inputted all text

content to my implementation by copy-and-paste from the browser screen. In the case

of Known Images heuristic, it is difficult to judge whether or not the well-known logo

is used without browser’s rendering support. Thus, I manually performed the checking

of Known Images heuristic, and labeled as phishing if the site used well-known logos.
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Table 6.1: Assigned Weight by CANTINA

CANTINA True Positive Rate False Positive Rate Effect Weight

Age of Domain 62.0% 8.0% 54 0.19

Known Images 88.0% 0.0% 88 0.31

Suspicious URL 8.0% 6.0% 2 0.01

Suspicious Link 6.0% 6.0% 0 0.00

IP Address 14.0% 0.0% 14 0.05

Dots in URL 10.0% 0.0% 10 0.03

Forms 88.0% 22.0% 66 0.23

TF-IDF-Final 98.0% 44.0% 54 0.19

6.2 Detection accuracy

My first purpose is to check if AdaBoost is available, and my second purpose is to

check if AdaBoost can increase the detection accuracy. For measuring the detection

accuracy, I used 3 metrics to evaluate; true positive rate, false positive rate, and total

accuracy rate which is calculated by dividing the number of correctly identified sites by

the number of all sites in the dataset. Next, I evaluate the validity of my two datasets,

which contains 50% phishing sites and 50% legitimate sites.

First, I built a training dataset. I have chosen 50 phishing URLs from Phish-

tank.com in May, 2007 according to the following requirements: a phishing site which

(i) can still be browsed (is not expired), (ii) looks like a well known legitimate site,

and (iii) can be labeled as a phishing site by a URL of the site. Next, I have also

selected 50 legitimate URLs, top 25 URLs of Alexa [94], 15 URLs listed as Good URLs

in 3Sharp [95], 10 URLs chosen randomly from Yahoo! Random Link [96], and all

100 URLs (50 phishing and 50 legitimate) were English language sites. In addition,

the criteria for choosing URLs was referred to [19]. Moreover, I have also built a test

dataset which was composed of 50 phishing URLs from Phishtank.com and 50 legiti-

mate URLs from 3Sharp. I note that the URLs of the test dataset were different from

those of the training dataset.

Second, I applied each heuristic to the training dataset, and assigned the weight to

each heuristic. The result of CANTINA’s weight assignment is shown in Table 6.1.

Wi =
αi∑
αi

(6.1)
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Table 6.2: Assigned Weight by AdaBoost

AdaBoost Total Accuracy Rate α Weight

Age of Domain 54.0% 0.03 0.01

Known Images 88.0% 1.38 0.42

Suspicious URL 2.0% 0.00 0.00

Suspicious Link 0.0% 0.00 0.00

IP Address 14.0% 0.23 0.07

Dots in URL 10.0% 0.14 0.04

Forms 66.0% 0.56 0.17

TF-IDF-Final 54.0% 0.95 0.29

Table 6.3: Accuracy of normal CANTINA

(i) (ii) (iii) (iv) (v)

True Positive Rate 92.0% 90.0% 92.5% 95.0% 80.0%

False Positive Rate 4.0% 4.0% 4.0% 4.0% 4.0%

Total Accuracy Rate 94.0% 93.3% 94.4% 95.7% 93.3%

Third, I also assigned the weight to each heuristic in the case of employing an

AdaBoost algorithm, and the result of weight assignment is shown in Table 6.2. In order

to facilitate comparing the weight assignment of AdaBoost with that of CANTINA, the

weight αi was normalized by Equation 6.1, which has same meaning as Equation 2.2. In

preliminary evaluation, I used 1 time of iteration for AdaBoost. Notice that AdaBoost

has a function to learn iteratively for reducing training errors, and I will explain the

optimal number of iteration in Section 7.5. Moreover, in Boosting theorem, heuristics

should be applied into a training dataset in order of higher accuracy, so I measured the

total accuracy rate on each heuristic. When there are same total accuracy rate among

several heuristics, the heuristic with lower false positive rate was applied. In the case

of my training dataset, heuristics were applied in order of Known Images, Forms, Age

of Domain, TF-IDF-Final, IP Address, Dots in URL, Suspicious URL and Suspicious

Links.

By comparing the weight assignment of AdaBoost with that of CANTINA, I found

that Known Images heuristic was assigned the highest weight, and Suspicious Links

heuristic was assigned zero weight in both cases. However, the assigned weight of

Age of Domain heuristic was lower than that of TF-IDF-Final heuristic, otherwise
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Table 6.4: Accuracy of CANTINA with AdaBoost

(i) (ii) (iii) (iv) (v)

True Positive Rate 94.0% 90.0% 92.5% 95.0% 90.0%

False Positive Rate 0.0% 0.0% 0.0% 0.0% 0.0%

Total Accuracy Rate 97.0% 95.6% 96.7% 98.6% 98.3%

Table 6.5: Accuracy of normal CANTINA and CANTINA with AdaBoost

Algorithm True Positive Rate False Positive Rate Total Accuracy Rate

CANTINA 92.0% 4.0% 94.0 %

AdaBoost 94.0% 0.0% 97.0 %

normal CANTINA assigned higher weight to Age of Domain heuristic than TF-IDF-

Final heuristic. This reversion was caused by that almost of all the sites which Age

of Domain heuristic correctly labeled had been already identified correctly by Known

Images heuristic. Conversely, TF-IDF-Final heuristic often labeled correctly where

Known Images heuristic had mislabeled. Thus, AdaBoost assigned higher weight to

TF-IDF-Final heuristic and lower weight to Age of Domain heuristic.

Finally, I applied both algorithms to my test dataset and the results(Table 6.5)

showed that false positive rate deceased from 4.0% to 0.0%. This means that the

AdaBoost-based combination method never labeled legitimate sites as phishing in this

case.

True positive rate increased from 92.0% to 94.0%, and the total accuracy rate

increased from 94.0% to 97.0%. According to this result, it can be assumed that

AdaBoost is available for detection of phishing sites, and the AdaBoost-based weight

assignment algorithm has more effective than CANTINA’s algorithm to detect phishing

sites.

6.3 Percentage of phishing sites in dataset

Essentially, the number of legitimate sites is much larger than that of phishing sites,

whereas my dataset mentioned in Chapter 7 contained 50% phishing sites and 50%

legitimate sites.

Here, I presented the verification result with 5 pairs of a training dataset and a test

dataset. They were composed of (i) 50 phishing sites and 50 legitimate sites, (ii) 40
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Table 6.6: Weight Assignment by CANTINA

(i) (ii) (iii) (iv) (v)

Domain Age 0.19 0.17 0.19 0.17 0.18

Known Images 0.31 0.30 0.29 0.31 0.26

Suspicious URL 0.01 0.01 0.01 0.00 0.04

Suspicious Links 0.00 0.01 0.00 0.00 0.04

IP Address 0.05 0.05 0.05 0.05 0.06

Dots in URL 0.03 0.04 0.05 0.02 0.03

Forms 0.23 0.23 0.23 0.25 0.23

TF-IDF-Final 0.19 0.19 0.18 0.20 0.16

Table 6.7: Weight Assignment by AdaBoost

(i) (ii) (iii) (iv) (v)

Domain Age 0.01 0.01 0.00 0.06 0.00

Known Images 0.42 0.41 0.41 0.51 0.34

Suspicious URL 0.00 0.00 0.03 0.00 0.10

Suspicious Links 0.00 0.00 0.00 0.00 0.00

IP Address 0.07 0.08 0.08 0.00 0.22

Dots in URL 0.04 0.04 0.18 0.00 0.00

Forms 0.17 0.17 0.14 0.16 0.25

TF-IDF-Final 0.29 0.28 0.25 0.28 0.10

phishing sites and 50 legitimate sites, (iii) 30 phishing sites and 50 legitimate sites, (iv)

20 phishing sites and 50 legitimate sites, and (v) 10 phishing sites and 50 legitimate

sites. In the case of (i), both the training dataset and the test dataset are the same

as those I used in Section 6.2. In the cases of (ii), (iii), (iv) and (v), I have chosen the

phishing sites by random sampling manner.

The result of weight assignment is shown in Table 6.6 and that of AdaBoost is

shown in Table 6.7. Based on assigned weight, I measured the accuracy of CANTINA

as shown in Table 6.3 and that of CANTINA with AdaBoost in Table 6.4. I found the

accuracy of CANTINA with AdaBoost is as well or better than that of CANTINA in

every case.

I also found that the weight assigned by AdaBoost was concentrated on particular

heuristics, unlike that of normal CANTINA. Figure 6.1 showed that the variance of
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Figure 6.1: Variance of Assigned Weight

each heuristic in the case of AdaBoost is higher than the case of normal CANTINA.

Notably, Known Images heuristic of AdaBoost was always assigned higher weight

than that of normal CANTINA. Within my dataset, I observed that Known Images

heuristic showed the best accuracy among 8 heuristics; The total accuracy rate of

Known Images is 88.0% in the case of (i), and 96.7% in the case of (v). Thus, I

assumed that the concentration of the weight on Known Image heuristic has affected

the accuracy of distinguishing between legitimate sites and phishing sites.

6.4 Effect of the Known Images heuristic

According to [19], the true positive rate of Known Images was 37.0%, while that of my

experiments was 88.0%. I assumed the difference was caused by my manually checking

whether or not the site contains well-known logos which were listed in Chapter 5. If

I implement Known Image heuristic, it is necessary to have the function of pattern
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Table 6.8: Accuracy of CANTINA’s weight assignment

(i) (ii) (iii) (iv) (v)

True Positive Rate 98.0% 95.0% 97.5% 95.0% 90.0%

False Positive Rate 28.0% 28.0% 28.0% 28.0% 20.0%

Total Accuracy Rate 85.0% 82.2% 83.3% 78.6% 81.7%

Table 6.9: Accuracy of the AdaBoost-based weight assignment

(i) (ii) (iii) (iv) (v)

True Positive Rate 98.0% 95.0% 70.0% 65.0% 60.0%

False Positive Rate 20.0% 20.0% 10.0% 10.0% 10.0%

Total Accuracy Rate 89.0% 86.7% 81.1% 82.9% 85.3%

matching in a digitized image, although this might result in many misjudgments.

In my previous experiments, AdaBoost assigned the highest weight to Known Im-

ages heuristic, so it can be assumed that the accuracy of the AdaBoost-based combi-

nation method depends heavily on the accuracy of Known Images heuristic.

In order to verify whether or not AdaBoost can build a “strong” learning algorithm

even if the accuracy of Known Images decreases, I tested the accuracy of detecting

phishing sites by combining heuristics which were removing Known logo heuristic and

using only the other 7 heuristics. I calculated the weight with the training dataset of

(i), (ii), (iii), (iv) and (v), and measured the accuracy. The result is shown in Table 6.8

and 6.9.

In the case of (iii), I observed that the false positive rate of AdaBoost was rapidly

decreased and the total accuracy rate of AdaBoost was lower than that of CANTINA.

This was caused by overfitting, which I will discuss in Section 6.5. However, the rest

of the result showed that false positive rate was decreased by applying AdaBoost, and

I find that AdaBoost increased the total accuracy rate in almost of all cases.

6.5 Overfitting problem

In the training dataset of (iii) in Section 6.4, I found that one legitimate site was labeled

as phishing by Forms, Age of Domain and TF-IDF-Final heuristic all of which were

the top 3 heuristics in accuracy in this case. The AdaBoost-based combination method

has checked this site by Forms heuristic, at first. Form heuristic showed the highest
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accuracy among 7 heuristics, but could not identify this site correctly . In this case,

an AdaBoost algorithm assigns higher weight to the heuristic which is able to label

the site correctly, and assigns lower weight to heuristic which labeled incorrectly. Age

of Domain and TF-IDF-Final heuristic, as well, could not identify the site correctly,

so the weights of these two heuristics have been reduced.

I analyzed that it was an overfitting problem which caused this reduction. The

overfitting problem is known as the one of the weak points of AdaBoost, it decreases

the accuracy otherwise AdaBoost attempted to fit the weight for identifying the site.

In the case of (i) and (ii), there are much phishing sites that both Age of Domain and

TF-IDF heuristic labeled correctly. Therefore, these heuristics could be assigned high

weight otherwise they lost weight by the issued site. However, in the case of (iii), (iv)

and (v), there are fewer phishing sites, and these two heuristics could not be assigned

high weight. Hence, the true positive rate of AdaBoost was falling. If the site was not

contained in training dataset, the true positive rate of (iii) could increase to 97.5%.

Increasing samples in dataset is the remedy for reducing the effect of overfitting.

Thus, I attempt to collect much number of phishing sites and legitimate sites by

monitoring Phishtank in long time period.



Chapter 7

Performance evaluation

In this chapter, I evaluate 9 Machine Learning-based Detection Methods(MLBDMs)

and show their performance. First, I explain how I implemented heuristics which I

could not fully implement in Chapter 6. To reduce the effectiveness of overfitting

problem, I need to employ much number s of URLs than that in my preliminary

evaluation. I then build the dataset for performance evaluation. Next, I explain my

metrics of the performance which along with my requirements for detection of phishing

sites. Finally, I show the evaluation result.

7.1 Implementation of heuristics in performance eval-

uation

At first, my implementation might check if a site is written in English or not, because

CANTINA has not been and is not working well if the sites were not written in English.

I employed Perl and its module, Lingua::LanguageGuesser [97], which can identify

the language by N-gram-based text categorization [98]. N-gram-based approach to

text categorization that is tolerant of textual errors. Cavnar et al. mentioned that

their prototype system is small, fast and robust. The system also worked very well

for language classification, achieving in one test a 99.8 % correct classification rate on

Usenet newsgroup articles written in different languages.

For the Age of Domain heuristic, I employed GNU Whois [99], which was a generic

whois client and provides the exact whois response due to the connecting the right

WHOIS server corresponding to requested domain name. I then attempted to extract

57
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the domain creation date from the whois response. I checked each line if contained the

beginning of date record such as create, regist, orconnect, in the WHOIS response.

As the year field in the date record, some server responded in YYYY format such as

2009, and another server responded in YY format such as 09. As the month field,

some server responded in MM format such as 12 which denotes December, some server

responded “December”, and another server responses “Dec” or “DEC”. Moreover,

there are various format of presenting the date such as “2008/12/15”, “Dec. 15 2008”,

“15/12/08”, and so much on. To deal with the difference in the date record, I observed

the site which could not identify the date and fix my implementation to obtain the

date record. My implementation can identify roughly 100 patterns of the date record

format, however, there have been some date format which my implementation could not

extract. For example, some server confused me because it responded “15/11/07” as the

domain creation record. It can be interpreted two or more ways such as “November

15th, 2007”, “November 7th, 2015”. In this case, my implementation checked the

current date and assumed “November 15th, 2007” is the collect answer.

To implement the Known Images heuristics, I employed both WWW::Mechanize [100]

and Image::Compare [101]. WWW::Mechanize was a Perl module and facilitated to

analyze the source code of the target website. I obtained the list of URLs which pointed

some images by using WWW::Mechanize. Image::Compare was also a Perl module and

designed to compare the image with some other images. My implementation had some

pixel images of legitimate enterprises as I mentioned in Chapter 5, and compared the

images in the target websites with the prepared images of legitimate enterprises. When

I checked the difference in two pixel images, I hired 25, the most popular threshold

in Image::Compare module. Notice that differences are measured in a sum of squares

fashion (vector distance), so the maximum difference is 255 · √3, or roughly 441.7.

In the TF-IDF-Final heuristics, I also used WWW::Mechanize to obtain plain text

which was removed HTML tags from HTML source code of the target site. I then

extracted words from HTML source by analyzing Document Object Model struc-

ture with HTML::TreeBuilder [102], and counted TF value for each word by using

Lingua::Fathom. For obtaining IDF value for each word, I searched the word with

Google and estimated DF by checking the number of records in search results. Next,

I calculated the TF-IDF value by Equation 7.1. In the context of TF-IDF, N is the

amount number of documents, so I hired 4,285,199,774 for N according to [103], at

first. However, Google said that the number of records was 12 billion when I entered
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the letter “a” into Google. So, I hired 12 billion for N . Moreover, my implementation

selected 5 words of the top 5 rank in the TF-IDF value from the site, and created the

lexical signature by concatenating these words with the domain name. My implemen-

tation also searched Google by inputting the lexical signature, and checked the search

result. Finally, my implementation decided the site seems to be a phishing site when

(i) the number of record in result page was 0 or (ii) the domain name of the site could

not appeared in top 30 higher ranks in the Google’s search result.

TF-IDF = TF ∗ log10

N

DF
(7.1)

7.2 Dataset

I built a dataset with the criteria for choosing URLs. Based on the criteria in the origi-

nal CANTINA, I collected URLs with the same number of phishing sites and legitimate

sites. All sites were English language sites. First, I chose 1,500 phishing sites that were

reported on Phishtank.com [18] from November, 2007 to February, 2008. The reason

that I used only phisihng sites which were reported in Phishtank.com is to facilitate to

compare my detection methods with the existing method. In CANTINA [19], Zhang

et al. used to obtain the data from Phishtank.com.

Notice that these 1,500 sites were verified as phishing sites by the registered users

of Phishtank.com. Basically, Phishtank.com accepts report from registered users of

Phishtank.com, however, everyone can register to Phishtank.com. It is naturally to

assume that phishers attempt to register legitimate sites as phishing. To compete

with the bogus reports, registered users discuss to remove these reports on Phishtank

mailing list and vote whether the sites are really phishing or not. I confirmed these

1,500 phishing sites by checking the voting results in December, 2008. In addition, I

call such verification as “cleansing” and discuss the effectiveness of cleansing dataset

in Section 7.7.3.

I also selected 227 URLs from 3Sharp’s [95] study of anti-phishing toolbars. There

were listed 500 URLs of legitimate sites, however, I could not connect to many listed

URLs. Third, I attempted to collect 500 URLs from Alexa Web Search [94] and

observed 477 URLs. Finally, I gathered 796 URLs from Yahoo! Random Link [96].

Each site was checked with my implementation of heuristics, and was converted into

a vector ~x = (x1, x2 . . . xp), where x1 . . . xp are the values corresponding to a specific
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Table 7.1: Environment of Performance Evaluation

Machine Learning Library Version

AdaBoost ada 2.0-1

Bagging ipred 0.8-5

SVM e1071 1.5-17

CART tree 1.0-26

LR glm -

RF randomForest 4.5-23

NN nnet 7.2-39

NB predbayescor 1.1-2

BART BayesTree 0.2-0

feature. The dataset consisted of 8 binary explanatory variables and 1 binary response

variable.

To perform my evaluation in a less biased way, I employed 4-fold cross validation.

Cross validation is a method to estimate the error rate efficiently. The procedure works

as follows: the dataset is divided into k sub-samples (in my experiment k = 4). A single

sub-sample is randomly chosen as testing data, and the remaining k-1 sub-samples are

used as training data. The procedure is repeated k times, in which each of the k sub-

samples is used exactly once as the testing data. Furthermore, my cross validation was

repeated 10 times in order to average the result, so I had 40 patterns of training and

testing dataset.

7.3 Environment

For repeatability of my experiment, I showed my environment of performance evalua-

tion. My analysis was performed in R 2.6.1 running on Mac Pro, which has 2 Intel Xeon

Quad-Core CPUs and 8GB Memory. The library name and version of each machine

learning algorithm are shown in Table 7.1.
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Table 7.2: Test Result
actual actual

phishing sites legitimate sites

predict phishing sites tp fp

predict legitimate sites fn tn

7.4 Evaluation metrics

I also defined metrics for evaluating performance along with requirements for detection

methods. My requirements were as follows.

1. Accuracy

An MLBDM must achieve high detection accuracy. User safety would obviously

be compromised if phishing prevention systems labeled phishing sites as legiti-

mate. Users would also complain if prevention systems labeled legitimate sites

as phishing sites because of the interruption in browsing caused by prevention

systems.

2. Adjustment Capability

An MLBDM must adjust its strategy for detecting phishing sites for web users. If

a user is a novice, who is easily taken in by phishing attacks, phishing prevention

systems should decrease false negative errors instead of increasing false positive

errors. Conversely, if a user is a security expert, the system should focus on

decreasing false positive errors.

For Requirement 1, I used the f1 measure (higher is better) and the error rate (lower

is better) as metrics to evaluate the detection accuracy. Statistically, f1 measure has

been used as an index of a test’s accuracy. This measure is the harmonic mean of

precision and recall. Given the test result as shown in Table 7.2, precision p equals

tp/(tp + fp) and recall r equals tp/(tp + fn). The f1 measure can be calculated

by 2 · p · r/(p + r). The average error rate has been also a reasonable metric to

indicate the detection accuracy. It is calculated by dividing the number of incorrectly

identified sites by the number of all sites in the dataset. So, the error rate equals

(fp+ fn)/(tp+ tn+ fp+ fn).
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For Requirement 2, I performed Receiver Operating Characteristic (ROC) analysis.

Generally, detection methods calculate the likelihood of being phishing sites L and

compare the likelihood with the defined discrimination threshold θ. In my experiment,

MLBDMs distinguish a phishing site by checking if L is less or equal than θ(= 0).

Imagine that θ was higher than 0. In this case, MLBDMs would tend to label a site as

phishing rather than as legitimate. Conversely, MLBDMs would tend to label a site

as legitimate if θ was lower than 0. Accordingly, I assumed that adjusting θ provides

different detection strategies. Based on this assumption, I employed ROC analysis

because it has been widely used in data analysis to study the effect of varying the

threshold on the numerical outcome of a diagnostic test. I also used the Area Under

the ROC Curve (AUC; higher is better) as a metric to evaluate adjustment capability.

7.5 Experimental setup

Next, I adjusted the parameters for MLBDMs to minimize the error rate in train-

ing. Through my parameter selection, I let MLBDMs studied from 3,000 URLs and

measured the classification error rates. In addition, finding the optimal parameter is

important, however, the choice of the exact value of the optimal parameter is not often

a critical issue since the increase in test error is relatively slow.

For decision tree-based machine learning techniques such as RF, I tested them using

different numbers of trees, namely 100, 200, 300, 400, and 500 trees. The minimum

error rate (11.23%) was observed when the number of trees was 100, followed by 200

and 500 (11.37%), and 300 and 400(11.77%). Thus, I set the number of trees to 100

for RF-based detection methods.

The iteration time was set to 300 in all of my experiments if the machine learning

technique needed to analyze iteratively for reducing training errors. The minimum

error rate (11.46%) was observed when the number of iterations was 300, followed by

200, 400 and 500 (11.50%), and 100 (11.63%).

For some types of machine learning techniques, I used threshold value to approx-

imate the prediction output. For example, BART is designed for regression, not for

classification. Therefore, BART gives quantitative value whereas I need an MLBDM

to output binary value that indicates whether a site is a phishing site or not. In such

cases, I employed threshold value and observed if the result of BART regression was

greater than the threshold. I decided the threshold in the same fashion as the original



7.6. PERFORMANCE EVALUATION 63

Table 7.3: Precision, Recall and f1 measure, False Positive Rate(FPR), False Negative

Rate(FNR), Error Rate(ER), and AUC

Precision Recall f1 measure FPR FNR ER AUC

AdaBoost 0.9016 0.8554 0.8777 09.45% 14.46% 11.96% 0.9543

Bagging 0.8739 0.8801 0.8751 13.10% 11.99% 12.60% 0.9502

SVM 0.9008 0.8548 0.8770 09.52% 14.52% 12.03% 0.9180

CART 0.8643 0.8908 0.8755 14.37% 10.92% 12.69% 0.9449

LR 0.9244 0.8068 0.8609 06.73% 19.32% 13.08% 0.9523

RF 0.8931 0.8593 0.8749 10.54% 14.07% 12.34% 0.9539

NN 0.8994 0.8529 0.8751 09.68% 14.71% 12.21% 0.9518

NB 0.8822 0.8654 0.8735 11.67% 13.46% 12.58% 0.9486

BART 0.8923 0.8622 0.8765 10.55% 13.78% 12.19% 0.9540

CANTINA 0.9878 0.7048 0.8226 00.87% 29.52% 15.26% 0.9367

CANTINA. In the case of CANTINA, the maximum likelihood of being a phishing site

is -1 and that of being a legitimate site is 1; therefore, it employs the middle value 0

as the threshold value.

In SVM, I tested both linear and non-linear kernel functions. The training error

by using Radial Based Function (RBF), one of the typical non-linear kernel functions,

was 11.23%, less than 14.63% of linear kernel.

In NN, I selected the number of units in the hidden layer, namely 1, 2, 3, 4, and 5

units, for finding the minimum average error rate. The minimum error rate (11.40%)

was observed when the number of units was 4, followed by 3 (11.43%), 2 (12.13%), 1

(12.47%), and 5 (16.33%).

7.6 Performance evaluation

In this section, I evaluate the performance of all MLBDMs by measuring f1 measure,

error rate and AUC, and studying them comparatively. I also compare MLBDMs with

the original CANTINA.

I calculated precision, recall, and f1 measure for each pattern of dataset respectively,

and also calculated their average as shown in Table 7.3. For readability, I summarized
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Figure 7.1: Test Result of f1 measure, Error Rate, and AUC

the performance of MLBDMs in Figure 7.1 where black bars denoted f1 measure.

The highest f1 was 0.8777 in AdaBoost, followed by SVM(0.8770), BART(0.8765),

CART(0.8755), Bagging(0.8751), NN(0.8751), RF(0.8749), NB(0.8735), and finally

LR(0.8609). The highest precision was 0.9244 in LR, and the lowest was 0.8643 in

CART. The highest recall was 0.8908 in CART, and the lowest was 0.8068 in LR.

I then calculated the error rate in Figure 7.1, where gray bars denoted the er-

ror rate. The lowest error rate was 11.96% in AdaBoost, followed by SVM(12.03%),

BART(12.19%), NN(12.21%), RF(12.34%), NB(12.58%), Bagging(12.60%), CART(12.69%),

and finally LR(13.08%). The lowest false positive rate was 06.73% in LR, and the high-

est was 14.37% in CART. The lowest false negative rate was 10.92% in CART, and

the highest was 19.32% in LR.

I also calculated AUC as shown in Figure 7.1, where white bars denoted AUC.
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Figure 7.2: ROC curves of MLBDMs

The highest AUC was 0.9543 in AdaBoost, followed by BART(0.9540), RF(0.9539),

LR(0.9523), NN(0.9518), Bagging(0.9502), NB(0.9486), CART(0.9449), and finally

SVM(0.9180). Additionally, I plotted ROC curves of all MLBDMs as shown in Fig-

ure 7.2. For readability, each graph presented 3 ROC curves. I observed that all ROC

curves passed through the upper left space in the graph. It indicated that all MLB-

DMs could achieve both high true positive rate and lower false positive rate because

the best possible detection method would yield a point in the upper left corner (0,1) of

the ROC space, representing that the true positive rate is 100% and the false positive

rate is 0%.

Finally, I compared all MLBDMs with CANTINA’s detection method. I evaluated
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Table 7.4: Comparison of f1 measure

1 2 3 4 5 6 7 8 9 10

1. AdaBoost n n

2. Bagging n n n n n

3. SVM n n n n n n

4. CART n n n n n n n

5. LR

6. RF n n n n n n

7. NN n n n n

8. NB n n n

9. BART n n n n

10. CANTINA

the performance of CANTINA in the same way as that described in Section 7.5, and

observed f1 measure was 0.8226, error rate was 15.26%, and AUC was 0.9367 as shown

in Table 7.1. According to my comparison, 8 out of 9 MLBDMs, namely AdaBoost,

Bagging, CART, LR, RF, NN, NB, and BART-based detection methods, outperformed

CANTINA.

In addition, I performed analysis of variances by using 40 patterns of outputs. My

Kolmogorov-Smirnov test showed that the output values of each detection method

were fit to a normal distribution. Accordingly, I then performed paired t-test (p <

0.05, ν = 39) for all detection methods. The results were shown in Table 7.4, 7.5,

and 7.6, where “n” denoted that no statistical difference was observed, and empty

denoted difference in f1 measure was statistically significant. For example, I observed

statistical differences in the average f1 measure between AdaBoost and Bagging. In

such cases, I did not mark anything. I also observed no statistical differences between

Bagging and NB. In such cases, I marked “n” in the table. In short, my paired t-test

showed that there were statistical difference between performance of MLBDMs and

that of CANTINA.
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Table 7.5: Comparison of Error Rates

1 2 3 4 5 6 7 8 9 10

1. AdaBoost n

2. Bagging n n

3. SVM n n n

4. CART n n

5. LR

6. RF n n

7. NN n n n

8. NB n n n

9. BART n n

10. CANTINA

7.7 Discussion

In this section, I modified several test conditions to verify whether or not machine

learning algorithms are available for detection of phishing sites. I changed the dataset

which were built in different time period, and also changed the dataset which were not

cleansed. Finally, I changed the set of heuristics by adding my heuristics.

7.7.1 Performance evaluation in different time period

Here, I discuss whether or not MLBDMs will continue to provide better performance.

As I mentioned in Section 7.2, my collected phishing sites were reported on Phish-

tank.com from November, 2007 to February, 2008. Phishing attackers would attempt

to build new phishing sites which are designed to evade detection, so I need to verify

whether or not MLBDMs can keep higher performance in future.

As a first step, I built new dataset which contained modern phishing sites. I

collected 1,500 URLs of phishing sites reported on Phishtank.com from August, 2008

to November, 2008. I also gathered 1,500 URLs of legitimate sites and checked that

these 1,500 sites were verified as phishing sites in the same fashion as I described in

Section 7.2. By using these 3,000 URLs, I measured their performance by doing 4-fold

cross validation 10 times.
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Table 7.6: Comparison of AUC

1 2 3 4 5 6 7 8 9 10

1. AdaBoost n n

2. Bagging

3. SVM

4. CART

5. LR n

6. RF n n

7. NN n

8. NB

9. BART n n

10. CANTINA

The results were shown in Figure 7.3 where black bars, gray bars, and white bars

denoted the average f1 measure, error rate, and AUC, respectively. The highest

f1 was 0.8721 in AdaBoost, followed by SVM(0.8709), BART(0.8689), NN(0.8688),

RF(0.8684), NB(0.8650), LR(0.8574), CART(0.8561), and finally Bagging(0.8555).

The lowest error rate was 12.49% in AdaBoost, followed by SVM(12.55%), BART(12.69%),

NN(12.73%), RF(12.79%), NB(13.21%), LR(13.34%), CART(13.52%), and finally Bag-

ging(13.58%). The highest AUC was 0.9454 in AdaBoost, followed by BART(0.9452),

RF(0.9451), LR(0.9429), NN(0.9419), Bagging(0.9343), NB(0.9321), CART(0.9212),

and finally SVM(0.9038). Aside from MLBDMs, f1 measure was 0.8494, error rate

was 13.77%, and AUC was 0.9246 in the case of CANTINA. Similar to the compar-

ison described in Section 7.6, 7 out of 9 MLBDMs, namely AdaBoost, Bagging, LR,

RF, NN, NB, and BART-based detection methods, outperformed CANTINA. Accord-

ingly, I predict that employing machine learning for detection of phishing sites has

effectiveness in future.

In comparison between Figure 7.1 and 7.3, the performance of MLBDMs were

tended to decrease in the case of using new dataset. In both cases, Kolmogorov-

Smirnov test showed that the output values of each detection method were fit to a

normal distribution. Thus, I performed two-sample Student t-test for homoscedastic

data and two-sample Welch t-test for others. My two-sample t-test (p < 0.05, ν = 39)
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Figure 7.3: Test Result of f1 measure, Error Rate, and AUC by using new dataset

showed that there were statistical difference in almost all of the cases; the error rates in

the cases of LR, RF and NN were exceptions. I assumed that the reason of decreasing

was caused by increasing the average error rate of heuristics. Figure 7.4 showed the

error rate of each heuristic where black bars denoted error rates in the case of using

old dataset, and gray bars denoted that of using new dataset. This indicated that I

need to refine these heuristics and/or to develop new heuristics.

7.7.2 Detection of newly created phishing sites

In this section, I attempted to check if MLBDMs can detect newly created phishing

sites. As I mentioned in Section 3.1, URL filtering methods cannot deal with newly

created phishing sites. In spear phishing, a phisher can make new phishing sites for each

victim and also can assign a different URL on each site. These sites are unreported,
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Figure 7.4: Error Rate of each heuristic in different time period

however, if heuristics-based solutions can detect such spear phishing sites correctly, the

safety of URLs would be improved.

My evaluation performed in Section 7.6 could not show the sufficient evidence of

this function. Because I performed 4-fold cross validation, the phishing sites in the

testing dataset were reported in the same time period of that in the training dataset.

I explored the way for assessing that MLBDMs can deal with newly created phishing

sites. I assumed that the best way is collecting enough numbers of spear phishing

site, and analyze with these phishing sites. Unfortunately, only few people, who were

targeted as phishers, could know the URLs of spear phishing sites. Collecting the spear

phishing sites is my open issues.

Instead of using spear phishing sites, I selected 1,500 URLs of phishing sites re-

ported in Phishtank.com during January, 2009 – February, 2009. I also collected 1,500

URLs of legitimate sites. For data independence between this dataset with other

datasets, I employed 1,500 URLs from Yahoo Random Links, so did not use both

3Sharp’s good URLs and Alexa’s Top 500 URLs list.
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Figure 7.5: Test Result of f1 measure, Error Rate, and AUC by training from 2007/11-

2008/02, testing 2009/01 - 2009/02

For my performance evaluation, I let MLBDM to train from the dataset described

in Section 7.2. Next, I tested with the newly created dataset. In short, MLBDMS

were trained from phishing sites reported during November, 2007 – February, 2008,

and they were tested with phishing sites reported during January, 2009 – February,

2009.

The results are show in Figure 7.5. The highest f1 was 0.9027 in Bagging, fol-

lowed by NN(0.9018), RF(0.9007), BART(0.9004), AdaBoost(0.8994), CART(0.8953),

SVM(0.8941), NB(0.8889), LR(0.8811), and finally CANTINA(0.8447). The highest

precision was 0.9781 in CANTINA, and the lowest was 0.8383 in CART. The highest

recall was 0.9607 in CART, and the lowest was 0.7433 in CANTINA. The lowest error

rate was 09.87% in Bagging, followed by NN(09.93%), RF(10.07%), BART(10.10%),
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Figure 7.6: Test Result of f1 measure, Error Rate, and AUC without cleansing

AdaBoost(10.23%), SVM(10.80%), CART(11.23%), LR(11.33%), NB(11.40%), and fi-

nally CANTINA(13.67%). The lowest false positive rate was 01.67% in CANTINA, and

the highest was 18.53% in CART. The lowest false negative rate was 03.93% in CART,

and the highest was 25.67% in CANTINA. The highest AUC was 0.9677 in BART,

followed by RF(0.9675), LR(0.9666), NB(0.9663), Bagging(0.9656), AdaBoost(0.9647),

CART(0.9615), NN(0.9610), CANTINA(0.9587), and finally SVM(0.9503). Similar to

the comparison described in Section 7.6, 7 out of 9 MLBDMs, namely AdaBoost, Bag-

ging, LR, RF, NN, NB, and BART-based detection methods, outperformed CANTINA.

Thus, I believe that MLBDMs can deal with newly created phishing sites.
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7.7.3 Effectiveness of cleansing

In my performance evaluation, I constructed my phishing dataset by both monitoring

Phishtank.com and cleansing the dataset. However, due to the lifetime of phishing

sites, my implementation checks the newly reported phishing sites as soon as possible

regardless of cleansing. Hence, my dataset contains a data which is treated as a

phishing site, however, explanation variables of the data would be similar to that of

legitimate sites rather than that of phishing sites. After the dataset was generated,

then I checked URLs by using Phishtank.com users’ verification to build the cleansed

dataset.

When I constructed my dataset described in Section 7.2, I obtained 1,500 URLs

from Phishtank.com during November, 2007 – February, 2008. After my verification

performed in December, 2008, I found that 223 sites were not verified as phishing sites.

Thus, I removed these 223 sites from dataset and added other 223 phishing sites which

were reported in February, 2008 and were verified as phishing sites. In addition, I

obtained 19,443 sites during August, 2008 – November, 2008, and verified these sites

December 2008. My verification showed that 14,115 sites were verified as phishing

sites, whereas the rest of the sites were not verified.

The problem in cleansing dataset is that takes a long time for verifying. After

phishing sites were reported to Phishtank.com, registered users carefully check if the

site is really phishing or not. Some of the reported sites were difficult to judge. For

example, http://ebay.careerone.com.au/ was look-alike eBay, the domain name

was also similar to eBay but different, so many users thought the site as phishing.

The site was legitimate a career website (like careerbuilder.com) and it provided a co-

branded career website to eBay Australia. Because of increasing such legitimate sites,

these verification required users to have the knowledge of both phishing and legitimate

sites.

I assumed that waiting verification would be unnecessary whenever MLBDMs could

perform better even if the dataset were not cleansed. In the view of this, I attempted

to measure the performance by using another dataset which were not cleansed. The

dataset also contained 1,277 URLS of phishing sites, and 223 URLs of unknown sites

which treat as phishing sites, and 1,500 URLs of legitimate sites. I also performed

4-fold cross validation 10 times.

The results were shown in Figure 7.6. The highest f1 was 0.8581 in AdaBoost, fol-
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lowed by NN(0.8570), SVM(0.8562), BART(0.8555), RF(0.8554), LR(0.8548), NB(0.8547),

Bagging(0.8527), CART(0.8384), and finally CANTINA(0.7606). The lowest error rate

was 14.15% in AdaBoost, followed by NN(14.21%), SVM(14.29%), BART(14.45%),

RF(14.45%), LR(14.60%), NB(14.69%), Bagging(14.82%), CART(16.37%), and fi-

nally CANTINA(20.52%). The highest AUC was 0.9342 in AdaBoost, followed by

BART(0.9321), NN(0.9310), RF(0.9296), Bagging(0.9231), NB(0.9215), LR(0.9172),

CANTINA(0.9162), CART(0.9062), and finally SVM(0.8926). In short, 7 out of 9

MLBDMs, namely AdaBoost, Bagging, LR, RF, NN, NB, and BART-based detection

methods, performed better than CANTINA. I also found that there was statistical

difference between performance in MLBDMs and that in CANTINA. Accordingly, I

assumed that MLBDMs performed better even if I changed the dataset.

By comparing Figure 7.1 with Figure 7.6, I observed that cleansing has effective-

ness; In the case of AdaBoost, f1 measure increases from 0.8581 to 0.8782, error rate

decreased from 14.15% to 11.94%, and AUC increased from 0.9342 to 0.9544. My

two-sample t-test (p < 0.05, ν = 39) showed that there were statistical difference be-

tween with and without cleansing in all of the cases. Thus, I assumed that cleansing

is useful. For expediting Phishtank.com users’ verification, it is important to increase

the number of registered users to gather many reputations of the issued sites.

7.7.4 Incorporating ability

Aside from the calculation methods for likelihood of being a phishing site, develop-

ing new heuristics are also contributed to thwart phishing attacks. In this section, I

discuss whether or not MLBDMs can incorporate newly developed heuristics. First, I

attempted to create new heuristics. Eventually, the detection accuracy of my heuris-

tics was marginal, however, I observed if the MLBDMs can incorporate my heuristics.

Instead of adding new heuristics, I next measure the performance of MLBDMs by

disabling the TF-IDF-Final heuristics. Imagine if Zhang et al. have not proposed

the TF-IDF-Final heuristic. Under the circumstances, MLBDMs could be constructed

with other 7 heuristics. I assume that comparing the performance in the case of using

7 heuristics with that in described in Section 7.6 would be helpful to check if MLBDMs

can incorporate new heuristics.

Effectiveness of adding new heuristics
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Table 7.7: FPR, FNR, and ER of each heuristics

FPR FNR ER

Age of Domain 41.33% 17.67% 29.50%

Known Images 00.00% 99.40% 49.70%

Suspicious URL 05.80% 92.67% 49.23%

Suspicious Links 20.20% 97.20% 58.70%

IP Address 00.00% 88.13% 44.07%

Dots in URL 01.07% 50.20% 25.63%

Forms 15.13% 22.40% 18.77%

TF-IDF-Final 24.73% 08.33% 16.53%

Old OS 03.80% 67.13% 35.47%

Country Mismatch 07.80% 62.20% 35.00%

Here, I introduce my heuristics.

• Old Operating System(OS)

This heuristic checks if the OS of the web server is old. If so, the heuristic

deems the site as phishing. Recently, phishing sites are often hosted in botnet.

According to [104], bot installed PCs run Microsoft Windows are not properly

patched and/or are not guarded by a firewall. In particular, old OSs such as

Windows 95/98/Me/2000 are not equipped with firewall or their support is out

of date. Hence, I assumed that a site is potentially a phishing site whenever the

OS version of the site is old. In addition, I employed p0f [105], a passive OS

fingerprint detection tool, to distinguish the old versions of OSs from others.

• Country Mismatch

Checking if the Country Code Top Level Domain (ccTLD) of a site is equal to the

geographical location of the site. For example, the ccTLD of iplab.aist-nara.ac.jp

is “jp” and the geographical location of this server is also “jp”. However, the

ccTLD and the geographical locations of phishing sites are often different. Notice

that this heuristic is not designed to catch a generic TLD, e.g., com, net, and

org. If a site uses a generic TLD, this heuristic deems it is a legitimate, because

it is not strange that a server placed in Japan uses such kinds of generic TLD
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Figure 7.7: Test Result of f1 measure, Error Rate, and AUC by adding new heuristics

in a domain name. In addition, I employed GeoIP [106] to distinguished the

geographical location of the site.

I tested these 2 heuristics the reported phishing sites during November, 2007 –

February, 2008, and found the characteristics of these heuristics. The results were

shown in Table 7.7. The false positive rate of the Old OS heuristic was 03.80%, that of

the Country Mismatch heuristic was 07.80%. However, these heuristics usually passed

over many phishing sites, so the false negative rate of the Old OS heuristic was 67.13%

and that of the Country Mismatch heuristic was 62.20%.

By using 2 of my heuristics with existing 8 heuristics, I test all MLBDMs by

using the same dataset described in Section 7.2 and the same parameters described in

Section 7.5. The results were shown in Figure 7.7 where black bars, gray bars, and

white bars denotes the average f1 measure, error rate, and AUC, respectively.
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The highest f1 was 0.8979 in AdaBoost, followed by SVM(0.8961), RF(0.8950),

BART(0.8909), NN(0.8897), LR(0.8858), NB(0.8834), Bagging(0.8793), CART(0.8754),

and finally CANTINA(0.8352). The lowest error rate was 10.03% in AdaBoost, fol-

lowed by RF(10.20%), SVM(10.23%), BART(10.53%), LR(10.80%), NN(11.10%), NB(11.33%),

Bagging(11.53%), CART(12.07%), and finally CANTINA(14.47%). The highest AUC

was 0.9620 in RF, followed by AdaBoost(0.9612), LR(0.9606), BART(0.9604), NB(0.9556),

NN(0.9556), Bagging(0.9532), CANTINA(0.9523), CART(0.9434), and finally SVM(0.9269).

In short, 7 out of 9 MLBDMs outperforms than the existing detection method. Thus,

I assumed that adding new heuristics would not decrease performance of MLBDMs.

I observed that the performance slightly increased. My two-sample t-test (p <

0.05, ν = 39) showed that there were statistical difference in almost all of the cases;

the f1 in the cases of Bagging and CART, the error rate in the case of NN, and the AUC

in the case of Bagging were exceptions. However, the contribution of my heuristics was

not so obviously. I need to investigate if MLBDMs can treat new heuristics, and also

to develop new heuristics.

Effectiveness of disabling the TF-IDF-Final heuristics

In the case of disabling TF-IDF-Final heuristics, I also measured the perform acne

as shown in Figure 7.8 where black bars, gray bars, and white bars denoted the aver-

age f1 measure, error rate, and AUC, respectively. The highest f1 was 0.8540 in RF,

followed by SVM(0.8540), NB(0.8531), AdaBoost(0.8530), NN(0.8524), LR(0.8470),

BART(0.8466), Bagging(0.8377), CART(0.8376), and finally CANTINA(0.6098). The

lowest error rate was 13.29% in SVM, followed by RF(13.30%), NB(13.37%), Ad-

aBoost(13.40%), NN(13.44%), LR(13.87%), BART(13.92%), Bagging(14.54%), CART(14.54%),

and finally CANTINA(28.28%). The highest AUC was 0.9214 in AdaBoost, followed by

RF(0.9214), BART(0.9208), NN(0.9197), LR(0.9190), NB(0.9092), Bagging(0.9083),

CART(0.8966), CANTINA(0.8880), and finally SVM(0.8788).

By comparing Figure 7.1 with Figure 7.8, I observed that performance in MLBDMs

were improved by enabling the TF-IDF-Final heuristics. For example, performances

(f1, error rate, and AUC) of AdaBoost increased from (0.8530, 22.05%, 0.9214) to

(0.8777, 11.96%, and 0.9543). In all detection methods, I observed that my two-

sample t-test (p < 0.05, ν = 39) showed that there were statistical difference between

with and without using TF-IDF-Final heuristics. Thus, I assumed that MLBDMs can

incorporate new heuristics.
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Figure 7.8: Test Result of f1 measure, Error Rate, and AUC by disabling the TF-IDF-

Final heuristic

In addition, performance of CANTINA increased from (0.6098, 28.28%, 0.8880) to

(0.8226, 15.26%, 0.9367). The effectiveness of enabling the TF-IDF-Final heuristics in

CANTINA would be more than that in MLBDMs. Paradoxically speaking, CANTINA

might not perform better without the TF-IDF-Final heuristic.



Chapter 8

Utilization methods for MLBDMs

Based on MLBDMs, I argue about how to adjust the discrimination threshold for

each user. Next, I introduce another approach which covers user’s weak point, named

HumanBoost.

8.1 Adjusting discrimination threshold

In my future work, I will implement MLBDMs-capable system, which is a phishing

prevention system according to the detection result. Within such systems, I should

adjust the discrimination threshold for each web user, as I mentioned in Section 7.4.

Aside from phishing, Denial-of-Service(DoS) attacks aim both network routers and

hosts. There are several defense systems against DoS attacks, and it is different between

the system for network routers and that for hosts. While their target of phishing is end

users, so I assume that phishing prevention systems should provide different strategies

for each users.

For a simple instance, I considered the cases of novices and security experts. If a

user is a novice, who is easily taken in by phishing attacks, the system should decrease

the false negative rate instead of increasing the false positive rate. Conversely, if a

user is a security expert, the system should emphasize decreasing the false positive

rate. Table 8.1 shows the false positive rate when the false negative rate was less than

5.00%, and the false negative rate when the false positive rate was less than 5.00%.

The lowest false positive rate was 25.49% in the case of BART, and the lowest false

negative rate was 20.49% in the case of RF. This indicated that if novices could accept

79
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Table 8.1: FPR given FNR rate < 5.00%, and FNR given FPR rate < 5.00%

FPR(FNR<5.00%) FNR(FPR<5.00%)

AdaBoost 25.59% 20.55%

Bagging 25.97% 23.86%

SVM 71.19% 34.79%

CART 26.55% 24.51%

LR 25.83% 21.20%

RF 25.25% 20.49%

NN 25.75% 20.59%

NB 36.13% 21.05%

BART 25.49% 21.30%

Algorithm 1 Simple algorithm to decide threshold for end users

1: Set θ = 0.75

2: if (The user input secret without checking the padlock icon) then

3: Set θ = θ − 0.25

4: end if

5: if (The user input secret without checking the address bar in Non-SSL sites) then

6: Set θ = θ − 0.25

7: end if

25.49% of false positive errors, 95.00% of phishing sites would be blocked as phishing

sites. Similarly, if security experts could accept 20.49% of false negative errors, 95.00%

sites of legitimate sites would be browsed normally.

Aside from the cases of novices or security experts, there have various users. The

study for finding the optimal threshold for each user have not been conducted, however,

the threshold should be decide by measuring each user’s knowledge for the detection

of phishing sites.

My prototype algorithm is show in Algorithm 1. The algorithm are derived from

that I mentioned in Section 1.1; When inputting personal information, users should

check the padlock icon, or check the URL appeared in browser’s address bar in Non-

SSL sites. Thus, I assume that it is naturally to use these 2 criteria to decide the
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Table 8.2: FPR and FNR given θ was 0.75, 0,5 and 0.25

θ = 0.75 θ = 0.5 θ = 0.25

FPR FNR FPR FNR FPR FNR

AdaBoost 01.51% 25.62% 09.45% 14.46% 26.64% 04.53%

Bagging 00.71% 31.90% 13.10% 11.99% 19.84% 06.99%

SVM 08.24% 16.44% 09.52% 14.52% 10.52% 13.71%

CART 00.87% 31.28% 14.37% 10.92% 24.98% 05.47%

LR 04.43% 21.85% 06.73% 19.32% 11.43% 14.45%

RF 00.51% 29.96% 10.54% 14.07% 22.82% 05.95%

NN 01.47% 26.10% 09.68% 14.71% 26.90% 04.35%

NB 03.90% 22.58% 11.67% 13.46% 17.50% 07.92%

BART 00.75% 29.96% 10.55% 13.78% 25.08% 05.15%

threshold for end users.

I set 0.75 to θ where MLBDMs would many sites as legitimate, rather than phishing.

If an end user of the MLBDMs-capable system could not check the padlock icon by his

or herself, θ decreased from 0.75 to 0.50. If the user cannot, then theta also decreases

0.25. The system would tent many sites as phishing.

Within the preliminary algorithm, I calculate the false positive rates and false

negative rates given theta was 0.75, 0,5, and 0.25 as shown in Table 8.2.

In order to verify the reason-ability of this algorithm, I will perform a subject

within study. At first, I check the ability of each subject and calculate threshold for

each subject. I then let them to browse some phishing sites or legitimate sites by

using the optimal threshold. I also let some of them to browse the sites by the normal

threshold, 0,5, instead of using my algorithm. Next, I ask them to answer if they

complain for the false positives and/or if they feel fear for the false negatives. Finally,

I compare the results between 2 types of subject groups.

8.2 HumanBoost

Essentially, the boosting algorithms assign high weight to a classifier which correctly

label a site where other classifiers labeled incorrectly, as I checked in Chapter 6. Imag-
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Table 8.3: Conditions in each site
# Web site Real Lang Description

/ Spoof

1 Live.com real EN URL (login.live.com)

2 Tokyo-Mitsubishi UFJ spoof JP URL(www-bk-mufg.jp)

3 PayPal spoof EN URL (www.paypal.com.%73%69 ... %6f%6d)

(URL encoding abuse)

4 Goldman Sachs real EN URL(webid2.gs.com), SSL

5 Natwest Bank spoof EN URL(onlinesession-0815.natwest.com.esb6eyond.gz.cn)

(Derived from PhishTank.com)

6 Bank of the West spoof EN URL (www.bankofthevvest.com)

7 Nanto Bank real JP 3rd party URL (www2.answer.or.jp), SSL

8 Bank of America spoof EN URL( bankofamerica.com@index.jsp-login-page.com )

(URL scheme abuse)

9 PayPal spoof EN URL (www.paypal.com) but first a letter is

a Cyrillic small letter a (U+430) (IDN abuse)

10 Citibank spoof EN URL(IP address)

11 Amazon spoof EN URL (www.importen.se), contains amazon in its path

(Derived from PhishTank.com)

12 Xanga real EN URL (www.xanga.com)

13 Morgan Stanley real EN URL (www.morganstanleyclientserv.com), SSL

14 Yahoo spoof EN URL(IP address)

15 U.S.D of Treasury spoof EN URL (www.tarekfayed.com)

(Derived from PhishTank.com)

16 Sumitomo Mitsui Card spoof JP URL (www.smcb-card.com)

17 eBay spoof EN URL (secuirty.ebayonlineregist.com)

18 Citibank spoof EN URL (シテイバンク.com)

( is pronounced “Shi Tei Ban Ku”, look-alike

“CitiBank” in Japanese Letter) (IDN abuse)

19 Apple real EN URL (connect.apple.com), SSL,

popup warning by accessing non-SSL content

20 PayPal spoof EN URL ( www.paypal.com@verisign-registered.com )

(URL scheme abuse)

ine if user’s trust decision can be treat as a classifier. AdaBoost would cover users’

weak points by assigning high weights on heuristics that can correctly judge the site

where a user is likely to misjudge. In other words, I use user’s trust decision as new

heuristic.

As my pilot study, in November 2007, I performed a subject-based test by showing

legitimate enterprise web sites and emulated phishing sites. I called 10 subjects who

belonged to Nara Institute of Science and Technology (NAIST), all of them were male,

3 of 10 had received an M.Eng degree in the last 5 years, and the rest of them were

master’s degree students.

Similar to the typical phishing IQ tests performed by Dhamija et al. [38], I con-

structed my dataset by preparing 14 emulated phishing sites and 6 legitimate ones, all
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Table 8.4: The detection result by each subject
# S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 #Right #Wrong

1 F F 8 2

2 F F 8 2

3 F 9 1

4 F F F 7 3

5 F F 8 2

6 F F F F 6 4

7 F F F F 6 4

8 10 0

9 10 0

10 F 9 1

11 F 9 1

12 F F 8 2

13 F F 8 2

14 F 9 1

15 F 9 1

16 F F F 7 3

17 F F F 7 3

18 10 0

19 F F F F F 5 5

20 F 9 1

of which contained web input forms on which users could input their personal infor-

mation such as a pair of user ID and password. Some phishing sites were derived from

actual phishing sites according to a report from Phishtank.com. Other phishing sites

were emulated phishing sites that were set up by phishing subterfuges [26, 27, 30] to

induce subjects to input personal information.

In my test, I told them to browse the web sites freely. I did not prohibit subjects to

access web sites that were not listed in Table 8.3. So, some subjects inputted several

terms into search engines and compared the URL of the site with the URLs of those

listed in Google’s search result pages. As an environment for subjects to browse webs

sites, I prepared Internet Explorer (IE) version 6.0 on Windows XP. I also configured

IE to display IDN because some of the emulated phishing sites employed IDN spoofing

techniques [29]. The detection results by each subject are shown in Table 8.4. In

addition, “#” denotes the number of the web site in Table 8.3, S1 - S10 denote ten

subjects, the letter “F” denotes that a subject failed to judge the web site, and empty

denotes that a subject succeeded in judging correctly.

Next, I test AdaBoost-based detection methods. In the test, I used 8 heuristics
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Figure 8.1: Error Rate in HumanOnly, AdaBoost and HumanBoost

described in Chapter 5, and define the number of iteration set to 1. I also employ

4-fold cross validation to average the result. The result showed the average training

error rate in AdaBoost-based detection methods was 20.0%.

I then test HumanBoost. I let AdaBoost to test by using both user’s trust decision

and 8 heuristics, as shown in Figure 8.1. By comparing the case of HumanBoost with

the case of HumanOnly, which denotes Human without AdaBoost, the error rate was

lesser or equal in almost all cases. The average error rate in the case of HumanBoost

was 9.5%, whereas the average error rate in the case of HumanOnly was 19.0% and

that in the case of AdaBoost was 20.0%,

However, I found that a notification method to users is a significant problem on

HumanBoost. In my pilot study, I showed 10 sites for a subject at first, then let

AdaBoost study from the 10 sites in supervised-learning manner. When the subject
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judge later 10 sites, then showed that the detection result using 9 heuristics, that is

, his past trust decision and existing 8 heuristics. I observed that subjects did not

change their trust decision in almost of all cases. After my experiment, I asked 4

subjects the reason that they ignored the detection messages. All of them answered

that they trusted their own decision rather than system prediction. In view of this,

detection message may be shown before a subject finished judging.





Chapter 9

HTTP Response Sanitizing

In this chapter, I discuss how to inform end users that they are just visiting phishing

sites. Based on the detection result, phishing prevention systems can inform users to

avoid browsing phishing sites. Some systems indicate in some portion of web browser

and/or show alerting window by interrupting users’ browsing. However, end users

may distrust the system as long as the detection system sometimes makes mistakes

and identifies legitimate sites as phishing sites. Accordingly, users would ignore the

detection result.

Apart from indicators, proposed countermeasures against phishing attacks are cat-

egorized as compulsory blocking. Compulsory blocking is usually employed in appli-

cation firewall [107,108], and can filter whole suspected web pages regardless of users’

intention or wrong behavior. The issue on compulsory blocking is that users have to

sacrifice their convenience when a system identifies a legitimate site as phishing. A

user may complain when a legitimate site is blocked by compulsory blocking due to

the misjudgment by the detection algorithm.

I find that such system is needed that (i) can prohibit users to ignore the detection

results and (ii) can also reduce users’ inconvenience arising from false positive errors.

For (i), application firewalls is available. For (ii), I propose a method for countermea-

sure against phishing, which I named HTTP Response Sanitizing (HRS). Instead of

blocking the entire web content, HRS removes the HTML tags of web content which

may generate input forms, and pads with a warning message as a substitute for the

removed input forms. In this paper, I refer to this action of removing and padding as

“sanitizing”.
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In the context of Cross Site Scripting(XSS), a sanitizing method is often employed.

This method converts special characters to safe ones, since special characters may

lead to unexpected actions. For example, sanitizing on XSS replaces “〉” with “&gt;”.

HRS sanitizes an HTTP response. Different from the sanitizing in XSS, HRS replaces

dangerous parts of an HTTP response with warning messages.

A phishing site sanitized by HRS is always safe for browsing because it carries no

input form for personal information. Even if false positive errors occur in detecting

phishing sites, HRS removes only the input forms and users can browse the rest of the

web content. Compared to compulsory blocking, the user’s inconvenience is reduced.

9.1 Target of sanitizing

At first, I have to define what parts of an HTTP response are “dangerous”. I defined as

“dangerous” those data which generate an input form where a user can input personal

information. According to this definition of “dangerous”, I surveyed what kind of data

in the web page generate an input form which should be sanitized.

As the result of the survey, the various types to be sanitized were seen to be:

• FORM tags

Web input forms are typically composed of several HTML tags, as shown in

Table 9.1. <form> and </form> tags state that there are web input forms. Other

tags such as <input> are components of a web input form.

• Active scripts

Active scripts, as shown in Table 9.2, are used to display dialog boxes where

users can input information or are used to generate some kind of web content

dynamically. Essentially, the <script> tag is used to describe active scripts.

Without using a <script> tag, phishers can describe script in event handlers

such as onClick and onMouseOver, for example.

Regarding the latest version of Internet Explorer(IE), both expression and url

functions in Cascading Style Sheet (CSS) enable almost all tags to take a function

equivalent to active scripts. These functions are original extensions of IE; how-

ever, I assume that they could be the targets of sanitizing because IE is widely

used.
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Table 9.1: FORM Tags to be sanitized

<form> <input>

<textarea> <select>

Table 9.2: Tags, event handlers and CSS for Active Scripts to be sanitized

<script> <style> onclick

ondblclick onkeydown onselect

onkeypress onkeup onmousedown

onmouseup onmouseover onmouseout

onmousemove onload onunload

onfocus onblur onsubmit

onreset onchange onresize

onmove ondragdrop onabort

onerror expression url

HRS sanitizes all cases of active scripts by exploring tags, event handlers and

CSS.

• Active content

Phishing sites can be composed of active content such as Active X, Adobe Flash,

Java Applet, and so on. Although HRS aims to remove only a bare minimum of

web content, it is difficult to remove any input form involved in active content

because active content is generally formatted in binary code, instead of being

written in ASCII text. Hence, HRS must remove active content in order to avoid

its abuse by phishers.

HRS also sanitizes the tags shown in Table 9.3, which can be loaded into active

content web pages. HRS can also detect that users are browsing active content

by watching a Content-Type field in an HTTP response header.

• HTTP headers

HRS sanitizes HTTP headers shown in Table 9.4, which can popup an input form

to ask users to input ID and a password.
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Table 9.3: Active Content Tags to be sanitized

<object> <applet> <embed>

Table 9.4: HTTP Headers to be sanitized
401 Unauthorized

402 Payment Required

407 Proxy Authentication Required

WWW-Authenticate

9.2 HRS Algorithm and Implementation

Here, I consider how to sanitize the “dangerous” data mentioned in Section 9.1

on an HTTP response. Algorithm 2 shows the pseudo code of my designed prototype

HRS implementation. HRS is very simple, taking only 20 steps.

At first, HRS checks if the type of HTTP header matches one of the types referred

to in Table 9.4. Next, HRS verifies whether the content is active content or not. In

prototype implementation, I checked the content type according to MIME type [109–

111]. After checking the HTML header and the content type, HRS tries to replace

“dangerous” HTML tags or active scripts in the HTML text.

Figure 9.1 and 9.2 show an example of a web page sanitized by our HRS imple-

mentation. HRS alerts users to the “dangerous” parts of a sanitized web page with

warning messages shown in Figure 9.2. The warning messages on sanitized pages are

useful, when browsing, for identifying malicious intent.

9.3 Security Verification

The safety provided by HRS is in sanitizing to prevent leaks of personal information.

To verify the sanitizing function of HRS, I used my prototype implementation of HRS

and performed safety verification with 100 actual phishing sites.

I also implemented an HRS function as an ICAP [112] module incorporating to

Squid [113]. Notice that the server could not identify a phishing or not; It only sanitized

the content. Within my prototype implementation, I browsed 100 phishing sites from

registered phishing sites reported on Phishtank [18] reported in April 2007, according

to the following requirements; a phishing site which (i) can be still browsed (has not
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Algorithm 2 HRS Algorithm
1: procedure HRS

2: SC points httpResponse.httpStatusCode

3: HC points httpResponse.httpContent

4: if SC includes MALICIOUS HEADER then

5: generate SANITIZED HEADER

6: replace SC to SANITIZED HEADER

7: end if

8: if HC includes ACTIVE CONTENT then

9: remove ACTIVE CONTENT from HC

10: end if

11: repeat {search for input-form in HC}
12: for all place where input-form is found do

13: generate SANITIZED MESSAGE

14: replace input-form to SANITIZED MESSAGE

15: end for

16: until all input-form are checked

17: return httpResponse

Figure 9.1: Before HRS Figure 9.2: After HRS

expired), (ii) looks like a well known legitimate website, and (iii) is easily distinguished

as a phishing site by its URL.

As a result of this verification, I confirmed that HRS sanitized all input forms on

each phishing site and no personal information could be leaked. Hence, I concluded that

the safety provided by HRS is at the same level as the safety provided by compulsory

blocking.

9.4 Overhead of sanitizing

In this section, I evaluated the processing overhead of HRS. The processing overhead is

incurred when HRS-capable proxy servers are sanitizing HTML content. My test-bed
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Figure 9.3: Overhead of sanitizing

environment was comprised of a client host, a web server host, and an HRS-capable

host.

I also tried to implement HRS in Privoxy [114]. I implemented an HRS-capable

proxy by adding only 60 lines to 37,449 lines of Privoxy. I prepared GNU Wget [115]

HTTP client program in the client host, that ran Linux 2.4.22 with 1.7GHz Celeron

processor and 256MB RAM. I also prepare Apache [116] HTTP server in the server

host, that ran FreeBSD 4.11 with 800MHz Pentium III processor and 256MB RAM.

HRS-capable server ran on a FreeBSD 4.11 host with 1.8GHz Pentium processor and

512MB RAM.

Figure 9.3 showed the processing overhead where y axis denotes response times.

The target page was 10K bytes, and contained 13 tags to be sanitized. 1% of top and

1% of bottom data are omitted for accuracy. I assumed that pattern A showed the

processing overhead for phishing site, so that when the client used HRS-capable proxy

and sanitizing was needed. Also, I assumed that pattern B showed the processing over-

head for the legitimate sites, so that the client used HRS-capable proxy but sanitizing

is not needed. Pattern C showed that the client did not use HRS-capable proxy.
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Figure 9.4: Overhead of sanitizing in increasing the content size

The processing overhead for the phishing site was 3.59 millisecond, which was

obtained by subtracting from the average of pattern A to the average of pattern C.

I considered the 3.59 millisecond of overhead not to be critical, because it was not

sensible and there were too many factors of long delays on the Internet. On the other

hand, the processing overhead for the legitimate site was 1.45 millisecond, which was

obtained by subtracting from the average of pattern B to the average of pattern C. In

order to evaluate the performance overhead of the increasing content size, I changed

the content size from 10Kbytes to 100Kbytes. The result was described in Figure 9.4.

The processing overhead for phishing was much higher Figure 9.3, and the average of

overhead for phishing site was 43.37 millisecond, otherwise the average of overhead for

the legitimate site was 1.38 millisecond. It assumed that the performance of users’

browsing would penalize when users visit phishing sites.
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Table 9.5: Comparison among countermeasures (to phishing sites)

Admit users to Admit users to browse Robustness against

result of action ignore the action ? phishing site? phishing

Warning popup warning message yes yes (original page) weak

Compulsory drop original page no no (report page) strong

Blocking and report the result

HRS sanitize original page no yes (sanitized page) strong

Table 9.6: Comparison among countermeasures (to legitimate sites)

Admit users to Admit users to browse loss of the

result of action ignore the action? legitimate site? service

Warning popup warning message yes yes (original page) nothing

Compulsory drop original page no no (report page) everything

Blocking and report the result

input form

HRS sanitize original page no yes (sanitized page) active content

proper page design

9.5 Comparison among countermeasures

Here, I compared HRS with other countermeasures against phishing attacks. Table 9.5

showed the results of applying each countermeasure to the phishing sites, and Table 9.6

presented the results of applying each countermeasure to the legitimate sites. Accord-

ing to Table 9.5, HRS was as safe as compulsory blocking. A warning was not as safe

as other methods because it allows user to choose whether to continue to browse the

page or not. When each countermeasure was applied to legitimate sites, though both

HRS and compulsory blocking interfere with user’s convenience, HRS provided more

convenience than compulsory blocking, as shown in Table 9.6.
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Development of MLBDM-capable

systems

In this chapter, I discuss the development of MLBDM-capable phishing prevention

systems. In order to clarify the discussion, I show the stakeholders of the system and

the data flow diagram in the system. I then introduce several forms of implementation

for the system.

10.1 Stakeholders of the system

As I mentioned in Section 3.1, the stake holders of detecting phishing sites are web

client developers and security service providers. To support the explanation, I show

how victims disclose personal information as shown in Figure 10.1. Generally, victim’s

activities can be divided into several phases as follows:

1. A web user operates a web browser to show particular web content. The URL of

the content has already given via phishing email, and so on.

2. A web browser sends an HTTP request to a web server, and a web server receives

it.

3. A web servers process the request. Some phishing sites are static content such

as HTML files, and some others are dynamic content such as CGI, PHP and so

on.
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Figure 10.1: Phases of Users’ browsing

4. A web server sends an HTTP response to a web browser, and a web browser

receives it.

5. A web browser renders the response, and appears to the user.

6. A web user browses web content. In addition, phases 2, 3, 4 and 5 are repeated

until the web browser downloads all elements in the content or the web browser

decides timeout.

7. A web user enters their personal information to the displayed content.

8. A web browser HTTP requests involves the user’s secret.

Notice that phishing sites are often hosted in botnet, therefore, web severs of the

site cannot be trusted; these servers are under the phishers’ control. In the view of

this, the system should work in phase 2, 4, 5 and/or 7.
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Figure 10.2: A data flow diagram for MLBDM-capable phishing prevention systems

Accordingly, the stakeholders of detecting phishing sites are web client developers

such as browser vendors, and trustworthy third parties placed in the Internet such

as security service providers. As a fact, existing anti-phishing solutions are usually

integrated in web browsers, and communicate with the trustworthy third parties. For

example, Internet Explorer 7.0 contacts a trust worthy third party (Microsoft) for each

web page, asking whether the page’s URL was or was not listed as a phishing site.
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10.2 Data flow in the system

In this section, I explain the data flow for MLBDM-capable systems as shown in

Figure 10.2, where an operation is surrounded by an eclipse, data required for the

operation is surrounded by a rectangle.

• Maintaining a dataset

An MLBDM-capable system needs a dataset contains both phishing sites and

legitimate sites. It is also necessary to maintain the dataset by removing sites

which are not phishing sites but registered as phishing, as I explained in Sec-

tion 7.7.3.

• Learning from the dataset

An MLBDM-capable system learns from the dataset with machine learning tech-

niques to construct an algorithm for the detection of phishing sites. The system

employs at least 8 heuristics described in Chapter 5. Additionally, the system

requires the users’ past trust decision if the system supports HumanBoost.

• Detecting the issued sites

Based on the learned algorithm, an MLBDM-capable system checks if a site

where a user is just visiting is phishing or not. The system analyzes the site with

heuristics, calculates the likelihood of being a phishing site, and compares the

likelihood with the discrimination threshold. Additionally, the systems should

manage the optimal discrimination threshold for each web user, as I mentioned

in Section 8.1.

• Taking countermeasures

An MLBDM-capable system takes approximate countermeasure such as Warning,

HTTP Response Sanitizing, and Compulsory Blocking according to the detection

result.

I assumed that maintaining a dataset should be performed by a security service

provider (SSP). If web clients attempt to maintain a dataset, numerous web clients

crawl phishing reported sites; the load of such sites would increase seriously. Con-

versely, the load of the phishing reported sites would be marginal if a small number

of the SSP crawl the Phishtank.com. In the view of this, this operation should be

performed by the SSP.
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There are pros and cons between a web client and an SSP when learning is per-

formed. While the SSP maintains the dataset, a web client obtains the dataset from

the SSP for learning. Empirically, machine learning algorithms require computational

resources, whereas some web clients such as handheld devices or mobile phones have

limited resources. However, the SSP should store the users’ past trust decision to

support HumanBoost.

I also found that there are also advantages and disadvantages between a web client

and an SSP on detecting phishing sites. In order to check the issued site with heuris-

tics, the system requires resources such as memory, processing speed, and bandwidth.

Basically, the SSP cannot analyze the issued site when the issued site is encrypted by

SSL. In this case, a web client provides decrypted content to the SSP for the detection.

When the system focuses on novice users, taking countermeasures should be per-

formed by an SSP. A web client is usually controlled under a web user who is attracted

by phishers; they can ignore the warning and/or stop the detection system. In order to

enforce the detection results, the SSP should operate transparent HTTP proxy in the

web user’s ISP. Regardless of both the users’ intention, the web traffic can be always

forced to pass through a transparent HTTP proxy.

10.3 Forms of implementation

Based on the explanation in Section 10.1 and 10.2, I introduce 3 forms of implementa-

tion for the MLBDM-capable phishing prevention systems, named an SSP-side model,

a client-side model, and a collaborative model.

Within the SSP-side model, both learning and detection are performed in the SSP.

The advantage of this model is that the model doe not require delivering the dataset

and/or the detection algorithm to a web client. This model also does not require

computational resources to each web client. However, a web client must contact the

SSP-side implementation of the system asking whether a site is phishing or not. If the

number of users is numerous, the load of the system would seriously increase. To avoid

the heavy load, it is useful to store the detection results of the system and the check

results of each heuristic. Additionally, the SSP performs N times of learning where N

is the number of users in the case of HumanBoost.

Conversely, a client-side implementation performs both learning and detection in

the web client. Basically, user oriented information such as past trust decision and
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optimal threshold should not be shared with third parties. In comparison to the SSP-

side implementation, a web client can detect phishing sites regardless of using SSL and

a web client does not contact to anyone while users’ browsing. However, the system

requires bandwidth and memory resources for obtaining the dataset, computational

resources for learning from the dataset.

The feature of the collaborative model is that learning and detection are performed

by different stakeholders, in respectively. For example, imagine if the learning is per-

formed in an SSP and the detection is performed in a web client. In this model, a

web client obtains the detection algorithm which is created by machine learning from

the SSP. The system also calculates the likelihood of being a phishing site, and then

compares the likelihood with the threshold in the client-side. Accordingly, the sys-

tem does not require contacting to SSP while a web user is browsing. In addition, I

assumed that the size of the algorithm is not so big, as long as an MLBDM-capable

system employs 8 heuristics all of which output binomial variable; the combination of

explanatory variables are only 256 (= 28) patterns.

Accordingly, I considered that forms of implementation should be selected after due

consideration of both the system resources and the set of the heuristics. The SSP-side

model would be suitable for thin clients such as handheld devices, and the client-side

model would facilitate to develop HumanBoost. Although there are pros and cons

between these 2 models, the collaborative model would be available for reducing both

the client load and the number of queries sent toward the SSP.
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Conclusion

In this dissertation, I presented a machine learning approach for detecting phishing

sites. This dissertation addressed the problems faced to phishing. The issues included

how to support for end users to make trust decision, how to detect the phishing sites to

inform the users, and how to improve the detection accuracy. Unfortunately, URL fil-

tering methods could not detect unreported phishing sites. Conversely, heuristics-based

solution could deal with such sites whereas the detection accuracy was not so high.

For improving the accuracy, I proposed machine learning-based methods for detection

of phishing sites. I tested machine learning algorithms, namely AdaBoost, Bagging,

Support Vector Machines (SVM), Classification and Regression Trees (CART), Logis-

tic Regression (LR), Random Forests (RF), Neural Networks (NN), Naive Bayes (NB)

and Bayesian Additive Regression Trees (BART).

In my preliminary evaluation, I checked if machine learning techniques were avail-

able for detection of phishing sites. At first, I employed AdaBoost, one of the typical

machine learning algorithms, to combine 8 heuristics presented by Zhang et al. [19],

namely, Age of Domain, Known Images, Suspicious URL, Suspicious Links, IP Ad-

dress, Dots in URL, Forms, and TF-IDF-Final heuristics. Next, I prepared 2 datasets;

one is used for training, and the other is used for testing. Each dataset was com-

posed of 50 URLs of phishing sites reported on Phishtank [18] and the same number

of legitimate sites. In addition, the URLs of the testing dataset were different from

those of the training dataset. I let AdaBoost to study from the training dataset in

supervised-learning manner. Then I measured the detection accuracy by using the

testing dataset. I also let an existing method to study from the training dataset and
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measured the accuracy from the testing dataset. The result showed that true positive

rate was 94.0%, false positive rate was 0.0%, and accuracy was 97.0% in the case of

AdaBoost, all of them performed better than CANTINA where true positive rate was

92.0%, false positive rate was 4.0%, and accuracy was 94.0%. Moreover, I modified

both heuristics and dataset, and then I found that the overfitting problem was the

weak point of AdaBoost.

To thwart the overfitting problem, I attempted to increase the number of samples

in dataset. I implemented 8 heuristics to construct automated systems for analyzing

phishing sites. My automated system crawled Phishtank.com periodically and analyzed

newly reported phishing sites. By using such system, my dataset composed of 1,500

phishing sites reported during November, 2007 – February, 2008, and the same number

of legitimate sites. I also checked if the 1,500 phishing site was verified as phishing

sites by registered users’ of Phishtank.com. Without such kind of verification, 223 sites

were not verified as phishing sites, but were regard as phishing sites in my dataset. I

removed these 223 sites and add other phishing sites which were verified as phishing

sites and were reported in February, 2008. All of the sites were checked by 8 heuristics.

By using the dataset, I employed 9 machine learning algorithm to combine heuris-

tics. At first, I decided my metrics for my performance evaluation. Because I assumed

that the detection method must be accurate and must have adjustment capability, I

used f1 measure, error rate and AUC as performance metrics. Next, I adjusted the pa-

rameters for MLBDMs to minimize the error rate in training. In addition, I performed

4-fold cross validation 10 times to average out the result.

The result showed that the highest f1 was 0.8777 in AdaBoost, followed by SVM(0.8770),

BART(0.8765), CART(0.8755), Bagging(0.8751), NN(0.8751), RF(0.8749), NB(0.8735),

and finally LR(0.8609). The lowest error rate was 11.96% in AdaBoost, followed by

SVM(12.03%), BART(12.19%), NN(12.21%), RF(12.34%), NB(12.58%), Bagging(12.60%),

CART(12.69%), and finally LR(13.08%). The lowest false positive rate was 06.73% in

LR, and the highest was 14.37% in CART. The highest AUC was 0.9543 in AdaBoost,

followed by BART(0.9540), RF(0.9539), LR(0.9523), NN(0.9518), Bagging(0.9502),

NB(0.9486), CART(0.9449), and finally SVM(0.9180). Additionally, I plotted the ROC

curve and found that all MLBDMs could achieve both high true positive rates and low

false positive rates. I also compared MLBDMs with CANTINA. The result showed that

AdaBoost, Bagging, CART, LR, RF, NN, NB, and BART-based detection methods

outperformed than the existing method.
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Next, I measured the performance by using another dataset which contained mod-

ern phishing sites reported on Phishtank.com during August, 2008 – November, 2008.

I also let MLBDMs to train from the dataset contains phishing sites reported during

November, 2007 – February, 2008, and test with that contains newly created phishing

sites reported during January, 2009 – February, 2009. By comparing with the tra-

ditional detection method, AdaBoost, Bagging, LR, RF, NN, NB, and BART-based

detection methods outperformed than the existing method.

I also measured the effectiveness of cleansing dataset. I checked 1,500 URLs of

phishing sites in my old dataset reported in November, 2007 – February, 2008, which

has not been cleansed. This dataset contained 1,277 phishing sites, 223 unknown

sites, and 1,500 legitimate sites. The result could be summarized that the highest f1

measure was 0.8581, the lowest error rate was 14.15%, the highest AUC was 0.9342,

all of which were observed in the case of AdaBoost. By comparing between before

and after cleansing dataset, I found that performance can be improved after cleansing.

Thus, I assumed that such verification is important.

Moreover, I checked if MLBDMs can incorporate newly developed heuristics. To

deal with phishing attacks, both developing new heuristics and calculating the like-

lihood of being a phishing site are important. In the view of this, I also tried to

make new heuristics and introduced the Old OS heuristics and the Country Mismatch

heuristics. Otherwise my 2 heuristics were not so accurately, MLBDMs can incorporate

these heuristics into the existing 8 heuristics. To simulate the effectiveness of newly

created heuristic, I compared the performance with and without using TF-IDF-Final

heuristics. By comparing between before and after adding new heuristics, I found that

the performance increased in all cases by adding new heuristics. Thus, I predicted that

MLBDMs can incorporate new heuristics.

Based on the results, I then discussed several utilization methods for MLBDMs. I

found that if novices could accept 25.49% of false positive errors, 95.00% of phishing

sites would be blocked as phishing sites. Similarly, if security experts could accept

20.49% of false negative errors, 95.00% sites of legitimate sites would be browsed

normally. I also explained my preliminary algorithm for deciding the discrimination

threshold of MLBDMs. In short, changing the threshold can provide different strategies

against phishing.

Next, I showed the another approach, named HumanBoost, which aimed to cover

the weak point of human-being by using machine learning techniques. I prepared 20
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sites which were composed of 14 URLs of emulated phishing sites and 6 URLs of

legitimate sites. I called 10 subjects and let them to classify if the site seems to be

phishing or not. By using users’ judgment as a new heuristic, I let AdaBoost to the

heuristic to combine the 8 heuristics. Finally, I measured the detection accuracy in

the case of AdaBoost-based detection method, the average error rate of subjects, and

the average error rate in the case of HumanBoost. My pilot study showed that the

average error rate in the case of HumanBoost was 9.5%, whereas the average error rate

of subjects were 19.0% and that in the case of AdaBoost was 20.0%.

My proposed HTTP Response Sanitizing (HRS) was a new countermeasure against

phishing. Instead of blocking whole web content, HRS only removed the dangerous

part in HTML tags, so the loss of convenience in the case of HRS would be lower than

that in compulsory blocking. The processing overhead for the phishing site was 3.59

millisecond. When I changed the file size from 10Kbytes to 100Kbytes, the processing

overhead increase to 43.37 millisecond. However, I confirmed that the performance of

users’ browsing would penalize only when the users visited phishing sites.

Finally, I discussed the development of MLBDM-capable phishing prevention sys-

tems. In order to clarify the discussion, I showed the stakeholders of the system and

the data flow in the system. I then introduced 3 types of implementation forms, named

a security service provider (SSP)-side model, a client model, a collaborative model. I

also assumed that forms of implementation should be selected after due consideration

of both the system resources and the set of the heuristics. The SSP-side model was

designed to reduce the client load by performing both learning and detection in the

SSP. The client-model was also designed to facilitate the development of the per-user

customized systems such as HumanBoost by performing learning and detection in the

web client. Although there are pros and cons between these 2 models, the collaborative

model was designed to cover their disadvantages; in the collaborative model, the SSP

performs learning for reducing the client load, and the client performs detection for

reducing the number of queries sent toward the SSP.

This dissertation has shown the countermeasures against phishing, strategies of

supporting end users to make trust decision, problems on detecting phishing sites,

proposed machine learning-based detection methods for detection of phishing sites,

utilization methods to MLBDMs, and development of MLBDM-capable phishing pre-

vention systems.

In summary, this dissertation has demonstrated that machine learning algorithms
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were available for detection of phishing sites. This dissertation has focused on detecting

of phishing sites with machine learning techniques. Finally, this dissertation has shown

the evaluation results which indicated that MLBDMs were feasible solutions against

phishing.

11.1 Recommendations for web sites aspect from

detecting phishing sites

In this section, I describe my recommendations for both the owners and the develop-

ers of web sites. Because my work focuses on detecting phishing sites with machine

learning-based techniques, my recommendations for web sites are also focusing on fa-

cilitating to distinguish between legitimate sites and phishing sites.

• Checking uploaded content in web space

I observed some phishing sites were hosted in free web spaces. Even if a site has

some advertisements injected by web hosting service provider, the site seems to

work as a phishing site. In the view of this, free web spaces should check uploaded

content. Otherwise, the number of phishing sites in such free web spaces would

increase.

• Removing “word formation” from legitimate websites

In linguistics, word formation is the creation of a new word. Word formation

is sometimes contrasted with semantic change, which is a change in a single

word’s meaning. However, such words might prevent natural language analysis

methods such as the TF-IDF-Final heuristics from distinguish phishing sites from

legitimate sites. If the terms were in heavy usage in the web page, these words

would be used for the lexical signature, because both TF values and IDF values

would be high. If the Google could not catch up the words, the sites would not

be appeared in higher ranks.

• Integrating domain names for legitimate enterprises

Many companies have various domain names as their assets; when they create

new products, they usually obtain the domain names oriented to the product.

Phishers can abuse the habits of companies and assign such brand oriented do-

main names to phishing sites. It makes their sites look more convincing. In
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addition, the Age of Domain heuristic would not work correctly such newly cre-

ated brand.

• Avoiding active content for user authentication

Active content such as Adobe Flash, are available for authenticating web users. It

is meaningless for protecting web sites from phishing whenever phishers attempt

the man-in-the-middle attack. In the view of detecting phishing sites, it only

improves the barrier. Of course, using obfuscation techniques in HTML and/or

Script are also doing so.

11.2 Open issues

Toward my ultimate the goal, I found several open issues as follows:

11.2.1 Revealing all phishing sites

Currently, there is no formulated way to counter spear phishing. US-CERT only

reminds users that if you are not certain if an email request is legitimate, try to verify

it by contacting the company directly [117].

To asses whether or not heuristics-based solutions can deal with spear phishing

sites, I must catch up these sites. Otherwise it is difficult to reveal the spear phishing

sites, several approaches are available.

One is discovering new phishing sites with a web-crawler which equips the function

of MLBDMs. Aside from phishing, a crawler-based detection of spywares were studied.

Moshchuk et al. [118] presented the top 10 spyware programs and sites with their

crawler-based detection method. These studies are useful to detect phishing sites. If a

site is a determinately phishing site and the site is unreported, I assume that the site is

spear phishing site. Because the URLs of spear phishing sites are revealed to selected

victims, this web-crawler should start from web mailers and/or web-based messaging

services, all of which were used for attraction to spear phishing by phishers.

The other is luring phishers to sending spear phishing emails. If I could receive

spear phishing emails, I can easily catch up the spear phishing sites. HoneySpam [76]

would facilitate to do so, however, it is not enough because phishers want to know the

victims’ banks and so on. I would attempt to forge fictional persona, and to expose

fake personal information along with the persona.
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The distinct approach is developing MLBDMs-capable web browsers. The browsers

will display spear phishing sites as long as numerous web users employ such web

browsers. Even if MLBDMs cannot fully grasp that the site is spear phishing sites

when users are just browsing, it would become clear in future. The MLBDMS-capable

web browser should expedite the forensic of both web browser and web users’ activity.

In addition, all of the sites were written in English because of facilitating to compare

with the traditional detection methods. However, there are several phishing sites

written in Japanese. I assume that several localization for heuristics must be studied.

11.2.2 Collaboration with other research fields

In Section 3.1, I illustrated 5 phases of phishing attacks and corresponding counter-

measures. I would attempt to incorporate these countermeasures into MLBDMs. For

example, if an email is suspected a phishing email, the detection methods for phish-

ing sites should perform strictly. Constructing interconnect architecture with other

countermeasures is my open issue.

I also assume that solving one security issue also contributes to solve other security

issues. Because many phishing sites are hosted on bot-installed PCs [24], studies of de-

tecting bots would help detecting phishing sites. Bots have also function of organizing

DoS attacks, virus propagation, sending mails such as SPAM, virus attached-emails,

and phishing emails. In the view of this, I have already undertaken to detect virus

emails by using AdaBoost [25]. I would continue these research and incorporate them

into detection algorithms against phishing.

11.2.3 Research of human factor

In this dissertation, I assumed that phishing prevention systems should provide differ-

ent strategies for each user. Thus, I employed AUC as a performance metric. I also

discussed the optimal threshold for each user and explained the prototype algorithm

for deciding the threshold. The rest of problems were to assess the algorithms by

performing subject within test and checking the users’ safety and convenience.

I also continue to investigate if users’ past trust decision is used as a new heuristic

in a lesser biased way. If I could call many subjects in a filed test, the bias would

be thwarted. I positioned my laboratory test as a first step, and would challenge

to perform a field test in a large-scale manner. In order to make a field test be a
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successful, my experiment should be designed to attract public attention and should

prepare compensation for time cost while subjects judge whether a site is phishing or

not.

Per user customization against phishing sites is my open issue. In my preliminary

experiment for HumanBoost, I performed Phishing IQ test with subjects because many

earlier research also had employed such fashion. However, I assumed that a person

does not often enter his/her personal information to the site where the person has no

experience to use the site. Imagine if a person has never use PayPal, he/she would

not disclose secret to phishing sites which mimicked PayPal. I assumed that the user

would not complain when the sites which seem to be PayPal are labeled as phishing.

Such kind of information gives a hint to detect phishing sites for protecting particular

people.

11.2.4 Research of phishing prevention systems

In this dissertation, I developed 2 heuristics but the effectiveness of these heuristics

is marginal. I assumed that feature vector extraction for the automatic classification

of phishing sites is available. I also assumed that detecting confusing samples in my

dataset would be useful to establish new heuristics. Even if the effectiveness of new

heuristics is marginal, I confirmed that MLBDMs can incorporate new heuristics into

existing 8 heuristics.

My proposed HRS must sacrifice users’ convenience, but the loss of convenience

would be lower than compulsory blocking. However, I did not estimate the conve-

nience which could be saved by HRS. Unfortunately, the modern web sites and/or web

applications such as Ajax-based applications, often use active scripts to transfer some

data to other sites. These sites would not be available whenever phishing prevention

systems label such sites as phishing.

I also explore the suitable phishing prevention systems for HumanBoost. The

system work after the user made trust decision, and monitor the trust decision by

verifying whether or not the user trust the site. The system should cancel the users’

data submission when HumanBoost identifies the site as a phishing site.
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