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Yuta Tsuboi

Abstract

It is not trivial to detect word boundaries for non-segmented languages such

as Japanese or Chinese. Although, statistical methods have been successfully

used for word segmentation tasks, they tend to perform poorly as the domain

changes because of differences in vocabulary and writing style.

In the first part of this thesis, we address word-boundary annotation which

is done only on parts of sentences. By limiting our focus on the crucial parts of

sentences, we can effectively create a training data for each new target domain

by using partial annotations. We propose a training algorithm for Conditional

Random Fields (CRFs) using partial annotations. It is known that CRFs are

well-suited to word segmentation tasks. However, conventional CRF learning

algorithms require fully annotated sentences. The objective function of the pro-

posed method is a marginal likelihood function, so that the CRF model can

handle the partial annotations.

The second part of this thesis describes an importance weighting approach for

domain adaptation. We propose a novel method that allows us to directly esti-

mate importance, which is the ratio of test and training densities, from samples.

An advantage of the proposed method is that the computation time is nearly

independent of the number of target input samples, which is highly beneficial in

word segmentation tasks with large numbers of unlabeled samples.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561205, March 17,
2009.
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Through experiments, we demonstrate that our approaches improve the per-

formance of statistical models on a domain adaptation task of Japanese word

segmentation.

Keywords:

Word Segmentation, Domain Adaptation, Conditional Random Fields, Partial

Annotation, Density Ratio Estimation, Covariate Shift Adaptation
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Chapter 1

Introduction

It is not trivial to detect word boundaries for non-segmented languages such as

Japanese or Chinese since the words are not separated by spaces. For example,

the correct segmentation of the Japanese phrase “切り傷やすり傷” (incised wound

or abrasion) is shown by the bottom row of boxes segmented by the solid lines

in Figure 1.1. However, there are several overlapping segmentation candidates,

which are shown by the other boxes, and possible segmentation shown by the

dashed lines.

In those non-segmented languages, natural language processing (NLP) ini-

tially requires word segmentation at the beginning, and the resulting segmented

sentences can be the input to subsequent linguistic analyzers, such as syntactic

parsing, and named entity recognition. These subsequent processes are highly

dependent on the results of the word segmentations, so errors in the word seg-

mentation task cause errors throughout the process and greatly degrade the per-

formance of NLP applications.

The decisions on the word segmentation require considering the context, so

simple dictionary lookup approach is not sufficient. Therefore statistical meth-

ods have been successfully used for Japanese Word Segmentation (JWS) tasks.

However, in practice, a statistical word segment analyzer tends to perform worse

with text from different domains. A major cause of errors is the occurrence of

unknown words. For example, if “すり傷” (abrasion) is an unknown word, the

system may accept the word sequence of “切り傷やすり傷” as “切り傷” (incised

wound), “やすり” (file), and “傷” (injury) by mistake. In addition, the boundary

1



切 り 傷 や す り 傷

cut

incised wound 

cut injury

abrasionor
file (or rasp)

infl. injuryinfl.infl.
pickpocket

Figure 1.1. An example of word boundary ambiguities: infl. stands for an inflec-

tional suffix of a verb.

agreement is even worse in Chinese [38].

One approach for domain adaptation is to use additional annotations for each

target domain. However, it is time-consuming to annotate all of the elements

in a sentence. It is much more efficient to focus on annotating certain parts of

sentences that include domain-specific expressions. In Chapter 3, we will de-

scribe the effectiveness of partial annotations in the domain adaptation task for

JWS. This motivated us to seek to incorporate such incomplete annotations into

a state-of-the-art machine learning technique. One of the recent advances in sta-

tistical NLP is Conditional Random Fields (CRFs) [37] that evaluate the global

consistency of complete structures for both parameter estimation and structure

inference, instead of optimizing the local configurations independently. This fea-

ture is suited to many NLP tasks that include correlations between elements

in the output structure. Previous work [36] showed CRFs outperform genera-

tive Markov models and discriminative history-based methods in JWS. However,

conventional CRF algorithms require fully annotated sentences. To incorporate

incomplete annotations into CRFs, we have extended the structured output prob-

lem. We also propose a parameter estimation method for CRFs using partial an-

notated corpora. The proposed method marginalizes out the unknown labels so as

to optimize the likelihood of a set of possible label structures that are consistent

with given incomplete annotations.

Since a large amount of unsegmented text tends to be available for target do-

mains, another approach for domain adaptation is the modification of statistical

2



models for going from a source domain to a target domain using these unanno-

tated samples of the target domain. In Chapter 4, we describe such a modification

technique, covariate shift adaptation. A situation where the input distribution

p(x) is different in the training and test phases but the conditional distribution

p(y|x) of output values remains unchanged is called covariate shift [56]. If we as-

sume covariate shift exists between source and target domains, we can play word

segmentation learning to minimize the segmentation error in the target domain

using segmented samples from the source domain. The key idea is weighting the

source domain samples by importance, which is the ratio of test and training

densities. We propose a novel method that allows us to directly estimate the

importance from samples without going through the hard task of density esti-

mation. An advantage of the proposed method is that the computation time is

nearly independent of the number of test input samples, which is highly beneficial

in recent applications with large numbers of unlabeled samples. The proposed

method is computationally more efficient than existing approaches but remains

comparable accuracy.

Through experiments, we demonstrate that our approaches improve the per-

formance of statistical models on a domain adaptation task of JWS.

3



Chapter 2

Related Work

1. Learning by Example

Many state-of-the-art NLP systems are based on some form of statistical learn-

ing [27], and Manning and Schütze [40] have provided a great introduction to its

use in NLP. Here, we briefly review supervised learning.

Let x ∈ X ⊂ ℜd be an input variable and y ∈ Y be an output variable.

In many NLP problems, supervised learning attempts to learn how to map an

input text x to an output y from examples. We call these examples the training

examples. In standard supervised learning settings, we assume that an example

(x, y) is drawn from independent identical distribution (i.i.d.) p(x, y). A common

approach for supervised learning is finding a model which minimizes the error of

the training examples, and we use this process as the training procedures in this

thesis.

2. Statistical Word Segmentation

The generative model of word sequences had been a common approach for statis-

tical word segmentation systems. Let x = (x1, · · · , xT ) be a character sequence

of length T and y = (y1, · · · , yW ) be a output word sequence of length W in this

section. In the generative model, the generation process of a sample (x, y), i.e. a

joint probability p(x,y), is estimated from the training examples. Since p(x,y)

4



is too complex to estimate directly from a limited number of examples, we usually

assume the Markov property so that the joint probability can be factorized as:

p(x, y) = p(x|y)p(y),

p(x|y) =
W∏
t=1

p(xit,··· ,jt |yt), (2.1)

p(y) = p(y1)
W∏
t=2

p(yt|yt−1), (2.2)

where xit,··· ,jt denotes a character subsequence making up the word yt. Equa-

tion 2.1 is called the emission probability and Equation 2.2 is called the tran-

sition probability. In the maximum likelihood procedure, these probabilities are

estimated from the relative frequencies in the training data. Once these proba-

bilities are estimated, we can predict the most probable word sequence for given

x using

ŷ = argmax
y

p(y|x) ∝ argmax
y

p(x,y).

Although there is exponential number of possible word segmentations, we can

efficiently find the best word segmentation ŷ by using a dynamic programming

procedure [42].

When this generative model involves unknown words that do not appear in

the training data, the most commonly used approach is a hierarchical model [43].

This hierarchical model includes the probabilities of an unknown word, UW,

defined as

p(yt = UW|yt−1)

p(xit,··· ,jt |yt = UW). (2.3)

In the same way as the transition probability of y, Equation 2.3 is factorized into

the product of p(xit |xi−1t
, yt = UW):

p(xit,··· ,jt |yt = UW) = p(xit |yt = UW)

jt∏
s=it+1

p(xs|xs−1, yt = UW)

All of these probabilities for the unknown words are estimated from the relative

frequencies in the training data where the infrequent words are replaced with

UW.

5
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Figure 2.1. Supervised structured output learning.

3. Structured Output Learning

One of the recent advances in statistical NLP involves using discriminative learn-

ing methods applicable to produce structured outputs, and many core NLP tasks

can now be interpreted as structured output tasks. In structured output learn-

ing, we assume the output y ∈ Y has the structure of elements y. For example,

part-of-speech (POS) tagging is the task of outputting the appropriate sequence

structure of the POS tags for a given input sentence. Syntactic parsing is also

considered as a task to output phrase structure trees. Again, we assume that an

example (x,y) is drawn from i.i.d. p(x,y). Figure 2.1 depicts a supervised proce-

dure for structured output learning in which (x,y) is represented by a graphical

model where X = {a, b, c} and Y = {A,B}.
The state-of-the-art approaches for structured output evaluate the global con-

sistency of the entire structures for both parameter estimation and structure in-

ference, instead of optimizing the local configurations independently. Starting

with Conditional Random Fields (CRFs) [37], those discriminative structured

output approaches have been applied to the NLP tasks that include correlations

6
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1.0
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( )1,p =yx

( )0,p =yx
x

( )xy |1p =

( )xy |0p =

Figure 2.2. Joint p(x, y) vs conditional distribution p(y|x). The solid lines denotes

the distribution of y = 0 and the dashed lines denotes that of y = 1.

between elements in the output structures [20, 53, 66, 51, 67].

The advantage of CRFs in the word segmentation task is that 1) they can

involve various kind of features compared with the N-gram models, and 2) they

can incorporate label interactions in the training phase.

First, a generative N-gram model [43] for word segmentation specifies a joint

distribution p(x,y) of input character sequences and word segmentations. How-

ever, the joint distribution can be complex because it includes the distribution

of input character sequences p(x). Therefore, it is not practical to involve the

overlapping features, such as the characters themselves and the character types,

to empirically estimate the generative N-gram models from the limited number

of given samples. The left graph of Figure 2.2 depicts a joint distribution of one

dimensional data where x = [0, 1] and y = {0, 1}.
In contrast, discriminative models, including CRFs, specify a conditional dis-

tribution of word segmentations given input character sequences, so that it does

not require the modeling of input features. The right graph of Figure 2.2 shows

a conditional distribution which is simpler than the joint distribution. Therefore,

we can design features freely without the assumption of feature independence.

For example, although the character boundaries between different character types

also tend to be word boundaries in Japanese, there are many exceptional cases.

The combination use of a character and its character types can handle both these

normal and exceptional cases.

7



Second, before CRFs were proposed, a discriminative classifier predicted for

each character boundary whether or not it was a word boundary. However, the

decisions at a character boundary t are correlated to the decisions at t − 1 and

t + 1, as shown in Figure 1.1. CRFs can naturally represent the correlations of

word boundary decisions by using label pairs as features, such as yt−1, yt.
1

In Chapter 3, we extend CRFs to deal with partial labels (annotations).

4. Domain Adaptation Techniques

Although Section 3 noted that the training example errors will be minimized in

learning procedures, we are not interested in the training set error, but the goal

of supervised learning is to finding a model which generalizes well for unseen

test data. In practice, we cannot assume identical distributions for the training

examples and test samples. Domain adaptation of the statistical models is the

learning problem where the data distribution in the source domain is different

from that of the target domain. Since domain adaptation is required in not only

in the word segmentation problem but also in many NLP problems, recently it

has started to receive a great deal of attention. At the same time, some kind of

domain adaptation problems have been addressed as different names within other

fields, such as covariate shift [55], sample selection bias [31], transfer learning [22],

and multi-task learning [9], and semi-supervised learning [65].

The problem settings for domain adaptation are different between each work.

In the NLP literature, there is a large amount of labeled data available in certain

source domain and a relatively large amount of unlabeled data available in various

target domain. In Chapter 4, we introduce an importance estimation method that

exploits the huge volumes of target domain data.

In addition, sometimes we also have a small amount of labeled data in a target

domain. To the best of our knowledge, most of the domain adaptation research

1Before CRFs were proposed, there are a discriminative model which incorporates label pair
features, called Maximum Entropy Markov Model (MEMM), had been proposed [69]. A MEMM
predicts the value of yt when the previous labels y1, y2, · · · , yt−2, yt−1 are given. Therefore,
MEMM has some drawbacks since it has a biased preference to a label pairs, as known as a
label bias problem [37], and it shows the different results between forward prediction models
and backward prediction models.

8



focuses on the training procedure in that sort of situation. A few studies in the

domain adaptation research have been conducted on the reduction of the labeling

effort in the target domain [16]. In relation to this kind of work, in Chapter 3 we

propose a training procedure for the structured output learning that incorporates

the efficient creation of labeled target domain data.

Although the complete description is beyond the scope of this thesis, we can

organize the existing work into several categories. The first line of work is based

on instance weighting. Jiang and Zhai proposed a general framework of instance

weighting for NLP and empirically showed that instance weighting is beneficial

for the domain adaptation of NLP [32]. They assign instance-dependent weights

to the loss function while minimizing the expected loss over the distribution of

the target data. However, they selected these weights with heuristics and did

not provide any theoretical background for weight estimation. In Chapter 4,

we provide a partial solution for the estimation procedure of weight estimation.

The second approach in the existing work involves the changes of feature repre-

sentation that minimize the expected losses in both source and target domains.

Blitzer et al. proposed a structural correspondence learning (SCL) algorithm

that finds a projected (low-ranked) feature space using the unlabeled data in the

source and target domain [12]. Ben-David et al. empirically showed that this

projected representation decreases the distance between the distributions of the

source and target domains [6], which are the important quantities for computing

the target domain error. Daumé III proposed a feature augmentation technique

that simply adds features for the source and target domains into the original

features[23]. This technique assumes that some labeled data for the target do-

main is available. Even if the classification rules are different in the source and

target domains, the weights of these augmented features will be learned correctly

for each domain. The third and last approach is maximum a posterior (MAP)

estimation approach in which we encode source domain knowledge into a prior

distribution of the model parameters [17].

9



Chapter 3

Training Conditional Random

Fields using Partial Annotations

1. Partial Annotations

Annotated linguistic corpora are essential for building statistical NLP systems.

Most of the corpora that are well-known in NLP communities are completely-

annotated in general. In domain adaptation situations, it is time-consuming to

annotate all of the elements in a sentence. Rather, it is efficient to annotate

certain parts of sentences which include domain-specific expressions. Lists of

new terms in the target domain are often available in the forms of technical

term dictionaries, product name lists, or other sources. To utilize these domain

word lists, Mori proposed a KWIC (KeyWord In Context) style annotation user

interface (UI) with which a user can delimit a word in a context with a single

user action [41]. In Figure 3.1, an annotator marks the occurrences of “すり

傷”, a word in the domain word list, if they are used as a real word in their

context. The “すり傷” in the first row is a part of another word “こすり傷”

(scratch), and the annotator marks the last two rows as correctly segmented

examples. This UI simplifies annotation operations for segmentation to yes/no

decisions, and this simplification can also be effective for the reduction of the

annotation effort for other NLP tasks. For example, the annotation operations for

unlabeled dependency parsing can be simplified into a series of yes/no decisions

as to whether or not given two words have syntactic dependency. Compared

10



感染、角膜のこ すり傷 、角膜潰瘍、

⃝ 皮膚に切り傷や すり傷 を負った場合

⃝ 泥まみれの深い すり傷 や、皮下深く

Figure 3.1. An example of KWIC style annotation: marked lines are identified

as a correct segmentation.

with sentence-wise annotation, the partial annotation is not only effective in

terms of control operations, but also reduces annotation errors because it does

not require annotating the word boundaries that an annotator is unsure of. This

feature is crucial for annotations made by domain experts who are not linguists. 1

We believe partial annotation is effective in creating corpora for many other

structured annotations in the context of the domain adaptations.

In addition to manual annotations, it should be possible to generate a partially

segmented text from a raw target domain text using heuristic rules. A simple rule

is segmentation using special symbol characters (e.g. commas, and HTML tags).

Some symbols such as commas 2 can be removed from a sentence without violating

its grammaticality. Careful selection of such symbols enables automatic partial

annotation of segmentation boundaries by detecting such symbols and removing

them from sentences. Examples of automatically annotated texts are shown in

Figure 3.2. The first row of Figure 3.2 depicts the generation of annotated text by

the rule deleting commas, and the second row of Figure 3.2 depicts the generation

of annotated text by the rule deleting an HTML link tag. In this examples, at

least, we know there exists word boundaries between two characters “け消”, “良

胃”, “てわ”, and “きさ” in the generated texts. Note that this rule annotates

only either the beginning or ending of words in many cases, and never annotates

non-word boundary positions. Thus, we can automatically annotate parts of

sentences without human hand.

In summary, compared with the complete annotations, it is easier to obtain

the partial annotations for the target domain.

1The boundary policies of some words are different even among linguists. In addition, the
boundary agreement is even lower in Chinese [38].

2Commas are optional and have a position flexibility in Japanese sentences.
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胸やけ、消化不良、胃のむかつきは…

胸やけ 消化不良 胃のむかつきは…

英語は空白によって

<a href=“../seg.htm”> わかち書き </a> される

英語は空白によって わかち書き される

Figure 3.2. Examples of rule annotations by symbols: The dashed lines denote

annotated positions.

2. Problem Formalization

In this section, we give a formal definition of the domain adaptation task of JWS

using partial annotations.

In this thesis we assume that the input is the sequence of character boundaries

and the output is the sequence of the corresponding labels, which specify whether

the current position is a word boundary.3

Let x=(x1, x2, · · · , xT ) be a sequence of observed variables xt ∈ X which

represent the context of the t-th character boundary, and y=(y1, y2, · · · , yT ) be

the sequence of label variables yt ∈ Y . For JWS, we define Y = {⃝,×} where

⃝ represents word boundary label and × represents non-word boundary. Then,

the supervised structured output problem for JWS can be defined as learning a

map X → Y .

Let L=(L1, L2, · · · , LT ) be a sequence of label subsets for an observed se-

quence x, where Lt ∈ 2Y − {∅} represents the label candidates for the t-th

position. The partial annotation at position s is where Ls is a singleton and

3Peng et al. defined the word segmentation problem as labeling each character as whether
or not the previous character boundary of the current character is a word boundary [45].
However, we employ our problem formulation since it is redundant to assign the first character
of a sentence as the word boundary in their formulation. In addition, Kudo et al. defined JWS
task as finding the correct label path from the morpheme lattice made by dictionary lookup,
and proposed to use CRFs for this task [36]. However, since the dictionary entries defines the
candidate label paths, candidate paths do not include unknown words. Therefore we need to
build some heuristic rules to generate unknown word candidate entries in the morpheme lattice.
On the other hand, our formulation do not require such heuristics to handle unknown words.
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切 り 傷 や す り 傷 の

partial annotation

{○,×} {○,×} {○,×} {○} {×}L

x

{×}{○,×} {○} {○,×}

Figure 3.3. An example of partial annotations.

the rest Lt̸=s is Y . For example, if a sentence with 6 character boundaries (7

characters) is partially annotated using the KWIC UI described in Section 1, a

word annotation where its boundary begins with t = 2 and ends with t = 5 will

be represented as:

L = ({⃝,×}, {⃝}, {×}, {×}, {⃝}︸ ︷︷ ︸
partial annotation

, {⃝,×}),

where ⃝ and × denote the word boundary label and the non-word boundary

label, respectively. Figure 3.3 shows another example of partial annotations. In

this example, “すり傷” is partially annotated in the phrase “切り傷やすり傷”.

Note that, if all the elements of a given sequence are annotated, it is the special

case such that the size of all elements is one, i.e. |Lt| = 1 for all t = 1, · · · , T ,

so that this representation of annotations includes non-partial annotations as

a special case. Comparing with the conventional structured output learning in

Figure 2.1, a structured output learning procedure with partial annotations is

depicted in Figure 3.4. The shaded elements in Figure 3.4 represent positions

which are not annotated, i.e. |Lt| > 1.

Finally, we define the domain adaptation of word segmentation using these

partial annotations. Let Ds = {(x(n), L(n))}N
n=1 be annotated sentences of size

N for the source domain, and Dt = {(x(m),L(m))}N+M
m=N+1 be partially annotated

sentences of size M for the target domain. In this chapter, the goal of the domain

adaptation is the improvement of the word segmentation performance using both

Ds and Dt rather than using only Ds.
4

4For the domain adaptation task, it is conceivable that we only use the target domain
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Figure 3.4. Structured output learning with partial annotations.

3. Conditional Random Fields

In this section, we review Conditional Random Fields (CRFs) [37].

Let Φ(x, y) : X×Y → ℜd denote a map from a pair of an observed sequence

x and a label sequence y to an arbitrary feature vector of d dimensions, and

θ ∈ ℜd denotes the vector of the model parameters. CRFs model the conditional

probability of a label sequence y given an observed sequence x as:

p„(y|x) =
e⟨„,Φ(x,y)⟩

Z„,x,Y
， (3.1)

where ⟨, ⟩ denotes the inner product of the vectors, and the denominator is the

normalization term that guarantees the model to be a probability:

Z„,x,S =
∑
y∈S

e⟨„,Φ(x,y)⟩.

Z„,x,S is also known as a partition function. CRFs are generalization of logistic

regression (cf. Section 2.2 of Chapter 4) for structured output.

data Dt. However, we assume the combination of Ds and Dt is worth the target domain
performance when the number of the target domain annotations is limited. In addition, the
word segmentation performance using both the source and target domain data was empirically
better than that using the target domain data in the preliminary experiments of the Section 6.
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Using training examples D, the optimal parameter θ̂ is obtained by the max-

imum likelihood estimator:

θ̂ = argmax
„

∑
(x,y)∈D

ln p„(y|x)

= argmax
„

∑
(x,y)∈D

(⟨θ,Φ(x, y)⟩ − ln Z„,x,Y ) .

This CRF learning is stated as a unconstrained maximization problem of a non-

linear function. Since the objective function of CRFs is a concave function 5, we

can calculate θ̂ by the gradient methods [53] using its partial derivative:∑
(x,y)∈D

Φ(x,y) −
∑
y∈Y

p„(y|x)Φ(x,y). (3.2)

Then once θ̂ has been estimated from training examples, the label sequence can

be predicted by:

ŷ = argmax
y∈Y

p„̂(y|x).

Although Equation (3.1) includes the sum of all the possible configurations Y

of label sequences, we can efficiently calculate it by a dynamic programming

technique if we assume the Markov properties [37]. Even if we cannot assume the

Markov properties for a task, we can use some approximation methods, such as

Loopy Belief Propagation, for this kind of tasks [63].

4. Marginalized Likelihood Training of CRFs

In this section, we propose a parameter estimation procedure for the CRFs in-

corporating partial annotations.

Since the original CRF learning algorithm requires a completely labeled se-

quence y, the incompletely annotated data (x, L) is not directly applicable to it.

5If a real value function f satisfies

f(au + (1 − a)v) ≥ af(u) + (1 − a)f(v)

for arbitrary points, u and v, where 0 ≤ a ≤ 1, we state f as a concave function [44].
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Let YL denote all of the possible label sequence consistent with L. We propose

to use the conditional probability of the subset YL given x:

p„(YL|x) =
∑

y∈YL

p„(y|x), (3.3)

which is the marginal probability eliminating the candidate ys by summation.

Then the maximum likelihood estimator for this model can be obtained by max-

imizing the log likelihood function:

LL(θ; D) =
∑

(x,L)∈D

ln p„(YL|x)

=
∑

(x,L)∈D

∑
y∈YL

ln p„(y|x)

=
∑

(x,L)∈D

(ln Z„,x,YL
− ln Z„,x,Y )． (3.4)

This modeling naturally embraces label ambiguities in the incomplete annotation.

Unfortunately, Equation (3.4) is not a concave function6 so that there are

local maxima in the objective function. Although this non-concavity prevents

efficient global maximization of Equation (3.4), it still allows us to incorporate

incomplete annotations using gradient ascent iterations [53].7 Gradient ascent

methods require the partial derivative of Equation (3.4):

∂ LL(θ; D)

∂θ
=

∑
(x,L)∈D

( ∑
y∈YL

p„(y|YL, x)Φ(x, y) −
∑
y∈Y

p„(y|x)Φ(x, y)

)
, (3.5)

where

p„(y|YL, x) =
e⟨„,Φ(x,y)⟩

Z„,x,YL

(3.6)

is a conditional probability that is normalized over YL. Since the value of Equa-

tion (3.5) is zero at the optimum, the maximization of the objective function can

be stated as finding θ to be match the feature expectation of Φ(x(n), y) over

6LL(θ; D) is the form of the difference of two concave function so that it is not concave
function as a whole [14].

7The local maxima depend on the initial value of θ. We used the parameter of a CRF
trained in the source domain as the initial value for the proposed algorithm in Section 6.
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Table 3.1. Two types of example distributions: L = ({⃝,×}, {×})
x y p„(y|x) p„(y|YL,x)

(a, b)

(⃝,⃝) 0.2 0

(×,⃝) 0.4 0

(⃝,×) 0.3 0.75

(×,×) 0.1 0.25

p„,L(y|x) and p„(y|x), denoted as Ey∼p„(y|YL,x)[Φ(x,y)] and Ey∼p„(y|x)[Φ(x, y)].

The derivative (3.2) of the conventional CRF learning procedure suggests that

the learning algorithm iteratively minimizes the distance between Φ(x,y) and

Ey∼p„(y|x)[Φ(x, y)]. Comparing with the conventional CRF learning, the expec-

tation Ey∼p„(y|YL,x)[Φ(x,y)] is considered as the feature vector of a partially

annotated training example in the proposed method.

Here, we explain how the proposed algorithm updates the model parame-

ter with a simplified example. Let (x = (a, b),L = ({⃝,×}, {×})) be a par-

tially annotated example where X = {a, b}. For a given θ, let’s say p„(y|x) for

each x and y pair is calculated as the values in the third column of Table 3.1,

and p„(y|YL, x) is calculated as the values in the forth column of Table 3.1.

Suppose we use the sum of the occurrences of X and Y pairs as features, i.e.,

ϕx,y(x,y) =
∑

t[xt = x∧yt = y], the feature expectations under each distribution

can be the value described in Table 3.2 where θx,y is the parameter corresponding

to ϕx,y(x,y). In this example, we can see that the information of the partial

annotation at t = 2 propagates to the expected value of features which appeared

in the adjacent element at t = 1 and the corresponding parameter of the features

will be updated.

Equations (3.4) and (3.5) include the summations of all of the label sequences

in Y or YL. It is not practical to enumerate and evaluate all of the label con-

figurations explicitly, since the number of all of the possible label sequences is

exponential on the number of positions t with |Lt| > 1. However, under the

Markov assumption, a modification of the Forward-Backward algorithm guaran-

tees polynomial time computation for the Equations (3.4) and (3.5). We explain

this algorithm in Appendix A.
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Table 3.2. The example values of feature expectations and derivatives

x y Ey∼p„(x,y)[ϕx,y(x, y)] Ey∼p„(y|YL,x)[ϕx,y(x,y)] ∂ LL(„;D)
∂θx,y

a ⃝ 0.5 0.75 0.25

a × 0.5 0.25 −0.25

b ⃝ 0.6 0 −0.6

b × 0.4 1 0.6

In the implementation of CRF learning, it is common to introduce a prior dis-

tribution p(θ) over the parameter θ to avoid over-fitting [53]. In the experiments

in Section 6, we used a Gaussian prior with the mean 0 and the variance σ2 so

that − ||„||2
2σ2 is added to Equation (3.4). In addition, it is natural to introduce a

parameter which specifies the balancing weight between the likelihood of DS and

DT for the objective function [32]. In this section, we denote ν as this weight

parameter for the log likelihood of DT.

Now, the objective function including the Gaussian prior and the weight pa-

rameter is:

LL(θ; DS) + ν LL(θ; DT) − ||θ||2

2σ2
,

and its first order derivative is defined as:

∂ LL(θ; DS)

∂θ
+ ν

∂ LL(θ; DT)

∂θ
− θ

σ2
.

Note that σ and ν are the hyper parameters in the learning algorithm, and have

to be selected in validation phases.

5. Discussion

In this section, we discuss other methods which can adapt statistical word segmen-

tation system to a target domain using the partial annotations L, and compare

these methods with the proposed method.

One approach to train CRFs using L is that the predicted label for unanno-

tated positions {t | |Lt| > 1} are used to generate completely annotated exam-

ples. To elaborate this approach, let θ̃ be a parameter vector which is obtained
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by training using the source domain data. For a given partially annotated sample

(x,L), we can use (x, ŷ) as a training data where

ŷ = argmax
y∈YL

p„̃(y|x)

is the most probable sequence of p„̃ which is consistent with L. Note that ŷ can

be computed in polynomial time by a variant of dynamic programming technique

with given θ̃, x, and L [21]. Since we select ŷ from the label sequences which are

consistent with L, ŷ reflects the partial annotations. We denote this method as

argmax. The advantage of this approach is that, once ŷ is predicted for (x, L), a

CRF model can be trained by the conventional training algorithms. However, the

trained model of argmax as training data only reflects the most probable sequence,

and ignores the rest of all the possible y ∈ YL even if the most probable candidate

ŷ and the other candidates have probabilities p„̃(y|x) with narrow margin. Since

the selection of ŷ can be sensitive to the fluctuation of the parameter estimation

in the source domain data, the variance of estimated parameters will be large

when we train CRFs using argmax in the target domain. At the same time,

the parameter estimation of the proposed method is relatively stable because the

expectation of ϕ(x,y) under p„(y|YL,x) is used as a training example. In other

words, instead of a single label sequence ŷ, all the possible y ∈ YL are dealt in

the training phase of the proposed method.

As another possible solution, we can design JWS as a prediction problem

in which each yt is independently predicted by a classifier. In this formulation,

the training of these predictors using partial annotations is rather simple be-

cause we can just ignore unannotated positions and only use annotated positions

{t | |Lt| = 1} as training examples. In addition, we can employ discriminative

methods for this prediction problem to incorporate various kinds of features. We

denote this approach as a point-wise classifier. As we mentioned in Section 3, the

disadvantage of point-wise classifiers is that the previous and next segmentation

of a position t does not effect the decision of yt so that the consistency of word

segmentation in a whole sentence is not learned by this approach. The empirical

result in Section 6, the advantage of CRFs over point-wise classifiers remains even

if training data includes partial annotations.
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Table 3.3. Data statistics.

domain usage #sentences #words

(A) conversation training 11,700 145,925

(B) conversation validation 1,300 16,348

(C) medical manual test & annotation 1,000 29,216

Table 3.4. Feature templates: Each subscript stands for the relative distance

from a character boundary.

Types Template

Characters c−1, c+1,

Character types c−2c−1, c−1c+1, c+1c+2,

Term in dictionary c−2c−1c+1, c−1c+1c+2

Term in dictionary starts at c+1

Term in dictionary ends at c−1

6. Experiments

In this section, we show the results of domain adaptation experiments for the

JWS task to assess the proposed method. We assume that only partial annota-

tions are available for the target domain. In this experiment, the corpus for the

source domain is composed of example sentences in a dictionary of daily conver-

sation [35]. The text data for the target domain is composed of sentences in a

medical reference manual [5] . The sentences of all of the source domain corpora

(A), (B) and a part of the target domain text (C) were manually segmented into

words (see Table 3.3).

The performance measure in the experiments is the standard F measure score,
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F = 2RP/(R + P) where

R =
# of correct words

# of words in test data
× 100

P =
# of correct words

# of words in system output
× 100.

In this experiment, the performance was evaluated using 2-fold cross-validation

that averages the results over two partitions of the data (C) into the data for

annotation and training (C1) versus the data for testing (C2).

We implemented first order Markov CRFs. As the features for the observed

variables, we use the characters and character type n-gram (n=1, 2, 3) around the

current character boundary. The character types are categorized into Hiragana,

Katakana, Kanji, English alphabet, Arabic numerals, and symbols. The usage

of character type features reflects the background knowledge which the charac-

ter boundaries between different character types tend to be word boundaries in

Japanese. We also used lexical features consulting a dictionary: one is to check

if any of the above defined character n-grams appear in a dictionary [45], and

the other is to check if there are any words in the dictionary that start or end at

the current character boundary. We used the unidic8 (281K distinct words) as

the general purpose dictionary, and the Japanese Standard Disease Code Master

(JSDCM)9 (23K distinct words) as the medical domain dictionary. The templates

for the features we used are summarized in Table 3.4. For example, the features

for the character boundary between “り” and “傷” of a example string “やすり |
傷を” are described below. The features of character n-grams are {り |, |傷,すり

|, り |傷, |傷を, すり |傷, り |傷を }. The features of character type n-grams are

{ H|, |K,HH|,H|K,|KH,HH|K,H|KH } where “|” denotes an auxiliary symbol that

specifies the focused character boundary and “H” and “K” denote Hiragana and

Kanji, respectively. In addition, let suppose “やすり” and “傷” in a dictionary.

Then, the dictionary feature of c+1 have a value because of “|傷” occurrence and

the dictionary feature starts at c−1 have a value because of “やすり |” occurrence.

To reduce the number of parameters, we selected only frequent features in the

source domain data (A) or in about 50K of the unsegmented sentences of the

8Ver. 1.3.5; http://www.tokuteicorpus.jp/dist/
9Ver. 2.63; http://www2.medis.or.jp/stdcd/byomei/
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Table 3.5. The word segmentation performance without domain adaptation.

domain data set F

source B 96.92

target C 92.30

target domain.10 The total number of distinct features was about 300K.

In the preliminary experiment, a CRF that was trained using only the source

domain corpus (A), CRFS, achieved F=96.84 in the source domain validation

data (B). Note that the hyper-parameter σ of CRFS was selected by data (B).

However, it showed the need for the domain adaptation that this CRFS suffered

severe performance degradation (F=92.30) on the target domain data. Table 3.5

summarize the result of the preliminary experiment.

We used conjugate gradient method to find the local maximum value with the

initial value being set to be the parameter vector of CRFS. Since the amount of

annotated data for the target domain was limited, ν = 1 was used 11 and σ was

the same value of CRFS.

For the comparison with the proposed method, we implemented 1) the CRFs

were trained using the most probable label sequences consistent with L (argmax )

and 2) a point-wise classifier which independently learns/classifies each charac-

ter boundary. For argmax, the most probable label sequences were predicted

by the CRFS. As the point-wise classifier, we implemented a logistic regression

(maximum entropy classifier) which models a conditional probability p(yt|xt).

For the logistic regression, we uses the same features and optimizer as CRFs.

The performance of a point-wise classifier which is trained using data (A), de-

noted as point-wise classifierS, was F = 91.29 where the hyper-parameter of

point-wise classifierS was tuned using data (B) in the same manner as the hyper-

parameter selection of CRFs. This result suggests the advantage of the word

segmentation system of CRFs over that of point-wise classifier before domain

10The data (B) and (C), which were used for validation and test, were excluded from this
feature selection process.

11Jiang and Zhai [32] reported ν > N
M was suitable for improving the performance of target

domains in some domain adaptation experiments of NLP. However, we still need annotated
data for the target domain to select the appropriate value for ν.
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adaptation.

This experiment was designed for the case in which a user selects the occur-

rences of words in the word list using the KWIC interface described in Section 1.

We employed JSDCM as a word list in which 224 distinct terms appeared on

average over 2 test sets (C1). The number of word annotations varied from 100

to 1000 in this experiment. We prioritized the occurrences of each word in the

list using a selective sampling technique. We used label entropy [2],

H(ys
t ) = −

∑
ys

t∈Y s
t

p„̃(ys
t |x) ln p„̃(ys

t |x),

as importance metric of each word occurrence, where θ̃ is the model parameter

of CRFS, and ys
t = (yt, yt+1, · · · , ys) ∈ Y s

t is a subsequence starting at t and

ending at s in y.12 Intuitively, this metric represents the prediction confidence of

CRFS, and the high entropy of ys
t means that ys

t occurs in the difficult context

for CRFS to determine the label subsequence.13 As training data, we mixed the

complete annotations (A) and these partial annotations on data (C1) because the

performance was better than using only the partial annotations.

6.1 Performances varying the number of partial annota-

tions

First, Figure 3.5 shows the performance comparisons varying the number of word

annotations. Note that the F score at 0 of the number of word annotations

describes the performance of CRFS and point-wise classifierS. The performance

of all the methods adding partial annotations was improved from that of the

12We selected word occurrences in a batch mode since each training of the CRFs takes too
much time for interactive use.

13Since the average entropy of the occurrences of words in the domain-specific word list was
higher than that of the occurrences of words not in the word list, the use of domain-specific
word list for annotations can select the important position in the point of entropy.

On the other hand, All the possible subsequence in target domain sentences can be candidates
for annotations and we may select the most informative one from them. However, although the
longer subsequence requires the larger cost for annotations, the entropy tends to be higher for
the longer subsequence. Therefore it is still open question to determine the balance between
informative score and annotation cost.
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Figure 3.5. Average performances varying the number of word annotations over

2 trials.

models of the source domain. Since 1, 000 word annotations is only 7% of total

word occurrences in data (C1), the cost of these partial annotations is lower

than that of complete annotations. However, the performance of argmax was

not stably improved as the number of word annotations increased. This result is

consistent with the discussion of argmax in Section 5. On the other hand, the

proposed method significantly outperformed point-wise classifier (and argmax )

based on the Wilcoxon signed rank test at the significance level of 5%. This

result suggests that the proposed method maintains CRFs’ advantage over the

point-wise classifier and properly incorporates partial annotations.

6.2 Performances of prioritized annotations

Second, we conducted the experiment comparing 1) the prioritized annotations

by entropy and 2) annotations in the order of data. Note that we used the same

value for hyper-parameter and initial parameter value as CRFS.

Figure 3.6 shows the performance comparisons varying the number of word

annotations. For the smaller number of word annotations (100 to 500), we ob-

served prioritized annotations improve the performance of JWS. The differences
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Figure 3.6. Average performances of annotation with and without prioritization

over 2 trials

between two result is significant based on the Wilcoxon signed rank test at the

significance level of 5%.

The proposed method enables to learn CRFs using partial annotations selected

by selective sampling method, so that the combination of them achieved the

improvement of JWS using a few word annotations.

6.3 Performances varying initial parameter value

We also investigated the performances of JWS when we use the different value of

initial parameter value for the proposed method.

Figure 3.7 shows the JWS performances when we initialized the parameter as

zero (“init=0”) and initialized the parameter as the value of CRFS (“init=CRF-

S”). Since the differences between two result is not significant based on the

Wilcoxon signed rank test at the significance level of 5%, the proposed method is

not sensitive for the choice of initial parameter.

In summary, the combination of both the proposed method and the selective
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Figure 3.7. Average performances with parameter initialized as zero and CRFS

over 2 trials

sampling method showed that a small number of word annotations effectively

improved the word segmentation performance.

7. Related Work

One of the research issue of word segmentation is unknown word handling. The

main topics of unknown word handling are 1) statistical models of unknown words

and 2) lexical acquisition [43]. Generative N-gram modeling requires the estima-

tion of not only word N-gram distribution but also character (type) distribution

for unknown word handling. On the other hand, discriminative models are in-

teroperable with various features for unknown words and do not require extra

unknown word models.

However, for both generative and discriminative model, lexical acquisition is

important issue, especially in the domain adaptation situation. We assumed a do-

main specific word list is available in the experiment of Section 6. However, such
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a word list is sometimes not enough to cover all the unknown words in the target

domain data. In this line of work, Peng et al. [45] proposed an unknown word

detection method in which the probability of CRFs is used to find unknown word

candidates. However, they also reported that the usage of these word candidates

can cause the performance degradation of word segmentation. Instead of the

blind use of these candidates, if the occurrences of these candidates are checked

manually, the relatively steady progress of statistical models will be achieved as

seen in Section 6.

In a parsing context, Pereira et al. [46] proposed a grammar acquisition

method for partially bracketed corpus. Their work can be considered a gen-

erative model for the tree structure output problem using partial annotations.

Our discriminative model can be extended to such parsing tasks.

Our model is interpreted as one of the CRFs with hidden variables (HCRFs) [48],

in which the probability of a target variable t given x is defined as p„(t|x) =∑
h p„(t,h|x) with hidden variables h ∈ H . Let the target variable and the set

of hidden variables be specified by t = YL and H = YL. Then, we can derive

the Equation (3.3) from the HCRF model:

p„(YL|x) =
∑

h∈YL

p„(YL, h|x)

=
∑

h∈YL

p„(h|YL, x)p„(YL|x)

=
∑

h∈YL

e⟨„,Φ(x,h)⟩

Z„,x,YL

Z„,x,YL

Z„,x,Y

=
∑

h∈YL

p„(h|x),

referring to the definitions in Equations (3.1) and (3.6). There are previous

work which handles hidden variables in discriminative parsers [18, 47]. In their

methods, the objective functions are also formulated as same as Equation (3.4).

For interactive annotation, Culotta et al. [21] proposed corrective feedback

that effectively reduces user operations utilizing partial annotations. Although

they assume that the users correct entire label structures so that the CRFs are

trained as usual, our proposed method extends their system when the users cannot

annotate all of the labels in a sentence.
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One of the related research fields is semi-supervised learning, which deals with

labeled and unlabeled training instances. The main difference is that a training

instance is composed of both labeled and unlabeled parts in our problem setting.

Semi-supervised learning for CRF (SSL-CRF) has been proposed [33, 39], and

this could be extended to learn an SSL-CRF using partial annotations. Accord-

ing to the semi-supervised CRF framework, the modified objective function for

incomplete annotations would be

LL(θ) =
N∑

n=1

∑
y∈Y

L(n)

p„(y|x(n)) ln p„(y|x(n)).

Its objective function is also not concave and the derivative of the function is

more complex than for our proposed method. Our preliminary experimental

results show that this extended SSL-CRF for incomplete annotations would be

slower than our proposed method, though the performance is comparable.

There have been previous works on active learning for structured output

tasks [3, 52, 1, 50]. However, the focus is on sample selections and all of them

assume that each local element of structures is independently learnable. On

the other hand, the proposed method achieves the combination between selec-

tive sampling of substructures and structured output learning with the weaker

assumption (the Markov assumption).

8. Summary

In this chapter, we address word-boundary annotation which is done only on part

of sentences. By limiting our focus on crucial part of sentences, we can effectively

create a training data for each new target domain by conducting such partial

annotations. We propose a training algorithm for Conditional Random Fields

(CRFs) using partial annotations. It is known that CRFs are well-suited to word

segmentation tasks and many other sequence labeling problems in NLP. However,

conventional CRF learning algorithms require fully annotated sentences. The

objective function of the proposed method is a marginal likelihood function, so

that the CRF model incorporates such partial annotations. Through experiments,

we show our method effectively utilize partial annotations on a domain adaptation

task of Japanese word segmentation.
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Chapter 4

Direct Density Ratio Estimation

for Large-scale Covariate Shift

Adaptation

1. Covariate Shift Adaptation

An assumption that is commonly imposed—either explicitly or implicitly—in

virtually all supervised learning methods is that the training and test samples

follow the same probability distribution. However, this fundamental assumption

is often violated in practice, causing standard machine learning methods not to

work as expected. In this section, we address supervised learning problems in the

absence of this fundamental assumption.

If the training and test distributions share nothing in common, we may not

be able to learn anything about the test distribution from the training samples.

For a meaningful discussion, the training and test distributions should be related

to each other in some sense. A situation where the input distribution p(x) is

different in the training and test phases but the conditional distribution of output

values, p(y|x), remains unchanged is called covariate shift [56]. In many real-

world applications such as robot control [64, 54, 30], bioinformatics [4, 13], spam

filtering [8], natural language processing [32], brain-computer interfacing [73, 60],

or econometrics [29], covariate shift is likely. Covariate shift is also naturally

induced in selective sampling or active learning scenarios [24, 19, 72, 34, 59]. For
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this reason, learning under covariate shift is receiving a lot of attention these days

in the machine learning community (such as in the NIPS2006 workshop [15] and

the ECML2006 workshop [7]).

Under covariate shift, standard learning methods such as maximum likelihood

estimation are no longer consistent, i.e., they do not produce the optimal solution

even when the number of training samples tends to be infinity. Thus, there exists

an estimation bias induced by covariate shift. It has been shown that the bias

can be asymptotically canceled by weighting the log likelihood terms according

to the importance [25, 56, 74]:

w(x) =
pte(x)

ptr(x)
,

where pte(x) and ptr(x) are the test and training input densities. Since the

importance is usually unknown in reality, the central issue of practical covariate

shift adaptation is how to accurately estimate the importance1.

A naive approach to importance estimation is to first estimate the training

and test densities separately from the training and test input samples, and then

estimate the importance by taking the ratio of the estimated densities. However,

density estimation is known to be a hard problem particularly in high dimen-

sional cases [26]. Therefore, this naive approach is usually ineffective—directly

estimating the importance without estimating the densities is more promising.

Therefore, several methods that allow us to directly obtain importance estimates

without going through density estimation have been proposed recently, such as

kernel mean matching (KMM) [31], the logistic regression based method (Lo-

1Covariate shift matters in parameter learning only when the model used for function learn-
ing is misspecified (i.e., the model is so simple that the true learning target function cannot be
expressed) [56]. When the model is correctly (or overly) specified, the ordinary maximum likeli-
hood estimation is still consistent. On this basis, there is a criticism that importance weighting
is not needed, but just the use of a sufficiently complex model can settle the problem. However,
overly complex models result in large estimation variances, and so in practice we need to choose
a complex enough but not overly complex model. To choose such an appropriate model, we
usually use a model selection technique such as cross-validation (CV). However, the ordinary
CV score is biased due to covariate shift and we still need to importance-weight the CV score (or
any other model selection criteria) for unbiasedness [56, 74, 61, 60]. For this reason, estimating
the importance is indispensable when covariate shift occurs.
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gReg) [10], and the Kullback-Leibler Importance Estimation Procedure (KLIEP)

[62].

KMM is based on a special property of universal reproducing kernel Hilbert

spaces (Gaussian reproducing kernel Hilbert spaces are typical examples) [58],

and KMM allows us to directly obtain the importance estimates at the training

input points. Since the KMM optimization problem is formulated as a convex

quadratic programming problem, it always leads to the unique global solution.

KMM has been shown to work well, as long as the kernel parameters such as the

Gaussian width are chosen appropriately. However, to the best of our knowledge,

there is no reliable method to determine the Gaussian width and the regulariza-

tion parameter in the KMM algorithm2. Therefore, the lack of model selection

procedures is a critical limitation of KMM in practical applications.

LogReg builds a probabilistic classifier that separates training input samples

from test input samples, and the importance can be directly estimated by LogReg.

The maximum likelihood estimation of the LogReg can be formulated as a convex

optimization problem, so the unique global optimal solution can be obtained. In

addition, since LogReg only solves a standard supervised classification problem,

the tuning parameters such as the kernel width and the regularization parameter

can be optimized by the standard cross-validation (CV) procedure. This is a very

useful property in practice.

KLIEP tries to match an importance-based estimation of the test input dis-

tribution to the true test input distribution in terms of the Kullback-Leibler

divergence. KLIEP solves this matching problem in a non-parametric fashion.

The training and test input distributions are not parameterized, but only the

importance is parameterized. The KLIEP optimization problem is convex and

2Intuitively, it seems possible to optimize the kernel width and the regularization parameter
simply by using CV for the performance of subsequent learning algorithms. However, this is
highly unreliable since the ordinary CV score is biased under covariate shift. For unbiased
estimation of the prediction performance of subsequent learning algorithms, the CV procedure
itself needs to be importance-weighted [74, 60]. Since the importance weight has to have been
fixed when model selection is carried out using the importance weighted CV, it cannot be used
for model selection of importance estimation algorithms. Note that once the importance weight
has been fixed, the importance-weighted CV can be used for model selection of subsequent
learning algorithms.
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therefore a unique global optimal solution can be obtained. Furthermore, the

global solution tends to be sparse, so it is computationally efficient in the test

phase. Since KLIEP is based on the minimization of the Kullback-Leibler diver-

gence, the model selection of KLIEP, such as the choice of the kernel width and

the regularization parameter, can be carried out naturally through the likelihood

CV procedure [26], so no open tuning parameter remains.

As reviewed above, LogReg and KLIEP seem to have advantages over KMM,

since they are equipped with built-in model selection procedures. On the other

hand, from the viewpoint of scalability, all three of the methods have limitations—

in recent applications such as spam filtering [8] and information retrieval [28], the

number of test (unlabeled) samples is enormous, especially on the Web. In these

text processing applications, the distribution of training and test inputs can be

changed between domains because of differences in vocabulary and writing style.

The purpose of this chapter is to develop a computationally efficient covariate

shift adaptation method that can deal with a large number of unlabeled data

points.

Our new method is primarily based on KLIEP. The key difference is that the

original KLIEP uses a linearly parameterized function for modeling the impor-

tance, while we adopt a log-linear model. By definition, the log-linear model

only takes non-negative values. This allows us to reformulate the KLIEP opti-

mization problem as an unconstrained convex problem. Then we develop a new

scalable estimation procedure whose computation time is nearly independent of

the number of test samples. More precisely, we need to scan a large number of

test samples only once to compute a summary statistic in the beginning (this

precomputation can be carried out in linear time and constant storage space).

The main optimization procedure does not use the test samples themselves, but

only uses the summary statistic. Therefore, the computation time of the main

optimization procedure is independent of the number of test samples.

The experiments show that the proposed method is computationally much

more efficient than the existing approaches. Therefore the range of application of

covariate shift adaptation can be greatly enlarged towards large-scale problems.

As for estimation accuracy, we experimentally show that the performance of the

proposed method is comparable to the best existing methods for small and mid-
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dle sized problems (since the existing methods cannot be applied to large-scale

problems due to the computational costs). Thus the proposed method can be a

useful alternative to the existing covariate shift adaptation methods.

2. Problem Formalization

In this section, we formulate the supervised learning problem under covariate

shift and briefly review existing techniques for covariate shift adaptation.

2.1 Supervised learning under covariate shift

Let x ∈ X ⊂ ℜd be an input variable and y ∈ Y be an output variable. Y is

a real space in regression cases or a set of categories in classification cases. In

standard supervised learning frameworks, it is assumed that x is independently

drawn from an input distribution and y is independently drawn from a conditional

distribution, both in training and test phases. In contrast, here we consider

a situation called covariate shift [56], i.e., the input distribution differs in the

training and test phases, but the conditional distribution remains unchanged.

Suppose we have independent and identically distributed (i.i.d.) training in-

put samples Dtr = {x(i)}Ntr
i=1 from a distribution with strictly positive density

ptr(x), and test input samples Dte = {x(i)}Nte
i=1 from a distribution with density

pte(x). In addition to the input samples, suppose we have training output sam-

ples {y(i)}Ntr
i=1 drawn from the conditional distribution with conditional density

p(y|x = x(i)), respectively. Typically, the number Ntr of training samples is

rather small due to the high labeling cost, while the number Nte of test input

samples is very large since they are often easily available. We denote training

sample pairs of input and output as:

Ztr = {z(i) | z(i) = (x(i), y(i))}Ntr
i=1.

We use the following linear model:

f„(x) = ⟨θ,ϕ(x)⟩ , (4.1)

where θ is the parameter vector, ϕ(x) : X → ℜh is a basis function of x, and

⟨u,v⟩ denotes the Euclidean inner product between vector u and v: ⟨u,v⟩ =
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∑h
l=1 ulvl. Note that this model can contain a bias parameter by just including

a constant basis function in ϕ(x). Throughout the section, we suppose that

this linear model is not generally specified correctly, i.e., the true input-output

function is not necessarily included in the above linear model. Since we do not

know the true function class in practice, dealing with misspecified models is quite

realistic.

The goal of supervised learning is to learn the parameter θ so that the output

values for the test inputs can be accurately predicted. Thus our error metric

(which is usually called the generalization error) is given by∫∫
Loss(x, y, f„(x))pte(x)p(y|x)dxdy, (4.2)

where Loss(x, y, f„(x)) : X × Y × Y → ℜ is a loss function, such as the squared

loss in a regression case or the zero-one loss in a classification case.

In supervised learning under covariate shift, the following quantity called the

test domain importance plays an important role:

w(x) =
pte(x)

ptr(x)
. (4.3)

The importance can be used for adjusting the difference between the training and

test input distributions: for any function A(x),∫
A(x)pte(x)dx =

∫
A(x)w(x)ptr(x)dx. (4.4)

2.2 Parameter learning under covariate shift

Here we review two typical parameter learning methods under covariate shift:

one is importance weighted least squares (IWLS) for regression and the other is

importance weighted logistic regression (IWLR) for classification.

IWLS A standard learning method in regression scenarios would be ordinary

least squares (LS):

θ̂LS ≡ argmin
„

 ∑
(x,y)∈Ztr

(f„(x) − y)2

 .
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LS is known to be consistent under a usual setting. However, it is no longer

consistent for misspecified models under covariate shift. Instead, IWLS is consis-

tent [56]:

θ̂IWLS ≡ argmin
„

 ∑
(x,y)∈Ztr

w(x) (f„(x) − y)2 + λ∥θ∥2

 , (4.5)

where the importance w(x) is used as weights. Here we also added a penalty

term λ∥θ∥2 for regularization, where λ is a regularization parameter.

For the linear model (4.1), the above optimization problem is convex and the

unique global solution θ̂IWLS can be computed in a closed-form as

θ̂IWLS = (Φ⊤WΦ + λI)−1Φ⊤Wy,

where I is the identity matrix,

Φi,l = ϕl(x
(i)), y = (y(1), y(2), . . . , y(Ntr))⊤, and

W = diag(w(1),w(2), . . . , w(Ntr)).

IWLR For simplicity, we focus on the two-class case, i.e., Y = {−1, 1}; we

note that it is straightforward to extend all of the discussions in this section to

multi-class cases.

Let us model the posterior probability of class y given x using a parametric

model f„(x) as

p„(y|x) =
exp(yf„(x))

1 + exp(yf„(x))
. (4.6)

Then a test input sample x is classified by choosing the most probable class:

ŷ = argmax
y

p„(y|x). (4.7)

A standard learning method for the above probabilistic classification scenarios

would be ordinary logistic regression (LR):

θ̂LR ≡ argmin
„

 ∑
(x,y)∈Ztr

− ln p„(y|x)


= argmin

„

 ∑
(x,y)∈Ztr

(ln (1 + exp (yf„(x)))−yf„(x))

 .
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Similar to the case of LS, LR is consistent under a usual setting, but is no longer

consistent for misspecified models under covariate shift. Instead, IWLR is con-

sistent:

θ̂IWLR ≡ argmin
„

 ∑
(x,y)∈Ztr

w(x) (ln (1+ exp (yf„(x)))−yf„(x)) +λ∥θ∥2

 . (4.8)

Here we also added a penalty term λ∥θ∥2 for regularization, where λ is a regu-

larization parameter.

This optimization problem is known to be convex and a unique optimal solu-

tion can be computed using standard non-linear optimization techniques such as

a gradient descent method or some variants of the Newton method. The gradient

of the above objective function is given by∑
(x,y)∈Ztr

w(x) (y pθ(y|x)ϕ(x) − y ϕ(x)) + 2λθ.

2.3 Model selection under covariate shift

In the above learning methods, the choice of model parameters such as the basis

functions ϕ and the regularization parameter λ heavily affects the prediction

performance. This problem is called model selection and is one of the key concerns

in machine learning.

A popular model selection method in the machine learning community would

be cross-validation (CV). The performance of CV is guaranteed in the sense that

it gives an unbiased estimate of the generalization error. However, this useful

theoretical property is no longer true under covariate shift [74]. To cope with

this problem, a variant of CV called importance weighted CV (IWCV) has been

proposed for model selection under covariate shift [60]. It has been proved that

IWCV gives an unbiased estimate of the generalization error even under covariate

shift.

Here, let us briefly describe the IWCV procedure. We first divide the training

samples {z(i)}Ntr
i=1 into R disjoint subsets {Zr}R

r=1. Then we learn a function f r
„(x)

from {Zj}j ̸=r by IWLS/IWLR and compute its mean test error for the remaining
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samples Zr:

1

|Zr|
∑

(x,y)∈Zr

w(x) (f r
„(x) − y)2 , (regression)

1

|Zr|
∑

(x,y)∈Zr

w(x)I(ŷ = y), (classification)

where I(·) denotes the indicator function. We repeat this procedure for r =

1, 2, . . . , R and choose the model such that the average of the above mean test

error is minimized.

2.4 Importance estimation

As we have seen in the previous section, the importance w(x) plays a central role

in covariate shift adaptation. However, the importance is unknown in practice so

we need to estimate it from samples.

Direct importance estimation methods that do not involve density estimation

steps have been developed recently [31, 10, 62]. Here we review one of those direct

methods called the Kullback-Leibler Importance Estimation Procedure (KLIEP)

[62]. Other methods will be reviewed in Section 5.

2.5 KLIEP

Let us model w(x) with the following linear model:

ŵ(x) = ⟨α,ψ(x)⟩ , (4.9)

where α ∈ ℜb is a model parameter vector and ψ(x) ∈ ℜb is a basis function.

Since the importance should be non-negative by definition, we suppose that both

α and ψ(x) are non-negative.

Using the importance estimation ŵ(x), we can estimate the test input density

pte(x) by

p̂te(x) = ptr(x)ŵ(x). (4.10)

Now we learn the parameter α so that the Kullback-Leibler divergence from
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pte(x) to p̂te(x) is minimized:

KL[pte(x)||p̂te(x)] =

∫
D

pte(x) ln
pte(x)

ptr(x)ŵ(x)
dx

=

∫
D

pte(x) ln
pte(x)

ptr(x)
dx −

∫
D

pte(x) ln ŵ(x)dx. (4.11)

Since the first term in Equation (4.11) is independent of α, we ignore it and focus

on the second term, which we denote by JKLIEP:

JKLIEP =

∫
D

pte(x) ln ŵ(x)dx ≈ 1

Nte

∑
x∈Dte

ln ŵ(x), (4.12)

where an empirical approximation based on the test input samples is used. This

is the objective function to be maximized. The value of ŵ(x) should be properly

normalized since it is a probability density function:

1 =

∫
D

p̂te(x)dx =

∫
D

ptr(x)ŵ(x)dx ≈ 1

Ntr

∑
x∈Dtr

ŵ(x), (4.13)

where the empirical approximation based on the training samples is used.

Then the resulting optimization problem is expressed as

maximize
¸

∑
x∈Dte

ln ⟨α, ψ(x)⟩ subject to
∑

x∈Dtr

⟨α,ψ(x)⟩ = Ntr and α ≥ 0,

which is convex. Thus the global solution can be obtained by iteratively perform-

ing gradient ascent and feasibility satisfaction.

2.6 Model selection by likelihood CV

The performance of KLIEP depends on the choice of the basis functions ψ(x)

(and possibly an additional regularization parameter). Since KLIEP is based on

the maximization of the score JKLIEP, it would be natural to select the model

such that JKLIEP is maximized. The expectation over pte(x) involved in JKLIEP

can be numerically approximated by likelihood CV (LCV) [26] as follows: First,

divide the test samples Dte into R disjoint subsets {Dr
te}R

r=1. Then, obtain an

importance estimate ŵr(x) from {Dt
te}R

t̸=r and approximate the score JKLIEP using

Dr
te as

Ĵr
KLIEP =

1

|Dr
te|

∑
x∈Dr

te

ŵr(x). (4.14)
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This procedure is repeated for r = 1, 2, . . . , R for each model and choose the

model such that the average of Ĵr
KLIEP for all r is maximized.

One of the potential general limitations of CV is that it is not reliable in

small sample cases, since data splitting by CV further reduces the sample size.

A key advantage of the LCV procedure is that, not the training samples, but

the test input samples are cross-validated. This contributes greatly to improving

the model selection accuracy, since the number of training samples is typically

limited while there are lots of test input samples available.

As basis functions, it is suggested to use Gaussian kernels centered at a subset

of the test input points Dte [62]:

Ks(x, xl) = exp

{
−∥x − xl∥2

2s2

}
, (4.15)

where xl ∈ Dte is a template test sample and s is the kernel width. This is a

heuristic to allocate many kernels at high test input density regions since many

kernels may be needed in the region where the output of the target function is

large. In the original paper, the number of Gaussian centers was fixed at Nte/10

for computational efficiency and the kernel width s was chosen by LCV.

3. KLIEP for Log-linear Models

As shown above, KLIEP has its own model selection procedure and has been

shown to work well in importance estimation [62]. However, it has a weakness in

computation time. In each step of gradient ascent, the summation over all test

input samples needs to be computed, which is prohibitively slow in large-scale

problems. The main contribution in this section is to extend KLIEP so that it

can deal with large sets of test input data.

3.1 LL-KLIEP

In the original KLIEP, a linearly parameterized model (4.9) is used for modeling

the importance function. Here, we propose using a (normalized) log-linear model

for modeling the importance w(x) as

ŵ(x) =
exp(⟨α, ψ(x)⟩)

1
Ntr

∑
x′∈Dtr

exp(⟨α, ψ(x′)⟩)
, (4.16)
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where the denominator guarantees the normalization constraint (4.13) 3. By def-

inition, the log-linear model takes only non-negative values. Therefore, we no

longer need the non-negative constraint for the parameter (and the basis func-

tions).

Then the optimization problem becomes unconstrained :

maximize
¸

JLL−KLIEP(α),

where

JLL−KLIEP(α) =
1

Nte

∑
x∈Dte

ln ŵ(x)

=
1

Nte

∑
x∈Dte

⟨α,ψ(x)⟩ − ln
1

Ntr

∑
x∈Dtr

exp(⟨α, ψ(x)⟩). (4.17)

Below, we refer to this method as LL-KLIEP (log-linear KLIEP). In practice, we

may add a penalty term for regularization:

ȷ(α) = JLL−KLIEP(α) − ||α||2

2ς2
, (4.18)

where ς2 is a regularization parameter.

An advantage of LL-KLIEP over the original KLIEP is its computational

efficiency. The gradient of ȷ(α) can be computed as

∂ȷ(α)

∂α
=

1

Nte

∑
x∈Dte

ψ(x) −
∑

x∈Dtr

exp(⟨α, ψ(x)⟩)∑
x′∈Dtr

exp(⟨α, ψ(x′)⟩)
ψ(x) − α

ς2

=F − 1

Ntr

∑
x∈Dtr

ŵ(x)ψ(x) − α

ς2
, (4.19)

3The log-linear model can have numerical problems since it contains an exponential function.
To cope with this problem, we do not directly compute the value of ŵ(x), but we compute it
in the exponential of the logarithmic domain, i.e.,

exp(ln ŵ(x)) = exp(⟨α,ψ(x)⟩ − ln
1

Ntr

∑
x∈Dtr

exp(⟨α, ψ(x)⟩)).

To further stabilize the computation, we compute the logarithmic sum of the exponential func-
tions as

ln(exp(a) + exp(b)) = ln(1 + exp(b − a)),

where we pick the smaller exponent as b.
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where

F =
1

Nte

∑
x∈Dte

ψ(x).

This means that once we pre-compute the value of F , we do not need to use the

test samples when we compute the gradient. This contributes greatly to reducing

the computation time when the number of test samples is large. In addition, we

do not need to store all of the test samples in memory since we only need the

value of F . The required storage capacity is only Ω(cNtr), where c is the average

number of non-zero basis entries.

As the model selection of KLIEP, LCV can be used to find the optimal hyper-

parameters of LL-KLIEP. Since JLL−KLIEP(α) is evaluated using both training

and test samples, both test and training samples can be divided into R disjoint

subset {Dr
te}R

r=1 and {Dr
tr}R

r=1 in the LCV procedure. After the estimation of

ŵr(x), JLL−KLIEP(α) can be approximated as

Ĵr
LL−KLIEP(α) =

1

|Dr
te|

∑
x∈Dr

te

⟨α,ψ(x)⟩ − ln
1

|Dr
tr|

∑
x∈Dr

tr

exp(⟨α,ψ(x)⟩).

Although the proposed optimization procedure may be more efficient than

original KLIEP, there still exists a potential weakness: we still need to use all the

test samples when computing the values of JLL−KLIEP(α) or ȷ(α). The value of

JLL−KLIEP(α) is needed when we choose a model by LCV, and the value of ȷ(α)

is often utilized in line search or in the stopping criterion.

3.2 LL-KLIEP(LS)

Here, we introduce another optimization technique for LL-KLIEP that enables

us to overcome the above weakness. Our basic idea is to encourage the derivative

of the convex objective function to be zero. We use a squared norm to measure

the ‘magnitude’ of the derivative (4.19):

ȷLS(α) =
1

2

∥∥∥∥∂ȷ(α)

∂α

∥∥∥∥2

. (4.20)

The partial derivative of Equation (4.20) with respect to α is expressed as

∂ȷLS(α)

∂α
=

∂2ȷ(α)

∂2α

∂ȷ(α)

∂α
. (4.21)
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Note that the first component of Equation (4.21) is the Hessian matrix of ȷ(α):

∂2ȷ(α)

∂2α
=

( ∑
x∈Dtr

1

Ntr

w(x)
(
ψ(x) − ψ(x)

)
ψ(x)T − I

ς2

)
,

where

ψ(x) =
∑

x∈Dtr

1

Ntr

w(x)ψ(x),

ψ(x)T is the transpose of ψ(x), and I is the identity matrix. When we explicitly

compute the Hessian matrix of ȷ(α), the computational complexity of the deriva-

tive is O(b2Ntr), which is independent of Nte. Also, the required storage space is

independent of Nte: Ω(b2+cNtr). We refer to this approach as LL-KLIEP(LS1-a)

below.

The computation time and storage space of LL-KLIEP(LS1-a) are quadratic

functions of the number of parameters b, which could be a bottleneck in high

dimensional problems. To cope with this problem, we propose two approaches.

One approach for high dimensional problems is directly computing the product

between the Hessian matrix and the gradient vector of ȷ(α) without storing the

Hessian matrix:

∂ȷLS(α)

∂α
=

( ∑
x∈Dtr

1

Ntr

w(x)
(
ψ(x) − ψ(x)

)
⟨ψ(x), G⟩ − G

ς2

)
, (4.22)

where G = ∂ȷ(¸)
∂¸

. Since the inner product ⟨ψ(x), G⟩ requires O(b) time, we can

compute Equation (4.22) in total with O(bNtr) computation time and Ω(cNtr)

space. We refer this approach as LL-KLIEP(LS1-b), which is still independent of

Nte and suitable for high dimensional problems compared with LL-KLIEP(LS1-

a).

In the other approach for high dimensional problems, we make use of the

representer theorem [71]. Our idea is to represent the parameter α as a linear

combination of the input samples:

α =
∑

x∈Dtr

ψ(x)βx,

where {βx}x∈Dtr is a data-wise parameter. Then Equation (4.20) can be rewritten
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as

ȷLS({βx}x∈Dtr) =
1

2

∥∥∥∥∥F −
∑

x∈Dtr

ψ(x)ω(x) −
∑

x∈Dtr

ψ(x)βx

ς2

∥∥∥∥∥
2

, (4.23)

where

ω(x) =
exp(

∑
x′∈Dtr

K(x, x′)βx′)∑
x′′∈Dtr

exp(
∑

x′∈Dtr
K(x′′,x′)βx′)

, (4.24)

K(x,x′) = ⟨ψ(x),ψ(x′)⟩ .

The partial derivative of Equation (4.23) with respect to βx is:

∂ȷLS({βx}x∈Dtr)

∂βx
=⟨

F −
∑

x′∈Dtr

ψ(x′)

(
ω(x′) − βx′

ς2

)
,

∑
x′∈Dtr

ω(x′)ψ(x′) ⟨φ(x′), ψ(x)⟩ − ψ(x)

ς2

⟩
,

(4.25)

where φ(x) =
∑

x′∈Dtr
ω(x′)ψ(x′) − ψ(x). By the change of variables, it is not

required to calculate the partial derivative with respect to α so that we can avoid

the computation of the Hessian matrix of ȷ(α). We refer to this approach as

LL-KLIEP(LS2).

The computation of LL-KLIEP(LS2) requires O(bN2
tr) time and Ω(N2

tr +cNtr)

space. The computation time is linear with respect to the number of parameters

b and the storage space is independent of b. This is also an improvement over the

direct computation of the partial derivative in Equation (4.21).

For LL-KLIEP(LS), LCV can also be computed very efficiently. In each vali-

dation set using Dr
te and Dr

tr, we can compute the validation error as

Ĵr
LL-KLIEP(LS) =

∥∥∥∥∥∥F r −
∑

x∈Dr
tr

ŵr(x)ψ(x)

∥∥∥∥∥∥
2

,

where

F r =
1

|Dr
te|

∑
x∈Dr

te

ψ(x).
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Table 4.1. Computational complexity and space requirements. Ntr is the number

of training samples, Nte is the number of test samples, b is the number of param-

eters, and c is the average number of non-zero basis entries. “Precomp.” denotes

the computational complexity of once-off precomputation.

Computational complexity Space requirement
Precomp. Objective Derivative Objective Derivative

KLIEP 0 bNtr+bNte bNtr+bNte cNtr+cNte cNtr+cNte

LL-KLIEP bNte bNtr+bNte bNtr cNtr+cNte cNtr

LL-KLIEP(LS1-a) bNte bNtr b2Ntr cNtr b2+cNtr

LL-KLIEP(LS1-b) bNte bNtr bNtr cNtr cNtr

LL-KLIEP(LS2) bNte bN2
tr bN2

tr cNtr N2
tr+cNtr

Note that, once the mean basis vectors F r are calculated for all R disjoint subsets

of Dte, Ĵr
LL-KLIEP(LS) can be evaluated independently of the size of the test data

Dr
te.

The computational complexity and storage space of each method are summa-

rized in Table 4.1. In terms of the complexity analysis, LL-KLIEP(LS1-b) is the

best solution for the large amount of test inputs. We verified the analysis by the

computational experiments in Section 6.

4. Illustrative Examples

In this section, we illustrate the behavior of the proposed LL-KLIEP and show

how it can be applied in covariate shift adaptation.

4.1 Regression under covariate shift

Let us consider an illustrative regression problem of learning

f(x) = sinc(x).

Let the training and test input densities be ptr(x) = N (x; 1, 12) and pte(x) =

N (x; 2, 0.52), where N (x; µ, σ2) denotes the Gaussian density with mean µ and

variance σ2. We create the training output value {y(i)}Ntr
i=1 as y(i) = f(x(i)) + ϵ(i),
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Figure 4.1. Importance estimation.

where the noise {ϵ(i)}Ntr
i=1 has density N (ϵ; 0, 0.252). Let the number of training

samples be Ntr = 200 and the number of test samples be Nte = 1000. These set-

tings imply that we are considering an extrapolation problem (see Figure 4.1(a)).

We used 100 Gaussian basis functions centered at randomly chosen test in-

put samples. Figure 4.1(b) shows the actual importance w(x) and an estimated

importance ŵ(x) by using LL-KLIEP, where the hyper-parameters such as the

Gaussian width and the regularization parameter are selected by LCV. We also

tested LL-KLIEP(LS1-a), LL-KLIEP(LS1-b), and LL-KLIEP(LS2), but we omit

their graphs since their solutions are almost identical to the solution of LL-KLIEP.

Figure 4.2 depicts the values of the true JLL−KLIEP (see Equation (4.17)) and

its estimate by 5-fold LCV. The means, the 25 percentiles, and the 75 percentiles

over each validation are plotted as functions of the kernel width s for the different

ς = 0.5, 1, 2. We also plot the normalized mean squared error of the estimated

importance:

NMSE =
1

Ntr

∑
x∈Dtr

(
ŵ(x)∑

x′∈Dtr
ŵ(x′)

− w(x)∑
x′∈Dtr

w(x′)

)2

. (4.26)

The graph shows that LCV gives a very good estimate of JLL−KLIEP and also

NMSE. Figure 4.2 also shows that ς value affects the importance estimation in

terms of NMSE.
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Figure 4.2. Model selection curve.
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Figure 4.3. Regression under covariate shift (True and learned functions).

46



Table 4.2. Specifications of illustrative classification data.

Training ptr(x, y) Test pte(x, y)

y = 0 y = 1 y = 0 y = 1

Figure 4.4(a)
µ (-1,-1) (3,-1) (0,3.5) (4,2.5)

Σ

(
0.25 0

0 4

) (
0.25 0

0 0.25

)

Figure 4.4(b)
µ (-1,0) (4,2) (0,2) (3,1)

Σ

(
0.75 0

0 1.5

) (
0.75 0.5

0.01 0.1

)

Figure 4.3 shows the true learning target function and functions learned by

ordinary LS and IWLS with a linear basis function (Figure 4.3(a)), i.e., ϕ(x) =

(1, x)⊤, and a quadratic basis function (Figure 4.3(b)), i.e., ϕ(x) = (1, x, x2)⊤

(Section 2.2). The regularization parameter λ was selected by CV for LS and

IWCV for IWLS (Sections 2.3). The results show that the learned function using

IWLS goes reasonably well through the test samples, while that of ordinary LS

overfits the training samples. Note that the output of the test samples are not

used to obtain the learned functions.

4.2 Classification under covariate shift

Next, let us consider two illustrative binary classification problems, where two-

dimensional samples were generated from Gaussian distributions (see Table 4.2

and Figure 4.4). These data sets correspond to a ‘linear shift’ and a ‘non-linear

shift’ (rotation).

Let the number of the training samples be Ntr = 200 and that of the test

samples be Nte = 1000 (only 500 test samples are plotted for clarity). We used

LR/IWLR for the training classifiers (see Section 2.2), and employed CV/IWCV

for the regularization parameter tuning (see Section 2.3). We used a linear basis

function for LR/IWLR: ϕ(x) = (1,x⊤)⊤.

Figure 4.4 shows the decision boundaries obtained by LR+CV and IWLR+IWCV.

For references, we also show ‘OPT’, which is the optimal decision boundary

obtained using the test input-output samples. For the data set depicted in
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Figure 4.4(a), the correct classification rate of LR+CV is 99.1% while that of

IWLR+IWCV is 100%. For the data set depicted in Figure 4.4(b), the correct

classification rate of LR+CV is 97.2% while that of IWLR+IWCV is 99.1%. Thus,

for both cases, the prediction performance is improved by importance weighting.

5. Discussion

In this section, we compare the proposed LL-KLIEP with existing importance

estimation approaches.

5.1 Kernel density estimator

The kernel density estimator (KDE) is a non-parametric technique to estimate a

density p(x) from samples {xl}N
l=1. For the Gaussian kernel, KDE is expressed

as

p̂(x) =
1

(2πs2)d/2N

N∑
l=1

Ks(x, xl), (4.27)

where Ks(x,x′) is the Gaussian kernel (4.15). The performance of KDE depends

on the choice of the kernel width s, which can be optimized by LCV [26]. Note

that LCV corresponds to choosing s such that the Kullback-Leibler divergence

from p(x) to p̂(x) is minimized.

KDE can be used for importance estimation by first obtaining p̂tr(x) and

p̂te(x) separately from {x(i)}Ntr
i=1 and {x(i)}Nte

i=1 and then estimating the importance

as ŵ(x) = p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE

suffers from the curse of dimensionality [26], since the number of samples needed

to maintain the same approximation quality grows exponentially as the dimension

of the input space increases. This is particularly critical when estimating ptr(x)

since the number of training input samples is typically limited. In addition,

model selection by LCV is unreliable in such cases, since data splitting in the CV

procedure further reduces the sample size. Therefore, in high-dimensional cases

LL-KLIEP may be more reliable than the KDE-based approach.
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5.2 Kernel mean matching

The kernel mean matching (KMM) method avoids density estimation and directly

gives an estimate of the importance at the training input points [31].

The basic idea of KMM is to find w(x) such that the mean discrepancy be-

tween nonlinearly transformed samples drawn from pte(x) and ptr(x) is minimized

in a universal reproducing kernel Hilbert space [58]. The Gaussian kernel (4.15)

is an example of kernels that induce universal reproducing kernel Hilbert spaces

and it has been shown that the solution of the following optimization problem

agrees with the true importance:

min
w(x)

∥∥∥∥∫
Ks(x, ·)pte(x)dx −

∫
Ks(x, ·)w(x)ptr(x)dx

∥∥∥∥2

F

subject to

∫
w(x)ptr(x)dx = 1 and w(x) ≥ 0,

where ∥ · ∥F denotes the norm in the Gaussian reproducing kernel Hilbert space

and Ks(x, x′) is the Gaussian kernel (4.15).

An empirical version of the above problem is reduced to the following quadratic

program:

min
{w(x)}x∈Dtr

[
1

2

∑
x,x′∈Dtr

w(x)w(x′)Ks(x,x′) −
∑

x∈Dtr

w(x)κ(x)

]

subject to

∣∣∣∣∣ ∑
x∈Dtr

w(x) − Ntr

∣∣∣∣∣ ≤ Ntrϵ, and

0 ≤ w(x) ≤ B for all x ∈ Dtr,

where

κ(x) =
Ntr

Nte

∑
x′∈Dte

Ks(x, x′).

B (≥ 0), ϵ (≥ 0), and s (≥ 0) are tuning parameters. The solution {w(x)}x∈Dtr

is an estimate of the importance at the training input points.

Since KMM does not require density estimates, it is expected to work well

even in high dimensional cases. However, the performance is dependent on the

tuning parameters B, ϵ, and s and they cannot be optimized easily, e.g., by CV,

since estimates of the importance are available only at the training input points.
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Thus, an out-of-sample extension is needed to apply KMM in the CV framework,

but this currently seems to be an open research issue.

Here, we show that LL-KLIEP(LS2) (see Equation (4.23)) has a tight connec-

tion to KMM. Up to irrelevant constants, Equation (4.23) without a regularizer

can be expressed as

1

2

∑
x,x′∈Dtr

w(x)w(x′)Ks(x,x′) −
∑

x∈Dtr

w(x)κ(x),

which is exactly the same form as the objective function of KMM. Thus, KMM

and LL-KLIEP(LS2) share a common objective function, although they are de-

rived from very different frameworks.

However, KMM and LL-KLIEP(LS2) still have a significant difference—KMM

directly optimizes the importance values {w(x)}x∈Dtr , while LL-KLIEP(LS2) op-

timizes the parameter {βx}x∈Dtr in the importance model (4.24). Thus, LL-

KLIEP(LS2) learns the entire importance function and therefore it allows us to

interpolate the value of the importance function at any input point. This in-

terpolation property is a significant advantage over KMM since it allows us to

use LCV for model selection. Therefore, LL-KLIEP(LS2) may be regarded as an

extension of KMM.

5.3 Logistic regression discriminating training and test in-

put data

Another method to directly estimate the importance weights is to use a proba-

bilistic classifier. Let us assign a selector variable δ = −1 to the training inputs

and δ = 1 to the test inputs. This means that the training and test input densities

are written as

ptr(x) = p(x|δ = −1), pte(x) = p(x|δ = 1).

A simple calculation shows that the importance can be expressed in terms of δ

as [10]:

w(x) =
p(δ = −1)

p(δ = 1)

p(δ = 1|x)

p(δ = −1|x)
. (4.28)
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The probability ratio p(δ = −1)/p(δ = 1) may be simply estimated using the

ratio of the numbers of training and test input samples. The conditional prob-

ability p(δ|x) may be learned by discriminating between the test input samples

and the training input samples using LR, where δ plays the role of a class vari-

able (cf. Equation (4.6)). Let us train the LR model by regularized maximum

likelihood estimation. The objective function to be maximized is given by

LR(α) =
∑

x∈Dte∪Dtr

δx⟨α, ψ(x)⟩ −
∑

x∈Dte∪Dtr

ln(1 + exp(δx⟨α, ψ(x)⟩)) − ||α||2

2ς2
,

(4.29)

where the first term is the main likelihood term, the second term is a normalizer,

and the third term is a regularizer. Since this is a convex optimization problem,

the global solution can be obtained by standard non-linear optimization methods.

The gradient of the objective function is given as

∂LR(α)

∂α
=

∑
x∈Dte∪Dtr

δxψ(x) −
∑

x∈Dte∪Dtr

δxp¸(δx|x)ψ(x)−||α||2

2ς2
. (4.30)

Then the importance estimate is given by

ŵ(x) =
Ntr

Nte

exp(⟨α,ψ(x)⟩). (4.31)

We refer to this approach as LogReg.

Equation (4.31) shows that the function model of the importance in LogReg

is actually the same as that of LL-KLIEP except for a scaling factor (cf. Equa-

tion (4.16)). However, the optimization criteria of LL-KLIEP and LogReg are

different—in LL-KLIEP, the summation is taken only over the training or test

input samples but not both, while the summation in LogReg is over both the

training and test input samples. This difference is significant since LogReg does

not allow us to use the computational trick we proposed in Section 3.2. Thus LL-

KLIEP has the advantage in computation time and storage space consumption

over LogReg.

Bickel et al. [10] proposed simultaneous optimization of both importance

estimator and classifier. Although their method can perform better than our

two stage method which solves importance estimation and classifier’s parameter
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Table 4.3. Relation between the proposed and related methods.

Model selection
Direct importance

Optimization
model

KDE Available Not Available Analytic

KMM Not Available Non-parametric Constraint quadratic program

LogReg Available Log-linear Unconstraint non-linear

KLIEP Available Linear Constraint non-linear

LL-KLIEP Available Log-linear Unconstraint non-linear

estimation separately, it has a weakness in model selection. Since the hyper-

parameter of their method is supposed to be tuned for test samples, CV is not

applicable if no labeled test sample is available. On the other hand, our method

can select hyper-parameters for both importance estimation by LCV and classi-

fication by IWCV.

The characteristics of the proposed and related methods are summarized in

Table 4.3.

6. Toy Experiments

In this section, we experimentally compare the performance of LL-KLIEP with

existing methods.

Let ptr(x) = N (0d, Id) and pte(x) = N ((1, 0, . . . , 0)⊤, 0.752Id). The task is to

estimate the importance at the training input points:

w(x) =
pte(x)

ptr(x)
for x ∈ Dtr.

We compared KLIEP, KDE, KMM, LogReg, LL-KLIEP, LL-KLIEP(LS1-

a),LL-KLIEP(LS1-b), and LL-KLIEP(LS2). For LL-KLIEP, LL-KLIEP(LS1-a),

LL-KLIEP(LS1-b), and LL-KLIEP(LS2), we used 5-fold LCV to choose the reg-

ularization parameter ς and the kernel width s. For KLIEP, we use 5-fold LCV

to choose the kernel width s. For KDE, we used 5-fold LCV to choose the kernel

widths for the training and test densities. For KMM, we used B = 1000 and

ϵ = (
√

Ntr − 1)/
√

Ntr following the suggestion in the original KMM paper [31].
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(b) Varying training sample size

Figure 4.5. Mean NMSE over 100 trials. The filled plot markers indicate the

best method and comparable ones based on the Wilcoxon signed rank test at the

significance level 1% in terms of the NMSE. ‘KMM(s)’ denotes KMM with kernel

width s.

We tested two different values of the kernel width (s = 0.1 and s = 1.0) for KMM

since there is no reliable method to determine the kernel width. For LogReg, we

used 5-fold CV to choose the regularization parameter ς and the kernel width s.

We fixed the number of test input samples at Nte = 1000 and considered

the following setting for the number of training input samples Ntr and the input

dimension d:

1. Ntr = 100 and d = 2, 4, . . . , 20.

2. d = 10 and Ntr = 50, . . . , 150.

We ran the simulation 100 times for each d and Ntr, and evaluated the estimation

accuracy of {w(x)}x∈Dtr by the mean NMSE (see Equation (4.26)).

The mean NMSE over 100 trials is plotted in Figure 4.5. The filled plot

markers indicate the best method and comparable ones based on the Wilcoxon

signed rank test at the significance level 1% in terms of the NMSE. We omitted
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Figure 4.6. Average computation time over 100 trials. The horizontal axis rep-

resents the number of test samples (Nte), and the vertical axis represents the

elapsed time (millisecond), respectively.

the graphs of LL-KLIEP(LS1-a), LL-KLIEP(LS1-b) and LL-KLIEP(LS2) since

they are almost identical to the result of LL-KLIEP. Figure 4.5(a) shows that the

error of KDE sharply increases as the input dimension grows, while LL-KLIEP,

KLIEP, and LogReg tend to give much smaller errors than KDE. Figure 4.5(b)

shows that the errors of all methods tend to decrease as the number of training

samples grows. Again, LL-KLIEP and LogReg are shown to work well. These

would be the fruit of directly estimating the importance without going through

density estimation. The results of LL-KLIEP and LogReg are slightly better than

KLIEP, perhaps because the original KLIEP does not contain a regularizer; we

believe that the performance of KLIEP could be improved by adding a regularizer

as used in LL-KLIEP and LogReg. KMM also works reasonably well, as long as

the kernel width s is chosen appropriately. However, the performance of KMM

is highly dependent on s and determining its appropriate value may be difficult.

Overall, the accuracy of LL-KLIEP is comparable to the best existing approaches.

Next, we compared the computational cost of LL-KLIEP, LL-KLIEP(LS1-
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a), LL-KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg, which have good accuracy

in the previous experiments. We investigated the entire computation time of

all of them including cross-validation and the precomputation times for the test

samples. Note that the Gaussian width s and the regularization parameter ς are

chosen over the 5× 5 equidistant grid in this experiment for all the methods. We

fixed the input dimension at d = 10 and changed the number of training input

points Ntr = 102, 103 and the number of test samples Nte = 102, 103, . . . , 106. We

repeated the experiments 100 times for each Ntr and Nte on the PC server with

an Intel R⃝ Xeon R⃝ 2.66GHz. All of them are implemented on R (http://www.r-

project.org) and conjugate gradient method was used to optimize their objective

functions.

Figure 4.6 shows the average elapsed times for LL-KLIEP, LL-KLIEP(LS1-

a), LL-KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg. The results show that the

computational cost of LL-KLIEP and LogReg increases as the amount of test data

Nte grows, but the computational cost of LL-KLIEP(LS) is nearly independent of

the number of test samples Nte. This is in good agreement with our theoretical

analysis in Section 3.2. Thus the cost of dealing with a large amount of test data

in each optimization step is much higher than that at one time precomputation.

We also compared the memory usage of LL-KLIEP, LL-KLIEP(LS1-a), LL-

KLIEP(LS1-b), LL-KLIEP(LS2), and LogReg. We used the same implementation

and computational environment as the previous experiments. Figure 4.7 shows

the memory usage of each method. The results show that the space requirement

of LL-KLIEP and LogReg increases as the amount of test data Nte grows, but

that of LL-KLIEP(LS) is independent of the number of test data Nte.

In addition, we compared the computational cost of LL-KLIEP, LL-KLIEP(LS1-

a), LL-KLIEP(LS1-b), and LL-KLIEP(LS2) in detail. We examined the combi-

nation of the following setting for the number of test samples Nte, the number of

training inputs Ntr, and the input dimension d:

• Nte = 102, 103, . . . , 106

• Ntr = 102, 103

• d = 102, 103, 104.

56



Number of Test Samples

M
em

or
y 

U
sa

ge
 (

M
B

)

Number of Test Samples

M
em

or
y 

U
sa

ge
 (

M
B

)

Number of Test Samples

M
em

or
y 

U
sa

ge
 (

M
B

)

Number of Test Samples

M
em

or
y 

U
sa

ge
 (

M
B

)

Number of Test Samples

M
em

or
y 

U
sa

ge
 (

M
B

)

102 103 104 105 106

10
−1

1
10

10
2

10
3

LL−KLIEP
LL−KLIEP(LS1−a)
LL−KLIEP(LS1−b)
LL−KLIEP(LS2)
LogReg

(a) d = 10, Ntr = 100

Number of Test Samples
M

em
or

y 
U

sa
ge

 (
M

B
)

Number of Test Samples
M

em
or

y 
U

sa
ge

 (
M

B
)

Number of Test Samples
M

em
or

y 
U

sa
ge

 (
M

B
)

Number of Test Samples
M

em
or

y 
U

sa
ge

 (
M

B
)

Number of Test Samples
M

em
or

y 
U

sa
ge

 (
M

B
)

102 103 104 105 106

10
−1

1
10

10
2

10
3

LL−KLIEP
LL−KLIEP(LS1−a)
LL−KLIEP(LS1−b)
LL−KLIEP(LS2)
LogReg

(b) d = 10, Ntr = 1000

Figure 4.7. Memory usage. The horizontal axis represents the number of test

samples (Nte), and the vertical axis represents the memory usage (MB), respec-

tively.

In this experiment, we used a linear basis function so that the number of bases

is equivalent to the input dimension. Since the computational time of cross-

validation is conceptually a scalar multiple of that of each optimization step, we

compared the computational time including the precomputation times for the test

inputs after the model parameters are fixed. We repeated the experiments 100

times for each Nte, Ntr, and d using the same implementation and computational

environment as the previous experiments.

Figure 4.8 shows the average elapsed times for LL-KLIEP, LL-KLIEP(LS1-a),

LL-KLIEP(LS1-b), and LL-KLIEP(LS2). When d = 103, the result of Nte = 106

was excluded because of the large memory requirements. As we expected,

1. LL-KLIEP is faster than LL-KLIEP(LS) when the number of test samples

is small,

2. LL-KLIEP(LS1-a) is faster than LL-KLIEP(LS2) for lower dimensional

data,
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Figure 4.8. Average computation time over 100 trials. The horizontal axis rep-

resents the number of test samples (Nte), and the vertical axis represents the

elapsed time (millisecond), respectively.
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3. both LL-KLIEP(LS1-b) and LL-KLIEP(LS2) are advantageous for high

dimensional problems, and

4. the computational cost of LL-KLIEP(LS1-b) increases for the larger amount

of training inputs.

Since LL-KLIEP(LS1-b) outperformed LL-KLIEP(LS2) in all the settings, we

conclude LL-KLIEP(LS1-b) is more suitable for high dimensional problems. How-

ever, LL-KLIEP(LS1-a) is faster than LL-KLIEP(LS1-b) for lower dimensional

data against the complexity analysis. One reason for this result might be that

the computation of LL-KLIEP(LS1-b) is relatively complex in the iteration of the

training inputs compared with LL-KLIEP(LS1-a). Therefore, LL-KLIEP(LS1-a)

runs faster than LL-KLIEP(LS1-b) if the number of dimensions is small enough

not to ignore this overhead.

7. Experiments

Now, we show the empirical result that LL-KLIEP is applied to JWS task. It is

reasonable to consider the domain adaptation task of word segmentation systems

as a covariate shift adaptation problem since word segmentation policy (p(y|x))

is rarely changed between domains in the same language, but the distribution of

characters (p(x)) tends to be changed between domains.

In this experiments, we used the same corpus as in Section 6 of Chapter 3.

We used the segmented data in the source domain as training data and the

unsegmented data in the target domain as test data. For the unsegmented data

for the target domain, we used extra 53, 834 sentences of the medical reference

manual, denoted as data (D).

We implemented a CRF training algorithm (IWCRF) in which the original

log likelihood is weighted by importance.

IWCRF(θ) =
N∑

n=1

w(x) ln p„(y(n)|x(n))

=
N∑

n=1

w(x)
(⟨

θ,Φ(x(n),y(n))
⟩
− ln Z„,x(n),Y

)
.
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Note that, since the loss function of CRFs is defined as the sum of the log loss

for each sentence, w(x) also should be evaluated for each sentence. We imple-

mented the first order Markov CRFs which uses the same feature and optimizer

as Section 6 of Chapter 3).

To estimate the importance of each sentence by LL-KLIEP, we used the source

domain data (A) and (B) as the training examples Dtr and the target domain data

(D) as the test samples Dte. We defined the basis function for the importance

model ŵ(x) as the average value of observation features in a sentence:

ψ(x) =
1

T

T∑
t=1

xt. (4.32)

In this experiment, we used the observation features defined in Table 3.4. To

determine the hyper-parameter of LL-KLIEP, we used 5-fold CV.

We tuned the hyper parameter σ of IWCRF with importance weighted F

measure score, IWF, in which the number of correct words is weighted by the

importance of the sentence that the word belong to:

IWF(D) =
2 × IWR(D) × IWP(D)

IWR(D) + IWP(D)

for the validation set D where

IWR(D) =

∑
(x,y)∈D w(x)

∑
vt∈y[v̂t = vt]∑

(x,y)∈D

∑
vt∈y w(x)

× 100

IWP(D) =

∑
(x,y)∈D w(x)

∑
vt∈y[v̂t = vt]∑

(x,y)∈D

∑
v̂t∈ŷ w(x)

× 100, and

vt denotes a t-th word in a sentence (x,y) and v̂t denotes a t-th word of a system

prediction ŷ = argmaxy p„(y|x). We used 1/10 of training data Dtr as the

validation set.

Then, we compared the target domain performance between CRF, IWCRF,

and CRF which was trained additionally using 1, 000 partial word annotations of

the target domain CRF as mentioned in Section 6, denoted as “CRF + 1, 000”.

For importance estimation, we compared LL-KLIEP and LogReg for which we

employed 5-fold CV to find the optimal hyper-parameter ς.

As we mentioned in Section 1, the occurrences of domain specific words in-

crease the errors in adaptation phase. Therefore, we also compared the recall
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Table 4.4. Word segmentation performance in the target domain. “CRF +

1, 000” stands for the performance of a CRF additionally using 1, 000 manual

word segmentations of the target domain.

F R P OOV R

CRF 92.30 90.58 94.08 84.11

IWCRF (LL-KLIEP) 94.46 94.32 94.59 89.66

IWCRF (LogReg) 93.68 94.30 93.07 88.94

CRF + 1, 000 94.43 93.49 95.39 90.4

value of words which is not appeared in the source domain data (A) but ap-

peared in the target domain test data (C), denoted as OOV R (Out of Vocabulary

Recall):

OOV R =
# of correct unknown words

# of unknown words in test data
× 100

Table 4.4 shows the result of the performance of each method. Surprisingly,

the F score of IWCRF outperformed not only that of CRF, but also that of

“CRF + 1, 000”, so the benefit of the importance weighting is worth the manual

annotation of 1, 000 words. In analysis in depth, “CRF + 1, 000” showed the

better performance in the Precision (P) and OOV R. This implies the partial

annotation of the word list improves the accurate segmentation of domain specific

words. On the other hand, the covariate shift adaptation technique improves the

coverage in the target domain.

8. Summary

In this chapter, we addressed the problem of estimating the importance for co-

variate shift adaptation. We proposed a scalable direct importance estimation

method called LL-KLIEP. The computation time of LL-KLIEP is nearly inde-

pendent of the amount of test data, which is a significant advantage over existing

approaches when we deal with a large number of test samples. Our experiments

highlighted this advantage, and we experimentally confirmed that the accuracy of

the proposed method is comparable to the best existing methods. We concluded
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that the proposed method is a promising method for large-scale covariate shift

adaptation. We also confirmed that the proposed domain adaptation technique

improves the performance of JWS in the domain adaptation task.
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Chapter 5

Conclusion and Future Work

This thesis has considered how to adapt the statistical word segmentation sys-

tem to new domain text. The domain adaptation of word segmentation system

addresses the situation in which we possess a large amount of segmented data for

a source domain but little or no segmented data for a target domain where we

wish to apply the model. When we apply natural language processing to the real

world data, the domain adaptation of word segmentation systems is a first step

to successfully process a target text.

The first part of this thesis address the integration between effective segmented

corpus building system and the state-of-the-art structured output learning sys-

tem. We proposed a method to train CRFs using partially segmented sentences

which are easier to build than fully segmented sentences for new target domains.

The second part of this thesis address the situation where we have a large amount

of unsegmented data for the target domain. In this work, each segmented sen-

tences in the source domain is weighted by an importance so that the expected

error of a learned model is minimized in the target domain. We proposed an

importance estimation algorithm which efficiently processes unsegmented data in

the target domain.

We highlight a few directions of future research in the rest of this chapter.
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1. Partial Annotations for Other NLP Tasks

We believe that partial annotations in Chapter 3 are also useful to other tasks

in NLP, such as syntactic parsing, information extraction, and so on. However,

there are some NLP tasks, such as the word alignment task [67], in which it

is not possible to efficiently calculate the sum score of all of the possible label

configurations (the partition function). Recently, Verbeek et al. [70] indepen-

dently proposed a parameter estimation method for CRFs using partially labeled

images. Although the objective function in their formulation is equivalent to

Equation (3.4), they used Loopy Belief Propagation to approximate the partition

function for their application (scene segmentation). Their results imply these ap-

proximation methods can be used for such applications that cannot use dynamic

programming techniques.

2. Ambiguous Annotations

The problem formulation of partial annotations in Section 2 of Chapter 3 is di-

rectly extended to ambiguous annotations which are a set of candidate labels

annotated for a part of a structured instance. For many NLP tasks, it is some-

times difficult to decide which label is appropriate in a particular context. For

example, the following sentence from the Penn treebank (PTB) corpus includes

an ambiguous annotation for the part-of-speech (POS) tag of “pending”:

That/DT suit/NN is/VBZ pending/VBG|JJ ./. ,

where words are paired with their part-of-speech tag by a forward slash (“/”).1

Uncertainty concerning the proper POS tag of “pending” is represented by the

disjunctive POS tag (“VBG and JJ”) as indicated by a vertical bar. According

to the formulation in Section 2, this example sentence can be represented as:

L = ({DT}, {NN}, {VBZ}, {VBG, JJ}︸ ︷︷ ︸
ambiguous annotation

, {.}).

1These POS tags used here are DT:determiner, NN:common noun, VBZ:present tense 3rd
person singular verb, VBG:gerund or present participle verb, and JJ:adjective.
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We observed promising results for a POS tagging task using ambiguous annota-

tions that are contained in the PTB corpus [68].

We believe that ambiguous annotations are more common in the tasks that

deal with semantics, such as information extraction tasks. Worth mentioned that

each ambiguous part can have dependency on the label of the other ambiguous

part in these tasks. For example, an annotated phrase for named entity (NE)

extraction can consist of the set of NE label candidates over more than two

words such as

White/ORG|LOC House/ORG|LOC

where ORG represents organization names and LOC represents location names.

In this case, both of the two words (“White” and “House”) should be labeled by

the same NE label, but this kind of label dependency can not be described by

the representation in Section 2. Although it may not be difficult to generalize the

representation for these label dependencies, it is not trivial to efficiently compute

the partition function for the long term dependency of ambiguous parts. The

development of CRF learning algorithm using these ambiguous annotations is an

interesting topic for future work.

3. Support Vector Learning Using Partial Anno-

tations

Instead of CRFs, it is also an interesting direction to train other structured output

model using partition annotations. Although the conditional probability model

is trained by the regularized maximum likelihood estimation in Chapter 3, one

may maximize the log likelihood ratio:

r„(x,y) = ln
p„(y|x)

maxỹ ̸=y p„(y|x)

between the correct label and the most incorrect labeling. Let be max(1 −
r„(x,y), 0) is a loss function which penalized by the instances whose ratio is

smaller than one. This loss function is a generalization of the hinge loss to multi-

class Support Vector Machine (SVM) [49]. According to the treatment of missing
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values in this framework [57], The log likelihood ratio of a partially annotated

sentence can be defined as:

r„(x,y) = ln

∑
y∈YL

p„(y|x)

maxỹ /∈YL
p„(y|x)

= ln Z„,x,YL
− max

y /∈YL

⟨θ,Φ(x, y)⟩ .

Then, we can derive the constrained minimization problem for training SVM

using partial annotations.

min
N+M∑
n=1

ξ(n) +
||θ||2

2σ2

subject to ln Z„,x,Y
L(n)

− max
y /∈Y

L(n)

⟨
θ,Φ(x(n),y)

⟩
≥ 1 − ξ(n) and ξ(n) ≥ 0.

Although the constraints of the problem is not convex, we can still find a local

optimum for this problem by Concave-Convex Procedure (CCCP)[57].

4. Joint Density Ratio Estimation

In Chapter 4, we treat the domain difference as covariate shift in which we assume

the input distribution differs in the training and test phases, but the conditional

distribution remains unchanged, i.e. ptr(x) ̸= pte(x) and ptr(y|x) = pte(y|x).

However this assumption may too strong, and the conditional distribution can

also be changed, i.e. ptr(x, y) ̸= pte(x, y). This situation can reasonably ap-

pear in the domain adaptation of word sense disambiguation (WSD), sentiment

analysis (SA), and so on. Since it is natural that the meaning of words or

the positive/negative evaluation of items can differ between the domains, we

need to assume that classification rules of WSD or SA can be changed, i.e.

ptr(y|x) ̸= pte(y|x). In this case, we may want to weight training instances

by joint density ratio,

w(x,y) =
pte(x,y)

ptr(x,y)
,
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to minimize the expected loss in the target domain:∫∫
pte(x,y)Loss(x,y, f„(x))dxdy

=

∫∫
ptr(x,y)w(x, y)Loss(x, y, f„(x))dxdy.

So the estimation method of the joint density ratio can be an interesting

direction of the domain adaptation research. Bickel et al. factorize the joint

density ratio model ŵ(x, y) into two parts,

ŵ(x, y) = û(x,y)v̂(x),

and estimate û(x, y) and v̂(x) separately [11]. In a similar way as their approach,

it can be possible to estimate û(x,y) using labeled examples of both source and

target domain, and estimate v̂(x) by LL-KLIEP. However, since a small amount

of labeled data in a target domain is often available for the domain adaptation

of NLP tasks, we need to take into account the stability of the joint density ratio

estimation.
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Appendix

A. Computation of Objective and Derivative func-

tions

Here we explain the effective computation procedure for Equation (3.4) and (3.5)

in Chapter 3 using dynamic programming techniques.

Under the first-order Markov assumption2, two types of features are usu-

ally used: one is pairs of an observed variable and a label variable (denoted

as f(xt, yt) : X × Y ), the other is pairs of two label variables (denoted as

g(yt−1, yt) : Y × Y ) at time t. Then the feature vector can be decomposed

as Φ(x, y) =
∑T+1

t=1 ϕ(xt, yt−1, yt) where ϕ(xt, yt−1, yt) = f(xt, yt) + g(yt−1, yt).

In addition, let S and E be special label variables to encode the beginning and

ending of a sequence, respectively. We define ϕ(xt, yt−1, yt) to be ϕ(xt, S, yt) at

the head t = 1 and g(yt−1, E) at the tail where t = T + 1. The technique of

the effective calculation of the normalization value is the precomputation of the

α„,x,L[t, j], andβ„,x,L[t, j] matrices with given θ, x, and L. The matrices α and

β are defined as follows, and should be calculated in the order of t = 1, · · · , T ,

2Note that, although the rest of the explanation based on the first-order Markov models for
purposes of illustration, the following arguments are easily extended to the higher order Markov
CRFs and semi-Markov CRFs.
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and t = T + 1, · · · , 1, respectively

α„,x,L[t, j] =


0 if j /∈ Lt

⟨θ, ϕ(xt, S, j⟩) else if t = 1

ln
∑

i∈Lt−1

eα[t−1,i]+⟨„,ffi(xt,i,j)⟩ else

β„,x,L[t, j] =


0 if j /∈ Lt

⟨θ, g(j, E)⟩ else if t = T + 1

ln
∑

k∈Lt+1

e⟨„,ffi(xt,j,k)⟩+β[t+1,k] else

Note that L = (Y, · · · , Y ) is used to calculate all the entries in Y . In the rest

of this section, we omit the subscripts θ, x, and L of α, β, Z unless misunder-

standings could occur. The time complexity of the α[t, j] or β[t, j] computation

is O(T |Y |2).
Finally, Equations (3.4) and (3.5) are efficiently calculated using α, β. The

logarithm of Z in Equation (3.4) is calculated as:

ln Z„,YL
= ln

∑
j∈LT

eα„,L[T,j]+⟨„,g(j,E)⟩.

Similarly, the first and second terms of Equation (3.5) can be computed as:∑
y∈YL

p„,L(y|x)Φ(x,y) =
∑
i∈LT

εL(T, i, E)g(i, E)

+
T∑

t=1

∑
j∈Lt

γL(t, j)f(xt, j) +
∑

i∈Lt−1

εL(t, i, j)g(i, j)


where θ, x are omitted in this equation, and γ„,x,L and ε„,x,L are the marginal

probabilities:

γ„,x,L(t, j) = p„,L(yt = j|x)

= eα[t,j]+β[t,j]−ln ZYL , and

ε„,x,L(t, i, j) = p„,L(yt−1 = i, yt = j|x)

= eα[t−1,i]+⟨„,ffi(xt,i,j)⟩+β[t,j]−ln ZYL .

Note that YL is replaced with Y and L = (Y, · · · , Y ) to compute the second

term.

82


