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Making XML Database Systems Scalable to Computer
Resources and Data Volumes∗

Makoto YUI

Abstract

Increasing use of XML has emphasized the need for scalable database systems that
are capable of handling a large amount of XML data efficiently. This study explores ef-
fective methods for making a scalable XML database system in the following aspects:
(a) scalability to data volumes, (b) scalable XML processing with a shared-nothing PC
cluster, and (c) scalable database processing on shared-memory multiprocessors. In the
study of (a), we propose an XQuery processing scheme in which an XML document
is internally represented as a set of blocks and can directly be stored on a secondary
storage. Our experimental results showed that our storage scheme is scalable to data
volumes and outperforms competing schemes with respect to I/O intensive workloads.
In (b), we discuss on-the-fly XML processing using shared-nothing PC clusters. We
propose a scheme for distributed and parallel query processing that employs a pass-
by-reference semantics by using remote proxy. Previously proposed methods that use
pass-by-value semantics have often suffered from redundant communication between
processor elements and limited inter-operator parallelism. To cope with these prob-
lems, we developed a distributed XML query processing scheme that leverages the
benefit of lazy evaluation. Our experimental results showed that our proposed scheme
obtains up to 22x speedups compared with competitive methods, and demonstrated the
importance of distributed XML database systems to take pass-by-reference semantics
into consideration. In (c), we explain the internal locking in the buffer management
module that prevents databases from being scalable to the number of processors. We
further propose a scalable buffer management scheme that employs non-blocking syn-
chronization instead of locking-based ones. Our experimental results revealed that our
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scheme can obtain nearly linear scalability to processors up to 64 processors, although
the existing locking-based schemes do not scale beyond 16 processors. Finally, we
conclude our studies with examining our XML native database system built on top of
the three contributions.
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Management
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1
Introduction

1.1 Background

After XML 1.0 [BPSM+03] became a W3C recommendation on February 10, 1998, XML
data has been increasing and spreading over computer networks. Since then, database
community has been actively working on diverse research issues on XML data man-
agement for over 10 years.

This dissertation describes effective methods for making a scalable XML database
system. Making a scalable XML database system is worth trying theme, not simply
because scalability of database is a primary concern for database systems, but because
even state-of-the-art XML database systems are not scalable enough for web-scale
computing where large-scale distributed computing is mandatory.

1.2 Approach

The goal of this dissertation is, in short, making XML database systems scalable. We
discuss scalability issues in XML databases in the following aspects:

(a) scalability to data volumes,

(b) scalable XML processing with a shared-nothing PC cluster, and

(c) scalable database processing on shared-memory multiprocessors.

1



2 Chapter 1. Introduction

While distributed XML processing (b) is apparently important, local XML processing
(a and c) is important as well since a distributed XML processor is built on top of local
XML processors.

In the study of (a), we propose an XQuery [W3Cd] processing scheme in which an
XML document is internally represented as a set of blocks and can directly be stored
on secondary storage. The results of our experiments clearly show that the proposed
scheme can often obtain almost linear scalability in performance as the data size in-
creases.

In studying (b), we discuss on-the-fly XML processing using shared-nothing PC
clusters. We believe that on-the-fly processing of XML increases developers’ attention
because dynamic XML documents on the web — web feeds in RSS [RSS00] or ATOM
[NS] format, search results in XML published by information systems, and scientific
data that are updated on an ongoing basis from individual laboratories around the
world — are increasing. However current XML query processor technologies provide
no such facilities that make on-the-fly processing for thousands of XML data realistic.
Responding to the latent demand, we introduce a divide-and-conquer approach that
divides a query into multiple-queries to XML query processing. Our enhanced XML
query processor parallelizes the execution of divided queries on multiple computation
nodes. We further address outstanding issues that such a hierarchical distributed sys-
tem must deal with.

In studying (c), we address processor scalability issues for database systems in
a setting when processor manufacturers are increasing the number of CPU cores per
chip. In particular, we explain how internal locking in buffer management module pre-
vents databases from being scalable to the number of processors. The issued problems
had become a reality in the development of our XML database system. To deal with
them, we propose a scalable buffer management scheme that employs non-blocking
synchronization instead of locking-based ones. Our experimental results revealed that
our scheme can obtain nearly linear scalability to processors up to 64 processors, al-
though the existing locking-based schemes do not scale beyond 16 processors.

Finally, we conclude our studies with examining our XML native database system
built on top of the three contributions and show accumulated knowledge about making
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an XML database system scalable.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows. Before going to the main
topics, Chapter 2 describes XML-related technologies. Chapter 3 gives a survey on
XML database systems. As well as introducing influential researches to my disser-
tation, research opportunities of equal importance in the discussion of current XML
database systems are explored. In Chapter 4, we propose an XQuery processing
scheme in which an XML document is internally represented as a set of blocks and
can directly be stored on secondary storage. In Chapter 5, we discuss on-the-fly XML
processing using shared-nothing PC clusters. In particular, we focus on an aspect of
distributed XQuery processing that involves data exchanges between processor ele-
ments. In Chapter 6, we explain the internal locking in the buffer management module
that prevents databases from being scalable to the number of processors. And then,
we propose a scalable buffer management scheme that employs non-blocking synchro-
nization instead of locking-based ones. Chapter 7 concludes this dissertation with
examining our XML native database system built on top of the three contributions. We
further give a future direction of my research.



2
XML and Related Technologies

This chapter introduces XML and related technologies that are required in discussions
of this dissertation. We assume the reader moderately familiar with XML; they at least
know the basic syntax of XML and the tree-structured nature of XML data.

2.1 XML Data Model

XML itself is just a document format, in which some structural irregularities are per-
mitted, and not a data model. XML documents must satisfy syntactic constraints de-
fined in the specification [BPSM+03]. XML has two correctness levels:

• Well-formed. An XML document is well-formed if it obeys the syntax of XML.

• Valid. A well-formed XML document is called valid if it is conformed (vali-
dated) with semantic rules described in a particular schema [W3Cc, CM01] or DTD
[BPSM+03].

We treat well-formed XML documents in the rest of this dissertation.

2.1.1 Modeling XML-encoded Information

XML Information Set (XML Infoset) [CT04] describes an abstract data model of a well-
formed XML document. XML Infoset forms the basis for other specifications that
need to refer to the information in a well-formed XML document and does not restrict
XML data model to tree.

4



2.2. XML Query Language 5

On the other hand, XML is often modeled as a tree [HHN+00, W3Ce]. Both of XPath
1.0 data model [W3Ca] and XQuery 1.0 and XPath 2.0 Data Model (XDM) [W3Ce] model
an XML document as a tree of nodes. The tree, often referred to as XML tree in the
literature, contains nodes. There are seven types of node: document, element, attribute,
text, namespace, processing instruction, and comment.

Both of XPath 1.0 and XPath 2.0/XQuery 1.0 expressions operate over XML trees.
However, significant differences appear in the underlying data models between XPath
1.0 [W3Ca] an XPath 2.0 [W3Cb] as follows:

• Every value in XPath 2.0 is a sequence of typed items instead of node sets.

Sequences are ordered and may have duplicates in contrast to node sets are un-
ordered and have no duplicates. The items in XPath 2.0 may be nodes or atomic
values aside from XPath 1.0 consists of simple four types — node sets, number,
string, and boolean. Atomic values may belong to any of the 19 primitive types
defined in the XML Schema [BM04], e.g., string, boolean, double, float, decimal,
dateTime, QName, and so on.

• XPath 2.0 data model allows trees to be rooted at other kinds of node sequences
instead of node sets in XPath 1.0.

• Nodes may be typed or untyped in XPath 2.0. A node can acquire a type as a
result of validation against an XML Schema.

2.2 XML Query Language

As increasing amounts of information are stored, exchanged, and presented using
XML, the ability to intelligently query XML data sources becomes important.

Creating a new language is a serious business. Lots of time/persons have been
spent in defining a standard query language for XML. XQuery 1.0 [W3Cd] eventually
became a W3C Recommendation on January 23, 2007. XQuery is derived from an
XML query language called Quilt [CRF01], which in turn borrowed features from several
other languages, including XPath 1.0 [W3Ca], XQL [RLS98], XML-QL [DFF+98], SQL, and
OQL [CA95].



6 Chapter 2. XML and Related Technologies

2.3 XQuery Fundamentals

2.3.1 FLWOR Expression

XQuery expression is often characterized by FLWOR expression. The following shows
each role of the clauses.

• for creates a sequence of tuples.

• let binds a sequence to a variable.

• where filters the tuples on a boolean expression.

• order by sorts the tuples.

• return gets evaluated once for every tuple.

An XPath expression in Table 2.1 can be expressed in XQuery as in Table 2.2.

� �
The expression below will select all the title elements under the book elements that
are under the bookstore element that have a price element with a value that is
higher than 30.

doc("books.xml")/bookstore/book[price>30]/title� �
Table 2.1. An example of XPath expression.

� �
for $store in doc("books.xml")/bookstore

let $x := $store/book

where $x/price>30

return $x/title� �
Table 2.2. An example of FLWOR (FLWR) expression.
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2.3.2 Functional Aspects

XQuery is a functional programming language that does not contain side effects. The
basic evaluation order is defined in XQuery formal semantics [W3Cf].

Aside from that, some evaluation order of expression, e.g., function calls, are not
defined and implementation-dependant. The table below shows an example of the
function call semantics.� �

The order of function argument evaluation is implementation-dependent and a
function need not evaluate an argument if the function can evaluate its body with-
out evaluating that argument.

http://www.w3.org/TR/xquery/#id-function-calls� �
Lazy Evaluation

Our XQuery implementation, namely XBird, takes a call-by-name evaluation strategy
and most expressions are lazily evaluated. Next, we briefly illustrate the semantics
using examples.

When evaluating Table 2.3, XBird returns ”lazy” as the result. On the other hand,
Saxon [Sax], a famous XQuery implementation, causes stack-overflow because Saxon
eagerly evaluates function parameters. Table 2.4 can also be evaluated normally in
XBird. The query is also executable with Saxon.

Recursive Call

Recursion is a powerful feature in function definitions. Recursive functions are useful
that are defined over a hierarchical data model such as XML.

As an illustration of a recursive function, the depth function in Table 2.5 can be
invoked on an element and returns the depth of the element hierarchy beginning with
its argument. Table 2.6 is the example that returns the maximum depth of elements in
the first author element.

http://www.w3.org/TR/xquery/#id-function-calls
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� �
declare function local:params() {

local:params()

};

declare function local:test($x) {

"lazy"

};

declare function local:f() {

let $x := local:params()

return local:test($x)

};

local:f()� �
Table 2.3. An example query in which function parameters are never evaluated.

� �
declare function local:endlessOnes() as xs:integer*

{

(1, local:endlessOnes())

};

some $x in local:endlessOnes() satisfies $x eq 1� �
Table 2.4. A lazy list in XQuery.

� �
declare function local:depth($root as element()) as xs:integer

{

if(empty($root/*)) then 1

else 1 + max

(for $c in $root/* return local:depth($c))

};

local:depth($input)� �
Table 2.5. A recursive query that returns the maximum level of elements.
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� �
let $input :=

<authors>

<author>

<fName>William</fName>

<lName>Shakespeare</lName>

</author>

<author>

<fName>Ernest</fName>

<lName>Hemingway</lName>

</author>

</authors>

return local:depth($input/author[1])� �
Table 2.6. A query that returns the maximum depth using recursion.

2.3.3 Research Opportunities

While XQuery 1.0 already became a W3C Recommendation, several opportunities for
XQuery 1.1 [Eng07] and fundamental challenges in XML query language exist:

• Updating: The XQuery Update Facility [W3Cg] appeared as a draft specification
to allow XQuery expressions to perform database update. Implementations of it
are starting to appear. MonetDB/XQuery [BGvK+06] proposed an efficient updating
scheme using a shadow paging technique.

• Fulltext search: W3C has been developing a full-text search facility for use with
XPath 2.0 and XQuery [AYBB+08]. Supporting full-text (IR-style) queries over
XML is becoming most hot research topic [YS05].

• Stream processing: Processing XML path queries over steaming XML data has
been actively studied, e.g., in [IHW02, PC03]. Recently it is adapted to XQuery
[BKF+07] and XQuery 1.1 [Eng07] suggested to support windowing.

• Functional features: Supporting higher-order functions and lambda expressions
is suggested in [Eng07].
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• Procedural features: The impedance mismatch problem has existed in the re-
lational database world for many years. One historically successful approach
to this problem was to extend SQL with control logic, resulting in stored pro-
cedure languages such as PL/SQL in Oracle and Transact-SQL in SQLServer.
Supporting procedural features in XQuery is challenging because procedural
languages, in general, reduce optimization opportunities that are available in
declarative/functional languages. XQueryP [CCF+06] is the first attempt for that.

• Distributed query processing features: Supporting distributed XML query is es-
sentially important because XML data has been spread over computer networks
[ABC+03, Suc02]. Several researches addressed this problem [ABC+03] and proposed
extending XQuery for distributed XML processing [RBHS04, ZB07b, FJM+07a]. We also
address this problem in Chapter 5.



3
Survey on XML Database Systems

This chapter makes a survey on XML database systems with introducing influential
researches to this dissertation. Research opportunities of equal importance in the dis-
cussion of current XML database technologies are also explored.

The free-form nature of XML has provided various new opportunities for database
community [Wid99] as partially listed below:

• modeling XML-encoded information as a true data model [HHN+00, GMW99],

• an appropriate query language for querying XML data [CRF01, W3Cd],

• efficient physical layouts [KM00, ZKO04] and indexing mechanisms for XML data
[JLWO03],

• storing and querying XML data on traditional DBMSs [FK99, TVB+02, YASU01],

• join processing tailored for XML tree structures [AKJP+02, JLWO03, BKS02],

• publishing XML documents from traditional data sources (e.g., relational tables)
[FKS+02, CKS+00],

• information retrieval (IR)-style searches on XML documents [YS05], and

• benchmarking XML data processing [SWK+01, YÖK04].

11
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In the following sections, we introduce some key elements for our research. In Sec-
tion 3.1, we introduce semistructured data model referring to one of XML. Section 3.2
gives an overview of XML database systems. In Section 3.2.1, XML native database
systems are independently introduced. Finally, in Section 3.3, we introduce previous
research on distributed XML processing. We furture refer to parallel database systems
in Section 3.3.1.

3.1 Semistructured Data and XML

XML is often said to be semistructured because structural irregularity of XML can be
caused by its self-describing and schema-free nature. The XML data model is similar
to that for semistructured data in the sense that both represent data as a directed graph.
An important difference is that XML data model has order while semistructured data
is usually unordered.

Research work on XML shared earlier challenges on semistructured data manage-
ment because XML documents are essentially semi-structured [Bun97, Abi97]. Semistruc-
tured databases, unlike traditional rigid databases, do not have a fixed schema known
in advance. It posed new challenges in large areas such as index structures [GW97, MS99]

and data model [GMW99].

Let us consider query evaluation for instance. Navigation over a semistructured
graph is fundamental part of query evaluation. Due to the lack of information about
the schema, a naive evaluation involves unnecessary scans of the database in search
of those paths that satisfy a given query. In addition, since navigating the graph is
essentially a pointer traversal and the graph objects may be scattered across the disk,
some queries may require numbers of disk accesses and cause significant performance
degradation.

Index structures for semistructured data have been developed in order to address
these problems. DataGuide [GW97] generates a path index that summarizes all paths
in the database that start from the root. In a sense, the path index serves as dynamic
schema, generated from semistructured databases. This schema information as well as
the index facilities are useful for query optimization and reduce the portion of database
to be scanned in query evaluation.
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Structural summaries are also effective for XML path processing with associating
node paths in XML trees with the node-set that paths reach. Several variations of
structural summaries have been proposed and a detailed survey can be found in [CMV05].
Fundamental research opportunities remained to develop an efficient storage scheme
for path traversals [MBB+06]. In Chapter 4, we introduce an efficient storage scheme
optimized for frequent access patterns in XML query processing.

3.1.1 DataGuide and Strong DataGuide

As shown in Figure 3.1, DataGuides guarantee that each label path in the data graph
reaches one node in the DataGuide but do not prevent multiple label paths from reach-
ing the same DataGuide node.

One type of DataGuide which guarantees that all label paths that reach the same
node in the DataGuide as in Figure 3.2 is called Strong DataGuide [GW97]. Strong
DataGuide summarizes all path information in G into GI . GI can be viewed as a DFA
converted from G, which, in turn, can be viewed as a NFA. Strong DataGuides might
be exponential in the size of G. However, [MS99] showed that when G is a tree, Strong
DataGuide is reduced to 1-index [MS99] whose size does not exceed the size of G.
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An XML Data

Figure 3.1. Various DataGuides of an XML tree.

3.1.2 Data Model for Semistructured Data

Semistructured data is often modeled as some form of labeled, directed graph [Abi97,

Bun97]. There are two major approaches in modeling semistructured data: node-labeled
graph and edge-labeled graph. Node-labeled graphs have lables on nodes and edge-
labeled graphs have labels on edges as shown in Figure 3.3. As long as treating trees,
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Figure 3.2. A Strong DataGuide of an XML tree.

the distinction between node-labeled and edge-labeled is minor [ABS99]. When treat-
ing graphs, the distinction between the two models becomes important. An intuitive
difference is that edge-labeled graphs have unique identifiers for each edge while node-
labeled graphs have one for each node. This property of edge-labeled graphs becomes
advantages when a node is referenced by multiple edges; every label is identifiable
with the edge.

XML defines two particular attributes associated to unique identifiers for linking
elements, called ID and IDREF. They used to link elements beyond the relationship
given by the tree structure of XML documents. This mechanism allows us to define an
XML document that has a graph structure in addition to a tree structure.

book
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book

Data Mining
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IAN WITTEN EIBE FRANK

435446541

ISBN

(a) node-labeled graph

book

title
author rel

book

Data Mining
name name

IAN WITTEN EIBE FRANK

ISBN

435446541

reference

(b) edge-labeled graph

Figure 3.3. An example of node and edge labeled graphs.
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3.1.3 Lore and Object Exchange Model

The Lore project [MAG+97, GMW99], developed at Stanford Database Group, had produced
numerous and influence ideas, as partly listed below, to XML database research derived
from their earlier efforts on semistructured database.

• DataGuide [GW97] for the structural summaries/indices for semistructured data.

• Query formulation techniques (and its user interface) that can assist users to
compose a query without structural information of database in advance.

• Object Exchange Model (OEM) [PAM96] is self-describing, nested object model
that can intuitively be thought of as a labeled, directed graph. The data in OEM
can be exported and imported among other mediators.

• Lorel, Lore’s query language for querying semistructured data [AQM+97], has fa-
miliar select-from-where syntax. Lorel influenced the design of XQuery.

3.2 XML Database System

XML database systems fall into three main categories as seen in Figure 3.4:

• XML-enabled database uses an existing DBMS to provide interfaces for XML
handling and decomposes XML data into the internal data model, e.g., relational
tables or object store.

• Native XML database (NXDB) that uses a special mechanism for storing and
querying XML data [JAKC+02, KM00].

• Hybrid database is a variant of XML-enabled databases while it also provides
similar facilities to NXDBs, i.e., XML-specific data store and XML-specific
evaluation techniques. It essentially can be considered either XML-enable databases
or NXDBs [BCJ+05, BGvK+06].

In XML-enabled databases, two approaches can be considered in designing the
underlying database schemes [YASU01]:
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Figure 3.4. Implementation strategies of XML databases.

• structure-mapping approach: Database schemas represent the logical structure
(or DTDs if they are available) of target XML documents. In the structure-
mapping approach, a database schema is defined for each XML document struc-
ture or DTD.

• model-mapping: Database schemas represent constructs of the XML document
model. In this approach, a fixed database schema is used to store the structure of
all XML documents.

Because of the wide availability, robustness, manageability of RDBMSs, and ease-
of-development of research prototypes, the shredding solutions have received a lot of
attention. On the other hand, a hybrid solution [BCJ+05] showed industrial-strength and
draw unprecedented attention recently.

Our system can be classified to native XML databases because we (at least the
author) believe that future XML-enabled DBMSs take hybrid approaches as in [BCJ+05].
Our techniques, proposed in Chapter 4, can also be applied to hybrid databases.
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3.2.1 XML Native Database System

As defined by the XML:DB initiative [The01], an XML native database (NXDB) uses
an XML document as its fundamental unit of logical storage. It stores and retrieves
documents according to that model.

Data Organization

Data organization schemes characterize XML native databases. Physical composition
unit of an XML tree can be classified to three models as seen in Figure 3.5: document-
level, node-level, block-level. A block-level composition relies on the page (or a disk
block) allocation scheme of XML nodes.

Natix [KM00] uses a subtree for the basic storing and accessing unit. NoK [ZKO04]

uses a succinct string representation for an XML tree, namely subject tree. The string
representation is allocated to disk pages in a depth-first search manner. Both of Timber
[JAKC+02] and eXist [Mei06] take a node object as the storing unit. Xindice [Apaa] uses a
document-level physical composition. OrientStore [MLLA03] uses explicit schema infor-
mation for designing a physical allocation.

On the other hand, we propose an alternative storage scheme, namely pDTM, in
Chapter 4. Native StoreDocument-level Node-level Block-levelXindice eXist

Element-levelTimber
Schema-guidedpDTM NoK

Xbird OrientStore
PDOMX-Hive Subtree-levelNatix

Native StoreDocument-level Node-level Block-levelXindice eXist
Element-levelTimber

Schema-guidedpDTM NoK
Xbird OrientStore
PDOMX-Hive Subtree-levelNatix

Figure 3.5. XML-native data storing schemes.
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3.3 Distributed XML Processing

Distributed databases share workloads among network-connected computation nodes
to reduce the amount of computation for each database server. The design of dis-
tributed XML database systems involves making decisions on the placement of XML
data and computation as depicted in Figure 3.6. In particular, data partitioning is im-
portant in a sense that determines a good part of later computation.

network

XML trees

…

1. fragmenta�on

2. allocation

Figure 3.6. Data partitioning of XML data.

When building distributed XML processors, the following techniques should be
considered:

• Data distribution (partitioning):

1. Fragmentation: With respect to fragmentation, the important issue is the
appropriate unit of distribution. XML data should be fragmentized con-
sidering data size as well as tree structure of each fragment. Since XML
has tree structure, XML data have to be fragmentized preserving the in-
tegrity of the tree structure. On the other hand, no fragmentation scheme
is a considerable option that uses document-level distribution instead of
subtree-level fragmentation. We, in Chapter 5, follow the former scheme
mainly because the disadvantages of fragmentation [OV99] (e.g., difficulty in
supporting full-fledged XQuery [W3Cd]).
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2. Allocation: The allocation of resources across the nodes of a computer net-
work is a classical problem though few are studied for distributed XML
data management. Allocation problem is formalized [OV99] as follows.
Assume that there are a set of fragments F = F1, F2, . . . , Fn and a net-
work consisting of sites S = S 1, S 2, . . . , S m on which a set of applications
Q = q1, q2, . . . , qq is running. The allocation problem involves finding the
“optimal” [DF82] distribution of F to S .

• Distributed query processing:

1. Query optimization: Parallel query optimization should take the maximum
parallelisms. We explain the parallelism in Section 3.3.2.

Using index structures for distributed query processing is worth considera-
tion. Bremer et al. [BG03] used a summary index structure, which is similar
to Strong DataGuide, and took index shipping into consideration.

2. Evaluation strategies: Distributed XML processing in P2P environment
has been actively studied as described in [KP05]. Most of them provide lim-
ited expressive power (i.e., simple path matching using distributed hash
tables (DHTs)) for XML query processing.

MonetDB/XRPC [ZB07a] proposed bulkRPC in which set-at-a-time process-
ing is exploited to reduce the number of RPCs.

• Load balancing: Kurita et al. [KHMU07] proposed adaptive data placement scheme
that adaptively relocates partitioned XML fragments based on CPU load.

We propose, in Chapter 5, an efficient distributed XML query evaluation strategy
using remote proxy. The proposed scheme introduces a lazy evaluation technique and
a load balancing mechanism to distributed XML query processing.

3.3.1 Parallel Database Systems

Parallel database systems (database systems on parallel computers [DG92]) had been
intensively studied between the late 80’s and 90’s when multiprocessor computers dis-
placed traditional mainframe computers. For example, in the 90’s, Wal-Mart famously
utilized parallel databases to gain radical efficiencies in supply chain management via
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item-level inventory and historical sales information. This change evokes the current
situation that increasing number of processors per chip has raised critical challenges in
software engineering [Sut05].

Recently, excitement about MapReduce [DG04] has spread quickly in the comput-
ing industry. Some database leaders have argued publicly that the MapReduce phe-
nomenon is not a technical revolution at all [DS08]. Actually, what MapReduce made is,
at least partly, a reinvention of parallel database techniques.

These facts imply that parallel database techniques are now worth getting recon-
sidered. In Chapter 5, we introduce pipeline parallelism to XML query processing.
Distributed query processing of XML is different from one of parallel databases in
terms of treating contents. Traditional parallel databases, in general, consider neither
semi-structured nor unstructured data.

The following sections briefly explore database parallelism originating from past
studies of parallel databases.

Architectures of Parallel Database Systems

The followings are commonly mentioned multiprocessor architectures for parallel sys-
tems:

• Shared memory (shared everything): multiple processors share a common cen-
tral memory.

• Shared disk: multiple processors each with private memory share a common
collection of disks.

• Shared nothing: each node is independent and self-sufficient. Communication
among processors is achieved by message passing.

Currently succeeding architecture includes shared nothing (MySQL NDB cluster
and MapReduce [DG04]) and shared disk (Oracle RAC). An influential discussion can
be found in [Sto86] that describes pros and cons of each architecture. Their conclusion is
that shared nothing is adequate to address the most case.

We are considering to apply shared nothing to our distributed XML query processor
in Chapter 5 though our scheme is adaptable to other architectures.
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3.3.2 Query Parallelism

Several levels of parallelism can be found in (parallel) query processing [OV99].

• Inter-query parallelism enables the parallel execution of multiple queries gener-
ated by concurrent transactions in order to increase throughput.

• Intra-query parallelism consists of inter-operator parallelism and/or intra-operator
parallelism and used to decrease response time. Figure 3.7 depicts the two kinds
of operator parallelisms.

1. Intra-operator parallelism executes the same operator by multiple proces-
sors, each one working on a subset of the data.

2. Inter-operator parallelism executes several operators of the query tree on
multiple processors.

Join

select select

op.

R

op.

R1

op.

R2

op.

R2

op.

R4
�

Inter-operator parallelism Intra-operator parallelism

Figure 3.7. Query parallelism.

Two forms of inter-operator parallelism as shown in Figure 3.8 can be exploited:

• Within pipeline parallelism (also known as dependent parallelism), several op-
erators with a producer-consumer link are executed in parallel.

• Independent parallelism is achieved when there is no dependency between the
operators executed in parallel.

For instance, the operator OP1 and the subsequent operators OP4 and OP5 in Figure
3.8 are concurrently exectuted with pipeline parallelism. On the other hand, OP2, OP3

and OP4 are executed in parallel when independent parallelism is achieved.
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Figure 3.8. Inter-operator parallelism.

Independent operator parallelism is attractive because there is no interference be-
tween the processors. However, it is only possible for bushy execution and consumes
more resources than pipelined processing [SYT93]. State-of-the-art solutions [LR05, SD90,

CLYY92] of parallel databases tend to apply maximal pipelined parallelism in processing
multi-join queries over multiple machines.

In Chapter 5, we introduce the pipeline parallelism into distributed XML query
processing. We show some reason why pipeline parallelism can be more effective for
XML database systems than traditional parallel databases.
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Scalable Storage System for Large XML Data

Scalability to data volumes is clearly important for database systems and also for XML
databases. There is no doubt that database users prefer such a database system that is
capable of handling as much volumes as possible.

To attain this, we propose an XML storage scheme based on Document Table
Model (DTM) which expresses an XML document as a table form. When perform-
ing query processing on large scale XML data, XML storage schemes on secondary
storage and their access methods greatly affect the entire performance. For this reason,
we developed an XQuery processing scheme in which an XML document is internally
represented as a set of DTM blocks and can be directly stored on secondary storage.
We explore an efficient XML storing scheme — assuming a given situation that certain
number of pages are accessed. It means that we put XML indices behind for the time
being (in the discussion) for the fair assessment of XML storage schemes themselves.

There is a well-known rule thumb in database systems that it is better to scan than
to use an index when more than 10% of the data is accessed; otherwise using indices
should be considered. Not surprisingly, this principle also applied to XML database
systems. May et al. confirmed that in [MBB+06]. We follow this principle and explore
a non-oblivious problem that how XML fragments should be placed on a secondary
storage for the situation that indices are not usable. Such situations are mandatory for
distributed query processing due to difficulties in distributed optimization, and even for
local query processing of complex XML queries.

Designing an XML storing scheme requires design decisions. We made, in this
dissertation, our scheme tailored for read-oriented workloads; an XML document is

23
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stored on disks as arrays of nodes. We analyzed the actual data access patterns to
DTM that appeared in processing XML queries, and employed the combination of
informed prefetching and scan-resistant buffer management based on the analysis. Our
experimental results showed that our storage scheme outperforms competing schemes
with respect to I/O-intensive workloads, and our sophisticated prefetching and caching
increase overall throughput without significant drawbacks.

4.1 Background

Recently increasing use of XML has heightened the need for storing and querying
large amount of XML data efficiently. Previous researches have mainly been focused
on indexing paths and optimizing XML queries. On the other hand, an underlying
storage representation significantly impacts on XML query processing, and thus, it is
important to explore storage schemes for XML documents.

Several storage schemes have been proposed for XML documents [TDCZ02, MLLA03,

KM00, ZKO04]. However, to the best of our knowledge, there has been no careful study
on the actual data access patterns of XML query processing (e.g., XQuery). It has still
been an open issue as to which strategy is suitable for XQuery processing.

In designing our storage scheme, we made the following architectural decisions.

• Our scheme aims to be tailored for read-only and/or read-most workloads. This
is based on the fact that XML databases are often required for managing exist-
ing XML documents received from other organizations (e.g., Electric Data Inter-
changes). In such situation, node-level updates (i.e., DML operations) are not al-
ways required. However, document-level updates (i.e., bulk insertions/deletions
and document replacement) are considered to be required. Read-optimized database
design has been suggested for relational database systems, such as [HLAM06], but
not well studied for XML database systems. Therefore, we propose an efficient
XML database system optimized for read-oriented workloads.

• We focus on iterative XQuery processing in which an operator tree consists of
iterators. This is because many XQuery processors [FHK+04, Sax], including our im-
plementation, employ an iterator model and a tuple-at-a-time semantics instead
of a set-at-a-time semantics.
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Considering the above aspects, we propose an XML storage scheme based on Doc-
ument Table Model (DTM) which expresses an XML document as a table form. A
DTM table is internally represented as an array of DTM blocks, so that it can be di-
rectly stored on secondary storage. This straightforward approach enables effective
prefetching of DTM blocks. However, it is known that there are interactions between
prefetching and caching, and traditional cache replacement policies like LRU do not
work well with prefetching [CFKL95]. It is because prefetched disk blocks need to be
stored on the cache, and prefetched entries can potentially compete for (hot) cache en-
tries. On the other hand, the benefit of prefetching and caching can coexist by using
a scan-resistant cache replacement policy in certain situations citebutt05. To deal with
this problem, we conducted the combination of informed (i.e., directed) prefetching
and scan-resistant caching.

We have implemented a native XML database system, named XBird, using the pro-
posed storage scheme. While XBird supports indices, in this chapter, we focus on
XML storage schemes and their access methods without indices to evaluate the perfor-
mance. Since XML queries require them for string-value calculation and serialization,
the performance often depends on the basic access methods.

Our experimental results showed that our storage scheme outperforms competing
schemes under I/O-intensive workloads, and our sophisticated prefetching and caching
increase overall throughput without significant drawbacks.

The rest of the paper is organized as follows: in Section 4.2, we introduce a logical
design of DTM. In Section 4.2.3, we give an analysis of data access patterns in XQuery
processing. Section 4.3 presents our physical storage scheme and its access methods.
In Section 4.4, we provide experimental results and their evaluation. We introduce
related work in Section 4.5 and conclude in Section 4.6.

4.2 Logical Data Structure

4.2.1 Document Table Model

An XML document is represented as a variant of Document Table Model (DTM) in our
proposed scheme. DTM was originally used in Apache Xalan XSLT processor [Apac]. It
expresses an XML document as a table form, while previous Document Object Model
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(DOM) regards an XML tree as an object tree.
Since DTM table consists of primitive data types, DTM can avoid footprints of

objects, such as object instantiation and memory consumption, which are mandatory
to DOM. Therefore, popular XQuery/XPath processors [Sax, Apac] adopt either DTM or
a similar internal data structure to DTM. However, these processors do not consider
use of secondary storage to manage large scale XML data. To deal with this issue, we
aim at a natural extension of DTM by taking account of secondary storage.

4.2.2 Internal Organization

Figure 4.2 shows an overview of our system organization. Figure 4.1 depicts an exam-
ple of an XML tree labeled in depth-first search manner. In Figure 4.1, the symbols E
and T indicate element nodes and text nodes, respectively. The upper half of Figure
4.2 represents the DTM associated with the XML tree illustrated in Figure 4.1.
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Figure 4.1. An XML tree labeled in depth-first order and its fragmentation examples.

A DTM table consists of four integer arrays (see Figure 4.2). An index of these
arrays indicates a node handle, and thus, XBird requires 16 bytes per an XML node
when an integer is 4 bytes long.

The first TYPE row represents a node type, i.e., either E (abbreviation of ele-
ment) or T (abbreviation of text), and the following attributes: FIRST ENTRY flag,
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Figure 4.2. Internal organization of XBird.

LAST ENTRY flag, HAS CHILD flag, the number of namespace declarations, and
the number of child elements. The FIRST ENTRY and LAST ENTRY flags are used
to determine whether a sibling node exists on the left or right. The HAS CHILD flag
denotes whether the node has child node(s) or not. All these data are compacted and
stored into an integer in a bitwise manner, while node types are only shown in Figure
4.2 for sake of simplicity, though.

The second PARENT and the third NEXTS IB rows represent the index to parent
nodes and that to the next sibling nodes, respectively. The fourth row keeps a content
ID (CID) which indicates a unique identifier for QName and character string.

Character strings in XML data are converted into chunks. A CID is attached to each
string, and then the strings are managed by the string management module, named
StringChunk. If the length of a string exceeds the system threshold (512 bytes by
default in our current implementation), the string is compressed by LZF algorithm [Leh]

so that memory consumption can be suppressed.

QNames are managed in a unit of a collection which corresponds to the directory
of file system to improve space efficiency. We call the QName management module
QNameTable. A QNameTable generally fits in memory. Thus, it is mapped to memory
while processing the corresponding collection.
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QNames are managed in a unit of a collection which corresponds to the directory
of file system to improve space efficiency. We call the QName management module
QNameTable. A QNameTable generally fits in memory. Thus, it is mapped to memory
while processing the corresponding collection.

4.2.3 Access to DTM

The access to a DTM table is based on operations to acquire a numerical value related
to a specified node, such as a CID or a parent value. For example, QName and character
string are acquired from QNameTable and StringChunk, respectively, by using a CID
as a key. Axis processing is based on offset calculation by referring to attributes such
as parent and next-sibling values. Thus, the logical data structure, i.e., DTM, and its
operations are equipped in the query processor.

All axis operations can easily be implemented by the combinations of the following
five core functions in our DTM variant. The functions firstChild, lastChild, nextSib-
ling, parent, and previousSibling are used to obtain youngest child, eldest child, next
elder brother, parent, and younger brother, respectively. The algorithms of frequently
used functions firstChild, nextSibling, and parent are shown in Figure 4.3. Using these
functions, axis processing, such as parent, child, next-sibling, etc, can be implemented
as a simple offset calculation.

Note that, in Figure 4.3, the function getCol acquires an array element specified
by a node handle. The function hasChild judges whether the node has a child or not
by using the bit flag. The functions getNamespaceCount and getAttributeCount ac-
quire the number of namespace declarations and attributes, respectively. The constant
PER NODE shows the number of array elements consumed by each node. The re-
maining constants PARENT OFFSET and NEXTSIB OFFSET represent the offsets
to identify the location of the parent and next-sibling values, respectively.

Analyzing Page Access Pattern

In order to design an efficient XML storage and their access methods, we preliminarily
analysed access patterns to DTM. The key issues to design the physical layout for
effective XML query processing are:

• Mapping DTM to secondary storage for iterative XQuery processing, and
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Algorithm Algorithm of primary axis accesses

const PER NODE = 4;
const PARENT OFFSET = 1; const NEXTSIB OFFSET = 2;

(a) Algorithm of firstChild function

IN: context node identifier OUT: identifier of the first child node

function firstChild(curnode) {
code := getCol(curnode);
if(!hasChild(code))

return nil;
namespaces := getNamespaceCount(code);
attributes := getAttributeCount(code);
addr := curnode + ((namespaces + attributes) + 1) * PER NODE;
return addr;

}

(b) Algorithm of nextSibling function

IN: context node identifier OUT: identifier of the next-sibling node

function nextSibling(curnode) {
return getCol(curnode + NEXTSIB OFFSET);

}

(c) Algorithm of parent function

IN: context node identifier OUT: identifier of the parent node

function parent(curnode) {
return getCol(curnode + PARENT OFFSET);
}

Figure 4.3. Algorithm of primary axis accesses.
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• Paging strategy between main memory and secondary storage.

Our solution to the former issue is to store nodes in document order, and for the second
issue is to employ aggressive prefetching I/Os. Here after, we discuss these key issues
by using the experimental results of 20 XQuery queries in XMark benchmark [SWK+01].
The complete list of XMark queries are shown in Appendix A.

In the experiment, as we set page size to 2KB, a page has 512 DTM rows (see
Figure 4.2). As for the experimental data, we used 113MB of the XML document
generated by XMark where the scale factor (SF) is 1.

Figure 4.4 shows an overview of page access patterns of XMark queries. The inset
figure within Figure 4.4 depicts the data access patterns of Q9 and Q10 both of which
show peculiar page access patterns.

The vertical and horizontal axes of the figure denote the page ID being accessed
and time where accessing one page is a unit of time. Since page IDs are numbered
in document order, the page with the lowest ID contains the document root and its
neighbors, and the last node is allocated in the page with the highest ID. In other
words, the document order is reflected on the vertical axis. Seeing in Figure 4.4, access
patterns from lower left to upper right are a common tendency among 18 queries, which
means that pages are requested in document order. Note that this sort of access pattern
is not unique to XMark queries, but XBench [YÖK04] queries (both TC/SD and DC/SD)
had also indicated similar access patterns (see Figure 4.5).

4.2.4 Page Replacement Policy

This section describes how page replacement policy affects XML query processing
with giving an example, Q9. Q9 contains a triple nested-loop, and thus, its locality of
reference tends to be low. Therefore, we could not make the best use of the locality
of reference, and it took long time to process Q9 due to paging overhead. A natural
question is what algorithm is suitable for the buffer management of XML query pro-
cessing. LRU is widely used as a buffer replacement policy even in XML databases
[MLLA03, KM00]. However, it is known that LRU does not work well for sequential scans
and large Inter-Reference Gaps (IRGs), while such sequential scans often appear in se-
rialization and string-value calculations in XML query processing. Moreover, standard
LRU is uncongenial to prefetching [CFKL95].
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Figure 4.4. Page access patterns of XMark queries.

(a) TC/SD (b) DC/SD

Figure 4.5. An overview of page access patterns of XBench queries.
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We compared the efficiency of LRU with that of scan-resistant 2Q [JS94] with prefetch-
ing. The scan-resistant property prevents large sequential data scans from flooding the
buffer pool, which would otherwise victimize pages that are more frequently refer-
enced, e.g., index root pages. Ideally, the index root pages should be kept and victim-
ize the scan pages instead, even if the latter is more recently referenced. 2Q achieves a
scan-resistance by using one FIFO queue A1in and two LRU lists, A1out and Am. When
first accessed, a block is placed in A1in; when a block is evicted from A1in, its iden-
tifier is inserted into A1out. An access to a block in A1out promotes this block to Am.
The result comparing LRU and 2Q for the buffer management algorithm of our XML
database showed that 2Q brought 10% on average and a maximum of 23.5% better
performance than LRU where SF is 10 for the XMark benchmark. Therefore, we use
2Q in XBird as a page replacement policy.

4.3 Physical Storage

4.3.1 Storage Scheme

XBird internally treats XML documents as DTM. If DTM is applied to the funda-
mental data structure of an XML database, it needs to be persistent. In order to have
DTM persistent, it needs to be extended to secondary storage. A simple solution is to
decompose the DTM into multiple blocks. Then, paging these blocks has only to be
performed between main memory and secondary storage, as shown in the lower half
of Figure 4.2.

In our proposed system, each block of DTM is stored on the secondary storage in
document order. Here after, we call our proposed scheme persistent-DTM, pDTM for
short, which follows the well-known persistent-DOM (PDOM).

Since the block allocation policy of pDTM is based on document order, it does
not always place adjacent nodes to the same or nearby block. A certain parent and its
second or higher children might be taken apart on secondary storage. The reasons why
we chose this allocation policy are as follows:

• According to the analysis in Section 4.2.3, access patterns in document order
appear frequently.
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• Node allocation in document order is suitable for string-value calculation and
serialization which are mandatory for XML query processing.

Our XQuery processor employs an iterative query processing model based on an it-
erator tree, which is similar to BEA/XQRL XQuery processor [FHK+04] and Saxon [Sax] in
which pipelined processing operators deal with loops, axis accesses, etc. Since queries
are processed in operators in a tuple-at-a-time fashion, linear accesses in document
order are found in Figure 4.4.

For example, during a query evaluation of ‘site/regions’ pipelined XQuery proces-
sor accesses to nodes are made in the following order: ‘site[]/regions[1]’, ‘site[1]/regions[2]’,
.., ‘site[last()]/regions[last()]’. Thus, document-ordered storage model, i.e., pDTM
model, fits for iterative query processing more efficiently than other strategies for most
queries. In contrast, subtree-based storage model is not suitable for depth-first traversal
(see Figure 4.1).

4.3.2 Physical Layout

The DTM table explained in Section 4.2.2 is internally formed as a two-dimensional
array (more specifically, Iliffe vector [Ili61]). The arrays of the second dimension consist
of pages. Each element of the first dimension holds a pointer to each page. Since the
pages that are not paged-in to main memory are expressed as null values, the skeleton,
i.e., the first dimension, does not waste memory space.

The physical structure of DTM is divided into three layers as shown in Figure 4.6.
A DTM row stores a record which is identical to information of a node. A page is the
minimum accessible data-unit of an I/O operation, which corresponds to a disk block.

4.3.3 Physical Access

A page-in operation is performed only when a requested DTM page does not exist in
the page buffer (see Figure 4.2). For a simple implementation of paging, a hook is
inserted just in front of getCol function, shown in Figure 4.3. The algorithm of the
hook for paging is shown in Figure 4.7.

The following four paging profiles are currently defined. FORWARD profile is
the default strategy that looks-ahead the forward direction. REVERSE profile is used
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Figure 4.6. Physical structure of pDTM and its prefetching.

for reverse-axis traversals which request nodes in reverse document order (e.g., pre-
ceding). INDEX profile is for index lookups. SERIALIZE profile is for retrievals of
subtrees at serialization.

4.4 Experimental Evaluation

We implemented XBird in Java. In order to reveal the potential performance of XBird
and compare it to competing schemes, we used the XMark benchmark suite [SWK+01]

for evaluation. The experimental setting commonly used in this chapter is as shown in
Table 4.1.

CPU Intel Pentium D 2.8GHz
OS SuSE Linux 10.2 (Kernel 2.6.18)

RAM 2GB
Hard Disk SATA 7200rpm

Java Sun JDK 1.6
JVM option -server -Xms1400m -Xmx1400m

Buffer size for DTM paging: 128MB
Cache size used by StringChunk module: 32MB

DTM page size 2KB
FORWARD readForwards: 32, readBackwards: 0
SERIALIZE readForwards: 64, readBackwards: 0

Table 4.1. Experimental setting.
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Algorithm Page-in Algorithm

IN: rowId OUT: page

1. const PAGE SHIFT := 9;

# following items of paging profile are dynamically configured
# by giving hints from the query processor.
2. readForwards := 32, readBackwards := 0;

# The hook to the getCol function.
3. pageAddress := rowId >> PAGE SHIFT;(a)

4. page := PAGE BUFFER.get(pageAddress);(b)

5. if(page == nil) page := readInPages(pageAddress);(c)

6. return page;

7. function readInPages(pageAddress)(d) {
8. fromPage := pageAddress - readBackwards;
9. toPage := pageAddress + readForwards;
10. for(k:=fromPage; k<=toPage; k++) {
11. page := readIn(k);
12. if(i == pageAddress) requiredPage := page;
13. PAGE BUFFER.putIfNotFound(k, page);
14. }
15. return requiredPage;
16. }

a) Calculate a page address from the requested row ID.

b) Retrieve the requested page from the page buffer.

c) If ‘page’ value is nil, then call the function readInPages to retrieve pages.

d) Retrieve pages from disk based on a paging profile. All pages that are read from
disk are placed to the PAGING BUFFER using a page address as a key.

Figure 4.7. Page-in Algorithm.
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4.4.1 Comparison to Subtree-based scheme

In order to evaluate storage techniques themselves, we compare XBird with Natix
[KM00](version 2.1.1) by using queries shown in Table 4.2 (These queries are introduced
in XPathmark [Fra05]). Natix is a native XML database system implemented in C++,
and supports XPath 1.0. The unique feature of Natix is that it adopts a subtree-based
storage block allocation strategy. XBird was configured not to use indices as to make it
a fair comparison of XML storage methods, because Natix 2.1.1 does not have indices.

The summarized results where the SF is 5 and 10 are shown in Figure 4.8 and
Figure 4.9, respectively. Now, we focus on Q2-Q14 and Q17 for discussion.

An important difference appears in the results of Q6, Q7 and Q14 which contain
‘//’. Because ‘//’ requests a lot of blocks in a depth-first manner, the efficiency of
handling blocks, such as paging and buffer management, tends to appear remarkably.
For Q2, Q5, Q14 and Q17 whose outputs are relatively large, pDTM achieves better
performance than Natix because of the efficiency of serialization. Our storage scheme
is efficient for sterilization because serialization generally requires depth-first assess of
XML trees.

Natix shows a slightly good performance for Q4 which contains following-sibling
axis, due to its subtree-based physical layout. Since child nodes are brought together
in Natix, the following-sibling axis can be processed efficiently. Recall that subtree-
based layout is suitable for breadth-first traversal of XML trees, but not for depth-first
traversal.

Both of Natix and our scheme takes block-level storing scheme according to page
size (typically 4K/8K bytes) and both of them do navigational accesses of XML trees.
We thus consider that the difference between Natix and our scheme mainly due to page
allocation scheme on secondary disks.

4.4.2 Performance Comparison with respect to Data Volumes

We verify, in this section, our XML storage scheme with respect to its scalability to
data volumes. Table 4.3 is the results of the performance evaluation using XMark
benchmark dataset [SWK+01]. We used four scale factors from SF=1 to SF=10 for eval-
uating scalability to data volumes. The results are also depicted in Figure 4.10. The
notation ×N, e.g., ×3, ×5 and ×10 in Figure 4.10, represents N fold to the value where
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Figure 4.9. Performance of XMark
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Query Output size Query expression
Id SF5 / SF10

Q1 15 / 12 /site/people/person[@id = ”person0”]/name/text()
Q2 241K / 482K /site/open auctions/open auction/bidder[1]/increase/text()
Q4 0 / 0 /site/open auctions/open auction[bidder[personref/@person = ”person20”]/following-sibling::bidder

[personref/@person = ”person51”]]/reserve/text()
Q5 666K / 1.3M /site/closed auctions/closed auction[price/text() >= 40]/price
Q6 6 / 6 count(//site/regions//item)
Q7 6 / 6 count(/site//description | /site//annotation | /site//emailaddress)

Q14 149K / 297K /site//item[contains(description, ”gold”)]/name/text()
Q15 42K / 80K /site/closed auctions/closed auction/annotation/description/parlist/listitem/parlist/listitem/text/emph/

keyword/text()
Q16 9.3K / 20K /site/closed auctions/closed auction[annotation/description/parlist/listitem/parlist/listitem/text/emph/

keyword/text()]/seller/@person
Q17 897K / 1.8M /site/people/person[homepage/text()]/name/text()

Table 4.2. XPath queries converted from XMark queries.
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SF=1.
Let us focus on the overall tendency appears in Figure 4.10. Most of queries ex-

cepting Q11 and Q12 showed an apparently good scalability property. The reason why
Q11 and Q12 does not scale is because they involve θ-joins. Opposite to the fact that
equijoins can be optimized efficiently using hash-joins, θ-joins tends to be slow in gen-
eral. Our current implementation of θ-joins remains optimization opportunities while
a non-equality condition of θ-join often makes a query CPU-intensive.

113MB (SF=1) 340MB (SF=3) 568MB (SF=5) 1.1GB (SF=10)
Q1 1.235 2.11 2.922 4.828
Q2 1.657 3.141 5.47 8.907
Q3 2.62 4.281 5.344 11.375
Q4 2.531 5.703 9.406 17.25
Q5 1.703 2.89 5 7.813
Q6 3.969 10.797 17.375 52
Q7 8.78 23.172 39.344 102.547
Q8 2.5 5.578 8.672 20.484
Q9 5.875 18.672 39.344 90.703

Q10 19.328 68.672 142.562 333.703
Q11 8.485 50.734 135.391 522.703
Q12 6.625 35.453 90.641 332.94
Q13 1.656 2.828 5.844 8.75
Q14 7.172 17.625 44.734 72.515
Q15 1 1.547 2.63 9.61
Q16 1.109 1.781 2.5 4.359
Q17 1.515 2.797 4.78 7.343
Q18 2.62 4.47 6.313 12.391
Q19 6.31 23.125 44.172 101.312
Q20 2.547 6.688 10.891 24.609

Table 4.3. Performance of pDTM on different data volumes (in sec).

4.5 Related Work

A few native XML storages have been studied. OrientStore [MLLA03] proposed a schema-
guided storage method. Their strategy called Logical Partition-Based Clustering uti-
lizes schema information, which clusters XML data into schema blocks to reduce I/Os
required for path processing of XML queries. Though this storage technique is effec-
tive for path processing, it is not efficient for string-value calculation and serialization
which require document ordering.
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Figure 4.10. Scalability of pDTM.

Natix [KM00] is a well-known native XML database which employs a subtree-based
storage scheme. It divides an XML tree into subtrees based on the physical page size,
so that each subtree fits into a page. Each page keeps the pre-order property of the
subtrees on secondary storage.

Zhang et al. proposed a fast tree pattern matching algorithm, called next-of-kin
(NoK) pattern matching, and a succinct XML string representation scheme, called
subject tree [ZKO04]. In NoK, each page of subject trees is stored on secondary storage
in the pre-order of XML trees. Though NoK supports simple parent-child queries, they
have mentioned neither prefetching I/Os nor sophisticated buffer management.

On the other hand, non-native XML storages have been studied well, for example,
in [TDCZ02].

4.6 Summary

In this chapter, we proposed an efficient XML storage scheme based on DTM for iter-
ative XQuery processing. We also analyzed access patterns that frequently appear for
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XML queries. Our experimental results showed that our storage scheme outperforms
competing schemes in the certain situation where lots of pages are required such as
queries contains ‘//’ or when serialized results are relatively large. Furthermore, our
enhancements (i.e., prefetching and scan-resistant buffer management) improved the
performance of query processing by 10% on average and by 23.5% at maximum in our
experiments. These results demonstrate the importance for XML database systems to
take informed prefetching and scan-resistant caching into consideration.

Issues to be explored include realization of automatic database tunings such as
buffer replacement policy and prefetching strategy based on the online analysis of ac-
cess patterns.



5
Scalable XML Processing with a Shared-nothing

Cluster

As described in Chapter 3, shared-nothing systems are promising approach in most
settings. We assume this architecture as the primary target of our distributed XML
database. However, there is an obstacle that shared-nothing involves cost-ful message
passing.

To overcome this obstacle, in this chapter, we focus on an aspect of distributed
XQuery processing that involves data exchanges between processor elements. Need-
less to say, efficiency of data exchange between processor elements becomes extremely
important in shared-nothing systems.

We first address problems of distributed XML query processing and explain how
the problems differ from traditional database problems. Then, in order to achieve effi-
cient and transparent data exchange, we adopt the use of remote proxy, in which each
shipped data is wrapped in a proxy sequence, and the proxy sequence is returned to
the remote peer. When accessing the proxy sequence, actual results (possibly partial
results) are fetched from a data provider, and then the data provider evaluates its entity
sequence in a call-by-name fashion. Our scheme allows parallel query execution and
reduces network traffic and redundant buffer utilization by exchanging required data
directly between a consumer and a provider.

41
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Terminology

Evaluation strategy� �
• call-by-name. Our XQuery processor takes call-by-name for the base evalu-

ation strategy. When calling a function, the argument expressions are passed
unevaluated and evaluated lazily.� �

Parameter passing mechanism of Remote Procedure Call (RPC)� �
We, in this chapter, use the term pass-by-xxx for the parameter passing mechanism
of RPC in sharing the context with distributed object technologies. The terminol-
ogy is different from one of evaluation strategy [BLS97].

• pass-by-value. We use this term when all parameters of a remote procedure
are eagerly evaluated.

• pass-by-reference. We use this term when all parameters are passed as re-
mote objects. The remote objects hold references to their entity objects. The
entity objects are lazily evaluated though procedure calls of the correspond-
ing remote objects.� �

5.1 Background

As a result of wide adoption of XML, XML data has been spread over computer net-
works. It has produced the need to integrate distributed and dynamic XML documents.
For example, users might want XML feed-readers to show more fresh and/or on-the-fly
information (e.g., recent disaster information or latest results of sport games) through
their thousands of RSS/ATOM subscriptions. However, current feed-readers do not ag-
gregate their subscriptions in real-time but at hourly intervals (Bloglines [IAC] currently
checks subscriptions once an hour). Another example is found in integration of bio-
logical databases. Most biological databases today have the ability of publishing XML
to support integrations among heterogeneous data-sources, and each of them receives
frequent updates/corrections from individual laboratories around the world. Therefore,
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integration systems of biological databases must take data freshness into account.

Considering such situations, it is doubtful that on-the-fly processing for thousands
of XML data is realistic. Because, as far as we know, there is no XML query processor
tackling both inter-operator parallelism [OV99] and distributed query processing, both of
which are indispensable to solving the underlying problems as explained below.

To achieve on-the-fly XML query processing of thousands of XML data that can-
not be processed by an XQuery processor on a single computation node, we apply a
divide-and-conquer approach that divides a query into sub-queries, and then, executes
these sub-queries on multiple computation nodes as in Figure 5.1. However, such a
hierarchical distributed system must deal with the following technical issues:

• First, partitioned computation requires that query processors exchange interme-
diate results in order to produce its final result. The time for exchanging interme-
diate results cannot be ignored. In particular, data exchanging of XQuery Data
Model (XDM) [W3Ce] instances requires long CPU time because, in contrast to
relational databases, XML databases must deal with non-scalar data types such
as XML trees, which basically treat scalar data types. Therefore, encoding and
decoding of XDM instances, in general, spend more CPU time than those for a
relational model. According to the findings in [NJ03], parsing an XML document
typically takes 175K CPU instructions per kilobyte, which is as of the same or-
der as inserting a row into a relational table (30K to 200K instructions). Hence,
each edge of two operators can potentially be a bottleneck.

• The second issue is that CPU-utilization of current query processors cannot ex-
ploit inter-operator parallelism in addition to divide-and-conquer parallelism.
Inter-operator parallelism consists of pipeline parallelism (a.k.a. dependent
parallelism) and independent-operator parallelism. With pipeline parallelism,
several operators in a producer-consumer relationship are executed in parallel.
Taking Figure 5.1 as an example, qg that follows qy，· · · and qz are executed
concurrently with a pipeline processing. Pipeline processing enable that qg pro-
ceeds its execution before the termination of the child execution (qy，· · · and qz).
On the other hand, independent-operator parallelism is achieved when there is
no dependency among operators executed in parallel. This form of parallelism
is attractive because there is no interference between processors. However, its
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adoption is only possible for bushy execution and may consume more resource
bursty [SYT93, OV99].

Regarding the divide-and-conquer strategy, a sub-query qa can execute its sub-
queries (qh · · · qn) in parallel and even out-of-order (see Figure 5.1). Here, we use
the notations T (qa), LT (qa) and T (edgea) for elapsed time of a query qa at peer
pa, that of local query processing of qa, and that at an edge edgea, respectively.
When we do not consider pipeline parallelism, T (qa) is recursively defined as
follows:

T (qa) =

max((T (qh) + T (edgeh)), · · · , (T (qn) + T (edgen)))︸                                                             ︷︷                                                             ︸
elapsed time of the most time-consuming edge

+LT (qa)

According to this formula, computation time of a node depends on the most
time-consuming edge. Taking Figure 5.1 as an example, local query processing
of qp0 is blocked and its CPU resource tends to be idle until the last intermediate
result is returned. Moreover, the non-parallelized part of queries, e.g., LT (qa) in
the above example, restricts the theoretical maximum speedups. According to
Amdahl’s law [Amd00], the expected speedups by parallel query execution are of-
ten limited by the non-parallelized part. Therefore, to leverage the computation
power of current multi-processors including multi-core processors, pipelining is
indispensable.

Considering the above aspects, in this chapter, we focus on the data exchanges
between processor elements in distributed XQuery processing, which so far have not
been carefully discussed in the literature. As an alternative to previous methods, we
propose an efficient data exchange method using remote proxy, in which each entity or
result sequence is wrapped in a proxy sequence and the proxy is returned to the remote
peer. When accessing the proxy sequence, actual results (possibly partial results) are
fetched from the data provider. The use of remote proxy brings the following three
advantages:

• Our scheme allows parallel query execution, which supports several kinds of
parallelisms, e.g., independent-operator and pipeline parallelism.
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qp0

qapa qgpg……

qhph qnpn qypv qzpz… ……

Blocking edge

Pipelinable edge

Pipeline chain

Dh1 Dhn… Dv1 Dvm…… …

Ph treats n data sources Pv treats m data sources

Remote Query Invocation

edgea

edgeh edgen

edgeg

A user query q is divided into sub-queries qa, · · · , qz recursively. The sym-
bols p0, pa, · · · , ph, · · · , pz denote the peers in which a query is executed.
The symbol D such as Dhn represents a data-source.

Figure 5.1. Divide-and-conquer and pipeline parallelism.

• Entity sequences are computed in a demand-driven manner. A new FIFO entry
of the entity sequence 1 is requested when the entry is consumed and dropped to
the low watermark level. Its sophisticated and built-to-order mechanism utilizes
the server’s resources such as memory and CPUs.

• Our method can reduce network traffic and redundant buffer occupation by di-
rectly exchanging required data between a consumer and a provider, which are
mandatory for the previous pass-by-value data exchanges [RBHS04, ZB07b, FJM+07b].
Avoiding intermediary trades reduces both network traffic and network latency
as well as redundant computations such as encoding and decoding in mediator
nodes.

We have implemented the proposed method on the top of our practical imple-
mentation of a native XML database system. Our experimental results show up to
22x speedups compared with competing methods. We demonstrate the importance
for distributed XML database systems to take pass-by-reference semantics into (re-
)consideration.

1In XDM [W3Ce], a result is a sequence containing zero-or-more items. The items are consumed by
an operator (iterator) in a FIFO manner. We call the remaining items “FIFO entry.”
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The rest of this chapter is organized as follows: Section 5.2 introduces related
works and identifies open problems of distributed XML query processing, and then, we
briefly mention our solutions for the problems. In Section 5.3, we describe details of
our implementation including our language extension to XQuery and distributed query
optimizations. In Section 5.4, we provide experimental results and their evaluation,
and conclude in Section 5.5.

5.2 Open Problems and Our Solution

In this section, we address open problems in taking pass-by-value strategy for the
parameter passing of distributed XML query processing, and propose our solution for
each problem. We also refer to related work.

Figure 5.2 depicts a typical remote query execution flow with pass-by-value se-
mantics. Pass-by-value semantics has been used for the evaluation strategy of previ-
ous distributed XML query processors [RBHS04, ZB07b, FJM+07b]. The problems underlying
these strategies are as follows:

Limited inter-operator parallelism

With a pass-by-value evaluation strategy, a remote query is executed sequentially as
in Figure 5.2. Therefore, during processing on Server A, Server B becomes idle. In
contrast, Server A tends to be idle while Server B processes a query. In addition, as we
mentioned with Figure 5.1, current XML query processors using pass-by-value strat-
egy cannot exploit pipeline parallelism, and thus, inter-operator parallelism is limited
for nested query executions.

We examined how long of a query processing time it takes to execute the following
query at a remote peer where $doc locates an XML document of scale factor (SF) 5 or
10 of XMark [SWK+01]. The transferred data size of the resulting XDM instances were
2164 KB (SF=5) and 4307 KB (SF=10).

for $a in $doc/site/closed_auctions/closed_auction

where $a/price/text() <= 40 return $a/price

The result, as in Figure 5.3, shows that, at least in our experience, the latency
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including encoding and decoding is the same as the query execution time at a remote
peer. This supports our claim that each edge of Figure 5.1 can be a potential bottleneck.

To solve this problem, we take, in Section 5.3.2, an advantage of pipeline paral-
lelism and inter-operator parallelism into our remote proxy. Due to the remote proxy,
our systems can make each edge of Figure 5.1 pipelinable, and thus, all computa-
tion nodes can theoretically run in parallel. Moreover, we ensure much inter-operator
parallelism into our scheme by introducing an asynchronous pipeline processing in
Section 5.3.2.1.

Poor resource utilization

In a multi-user environment, multiple concurrent queries consume lots of system re-
sources. Thus, it is important to allocate adequate CPU and memory resources espe-
cially under current multi-processor or multi-core architectures. For example, selecting
low degrees of an operator parallelism can lead to under-utilization of the system and
reduce throughput. On the other hand, high degrees of parallelism can spend “too
many” resources on one query and lead to high resource contention. With the current
pass-by-value strategy, such resource contentions frequently occur, for instance, at A
and B in Figure 5.2. Suppose that encoding entire parametric sequences at A. Server
A consumes lots of CPU cycles and memory space, and then remote query execution
at Server B is blocked until the encoding finishes. On decoding receiving parameters
at Server B, Server B may suffer from less available memory. Such a situation actually
happened in our later experiment in reality (see Section 5.4). To deal with the problem,
we propose an efficient resource utilization scheme using remote blocking-queue with
which processing rates of operators are managed.

Encoding and decoding overhead

Previous research used XML formats for data-exchanges between processor nodes
[RBHS04, ZB07b, FJM+07b]. However, as mentioned in [NJ03], decoding XML inputs consumes
lots of CPU cycles. In [BGJM04], Bayardo et al. asserted that binary encoding of XML
would appear to provide performance benefits to most applications without any signif-
icant drawbacks other than compromising a view-source principle. On the contrary,
a naive (blocking) binary encoding may prevent pipelined XML stream processing.
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Figure 5.2. A typical remote query execution flow with pass-by-value semantics.

We thus take an incremental encoding/de-coding scheme that incrementally converts
an XDM instance to a SAX-like event (binary) stream. In addition, we propose an
efficient direct result forwarding mechanism for the pass-by-reference in Section 5.3.

5.3 Implementation of XBird/D

5.3.1 The Language Extension: BDQ

XBird/D extends the XQuery language [W3Cd] to support remote query execution. We
call the extension for XBird Distributed Query, BDQ for short. Figure 5.4 describes
the grammatical extension to PrimaryExpr of XQuery. BDQExpr means that Expr2

is to be executed at a remote peer P, where the endpoint of P is fn:string(fn:exactly-
one(Expr1)). The endpoint takes a URL format of the form:
//host:port/name where name is the binding name of remote service that is bounded at
the service registry identified with the pair of host and port.

5.3.2 Remote Proxy

As mentioned in Section 5.2, our distributed XQuery processor XBird/D employs re-
mote proxy to achieve an inter-operator parallelism.

The base (single) XQuery processor, which is noted as XBird, is based on the Vol-
cano iterator model and employs an iterative query processing model based on an
iterator tree, which is similar to the BEA/XQRL XQuery processor [FHK+04] in which
pipelined processing operators deal with loops, axis accesses, etc. The iterator model
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Exec: Elapsed time for remote query execution at a remote peer.

Latency: Latency of remote query execution including encoding/decoding and network latency.

Print: Elapsed time of serializing an XDM instance to a file.

ETC: Elapsed time including compilation and other (local) query execution footprints.

Figure 5.3. Breakdown of remote query processing time (in msec).

allows lazy evaluation of expressions, and also plays an important role in XBird/D ar-
chitecture.

We describe how the pass-by-reference evaluation semantics is achieved by using
remote proxy. Remote proxy is not a unique feature for XBird/D. It is an extension of the
well-known proxy design pattern for distributed object communications [Roh95], and was
not developed in the context of distributed XML query processing. It is impossible to
accomplish inter-operator parallelism only with remote proxy. Therefore, we try to use
a combination of remote proxy and an asynchronous entity production of intermediate
results, as is described next.
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BDQExpr ::= “execute at” Expr1 “{” Expr2 “}”
PrimaryExpr ::= Literal | .. | Constructor | BDQExpr

Figure 5.4. BDQ grammar extensions.

5.3.2.1 Asynchronous Production and Queue Management

We assume that items in a sequence are stored in FIFO queue in which each item is
consumed by another operator processed by a consumer.

Figure 5.5 gives an overview of our remote proxy implementation. When executing
a remote query, the intermediate result (result entity sequence) is wrapped with a proxy
and the proxy object (result proxy sequence) is returned to the caller (Peer1). Then, the
remote operator asynchronously produces the items of the result entity sequence until
the queue becomes full. When the queue becomes full, the producer thread is blocked
until space becomes available in the queue(a). On the other hand, retrieving items
is blocked until the queue becomes non-empty(c). The remote proxy fetches remote
entries(c) when the local queue is empty at timing (b). The size of fetched items can
be configured for each query by specifying initial fetch size and its growth factor. The
fetched size automatically grows according to the parameters up to a specified thresh-
old. This feature aims at reducing client/server communications. Due to the advantages
of this simple but effective queue management, relying on remote blocking-queue, our
system can utilize system resources by avoiding oversupply and undersupply.

Result Proxy
Sequence Peer1

Peer2
Result Entity
Sequence

Operator

item

Operator

(b) consume 
items

(c) fetch items

(a) produce items 
asynchronously

Producer
Thread

Consumer
Thread

This queue implemented as 
a bounded-size blocking queue

blocked if 
queue is full

blocked if queue is empty 
and not reached end

Figure 5.5. Server/Client interaction between processor elements using a remote proxy.
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5.3.2.2 Direct Result Forwarding

As we have already mentioned in Section 5.2, XBird/D has a direct result forward-
ing feature to reduce latency, e.g., encoding/decoding and network latency, in the dis-
tributed query execution. We explain how a query is processed in distributed and
nested query execution in detail using Figure 5.6. In Figure 5.6, filter, reduce, select1
and select2 functions are executed at PE1, PE2, PE3 and PE4, respectively. The left
half of Figure 5.7 expresses the nested operation tree. The reduce function collects
closed auction and open auction and returns the first 1000 items for each. Since this
reduce function does not cause local resource access (fn:doc and/or fn:collection), the
execution is relocatable. This optimization is performed not at the compilation time but
at execution time 2. Since our XQuery processor is implemented based on the Volcano
iterator model, the result iterators are calculated by lazy evaluation in call-by-name
fashion. We do not implicitly attempt memoization techniques because intermediate
results in XML processing are relatively larger than those of programming languages.
For the relocation of execution, we just forward the iterators P1 and P2 to the upper
operator (on PE1, in this case), and evaluate them on PE1. The intermediate results are
fetched from PE3 and PE4 directly. This optimization is effective since encoding and
decoding on PE2 can be avoided. Recall that it takes the majority of total elapsed time
in remote query execution for encoding and decoding (see Figure 5.3).

A previously proposed system [FJM+07b] can use an intensional expression that was
originally proposed in [MAA+05]. The intensional answer can make a server shift its
work to a client by mutating the result expression with the intermediate results. For
example, the intensional expression transfers the computation of the reduce function
by mutating the result expression as follows:

fn:sequence( (<closed_auction> ... </closed_auction>, <closed_auction> ... </closed_auction>), 1, 1000),

| (<open_auction> ... </open_auction>, <open_auction> ... </open_auction>), 1, 1000) )

However, according to our experience, the benefit of an intensional answer is lim-
ited to the case that the size of the result is small, since it requires additional (and
expensive) encoding and decoding of the intensional results. The encoding and de-
coding often waste more server resources than evaluation of a query. In contrast, our

2The advantage of this dynamic relocation is that it can take execution time information into consid-
eration.
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iterator forwarding can receive the benefits of lazy evaluation without such a significant
drawback.

declare function bdq:select1() {

execute at $PE3 {

fn:collection($col)/site/closed_auctions/closed_auction

}

};

declare function bdq:select2() {

execute at $PE4 {

fn:collection($col)/site/open_auctions/open_auction

}

};

declare function bdq:reduce() {

execute at $PE2 {

( fn:subsequence(bdq:select1(), 1, 1000)

| fn:subsequence(bdq:select2(), 1, 1000) )

}

};

declare function local:filter() {

for $a in bdq:reduce()

where $a/seller/@person >= "person10000"

or $a/buyer/@person >= "person10000"

return $a

};

local:filter() (: execute at PE1 :)

Figure 5.6. Nested remote query execution example.

5.4 Experimental Evaluation

In order to evaluate the effectiveness of our enhancements, i.e., remote proxy and direct
result forwarding, we conducted performance comparisons to MonetDB/XRPC [ZB07b]

version 4.18.1, which is one of the state-of-the-art distributed XQuery processors.
As the experimental environment, we used four PCs. We denote the XQuery pro-

cessor running on each PC as PE1 . . . PE4. Each PC consists of Pentium D 2.8GHz
CPU, 2GB of memory, SuSE Linux 10.2 as an OS, and JDK 1.6 as a runtime system,
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Figure 5.7. Execution relocation and direct result forwarding.

connected on 1Gb/s Ethernet, except for PE2, which is equipped with an Athlon 64
X2 2.4GHz CPU. We used a query in Figure 5.6 for the evaluation of XBird/D and
the equivalent query for MonetDB/XRPC. As for the data set, we used a 1.1GB XML
document generated by the data-generator of XMark [SWK+01] where the scale factor
was set to 10. We bound the generated document to variable $col in Figure 5.6. The
documents were loaded to each database instance in advance on PE3 and PE4 where
both MonetDB and XBird were running.

The summarized results are shown in Figure 5.8. We compared four evaluation
strategies including remote proxy (Proxy), remote proxy with direct result forwarding
(Proxy+Forward), our implementation of pass-by-value semantics (Value), and Mon-
etDB/XRPC by pass-by-value semantics [ZB07b] (XRPC).

As in Figure 5.8, our pass-by-reference implementation using remote proxy shows
a significant improvement on the elapsed time. This is because our system could elim-
inate unnecessary computation at PE3 and PE4, as a result of applying lazy evaluation
to distributed XQuery processing. The remote query evaluation by pass-by-value se-
mantics computed and produced the entire results at one time, while not all of them
are used in the later computation. It is clearly inefficient, and explains why our remote
proxy evaluation strategy (Proxy) executed about 9 times faster than our pass-by-value
evaluation strategy. Moreover, direct result forwarding eliminated the redundant en-
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coding/decoding on PE2 and the overhead of mediated communications. As a result,
our system could finally obtain about 22 times better performance than the competitive
method (XRPC).

In addition, only our system using remote proxy can process 100 concurrent query
requests using 30 threads in 160 seconds where the maximum and average elapsed
times are 53.76 and 36.75 seconds, respectively. Both of the pass-by-value seman-
tics implementations (Value and XRPC) suffer from a frequent swap-in/out 3 due to
poor resource utilization. We, thus, confirm the advantage of our methods in a certain
situation.

Figure 5.8. Comparison of four evaluation strategies.

5.5 Summary

In this chapter, we proposed an efficient distributed XML query execution strategy us-
ing remote proxy. Our experimental results show up to 22x speedups compared with
competitive methods, and demonstrated the importance for distributed XML database

3XRPC did not return the first response of 5 concurrent queries in 10 minutes.
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systems to take pass-by-reference semantics into consideration. Furthermore, our en-
hancements (asynchronous production managed by remote blocking-queue) can utilize
system resources efficiently with supporting inter-operator parallelisms.

Issues to be explored include dynamic execution dispatching of remote query pro-
cessors taking system resources and utilizations (e.g., CPU utilizations, free memory
space, and specs) of the participating nodes into account, and development of a selec-
tion model of execution strategies.



6
Scalable Database System on Shared-memory

Multiprocessors

Though our approaches in previous chapters are promising in the shown conditions,
we noticed the possibility of improvement in many-core settings. A many-core pro-
cessor, UltraSPARC T2 [Sun], revealed that when processing concurrent XML queries
as examined in Section 5.4.

In this chapter, we propose a lock-free variant of the GCLOCK page replacement
algorithm, named Nb-GCLOCK. Concurrent access to the buffer management mod-
ule is a major factor that prevents database scalability to processors. Therefore, we
propose a non-blocking scheme for bufferfix operations that fix buffer frames for re-
quested pages without locks by combining Nb-GCLOCK and a wait-free hash table.
Our experimental results revealed that our scheme can obtain nearly linear scalability
to processors up to 64 processors, while the existing locking-based schemes do not
scale beyond 16 processors.

6.1 Background

Recent hardware trends toward multithreading for improved performance, including
multi-core and multithreaded chip design, have raised critical challenges in software
engineering [Sut05]. It has also presented issues to the database community both in
research [CBHR06, CRG07] and open source database development. Open source DBMSs,
such as PostgreSQL, MySQL and Apache Derby [Apab], have had to face scalability

56
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problems with the increases in the number of processors. The open source DBMSs did
not scale beyond four processors before revising their synchronization mechanisms in
the buffer management modules.

In general, there are basically three approaches to coping with concurrency issues
of synchronization:

(a) Do not acquire locks, and use a data structure that does not require locking
[Val96]. The synchronization mechanism that avoids acquiring locks is called non-
blocking synchronization.

(b) Reduce lock granularity. Fine lock granularity reduces lock contentions, al-
though it may increase the overhead of locks themselves, i.e., the total time for
acquiring and releasing locks.

(c) Use a more lightweight lock mechanism. Spinlock is efficient if threads are only
likely to be blocked for a short period of time, as it avoids overhead from process
re-scheduling or context switching in operating systems.

Both of the PostgreSQL and MySQL communities dealt with the scalability issues
by making improvements using (b) and (c). However, several empirical studies have
shown that they have scalability limits of around 16 processors [JPA08, Tol07, Inf].

Database systems now demand CPU scalability beyond 16 processors because the
number of CPU cores per chip is doubling for each CPU manufacturing process in
about two-year cycles. In addition, massively multithreaded processors, e.g., Sun’s
UltraSPARC T2 (64 processors) [Sun] and Azul System’s Vega-2 7200 Series (768 pro-
cessors) [Azu], have already been released as industrial products.

Most of the past research efforts on database buffer management have focused on
improving their efficiency with respect to buffer hit rates on various workloads. Con-
sequently, the literature contains very little research focusing on the concurrency of
buffer management, and most of the difficulties remain to be handled by individual de-
velopers’ empirical knowledge. In this chapter, we propose a scalable buffer manage-
ment scheme that employs non-blocking synchronization instead of acquiring locks.
To the best of our knowledge, this chapter is the first attempt to adopt non-blocking
synchronization in buffer management.

One reason why concurrency in buffer management has not been discussed is that
large-scale multiprocessors have not been widespread, and also the main concerns were
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improving buffer hit rates and minimizing I/Os. However, the bufferfix operation that
fixes a buffer frame for a required page [GR92] is not necessarily a CPU-bound job.
Although disk I/Os in a bufferfix operation certainly take place when synchronization
to disk is required for a replacement victim (i.e., the replaced page keeps its dirty flag
on), modern DBMSs reduce such disk I/Os by preflushing dirty pages and preemptively
selecting non-dirty pages for the replacement victim [GR92]. This means that the number
of page replacements due to the bufferfix operation can be minimized if a large amount
of memory is available and a large buffer pool can be used. In this case, the bufferfix
operation becomes a CPU-bound task and, therefore, the CPU scalability issue in buffer
management becomes particularly problematic in multiprocessor systems. Actually, fix
and unfix operations to a buffer frame are the basic operations most frequently called in
DBMSs. Thus, the efficiency of fix and unfix operations become extremely important
because they lead to frequent contentions in the critical sections [BGMP79].

We need to clarify how much our proposed technique improves the performance
for CPU-bound and I/O-bound jobs. One of the main factors in determining whether
a job is CPU-bound or I/O-bound is the number of disk I/Os, which depends on the
buffer hit rates as well as the ratio of dirty pages in replacement victims. Therefore,
we focus on buffer hit rates and give considerations to the scalability to the number of
processors when buffer hit rates change.

Several non-blocking algorithms for hash tables have already been proposed [SS06,

PH05]. In this chapter, we focus on concurrency of page replacement algorithms and
utilize an existing wait-free hash table for searching buffer frames. Then, we propose
our Nb-GCLOCK page replacement algorithm, which is a non-blocking variant of the
generalized CLOCK (GCLOCK) page replacement algorithm [Smi78]. We also verify
the effectiveness of our non-blocking page replacement algorithm with respect to its
concurrency and throughput using Sun UltraSPARC T2 [Sun]. The experimental results
revealed that our scheme can obtain nearly linear scalability to processors up to 64 pro-
cessors, while the existing locking-based schemes do not scale beyond 16 processors.

The rest of this chapter is organized as follows. Section 6.2 introduces the back-
ground of the need for non-blocking page replacement. We explain why existing buffer
management schemes cause scalability bottlenecks to processors. In Section 6.3, we
describe the details of our non-blocking page replacement algorithm. In Section 6.4,
we evaluate our proposed scheme through experiments. We refer to related work in
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Figure 6.1. Typical organization of a buffer manager.

Section 6.5 and conclude the paper in Section 6.6.

6.2 Problem Description

In this section, we explain the background of our research to address open and known
problems in buffer management by giving examples. A buffer manager typically con-
sists of a buffer lookup table for searching buffer frames, buffer descriptors to manage
a page replacement policy, and a buffer pool as shown in Figure 6.1. The buffer lookup
table is usually constructed as a hash table [EH84, GR92]. As for the page replacement
policy, LRU, CLOCK, and their refinements [JS94, JCZ05] are widely used. We refer to
the module that manages a page replacement policy the replacement list.

6.2.1 Internal Locking in Buffer Manager

Access to a shared buffer cache has a significant scalability problem, particularly on
multiprocessor systems. When accessing a buffer management module, the operations
to the critical sections must acquire their mutual exclusions. For example in Figure 6.1,
to look up a buffer in the buffer pool, a shared lock is obtained in the buffer lookup table.
To alter the page assignment of a buffer, an exclusive lock is acquired on the buffer
manager. This lock must be held while adjusting the replacement list and changing
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the buffer lookup table. This is because the reference in buffer lookup table still has
a different page identifier immediately after changing the page allocation of a buffer
frame.

To avoid the lock during the operations on the buffer lookup table and the replace-
ment list and to reduce the lock granularity, the following strategies can be taken:

• Store a page identifier for each buffer frame, compare the page identifier of the
referred buffer frame to validate whether the page is evicted, and read a page
from disk if the existing page on the frame is evicted. Then, it is necessary to
pay an extra CPU cost to guarantee the consistency when a cache miss occurs.

• Alternatively, delay the changes to the replacement list until the correspond-
ing bufferunfix operation is implemented and replace the exclusive lock for the
replacement list with a shared lock in the bufferfix operation. In this case, an
exclusive lock on the replacement list in bounce mode, in which a lock is im-
mediately denied if not available, is granted after acquiring an exclusive lock on
the buffer lookup table. Even though the timing to select a replacement victim is
delayed to a bufferunfix operation, empirical studies have shown that buffer hit
rates do not change [GR92].

Suppose then that concurrent requests from multiple users are given. If one paging
request causes a page fault and holds an exclusive lock, the exclusive lock prevents the
others from holding either a shared or exclusive lock. Since system-wide mutexes tend
to appear for each scan of pages, it would cause “mutex ping-pong” in multiprocessor
and multithreaded environments. Moreover, high traffic access to a lock may causes
the convoy phenomenon [BGMP79].

PostgreSQL (version 8.2), MySQL (version 5.0.30) and Apache Derby coped with
the lock contention problems in their buffer pools by adopting finer-grained locking
schemes. They took a conventional and conservative approach [GR92] for refining the
concurrency of a hash table, called lock-striping, which is a technique that divides a gi-
ant lock into clusters so as to reduce contentions. On the other hand, we attempt a more
aggressive approach to synchronization toward massively multithreaded environments,
rather than using the conservative one.
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6.2.2 Revising Concurrency in Page Replacement Algorithms

We address here concurrency issues of page replacement algorithms by taking three
practical examples, Least Recently Used (LRU), 2Q [JS94], and Generalized CLOCK
(GCLOCK) [Smi78], for the following discussion.

LRU is typically arranged as a double-linked list to keep the LRU chains as shown
in Figure 6.1: adding new items to the head, removing items from the tail, and mov-
ing any existing items to the head when referenced (touched). When using LRU, the
replacement list always needs to be locked for each access to the linked list. Thus, the
LRU algorithm is effective for single-threaded applications but becomes very slow in
a multithreaded environment. CLOCK [Cor69], which has an approximately equivalent
performance to LRU, is often used as a substitution [RG02]. CLOCK does not require a
giant lock when an entry is touched. It needs only one atomic operation, e.g., setting a
reference bit on or incrementing a reference counter, on the touched entry.

GCLOCK is an efficient variation of CLOCK and uses a reference counter instead
of the use-bit of a buffer page, as used in the conventional CLOCK. An example of
GCLOCK organization is shown in Figure 6.2. In GCLOCK, the references to a page
Pi increment the corresponding counter RC(i). In the basic GCLOCK, RC(i) is initial-
ized to 1 upon the first fetch of Pi and incremented by one every time Pi is touched.
When a buffer fault occurs, a circular search is initiated, decrementing stepwise the
reference counters until the first entry with a value of 0 is found.

Furthermore, LRU is known to be inefficient for sequential scans and large Inter-
Reference Gaps (IRGs) [RG02]. A burst of references to infrequently used pages, such as
sequential scans, may cause replacement of commonly referenced pages in the cache.
In [JS94], the authors present the scan-resistant 2Q algorithm, which divides cache items
into hot and cold ones. The full version of the 2Q algorithm uses three FIFOs for
managing items. The buffer manager in Oracle universal server employed a variation
of LRU that uses two separated hot/cold queues for the LRU chain management [BJK+97].
2Q and similar algorithms as well as plain LRU management have a global contention
point on their replacement list, which degrades the scalability of buffer managers on
multiprocessor systems.

To cope with sequential scans expected by database workloads, PostgreSQL 8.0
and our native XML database system [YMUK07] moved from LRU to the 2Q algorithm.
However, as did the PostgreSQL community, we finally realized that 2Q has an un-
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avoidable synchronization penalty on multithreaded systems. Therefore, PostgreSQL
has shifted to CLOCK mostly due to the contention penalty. Similarly, we shifted to
a GCLOCK refinement that employs a novel non-blocking scheme instead of a lock-
based one. These facts imply that minimizing paging I/Os is not only a unique re-
quirement on current hardware but also that CPU-bound operations affect the overall
performance.

Figure 6.2. An example of GCLOCK organization.

6.2.3 Spinlock on SMT Environment

Conventional multiprocessor systems widely use spinlocks to guard critical sections.
Spinlock is effective if threads are only likely to be blocked for a short period of time,
since the cost of acquiring and releasing a lock is smaller than a sleep lock, though a
spin-wait loop consumes one processor resource.

There are several variations of the spinlock. Past studies have shown that the Test-
and-Test-and-Set (TTAS) lock with exponential backoff (or queue lock) is one of the
most promising spinlock protocols [And90]. Both MySQL and PostgreSQL use spin-wait
loops with backoff as their spinlock algorithms for most hardware architectures.

However, a spin loop can be especially wasteful where logical processors share
execution resources. When such loops are executed on a processor supporting Intel
Hyper-Threading technology, they can induce an additional performance penalty due
to memory-order violations and consequent pipeline flushes caused upon their exit.
To ensure the proper order of outstanding memory operations, the processor incurs
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a severe penalty. In order to overcome this issue, Intel recommended embedding a
PAUSE instruction in a spin loop [Int01]. PAUSE instruction introduces a slight delay
in the loop and de-pipelines its execution to prevent it from aggressively consuming
valuable processor resources.

In summary, a spinlock requires a special care (i.e., special instructions) on each
hardware architecture when database operations are executed on SMT processors.
Again, our non-blocking buffer management scheme does not acquire any locks for
searching and allocating buffer pages, and thus it is free from such difficulties in spin-
locks.

6.3 Non-blocking GCLOCK Page Replacement Algorithm

Here, we explain our non-blocking buffer management scheme and our lock-free vari-
ant of the GCLOCK page replacement algorithm, named Nb-GCLOCK. Our Nb-GCLOCK
algorithm basically follows the properties of GCLOCK [Smi78] except that it allows non-
blocking accesses.

The reasons why we selected GCLOCK as the baseline algorithm of our non-
blocking page replacement are as follows:

1. CLOCK variants are widely used due to their advantages, i.e., low overhead and
high concurrency.

2. The properties and performance of GCLOCK are well analyzed and established
[Smi78, NDD92]. While the simple CLOCK respects only the recency of buffer refer-
ences, GCLOCK takes frequency as well as recency into account.

3. The probability of contentions generated by concurrent accesses to shared vari-
ables is low. The contention indicates such a state that two or more processes
concurrently access the same memory location. A typical CLOCK uses a single
bitmap or few bitmaps to manage reference frequency. When a bitmap is fre-
quently updated, CLOCK becomes inefficient on cache-coherent shared mem-
ory multiprocessors due to false sharing. On the other hand, GCLOCK keeps a
reference counter for each buffer frame, and thus contentions rarely occur.
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Our Nb-GCLOCK adopts a lock-free page replacement. Non-blocking data struc-
tures have two important properties [HS08]. If some operations are guaranteed to com-
plete within finite time, the algorithm is defined as lock-free. A lock-free algorithm
guarantees that at least one process keeps its role progressing. If all operations are
guaranteed to complete within a finite time, the algorithm is defined as wait-free. The
first and second definitions guarantee the liveness and fairness properties, respectively.
From this viewpoint, our proposed buffer management scheme guarantees lock-free
operation.

Our scheme takes a strategy that keeps trying its non-blocking operation after tem-
porarily abandoning its execution and allows other threads to be executed when all
buffer frames in the buffer pool are pinned. This decision comes from our expectation
of adopting this scheme for general caching. Due to this decision, it is impossible to
guarantee that all processing will complete in a finite time when we consider the case
where all pages in the buffer pool are pinned, although this is an extremely rare case.
The behavior depends on whether applications that uses the cache allow failures at the
buffer allocation. In a typical buffer management, a transaction is aborted when all
pages are pinned [RG02, GR92]. This abnormal condition had never occurred through our
experiments.

We implemented our proposed scheme using atomic operations provided in Java
5.0 [AGH05]. Because the Java platform has a platform-independent memory model
(JMM) [MPA05] as well as integrated threading and multiprocessing into the language, it
is convenient for describing algorithms for multithreaded applications.

As mentioned in Section 6.2, we use a wait-free hash table for a buffer lookup table
to achieve non-blocking synchronization on the buffer management. The non-blocking
hash table has been actively developed in the literature [SS06, PH05]. We used an open
source implementation of a non-blocking hash table released in [Cli] for the wait-free
hash table. The non-blocking hash table insists on wait-freedom — every operation
has a bound on the number of steps it will take before completing. Our requirements
for the wait-free hash table are to provide the following operations: get, pushIfAbsent,
remove, and replace.

• get returns the value to which the specified key is mapped in the hash table.

• pushIfAbsent associates the specified key with a specified value in the hash table
when the specified key is not already associated with a value. It returns the
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previous value associated with the specified key, or null if there has been no
mapping for the key.

• remove removes an entry for a key only if it is currently mapped to the given
value. It returns true if the value has been removed.

• replace replaces an entry for a key only if the given key is currently mapped to
the given value. It returns true if the value has been replaced.

These actions must be performed atomically. The implementation of the wait-free
hash table can be replaced if the alternative provides the above operations.

6.3.1 Nb-GCLOCK Algorithm

We describe our Nb-GCLOCK algorithm in Figure 6.7 and Figure 6.8 with a usecase
shown in Figure 6.9, using pseudo codes based on Java 5.0 language.

All operations to AtomicInteger and AtomicBoolean are atomically executed by us-
ing synchronization primitives such as compare-and-swap (CAS) and Load-Link/Store-
Conditional (LL/SC). In SPARC V9, such an atomic operation is achieved by a native
CAS instruction.

6.3.1.1 Organization of the Buffer Frame

The left half of Figure 6.7 describes the Frame class that defines cached entries. A
Frame instance is associated with a single key, a single value, and two other control
variables. In buffer management, K represents a page identifier and V represents a page
itself. A refcount instance keeps a reference count of the entry, and a pinning instance
is responsible for judging whether the frame is currently in use. Playing a vital role, a
pinning instance represents an evicted condition when the value is -1.

The reason why we represent evicted and pinned states with a single pinning in-
stance as shown in Figure 6.3 is to achieve an atomic update on these states using
a synchronization primitive without acquiring a lock. We introduce the state for the
Frame instance whose pinning value is -1 evicted (see Figure 6.3).

The roles of methods in the Frame class are as shown in Table 6.1. The pin and
unpin operations follow FIX and UNFIX operations of the FIX-USE-UNFIX protocol,
which is generally used in buffer management [GR92].
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Figure 6.3. State machine of a pinning instance.

volatileGetValue returns the associated value after interleaving memory barrier for volatile load.
The memory barrier is reduced to no-op in x86 or SPARC [Lea].

CASValue atomically sets the field value V to the given updated value
if the current value is identical to expected value.

incrRC atomically increments the reference count by one and returns the updated value.
decrRC atomically decrements the reference count by one and returns the updated value.
tryEvict atomically sets the frame evicted if the frame is not evicted,

and returns true if successfully evicted and otherwise returns false.
evictUnshared atomically sets the frame evicted.
pinCount returns the pinning value.
pin atomically sets the frame in use for the current thread.
unpin atomically sets the frame not in use for the current thread.

Table 6.1. Role of each method in the Frame class.

The pin/unpin and tryEvict/evictUnshared methods atomically change a pinning
value. The state of the pinning value changes by these four methods as shown in
Figure 6.3. The pinning value P increases only when P is greater than or equal to 0.
“gt 1” in Figure 6.3 represents the state where the pinning value is greater than 1. As
seen in the transition, the pinning state does not change to the other states when once
evicted. The pinning value is always one or more when an unpin operation is carried
out. tryEvict succeeds only when the pinning value is 0.

6.3.1.2 Bufferfix Algorithm

The operation to fix a buffer frame for a requested page is called bufferfix in the lit-
erature. According to the definition in [GR92], a bufferfix operation acts as depicted in
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1. Search a buffer frame in the buffer.
Examine whether the requested page is in the buffer and return the reference to the

corresponding frame to the caller when such a frame exists.

2. Find an empty frame.
Find an empty frame in which a page is not fixed when the requested page is not in the

buffer.

3. Select a replacement victim.
Select a page to remove from the buffer according to the replacement policy.

4. Write a dirty page to disk.
Write the change log to a WAL page if the victim has a dirty flag on.

5. Decide a frame to fix a page.
In this time, the frame to fix a page is decided by step 2 to 4.

6. Pin a page to the frame.
Read-in the requested page and fix in the selected frame. This is an optional operation

depending on the requirements of the caller.

7. Return to the caller.
Return the reference to the frame in which the requested page is fixed or to be fixed.

Figure 6.4. Definition of a bufferfix operation.

Figure 6.4.
The corresponding procedure to the bufferfix operation in our Nb-GCLOCK is the

fixEntry method, except that a caller is responsible for the page fixing operation as in
line 6 of Figure 6.9.

The right half of Figure 6.7 describes the BufferCache class and its algorithm.
BufferCache contains a wait-free hash table instance HASHTBL and a replacement list
CLOCKBUF as its member variables. For readability, the algorithm of CLOCKBUF
is separately described in Figure 6.8. The BufferCache contains two methods: fixEntry
for retrieving a page slot (i.e., buffer frame) and addEntry for allocating a page slot for
the given key.
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The addEntry method is called when the condition in line 49 of Figure 6.7 becomes
false, when a non-evicted page associated with the specified page identifier does not
exist in HASHTBL.

Buffer flushing is required when an evicted page has a dirty flag on in the purge
operation of addEntry. This I/O in the purge operation is minimized in modern DBMSs
as mentioned in Section 4.1.

The invocation of fixEntry fixes a frame for the specified key and increments the
reference count of the fixed frame by one.

THEOREM 1. Every time an existing Frame instance F is returned by the fixEntry
method, the pinning value of F is incremented by one.

Proof of Theorem1. An existing Frame instance F is returned by the fixEntry invo-
cation only when the condition in line 49 or 66 of Figure 6.7 becomes true or false,
respectively. Whenever these conditions are met, it is clear that the pinning value of F
was incremented by one according to the pin specification. �

COROLLARY 1. From Theorem1, a Frame instance successfully evicted by evictUn-
shared is never used outside the Frame class.

6.3.1.3 CLOCK-sweep Algorithm

Selecting and swapping a replacement victim in the buffer pool of CLOCK is called
the clock-sweep operation.

Figure 6.8 describes the ClockBuffer class which manages the Nb-GCLOCK page
replacement policy. It contains four member variables: an atomic array “POOL” as the
buffer pool, an atomic “Free” counter responsible for managing the number of free-
slots in the buffer pool, an atomic “CLOCKHAND” representing a circulating clock
hand, and a “SIZE” field representing the capacity of the buffer pool.

AtomicArray class provides support for atomic operations to an array. A method
invocation CAS(index, expect, update) on AtomicArray atomically sets the existing
value of a specified index to an updated value if the current value is identical to the
expected one.
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The ClockBuffer class has a single entry point on the add method. The add method
fixes the given frame to the buffer pool. The swap method is invoked when the add
method replaces an existing frame with the new frame according to GCLOCK page
replacement policy. The moveClockHand method moves the clock hand in a style of
atomic add instructions. We used this “add” scheme because “set” instructions to a
clock hand are not robust for multithreaded accesses. Therefore, we add a “delta” (i.e.,
an absolute difference).

We now provide theorems to give consistency to the add algorithm.

THEOREM 2. A given entry is always fixed to a free space in the buffer pool whenever
decrementing the FREE instance succeeds in line 15.

Proof of Theorem2. It is clear that at least one free space is ensured at the instant when
decrementing the FREE instance succeeds in line 15. However, another thread may
seize free space upon entering swap in line 14 immediately after the success. To cope
with this case, the swap method avoids using any free space and gives free space to
other threads in line 28. Thus, the add method fixes the given entry to free space in the
buffer pool in line 19 whenever decrementing the FREE instance succeeds. �

THEOREM 3. On add method call, the same Frame instance will never be returned
to a different invocation.

Proof of Theorem3. When add method call returns a non-null value, the swap method
is called to return an evicted Frame instance. The evicted instance will never be man-
aged in the replacement list (see line 54 to 58 of Figure 6.7).

Between lines 27 and 47 in the for-loop of swap method, the state of a Frame
instance e changes as shown in Figure 6.5. When e is returned through the state 32/44,
a compare-and-swap operation removes e from the buffer pool at the transition (c).
Therefore, the same Frame instance will never be returned to a different invocation. �

6.3.2 Correctness Proof

We prove that our Nb-GCLOCK algorithm is linearizable [HW90]. According to [HW87],
the definition of linearizability is equivalent to the following:
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Figure 6.5. State transitions in clock-sweep.

• All function calls have a linearization point at some instant between their invo-
cation and response.

• All functions appear to occur instantly at their linearization points, behaving as
specified by the sequential definition.

Every execution path of fixEntry has at least one linearization point. We chose the
following linearizable points for each execution path returning through lines 51, 69,
76, and 78, respectively:

• The pin operation for the returned Frame instance at line 49,

• The replace operation at line 67,

• The pin operation for the returned Frame instance at line 66, and

• The putIfAbsent operation at line 64.

LEMMA 1. If entry is null or already evicted in line 49, then pin fails; otherwise, pin
succeeds and the execution steps into line 50.
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1 AtomicInteger cnt[];

2 int get() {
3 int sum = 0;

4 for(AtomicInteger i: cnt)

5 sum += i.get();

6 return sum;

7 }

8 void add(int x) {
9 int idx = hash value of current thread

10 cnt[idx].add(x);

11 }

12 void increment() {
13 add(1);

14 }

Figure 6.6. Internal design of AtomicCounter class.

LEMMA 2. If prevEntry does not exist in HASHTBL at line 67, then replace fails;
otherwise, replace succeeds and the execution steps into line 68.

LEMMA 3. If prevEntry is not evicted in line 66, then pin succeeds; otherwise, pin
fails and the execution steps into line 74.

LEMMA 4. If and only if an entry associated with the key does not exist in line 64,
putIfAbsent returns null and the execution steps into line 78.

Lemma1, Lemma2, Lemma3, and Lemma4 derive the following theorem:

THEOREM 4. The fixEntry algorithm in Figure 6.7 is linearizable.

6.4 Experimental Evaluation

In order to evaluate the effectiveness of Nb-GCLOCK, we compared Nb-GCLOCK
with LRU, GCLOCK [Smi78], and the full version of 2Q [JS94]. As for the parameters
for 2Q, we used 20% and 30% of the buffer spaces for K1in and K1out, respectively.
We used TTAS lock with exponential backoff for the synchronization of blocking al-
gorithms.
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class Frame {
1 K key; V value;
2 AtomicInteger refcount=new AtomicInteger(1);
3 AtomicInteger pinning=new AtomicInteger(1);
4 Frame(K key, V value) {
5 this.key = key;

6 this.value = value;

7 }
8 V volatileGetValue() {
9 memory fence for volatile load

10 return value;

11 }
12 boolean CASValue(V expect,V update) {
13 return CAS(value, expect, update);

14 }
15 void incrRC() {
16 refcount.increment();

17 }
18 boolean decrRC() {
19 return refcount.decrement();

20 }
21 boolean tryEvict() {
22 return pinning.CAS(0, -1);

23 }
24 void evictUnshared() {
25 pinning.CAS(1,-1);

26 }
27 int pinCount() {
28 return pinning.get();

29 }
30 boolean pin() {
31 int current;

32 do {

33 current = trg.get();

34 if(current < 0)

35 return false;

36 return true;

37 }
38 void unpin() {
39 pinning.decrement();

40 }
} //end Frame

class BufferCache {
41 HashTable HASHTBL;
42 ClockBuffer CLOCKBUF;
43 BufferCache(int size) {
44 HASHTBL = new HashTable(size);

45 CLOCKBUF = new ClockBuffer(size);

46 }
47 Frame fixEntry(K key) {
48 Frame entry = HASHTBL.get(key);

49 if(entry != null && entry.pin()) {

50 entry.incrRC();

51 return entry;
52 } else {

53 return addEntry(key, null);

54 }

55 }
56 Frame addEntry(K key, V value) {
57 for(;;) {

58 Frame newEntry = new Frame(key, value);

59 Frame removed = CLOCKBUF.add(newEntry);

60 if(removed != null) {

61 if(HASHTBL.remove(removed.key, removed))

62 purge the removed page
63 }

64 Frame prevEntry =

HASHTBL.putIfAbsent(key, newEntry);

65 if(prevEntry != null) {

66 if(!prevEntry.pin()) {

67 if(HASHTBL.replace(key,prevEntry,newEntry)) {

68 newEntry.setValue(prevEntry.getValue());

69 return newEntry;
70 }

71 newEntry.evictUnshared();

72 continue; //jump to line 58

73 }

74 newEntry.evictUnshared();

75 prevEntry.incrRC();

76 return prevEntry;
77 }

78 return newEntry;
79 }

80 }
} //end BufferCache

Figure 6.7. Pseudo code of the buffer cache.
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class ClockBuffer {
1 AtomicArray POOL;
2 AtomicInteger FREE;
3 AtomicCounter CLOCKHAND=new AtomicCounter(0);
4 int SIZE;
5 ClockBuffer(int size) {
6 this.POOL = new AtomicArray(size);

7 this.FREE = new AtomicInteger(size);

8 this.SIZE = size;

9 }
10 Frame add(Frame entry) {
11 do {

12 int free = FREE.get();

13 if(free == 0)

14 return swap(entry);

15 if(FREE.CAS(free, free - 1))

16 break;

17 } while(true);

18 int idx = CLOCKHAND.get();

19 while(!POOL.CAS(idx%SIZE, null, entry))

20 idx++;

21 CLOCKHAND.increment();

22 return null;
23 }
23 Frame swap(Frame entry) {
24 int numpinning = 0;

25 int start = CLOCKHAND.get();

26 for(int i=start%SIZE;;i=(i+1)%SIZE) {

27 Frame e = POOL.get(i);

28 if(e == null) continue;

29 int pincount = e.pinCount();

30 if(pincount == -1) { // evicted?

31 if(POOL.CAS(i,e,entry)) {

32 moveClockHand(i, start);

33 return e;
34 }

35 continue;

36 }

37 if(pincount > 0) { // pinned?

38 if(++numpinning>=size)

39 yield this thread and allow others to execute
40 continue;

41 }

42 if(e.decrRC() <= 0) {

43 if(e.tryEvict() && POOL.CAS(i,e,entry)) {

44 moveClockHand(i, start);

45 return e;
46 }

47 }

48 } //end for

49 } //end swap
50 void moveClockHand(int curr, int start) {
51 int delta;

52 if(curr < start)

53 delta = curr + size - start + 1;

54 else

55 delta = curr - start + 1;

56 CLOCKHAND.add(delta);

57 }
} //end ClockBuffer

Figure 6.8. Pseudo code of the ClockBuffer.
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1 Frame slot =

PAGE_CACHE.fixEntry(pageId);

2 try {

3 V page = slot.volatileGetValue();

4 if(page == null) {

5 page = read-in a page of the pageId from disk
6 slot.CASValue(page);

7 }

8 do application logic for the page
9 } finally {

10 slot.unpin();

11 }

Figure 6.9. Usage of a buffer in our scheme.

As for the workloads, we followed the example provided in [JS94] in which the
authors tried a mixed workload containing both random accesses with Zipfan distribu-
tions and scans because database workloads generally contain scans.

The comparison is performed with respect to buffer hit rates and throughputs. Since
our Nb-GCLOCK basically follows GCLOCK, the hit rate shows similar tendency to
that of GCLOCK. We thus have put more evaluations on throughputs than hit rates in
this chapter.

We performed experiments on a real hardware with a Sun UltraSPARC T2 proces-
sor (Sun SPARC Enterprise T5120 box). The detailed specification is shown in Table
6.2. The processor has eight CPU cores, and each core is able to handle eight threads
concurrently. Thus, the processor is capable of processing up to 64 concurrent threads.
We used a 64-bit version of Sun JDK 1.6 for the runtime environment in all of the
experiments.

6.4.1 Experiments on Mixed/Zipfan Distributions

The experiments in this section used artificially generated workloads using a Zipfan
input distribution [Knu98] with parameters α = 0.5 and α = 0.86. That is, if there are N
pages, the probability of accessing a page numbered i or less is (i/N)α. A setting of α
= 0.86 gives an 80/20 distribution, while a setting of α = 0.5 give a less skewed dis-
tribution (about 45/20). When running the Zipf simulator, we modified the workloads
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Operating System Solaris 10 8/07
Core (Threads/Core) 8 (8)
Processor frequency 1.2 GHz
Main memory 16 GB
Disk SAS (10000 rpm)
L2 cache per core 4M

Table 6.2. Specifications of Sun SPARC Enterprise T5120.

so that it would occasionally start scans. We used mixed workload of Zipf with 20%
scans of 100 pages, and the page size commonly used throughout our experiments is
8 KB. To emulate a multi-user scenario, the workloads are concurrently issued from
multiple threads in which each thread uses its own simulator and workload.

We simulated a database consisting of 50,000 pages and the buffer capacity ranging
from 4,096 (at least 8.2% is buffered when the pool is filled) through 16,384 page slots
(at least 32.7% is buffered when the pool is filled). As for the buffer capacities used in
experiments, we used from 8K to 32K.

6.4.1.1 Relation to Buffer Hit Rate

Figure 6.10 shows the relationship between buffer capacities and the buffer hit rates
when 64 threads concurrently ran the above mentioned 80/20 workload on Ultra-
SPARC T2. With decreases in the buffer capacity, 2Q shows better buffer hit rates.
This result is natural because 2Q is effective for sequential scans and is expected to
provide better buffer hit rates than LRU (and CLOCK) [JS94]. Of course, enough buffer
capacity minimizes the differences as the result shows in Figure 6.10; however, highly
concurrent accesses cause almost random access to buffers.

Figure 6.11 shows throughputs of the experiment varying the buffer capacity and
Zipf distributions. These results imply that, at least in our experiments, throughputs
depend almost completely on buffer hit rates, while the workloads weakly correlate
with throughputs as seen at 75.4 and 75.5% of hit rates in Figure 6.11. We thus focus
on buffer hit rates in the following experiments.
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Figure 6.10. Relationship between buffer capacity and buffer hit rate (64 threads).

6.4.1.2 I/O in Progress and Concurrent I/Os

In certain scenarios, there are race conditions in which multiple threads attempt the
same I/O operation on a fixed frame concurrently. Therefore, in conventional buffer
management, a process waits until the io in progress lock on a fixed frame is released
when someone else has already started I/O on the buffer [GR92]. Though our Nb-
GCLOCK makes bufferfix operations non-blocking, the page-in operation to a fixed
frame seems to remain an open problem.

To make this page-in operation non-blocking, our non-blocking scheme acts opti-
mistically as shown in Figure 6.9. The existing scheme acquires a lock before reading
a page and releases the lock after associating the page to a frame. Taking a lock before
reading a page from disk may be reasonable, since lseek and read system calls also
require mutex exclusion. On the other hand, our scheme does not delay the concurrent
I/O by using pread. The pread/pwrite system calls enable efficient I/O to the same file
descriptor from multiple threads. Then, it needs to be proven that

• to what extent contentions are expected on the critical section (i.e., lines 3 to 7
in Figure 6.9), and

• which strategy is effective for (massively) parallel workloads.

Figure 6.12 shows an experimental result on the 80/20 workload on the Ultra-
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Figure 6.11. Throughputs obtained when varying buffer capacity and workload distri-
butions.

SPARC T2 comparing the proposed scheme with the existing lock-based schemes.
Each method is denoted as “pread” or “lseek+read” in Figure 6.12. To answer the first
question, we counted CAS failures generated at line 6 of Figure 6.9, and the results
are shown in Table 6.3. From Table 6.3 and Figure 6.12, our non-blocking scheme is
effective even when contentions occur at a probability of 1/10, which lead us to expect
that the proposed technique becomes more effective as the buffer capacity increases
while a certain threshold exists.

Note that we used a single disk in the experiments, and thus this approach could be
more effective on a high-throughput disk configuration such as RAID 0.

6.4.1.3 Scalability to Processors

We ran a series of experiments that varies the number of processors. In the exper-
iments, we disabled/enabled processors by using the psradm command provided in
Solaris.

The first experiment measured the scalability to processors where all pages are
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Figure 6.12. Comparison between “lseek+read” and “pread”.

resident in memory. This experiment intended to see the scalability limit expected by
each algorithm in light of adopting the non-blocking scheme to high I/O throughput
configurations.

The experimental results in Figure 6.13 show that our non-blocking scheme de-
noted as “NbGClock(stripe)” is nearly scalable up to 64 processors. E$LRU and
E$NbGClock show the expected scalability to processors according to the result on
8 processors for LRU and Nb-GCLOCK, respectively. The reasons why the scalability
of “NbGClock(atomic)”, which uses an AtomicInteger class for the CLOCKHAND in
Figure 6.8, declined between 33 and 64 processors are as follows:

• The naive implementation of our NbGClock(atomic) has a global contention
point on the CLOCKHAND. The AtomicInteger uses compare-and-swap oper-
ations for each decrement/increment operation, and thus the bus lock decreases
its scalability. On the other hand, NbGClock(stripe) employs a striped counter
as shown in Figure 6.6, which scales beyond 32 processors.

• A shared counter tends to be contended on multiprocessors since increment/decrement
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buffer LRU 2Q Nb-GClock
capacity count % count % count %

4096 6655 2.2 3590 1.2 88304 10.6
8192 3473 1.1 2391 0.7 64956 6.3

16384 2053 0.5 1541 0.4 53280 3.5
32768 698 0.1 779 0.2 67070 1.8

Table 6.3. Contentions generated by pread.
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Figure 6.13. Scalability to processors when pages are resident in memory.

involves costful write operations.

Notably, it can be concluded that the existing locking-based schemes did not scale
more than 16 processors according to the results in Figure 6.13.

We also conducted a performance measurement on varying the number of proces-
sors when disk I/Os were performed by using pread. The results in Figure 6.14 showed
that only the proposed scheme can obtain at least log-linear performance relative to the
number of processors up to 64 processors.

Based on the above experimental results, we conclude that our non-blocking scheme
is much more scalable than existing schemes in certain situations and has a significant
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advantage over the existing blocking schemes, as confirmed with Figure 6.13 where all
pages are resident in memory and Figure 6.14 where disk I/Os are performed by pread
under adequate hit rates.

6.4.2 Experiments on x86-64 Architecture

In Section 6.4.1, our non-blocking scheme showed significant performance improve-
ment on a SUN UltraSPARC T2. However, it still needs to prove its efficiency on
other architectures. We have thus conducted an experiment on two different x86-64
architectures as listed in Table 6.4.

We compared our non-blocking buffer management scheme using Nb-GCLOCK
to the existing locking-based schemes with respect to throughputs where all pages are
resident in memory and we assume eight concurrent accesses (i.e., the same as the
number of processors) to the module. We used LRU and 2Q for the page replace-
ment algorithms, as with the existing locking-based schemes, and performed the 80/20
workloads for each algorithm.

Figure 6.15 shows the results of the experiment. Our schemes (all variations of Nb-
GCLOCK) outperform the existing locking-based ones by more than 5 and 4 times on
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Operating System Linux 2.6.22 Linux 2.6.5
OpenSUSE 10.3 SuSE (SLES) 9

CPU model Quad core Xeon E5420 Dual Core Opteron 880
Architecture SMP ccNUMA
Core (Chips) 8 (2) 8 (4)
Processor frequency 2.5 GHz 2.4 GHz
Main memory 8 GB 32 GB
Disk SATA 2 Ultra320 SCSI

(7200 rpm, NCQ) (10000 rpm)
L2 cache per core 6 MB 1 MB

Table 6.4. Specifications of each X86-64 machine.

the Xeon SMP architecture and the Opteron ccNUMA architecture, respectively. Note
that this performance gain for 8 concurrent accesses is similar to the one expected on
the SUN UltraSPARC T2 (at most 4.78 times in Figure 6.13).

The clear differences appearing on Nb-GCLOCK between the two architecture
can be attributed to the greater number of contentions among chips performed on the
Opteron configuration as the throughput increases. Of course, CAS incurs more la-
tency on a four-chip configuration than a two-chip configuration because CAS (i.e.,
cmpxchg) causes bus locks. To reduce false sharing in the Opteron configuration, we
striped the memory location of array elements used for the buffer pool as depicted in
Figure 6.16. The “NbGClock(3) - opt” in Figure 6.15 reduces false sharing effects
on multi-chip configurations. The “NbGClock(3)” means that the maximum value
of GCLOCK’s reference counter is restricted to 3. This effort is introduced to re-
duce CAS instructions because CMPXCHG is very costly on Intel x86 multiprocessor
systems while an UltraSPARC T2 processor has a very cheap CAS instruction. Ul-
traSPARC T2 and Opteron multiprocessor systems show better CAS and CMPXCHG
performance [RD06, Izv].

Based on the above results, we conclude that even under medium multithreaded
environments of x86 architectures, our proposed non-blocking scheme can provide
better performance than the existing lock-based schemes and is thus the algorithm of
choice.
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LRU 2Q NbGClock NbGClock
(3)

NbGClock
(3) - opt

Quad-core Xeon 
2.5GHz x2 1205061 1308776 6368404 6603253 6672930

Dual-core Opteron
2.4GHz x4 1335554 1289447 4938970 5056886 5574922
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Figure 6.15. Experiment on X86-64 architecture (8 threads).
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6.4.3 Experiment on an XML database

This section gives our initially motivated problem that massively concurrent access to
an XML database is given. To simulate the situation, we used an XML data set of
XMark [SWK+01] SF=1 and their 17 XQuery queries excluding Q10, Q11, and Q12 (see
Appendix A). We excluded the three queries simply because including those slow-
est queries (see Table 4.3 for detail) makes the evaluation inadequate. We compare
Nb-GCLOCK and 2Q [JS94] with respect to the turnaround time of a workload. We
preparedly loaded the XML data set into our XML database instance running on Sun
UltraSPARC T2 as in Table 6.2. We used a machine in Table 6.4 that equips quad core
Xeon E5420 as a client workload simulator. The client workload consists of N sets
of the 17 queries and the workload simulator randomly executes, with 64 threads, the
queries on Sun UltraSPARC T2.

Figure 6.5 shows the results using 6 and 10 for N. Unexpectedly large difference is
caused by contentions generated on slowest queries. The contention made the standard
deviation of 2Q experiments large; 156.141 seconds and 444.304 seconds when N=6
and N=10 respectively. From this result, we conclude that improving concurrency in
a buffer management module is important not only for RDBMSs but also for a certain
XML database system.

2Q GCLOCK
N=6 (102 queries) 718.59 118.64

N=10 (170 queries) 1833.82 136.76

Table 6.5. Comparison of turnaround time between 2Q and GLOCK on XBird (in sec).

6.5 Related Work

An analytical and empirical study of GCLOCK is performed in [NDD92]. Our Nb-
GCLOCK algorithm basically follows the GCLOCK properties.

Tsuei et al. [TPK97] designed experiments to investigate how the database size,
the buffer size, and the number of CPUs impact database performance, in particu-
lar, throughputs and buffer hit rates on Symmetric Multiprocessor (SMP) systems.
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They investigated the impact of buffer size on performance using the TPC-C work-
load and observed that an adequate memory buffer size is relatively small compared to
the database size. They also suggested a rule-of-thumb of 10-15% of the database size
to achieve more than an 80% buffer hit rate. As shown in our experiment in Figure
6.12, Nb-GCLOCK becomes very effective when the buffer hit rate is about 80% or
more. These requirements for buffer capacity can realistically be considered acceptable
because 64-bit processors, which have a huge address space, have become widespread
and, moreover, DRAM has become dense and cheap.

Zhou et al. [ZCRS05] investigated thread-based techniques to exploit database oper-
ations of memory-resident data for simultaneous multithreading architectures. They
used, in the spin-loop waiting, PAUSE instructions on Pentium 4.

To avoid lock contentions on the LRU chain, ADABAS [Sch98] splits the buffer pool
into several physical regions, where each region has its own LRU chain. However, this
approach can reduce buffer hit rates, especially when the distribution of hash values
has skew. In addition, they did not discuss how buffer hit rates change by dividing the
LRU chain.

Shared counting on shared memory multiprocessors has been studied, for example
in [HLS95, MTY92].

6.6 Summary

In this chapter, we proposed a lock-free variant of the GCLOCK page replacement
algorithm, named Nb-GCLOCK. We introduced a non-blocking scheme for buffer-
fix operations that fix buffer frames for requested pages without locks by combining
Nb-GCLOCK and a wait-free hash table. Our experimental results revealed that our
scheme can obtain nearly linear scalability to processors up to 64 processors, while the
existing locking-based schemes do not scale beyond 16 processors.

Gray et al. suggested in [GR92] that a future database system might introduce its page
replacement at random since it could have a huge buffer pool. This can be a strategy
of choice in a certain situation, though the behavior of the worst case cannot meet
the needs of critical systems. Ensuring lock-freedom operation, as in our scheme, is
considered preferable for such practical requirements.

The proposed scheme is effective not only for database buffer management but
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also for general purpose caching that requires synchronization. One example of such
an application would be scalable query result caching for web applications, where
the requests come from over 1000 clients simultaneously [Keg]; another key use would
be certain real-time systems that have (soft) real-time constraints, such as real-time
operating systems.



7
Conclusion

Contributions

This dissertation has proposed three distinct (but associative with few exceptions)
methods for making a scalable XML database system.

Let us recollect our research goal defined for this dissertation in Chapter 1:

#1 building an XML database system scalable to data volumes,

#2 building a scalable XML processor with a shared-nothing PC cluster, and

#3 making database processing scalable on shared-memory multiprocessors.

The contributions of this dissertation are summarized as follows.

Relevant to research goal #1, we proposed, in Chapter 4, an XQuery processing
scheme in which an XML document is internally represented as a set of blocks and can
directly be stored on secondary storage. The results of our experiments clearly showed
that the proposed scheme can often obtain almost linear scalability in performance as
the data size increases, and thus achieves the goal of #1.

In Chapter 5, we studied on-the-fly XML processing using shared-nothing PC clus-
ters. We propose a scheme for distributed and parallel query processing that employs a
pass-by-reference semantics by using remote proxy. Our experimental results showed
up to 22x speedups compared with competitive methods, and demonstrated the impor-
tance for distributed XML database systems to take pass-by-reference semantics into
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consideration. We thus conclude that our attempt represents a major step forward for
#2.

In Chapter 6, we proposed scalable buffer management scheme that employs non-
blocking synchronization instead of locking-based ones. Our experimental results re-
vealed that our scheme can obtain nearly linear scalability to processors up to 64 pro-
cessors. The results clearly achieve the goal of #3. The tendency of increasing the
number of CPU cores drives databases to multithreaded implementation and concur-
rency is an issue they have to deal with; and our proposal is a good attempt to address
this problem.

We compiled all proposed methods into one system, namely XBird. From the
above achievements, we conclude that our initial goal was achieved through parallel
efforts on scalability improvements on XBird. More detailed contributions are sum-
marized below.

Scalable XML Storage Scheme

In Chapter 4, we analyzed access patterns that frequently appear for XML queries. We
consider that this is a strong point of this study because such a practical analysis was
not provided before.

We also demonstrate the importance for XML database systems to take informed
prefetching and scan-resistant caching into consideration. Our scheme based on DTM
is adoptable to popular XQuery/XPath processors [Sax, Apac] because they use either
DTM or a similar internal data structure to DTM.

Efficient XML Data Exchange between Processor Elements

The first strong point, in Chapter 5, is that we addressed the scalability limit on hier-
archical distributed XML processing which is mandatory for divide-and-conquer ap-
proaches. We addressed problems of distributed XML query processing in detail and
explain how the problems differ from traditional database problems.

We demonstrated that considering pipeline parallelism is clearly important for dis-
tributed XML query processing which so far is not enough discussed in the context of
XML query processing. Moreover, we introduced parallel database techniques with ap-
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propriate modifications, e.g., independent-operator parallelism and inter-operator load
balancing, to XML query processing.

Non-blocking Buffer Management

In Chapter 6, we explained the internal locking in buffer management. We introduced
how concurrency in the page replacement mechanism is addressed for each LRU, 2Q
and GCLOCK algorithms. Furthermore we considered spin lock techniques for han-
dling the concurrency and discussed cons for each of the methods which Nb-GCLOCK
tried to address.

We further provided semi-formal correctness (linearizability) proof of our lock-free
algorithm.

Future Work

As a further goal of #2, we are engaged on optimizing our system on larger PC-cluster
environment. When running a system on a large PC-cluster, the MTBF tends to be
lower. For the dependable computing, we have to make our system robust to node
failures. Issues to be explored for #3 include evaluating our system with the TPC-C
benchmark [Cou07] and porting our enhancement to public domain databases.

We noticed through this study that “Rare chance is coming to revise classic algo-
rithms in database core modules”. Since the coming many-core era that computers
have multiple processors for granted and processing power tends to vary dramatically,
database systems thus should change the behavior dynamically (or statically) by intro-
ducing algorithm selection mechanism. We advance this study to make XBird the next
generation database management system.
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tribute. In Proc. Technology of Object-Oriented Languages and Systems
(TOOLS), pages 144–152, 1997.

[BM04] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2:
Datatypes. W3C Recommendation. W3C, second edition, October 2004.

[BPSM+03] Tim Bray, Jean Paoli, C. M. Sperberg-Mcqueen, Eve, and François
Yergeau, editors. Extensible Markup Language (XML) 1.0. W3C Rec-
ommendation. W3C, fourth edition, August 2003.

[Bun97] Peter Buneman. Semistructured Data. In Proc. PODS, pages 117–121,
1997.

[CA95] R.G.G. Cattell and Tom Atwood. Object Database Standard: ODMG-93,
Release 1.2. Morgan Kaufmann Publishers Inc., 1995.

[CBHR06] John Cieslewicz, Jonathan Berry, Bruce Hendrickson, and Kenneth A.
Ross. Realizing Parallelism in Database Operations: Insights from a
Massively Multithreaded Architecture. In Proc. DaMoN, 2006.



92 Chapter 7. Conclusion

[CCF+06] Don Chamberlin, Michael Carey, Daniela Florescu, Donald Kossmann,
and Jonathan Robie. XQueryP: Programming with XQuery. In Proc.
XIME-P, 2006.

[CFKL95] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A Study of
Integrated Prefetching and Caching Strategies. In Proc. SIGMETRICS,
pages 188–197, 1995.

[CKS+00] Michael J. Carey, Jerry Kiernan, Jayavel Shanmugasundaram, Eugene J.
Shekita, and Subbu N. Subramanian. XPERANTO: Middleware for Pub-
lishing Object-Relational Data as XML Documents. In Proc. VLDB,
pages 646–648, 2000.

[Cli] Cliff Click. high-scale-lib. http://sourceforge.net/projects/high-scale-lib.

[CLYY92] Ming S. Chen, Ming L. Lo, Philip S. Yu, and Honesty C. Young. Using
Segmented Right-Deep Trees for the Execution of Pipelined Hash Joins.
In Proc. VLDB, pages 15–26, 1992.

[CM01] James Clark and MURATA Makoto. RELAX NG Specification (Com-
mittee Specification). h ttp://www.oasis-open.org/committees/relax-ng,
12(03), 2001.

[CMV05] Barbara Catania, Anna Maddalena, and Athena Vakali. XML Document
Indexes: A Classification. IEEE Internet Computing, 9(5):64–71, 2005.
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[Sch98] Harald Schöning. The ADABAS Buffer Pool Manager. In Proc. VLDB,
pages 675–679, 1998.

h
h
h


99

[SD90] Donovan A. Schneider and David J. Dewitt. Tradeoffs in Processing
Complex Join Queries via Hashing in Multiprocessor Database Ma-
chines. In Proc. VLDB, pages 469–480, 1990.

[Smi78] Alan J. Smith. Sequentiality and Prefetching in Database Systems. ACM
Trans. Database Syst., 3(3):223–247, September 1978.

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash
tables. Journal of the ACM, 53(3):379–405, May 2006.

[Sto86] Michael Stonebraker. The Case for Shared Nothing. Database Engineer-
ing, 9:4–9, 1986.

[Suc02] Dan Suciu. Distributed Query Evaluation on Semistructured Data. ACM
Trans. Database Syst., 27(1):1–62, March 2002.

[Sun] Sun Microsystems, Inc. SUN UltraSPARC T2 Processor.
http://www.sun.com/processors/UltraSPARC-T2/.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Con-
currency in Software. Dr. Dobb’s Journal, 30(3), March 2005.

[SWK+01] Albrecht R. Schmidt, Florian Waas, Martin L. Kersten, Daniela Florescu,
Ioana Manolescu, Mike J. Carey, and Ralph Busse. The XML Benchmark
Project. Technical Report INS-R0103, CWI, 2001.

[SYT93] Eugene J. Shekita, Honesty C. Young, and Kian-Lee Tan. Multi-Join Op-
timization for Symmetric Multiprocessors. In Proc. VLDB, pages 479–
492, 1993.

[TDCZ02] Feng Tian, David J. DeWitt, Jianjun Chen, and Chun Zhang. The De-
sign and Performance Evaluation of Alternative XML Storage Strategies.
SIGMOD Record, 31(1):5–10, 2002.

[The01] The XML:DB Initiative. Application Programming Interface for XML
Databases (Working Draft). http://xmldb-org.sourceforge.net/, Sept.
2001.

h
h


100 Chapter 7. Conclusion

[Tol07] Doug Tolbert. Scaling PostgreSQL on SMP Architectures - An Update.
In The PostgreSQL Conference, 2007.

[TPK97] Thin-Fong Tsuei, Allan N Packer, and Keng-Tai Ko. Database Buffer
Size Investigation for OLTP Workloads. In Proc. SIGMOD, pages 112–
122, 1997.

[TVB+02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasun-
daram, Eugene Shekita, and Chun Zhang. Storing and Querying Ordered
XML Using a Relational Database System. In Proc. SIGMOD, pages
204–215, 2002.

[Val96] John D. Valois. Lock-free Data Structures. PhD thesis, Rensselaer Poly-
technic Institute, Troy, NY, USA, 1996.

[W3Ca] W3C. XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath.

[W3Cb] W3C. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20/.

[W3Cc] W3C. XML Schema. http://www.w3.org/XML/Schema.

[W3Cd] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/.

[W3Ce] W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM).
http://www.w3.org/TR/xpath-datamodel/.

[W3Cf] W3C. XQuery 1.0 and XPath 2.0 Formal Semantics.
http://www.w3.org/TR/xquery-semantics/.

[W3Cg] W3C. XQuery Update Facility. http://www.w3.org/TR/xqupdate/.

[Wid99] Jennifer Widom. Data Management for XML: Research Directions. IEEE
Data Engineering Bulletin, 22:44–52, 1999.

h
h
h
h
h
h
h


101

[YASU01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and
Shunsuke Uemura. XRel: A Path-Based Approach to Storage and Re-
trieval of XML Documents Using Relational Databases. ACM Trans.
Internet Technology (TOIT), 1(1):110–141, 2001.

[YMUK07] Makoto Yui, Jun Miyazaki, Shunsuke Uemura, and Hirokazu Kato. Effi-
cient XML Storage based on DTM for Read-oriented Workloads. In Proc.
IEEE International Workshop on Advanced Storage Systems (ADSS),
pages 559–564. IEEE CS Press, October 2007.
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Appendix

A XMark queries

The followings are XMark benchmark [SWK+01] queries formulated in XQuery.

Q1. Return the name of the person with ID ‘person0’.

let $auction := fn:doc("auction.xml")

return

for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

Q2. Return the initial increases of all open auctions.

let $auction := fn:doc("auction.xml")

return

for $b in $auction/site/open_auctions/open_auction

return <increase>{ $b/bidder[1]/increase/text() }</increase>

Q3. Return the first and current increases of all open auctions whose current in-
crease is at least twice as high as the initial increase.

let $auction := fn:doc("auction.xml")

return

for $b in $auction/site/open_auctions/open_auction

where zero-or-one(
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$b/bidder[1]/increase/text()) * 2 <= $b/bidder[last()]/increase/text())

return <increase first="{ $b/bidder[1]/increase/text() }"

last="{ $b/bidder[last()]/increase/text() }"/>

Q4. List the reserves of those open auctions where a certain person issued a bid
before another person.

let $auction := fn:doc("auction.xml")

return

for $b in $auction/site/open_auctions/open_auction

where some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2

return <history>{ $b/reserve/text() }</history>

Q5. How many sold items cost more than 40?

let $auction := fn:doc("auction.xml")

return

count(for $i in $auction/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

Q6. How many items are listed on all continents?

let $auction := fn:doc("auction.xml")

return

for $b in $auction//site/regions

return count($b//item)

Q7. How many pieces of prose are in our database?

let $auction := fn:doc("auction.xml")

return

for $p in $auction/site

return count($p//description) + count($p//annotation)

+ count($p//emailaddress)

Q8. List the names of persons and the number of items they bought. (joins person,
closed auction, item)
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let $auction := doc("auction.xml")

return

for $p in $auction/site/people/person

let $a := for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person="{ $p/name/text() }">{ count($a) }</item>

Q9. List the names of persons and the names of the items they bought in Europe.
(joins person, closed auction, item)

let $auction := fn:doc("auction.xml")

return

let $ca := $auction/site/closed_auctions/closed_auction

return

let $ei := $auction/site/regions/europe/item

for $p in $auction/site/people/person

let $a := for $t in $ca

where $p/@id = $t/buyer/@person

return

let $n := for $t2 in $ei

where $t/itemref/@item = $t2/@id

return $t2

return <item>{ $n/name/text() }</item>

return <person name="{ $p/name/text() }">{ $a }</person>

Q10. List all persons according to their interest; use French markup in the result.

let $auction := fn:doc("auction.xml")

return

for $i in distinct-values(

$auction/site/people/person/profile/interest/@category

)

let $p := for $t in $auction/site/people/person

where $t/profile/interest/@category = $i

return

<personne>

<statistiques>

<sexe>{ $t/profile/gender/text() }</sexe>

<age>{ $t/profile/age/text() }</age>
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<education>{ $t/profile/education/text() }</education>

<revenu>{ fn:data($t/profile/@income) }</revenu>

</statistiques>

<coordonnees>

<nom>{ $t/name/text() }</nom>

<rue>{ $t/address/street/text() }</rue>

<ville>{ $t/address/city/text() }</ville>

<pays>{ $t/address/country/text() }</pays>

<reseau>

<courrier>{ $t/emailaddress/text() }</courrier>

<pagePerso>{ $t/homepage/text() }</pagePerso>

</reseau>

</coordonnees>

<cartePaiement>{ $t/creditcard/text() }</cartePaiement>

</personne>

return <categorie>{ <id>{ $i }</id>, $p }</categorie>

Q11. For each person, list the number of items currently on sale whose price does
not exceed 0.02% of the person’s income.

let $auction := fn:doc("auction.xml")

return

for $p in $auction/site/people/person

let $l := for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

return <items name="{ $p/name/text() }">{ count($l) }</items>

Q12. For each richer-than-average person, list the number of items currently on
sale whose price does not exceed 0.02% of the person’s income.

let $auction := fn:doc("auction.xml")

return

for $p in $auction/site/people/person

let $l := for $i in $auction/site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly-one($i/text())

return $i

where $p/profile/@income > 50000

return <items person="{ $p/profile/@income }">{ count($l) }</items>

Q13. List the names of items registered in Australia along with their descriptions.
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let $auction := fn:doc("auction.xml")

return

for $i in $auction/site/regions/australia/item

return <item name="{ $i/name/text() }">{ $i/description }</item>

Q14. Return the names of all items whose description contains the word ‘gold’.

let $auction := fn:doc("auction.xml")

return

for $i in $auction/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

Q15. Print the keywords in emphasis in annotations of closed auctions.

let $auction := fn:doc("auction.xml")

return

for $a in

$auction/site/closed_auctions/closed_auction/annotation/desc-

ription/parlist/listitem/parlist/listitem/text/emph/keyword/text()

return <text>{ $a }</text>

Q16. Return the IDs of those auctions that have one or more keywords in emphasis.
(cf. Q15)

let $auction := fn:doc("auction.xml")

return

for $a in $auction/site/closed_auctions/closed_auction

where not(empty(

$a/annotation/description/parlist/listitem/parlist/listitem/text/emph/keyword/text()

))

return <person id="{ $a/seller/@person }"/>

Q17. Which persons don’t have a homepage?

let $auction := fn:doc("auction.xml")

return

for $p in $auction/site/people/person

where empty($p/homepage/text())

return <person name="{ $p/name/text() }"/>
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Q18. Convert the currency of the reserve of all open auctions to another currency.

declare namespace local = "http://www.foobar.org";

declare function local:convert($v as xs:decimal?) as xs:decimal?

{

2.20371 * $v

(: convert Dfl to Euro :)

};

let $auction := fn:doc("auction.xml")

return

for $i in $auction/site/open_auctions/open_auction

return local:convert(zero-or-one($i/reserve))

Q19. Give an alphabetically ordered list of all items along with their location.

let $auction := fn:doc("auction.xml")

return

for $b in $auction/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location) ascending empty greatest

return <item name="{ $k }">{ $b/location/text() }</item>

Q20. Group customers by their income and output the cardinality of each group.

let $auction := fn:doc("auction.xml")

return

<result>

<preferred>

{ count($auction/site/people/person/profile[@income >= 100000]) }

</preferred>

<standard>

{

count(

$auction/site/people/person/profile[@income < 100000 and @income >= 30000]

)

}

</standard>

<challenge>

{ count($auction/site/people/person/profile[@income < 30000]) }

</challenge>
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<na>

{

count(for $p in $auction/site/people/person

where empty($p/profile/@income)

return $p)

}

</na>

</result>
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