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Integrative analysis of transcriptomics and metabolomics 
in Escherichia coli * 

 
Hiroki Takahashi 

 

Abstract 
 

In the era of post-genomics, a systematic and comprehensive understanding of the complex events 
of the organisms is a great concern in biology. Fourier transform ion cyclotron resonance mass 
spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass measurements 
owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics 
approaches have been reported. In the present study, I proposed a procedure for metabolite 
annotation on direct-infusion FT-ICR/MS by taking into consideration the classification of 
metabolite-derived ions using correlation analyses. Integrated analysis based on information of 
isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and 
database searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites 
and estimate cellular conditions based on metabolite composition. A total of 220 detected ions were 
classified into 174 metabolite derivative groups and 72 ions were assigned to candidate metabolites 
in the present work. Metabolic profiling has been able to distinguish between the growth stages with 
the aid of PCA. The constructed model using PLS regression for OD600 values as a function of 
metabolic profiles is very useful for identifying to what degree the ions contribute to the growth 
stages. Ten phospholipids which largely influence the constructed model are highly abundant in the 
cells. This approach can reveal that global modification of those phospholipids occurs as E. coli 
enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic 
profiling, and database searching is efficient for high-throughput metabolomics. Furthermore, I 
performed the transition point analysis by applying the statistical method, Linear Dynamical System 
(LDS) to transcriptomics and metabolomics data, respectively and detected a time lag between 
transcriptional and metabolite levels. Finally, the integrative analysis of transcriptomics and 
metabolomics was performed based on gene-to-metabolite correlation analysis by taking into 
consideration a time lag. 
 

Keywords: metabolomics, transcriptomics, FT-ICR/MS, cDNA microarray, LDS, Escherichia coli 
.*Doctoral Dissertation, Department of Information Systems, Graduate School of Information 

Science, Nara Institute of Science and Technology, NAIST-IS-DD0661033, February 5, 2009.  
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Chapter 1 

Introduction 
 

1.1 Preliminaries 

 

Since the completion and publication of the Haemophilus influenzae genome sequence in 

1995 [Fleischmann et al. 1995], several high-throughput experimental technologies for 

post-genomics analyses have been dramatically advanced. Biological research was 

transformed from a relatively data poor discipline into one that now is data rich [Joyce and 

Palsson 2006]. Recent technologies allow us to analyze large number of genes or proteins 

simultaneously, whereas a few years ago each gene or protein was studied as a single entity. 

In a systems biology approach, a cell is considered as a system which receives dynamically 

changing environmental cues and transduces these signals into the observed behavior, i.e. 

change of phenotype or change of physiological response [De Keersmaecker et al. 2006]. 

The discipline of systems biology is expected to provide a better understanding of cell 

biology by enabling the study of the function and behavior of molecular interactions in 

complex networks [Galperin and Ellison 2006].  In this chapter, I review representative 

high-throughput experimental technologies, i.e. metabolomics and transcriptomics.  

 

 

1.2 Metabolomics 

 

Information flow in biological systems follows the sequence DNA to RNA to protein. The 
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phenotype of the organism is the product of its genotype within its environment. Amongst 

products along that flow, metabolites are the end products of cellular regulatory processes, 

and their levels can be regarded as the ultimate response of biological systems to genetic or 

environmental changes [Fiehn 2002]. In parallel to the terms ‘transcriptome’ and 

‘proteome’, the set of metabolites synthesized by a biological system constitute its 

‘metabolome’. An approach by which all the metabolites are identified and quantified, is 

called ‘metabolomics’, in analogy to ‘transcriptomics’ and ‘proteomics’. Metabolomics 

stands out from any other organic compound analysis in scale and in chemical diversity, i.e. 

all metabolites are aimed to be described, both primary and secondary metabolites, present 

in an organism or biological system. Compared to the linear 4-letter codes for genes or the 

linear 20-letter codes for proteins, metabolites have a much greater variability in the order 

of atoms and subgroups. The most striking feature of metabolomics lays in its integrative 

capacity, as part of the omics disciplines, which has resulted in a shift from mainly pure 

(organic) chemistry-based characterization into a biochemical context. 

 

The methods in metabolomics to analyze the metabolite contents that are extracted from 

isolated cells or tissues are still being refined, and typically rely on mass spectrometry, 

NMR spectroscopy and vibrational spectroscopy. Modern techniques must capture 

hundreds of distinct chemical species, according to the highly diverse set of molecules and 

the large dynamic range. Despite of these challenges and consequent limitations, 

metabolomics is quickly becoming a popular tool for studying the cellular states of many 

systems due to several reasons, e.g. metabolomics can offer insights into metabolism that 

complement information obtained from transcriptomics and proteomics [Fridman and 

Pichersky 2005] and shed light on a large set of overlooked metabolic phenotypes, i.e. 
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silent mutants [Allen et al. 2003]. 

 

Mass spectrometry is a spectrometric method that allows the detection of mass-to-charge 

(m/z) species pointing to the molecular mass of the detected metabolites. As a developing 

technology in metabolomics applications, there are various configurations of mass 

spectrometers, in terms of ion acceleration and mass detection, ion production interfaces 

and ion fragmentation capabilities. Most MS applications in metabolomics make use of a 

separation method before mass detection, typically liquid chromatography (LC), gas 

chromatography (GC) or capillary electrophoresis (CE). Such separation step introduces an 

extra dimension for identification (retention time) to the data, and reduces the complexity 

of the data analysis by avoiding ion suppression at the source. GC-MS is the most popular 

technology in metabolomics research. Fiehn et al. (2000) used Arabidopsis thaliana leaf 

extracts and automatically quantified 326 distinct compounds, assigning a chemical 

structure to half of them. The GC-MS approach was also used for studying metabolism in 

potato tuber tissues derived from either transgenic plants or plants exposed to different 

environmental conditions [Roessner et al. 2001a; Roessner et al. 2001b]. On the other hand, 

since metabolites of different empirical formulas have different masses, very high mass 

resolution (> 100,000) is required to resolve them. Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR/MS) is the only MS system capable of routinely 

achieving this level of resolution with a sufficiently fast data acquisition rate. With 

FT-ICR/MS, separation of metabolites is achieved solely by ultra-high mass resolution, 

eliminating the need for time consuming chromatography and derivatization. First 

application of direct-infusion FT-ICR/MS for metabolomics was performed by Aharoni et 

al. (2002), in which they analyzed the ripening shift in strawberry fruit during four 
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consecutive steps of development. Recently, several researches were conducted by the use 

of direct-infusion FT-ICR/MS [Oikawa et al. 2006; Nakamura et al. 2007; Hounsome et al. 

2009]. In this dissertation, I developed bioinformatics method on the platform of 

direct-infusion FT-ICR/MS for metabolomics analysis, and characterized growth stage 

specific metabolites based on time series samples of Escherichia coli. 

 

 

1.3 Transcriptomics 

 

The field of ‘transcriptomics’ provides information about the presence and the relative 

abundance of RNA transcripts, thereby indicating the active components within the cell. 

Since the mid-late 1990s in advance of proteomics or metabolomics, countless 

genome-wide studies have examined the dynamics of gene expression in many model 

systems and environments. Microarrays and serial analysis of gene expression (SAGE) 

represent the most well-used approaches and have been applied to many model systems. 

Transcriptomics can be used to identify genes that are potentially involved in particular 

modules. For example, by sporulating yeast cells and recording the transcriptomics data, 

transcripts that are upregulated or downregulated could be identified and the corresponding 

genes postulated to function in the sporulation module [Chu et al. 1998; Priming et al. 

2000]. Even though transcriptomics studies provide crucial information regarding the 

expression state, or primary genomics readout of the cell, it must be recognized that various 

levels of post-transcriptional control might rival its importance and are not captured [Meta 

et al. 2005].  
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Early transcriptomics experiments used small sample numbers and model organisms with 

relatively small genomes [DeRisi et al. 1997]. Future experiments, however, will deal with 

hundreds of samples and with organisms that have larger, more complex genomes. A 

preview of what is to come can be seen in the work reported by Hughes et al (2000), in 

which 300 samples, half of which were done in duplicate, and 63 negative controls were 

used to characterize undefined ORFs and potential drug targets in yeast. Bioinformatics is 

moving towards methods that try to incorporate as much available knowledge as possible.  

 

In this dissertation, I focused on cDNA microarray, in which two mRNA samples to be 

compared are reverse transcribed into cDNA, labeled using two different fluorophores 

(usually a red fluorescent dye, Cy5, and a green fluorescent dye, Cy3) and then hybridized 

simultaneously to the glass slide. Intensity values generated from hybridization to 

individual DNA spots are indicative of gene expression levels, and comparisons in gene 

expression levels between the two samples are derived from the resulting intensity ratios. 

 

 

1.4 Dissertation outline 

 

This chapter introduces ‘omics’ approaches. Section 1.2 and 1.3 describe metabolomics and 

transcriptomics, respectively. Section 1.4 provides an outline of this dissertation. The 

following four chapters of this dissertation address ‘omics’ approach in time series of E. 

coli. Chapter 2 introduces metabolomics informatics. Section 2.1 describes where 

bioinformatics is in biology. Section 2.2 describes about bioinformatics for metabolomics. 

Section 2.3 explains about bioinformatics tools I used in this dissertation. Chapter 3 
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considers the non-targeted metabolomics analysis based on time series experiments of E. 

coli. Section 3.1 explains where metabolomics research is in recent biological research. 

Section 3.2 describes Materials and methods I used in this dissertation. In Section 3.3, I 

discuss about the results of metabolomics analysis. Chapter 4 considers the integrative 

analysis of transcriptomics and metabolomics data. Section 4.1 introduces integrative 

analyses of several omics data set. Section 4.2 describes Materials and methods I used in 

this dissertation. In Section 4.3, I discussed about the results of integrative analysis. Finally, 

Chapter 5 is concluding remarks of this dissertation. 
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Chapter 2 

Metabolomics informatics 
 

2.1 Introduction 

 

Bioinformatics is playing a more and more significant role in the study of modern biology. 

Bioinformatics is currently a popular term for the application of computational and 

analytical methods to biological problems [Yu et al. 2002]. The rise of bioinformatics has 

been largely due to the diverse range of large scale data that require sophisticated methods 

for analysis. The availability of different types of high-throughput experimental data in the 

late 1990s has expanded the role of bioinformatics and facilitated the analysis of higher 

order functions involving various cellular processes [Kanehisa and Bork 2003]. In this 

section, I review recent advance in bioinformatics for metabolomics and describe the 

developed bioinformatics platform for Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR/MS).  

 

 

2.2 Bioinformatics for metabolomics 

 

2.2.1 Identification of metabolites using MS 

 

Metabolite assignments using MS are usually obtained by combining accurate molecular 

mass, isotopic distribution, fragmentation patterns and other mass spectrometric 
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information available, e.g. databases (DB). The calculation of the chemical formulas that fit 

a certain accurate mass is generally one of the first steps to obtain a set of alternatives that 

can lead metabolite annotation for the detected ions. Using an instrument that can provide 

very high mass accuracies, the range of possibilities of molecular formulas is limited and 

can lead to the correct molecular formula especially for lower m/z values. 

 

One of the most powerful methods for narrowing down the number of molecular formulas 

is to make use of the isotopic pattern. Compounds that were synthesized by natural 

precursors comprise monoisotopic and isotope masses according to the natural average 

abundance of stable isotope abundances [De Laeter et al. 2003]. Table 2.1 shows 

information of isotope weight and abundance for some elements (C, H, O, N, P, and S). 

 

Kind and Fiehn (2006 and 2007) performed the isotope filter for removing candidate 

molecular formulas, i.e. using M+1 and M+2 pattern for the formulas as one of the 

constraints. This is an efficient strategy that can remove more than 95% of false positives. 

On the other hand, assuming that the intensity of the second isotopic signal corresponds to 

the 13C signal for small organic molecules, the number of carbons that the molecule 

contains can be unraveled by natural abundance of 13C (1.07%). The number of carbons in 

the molecular formula is estimated using the following equation: 

 n = (13C isotopic ion intensity/12C isotopic ion intensity) × (0.9893/0.0107) (2.1) 

, where n represents the number of carbons in the molecule. In view of rigorous atomic 

mass, mass differences between isotopes of atoms are not identical, i.e. mass differences 

between 1H and 2H, 12C and 13C, 14N and 15N are 1.0063u, 1.0033u, and 0.9970u, 

respectively (as shown in ‘Isotope difference’ column in Table 2.1). If accurate mass values 
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can be detected, the isotope difference for individual atoms can theoretically provide 

information for estimating molecular formula. In addition, measurements using MS involve 

multivalent ions derived from identical molecule. Figure 2.1 shows an illustrative example 

of a fictitious molecule, whose molecular weight is 1,002. For example, in the negative ion 

mode, monovalent, divalent, and trivalent ions are detected as the ion with m/z = 1,001, 500, 

and 333, respectively, assuming that atomic weight of H+ is equal to 1. Search for 

compounds with molecular weights around 500 and 300 based on m/z values may lead to 

false assignments because these m/z values are originated from identical compound as m/z 

= 1,001. Therefore, it is necessary to distinguish multivalent ions from obtained MS data 

and then search the candidates by using several DBs. 

 

The fragmentation pattern of a mass signal can provide structural information about the 

fragmented ion. From the fragments obtained the structure of the original molecule can be 

deduced. An O-glycosylated flavonoid will, for example, fragment on the glycosidic 

linkage and only afterwards in the aglycone backbone, if sufficient energy is provided. 

Isolating one ion and performing tandem MS to the successively obtained fragments can be 

highly informative for tracking functional groups and connectivity of fragments for 

structure elucidation of the metabolites. In addition, obtaining accurate mass fragments is 

also another advantage when there is little knowledge about the possible atomic 

arrangements of the molecular ion. 

 

The most straight-forward approach for obtaining confirmation of the identity of 

metabolites in a biological sample is to test commercially available standard compounds on 

the same analytical system. This approach, however, implies the commercial availability of 
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such standard compounds, i.e. we can get a limited set of compounds as standard. When 

standard compounds are available, these are useful not only for confirmation of the identity 

of compounds but also for undergoing quantitative analyses. 
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Table 2.1: Atomic weights and isotopic compositions of C, H, O, N, P, and S [De Laeter et al. 2003] 

Isotope Atomic mass/u Mole fraction (%) Isotope difference
1H 1.0078250319 99.9885

0.993585146
2H 2.0014101779 0.0115
12C 12 98.93

1.003354838
13C 13.003354838 1.07
14N 14.0030740074 99.632

0.997034966
15N 15.000108973 0.368
16O 15.9949146223 99.757

2.00424577817O 16.99913150 0.038
18O 17.9991604 0.205
31P 30.97376149 100 -
32S 31.97207073 94.93

1.99579614
33S 32.97145854 0.76
34S 33.96786687 4.29
36S 35.96708088 0.02

 
‘Isotope difference’ column corresponds to atomic mass differences between first and second abundant 

isotopes on earth of individual atoms, i.e. 1H and 2H, 12C and 13C, 14N and 15N, 16O and 18O, 32S and 34S. 



12 

 

 

 

[M-H]-[M-2H]2-[M-3H]3-

m/z1001500 (1000/2)333 (999/3)

“Trivalent ion” “Divalent ion” “Univalent ion”

 

Figure 2.1. Illustrative example of multivalent ions. This is an example for the fictitious molecule, whose 

molecular weight is 1,002, assuming that the atomic weight of H+ is equal to 1. Divalent, and trivalent ions 

are detected the ions with m/z = 500, and 333, respectively. Parenthesis indicates that molecular weight is 

divided by the valence of the ion. 
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2.2.2 Databases 

 

In metabolite annotation, databases play crucial role for searching the candidate metabolites 

for each obtained m/z. There are several available databases with good number of 

accumulated compounds. In fact, the bridge between experimental data and the available 

chemical databases is still weak. Table 2.2 shows several MS databases. Some 

identification tools such as elemental composition calculation or molecular mass 

calculation exist among the different instrumental software, but these tools seldom allow 

spectral matching facilities linked to public databases, like in proteomics applications. 

More specialized databases might be useful for metabolite annotation, though construction 

of public metabolite databases has been started by the laboratories within the community. 

 

One of the largest initiatives for the identification of metabolites is the Human Metabolome 

Project where MS and NMR data are combined with information on molecules [Wishart et 

al. 2007]. The detailed description of the methods of sample preparation and analysis, 

conditions of the analytical experiment, chemical information about the metabolites (name, 

IUPAC name, chemical descriptors such as Chemical Abstracts Service (CAS) registry 

numbers and InChi and/or structural information, links to chemical databases), 

experimental spectra and biological source are some of the features included in the 

metabolite databases. A large portion of compounds accumulated on PubChem [Wheeler et 

al. 2006] and SciFinder are not natural compounds but artificially synthesized compounds. 

KNApSAcK and KEGG have accumulated only natural compounds, associated with 

information of source organisms for each compound. 
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Table 2.2: Number of metabolite records present in databases 

DB Source No. Records

KNApSAcK Nara Institute of Science and Technology
(NAIST) 23,287

Kyoto Encyclopedia of Genes and Genomes
(KEGG) Kyoto University / Tokyo University 14,000

Human Metabolome Database
(HMDB) Genome Algebra and Genome Canada 2,300

Golm Metabolome Datbase
(GMDB)

Max Planck Institute of Molecular Plant 
Physiology

SciFinder Chemical Abstracts Service (CAS) 30,500,000

PubChem National Institutes of Health (NIH) 10,100,000
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2.3 Bioinformatics tools developed in this dissertation 

 

Different analytical instruments have been applied to metabolome analysis. Analytical tool 

is necessary for each analytical platform, as there are several analytical methods depending 

on the microarray platforms. This is also true in the case of the direct-infusion electrospray 

ionization FT-ICR/MS analysis. In this dissertation, I used our four bioinformatics tools, i.e. 

DrDMASS+, KNApSAcK, DPClus for metabolomics analysis, and TREBAX for 

transcriptomics analysis.  

 

 

2.3.1 FT-ICR/MS analysis tool, DrDMASS+ 

 

I have developed the bioinformatics platform for FT-ICR/MS analysis tool, called 

DrDMASS+. Figure 2.2 shows the main window of DrDMASS+ and the data processing 

scheme of DrDMASS+ is shown in Figure 2.3. Appendix E describes the detail of this 

procedure. I briefly describe DrDMASS+ software in this section. The first requirement for 

the success of metabolomics is the ability to mine the generated data and to perform 

reliable and comparative analysis. To attain this, a bioinformatics scheme consisting of four 

stages has been developed: (i) peak correction, (ii) multivariate data processing, (iii) 

unsupervised learning such as principal component analysis (PCA) and batch-learning 

SOM (BL-SOM), and (iv) supervised learning such as partial least squares (PLS) 

regression. 

(i) Peak correction. Though FT-ICR/MS affords extremely high resolution m/z values, 

analytical data fluctuations are generally associated with the m/z values at the three 
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or four decimal place level. So, initially, appropriate m/z values must be estimated 

from the observed m/z values. The experimental m/z values for the internal mass 

calibrants (IMCs) were fixed to their theoretical values, and the m/z error calibration 

data were reflected in the m/z compensation for all other ion species in each spectral 

scan (Fig. 2.4). 

(ii) Multivariate data processing. After compensating m/z values, ion peak matching 

among ten independent scans was done for repeated identifiable m/z values. The 

threshold levels of ion appearance frequencies are freely adjustable. The intensity 

values of repeatedly observed ions were converted into percentage values of total ion 

intensity. Thus, metabolomics data from a single biological sample consisted of 

averaged m/z values with intensity information from ten spectral scans.  

(iii) Unsupervised learning. I implemented two unsupervised learning methods, PCA 

and BL-SOM. PCA is a multivariate method to project a distribution of data points in 

a multidimensional space into a space of fewer dimensions, and BL-SOM is a 

method to classify such data points into groups (grids) accommodating similar 

decrease/increase patterns [Kanaya et al. 2001; Abe et al. 2003]. 

(iv) Supervised learning. PLS is a method for linearly relating a data matrix 

)( NM  to a vector )1(My  where M  and N  represent the number of 

samples and parameters, respectively. The PLS model is represented by Equations 

(2.2) and (2.3): 

 EptX T
kk

L

k 1

 (2.2) 

 
L

k
kq

1

ety k . (2.3)  
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Here, kp  and kq  are called the loading vector of X , and the coefficient of y  for 

the kth component, respectively. L  is the number of components and kt  is a score 

vector for the kth component. )( NME  and )1(Me  represent the residual 

matrix and vector, respectively. The number of PLS components, L , is determined to 

maximize a predicted correlation coefficient ( predR ) by leave-one-out cross-validation 

for each component according to Equation (2.4): 

 2

2

1
obsobs

predobs
pred yy

yy
R . (2.4) 

Here, obsy  is an experimental y  value, predy  is a predicted y  value, and obsy  is 

the mean of obsy . The PLS equations (Equations (2.2) and (2.3)) can also be 

transformed into a linear form represented by Equation (2.5) [Boulesteix and Strimmer 

2007; Takahashi et al. 2008]: 

 fbXy . (2.5) 

Here, b  is a regression coefficient vector and its elements are represented by jb  (j = 

1, 2, …, N ). 
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(i)

(ii)

(iii) (iv)  
Figure 2.2. Operation window of DrDMASS+ software. (i)-(iv) correspond to each step of DrDMASS+ 

scheme. 
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Figure 2.3. Flow diagram of data preprocessing in DrDMASS+ software. Silver boxes correspond to 

individual processes, and white boxes correspond to prefix in input/output file names. Appendix E describes 

the detail of the instruction. 



20 

 

 

 

Measured m/z value

C
or

re
ct

ed
 m

/z
va

lu
e

IMC1 IMC2 IMC3X Y

X’

Y’

IMC4

 
Figure 2.4. Graphical illustration of peak correction. Abscissa and ordinate axes correspond to measured m/z 

value and corrected m/z value, respectively. For example, measured values X and Y on abscissa axis which 

result in X’ and Y’, are corrected by using IMCs (1-4). 
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2.3.2 Species-metabolite relationship database, KNApSAcK 

 

KNApSAcK is the species-metabolite relationship database which allows high-throughput 

prediction of metabolite identities from FT-ICR/MS. Information on metabolites in the 

database can be searched by metabolite name, organism, molecular weight, molecular 

formula, and mass spectral data taking into consideration the ionization modes ([M+NH4]+, 

[M+Na]+, [M+K]+, [M+H]+, and [M-H]-). A total of 46,093 species-metabolite pairs 

encompassing 23,287 metabolites have so far been compiled (as of 5th September 2008) 

[Shinbo et al. 2006]. The database enables a high-throughput search using FT-ICR/MS 

analysis data for metabolite-species relationships together with detailed metabolite 

information including molecular weight, molecular formula, chemical structures, CAS 

numbers, biological functions, and references of academic papers. 

 

 

2.3.3 Graph clustering software, DPClus 

 

In order to elucidate molecular networks within the cell, it is important to extract correlated 

relations between genes, proteins, metabolites, etc. DPClus is a graph clustering software 

that can extract densely connected clusters using an algorithm that is based on density and 

periphery tracking of clusters [Altaf-Ul-Amin et al. 2006]. While using DPClus, it is 

necessary to provide a value of minimum density for the generated clusters ( d ), a 

minimum value for cluster property for the nature of periphery tracking ( incp ), and a 

minimum number of objects in a cluster. 
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2.3.4 Microarray analysis tool, TREBAX 

 

TREBAX is a microarray analysis tool mainly for cDNA microarray data [Kobayashi et al 

2007]. Gene expression levels are evaluated by measuring the fluorescence intensity for 

each spot, and there is usually some experimental variation that occurs in every microarray 

experiment. It is, therefore, important to minimize experimental variation, and although 

several methods of microarray normalization have been developed [Quackenbush 2002; 

Yang et al. 2002], there are usually some false-positive data arising when analyzing gene 

expression data collected via microarrays. Normalization of the logarithmic ratio of 

expression intensity between target ( iR ) and control ( iG ) experiments was carried out 

based on MA plots [Dudoit et al. 2002], which can show the intensity-dependent ratio of 

raw microarray data. The MA plot uses iM  ( ii GR /log10 ) as the y-axis and 

iA  ( iiGR10log ) as the x-axis. By plotting values of iA  on the abscissa and iM  on the 

ordinate of a coordinate system, it is possible to evaluate the bias error with respect to the 

average logarithmic intensities. The normalized log ratio iM ''  was estimated as the 

difference between iM  and baseline iM ' . Here, using the relation between iM  and iA  

( iii MfM , where i  is the difference between iM  and iAf  for the ith gene for 

the MA plot), the baseline for the ith gene was estimated by ii AfM ' . With this 

methodology, it is assumed that there was no large error due to expression intensity in the 

majority of the spots. Figure 2.5 shows one example of the MA plots before and after 

normalization using TREBAX. 
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Figure 2.5. MA plot. a MA plot before and b after normalization using TREBAX. 
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Chapter 3 

Nontargeted metabolomics in Escherichia coli 
 

3.1 Introduction 

 

Comprehensive metabolomics is clearly distinct from conventional metabolism studies in 

that it addresses whole cellular activities rather than just focusing on enzymes, reactions, or 

metabolites. Over the past decade, methods that offer both high resolution and sensitivity 

for the measurement of a vast number of metabolites have been established and two major 

approaches, targeted and non-targeted metabolomics studies, have been developed [Fiehn 

2002; Villas-Boas et al. 2005]. Targeted metabolomics plays a crucial role in understanding 

the primary effects of genetic alternations based on restricted information of a class of 

metabolites, and analytical procedures often need to include processes for identification and 

quantification of selected metabolites. Only recent advances in mass spectrometry have 

allowed non-targeted metabolomics, which is intended for unbiased analyses such as 

mapping metabolite profiles in the whole cellular processes in a given organism. 

 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS 

technology for obtaining exact mass measurements owing to its great resolution and 

accuracy [Marshall et al. 2002; Aharnoni et al. 2002], and several outstanding 

FT-ICR/MS-based metabolomics strategies have been reported [Hirai et al. 2004; Hirai et al. 

2005; Tohge et al. 2005; Oikawa et al. 2006; Nakamura et al. 2007; Suzuki et al. 2008]. 

Development of a general scheme for FT-ICR/MS-based metabolomics, with the aid of its 
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potential for the high resolution measuring power together with ion signal intensity 

information, should thus make a significant contribution to metabolomics studies. To attain 

this purpose and to understand the cell system based on the components of metabolites, I 

apply chemometrics and bioinformatics approaches to FT-ICR/MS data. Among a variety 

of metabolomics strategies, FT-ICR/MS offers a unique opportunity in non-targeted 

metabolomics studies owing to its extreme accuracy (below 1 ppm) in the mass 

measurement. Thus, chemical formulas and molecular identities of metabolites can be 

predicted with the aid of high precision mass spectrometry data, and can also be easily 

linked to reported metabolites. 

 

Metabolomics research currently confronts a problem associated with high-throughput data 

acquisition technologies including chromatography-coupled MS and FT-ICR/MS which 

have facilitated simultaneous detection and quantification of a large number of 

metabolite-derived peaks without metabolite assignment [Hall 2006]; a very similar 

situation has arisen in genomics research in that technologies for determination of 

nucleotide sequence in the whole genome has progressed without annotations of gene 

functions [Stein 2001]. Progress in annotation of metabolites in metabolomics can bridge 

the gap between the data and their biological interpretation. The problem with annotation of 

metabolites is that there is only a piece of information about peaks corresponding to precise 

molecular weight for metabolite-derived ions in MS, but when quantities of ions in a time 

series experiment are measured, metabolite-derived ions such as isotope ions and 

multivalent ions could be categorized by correlations between ions originated from 

identical metabolites, which can lead to more precise annotation of ions as described in 

Section 2.2.1. Thus, correlation analysis of ions may be a powerful approach to annotation 



26 

of metabolites in metabolomics. 

 

In this dissertation, I propose a procedure for metabolite annotation using the data obtained 

from FT-ICR/MS by taking into consideration classification of metabolite-derived ions. 

Here, I perform the non-targeted comprehensive analysis of metabolomics for the time 

series measurements in E. coli, and discuss a metabolic profiling scheme on the basis of 

FT-ICR/MS analyses furnished with a bioinformatics scheme including data preprocessing, 

classification of ions originated from identical metabolites, and supervised and 

unsupervised learning algorithms for metabolomics. 

 

 

3.2 Materials and methods 

 

3.2.1 Strains and growth conditions 

 

The strain used in this dissertation was E. coli K-12 W3110. An aliquot (8 ml) of an 

overnight liquid culture of W3110 in LB medium at 37℃ was inoculated into 2 l LB (pH 

7.4) medium in a 3 l jar-fermenter. Cells were grown continuously at 37℃ for ～12 h, 

adjusting the agitation speed to 300 r.p.m. with fixed 2 l min-1 air flow rate. Growth was 

monitored by measuring the optical density at 600 nm (OD600). 
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3.2.2 Sample preparation 

 

A culture medium was passed through a 0.45-μm-pore-size filter (Durapore Membrane, 

Millipore). Residual E. coli cells on the filter were washed with Milli-Q water and then 

plunged into 2 ml methanol [Soga et al. 2003]. After sonication for 1 min, the methanol 

solution was kept at 4℃ for ～20 h. The solution was then filtered through disposable 

membrane filter units (DISMIC-13JP, ADVANTEC), evaporated, and stored at -80℃ until 

use. Upon FT-ICR/MS analysis, the extracts were dissolved in 50% (v/v) acetonitrile/water. 

A set of 2,4-dichlorophenoxy acetic acid ([M-H]- = 218.96212), ampicillin ([M-H]- = 

348.10235), 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonic acid ([M-H]- = 

613.38920), and tetra-N-acetylchitotetraose ([M-H]- = 829.32078) was used as the internal 

mass calibrants (IMCs) in the negative ion mode analysis. 

 

 

3.2.3 FT-ICR/MS conditions 

 

Mass analysis was done in the negative ion mode using an IonSpec Explorer FT-ICR/MS 

(IonSpec) equipped with a 7-tesla actively shielded superconducting magnet. Ions were 

generated from an ESI source with a fused silica needle of 0.005-inch i.d. Samples were 

infused using a Harvard syringe pump model 22 at a flow rate of 0.5 to 1.0 μl min-1 through 

a 100 μl Hamilton syringe. All the experimental events were controlled using Omega8 

software (IonSpec). Briefly, the potentials on the electrospray emitters were set to -3.0 kV 

for the negative electrosprays. The base pressure in the source region was approximately 5 

× 10-5 torr (1 torr = 133.3 Pa). For the negative electrosprays, sample solutions were 
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prepared in 50% (v/v) acetonitrile/water with 0.1% (v/v) of ammonium hydroxide. Ionized 

metabolites were accumulated for a period of 2,500-5,000 ms in a hexapole ion trap/guide 

and transferred through a radiofrequency-only quadrupole into the FT-ICR cell in the 

superconducting magnetic field, where they were again trapped. The direct current potential 

in the negative ion mode analyses was 2 V during the ion accumulation and -2 V for the ion 

transfer into the FT-ICR cell. These ions trapped in the hexapole were extracted for transfer 

into the FT-ICR cell. In the negative ion modes, the potential on the extraction plate was 

-12 V during the ion trapping and were reversed to 2 V for the extraction. The base pressure 

in the analyzer region was set to approximately 4 × 10-10 torr. ESI-MS spectra were 

acquired over the m/z range 55-1,000 from 1,024,000 independent data points. MS/MS 

analyses were done using the sustained off-resonance irradiation SORI-CID methods 

[Gauthier et al. 1991; Laskin and Futrell 2005]. SORI Rf was set at 0.5-1.5 V, and the N2 

collision gas was used with a 400-ms pulse. 

 

 

3.3 Results and discussion 

 

3.3.1 Data processing of FT-ICR/MS: from data acquisition to assessment 

of cellular conditions according to metabolite composition 

 

The concept of FT-ICR/MS data processing from data acquisition of a time series 

experiment to describe cellular conditions from exponential to stationary growth phase by 

metabolite consists of five steps (Fig. 3.1). Time series experiments are a popular method 

for studying a wide range of biological systems. In bacteria, there are a few reported papers 
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which comprehensively analyzed bacteria intrametabolites [Brauer et al. 2006]. However, 

to my knowledge, there is no paper about bacteria which addresses total intrametabolite 

profiling. In order to elucidate intrametabolite profiling in a whole cell, I performed the 

time series experiment in E. coli (Fig. 3.1a). Samples were collected at 135, 150, 170, 190, 

250, 420, 480, and 720 min postinoculation (which correspond to T1, T2, T3, T4, T5, T6, 

T7, and T8, respectively), and metabolites were extracted, and measured by FT-ICR/MS. 

FT-ICR/MS raw data were processed for differential metabolomics according to the peak 

correction and peak matching of the DrDMASS+ program as described in Section 2.3.1. I 

selected m/z values whose appearance frequencies were higher than 50% among ten scans. 

Thus, differential metabolomics was studied in terms of corrected m/z values with average 

signal intensities of reproducible ions from ten independent spectral data. The observed m/z 

values for ions in individual measurements in the time series experiments were calibrated 

with those of internal standards [Oikawa et al. 2006; Takahashi et al. 2008]. Peak matchings 

were carried out to make a matrix consisting of intensities for m/z values and time points 

(Fig. 3.1b) utilizing a metabolomics platform, based on FT-ICR/MS incorporating the 

metabolite profiling tool DrDMASS+. After the processing step, 220 independent ions were 

detected in the negative ion mode analysis. Thus, time series data matrix consists of 

intensities of 220 independent ions corresponding to metabolites for eight measurement 

points. 

 

There are many ions originated from identical metabolites, i.e. isotope ions and multivalent 

ions. If detected ions are classified into identical metabolite-derived ion groups, I can use 

further information for annotating chemical structures in metabolites, because isotope 

pattern allows us to estimate the number of carbons in molecular formulas for metabolites, 
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and the actual number of metabolites included in samples can also be estimated. When 

different detected ions are derived from identical metabolite, those should be theoretically 

correlated with each other in time series data. So, correlations between ions can lead to the 

estimation of molecular formula by using isotope information. This step was carried out by 

DPClus software (Fig. 3.1c) developed by Altaf-Ul-Amin et al. (2006). DPClus software 

can make it possible to visualize the correlation network, and give us complete subgraphs 

when the density for the generated clusters is equal to 1. All nodes within a complete graph 

are connected with each other. Thus it is expected that multiple ions derived from identical 

metabolite can be detected within a complete graph, if the density is set to be 1 in DPClus. 

After classification of ions into specific metabolite derivative groups, I performed 

annotation of ions as metabolites using public natural compound databases, KNApSAcK 

[Shinbo et al. 2006] and KEGG [Bairoch 2000; Goto et al. 2002; Kanehisa et al. 2006] (Fig. 

3.1d), and cellular conditions were characterized by the composition of metabolites using 

two approaches, supervised and unsupervised learning. Cellular condition could be assessed 

by the metabolite composition using principal component analysis (PCA), and the 

relationship between cell densities and the metabolite composition, reflecting transition 

from exponential to stationary phases, could be understood by using partial least squares 

(PLS) regression (Fig. 3.1e). Marker metabolites significant in exponential and stationary 

growth were determined using PLS regression. 
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Figure 3.1. Data processing scheme consisting of five steps. a Time series experiments in E. coli. The growth 

curve shows eight time points (135, 150, 170, 190, 250, 420, 480, and 720 min postinoculation corresponding 

to T1, T2, T3, T4, T5, T6, T7, and T8, respectively), at which samples were taken, and metabolites were 

extracted, and measured by FT-ICR/MS. b Data structure after data preprocessing by DrDMASS+ including 

peak correction and peak matching. M  and s  show the number of detected ions and samples, respectively. 

c Classification of ions into metabolite derivative groups by DPClus based on the correlations between 

detected ions. d Annotation of ions by searching metabolite databases (KNApSAcK and KEGG). e 

Assessment of cellular conditions according to metabolite composition by using multivariate analyses.



32 

3.3.2 Classification of ions into metabolite derivative groups 

 

The difference of m/z value between isotope ions originated from carbon atom (1.0033 u) is 

a clue for determining whether or not the ions are originated from identical metabolites. 

Furthermore, ions, originated from identical metabolites, occurring in different ion valence 

are also detected. Isotope intensity pattern of a metabolite in an MS chart can serve as a 

powerful additional constraint for removing wrong elemental composition candidates [Kind 

and Fiehn 2007]. When intensities of ions are correlated to each other in a time series 

experiment, those ions would be expected to be originated from an identical metabolite. 

Tautenhahn et al. (2007) successfully combined highly correlated pairs of mass signals in 

LC-MS to chemical relation hypothesis groups. Thus, taking into consideration the 

differences of m/z values for ions and correlation of time series profiles of ions, isotope ions 

can be classified into metabolite derivative groups, which lead to estimation of molecular 

formula of metabolites. To attain this, I visualized all correlations in a time series 

experiment between ions. Pairwise ion-ion correlations were calculated by Pearson’s 

correlation coefficient ( r ) [Fisher 1958]. I extracted a set of 742 unique binary relations 

involving 148 ions by the threshold 9.0r  ( 3103.2p , n  = 8) and visualized this by 

using the graph-clustering method called DPClus [Altaf-Ul-Amin et al. 2006]. Out of total 

220 detected ions, 72 ions do not show significant correlation with other ions. Figure 3.2 

shows the configuration of the 742 relations including 148 ions assigned to 11 isolated 

clusters (ID = 1 to 11). Two largest isolated subgraphs consisting of 43 and 28 ions, 

respectively, can be characterized by six clusters (ID = 1-1 to 1-6) and three clusters (ID = 

2-1 to 2-3), of size  2, which are all complete graphs where an edge connects every pair 
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of distinct vertices within the same cluster. Ions assigned to multiple complete subgraphs 

are depicted by blue nodes. Relations between ions and cluster IDs are listed in Appendix 

A. 

 

I assume that ions which belong to the same cluster and have appropriate m/z difference of 

13C and certain valences have originated from identical metabolites. Initially, to determine 

isotopic ion pairs, I searched ion pairs under conditions that the ion pairs have not only 

correlation with each other but also appropriate m/z difference for certain k-valence, i.e. 

HMH2M2HM k2-2- kkK . Furthermore, to determine ion pairs originated 

from identical metabolites, the search was extended to ions other than isotope ions. Thus, 

19 metabolite derivative groups consisting of multiple ions including isotope and 

multivalent ions were identified (Fig. 3.2, surrounded by red broken lines). In total, 148 

ions were classified into 102 metabolite derivative groups which include isotope ions and 

multivalent ions. 
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Figure 3.2. Correlation analyses based on the graph clustering. A graph sharing correlation between ions and 

densely connected clusters is shown. Each boxed black number (1-11) corresponds to a cluster ID detected by 

the graph clustering. Each node corresponds to an ion with m/z value indicated. The colors of nodes represent 

the ions within a cluster (green), the common ions among clusters (blue), and the other ions (silver). The 

intracluster edges are green and intercluster edges are orange. The thick blue broken circles show the clusters 

1-1, 1-2, 1-3, 1-4,5, 1-6, 2-1, 2-2, and 2-3. The red dotted circles show isotope ions. PG1-PG10 

(phosphatidylglycerol) are shown in red. M-1 to M-17 near the nodes are the identities of ions which have 

candidates according to the KNApSAcK search: M-1, dTDP-L-rhamnose; M-2, BE 32030B; M-3, 

ADP-L-glycero-beta-D-manno-heptopyranose; M-4, octanoic acid; M-5, dTMP; M-6, UDP-D-glucose, 

UDP-D-galactose; M-7, UDP-N-acetyl-D-mannosamine, UDP-N-acetyl-D-glucosamine; M-8, dTDP; M-9, 

kinamycin A, kinamycin C;, M-10, ATP, dGTP; M-11, omega-cycloheptanenonanic acid; M-12, oleic acid, 
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cis-11-octadecanoic acid, omega-cycloheptylundecanoic acid; M-13, adenosine 3’, 5’-bisphosphate, ADP, 

dGDP; M-14, NAD; M-15, UDP; M-16, NADH; M-17, antibiotic MI 178-34F18A2, antibiotic MI 

178-34F18C2 
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3.3.3 Annotation of ions 

 

The concept of metabolite annotation comprised of mass spectral annotation and biological 

metadata annotation including description of actual experimental conditions that help 

unravel the biological role of metabolites by their changes in levels in response to genetic 

and environmental perturbation [Fiehn et al. 2005; Scholz and Fiehn 2007]. In this 

dissertation, I use the term ‘metabolite annotation’ to describe a procedure of providing 

chemical characterization to individual metabolite-derived ions; thus, the annotation 

procedure can be classified as a mass spectral annotation, which is important for 

interpretation of cellular conditions according to metabolite compositions. There are two 

distinct ways to provide metabolite annotation: an exhaustive computation of all chemically 

possible isomeric structures or a query of databases for known natural compounds. In this 

dissertation, I annotated ions based on the latter method together with additional evidence 

of chemical information such as MS/MS fragmentations. Three publicly available databases 

concerning natural products are PubChem [Wheeler et al. 2006], KEGG [Kanehisa et al. 

2008], and KNApSAcK [Shinbo et al. 2006]. The PubChem database is comprised of 

records for over 19.6 million compounds with over 11 million unique structures including 

small molecules, particularly diagnostic and therapeutic agents. In this dissertation, 

detected ions are natural compounds and it is better to search the databases that mainly 

contain natural products. In KEGG, the metabolic pathways are constructed by interspecies 

gene relations such as orthologs and paralogs, so metabolite-species relationships can be 

obtained via information of enzymes. The KEGG database focuses on metabolites related 

to known metabolic pathways and includes around 13,000 metabolites. On the other hand, 

the relationships between metabolites and their biological origins have been addressed 
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systematically in the KNApSAcK database, which has accumulated 46,093 records 

(species-metabolite pairs) encompassing 23,287 metabolites (as of 5th September 2008). 

The total number of secondary metabolites for which molecular structures have been 

elucidated is estimated to be 50,000 [De Luca and St Pierre 2000]. So, around 47% of 

metabolites have been compiled in the database and this is considered to be enough for 

searching candidates including species information. As the first stage, I searched 

metabolites in two databases (KEGG and KNApSAcK) by molecular weights estimated 

from m/z values for ions. 

 

Isotope patterns allow us to estimate the number of carbons in molecular formulas for 

metabolites because natural compounds on earth reflect the natural abundance of stable 

elemental isotopes, such as 13C (which is found at approximately 1.07%) [De Laeter et al. 

2003]. The abundance of isotope ions is dependent on the actual elemental composition and 

can therefore serve as a powerful filter in calculating unique elemental compositions from 

mass spectral data [Kind and Fiehn 2007]. In view of rigorous atomic mass, mass 

differences between isotopes of atoms are not identical, e.g. mass differences between 1H 

and 2H, 12C and 13C, 14N and 15N are 1.0063 u, 1.0033 u, and 0.9970 u, respectively. Several 

software methods calculate isotope patterns of compounds based on the assumption that 

mass differences of atomic isotopes for different atoms can be considered to be identical 

[Boecker et al. 2006]. Because of the extent of high resolution in FT-ICR/MS, the isotope 

differences cannot be neglected, i.e. it could be possible to separately detect each isotope 

ion containing 2H, 13C, 15N and so on. But intensities of isotope compounds with isotope 

atoms other than 13C would be too small to be detected, because the probability of ions 

containing 2H, 15N and so on is much lower compared with ions containing 13C. So 
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assuming that an isotope ion M+1 is derived from only 13C, a relative ratio of M (12C) and 

M+1 (13C) separated by the difference (1.0033 u) of m/z values for two peaks can allow us 

to estimate how many carbon atoms a compound should contain without prior information 

about the structure. In addition to this, MS/MS fragmentation patterns provide structural 

information of metabolites, so I performed MS/MS analysis for the five peaks 

corresponding to m/z = (A) 662.1037, (B) 719.4868, (C) 733.5056, (D) 747.5183, and (E) 

761.5293. 

 

In ion A, the intensity of m/z = 662.1037 is highly correlated with those of m/z value 

663.1080 in cluster 6, so those would be isotope ions, i.e. m/z = 662.1037 (M) and m/z = 

663.1080 (M+1) because of the difference 1.0043. The number of carbon atoms estimated 

by the intensity ratio of 662.1037 to 663.1080 was in the range of 19 and 21 at the 99% 

confidence interval of the t test (Table 3.1). I got 845 possible molecular formulas 

consisting of six types of atoms (C, H, O, N, P, and S) in the range of 01.0  for an ion 

with m/z = 662.1037. After reducing candidates that do not have the estimated number of 

carbon atoms, I could get 92 possible candidates, i.e. about 89% candidate molecular 

formulas were excluded. The candidate metabolite for ion A according to the KNApSAcK 

search (no hits in KEGG database) is nicotinamide adenine dinucleotide (NAD) 

(C21H27N7O14P2), and ions obtained from MS/MS analysis (m/z = 540.0782, 328.0532) for 

ion A are consistent with the fragmentation pattern of NAD (Fig. 3.3), i.e. fragmentation 

ions with m/z = 540.0782 and 328.0532 could be assigned to ([C15H20N5O13P2]-) 

[theoretical m/z = 540.0533] and ([C10H11N5O6P]-) [theoretical m/z = 328.0447], 

respectively. Thus, I annotated the ions corresponding to m/z = 662.1037 and 663.1080 in 

cluster 6 as NAD and also m/z = 331.0586 in cluster 6 as a doubly charged ion ([M-2H]2-) 
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of NAD. 

 

Next, I annotated four selected monoisotope ions m/z = (B) 719.4868, (C) 733.5056, (D) 

747.5183, and (E) 761.5293. Though the candidate metabolites could not be obtained by 

the database search, fragmentation ions for those were obtained by MS/MS analyses in 

Figure 3.4a-d. In the MS/MS spectrum corresponding to the ion with m/z = (B) 719.4868 

(Fig. 3.4a), two peaks for fragment ions (i.e. m/z = 253.2181 and 255.2337) could be 

assigned to an unsaturated fatty acid (C16H30O2) [theoretical m/z = 253.2167 ([R2O]-)] and a 

saturated fatty acid (C16H32O2) [theoretical m/z = 255.2324 ([R1O]-)], indicating that the ion 

with m/z = 719.4868 is a phosphatidylglycerol (PG). All ions (B-E) possess some common 

identifiable peaks (i.e. m/z = 255.2337, 391.2260, 465.2628, and 483.2735 in Fig. 3.4a), 

suggesting that they are similar types of molecules, i.e. four ions B-E, referred to as PG1 to 

PG4, respectively, would be different types of PGs summarized in Figure 3.5. The numbers 

of carbon atoms estimated at the 99% confidence interval of the t test were also true for all 

four ions, suggesting that identification of isotope ions based on the graph clustering and 

estimating the number of carbon atoms by the confidence interval of the t test could be also 

reliable to reduce the number of candidate molecular formulas. I also checked the effect of 

other constraints for reducing candidates, e.g. using element ratio constraints (H/C 0.2-3.1, 

O/C 0-1.2, N/C 0-1.3, P/C 0-0.3, and S/C 0-0.8) [Kind and Fiehn 2007], but there was no 

impact after reducing by the t test (element ratio column in Table 3.1), suggesting that if the 

isotope pattern data for a metabolite in a time series can be given, the relative ratio of 

isotope ions (M and M+1) can efficiently narrow down candidate molecular formulas even 

without other constraints. Though incorporating chromatographic separation systems into 

the FT-ICR/MS system is helpful to estimate the relative ratio of isotope ions and also to 
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predict the candidate molecular formula of unknown ions in a single measurement, time 

series data set can also ensure the possibility of candidate molecular formulas from a 

statistical perspective, i.e. the confidence interval of the t test. 

 

It has been reported that PGs are composed of various molecular species [Ishinaga et al. 

1979]. In this dissertation, another six metabolite derivative groups can be annotated as PGs 

by following three ‘rules’ in fatty acid metabolism (Fig. 3.6): 

(1) Cyclopropane fatty acid (CFA) formation occurs as one of the modifications of 

phospholipids [Chang and Cronan 1999; Grogan and Cronan 1997]. A mass difference of 

14.0157 corresponding to CFA was obtained in five pairs of PGs (PG1 and PG2, PG3 and 

PG4, PG5 (m/z = 691.4588) and PG6 (m/z = 705.4757), PG7 (m/z = 745.5045) and PG8 

(m/z = 759.5242), and PG9 (m/z = 773.5375) and PG10 (m/z = 787.5556));  

(2) An elongation process occurs in fatty acids [Magnuson et al. 1993], i.e. a mass 

difference of 28.0313 u corresponds to one cycle of two-carbon addition in fatty acid 

biosynthesis, which was obtained in six pairs of PGs (PG5 and PG1, PG1 and PG3, PG7 

and PG9, PG6 and PG2, PG2 and PG4, and PG8 and PG10);  

(3) A desaturation process, i.e. a mass difference of 2.0157 was obtained in two pairs of 

PGs (PG3 and PG7, and PG4 and PG8). So, annotation of PG5 to PG10 could be validated 

by enzyme reactions in lipid metabolism. 

 

I searched the other 169 metabolite derivative ions using KNApSAcK (threshold was set to 

be ± 0.01), and obtained 163 candidate metabolites from the search of the entire metabolite 

inventory in the database. Based on the species-metabolite relationships and MS/MS 

analyses above, I was finally able to assign 33% of 220 detected ions to candidate 
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metabolites. If the search was restricted to only bacteria-metabolite relationships of the 

KNApSAcK database, then I found 26 ions are related to 38 metabolites (Table 3.2). Out of 

these, there is only one whose candidates have different molecular formulas. The other 25 

ions correspond to unique elemental compositions, suggesting that the information of 

species-metabolite relationships is efficient to extract reliable lists of candidate metabolites. 

In Table 3.2, there are several candidates for the molecules, which have never been found in 

E. coli. There are three isomeric candidate molecules for m/z = 281.2444. This ion is most 

likely to oleic acid, because other two candidates have never been reported in E. coli based 

on the species-metabolite relationships of KNApSAcK. In addition, the candidates for m/z 

= 454.0391 are antibiotic MI 178-34F18A2 and antibiotic MI 178-34F18C2, that would 

never be found in E. coli. Information about these molecular formulas, i.e. C20H19Cl2NO7, 

could be useful clue for estimating the molecular formula of this ion, although these are not 

likely to be true candidates for E. coli. Overall, not only structure information, but also 

species-metabolite information could help us reach the exact annotation of ions. Also, 

taking into consideration the possibility of detecting pieces of compounds is necessary for 

annotation scheme, since E. coli has peptide antibiotics such as microcin B17 [Roy et al. 

1999]. In this dissertation, the percentage of ions annotated to candidate metabolites is 

much higher than that in the case of a plant reported by Nakamura et al. (2007) (10% of 

peaks in Arabidopsis thaliana). 
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Figure 3.3. MS/MS analysis of nicotinamide adenine dinucleotide (NAD) ion with m/z = 662.1037 in the 

negative ion mode analysis. [M-H]- corresponds to the detected ion.



43 

 

 

 

Table 3.1: Summary of reduction of candidates using the isotope pattern in ions in MS/MS analyses 

Ion ID Cluster 
ID

Monoisotope 
(M)

Isotope 
(M+1) Difference Number of 

candidates±0.01
Estimated carbon 

number
Number of 

estimated candidates
Element 

ratio Candidate Actual number of 
carbon atoms

Ion A 6 662.1037 663.1080 1.0044 874 19-21 92 90 NAD 21 

Ion B 1 719.4868 720.4917 1.0048 146 36-40 33 33 PG1 38 

Ion C 2 733.5056 734.5087 1.0032 167 38-44 34 34 PG2 39 

Ion D 1 747.5183 748.5227 1.0044 175 39-40 12 12 PG3 40 

Ion E 2 761.5293 762.5340 1.0047 219 28-60 102 102 PG4 41 

 

M in ‘monoisotope’ column corresponds to [M-H]- in the negative ion mode analysis. 
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Figure 3.4. MS/MS analyses of the four ions in the negative ion mode analysis. [M-H]- corresponds to the 

detected ion. a-d Fragmentation patterns of phosphatidylglycerols 1-4 (PG1-PG4) ions with m/z = 719.4868, 

m/z = 733.5056, m/z = 747.5183, and m/z = 761.5293. R1 and R2 correspond to fatty acids. 
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Figure 3.5. Molecular structures of PG1-PG4 determined by MS/MS analyses. Chemical structures in left, 

middle, and right columns correspond to substructure X1, X2, and X3 of phosphatidylglycerols, respectively.
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Figure 3.6. Relation of mass differences among PG1 to PG10. PG xx:y head groups, xx total number of 

carbons in the fatty acid chains, y number of double bonds; c cyclopropane; CFA cyclopropane fatty acid 

formation; US unsaturation. Theoretical Δ(CH2)2, CFA and US are 28.0313, 14.0157, and 2.0157, respectively. 
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Table 3.2: Summary of candidates for ions based on KNApSAcK search using bacteria-metabolite 

relationships 

Detected
m/z

Theoretical
m/z

Molecular 
formula

Exact 
mass Error Candidate Species

72.9878 73.9951 C2H2O3 74.0004 0.0053 Glyoxylic acid Escherichia coli
143.1080 144.1153 C8H16O2 144.1150 0.0003 Octanoic acid Escherichia coli
253.2137 254.2210 C16H30O2 254.2246 0.0036 omega-Cycloheptanenonanoic acid Alicyclobacillus acidocaldarius
253.2185 254.2258 C16H30O2 254.2246 0.0012 omega-Cycloheptanenonanoic acid Alicyclobacillus acidocaldarius
281.2444 282.2516 C18H34O2 282.2559 0.0042 Oleic acid Escherichia coli

C18H34O2 282.2559 0.0042 cis-11-Octadecanoic acid Lactobacillus plantarum
C18H34O2 282.2559 0.0042 omega-Cycloheptylundecanoic acid Alicyclobacillus acidocaldarius

297.2410 298.2482 C18H34O3 298.2508 0.0026 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
297.2467 298.2540 C18H34O3 298.2508 0.0032 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
297.2516 298.2589 C18H34O3 298.2508 0.0081 alpha-Cycloheptaneundecanoic acid Alicyclobacillus acidocaldarius
321.0506 322.0579 C10H15N2O8P 322.0566 0.0013 dTMP Escherichia coli K12
346.0570 347.0643 C10H14N5O7P 347.0631 0.0012 AMP Escherichia coli

C10H14N5O7P 347.0631 0.0012 3'-AMP Escherichia coli
C10H14N5O7P 347.0631 0.0012 dGMP Escherichia coli

401.0168 402.0241 C10H16N2O11P2 402.0229 0.0012 dTDP Escherichia coli
402.9962 404.0035 C9H14N2O12P2 404.0022 0.0013 UDP Escherichia coli
426.0237 427.0310 C10H15N5O10P2 427.0294 0.0016 Adenosine 3',5'-bisphosphate Escherichia coli

C10H15N5O10P2 427.0294 0.0016 ADP Escherichia coli
C10H15N5O10P2 427.0294 0.0016 dGDP Escherichia coli

454.0391 455.0464 C20H19Cl2NO7 455.0539 0.0075 Antibiotic MI 178-34F18A2 Actinomadura spiralis MI178-34F18
C20H19Cl2NO7 455.0539 0.0075 Antibiotic MI 178-34F18C2 Actinomadura spiralis MI178-34F18

458.1112 459.1185 C15H22N7O8P 459.1267 0.0083 Phosmidosine B Streptomyces sp. strain RK-16
495.1039 496.1112 C24H20N2O10 496.1118 0.0006 Kinamycin A Streptomyces murayamaensis sp. nov.

C24H20N2O10 496.1118 0.0006 Kinamycin C Streptomyces murayamaensis sp. nov.
505.9908 506.9981 C10H16N5O13P3 506.9957 0.0023 ATP,dGTP Escherichia coli
547.0756 548.0829 C16H26N2O15P2 548.0808 0.0020 dTDP-L-rhamnose Escherichia coli
565.0503 566.0576 C15H24N2O17P2 566.0550 0.0025 UDP-D-glucose Escherichia coli

C15H24N2O17P2 566.0550 0.0025 UDP-D-galactose Escherichia coli
606.0775 607.0848 C17H27N3O17P2 607.0816 0.0032 UDP-N-acetyl-D-mannosamine Escherichia coli

C17H27N3O17P2 607.0816 0.0032 UDP-N-acetyl-D-glucosamine Escherichia coli

618.0897 619.0970 C17H27N5O16P2 619.0928 0.0042 ADP-L-glycero-beta-D-manno-
heptopyranose Escherichia coli

662.1037 663.1109 C21H27N7O14P2 663.1091 0.0018 NAD Escherichia coli
664.1095 665.1168 C21H29N7O14P2 665.1248 0.0080 NADH Escherichia coli
741.4729 742.4801 C32H62N12O8 742.4814 0.0012 Argimicin A Sphingomonas sp.
786.4712 787.4785 C41H65N5O10 787.4731 0.0054 BE 32030B Nocardia sp. A32030
853.3166 854.3239 C41H46N10O9S 854.3170 0.0069 Argyrin G Archangium gephyra Ar 8082

C45H56Cl2N2O10 854.3312 0.0073 Decatromicin B Actinomadura sp. MK73-NF4
C39H50N8O12S 854.3269 0.0030 Napsamycin C Streptomyces sp. HIL Y-82,11372

The column of ‘Detected m/z’ corresponds to the [M-H]- ion in the negative ion mode analysis 
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3.3.4 Cellular conditions assessed according to metabolite composition 

 

In this section, I describe growth stage specificity for annotated metabolites. Figure 3.7 

shows (a) the growth curve, (b) the number of ions detected at each time point, and (c) 

expression profiles of metabolites in cluster 1-5. The number of ions detected in each 

cluster decreases toward T6 and thereafter increases toward T8, suggesting that after the 

exponential phase, composition of metabolites in E. coli would be largely changed at T6. 

 

Ions in cluster 5 and 3 correspond to ion accumulation in T2 and T3 at the exponential 

phase (Fig. 3.7c), respectively, suggesting that these metabolites would be necessary only at 

certain cell states. A candidate for the ion with m/z = 281.2444 in cluster 5 obtained by 

KNApSAcK searching is oleic acid (M-12 in Fig. 3.2; error of m/z = 0.0042) which is a 

precursor of phospholipids and has one double bond, suggesting that biosynthesis of fatty 

acid with double bond might occur in the exponential but not stationary phase, and other 

ions in cluster 5 would be intermediate compounds in a pathway related to fatty acid 

biosynthesis. 

 

Candidates for the ion with m/z = 565.0503 (M-6) in cluster 3 are UDP-D-glucose and 

UDP-D-galactose. Candidates for the ion with m/z = 606.0775 (M-7) are 

UDP-N-acetyl-D-mannosamine and UDP-N-acetyl-D-glucosamine, which are precursors of 

lipopolysaccharides (LPS) [Vimr et al. 2004], suggesting that LPS biosynthesis would 

occur only in the exponential phase and relate to abundances of UDP-D-glucose and 

UDP-D-galactose, and other ions in cluster 3 would be compounds related to LPS 

biosynthesis. A candidate for the ion with m/z = 143.1080 in cluster 3 is octanoic acid 
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(M-4), which is the direct precursor of a vitamin and lipoic acid, and is also an exponential 

phase specific metabolite. E. coli contains a pool of octanoic acid which can act as a 

substrate for lipoate ligase during lipoate starvation of a lipoic acid auxotroph [Ali et al. 

1990]. The accumulation of octanoic acid at stage T3 would be needed in the exponential 

phase to prepare biosynthesis of vitamins. Ions in cluster 4 correspond to ion accumulation 

in T7 at the stationary phase (Fig. 3.7c), suggesting that ions in cluster 4 would be 

compounds related to the stationary phase. 

 

According to profiles in Figure 3.7c, clusters 1 and 2 are exponential and stationary phase 

specific, respectively. It is well known that phospholipid production decreases dramatically 

at the stringent response [Merlie and Pizer 1973; Polakis et al. 1973], and the bulk of CFA 

synthesis occurs as cultures enter the stationary phase of growth [Magnuson et al. 1993]. 

Those facts are consistent with the structures of PG2, PG4, PG6, PG8, and PG10 in cluster 

2 being CFA forms of PG1, PG3, PG5, PG7, and PG9 in cluster 1, respectively. In addition 

to this, CFA synthesis occurs in a broad range of phosphatidylglycerols after T5. Thus, 

cellular conditions of E. coli could be explained in terms of the composition of metabolites. 

 

Unsupervised learning such as PCA and BL-SOM makes it possible to examine metabolic 

phenotyping of seedlings treated with different herbicidal chemical classes for 

pathway-specific inhibitions [Oikawa et al. 2006] and accurate classification of genes based 

on time series expression profiles which led to the prediction of gene functions [Hirai et al. 

2005; Hirai et al. 2004; Yano et al. 2006]. Figure 3.8 shows the PCA projection of 

measurement points in time series data. The proportions, that is, percent variances to total 

variance, are 94.3% and 2.4% for the first and second principal components (PC1 and PC2), 
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respectively. So the first two principal components, which can explain 96.7% of total 

variance, are enough to examine the differences in eight time points. The distribution of 

eight time points in the first two PCs as shown in Figure 3.8 implies that time points are 

clearly classified into two groups, an early group consisting of T1, T2, T3, T4, and T5, and 

a late group consisting of T6, T7, and T8, suggesting that the different growth stages could 

be represented by the metabolomics data. The former and latter roughly correspond to 

exponential and stationary phases in the growth curve of E. coli. This result shows that the 

metabolite profile in E. coli seems to be totally shifted from T5 to T6, which is also 

consistent with the transient point in the number of detected ions in Figure 3.7b. 

 

To directly relate composition of metabolites to cellular conditions, I applied partial least 

squares (PLS) regression to the metabolite profiling data. PLS regression provides a 

quantitative model to estimate the cellular conditions based on the composition of 

metabolites. So in this dissertation, I focused on the PLS model to estimate cellular 

conditions from exponential to stationary phase based on intensities of m/z values in 

FT-ICR/MS and examined quantitative differences of metabolites using the PLS model. 

Growth of bacteria can be generally monitored by measuring the optical density at 600 nm 

(OD600). A linear model for estimating the OD600 values according to the metabolite 

quantities in individual time points provides the useful information associated with 

quantitative differences of the metabolites between exponential and stationary phases. To 

attain this, I conducted PLS regression, which is applicable when the number of 

independent variables is very large compared with the number of samples. Using PLS 

regression, the OD600 value can be directly estimated from the corresponding intensity 

vector of m/z values, as follows: 
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 mmjj xaxaxaxaa LL22110600OD  (3.1) 

, where jx  and ja  represent the intensity and coefficient for jth ion. 

When the ion has a positive PLS regression coefficient, its ion’s level should increase from 

exponential to stationary phase because the optical density is saturated in the highest level 

of the growth curve. As shown in Figure 3.9, I got the best linear model in PLS regression 

with one component (Rpred = 0.94) as described in Equation (2.4). The Pearson’s correlation 

coefficient between the observed and predicted OD600 values is r = 0.97, suggesting that 

constructed model would work well, and is informative to clarify the relation between a 

growth stage and metabolite profile. 

 

Next, I plotted the regression coefficients of each ion determined by using the proposed 

model in order to elucidate which metabolite is important for estimating the OD600 values 

(Fig. 3.10). The ions with negative and positive coefficients contribute to the constructed 

model, negatively and positively, and are dominant in exponential and stationary phase, 

respectively. Four ions (PG1, m/z = 719.4868; PG2, m/z = 733.5056; PG3, m/z = 747.5183; 

PG4, m/z = 761.5293) which were analyzed by MS/MS analysis as described above had the 

highest coefficients. Other annotated six ions (PG5, m/z = 691.4588; PG6, m/z = 705.4747; 

PG7, m/z = 745.5045; PG8, m/z = 759.5242; PG9, m/z = 773.5375; PG10, m/z = 787.5556) 

also had higher coefficients, suggesting that PLS analysis could extract stage-specific 

metabolites efficiently. Thus, the observed behavior of metabolites is highly reflected in the 

regression coefficients of the PLS model and the interpretation of the coefficients is fairly 

consistent with the transition of metabolites from exponential to stationary phase. 
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Figure 3.7. The time series profiles. a Growth curve. b Time series change of total number of detected ions at 

each time point. c Average expression profiles of ions in cluster 1-5. Error bars show standard deviation at 

each time point. 
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Figure 3.8. PCA analysis. Plot of eight time points are shown by using the first two PCs.
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Figure 3.9. Predicted OD600 values by PLS analysis. Observed and predicted optical densities are based on 

the PLS model with the first component. 
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Figure 3.10. Intensity of regression coefficients. The metabolites written in red are reported metabolites in E. 

coli. The metabolites written in black are reported metabolites in other bacteria species. 
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Chapter 4 

Integrative analysis of transcriptomics and 

metabolomics 
 

4.1 Introduction 

 

In the post-genomics era, a systematic and comprehensive understanding of the complex 

events in the organisms, e.g. the majority of gene products function not alone, but with 

other gene products, is a great concern in biology. Now, ‘omics’ approaches, i.e. genomics, 

transcriptomics, proteomics, and metabolomics, are required in order to understand 

organisms as a system. New advanced methods, strategies, and technologies for ‘omics’ 

studies should be mainly directed to the elucidation of regulation, and gene regulatory 

networks responsible for specific phenotypes at the different levels: genomics, 

transcriptomics, proteomics, and metabolomics in an integrative or systems biology 

perspectives [Castrillo and Oliver 2004]. Metabolomics, hence, offers insights into 

metabolism that complements information obtained from proteomics and transcriptomics 

[Fridman and Pichersky 2005] and has a potential to elucidate gene functions and networks, 

especially when integrated with transcriptomics. A promising approach is pair-wise 

gene-to-metabolite correlation analysis, which can reveal unexpected correlations and shed 

light on candidate genes for regulating the metabolite content. The systematic integration of 

transcriptomics, proteomics, and metabolomics facilitates the unbiased, information-based 

reconstruction of underlying biochemical networks [Hirai et al. 2004; Hirai et al. 2005; 

Urbanczyk-Wochniak et al. 2003; Fiehn et al. 2001]. Pir et al. (2006) integrated 
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metabolomics with transcriptomics by using PLS modeling, and metabolite data were 

modeled as a function of the transcriptome to determine their congruence. 

 

While clustering techniques have been applied to identify co-expressed genes in time series 

microarray analysis, several papers propose methods that could detect time lagged 

relationships of gene expression profiles [Balasubramaniyan et al. 2005; Ji and Tan 2005; 

Redestig et al. 2007]. That is, gene products regulate each other not only simultaneously 

but also after a certain time lag. It is necessary for taking into consideration a time lag 

between several ‘omics’ data. Meanwhile, investigating the responses of cells to 

environmental changes typically requires a system-level analysis. A key step to analyze 

system responses to environmental changes is identifying large state changes or 

‘transitions’. Morioka et al. (2007) developed the statistical method, Linear Dynamical 

System (LDS), which uses internal state variables in the generative model for cellular 

internal state changes, and detects cellular state transitions in time series data. 

 

Heretofore, I have established non-targeted metabolomics approach based on Fourier 

transform ion cyclotron resonance mass spectrometry (FT-ICR/MS), and showed that 

metabolomics data could explain cell state in E. coli. In this chapter, by adding time series 

cDNA microarray experimental data of E. coli, I present an integrated analysis of 

transcriptomics and metabolomics data, taking into consideration a time lag between 

transcriptomics and metabolomics in a non-targeted manner. LDS method was applied to 

estimate the transition point in transcriptional and metabolite levels, whether or not there 

was a time lag between transcriptional and metabolite levels. I examined gene-to-gene 

correlation analysis to determine how tightly genes on each pathway would be regulated by 
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each other using cDNA microarray data. Furthermore, gene-to-metabolite correlation 

analysis was also performed, taking into consideration a time lag between transcriptomics 

and metabolomics data. Here I show that taking into consideration a time lag between 

transcriptomics and metabolomics enables integrated analysis to elucidate 

gene-to-metabolite networks in time series context in a more effective way. 

 

 

4.2 Materials and methods 

 

4.2.1 RNA extraction and cDNA synthesis 

 

Cells were collected by centrifugation at 135, 150, 170, 190, 250, 420, 480, and 720 min 

postinoculation (which correspond to T1, T2, T3, T4, T5, T6, T7, and T8) after adding RNA 

protect (Qiagen) and stored –80℃, while control sample was collected at 130 min. Total 

RNA was isolated using the RNeasy mini kit and RNase-free DNase set according to the 

manufacture’s instructions (Qiagen). For each labeling reaction, a total of 15 μg of RNA 

was used. First-strand cDNA synthesis was primed with 1.2 μg random primers 

(Invitrogen) in nuclease-free water (total volume: 31 μl) by heating at 70℃ for 10 min and 

incubating at 25℃ for an additional 10 min. Reverse transcription was performed by 

SuperScript III (Invitrogen) in reverse transcription buffer [1 × first-strand buffer, 10 mM 

DTT] in the presence of 5 mM dATP, 5 mM dUTP, 5 mM dCTP, 0.25 mM dTTP, and 0.25 

mM AA-dUTP. Three amino-allyl-labeled nucleotides were incorporated into the cDNA. 

The reactions were incubated at 25℃ for 10 min, 37℃ for 60 min, 42℃ overnight, and 

quenched by heating at 70℃ for 10 min. 
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The RNA template was hydrolyzed by adding 20 μl of 1N NaOH followed by heating at 

65℃ for 30 min. Reactions were neutralized with 20 μl of 1N HCl. cDNA was purified 

using a CyScribe GFX Purification Kit (GE Healthcare) according to the manufacturer's 

directions. NHS ester forms of Cy3 and Cy5 dyes were added to the cDNA solution and 

incubated for 4 h. Coupling reactions were quenched by the addition of 15 μl of 4 M 

hydroxylamine and incubated at room temperature for 15 min in the dark. Labeled cDNA 

was purified using the CyScribe GFX Purification Kit again. 

 

 

4.2.2 Hybridization and spot detection 

 

Prehybridization of the array slides was performed for 3 hr in filtered prehybridization 

solution [25% formamide, 5 × SSC, 10 mg BSA (fraction V), 0.1% SDS] at 42℃. Slides 

were briefly washed in milliQ water and 80% ethanol and dried by centrifugation at 1,000 g 

for 5 min. Hybridization of the probe was performed using hybridization solution (25% 

formamide, 5 × SSC, 0.1% SDS, 0.1 μg poly (A), 1 × Denhardt's solution and 100 pmol 

Cy3 and Cy5 combined probe). The hybridization solution containing the Cy-dye-labeled 

cDNA was heated to 95℃ for 3 min and hybridization was performed in an Advalytix 

hybridization machine (ArrayBooster) at 42℃ for 16 h. After hybridization, the slides were 

washed and dried by centrifugation at 1,000 g for 5 min and then analyzed using a Fuji 

FLA-8000 scanner and Array Gauge ver.2.0 software (Fuji Film). 
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4.2.3 Transcriptomics and metabolomics data set 

 

After normalization of 16 sets of microarray data (twice for each of eight time points), the 

log ratio corresponding to each gene was averaged, and then genes with one or more 

missing values were removed. The remaining 3,945 genes were used for estimation of 

transition points in transcriptional levels. Finally, 1,162 genes were selected for which at 

least at one time point the expression value is more than or equal to the threshold 

SDMean 5.1  determined in the context of all time point data of 3,945 genes. These 

highly expressed genes were used for gene-to-metabolite correlation analysis. Metabolite 

expression profiles consisted of 220 peaks, which were used for estimation of transition 

points in metabolite levels, detected by Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR/MS). Out of these, there were 174 metabolite derivative groups. To 

use in gene-to-metabolite correlation analysis, I determined time lagged data using linear 

interpolation as follows: in case of any metabolite, say mj, metabolite quantities are 

measured for s time series points which are denoted by mj (T1), mj (T2), …, mj (Ts), and let i 

= 1, 2, …, s. The quantity of jth metabolite at time t, mj (t), was calculated using following 

equations. 

In the case that t is in the interval between Ti and Ti+1, 
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In the case that t is outside of the largest sampling point Ts (t > Ts), 
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Figure 4.1 shows an example of 30 minute time lag points for the ion with m/z = 719. 4868 
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(PG1) corresponding to, 165 (= 135+30), 180 (= 150+30), 200 (= 170+30), 220 (= 190+30), 

280 (= 250+30), 450 (= 420+30), and 510 (= 480+30), and 750 (= 720+30) min for the 

eight reference measurements at times, 135, 150, 170, 190, 250, 420, 480, and 720 min. For 

the sampling point T1 (corresponding to 135 min), thirty minute lagged point is at 165 min 

(indicated by red triangle) between T2 (150 min) and T3 (170 min), and corresponds to the 

point on the line connecting T2 and T3. Seven lagged points corresponding to original 

points except for T8 were calculated as described in Equation (4.1). The lagged point 

corresponding to T8 was determined by expanding linearly the line connecting T7 and T8 

from 720 min (T8) to 750 min (as shown by dotted line in Fig. 4.1). Here, I prepared nine 

sets of time lagged data of metabolite expression profiles, i.e. 10 min, 20 min, 30 min, 40 

min, 50 min, 60 min, 70 min, 80 min, and 90 min lagged data. 
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Figure 4.1. Preparing metabolomics time lagged data. Black line corresponds to one original metabolite 

accumulation profile. Red triangles correspond to 30 min lagged T1, T2, T3, T4, T5, T6, T7, and T8.  
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4.2.4 Transition points estimation by Linear Dynamical System (LDS) 

 

LDS uses internal state variables in the generative model for cellular internal state changes. 

These internal states correspond to the compressed description of the observed biological 

system prior to adding noise factors. Observational ‘omics’ data is defined as 

T21 yyy ,,,:1 LTY . Internal state for each observational vector is defined as 

T21 xxx ,,,:1 LTX . The proposed model is defined as follows: 

 Observational equation: ttt ηxy V  (4.3) 

 Transition equation: t1tt εxx W  (4.4) 

,where Tt ,,2,1 K  is the measurement order of the time series, V  is a ND  

observational matrix in which D  is the number of genes or metabolites, and N  is the 

dimension of internal states, W  is an NN  internal state transition matrix, 

D -dimensional vector tη  is a observational noise, and N -dimensional vector tε  is a 

transition noise. The vectors 1x , tε , and tη  are generated according to the following 

equations: 

 NN IN 2
11,~ 11 xx  (4.5) 

 NNN IN 2,0~ tt εε  (4.6) 

 DDD IN 2,0~ tt ηη . (4.7) 

,mxpN  is a probabilistic density function when p  dimensional probabilistic vector 
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x  obeys a normal distribution whose mean vector is m , and covariance matrix  is as 

follows: 

 mxmxmx
2
1exp2, 2/12/1

pN . (4.8) 

I assume that the observational and internal transition noises are both Gaussian, and 

therefore the relationship is a first-order Markov process as follows: 

 1tttttt xxxyyx ppYXp tt 1:11:1 ,, . (4.9) 

The model parameter of (4.3)-(4.7) is defined as the parameter set  as follows: 

 ,,,,, 11 VW . (4.10) 

Note that the model corresponds to a Kalman Filter when  is known [Kalman and Bucy 

1961]. The initial state 1x  is defined as: 

 NN INp 2
11,11 xx . (4.11) 

From Equations (4.3) and (4.5), the following function is obtained: 

 NIWNp 2,, 1tt1tt xxxx . (4.12) 

From Equations (4.4) and (4.6), the following function is obtained: 

 DD IVNp 2,, tttt xyxy . (4.13) 

Using these results, the following joint probability is obtained: 

 
T

t

T

t
TT ppNXYp

12
:1:1 ,,,, tt1tt1 xyxxx . (4.14) 

The parameter optimization follows a standard EM algorithm. Using the resulting estimated 

parameters, the log-likelihood with respect to the present time point t  when all time points 

are given, is defined by Equation (4.15): 
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 ,loglog 1:1 tt YpL ty . (4.15) 

 

 

4.2.5 Gene-to-metabolite correlation network functional analysis 

 

All of the gene-to-metabolite networks were constructed based on Pearson correlation 

coefficient (PCC) r ≥� 0.9. Genes were functionally categorized using their Gene Ontology 

information with respect to ‘biological process’ [Ashburner et al. 2000], and 

overrepresented GO terms were identified with Fisher’s exact test. The one-tailed Fisher’s 

exact p-value corresponding to overrepresentation of categories have been calculated based 

on counts in 2 × 2 contingency tables. Counts 11n , 12n , 21n , and 22n  in the contingency 

table refer to 11n , number of observations of a particular category in the first gene set; 12n , 

number of other categories in the first gene set; 21n , number of observations of a category 

in second gene set; and 22n , number of observations of other categories in the second gene 

set. 
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4.3 Results and discussion 

 

4.3.1 Estimation of transition points based on Linear Dynamical System 

(LDS) by using transcriptomics and metabolomics data 

 

RNA was extracted and time series (eight time points) cDNA microarray experiments of E. 

coli were performed twice, as described in Materials and methods. Samples were collected 

at 135, 150, 170, 190, 250, 420, 480, and 720 min postinoculation (which correspond to T1, 

T2, T3, T4, T5, T6, T7, and T8 as shown in Fig. 4.2a). After normalizing time series data 

set as described in Materials and methods, I got the expression profiles of 3,945 genes.  

 

A key step to analyze system responses to environmental changes is identifying large state 

changes or ‘transitions’. In time series analysis, estimation of transition point is important 

for understanding living cells as biochemical systems in several stages, i.e. genomics, 

transcriptomics, and metabolomics. Morioka et al. (2007) developed the statistical method, 

Linear Dynamical System (LDS) for estimation of state transition using transcriptomics and 

metabolomics data. In order to compare transition points detected in comprehensive 

transcriptional and metabolite levels, I applied this method to microarray and metabolomics 

data, which was performed by using FT-ICR/MS as described in Chapter 3. I calculated the 

log-likelihood values for gene expression and metabolite accumulation profiles, 

respectively. Figure 4.2a shows the log-likelihood values calculated by using gene 

expression and metabolite accumulation profiles, which are indicated by red and blue 

curves, respectively. ‘Likelihood values’, here, means the generative probability of current 

data based on the condition of the past data. If this value is low, then the current data cannot 
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be adequately explained by past data, in other words, a transition has occurred. The lowest 

log-likelihood values are at T4 corresponding to 190 min postinoculation in transcriptomics 

(-5.4  10-3), and at T5 corresponding to 250 min in metabolomics data (-5.2  10-3) as 

shown in Figure 4.2a, suggesting that transition points predicted by transcriptomics and 

metabolomics data are different, i.e. time lag, and transition could occur at transcriptional 

levels, followed by at metabolite levels according to the central dogma. The number of 

significantly expressed genes at each time point gradually decreases along the growth curve 

(Fig. 4.2b). In this case, the threshold was set to be SDMean 5.1  for Cy5 intensity 

values after normalization. Probe intensity values were used, because mRNA abundances at 

each time point rather than profile changes through cell growth could affect transition 

points of the whole cell. The number of genes with significantly abundant mRNA starts to 

decrease from time point T4, indicating that this result coincides with transition point 

predicted by LDS analysis of transcriptomics data.  

 

Next, in order to elucidate whether or not genes with individual metabolic pathways would 

be robustly coregulated, co-expression relations in time series among genes in the same 

functional category were examined by Pearson correlation coefficients (PCCs). Functional 

categories concerning individual pathways were defined based on KEGG pathways 

[Kanehisa et al 2008], in which there were 127 pathways with respect to E. coli K-12 

MG1655. Out of these pathways, I used 75 pathways annotated with more than ten genes 

and calculated all gene-to-gene PCCs within genes of individual functional categories. 

Figure 4.3 shows the boxplots of PCCs for genes of 75 individual pathways. The pathways 

of ribosome (ribosomal proteins), fatty acid biosynthesis, and aminoacyl-tRNA 

biosynthesis are clearly different from other pathways. Appendix B lists genes used for 
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individual 75 KEGG pathways. 

 

In addition to boxplots, Figure 4.4 shows the relation between median and standard 

deviation of PCCs for individual categories. Standard deviations of gene-to-gene PCCs 

corresponding to ribosomal proteins (55 genes, i.e. 1,485 PCCs), fatty acid biosynthesis (12 

genes, i.e. 66 PCCs) are low, that is, genes classified into those two categories are highly 

co-expressed. In addition, genes within aminoacyl-tRNA biosynthesis (25 genes, i.e. 300 

PCCs), are highly correlated, but the deviation is larger than those two categories. Medians 

of PCCs within the genes of other categories are relatively lower than those three categories. 

These results suggest that three pathways are highly coregulated. Ribosomal proteins and 

aminoacyl-tRNA biosynthesis pathways belong to translation based on KEGG, so genes 

with respect to translation are particularly highly regulated through cell growth. In addition, 

fatty acid biosynthesis pathway within lipid metabolism is also highly regulated depending 

on transcriptional level, suggesting that genes with respect to fatty acid biosynthesis might 

control comprehensive lipid metabolism. So I could find out candidate pathways by using 

KEGG pathway annotations, which were highly regulated depending on transcriptional 

levels, although each pathway is not a closed system on itself and there are complex 

interacting systems within a cell. Figure 4.2c shows the relative expression levels of genes 

involved in translation (ribosomal proteins, aminoacyl-tRNA biosynthesis), and fatty acid 

biosynthesis, which are decreased at the time point T4. On the other hand, the number of 

detected ions are transiently decreased at the time point T5 (Fig. 4.2d) and this also 

coincides with transition point (T5) estimated by LDS for metabolite accumulation profiles. 

In consequence, there is a time lag between transcriptomics and metabolomics data. 
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Furthermore, I tried to calculate gene-to-gene correlations within transcription factor (TF) 

regulated units and sigma factor gene regulated units based on RegulonDB [Gama-Castro et 

al. 2008] (Appendix C and D list genes used for 99 TF regulated units and 9 sigma factor 

regulated units). Figure 4.5 and 4.6 show boxplots of gene-to-gene PCCs of 99 TF 

regulated units, which are more than five genes in individual category, and boxplots of 

gene-to-gene PCCs of 9 sigma factor regulated units, respectively. As shown in Figure 4.5, 

median of gene-to-gene PCCs within ArgP regulated unit is more than 0.9, suggesting that 

genes regulated by this TF are highly coexpressed through cell growth in E. coli. ArgP, 

‘arginine protein’, controls the transcription of genes involved in the arginine transport 

system and genes involved in DNA replication [Han et al. 1998], indicating that arginine 

transport and DNA replication could be highly regulated in transcription levels through cell 

growth. According to EcoCyc [Kaseler et al. 2005], the operons of nrdAp and dnaAp1 

regulated by ArgP are regulated by several other factors, e.g. DnaA and Fis. So, this result 

suggests that several regulators regulate these operons in concert through cell growth in E. 

coli. 

 

As shown in Figure 4.6, sigma19 (FecI) regulated genes are highly coexpressed. FecI 

causes expression of genes for uptake of ferric citrate [Visca et al. 2002]. This result 

indicates that genes involved in iron transport system are tightly regulated through cell 

growth in E. coli. Sigma38 (RpoS) regulates more than 100 genes involved in cell survival, 

cross protection against various stresses and in virulence [Venturi 2003]. Genes of sigma38 

regulated units (3,003 PCCs by 78 genes used for boxplot) are positively regulated through 

cell growth, and so this result is consistent with the fact, that sigma38 functions in 

stationary phase in E. coli.
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Figure 4.2. Transition point analysis. Estimated transition points by using gene expression and metabolite 

accumulation profiles are indicated by vertical dot lines through (a) to (d). a Log-likelihood values by LDS 

analysis. First and second axes correspond to OD600 values and log-likelihood values, respectively. Red and 

blue curves correspond to log-likelihood values calculated by LDS for gene expression and metabolite 
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accumulation profiles, respectively. Eight sampling points are indicated by black circles with T1, T2, T3, T4, 

T5, T6, T7, and T8. b The number of significantly expressed genes at each time point. c Expression profiles 

of three KEGG pathways. Ordinate axis corresponds to average expression values of genes within ribosomal 

proteins, fatty acid biosynthesis, and aminoacyl-tRNA synthesis of KEGG pathways, respectively. The red 

arrow shows the predicted transition point by using gene expression profiles. Black circles, white circles, and 

black triangles correspond to ribosomal proteins, fatty acid biosynthesis, and aminoacyl-tRNA synthesis, 

respectively. d The number of detected ions by FT-ICR/MS at each time point. The red arrow shows the 

predicted transition point by using metabolite accumulation profiles. Ordinate axis corresponds to the number 

of detected ions by FT-ICR/MS at each time point. 
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Figure 4.3. Boxplots of gene-to-gene PCCs of 75 KEGG pathways. Characterizations of each KEGG 

pathway based on Pearson correlation coefficients (PCCs) using gene expression profiles. The ordinate axis 

corresponds to the values of PCCs from minus one to plus one. The number below each boxplot corresponds 

to the following KEGG pathways: 1. Ribosome; 2. Fatty acid biosynthesis; 3. Aminoacyl-tRNA biosynthesis; 

4. Oxidative phosphorylation; 5. Homologous recombination; 6. Fatty acid metabolism; 7. Folate 

biosynthesis; 8. Type III secretion system; 9. Pyrimidine metabolism; 10. One carbon pool by folate; 11. 

Histidine metabolism; 12. Sulfur metabolism; 13. Lipopolysaccharide biosynthesis; 14. Ubiquinone 

biosynthesis; 15. Lysine degradation; 16. Carbon fixation; 17. Valine, leucine and isoleucine degradation; 18. 

DNA replication; 19. Protein export; 20. Glycan structures - biosynthesis 2; 21. Benzoate degradation via 

CoA ligation; 22. Phenylalanine metabolism; 23. Selenoamino acid metabolism; 24. Type II secretion system; 

25. Bacterial chemotaxis - General; 26. Reductive carboxylate cycle (CO2 fixation); 27. Phenylalanine, 

tyrosine and tryptophan biosynthesis; 28. Citrate cycle (TCA cycle); 29. Butanoate metabolism; 30. Bacterial 

chemotaxis - Organism-specific; 31. Flagellar assembly; 32. Cysteine metabolism; 33. beta-Alanine 

metabolism; 34. Propanoate metabolism; 35. Mismatch repair; 36. Glycine, serine and threonine metabolism; 
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37. Alanine and aspartate metabolism; 38. Nitrogen metabolism; 39. Purine metabolism; 40. Galactose 

metabolism; 41. Thiamine metabolism; 42. Ascorbate and aldarate metabolism; 43. Glycerophospholipid 

metabolism; 44. Peptidoglycan biosynthesis; 45. Methane metabolism; 46. Pentose and glucuronate 

interconversions; 47. Urea cycle and metabolism of amino groups; 48. Fructose and mannose metabolism; 49. 

Valine, leucine and isoleucine biosynthesis; 50. Glycolysis / Gluconeogenesis; 51. Two-component system - 

General; 52. ABC transporters - Organism-specific; 53. Pentose phosphate pathway; 54. Starch and sucrose 

metabolism; 55. Tryptophan metabolism; 56. Porphyrin and chlorophyll metabolism; 57. ABC transporters – 

General; 58. Two-component system - Organism-specific; 59. Aminosugars metabolism; 60. 

Phosphotransferase system (PTS); 61. Pyruvate metabolism; 62. Lysine biosynthesis; 63. Tyrosine 

metabolism; 64. Methionine metabolism; 65. Glutamate metabolism; 66. Riboflavin metabolism; 67. 

Glycerolipid metabolism; 68. Nucleotide sugars metabolism; 69. Glyoxylate and dicarboxylate metabolism; 

70. Arginine and proline metabolism; 71. Nicotinate and nicotinamide metabolism; 72. Pantothenate and CoA 

biosynthesis; 73. Glutathione metabolism; 74. Base excision repair; 75. Drug metabolism - other enzymes. 
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Figure 4.4. Comparison of 75 KEGG pathways by PCCs. Abscissa and ordinate axes correspond to standard 

deviations and medians of PCCs within individual categories. 75 KEGG pathways correspond to either 

cellular functional and metabolism-related groups, indicated by white and black triangles, respectively. Names 

of functional categories with more than 0.5 median of PCCs are indicated, i.e. ribosomal proteins, fatty acid 

biosynthesis, aminoacyl-tRNA biosynthesis, oxidative phosphorylation, homologous recombination, fatty acid 

metabolism, folate biosynthesis, type III secretion system, pyrimidine metabolism, and one carbon pool by 

folate. 
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Figure 4.5. Boxplots of gene-to-gene PCCs of 99 TF regulated units. Characterizations of each TF regulated 

units based on Pearson correlation coefficients (PCCs) using gene expression profiles. The ordinate axis 

corresponds to the values of PCCs from minus one to plus one. The number below each boxplot corresponds 

to the following TFs: 1. ArgP; 2. GadW; 3. GlpR; 4. LsrR; 5. GatR; 6. GutM; 7. GutR; 8. PrpR; 9. CaiF; 10. 

DeoR; 11. GlcC; 12. CsgD; 13. ChbR; 14. MalT; 15. YiaJ; 16. PdhR; 17. HcaR; 18. RcsAB; 19. EnvY; 20. 

PurR; 21. AllR; 22. DnaA; 23. BaeR; 24. AraC; 25. FadR; 26. AppY; 27. RbsR; 28. NanR; 29. DcuR; 30. 

GadX; 31. TrpR; 32. UxuR; 33. DgsA; 34. CusR; 35. CueR; 36. FucR; 37. PaaX; 38. CytR; 39. NtrC; 40. Zur; 

41. HyfR; 42. NhaR; 43. IdnR; 44. IscR; 45. RstA; 46. TorR; 47. SoxS; 48. TyrR; 49. FhlA; 50. NarP; 51. 

CysB; 52. CdaR; 53. ModE; 54. GntR; 55. OxyR; 56. FruR; 57. FlhDC; 58. NarL; 59. HU; 60. Fur; 61. Lrp; 

62. AgaR; 63. Nac; 64. MetR; 65. Fis; 66. RutR; 67. ArcA; 68. LexA; 69. TdcA; 70. TdcR; 71. PhoB; 72. 

CRP; 73. IHF; 74. PspF; 75. H-NS; 76. FNR; 77. LeuO; 78. NagC; 79. ExuR; 80. Rob; 81. CpxR; 82. ArgR; 

83. PhoP; 84. NsrR; 85. MetJ; 86. Cbl; 87. AlsR; 88. SgrR; 89. MarA; 90. GalR; 91. GalS; 92. GadE; 93. 

UlaR; 94. EvgA; 95. BirA; 96. NrdR; 97. DicA; 98. OmpR; 99. DpiA.
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Figure 4.6. Boxplots of gene-to-gene PCCs of 9 sigma factor regulated units. Characterizations of each sigma 

factor regulated units based on Pearson correlation coefficients (PCCs) using gene expression profiles. The 

ordinate axis corresponds to the values of PCCs from minus one to plus one. The number below each boxplot 

corresponds to the following sigma factors: 1. Sigma19; 2. Sigma38; 3. Sigma28; 4. Sigma54; 5. Sigma24; 6. 

Sigma32; 7. Sigma70; 8. Sigma70, Sigma32; 9. Sigma70, Sigma38. 



77 

4.3.2 Gene-to-metabolite correlation analysis, taking into consideration a 

time lag between transcriptomics and metabolomics data 

 

According to the analysis of transition points as described above, there is 60 minute time 

lag between transcriptomics and metabolomics data, suggesting that it is necessary to take 

into consideration a time lag between transcriptomics and metabolomics data, when 

performing the integrative analysis, i.e. gene-to-metabolite correlation analysis. First, to 

remove noise, I selected only significantly expressed genes and metabolites, and then 

calculated all gene-to-metabolite correlation pairs. 1,162 gene expression and 174 

metabolite accumulation profiles were used for gene-to-metabolite correlation analysis. I 

set the time lag to be between 0 and 90 minutes, and calculated PCCs between gene 

expression profiles and each time lagged metabolite accumulation profiles obtained from 

experiments as described in Materials and methods. 

 

Figure 4.7 shows the numbers of highly correlated gene-metabolite pairs (r ≥� 0.9). The 

number of correlated pairs increases with time lag up to 50 min and after that it decreases 

(indicated by black line at the top), suggesting that many time lag specific 

gene-to-metabolite correlated pairs can be detected by taking into consideration the time lag 

between transcriptomics and metabolomics data. In order to investigate what biological 

processes are associated with metabolites in time lag specific manner, I determined the 

overrepresentation of the Gene Ontology (GO) annotations [Ashburner et al. 2000] among 

the genes associated to highly correlated gene-metabolite pairs corresponding to different 

time lagged data. Significant relations between the GO and metabolites were obtained by 

Fisher’s exact test. Figure 4.7 shows the GO terms under the ‘biological process’ annotation 
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category that are significantly associated (p-value ≤�  0.01) to highly correlated 

gene-metabolite pairs determined by using gene expression profile and time lagged 

metabolite accumulation profile data. For example, when 30 min time lag is considered, 

genes involved in lipid A biosynthetic process, purine base biosynthetic process, and 

glutamate metabolic process, are overrepresented (indicated by black diamond or line in 

Fig. 4.7), while those genes are not overrepresented if no time lag is considered. Genes 

involved in barrier septum formation, cell division, and cell cycle are overrepresented in 

both 80 min and 90 min time lagged data, while no significant GO terms can be associated 

to 60 min time lagged data. These results suggest that I could detect some time lag specific 

genes, and taking into consideration a time lag between transcriptomics and metabolomics 

data is necessary for integrated analysis in time series experiments. Taking into 

consideration a time lag between transcriptomics and metabolomics data can make us 

elucidate direct or time lagged gene-to-metabolite relations. 

 

In metabolomics data, I detected ten phosphatidylyglycerols (PGs) as most abundant 

metabolites in time series analysis, i.e. the ions with m/z = 719.4883 (PG1 as shown in Fig. 

4.7), 733.5056 (PG2), 747.5183 (PG3), 761.5293 (PG4), 691.4588 (PG5), 705.4757 (PG6), 

745.5045 (PG7), 759.5242 (PG8), 773.5375 (PG9), and 787.5556 (PG10). In addition to 

global view of gene-to-metabolite relations, I analyzed gene-to-metabolite correlation 

analysis with respect to two groups of PGs, i.e. unsaturated phospholipids (called 

odd-numbered PGs; PG1, PG3, PG5, PG7, and PG9) and cyclopropanated phospholipids 

(called even-number PGs; PG2, PG4, GP6, PG8, and PG10), in order to elucidate 

gene-to-PG networks. In Figure 4.7 at the top, the numbers of correlated 

gene-to-odd-numbered PGs and gene-to-even-numbered PGs pairs are shown in red and 
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blue line, respectively. I determined the GO terms under the ‘biological process’ annotation 

category that are overrepresented in the genes which are highly correlated to odd-numbered 

and even-numbered PGs by Fisher’s exact test. The cyclopropanation of odd-numbered 

PGs begins as the cells enter the stationary phase of growth [Grogan and Cronan 1997]. 

The cyclopropanation is thought to be involved in the long-term survival of nongrowing 

cells and is often associated with environmental stress such as acidic stress in E. coli 

[Grogan and Cronan 1997; Cronan 2002] and with pathogenesis in Mycobacterium 

tuberculosis [Cronan 2002]. Activity of CFA synthase is modulated by transcriptional and 

post-translational levels [Wang and Cronan 1994]. CFA formation is largely restricted to the 

transition between the late exponential- and early stationary-phase [Law 1971]. Thus, 

multifaceted regulation should be affected to synthesis of CFAs. The results of 

overrepresented GO terms in gene-to-PG correlated pairs are also shown in Figure 4.7. 

Genes associated with lipid biosynthetic process and fatty acid biosynthetic process are 

correlated with odd-numbered PGs in a time lag specific manner (indicated by red diamond 

or line in Fig. 4.7). These correlations, i.e. lipid metabolism correlations between 

transcriptional and metabolite levels, coincide with biological meaning, again indicating 

that taking into consideration a time lag between transcriptomics and metabolomics data is 

necessary for analysis of time series. Even-numbered PGs are correlated with genes 

associated with biofilm formation in a time lag specific manner (indicated by blue diamond 

or line in Fig. 4.7). 

 

Finally, I focused on the gene-to-metabolite correlations with respect to the pathway of the 

phospholipids synthesis, in which PGs were synthesized. In metabolite accumulation 

profiles, odd-numbered PGs are accumulated in the exponential phase, and even-numbered 
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PGs are accumulated in the stationary phase (in Fig. 4.8). A key intermediate in 

phospholipid synthesis is cytosine diphosphate (CDP)-diacylglycerol (DAG), which is 

formed by CdsA from phosphatidic acid and cytosine triphosphate. In the biochemical 

regulation of phospholipid composition, the zwitterionic (phosphatidylethanolamine) and 

acidic (PG and cardiolipin) branches of phospholipids synthesis compete for a common 

pool of CDP-DAG. PGs are synthesized from CDP-DAG in two steps, by PgsA, and 

PgpA/B [Zhang and Rock 2008]. Figure 4.8 shows cdsA, pgsA expression profiles and 

average accumulation profiles of odd-numbered and even-numbered PGs, indicating that 

there could be the time lag between gene expression and metabolite accumulation profiles, 

as predicted by LDS analysis. In correlation analysis with respect to PGs, cdsA and pgsA 

were correlated with PG9 and all even-numbered PGs in 30 min time lagged data, 

respectively, while no PGs correlated with those genes when no time lag was considered. 

pgpA correlated with some even-numbered PGs in both no lag and 30 min time lagged data. 

Expression profiles of PG9 and cdsA were down-regulated through cell growth, while those 

of even-numbered PGs, pgsA, and pgpA were up-regulated (indicated by blue or red arrows 

beside gene names in Fig. 4.9). These results indicate that the content of CDP-DAG 

decreases according to decreasing of transcriptional level of cdsA, and the pathway from 

CDP-DAG to PGs is active with the increase of transcriptional level of pgsA and pgpA. 

There is another biochemical pathway from CDP-DAG, which leads to 

phosphatidylethanolamine. Two genes associated with this pathway are decreasing through 

cell growth, although the amount changes of those are not significant in microarray data, i.e. 

below the threshold (indicated by blue dotted arrows beside gene names in Fig. 4.9). These 

results indicate that the pool of CDP-DAG could be used to synthesize PGs but not 

phosphatidylethanolamine, when E. coli enters into stationary phase from exponential 
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phase. It has been reported previously that Bacillus subtilis PssA, a molecularly distinct 

integral membrane protein, was used to replace the transiently membrane-associated PssA 

in E. coli. Amplification of B. subtilis PssA increases the relative and absolute amounts of 

phosphatidylethanolamine and impairs growth [Saha et al. 1996a; Saha et al. 1996b]. 

Therefore, the balance of zwitterionic (phosphatidylethanolamine) and acidic phospholipids 

(PGs) in E. coli is important. So, from this analysis, it can be said that PGs could be more 

responsible for membrane balance than phosphatidylethanolamine. 



82 

Glutamate metabolic process (2.5 x 10-3)
Sodium ion transport (5.7 x 10-3)
Carboxylic acid metabolic 
process (7.3 x 10-3)

Intra cellular pH elevation (7.3 x 10-3)
Nitrite transport (6.0 x 10-3)
Lipid A biosynthesis (6.5 x 10-3)
Purine base biosynthetic 
process (8.3 x 10-3)

Response to oxidative stress (3.8 x 10-3)

Cell division (8.8 x 10-3)
(4.6 x 10-4)

Barrier septum formation (8.2 x 10-4)

Cell cycle (1.7 x 10-3)
(9.4 x 10-4)

Translational elongation (3.5 x 10-3)
Ubiquinone biosynthetic 
process (7.5 x 10-5)

Regulation of translation (3.6 x 10-3)
Aerobic respiration (1.6 x 10-3)
Terpenoid biosynthetic process (3.7 x 10-4)
Regulation of cell shape (4.7 x 10-3)
ATP synthesis coupled 
electron transport (1.3 x 10-3)

Biosynthetic process (8.9 x 10-3)
Peptidoglycan biosynthetic 
process (5.3 x 10-3)

Isoprenoid biosynthetic process (5.3 x 10-3)
DNA replication (9.2 x 10-3)
Lipid biosynthetic process (2.1 x 10-4)
Fatty acid biosynthetic process (2.1 x 10-4)
Transcription (1.6 x 10-3)
Regulation of transcription, 
DNA-dependent (2.1 x 10-3)

Response to stress (7.3 x 10-3)
Biofilm formation (4.9 x 10-5)

7,000

Time lag to metabolites (min)
0

0 10 20 30 40 50 60 70 80 90

# of gene-to- metabolite 
correlated pairs (r≧ 0.9)

O
ve

rr
ep

re
se

nt
ed

 G
O

 te
rm

s

 

Figure 4.7. Gene-to-metabolite correlation analysis taking into consideration a time lag between 
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transcriptomics and metabolomics data. The plot is the number of correlated gene-to-metabolite pairs (PCC ≥� 

0.9). Black, red, and blue indicates gene-to-metabolite, gene-to-odd-numbered PG, gene-to-even-numbered 

PG correlated pairs, respectively. Time lag of abscissa axis means time lag considered between 

transcriptomics and metabolomics, according to the procedure as described in Materials and methods. GO 

terms with p-value less than 0.01 (minimum p-value is indicated, if any) are indicated at the left side. 

Diamond and bar correspond to the significant overrepresented data by Fisher’s exact test. Glutamate 

metabolic process, for example, is overrepresented in correlated pairs between transcriptomics and 10 min, 20 

min, and 30 min time lag metabolomics data. Black, red and blue colors correspond to correlated pairs 

corresponding to 174 metabolites, odd-numbered PGs, and even-numbered PGs with 1,162 genes, 

respectively.  
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Figure 4.8. Gene expression (top: cdsA, bottom: pgsA) and metabolite accumulation profiles (top: 

odd-numbered PGs, bottom: even-numbered PGs). Metabolite accumulation profiles correspond to average 

values of each PG group.
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Figure 4.9. The pathways from phosphatidic acid to phosphatidylethanolamine or caldiolipin. Metabolite 

names are inside in the squares and gene names are beside black solid arrows, which represent chemical 

reactions. Arrows beside gene names indicate up and down transcriptional levels through cell growth. Dashed 

arrows mean the weak changes in expression. The lines between genes and metabolites indicate correlations 

between genes and odd-numbered or even-numbered PGs, respectively.  
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Chapter 5 

Concluding remarks 
 

Unlike sequence-based macrostructures such as DNA, RNA or proteins, metabolites that 

are small organic molecules have highly diverse chemical features. Many compounds of 

different chemical classes, e.g. sugars, organic acids, lipids etc. simultaneously exist in the 

cell. Only with the development of robust analytical technologies, adapted to a wide range 

of applications, the informative detection of a large number of metabolites has been made 

possible. Out of those, FT-ICR/MS has unique potential to facilitate metabolomics research 

due to its ability to detect molecular mass with high accuracy. The results of FT-ICR/MS 

analysis may in some cases point to several or a large number of different possible isomers. 

Nevertheless, even when identification of the specific isomer is not possible directly after 

FT-ICR/MS analysis, it provides a clue to the class of compounds to which this isomer 

belongs. Thus, it will narrow down the search for metabolite identity. 

 

Since Aharoni et al. (2002) first applied FT-ICR/MS for metabolomics using strawberry 

ripening, to my knowledge there has been no paper which analyses bacteria metabolomics 

by using FT-ICR/MS. The performance characteristics of FT-ICR/MS are ideal for the types 

of complex mixtures encountered in high throughput metabolomics applications. However, 

there are several procedures for FT-ICR/MS and no standard procedures. So in Chapter 2, I 

have developed the platform of metabolomics informatics for FT-ICR/MS, which consists 

of four stages: (i) peak correction, (ii) multivariate data processing, (iii) unsupervised 

learning such as principal component analysis (PCA) and batch-learning SOM (BL-SOM), 
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and (iv) supervised learning such as partial least squares (PLS) regression. This procedure 

could be applied to metabolomics for any organism, although I applied this procedure only 

to bacteria metabolomics in this dissertation. 

 

In Chapter 3, I established non-targeted metabolomics approach to analyze growth-specific 

metabolites of bacteria, based on the FT-ICR/MS platform (Fig. 3.1). Bioinformatics played 

a crucial role for this analysis, e.g. multivariate analysis and database search. Correlation 

analysis has made it possible to predict unknown molecular structure using isotope ratios 

by way of grouping metabolite derivative ions. Though 1 ppm mass accuracy alone is 

insufficient for unique elemental composition assignment [Kind and Fiehn 2006], in 

metabolite annotation by using the mass spectrometry technology, integrated analysis based 

on information of isotope relation, fragmentation patterns by MS/MS analysis, and 

co-occurring metabolites has enabled to annotate ions as metabolites and estimate cellular 

conditions based on metabolite composition. PCA revealed the differences between the 

growth stages on the basis of 220 independent metabolites, suggesting that metabolic 

profiling is a useful method for distinguishing the growth stages. Using PLS regression, I 

constructed a linear relationship between OD600 values and metabolite profiles. High 

correlation between predicted and observed OD600 values certifies the correctness of the 

linear model. I anticipate that the method presented will be an important tool for future 

functional genomics research.  

 

Cellular behavior results from the action of and interplay between the distinct networks. 

Studying and comparing the responses triggered by these different networks and their 

interrelation is of great interest [De Keersmaecker et al. 2006]. Kromer et al. (2004) 
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studying lysine production in Corynebacterium glutamicum or Lafaye et al. (2005) 

studying the yeast sulphur pathway integrated metabolite profiles and metabolic fluxes with 

high-throughput transcriptomics or proteomics data, respectively. Hirai et al. (2005) 

studying Arabidopsis thaliana integrated metabolite profiles with transcriptomics data and 

could identify regulatory metabolites and transcriptional factor genes. Measurement of 

metabolites can give and complement information on how functional proteins act.  

 

In Chapter 4, I tried to integrate metabolite accumulation profiles with gene expression 

profiles by Pearson correlation coefficients and indicated that it is necessary to take into 

consideration the time lag between transcriptomics and metabolomics data. I detected 

transition point by LDS analysis. Transition points predicted by transcriptomics and 

metabolomics data were different, indicating that there is a time lag between 

transcriptomics and metabolomics data. There are several reasons for this time lag. One 

major reason is a consequence of the central dogma in biology, i.e. information flow from 

genome to protein. I performed gene-to-gene correlation analysis by using KEGG pathway 

annotations, in order to elucidate more global regulations instead of only functional 

regulations. I observed that genes related to three pathways are highly positively 

coregulated through cell growth (Fig. 4.3 and 4.4). This method is the effective way to 

characterize pathways from a global view of gene-to-gene regulations unlike regulations by 

operon and regulon, because cell is considered as a system. Gene-to-gene correlation 

analysis by using transcription factors and sigma factors based on RegulonDB was also 

performed (Fig. 4.5 and 4.6). Most of regulatory units are not coexpressed. One reason for 

this is that those units are not tightly regulated through cell growth, and another is that 

annotations of gene regulation are not complete yet. I performed extended 
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gene-to-metabolite correlation analysis, i.e. using time lagged metabolomics data prepared 

by linear interpolation. Statistical test, i.e. Fisher’s exact test, shows that there are several 

gene functional categories correlated with metabolites in the time lag specific manner. To 

my knowledge, although the time lag between expression profiles of transcription factor 

and regulated genes has been already reported [Redestig et al. 2007], this is the first report 

demonstrating that considering time lag between transcriptomics and metabolomics data is 

one of the effective ways to unravel the complex gene-to-metabolite networks. In 

gene-to-PG correlation analyses (Fig. 4.9), relations of cdsA, pgsA, pgpA, and pgpB with 

PGs could support the model that the pool of CDP-DAG could be used to synthesize PGs 

but not phosphatidylethanolamine. 

 

Metabolomics analysis is an emerging field. Metabolomics must become a full scale 

discovery platform which supports and feeds into complementary, parallel activities to 

advance our understanding of multidimentional biological systems [Hall 2006]. The 

potential applications of metabolomics have already been demonstrated in a wide range of 

disciplines. Even though further improvements of technologies and strategies for 

metabolomics analyses are likely to develop, the unambiguous and simultaneous 

identification of all metabolites in a biological system is still a big challenge. LC-MS 

system can provide more information of metabolites, though I used direct-infusion 

FT-ICR/MS in this dissertation. High-throughput systems, database developments, and 

routine applications using LC-MS are promising. In addition, 13C flux analyses will provide 

information which is not available from just metabolic snapshots. Also, for the 

development of metabolomics analysis, it is crucial to keep metabolomic database publicly 

available. The contribution of metabolomics to systems biology can become even more 
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relevant in combination with transcriptomics and proteomics analyses for the progressive 

understanding of the cell. 
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Appendix A 

Detected 

m/z 

Theoretical 

m/z 

Cluster 

ID 

Isotopic 

ID 
Difference 

Molecular 

formula 

Exact 

mass 
Error Candidates Speices 

Candidate 

ID 

344.7563 345.7635 1-1         

450.2637 451.2710 1-1         

547.0756 548.0829 1-1 1 1.0027 C16H26N2O15P2 548.0808 0.0020 
dTDP-L-rha

mnose 
Escherichia coli M-1 

548.0783 549.0856 1-1 1 1.0027 C16H26N2O15P2 548.0808 0.0020 
dTDP-L-rha

mnose 
Escherichia coli M-1 

645.4527 646.4600 1-1         

687.4817 688.4890 1-1         

742.5399 743.5472 1-1         

860.2281 861.2354 1-1         

864.2546 865.2619 1-1         

686.4800 687.4873 1-1,1-2         

186.8848 187.8921 1-1,1-4         

660.4630 661.4703 1-2 2 1.0035       

661.4666 662.4738 1-2 2 1.0035       

691.4588 692.4660 1-2 3 1.0044 C36H69O10P 692.4628 0.0032 PG5   

692.4631 693.4704 1-2 3 1.0044 C36H69O10P 692.4628 0.0032 PG5   

693.4750 694.4822 1-2         

717.4737 718.4810 1-2 4 1.0073       

718.4810 719.4883 1-2 4 1.0073       

673.4643 674.4716 1-3 5 0.5040       

673.9683 674.9756 1-3 5 0.5040       

248.5080 249.5153 1-3 6  C40H75O10P 746.5098  PG7   

372.7604 373.7677 1-3 6 0.5018 C40H75O10P 746.5098  PG7   

373.2622 374.2695 1-3 6 0.5018 C40H75O10P 746.5098  PG7   

745.5045 746.5118 1-3,1-4, 6 1.0028 C40H75O10P 746.5098 0.0020 PG7   
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1-5 

746.5072 747.5145 1-4,1-5 6 1.0028 C40H75O10P 746.5098 0.0020 PG7   

386.7779 387.7852 1-3         

786.4712 787.4785 1-3   C41H65N5O10 787.4731 0.0054 BE 32030B 
Nocardia sp. 

A32030 
M-2 

773.5375 774.5448 1-4 7 1.0035 C42H79O10P 774.5411 0.0037 PG9   

774.5410 775.5482 1-4 7 1.0035 C42H79O10P 774.5411 0.0037 PG9   

775.5453 776.5526 1-4 7 1.0044 C42H79O10P 774.5411 0.0037 PG9   

249.1802 250.1875 1-5 8 0.3344 C40H77O10P 748.5254  PG3   

249.5146 250.5219 1-4,1-5 8 0.3344 C40H77O10P 748.5254  PG3   

373.7679 374.7752 1-4,1-5 8 0.5019 C40H77O10P 748.5254  PG3   

374.2697 375.2770 1-4,1-5 8 0.5019 C40H77O10P 748.5254  PG3   

747.5183 748.5256 1-4,1-5 8 1.0044 C40H77O10P 748.5254 0.0001 PG3   

748.5227 749.5300 1-4,1-5 8 1.0044 C40H77O10P 748.5254 0.0001 PG3   

749.5249 750.5322 1-4 8 1.0026 C40H77O10P 748.5254 0.0001 PG3   

750.5275 751.5348 1-4 8 1.0026 C40H77O10P 748.5254 0.0001 PG3   

239.8353 240.8426 1-5,1-6 9 0.3348 C38H73O10P 720.4941  PG1   

240.1701 241.1774 1-6 9 0.3348 C38H73O10P 720.4941  PG1   

359.7514 360.7587 1-5,1-6 9 0.5018 C38H73O10P 720.4941  PG1   

360.2532 361.2605 1-5 9 0.5018 C38H73O10P 720.4941  PG1   

719.4868 720.4941 1-5,1-6 9 1.0048 C38H73O10P 720.4941 0.0000 PG1   

720.4917 721.4990 1-5,1-6 9 1.0048 C38H73O10P 720.4941 0.0000 PG1   

721.5007 722.5080 1-6 9 1.0090 C38H73O10P 720.4941 0.0000 PG1   

179.8764 180.8837 1-6         

229.5043 230.5116 1-6         

344.2545 345.2618 1-6         

360.7582 361.7655 1-6         

690.5029 691.5102 1-6         

694.4790 695.4863 1-6         

714.5114 715.5187 1-6 10 1.0033       
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715.5148 716.5220 1-6 10 1.0033       

183.3814 184.3887 2-1         

705.4757 706.4830 2-1 11 1.0051 C37H71O10P 706.4785 0.0045 PG6   

706.4808 707.4881 2-1 11 1.0051 C37H71O10P 706.4785 0.0045 PG6   

244.5091 245.5164 2-1 12 0.3348 C39H75O10P 734.5098  PG2   

244.8439 245.8512 2-1 12 0.3348 C39H75O10P 734.5098  PG2   

366.7615 367.7688 2-1 12 0.5020 C39H75O10P 734.5098  PG2   

367.2635 368.2708 2-1 12 0.5020 C39H75O10P 734.5098  PG2   

733.5056 734.5129 2-1 12 1.0032 C39H75O10P 734.5098 0.0031 PG2   

734.5087 735.5160 2-1 12 1.0032 C39H75O10P 734.5098 0.0031 PG2   

735.4982 736.5055 2-1 12 0.9895 C39H75O10P 734.5098 0.0031 PG2   

297.8384 298.8456 2-1         

308.5415 309.5488 2-1         

253.8546 254.8619 2-1 13  C41H79O10P 762.5411  PG4   

380.7791 381.7864 2-1 13 0.5024 C41H79O10P 762.5411  PG4   

381.2815 382.2888 2-1 13 0.5024 C41H79O10P 762.5411  PG4   

761.5293 762.5365 2-1 13 1.0047 C41H79O10P 762.5411 0.0045 PG4   

762.5340 763.5412 2-1 13 1.0047 C41H79O10P 762.5411 0.0045 PG4   

763.5494 764.5566 2-1 13 1.0154 C41H79O10P 762.5411 0.0045 PG4   

606.6584 607.6657 2-1         

607.1607 608.1680 2-1         

618.0897 619.0970 2-1   C17H27N5O16P2 619.0928 0.0042 

ADP-L-glyc

ero-beta-D-

manno-hept

opyranose 

Escherichia coli M-3 

674.4814 675.4886 2-1         

707.4910 708.4983 2-1         

728.5293 729.5365 2-1         

759.5242 760.5315 2-1 14 0.9994 C41H77O10P 760.5254 0.0060 PG8   

760.5236 761.5309 2-1,2-2 14 0.9994 C41H77O10P 760.5254 0.0060 PG8   
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787.5556 788.5628 2-1   C43H81O10P 788.5567 0.0061 PG10   

397.1092 398.1165 2-1,2-2         

309.5084 310.5157 2-2         

396.7746 397.7819 2-2         

742.0735 743.0808 2-2         

595.6651 596.6724 2-2,2-3 15 0.5015       

596.1667 597.1739 2-3 15 0.5015       

596.6681 597.6753 2-3 15 0.5014       

143.1080 144.1153 3   C8H16O2 144.1150 0.0003 
Octanoic 

acid 
Escherichia coli M-4 

273.0346 274.0419 3         

273.5383 274.5456 3         

282.0215 283.0287 3         

302.5353 303.5426 3         

321.0506 322.0579 3   C10H15N2O8P 322.0566 0.0013 dTMP 
Escherichia coli 

K12 
M-5 

359.7333 360.7405 3         

507.1397 508.1470 3         

563.8505 564.8578 3         

565.0503 566.0576 3   C15H24N2O17P2 566.0550 0.0025 

UDP-D-gluc

ose 
Escherichia coli M-6 

UDP-D-gala

ctose 

587.0306 588.0378 3         

606.0775 607.0848 3   C17H27N3O17P2 607.0816 0.0032 

UDP-N-acet

yl-D-manno

samine 
Escherichia coli M-7 

UDP-N-acet

yl-D-glucosa

mine 
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628.0576 629.0649 3         

672.3815 673.3888 3         

687.9839 688.9911 3         

178.9633 179.9706 4         

288.1211 289.1284 4         

339.0471 340.0544 4         

367.7652 368.7725 4         

397.4434 398.4507 4         

401.0168 402.0241 4   C10H16N2O11P2 402.0229 0.0012 dTDP Escherichia coli M-8 

417.0807 418.0880 4         

464.2796 465.2869 4         

495.1039 496.1112 4   C24H20N2O10 496.1118 0.0006 

Kinamycin 

A 
Streptomyces 

murayamaensis 

sp. nov. 

M-9 
Kinamycin 

C 

505.9908 506.9981 4   C10H16N5O13P3 506.9957 0.0023 
ATP 

Escherichia coli M-10 
dGTP 

626.1268 627.1341 4         

627.6249 628.6321 4         

725.3865 726.3938 4         

731.4910 732.4983 4         

755.4897 756.4970 4         

253.2137 254.2210 5   C16H30O2 254.2246 0.0036 

omega-Cycl

oheptanenon

anoic acid 

Alicyclobacillus 

acidocaldarius 
M-11 

281.2444 282.2516 5   C18H34O2 282.2559 0.0042 

Oleic acid Escherichia coli 

M-12 

cis-11-Octad

ecanoic acid 

Lactobacillus 

plantarum 

omega-Cycl

oheptylunde

Alicyclobacillus 

acidocaldarius 
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canoic acid 

366.6251 367.6323 5         

374.7723 375.7796 5         

517.9586 518.9659 5         

711.8751 712.8823 5         

737.4933 738.5006 5         

752.4853 753.4925 5         

777.5083 778.5156 5 16 0.9973       

778.5056 779.5128 5 16 0.9973       

779.5014 780.5086 5 16 0.9958       

789.5380 790.5453 5         

220.7068 221.7141 6         

426.0237 427.0310 6   C10H15N5O10P2 427.0294 0.0016 

Adenosine 

3',5'-bisphos

phate Escherichia coli M-13 

ADP 

dGDP 

540.0557 541.0630 6         

331.0586 332.0659 6 17  C21H27N7O14P2 663.1091  NAD Escherichia coli M-14 

662.1037 663.1109 6 17 1.0044 C21H27N7O14P2 663.1091 0.0018 NAD Escherichia coli M-14 

663.1080 664.1153 6 17 1.0044 C21H27N7O14P2 663.1091 0.0018 NAD Escherichia coli M-14 

626.6241 627.6314 7 18 0.4990       

627.1231 628.1304 7 18 0.4990       

808.9615 809.9688 7         

402.9962 404.0035 8   C9H14N2O12P2 404.0022 0.0013 UDP Escherichia coli M-15 

535.0862 536.0935 8         

664.1095 665.1168 8   C21H29N7O14P2 665.1248 0.0080 NADH Escherichia coli M-16 

180.1271 181.1344 9         

438.5855 439.5928 9         

772.4812 773.4885 9         
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763.5153 764.5226 10 19 1.0009       

764.5162 765.5235 10 19 1.0009       

382.5525 383.5598 11         

454.0391 455.0464 11   C20H19Cl2NO7 455.0539 0.0075 

Antibiotic 

MI 

178-34F18A

2 

Actinomadura 

spiralis 

MI178-34F18 

M-17 
Antibiotic 

MI 

178-34F18C

2 

Actinomadura 

spiralis 

MI178-34F18 

72.9878 73.9951 -   C2H2O3 74.0004 0.0053 
Glyoxylic 

acid 
Escherichia coli M-18 

85.0774 86.0847 -         

171.1013 172.1085 -         

199.1676 200.1749 -         

221.8013 222.8086 -         

234.1784 235.1856 -         

240.5056 241.5129 -         

241.2141 242.2214 -         

250.1419 251.1492 -         

253.2185 254.2258 -   C16H30O2 254.2246 0.0012 

omega-Cycl

oheptanenon

anoic acid 

Alicyclobacillus 

acidocaldarius 
M-19 

256.2350 257.2422 -         

284.2678 285.2751 -         

297.2410 298.2482 -   C18H34O3 298.2508 0.0026 

alpha-Cyclo

heptaneunde

canoic acid 

Alicyclobacillus 

acidocaldarius 
M-20 

297.2467 298.2540 -   C18H34O3 298.2508 0.0032 alpha-Cyclo Alicyclobacillus M-21 
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heptaneunde

canoic acid 

acidocaldarius 

297.2516 298.2589 -   C18H34O3 298.2508 0.0081 

alpha-Cyclo

heptaneunde

canoic acid 

Alicyclobacillus 

acidocaldarius 
M-22 

299.2605 300.2678 -         

310.7338 311.7410 -         

312.7327 313.7399 -         

314.7306 315.7379 -         

338.5455 339.5528 -         

346.0570 347.0643 -   C10H14N5O7P 347.0631 0.0012 

AMP 

Escherichia coli M-23 3'-AMP 

dGMP 

358.7457 359.7530 -         

363.5739 364.5812 -         

369.3025 370.3098 -         

383.3194 384.3266 -         

403.5576 404.5648 -         

403.6630 404.6703 -         

409.2364 410.2436 -         

414.6508 415.6580 -         

425.3658 426.3731 -         

425.6668 426.6741 -         

429.0263 430.0336 -         

452.2799 453.2872 -         

453.3973 454.4046 -         

457.3200 458.3273 -         

457.7755 458.7828 -         

458.0933 459.1005 -         

458.1112 459.1185 -   C15H22N7O8P 459.1267 0.0083 Phosmidosin Streptomyces sp. M-24 
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e B strain RK-16 

493.6398 494.6471 -         

499.3673 500.3746 -         

515.9629 516.9702 -         

533.6234 534.6307 -         

563.3385 564.3458 -         

565.3207 566.3280 -         

569.0570 570.0643 -         

579.3351 580.3423 -         

580.3373 581.3446 -         

659.4702 660.4775 -         

663.4834 664.4907 -         

665.4413 666.4486 -         

672.0622 673.0695 -         

672.8809 673.8882 -         

674.4098 675.4171 -         

679.3691 680.3763 -         

722.5075 723.5148 -         

723.5126 724.5199 -         

728.1586 729.1659 -         

732.5021 733.5094 -         

736.4996 737.5069 -         

741.4729 742.4801 -   C32H62N12O8 742.4814 0.0012 Argimicin A Sphingomonas sp. M-25 

751.4800 752.4873 -         

758.0944 759.1017 -         

765.4990 766.5063 -         

788.5285 789.5358 -         

808.6293 809.6366 -         

809.2969 810.3042 -         

853.3166 854.3239 -   C41H46N10O9S 854.3170 0.0069 Argyrin G Archangium M-26 
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gephyra Ar 8082 

C45H56Cl2N2O10 854.3312 0.0073 
Decatromici

n B 

Actinomadura sp. 

MK73-NF4 

C39H50N8O12S 854.3269 0.0030 
Napsamycin 

C 

Streptomyces sp. 

HIL Y-82,11372 

860.7291 861.7364 -         

861.2335 862.2408 -         

890.3419 891.3491 -         

891.3315 892.3388 -         

941.2571 942.2644 -         
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Appendix B 
 

eco00010 
Glycolysis / 

Gluconeogenesis 

aceE, aceF, acs, adhE, adhP, agp, ascB, ascF, bglA, bglB, chbF, crr, eno, 

fbaA, fbp, frmA, galM, gapA, glk, glpX, glvC, gpmA, gpmM, lpd, malX, 

pfkA, pfkB, pgi, pgk, pgm, ptsG, pykA, pykF, tpiA, yccX, ytjC 

eco00020 
Citrate cycle (TCA 

cycle) 

acnA, acnB, citD, cite, citF, frdA, frdB, frdC, frdD, fumA, fumB, fumC, 

gltA, icd, lpd, mdh, pck, sdhA, sdhB, sdhC, sdhD, sucA, sucB, sucC, 

sucD, ybhJ, ybiC 

eco00030 
Pentose phosphate 

pathway 

deoB, deoC, eda, edd, fbaA, fbp, gcd, glpX, gnd, gntK, idnK, kdgK, pfkA, 

pfkB, pgi, pgl 

pgm, prs, rbsK, rpe, rpiA, rpiB, talA, talB, tktA, tktB, zwf 

eco00040 

Pentose and 

glucuronate 

interconversions 

araA, araB, araD, eda, galF, galU, kdgK, kduD, kduI, lyx, rhaB, rhaD, 

rpe, sgbE, sgbH, sgbU, ugd, uidA, uxaA, uxaB, uxaC, uxuA, xylA, xylB, 

yiaK 

eco00051 
Fructose and mannose 

metabolism 

aceK, cmtA, cmtB, cpsB, cpsG, fbaA, fbp, fcl, fruA, fruB, fruK, frvA, frvB, 

frwC, frwD, fryA, fryB, fryC, fucA, fucI, fucK, glpX, gmd, manA, manX, 

manY, manZ, mtlA, mtlD, pfkA, pfkB, ptsA, rffT, rhaA, rhaB, rhaD, srlA, 

srlB, srlD, srlE, tpiA, xylA, yfdH, yniC 

eco00052 Galactose metabolism 

agaB, agaC, agaD, agaI, agaV, dgoA, dgoK, ebgA, galE, galF, galK, 

galT, galU, gatA, gatC, gatD, gatY, gatZ, glk, kbaY, kbaZ, lacZ, malZ, 

melA, pfkA, pfkB, pgm, sgcA, sgcC 

eco00053 
Ascorbate and 

aldarate metabolism 

garD, garL, gudD, gudX, lyx, ugd, ulaB, ulaC, ulaD, ulaE, ulaF, ulaG, 

yadI, yiaK 

eco00061 
Fatty acid 

biosynthesis 
accA, accB, accC, accD, fabA, fabB, fabD, fabF, fabG, fabH, fabI, fabZ 

eco00071 Fatty acid metabolism 
aas, adhE, adhP, atoB, fadA, fadB, fadD, fadE, fadI, fadJ, frmA, hcaD, 

paaF, paaG 

eco00130 
Ubiquinone 

biosynthesis 

entC, menA, menB, menC, menD, menE, menF, nuoA, nuoB, nuoC, nuoE, 

nuoF, nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, ubiA, ubiB, 

ubiD, ubiE, ubiF, ubiG, ubiH, ubiX, yfbB 
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eco00190 
Oxidative 

phosphorylation 

appB, appC, atpA, atpB, atpC, atpD, atpE, atpF, atpG, atpH, cydA, cydB, 

cyoA, cyoB, cyoC, cyoD, cyoE, frdA, frdB, frdC, frdD, ndh, nuoA, nuoB, 

nuoC, nuoE, nuoF, nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, 

ppa, ppk, sdhA, sdhB, sdhC, sdhD 

eco00220 

Urea cycle and 

metabolism of amino 

groups 

adiA, argA, argB, argC, argD, argE, argF, argG, argH, argI, mtn, pepD, 

proA, proB, puuA, puuB, puuC, puuD, speA, speB, speC, speD, speE, 

speF, speG, ydcW, ygjG 

eco00230 Purine metabolism 

add, ade, adk, allA, allB, allC, allD, amn, apaH, apt, cpdB, cyaA, cysC, 

cysD, cysN, deoA, deoB, deoD, dgt, dnaE, dnaN, dnaQ, dnaX, gmk, gpp, 

gpt, gsk, guaA, guaB, guaC, guaD, holA, holB, holC, holD, holE, hpt, 

mazG, ndk, nrdA, nrdB, nrdD, nrdE, nrdF, nudF, pnp, polA, prs, purA, 

purB, purC, purD, purE, purF, purH, purK, purL, purM, purN, purT, 

pykA, pykF, rdgB, relA, rihB, rihC, spoT, surE, xdhA, xdhB, yagR, yahI, 

ybcF, yfbR, yjjG, yqeA 

eco00240 
Pyrimidine 

metabolism 

carA, carB, cdd, cmk, codA, cpdB, dcd, deoA, deoD, dnaE, dnaN, dnaQ, 

dnaX, dut, holA, holB, holC, holD, holE, mazG, ndk, nrdA, nrdB, nrdD, 

nrdE, nrdF, pnp, polA, pyrB, pyrC, pyrD, pyrE, pyrF, pyrG, pyrH, pyrI, 

rihB, surE, tdk, thyA, tmk, trxB, udk, udp, upp, yfbR, yjjG 

eco00251 
Glutamate 

metabolism 

adiA, aspC, carA, carB, gabD, gabT, gadA, gadB, gdhA, glmS, glnA, 

glnS, gltB, gltD, gltX, gor, gshA, gshB, guaA, murI, nadE, nagK, purF, 

putA, puuE, speA, yahI, ybaS, ybcF, ybdK, yneH, yqeA 

eco00252 
Alanine and aspartate 

metabolism 

aceE, aceF, alaS, alr, ansA, ansB, argG, argH, asnA, asnB, asnS, aspA, 

aspC, aspS, dadX, gabT, gadA, gadB, iaaA, lpd, nadB, panD, pepD, 

purA, purB, puuE, pyrB, pyrI 

eco00260 
Glycine, serine and 

threonine metabolism 

asd, betA, betB, dsdA, garK, gcvP, gcvT, glxK, glyA, glyQ, glyS, ilvA, kbl, 

lpd, ltaE, lysC, metL, psd, pssA, sdaA, sdaB, serA, serB, serC, serS, 

tdcB, tdcG, tdh, thrA, thrB, thrC, thrS, tynA, usg 

eco00271 
Methionine 

metabolism 

dcm, fmt, luxS, malY, metA, metB, metC, metE, metG, metH, metK, 

mmuM, mtn, speD, speE, tyrB 

eco00272 Cysteine metabolism 
aspC, cysE, cysK, cysM, cysS, dcyD, malY, metB, metC, sdaA, sdaB, 

sseA, tdcG 
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eco00280 
Valine, leucine and 

isoleucine degradation 
atoB, fadA, fadB, fadI, fadJ, gabT, ilvE, lpd, paaF, paaG, scpA 

eco00290 

Valine, leucine and 

isoleucine 

biosynthesis 

aceE, avtA, ileS, ilvA, ilvB, ilvC, ilvD, ilvE, ilvH, ilvI, ilvM, ilvN, leuA, 

leuB, leuD, leuS, tdcB, valS 

eco00300 Lysine biosynthesis 
argD, asd, dapA, dapB, dapD, dapE, dapF, lysA, lysC, lysS, lysU, metL, 

murE, murF, poxA, thrA, usg, yagE 

eco00310 Lysine degradation 
atoB, cadA, fadB, fadJ, ldcC, paaF, paaG, rzoD, rzoR, rzpD, rzpR, sucA, 

sucB 

eco00330 
Arginine and proline 

metabolism 

argF, argG, argH, argI, argS, aspC, astA, astB, astC, astD, astE, eda, 

proC, proS, putA, yahI, ybcF, yqeA 

eco00340 Histidine metabolism hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI, hisS, pepD, rsmF, tynA 

eco00350 Tyrosine metabolism adhE, adhP, aspC, frmA, gabD, hisC, pagP, rsmF, tynA, tyrB, ydcK 

eco00360 
Phenylalanine 

metabolism 

aspC, dadA, hcaB, hcaE, hcaF, hisC, mhpC, mhpD, mhpE, paaK, pagP, 

tynA, tyrB, ydcK 

eco00380 
Tryptophan 

metabolism 
atoB, fadB, fadJ, katE, katG, paaF, paaG, rsmF, sucA, tnaA, trpS, tynA 

eco00400 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroH, aroK, aroL, aspC, 

hisC, pheA, pheS, pheT, trpA, trpB, trpC, trpD, trpE, tyrA, tyrB, tyrS, 

ydiB 

eco00410 
beta-Alanine 

metabolism 

fadB, fadJ, gabT, gadA, gadB, paaF, paaG, panC, panD, pepD, puuE, 

speE, tynA, ydcW 

eco00450 
Selenoamino acid 

metabolism 

cysC, cysD, cysK, cysM, cysN, ggt, malY, metB, metC, metG, metK, rsmF, 

selA, selD, sufS 

eco00480 
Glutathione 

metabolism 
btuE, ggt, gor, gshA, gshB, gsp, gst, icd, pepN, pepT, ybdK, yncG, zwf 

eco00500 
Starch and sucrose 

metabolism 

amyA, bcsA, bcsZ, bglX, galF, galU, glgA, glgB, glgC, glgP, glk, malP, 

malQ, malS, malX, malZ, murP, otsA, otsB, pgi, pgm, rhlE, treA, treB, 

treC, treF, ugd, uidA, yagH, ycjM, ycjU, yoaA 
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eco00520 
Nucleotide sugars 

metabolism 

arnA, arnB, arnC, galE, galF, galT, galU, rfbA, rfbB, rfbC, rfbD, rffG, 

rffH, ugd, yagH 

eco00530 
Aminosugars 

metabolism 

aceK, chiA, glmM, glmS, glmU, murA, murB, nagA, nagB, nagE, nagK, 

nagZ, nanE, nanK, rffD, rffE, yniC 

eco00540 
Lipopolysaccharide 

biosynthesis 

diaA, gmhB, kdsA, kdsB, kdsC, lpcA, lpxA, lpxB, lpxC, lpxD, lpxH, lpxK, 

rfaB, rfaC, rfaE, rfaF, rfaG, rfaI, rfaJ, rfaL, rfaP, rfaQ, rfaY, waaA, 

waaU 

eco00550 
Peptidoglycan 

biosynthesis 

amiA, amiB, amiC, amiD, bacA, ddlA, ddlB, ftsI, glnA, mraY, mrcB, 

murC, murD, murE, murF, murG, ybjG 

eco00561 
Glycerolipid 

metabolism 

dgkA, dhaK, dhaL, ebgA, garK, gldA, glpK, glxK, lacZ, mdoB, melA, 

plsB, plsC 

eco00564 
Glycerophospholipid 

metabolism 

aas, cdh, cdsA, cls, dgkA, eutA, eutB, eutC, glpA, glpB, glpC, glpD, 

glpQ, gpsA, pagP, pgpA, pgpB, pgsA, pldA, plsB, plsC, psd, pssA, ybhO, 

ydcK, ynbB 

eco00620 Pyruvate metabolism 

accA, accB, accC, accD, aceB, aceE, aceF, ackA, acs, adhE, aldA, aldB, 

atoB, dld, fucO, ghrA, glcB, gloA, gloB, leuA, lldD, lpd, maeA, maeB, 

mdh, mgsA, mhpF, mqo, pck, pflB, pflD, poxB, ppc, pps, pta, pykA, pykF, 

tdcE, ybiC, ybiW, yccX 

eco00630 

Glyoxylate and 

dicarboxylate 

metabolism 

aceA, aceB, acnA, acnB, aldA, eda, fdnG, fdnH, fdnI, fdoG, fdoH, fdoI, 

folD, fucO, garK, garR, gcl, ghrA, glcB, gltA, glxK, glxR, gph, hyi, mdh, 

oxc, purU, ttdA, ttdB, ybhJ, ybiC, ydeP, yeaU 

eco00632 
Benzoate degradation 

via CoA ligation 

atoA, atoB, atoD, fadB, fadJ, fadK, frdA, frdB, frdC, frdD, lsrK, mak, 

paaF, paaG, paaH, pagP, sdhA, sdhB, sdhC, sdhD, yccX, ydcK 

eco00640 
Propanoate 

metabolism 

accA, accB, accC, accD, ackA, acs, atoA, atoB, atoD, fadB, fadJ, fadK, 

gabT, paaF, paaG, pflB, pflD, prpB, prpC, prpD, prpE, pta, puuE, scpA, 

scpB, sucC, sucD, tdcD, tdcE, ybiW 

eco00650 Butanoate metabolism 

aceE, adhE, atoA, atoB, atoD, fadB, fadJ, frdA, frdB, frdC, frdD, gabD, 

gabT, gadA, gadB, ilvB, ilvH, ilvI, ilvM, ilvN, mhpF, paaF, paaG, paaH, 

pflB, pflD, puuE, sdhA, sdhB, sdhC, sdhD, tdcE, ybiW, yeaU 

eco00670 
One carbon pool by 

folate 

fmt, folA, folD, folM, gcvT, glyA, metF, metH, purH, purN, purT, purU, 

thyA 
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eco00680 Methane metabolism fdnG, fdnH, fdnI, fdoG, fdoH, fdoI, frmA, glyA, katE, katG, metF, ydeP 

eco00710 Carbon fixation 
aspC, fbaA, fbp, glpX, maeB, mdh, pck, pgk, ppc, prkB, pykA, pykF, rpe, 

rpiA, rpiB, tktA, tktB, tpiA, ybiC 

eco00720 
Reductive carboxylate 

cycle (CO2 fixation) 

acnA, acnB, acs, frdA, frdB, frdC, frdD, fumA, fumB, fumC, icd, mdh, 

ppc, pps, sdhA, sdhB, sdhC, sdhD, sucC, sucD, ybhJ, ybiC 

eco00730 Thiamine metabolism 
aceK, iscS, rdgB, sufS, thiC, thiD, thiE, thiF, thiG, thiH, thiI, thiK, thiL, 

thiM, yniC 

eco00740 
Riboflavin 

metabolism 
aceK, aphA, appA, cobT, ribA, ribC, ribD, ribE, ribF, yniC 

eco00760 

Nicotinate and 

nicotinamide 

metabolism 

nadA, nadB, nadC, nadD, nadE, nadK, nadR, pncA, pncB, rihC, sthA 

eco00770 
Pantothenate and CoA 

biosynthesis 

acpH, coaA, coaD, coaE, dfp, ilvB, ilvC, ilvD, ilvE, ilvH, ilvI, ilvM, ilvN, 

panB, panC, panE 

eco00790 Folate biosynthesis 
folA, folB, folC, folE, folK, folM, pabA, pabB, pabC, phoA, rhlE, sscR, 

yoaA 

eco00860 

Porphyrin and 

chlorophyll 

metabolism 

btuR, cobC, cobS, cobT, cobU, cyoE, cysG, eutT, fre, gltX, hemA, hemB, 

hemC, hemD, hemE, hemF, hemG, hemH, hemL, hemN, hemX, uidA, 

yggW 

eco00910 Nitrogen metabolism 

ansA, ansB, asnA, asnB, aspA, can, cynS, cynT, dadA, gcvT, gdhA, glnA, 

gltB, gltD, iaaA, malY, metC, napA, narG, narH, narI, narJ, narV, narW, 

narY, narZ, nirB, nirD, nrfA, tnaA, yahI, ybaS, ybcF, yneH, yqeA 

eco00920 Sulfur metabolism 
cysC, cysD, cysE, cysH, cysI, cysJ, cysK, cysM, cysN, malY, metA, metB, 

metC 

eco00970 
Aminoacyl-tRNA 

biosynthesis 

alaS, argS, asnS, aspS, cysS, fmt, glnS, gltX, glyQ, glyS, hisS, ileS, leuS, 

lysS, lysU, metG, pheS, pheT, poxA, proS, serS, thrS, trpS, tyrS, valS 

eco00983 
Drug metabolism - 

other enzymes 
cdd, deoA, guaA, guaB, hpt, pyrE, tdk, udk, udp, uidA 

eco01031 
Glycan structures - 

biosynthesis 2 
rfaB, rfaC, rfaF, rfaG, rfaI, rfaJ, rfaP, rfaQ, rfaY, waaA, waaU 
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eco02010 
ABC transporters - 

General 

afuB, afuC, alsA, alsB, alsC, araF, araG, araH, argT, artI, artJ, artM, 

artP, artQ, btuC, btuD, btuF, ccmA, ccmB, ccmC, cydC, cydD, cysA, 

cysP, cysU, ddpA, ddpB, ddpC, ddpD, ddpF, dppA, dppB, dppC, dppD, 

dppF, fecB, fecC, fecD, fecE, fepB, fepC, fepD, fepG, fhuB, fhuC, fhuD, 

fliY, ftsX, glnH, glnP, glnQ, gltI, gltJ, gltK, gltL, gsiA, gsiB, gsiC, gsiD, 

hisJ, hisM, hisP, hisQ, livF, livG, livH, livJ, livK, livM, lolC, lolD, lolE, 

lsrA, lsrB, lsrC, lsrD, macB, malE, malF, malG, malK, mdlB, metI, metN, 

metQ, mglA, mglB, mglC, modA, modB, modC, modF, mppA, msbA, 

nikC, nikD, nikE, nlpA, oppA, oppB, oppC, oppD, oppF, osmF, phnC, 

phnD, phnE, phnK, potA, potB, potC, potD, potF, potG, potH, potI, proV, 

proW, proX, pstA, pstB, pstC, pstS, rbsA, rbsB, rbsC, rbsD, sapA, sapB, 

sapC, sapD, sapF, sbp, ssuB, ssuC, tauA, tauB, tauC, tbpA, thiP, thiQ, 

ugpA, ugpC, xylG, yadG, yadH, ybbA, ybbL, ybbM, ybbP, ybhR, yddA, 

yecC, yecS, yehW, yehY, yejA, yejB, yejE, yejF, ygiS, yhdW, yhdX, yhdY, 

yhdZ, yhhJ, ynjB, ynjC, ynjD, yojI, yrbC, yrbE, yrbF, znuA, znuB, znuC 

eco02011 
ABC transporters - 

Organism-specific 

afuB, afuC, alsA, alsB, alsC, araF, araG, araH, argT, artI, artJ, artM, 

artP, artQ, btuC, btuD, btuE, ccmA, ccmB, ccmC, ccmE, cysA, cysP, 

cysU, ddpA, ddpB, ddpC, ddpD, ddpF, dppA, dppB, dppC, dppD, dppF, 

fecA, fecB, fecC, fecD, fecE, fepA, fepB, fepC, fepD, fepG, fhuA, fhuB, 

fhuC, fhuD, fliY, glnH, glnP, glnQ, gltI, gltJ, gltK, gltL, gsiA, gsiB, gsiC, 

gsiD, hisJ, hisM, hisP, hisQ, livF, livG, livH, livJ, livK, livM, lsrA, lsrB, 

lsrC, lsrD, malE, malF, malG, malK, malM, metI, metN, metQ, mglA, 

mglB, mglC, modA, modB, modC, modF, mppA, nikC, nikD, nikE, oppA, 

oppB, oppC, oppD, oppF, osmF, phnC, phnD, phnE, potA, potB, potC, 

potD, potF, potG, potH, potI, proV, proW, proX, pstA, pstB, pstC, pstS, 

rbsA, rbsB, rbsC, rbsD, sapA, sapB, sapC, sapD, sapF, sbp, ssuB, ssuC, 

ssuD, ssuE, tauA, tauB, tauC, tauD, tbpA, thiP, thiQ, ugpA, ugpC, xylG, 

ybbL, ybbM, ycjN, ycjO, ydcS, ydcT, ydcU, ydcV, yecC, yecS, yehW, yehY, 

yejA, yejB, yejE, yejF, ygiS, yhdW, yhdX, yhdY, yhdZ, yjfF, ynjB, ynjC, 

ynjD, yrbE, yrbF, ytfQ, ytfR, ytfT, znuA, znuB, znuC 

eco02020 Two-component aer, ampC, ampH, appY, arcA, arcB, arnB, atoA, atoB, atoC, atoD, atoE, 
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system - General atoS, baeR, baeS, barA, basR, basS, cheA, cheB, cheW, cheY, citC, citD, 

citE, citF, citG, citT, citX, cpxA, cpxR, creB, creC, csrA, cusR, cusS, 

dcuR, dcuS, degP, dpiA, dpiB, emrK, emrY, envZ, evgA, evgS, fdnG, 

fdnH, fdnI, fimZ, flhC, flhD, fliA, fliC, frdA, frdB, frdC, frdD, glnA, glnB, 

glnD, glnG, glnL, kdpA, kdpB, kdpC, kdpD, kdpE, mdtA, mdtB, mdtC, 

motA, narG, narH, narI, narJ, narL, narP, narQ, narX, ompC, ompF, 

ompR, phoA, phoB, phoP, phoQ, phoR, qseB, qseC, rcsA, rcsB, rcsC, 

rcsD, rcsF, rstA, rstB, sdiA, tap, tar, torA, torC, torD, torR, torS, trpA, 

trpB, trpC, trpD, trpE, trpL, tsr, uhpA, uhpB, uhpC, uhpT, uvrY, yedV, 

yedW, yehT, yehU, yfhA, yfhK, ypdA, zraR, zraS 

eco02021 

Two-component 

system - 

Organism-specific 

appA, arcA, arcB, atoC, atoS, baeR, baeS, barA, basR, basS, cpxA, cpxR, 

creB, creC, cusR, cusS, dcuR, dcuS, dpiA, dpiB, envZ, evgA, evgS, fdnG, 

fdnH, fdnI, fimZ, frdA, frdB, frdC, frdD, ftsZ, glnA, glnB, glnD, glnG, 

glnL, kdpA, kdpB, kdpC, kdpD, kdpE, narG, narH, narI, narJ, narL, 

narP, narQ, narX, ompC, ompF, ompR, phoA, phoB, phoP, phoQ, phoR, 

qseB, qseC, rcsA, rcsB, rcsC, rcsD, rssB, rstA, rstB, torA, torC, torD, 

torR, torS, uhpA, uhpB, uhpC, uhpT, uvrY, yedV, yedW, yehT, yehU, yfhA, 

yfhK, ypdA, ypdB, zraR, zraS 

eco02030 
Bacterial chemotaxis - 

General 

aer, cheA, cheB, cheR, cheW, cheY, cheZ, fliG, fliM, fliN, lafU, motA, tap, 

tar, tsr 

eco02031 
Bacterial chemotaxis - 

Organism-specific 

aer, cheA, cheB, cheR, cheW, cheY, cheZ, dppA, fliG, fliM, fliN, lafU, 

malE, mglB, motA, rbsB, tap, tar, tsr 

eco02040 Flagellar assembly 

flgA, flgC, flgD, flgE, flgF, flgG, flgH, flgI, flgK, flgL, flgM, flgN, flhA, 

flhB, flhC, flhD, fliC, fliD, fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliM, fliN, 

fliP, fliQ, fliR, fliS, fliT, lafU, lfhA, motA 

eco02060 
Phosphotransferase 

system (PTS) 

agaB, agaC, agaD, agaV, ascF, bglF, chbB, chbC, cmtA, cmtB, crr, fruA, 

fruB, frvA, frvB, frwC, frwD, fryA, fryB, fryC, gatA, gatC, glvC, malX, 

manX, manY, manZ, mtlA, murP, nagE, npr, ptsA, ptsG, ptsH, ptsI, ptsN, 

ptsP, sgcA, sgcC, srlA, srlB, srlE, treB, ulaB, ulaC, yadI 

eco03010 Ribosome 
rplA, rplB, rplC, rplD, rplE, rplF, rplI, rplJ, rplK, rplL, rplM, rplN, rplO, 

rplP, rplQ, rplR, rplS, rplT, rplU, rplV, rplW, rplX, rplY, rpmA, rpmB, 
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rpmC, rpmD, rpmE, rpmF, rpmG, rpmH, rpmI, rpmJ, rpsA, rpsB, rpsC, 

rpsD, rpsE, rpsF, rpsG, rpsH, rpsI, rpsJ, rpsK, rpsL, rpsM, rpsN, rpsO, 

rpsP, rpsQ, rpsR, rpsS, rpsT, rpsU, ykgM 

eco03030 DNA replication 
dnaB, dnaE, dnaG, dnaN, dnaQ, dnaX, holA, holB, holC, holD, holE, 

ligA, ligB, polA, rnhB, ssb 

eco03060 Protein export 
ffh, ftsY, lepB, lspA, secA, secB, secD, secE, secF, secG, secY, tatA, tatB, 

tatC, tatE, yajC, yidC 

eco03070 
Type III secretion 

system 
flhA, flhB, fliF, fliH, fliI, fliN, fliP, fliQ, fliR, lfhA 

eco03090 
Type II secretion 

system 

gspA, gspC, gspD, gspE, gspF, gspH, gspI, gspJ, gspK, gspL, gspM, 

gspO, hofC, hofQ, ppdA, ppdB, ppdC, ppdD, pppA, yghD, yghE, yghF 

eco03410 Base excision repair 
alkA, ligA, ligB, mug, mutM, mutY, nei, nfo, nth, polA, recJ, tag, ung, 

xthA 

eco03430 Mismatch repair 
dam, dnaE, dnaN, dnaQ, dnaX, exoX, holA, holB, holC, holD, holE, 

ligA, ligB, mutH, mutL, mutS, recJ, sbcB, ssb, uvrD, xseA, xseB 

eco03440 
Homologous 

recombination 

dnaE, dnaN, dnaQ, dnaT, dnaX, holA, holB, holC, holD, holE, polA, 

priA, priB, priC, recA, recB, recC, recD, recF, recG, recJ, recO, recR, 

ruvA, ruvB, ruvC, ssb 
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Appendix C 
 

AgaR agaA, agaB, agaC, agaD, agaI, agaR, agaS, agaV, agaW, kbaY, kbaZ 

AllR allA, allB, allS, gcl, glxK, glxR, hyi, ybbW, ybbY 

AppY appA, appB, appC, hyaA, hyaB, hyaC, hyaD, hyaE, hyaF 

AraC araA, araB, araC, araD, araE, araF, araG, araH, araJ 

ArcA 

aceA, aceB, aceE, aceF, aceK, ackA, acnA, acnB, aldA, appA, appB, appC, betA, betB, betI, betT, 

cadA, cadB, caiA, caiB, caiC, caiE, caiT, cydA, cydB, cydC, cydD, cyoA, cyoB, cyoC, cyoD, cyoE, 

dctA, dcuC, fadA, fadB, fadD, fadE, fadI, fadJ, fadL, fnr, focA, fumA, fumB, fumC, gadA, gadB, 

gadX, gatA, gatC, gatD, gatY, gatZ, glcA, glcB, glcD, glcE, glcG, glpA, glpB, glpC, glpD, gltA, 

hemA, hyaA, hyaB, hyaC, hyaD, hyaE, hyaF, hybA, hybB, hybC, hybD, hybE, hybF, hybG, hybO, 

icd, lldD, lldP, lldR, lpd, mdh, moeA, moeB, ndh, nuoA, nuoB, nuoC, nuoE, nuoF, nuoG, nuoH, 

nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, oppA, oppB, oppC, oppD, oppF, pflB, prfA, prmC, ptsG, 

rhaT, rplB, rplC, rplD, rplP, rplV, rplW, rpmC, rpoS, rpsC, rpsJ, rpsQ, rpsS, rutA, rutB, rutD, 

rutE, rutG, sdhA, sdhB, sdhC, sdhD, sodA, ssb, sucA, sucB, sucC, sucD, tpx, treB, treC, ubiA, 

uvrA, xylR, ydeA, yfiD 

ArgP dnaA, dnaN, nrdA, nrdB, recF 

ArgR 

argA, argB, argC, argD, argE, argF, argG, argH, argI, argR, artI, artJ, artM, artP, artQ, astA, 

astB, astC, astD, astE, carA, carB, gltB, gltD, gltF, hisJ, hisM, hisP, hisQ, infB, nusA, pnp, rbfA, 

rpsO, truB, yhbC 

BaeR acrD, baeR, baeS, mdtA, mdtB, mdtC, mdtD, spy, ycaC 

BirA bioA, bioB, bioC, bioD, bioF 

CaiF caiA, caiB, caiC, caiE, caiT, fixC, fixX 

Cbl ssuB, ssuC, ssuD, ssuE, tauA, tauB, tauC, tauD 

CdaR cdaR, garD, garK, garL, garR, gudD, gudP, gudX 

ChbR chbB, chbC, chbF, chbG, chbR 

CpxR 

acrD, aroG, bacA, baeR, baeS, cheA, cheW, cpxA, cpxP, cpxR, csgA, csgC, csgD, csgE, csgF, csgG, 

degP, dsbA, dsbC, fabZ, ftnB, hha, lpxA, lpxD, mdtA, mdtB, mdtC, mdtD, motA, ompC, ompF, 

ppiA, ppiD, psd, rdoA, rpoE, rpoH, rseA, rseB, rseC, skp, spy, tsr, ung, ybaJ, yccA, ydeH, yebE, 

yidQ, yjeP, yqjA, yqjB 

CRP aceA, aceB, aceE, aceF, aceK, acnA, acnB, acs, actP, aer, agaA, agaV, agaW, agp, aldA, aldB, 
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ansB, araA, araB, araC, araD, araE, araF, araG, araH, araJ, argG, aroA, aspA, bglB, bglF, bglG, 

caiA, caiB, caiC, caiE, caiF, caiT, cdd, chbB, chbC, chbF, chbG, chbR, chpA, chpR, cirA, cpdB, 

crp, crr, csgD, csgE, csgF, csgG, csiE, cstA, cyaA, cyoA, cyoB, cyoC, cyoD, cyoE, cysG, cytR, 

dadA, dadX, dctA, dcuA, dcuR, deoA, deoB, deoC, deoD, dgsA, dksA, dsdA, dsdX, dusB, ebgA, 

ebgC, entA, entB, entC, entD, entE, envZ, epd, exuT, fadD, fadL, fbaA, feaR, fecA, fecB, fecC, 

fecD, fecE, fepA, fis, fiu, fixC, fixX, flhC, flhD, focA, fucA, fucI, fucK, fucO, fucP, fucR, fucU, 

fumA, fumB, fur, gabD, gabP, gabT, gadA, gadB, gadC, gadE, gadX, galE, galK, galM, galP, galS, 

galT, gapA, gatA, gatC, gatD, gatY, gatZ, gcd, gdhA, glcC, glgA, glgC, glgP, glgS, glnA, glnG, 

glnL, glpA, glpB, glpC, glpD, glpE, glpF, glpG, glpK, glpQ, glpR, glpT, glpX, gltA, gltB, gltD, gltF, 

gntK, gntP, gntT, gntU, gntY, guaA, guaB, gutM, gutQ, gyrA, hpt, hupA, hupB, hyfA, hyfD, hyfE, 

hyfF, hyfG, hyfH, hyfI, hyfJ, hyfR, idnD, idnK, idnO, idnR, idnT, ilvB, ilvN, infB, ivbL, kbaZ, lacA, 

lacY, lacZ, lamB, lpd, lsrA, lsrB, lsrC, lsrD, lsrF, lsrG, lyx, malE, malF, malG, malI, malK, malM, 

malS, malT, malX, malY, manX, manY, manZ, maoC, marA, marR, mdh, mdtE, mdtF, melA, melB, 

melR, metK, mglA, mglB, mglC, mhpC, mhpD, mhpE, mhpF, modA, modB, modC, mpl, mtlA, 

mtlD, mtlR, nagA, nagB, nagC, nagD, nagE, nanC, nanE, nanK, nanM, nirB, nirD, nmpC, nrdA, 

nrdB, nupC, nupG, nusA, ompA, ompF, ompR, osmY, oxyR, paaA, paaB, paaC, paaD, paaE, paaF, 

paaG, paaH, paaI, paaJ, paaK, pdhR, pflB, pgk, pncB, pnp, ppiA, proP, prpB, prpC, prpD, prpE, 

prpR, psiE, ptsG, ptsH, ptsI, putP, rbfA, rbsA, rbsB, rbsC, rbsD, rbsK, rbsR, relA, rhaA, rhaB, 

rhaD, rhaR, rhaS, rhaT, rpoH, rpoS, rpsO, sdhA, sdhB, sdhC, sdhD, serA, serC, sfsA, sgbE, sgbH, 

sgbU, sodA, sodB, sohB, speC, srlA, srlB, srlD, srlE, srlR, sucA, sucB, sucC, sucD, tdcA, tdcB, 

tdcC, tdcD, tdcE, tdcG, tnaA, tnaB, treB, treC, truB, trxA, tsx, ubiG, udp, ugpA, ugpC, uhpT, uidA, 

uidB, uidC, ulaB, ulaC, ulaD, ulaE, ulaF, uxaA, uxaB, uxaC, uxuA, uxuR, xseA, xylA, xylB, xylG, 

xylR, ybdB, ychH, yfiD, ygaF, yhbC, yhcH, yhfA, yiaJ, yiaK, yiaL, yiaM, yiaN, yiaO, yjcH, ynfK, 

zraR, zraS 

CsgD adrA, csgA, csgC, csgD, csgE, csgF, csgG, iraP, pepD 

CueR copA, cueO, moaA, moaB, moaC, moaE 

CusR cusA, cusB, cusC, cusF, cusR, cuss 

CysB 
cbl, cysA, cysC, cysD, cysH, cysI, cysJ, cysK, cysM, cysN, cysP, cysU, ssuB, ssuC, ssuD, ssuE, 

tauA, tauB, tauC, tauD 

CytR cdd, cytR, deoA, deoB, deoC, deoD, nupC, nupG, ppiA, rpoH, tsx, udp 

DcuR dctA, frdA, frdB, frdC, frdD, fumB 
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DeoR deoA, deoB, deoC, deoD, nupG, tsx 

DgsA crr, dgsA, malT, manX, manY, manZ, ptsG, ptsH, ptsI, ynfK 

DicA dicB, insD, intQ, ydfD, ydfE 

DnaA aldA, dnaA, dnaN, guaA, guaB, nrdA, nrdB, polA, recF, rpoH 

DpiA appY, citC, citD, citE, citF, citG, citX 

EnvY moaA, moaB, moaC, moaE, ompC, ompF 

EvgA acrD, emrK, emrY, evgA, evgS, frc, gadE, mdtE, mdtF, ydeO, ydeP, yfdX 

ExuR exuR, exuT, uxaA, uxaB, uxaC, uxuA, uxuR 

FadR fabA, fabB, fadA, fadB, fadD, fadE, fadI, fadJ, fadL, iclR, uspA 

FhlA 
fhlA, hycA, hycB, hycC, hycD, hycE, hycF, hycG, hycH, hycI, hydN, hyfA, hyfD, hyfE, hyfF, hyfG, 

hyfH, hyfI, hyfJ, hyfR, hypA, hypB, hypE, hypF 

Fis 

acnB, acs, actP, adhE, aldB, ansB, apaG, apaH, bglB, bglF, bglG, carA, carB, chpA, chpR, crp, 

cspI, cysG, deoA, deoB, deoC, deoD, dmsA, dmsB, dmsC, dusB, fadA, fadB, fis, flxA, fumB, gadA, 

gadB, gadC, gadX, glcC, glnA, glnG, glnL, glnQ, glpA, glpB, glpC, glpQ, glpT, guaA, guaB, gyrA, 

gyrB, hns, hupA, hupB, hyaA, hyaB, hyaC, hyaD, hyaE, hyaF, infB, katE, ksgA, lpd, malE, malF, 

malG, marA, marR, mazG, mglA, mglC, msrA, mtlA, mtlD, mtlR, nanE, nanK, narG, narH, narI, 

narJ, narK, ndh, nirB, nirD, nrdA, nrdB, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, nuoA, nuoB, 

nuoC, nuoE, nuoF, nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, nusA, osmE, osmY, pdxA, 

pflB, pnp, proP, ptsG, pyrD, queA, rbfA, rpsO, topA, tpr, trmA, truB, tufA, tufB, xylG, xylR, yfiD, 

ygjG, yhbC, yhcH, yjcH 

FlhDC 

ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, ccmH, flgA, flgC, flgD, flgE, flgF, flgG, flgH, flgI, 

flgJ, flgM, flgN, flhA, flhB, fliA, fliD, fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliL, fliM, fliN, fliP, fliQ, 

fliR, fliS, fliT, fliY, fliZ, glpA, glpB, glpC, gltI, gltJ, gltK, gltL, hydN, hypF, mdh, mglA, mglB, 

mglC, napA, napB, napC, napD, napF, napG, napH, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, ppdA, 

ppdB, ppdC, recC, ycgR, yecR, ygbK, yhjH 

FNR 

aceE, aceF, ackA, acnA, acrE, adhE, aer, aldA, ansB, arcA, aspA, bcsB, bcsZ, cadC, caiA, caiB, 

caiC, caiE, caiF, caiT, ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, ccmH, cheB, cheR, cheY, 

cheZ, cydA, cydB, cydC, cydD, cyoA, cyoB, cyoC, cyoD, cyoE, cysG, dcuA, dcuC, dcuR, dcuS, 

dmsA, dmsB, dmsC, dmsD, dppA, dppB, dppC, dppD, dppF, emrK, emrY, entF, fdnG, fdnH, fdnI, 

feoA, feoB, fepE, fes, fhlA, fixC, fixX, fnr, focA, frdA, frdB, frdC, frdD, fumA, fumB, gadA, gadB, 

gadW, gadX, garK, garL, garR, gcvH, gcvP, gcvT, glpA, glpB, glpC, glpQ, glpT, gltB, gltD, gltF, 
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hcp, hcr, hemA, hmp, hyfA, hyfD, hyfE, hyfF, hyfG, hyfH, hyfI, hyfJ, hyfR, hypB, hypE, katG, lpd, 

malP, malQ, moaA, moaB, moaC, moaE, moeA, moeB, napA, napB, napC, napD, napF, napG, 

napH, narG, narH, narI, narJ, narK, narL, narX, ndh, nikC, nikD, nikE, nikR, nirB, nirD, norV, 

norW, nrdD, nrdG, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, nuoA, nuoB, nuoC, nuoE, nuoF, nuoG, 

nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, ompW, ompX, pdhR, pepT, pflB, pheM, phoU, pitA, 

prfA, prmC, pstA, pstB, pstC, pstS, purM, purN, rimM, rplB, rplC, rplD, rplM, rplP, rplS, rplT, 

rplV, rplW, rpmC, rpsC, rpsI, rpsJ, rpsP, rpsQ, rpsS, scpA, scpB, scpC, sdhA, sdhB, sdhC, sdhD, 

sodA, ssuB, ssuC, ssuD, ssuE, sucA, sucB, sucC, sucD, tap, tar, tdcA, tdcB, tdcC, tdcD, tdcE, tdcG, 

tpx, trmD, ubiA, upp, uraA, uxaA, uxaC, xdhA, xdhB, xdhC, ycaC, ychO, ydhT, ydhU, ydhV, ydhW, 

ydhX, ydhY, yecR, yeiL, yfiD, ygbA, yhjA, yjiD, ynfE, ynfF, ynfG, ynfH, yqjI, ysgA, ytfE 

FruR 

aceA, aceB, aceK, acnA, acnB, adhE, crr, cydA, cydB, cysG, eda, edd, eno, epd, fbaA, fruA, fruB, 

fruK, gapA, glk, hypF, icd, mtlA, mtlD, mtlR, nirB, nirD, pck, pfkA, pgk, pps, ptsH, ptsI, pykF, 

yahA 

FucR fucA, fucI, fucK, fucO, fucP, fucR, fucU 

Fur 

cirA, cyoA, cyoB, cyoC, cyoD, cyoE, entA, entB, entC, entD, entE, entF, entS, exbB, exbD, fecA, 

fecB, fecC, fecD, fecE, fecI, fecR, feoA, feoB, fepA, fepB, fepC, fepD, fepE, fepG, fes, fhuA, fhuB, 

fhuC, fhuD, fhuE, fhuF, fiu, flhC, flhD, fumB, fur, gpmA, hmp, metH, metJ, mntH, nohA, nohB, 

nrdE, nrdF, nrdH, nrdI, ompF, purR, rcnA, rcnR, sdhA, sdhB, sdhC, sdhD, sodA, sodB, sucA, sucB, 

sucC, sucD, sufA, sufB, sufC, sufE, sufS, tfaD, tfaQ, tfaR, tonB, ybdB, ydfN, ygaC, yhhY, yodA 

GadE 
cadA, cadB, cyoA, cyoB, cyoC, cyoD, cyoE, fabZ, fliC, gadA, gadB, gadC, gadE, gadW, gadX, 

gltB, gltD, gltF, gnd, hdeA, hdeB, hdeD, lpxA, lpxD, lrp, mdtE, mdtF, purA, rcsA, skp, yhiD 

GadW gadA, gadB, gadC, gadE, gadW, gadX, mdtE, mdtF 

GadX 
amtB, asnB, cadA, cadB, gadA, gadB, gadC, gadE, gadX, glnK, hdeA, hdeB, hdeD, hns, lon, 

mdtE, mdtF, rpoS, ybaS, ybaT, yhiD 

GalR galE, galK, galM, galP, galR, galS, galT, mglA, mglB, mglC 

GalS galE, galK, galM, galP, galR, galS, galT, mglA, mglB, mglC 

GatR gatA, gatC, gatD, gatY, gatZ 

GlcC glcA, glcB, glcC, glcD, glcE, glcG 

NtrC 

amtB, argT, astA, astB, astC, astD, astE, cbl, ddpA, ddpB, ddpC, ddpD, ddpF, ddpX, glnA, glnG, 

glnH, glnK, glnL, glnP, glnQ, hisJ, hisM, hisP, hisQ, nac, potF, potG, potH, potI, rutA, rutB, rutD, 

rutE, rutG, yeaG, ygjG, yhdW, yhdX, yhdY, yhdZ 
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GlpR glpA, glpB, glpC, glpD, glpF, glpK, glpQ, glpT, glpX 

GntR eda, edd, gntK, gntT, gntU, gntY, idnD, idnK, idnO, idnR, idnT 

GutM gutM, gutQ, srlA, srlB, srlD, srlE, srlR 

HcaR hcaB, hcaC, hcaD, hcaE, hcaF, hcaR 

H-NS 

adiA, appY, bglB, bglF, bglG, bglJ, bolA, cadA, cadB, caiF, chiA, chpA, chpR, csiE, cspD, cydA, 

cydB, cysA, cysG, cysM, cysP, cysU, degP, entF, fepE, fes, fimA, fimB, fimD, fimE, fimF, fimG, 

fimH, fimI, flhC, flhD, fliA, fliC, fliY, fliZ, gabD, gabP, gabT, gadA, gadB, gadW, gadX, galE, 

galK, galM, galT, garK, garL, garR, gspA, gspB, gspC, gspD, gspE, gspF, gspH, gspI, gspJ, gspK, 

gspL, gspM, gspO, gutM, gutQ, hchA, hdeA, hdeB, hdeD, hisJ, hisM, hisP, hisQ, hns, ilvH, ilvI, 

lacA, lacY, lacZ, leuO, mukB, mukE, mukF, nhaA, nhaR, nirB, nirD, osmC, proV, proW, proX, 

rcsA, relA, smtA, sodB, srlA, srlB, srlD, srlE, srlR, stpA, yciE, yciF, ygaF, yhiD, yjjQ 

HU galE, galK, galM, galT, mtr, pgm, seqA, tyrP 

HyfR hyfA, hyfD, hyfE, hyfF, hyfG, hyfH, hyfI, hyfJ, hyfR 

IdnR gntK, gntU, idnD, idnK, idnO, idnR, idnT 

IHF 

aceA, aceB, aceK, acs, actP, adiA, amiA, atoA, atoB, atoD, atoE, caiA, caiB, caiC, caiE, caiT, 

carA, carB, cysG, cysH, cysI, cysJ, dcuD, dmsA, dmsB, dmsC, dppA, dppB, dppC, dppD, dppF, 

dps, dusB, envZ, fhlA, fimA, fimB, fimD, fimF, fimG, fimH, fimI, fis, flhC, flhD, focA, folA, gcd, 

glcA, glcB, glcD, glcE, glcG, glnH, glnP, glnQ, glpQ, glpT, gltA, gltB, gltD, gltF, hemA, hemF, 

hipA, hipB, hpt, htrE, hycA, hycB, hycC, hycD, hycE, hycF, hycG, hycH, hycI, hypA, hypB, hypE, 

ihfA, ihfB, ilvA, ilvD, ilvE, ilvL, ilvM, lyx, maoC, mtr, narG, narH, narI, narJ, narK, ndh, nirB, 

nirD, nmpC, norV, norW, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, nuoA, nuoB, nuoC, nuoE, nuoF, 

nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, ompC, ompF, ompR, osmE, osmY, paaA, 

paaB, paaC, paaD, paaE, paaF, paaG, paaH, paaI, paaJ, paaK, pflB, phoU, prfA, prmC, pspA, 

pspB, pspC, pspD, pspE, pspG, pstA, pstB, pstC, pstS, rpoH, rtcA, rtcB, sgbE, sgbH, sgbU, sodA, 

sodB, ssuB, ssuC, ssuD, ssuE, sucA, sucB, sucC, sucD, sufA, sufB, sufC, sufE, sufS, tdcA, tdcB, 

tdcC, tdcD, tdcE, tdcG, tyrP, ubiA, ulaB, ulaC, ulaD, ulaE, ulaF, ulaG, uspA, uspB, yeiL, ygjG, 

yiaJ, yiaK, yiaL, yiaM, yiaN, yiaO, yjbE, yjbF, yjbG, yjbH, yjcH 

IscR 
erpA, gntY, hyaA, hyaB, hyaC, hyaD, hyaE, hyaF, iscA, iscR, iscS, iscU, napA, napB, napC, napD, 

napF, napG, napH, sufA, sufB, sufC, sufE, sufS, ydiU 

LeuO bglB, bglF, bglG, bglJ, cadC, leuA, leuB, leuD, leuL, leuO, yjjQ 

LexA ddlB, dinF, dinG, dnaG, ftsA, ftsI, ftsK, ftsL, ftsQ, ftsW, ftsZ, insK, lexA, lpxC, mraY, murC, murD, 
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murE, murF, murG, phr, polB, recA, recN, recX, rpoD, rpsU, ruvA, ruvB, ssb, sulA, symE, umuC, 

umuD, uvrA, uvrB, uvrC, uvrD, uvrY, ydjM 

Lrp 

aidB, aroA, dadA, dadX, fimA, fimD, fimE, fimF, fimG, fimH, fimI, gabD, gabP, gabT, gcvH, gcvP, 

gcvT, gltB, gltD, gltF, hdeA, hdeB, ilvA, ilvD, ilvE, ilvH, ilvI, ilvL, ilvM, kbl, livF, livG, livH, livJ, 

livK, livM, lrp, lysU, malT, ompC, ompF, oppA, oppB, oppC, oppD, oppF, osmC, osmY, sdaA, 

serA, serC, stpA, tdh, yeiL, ygaF, yhiD 

LsrR lsrA, lsrB, lsrC, lsrD, lsrF, lsrG 

MalT lamB, malE, malF, malG, malK, malM, malP, malQ, malS, malZ 

MarA 
acrA, acrB, dctR, fpr, fumC, hdeA, hdeB, inaA, marA, marR, nfo, nfsB, poxB, pqiA, pqiB, purA, 

putA, rob, slp, sodA, yhiD, zwf 

MetJ ahpF, metA, metB, metC, metE, metF, metI, metK, metL, metN, metQ, metR 

MetR glyA, hmp, metA, metE, metH, metR 

ModE 

ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, ccmH, deoA, deoB, deoC, deoD, dmsA, dmsB, 

dmsC, hycA, hycB, hycC, hycD, hycE, hycF, hycG, hycH, hycI, moaA, moaB, moaC, moaE, modA, 

modB, modC, napA, napB, napC, napD, napF, napG, napH, narL, narX, oppA, oppB, oppC, oppD, 

oppF 

Nac asnC, codA, codB, gabD, gabP, gabT, gdhA, gltB, gltD, gltF, mioC, mnmG, nac, nupC, serA 

NagC 
chbB, chbC, chbF, chbG, chbR, fimB, glmS, glmU, manX, manY, manZ, nagA, nagB, nagC, nagD, 

nagE, nanC, nanM 

NanR fimB, nanC, nanE, nanK, nanM, yhcH 

NarL 

adhE, aspA, caiF, ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, ccmH, cydC, cydD, cysG, dcuA, 

dcuR, dcuS, dmsA, dmsB, dmsC, fdnG, fdnH, fdnI, focA, frdA, frdB, frdC, frdD, fumB, hcp, hcr, 

hyaA, hyaB, hyaC, hyaD, hyaE, hyaF, hybA, hybB, hybC, hybD, hybE, hybF, hybG, hybO, moeA, 

moeB, napA, napB, napC, napD, napF, napG, napH, narG, narH, narI, narJ, narK, nikC, nikD, 

nikE, nikR, nirB, nirD, norV, norW, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, nuoA, nuoB, nuoC, 

nuoE, nuoF, nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, pflB, torA, torC, torD, ubiA, 

ydhT, ydhU, ydhV, ydhW, ydhX, ydhY, yeaR, yoaG, ytfE 

NarP 

ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, ccmH, cysG, fdnG, fdnH, fdnI, hcp, hcr, hyaA, 

hyaB, hyaC, hyaD, hyaE, hyaF, napA, napB, napC, napD, napF, napG, napH, nirB, nirD, norV, 

norW, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, ydhT, ydhU, ydhV, ydhW, ydhX, ydhY, yeaR, yoaG, 

ytfE 
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NhaR nhaA, nhaR, osmC, pgaA, pgaB, pgaC, pgaD 

NrdR nrdA, nrdB, nrdD, nrdE, nrdF, nrdG, nrdH, nrdI 

NsrR hcp, hcr, hmp, nrfA, nrfB, nrfC, nrfD, nrfE, nrfF, nrfG, tehA, tehB, yeaR, ygbA, yoaG, ytfE 

OmpR bolA, csgD, csgE, csgF, csgG, fadL, flhC, flhD, nmpC, ompC, ompF, tppB 

OxyR ahpF, dps, fur, gor, grxA, hemH, katG, oxyR, sufA, sufB, sufC, sufE, sufS, trxC, yhjA 

PaaX maoC, paaA, paaB, paaC, paaD, paaE, paaF, paaG, paaH, paaI, paaJ, paaK 

PdhR 
aceE, aceF, cyoA, cyoB, cyoC, cyoD, cyoE, fecA, fecB, fecC, fecD, fecE, hemL, hha, lpd, ndh, 

pdhR, ybaJ, yfiD 

PhoB 
amn, argP, asr, eda, phnC, phnD, phnE, phnF, phnG, phnH, phnI, phnJ, phnK, phnM, phnO, phnP, 

phoA, phoB, phoE, phoH, phoR, phoU, pitB, psiE, psiF, pstA, pstB, pstC, pstS, ugpA, ugpC, yibD 

PhoP 
acrA, acrB, argD, borD, dcuD, fadL, hemL, malS, metB, metL, mgrB, mgtA, nagA, pagP, phoP, 

phoQ, purD, purH, rstA, rstB, rutA, rutB, rutD, rutE, rutG, slyB, treR, ybjG, yrbL 

PrpR prpB, prpC, prpD, prpE, prpR 

PspF pspA, pspB, pspC, pspD, pspE, pspF, pspG 

PurR 
carA, carB, codA, codB, cvpA, gcvH, gcvP, gcvT, glnB, glyA, guaA, guaB, hflD, prs, purA, purB, 

purC, purD, purE, purF, purH, purK, purL, purM, purN, purR, pyrC, pyrD, speA, speB, ubiX 

RbsR rbsA, rbsB, rbsC, rbsD, rbsK, rbsR 

RcsAB 
bdm, csgD, csgE, csgF, csgG, flhC, flhD, ftsA, ftsZ, osmB, osmC, rcsA, wcaA, wcaB, wzb, wzc, 

yjbE, yjbF, yjbG, yjbH 

Rob acrA, acrB, aslB, fumC, inaA, marA, marR, nfo, sodA, ybiS, zwf 

AlsR alsA, alsB, alsC, alsE, rpiB 

RstA asr, csgD, csgE, csgF, csgG, narG, narH, narI, narJ, ompF 

RutR carA, carB, gadW, gadX, gmr, rutA, rutB, rutD, rutE, rutG, rutR 

SgrR setA, tbpA, thiP, thiQ, yfdZ 

SoxS 
acrA, acrB, fldA, fldB, fpr, fumC, fur, inaA, marA, marR, nfo, nfsA, pgi, poxB, pqiA, pqiB, ptsG, 

ribA, rimK, sodA, soxS, ybjC, ybjN, yodA, zwf 

GutR gutM, gutQ, srlA, srlB, srlD, srlE, srlR 

TdcA tdcA, tdcB, tdcC, tdcD, tdcE, tdcG 

TdcR tdcA, tdcB, tdcC, tdcD, tdcE, tdcG 

TorR gadA, gadB, gadX, hdeA, hdeB, tnaA, tnaB, torA, torC, torD, torR, yhiD 
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TrpR aroH, aroL, mtr, trpA, trpB, trpC, trpD, trpE, trpL, trpR, yaiA 

TyrR aroF, aroG, aroL, aroP, folA, mtr, tyrA, tyrB, tyrP, tyrR, yaiA 

UlaR ulaB, ulaC, ulaD, ulaE, ulaF, ulaG 

UxuR gntP, uidA, uidB, uidC, uxuA, uxuR 

YiaJ lyx, sgbE, sgbH, sgbU, yiaK, yiaL, yiaM, yiaN, yiaO 

Zur ykgM, yodA, znuA, znuB, znuC 
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Appendix D 
 
Sigma19 fecA, fecB, fecC, fecD, fecE 

Sigma28 

aer, cheA, cheB, cheR, cheW, cheY, cheZ, flgK, flgL, flgM, flgN, fliA, fliC, fliD, fliE, fliF, fliG, fliH, 

fliI, fliJ, fliK, fliL, fliM, fliN, fliP, fliQ, fliR, fliS, fliT, fliY, fliZ, flxA, modA, modB, modC, motA, 

ppdA, ppdB, ppdC, recC, tap, tar, tsr, ycgR, yecF, ygbK, yhiL, yhjH, yjcS, ynjH 

Sigma70, 

Sigma32 

can, clpB, dgsA, dsbC, glnS, groS, hepA, lipB, lon, pyrF, recJ, xerD, ybeD, yceI, yceJ, yciH, yciM, 

yciS, ynfK 

Sigma70, 

Sigma38 

acnA, adhE, aidB, appA, appB, appC, bolA, btuF, cbpM, cfa, csgA, csgC, csiE, dnaN, dps, ftsA, 

ftsQ, ftsZ, gadA, gadB, gadC, gadX, galE, galK, galM, galT, hdeA, hdeB, hyaA, hyaB, hyaC, 

hyaD, hyaE, hyaF, mglA, mglB, mglC, mpl, mtn, osmB, osmE, osmY, phoU, pqiA, pqiB, proV, 

proW, proX, pstA, pstB, pstC, pstS, recF, sohB, topA, yadS, yhiD 

Sigma70 

accA, accB, accC, accD, aceA, aceB, aceE, aceF, aceK, acnA, acnB, acrA, acrB, acs, actP, ada, 

adiA, adrA, agaA, agaB, agaC, agaD, agaI, agaR, agaS, agaV, agaW, ahpF, aldA, alkA, alkB, 

alsA, alsB, alsC, alsE, amiA, amiB, ampC, amyA, ansB, apt, araA, araB, araC, araD, araE, araF, 

araG, araH, araJ, arcA, argB, argC, argD, argE, argF, argG, argH, argI, argR, aroA, aroB, aroF, 

aroG, aroH, aroK, aroL, aroP, arsB, arsC, artI, artJ, artM, artP, artQ, ascB, ascF, ascG, asnA, 

asnC, aspA, asr, astA, astB, astC, astD, astE, atpA, atpB, atpC, atpD, atpE, atpF, atpG, atpH, 

bamC, bcp, betA, betB, betI, betT, bglJ, bglX, bioA, bioB, bioC, bioD, bioF, bolA, btuB, cadA, 

cadB, cadC, caiA, caiB, caiC, caiE, caiF, caiT, carA, carB, cbl, ccmA, ccmB, ccmC, ccmD, ccmE, 

ccmF, ccmG, ccmH, cdd, cedA, chiA, chpA, chpB, chpR, chpS, cirA, clpA, cls, cmk, coaD, cobS, 

cobT, cobU, codA, codB, corA, cpdB, cpxA, cpxP, cpxR, creA, creB, creC, creD, crp, crr, cspA, 

cspD, cspE, cstA, cusA, cusB, cusC, cusF, cusR, cusS, cutA, cvpA, cyaA, cydA, cydB, cynR, cynS, 

cynT, cynX, cyoA, cyoB, cyoC, cyoD, cyoE, cysA, cysC, cysD, cysG, cysH, cysI, cysJ, cysK, cysM, 

cysN, cysP, cysU, cytR, dadA, dadX, dam, damX, dapA, dapB, dapD, dapE, dctA, dctR, dcuA, 

dcuD, dcuR, dcuS, ddlB, def, deoA, deoB, deoC, deoD, dgsA, dicB, dinF, dinG, dksA, dmsA, dmsB, 

dmsC, dnaG, dnaN, dppA, dppB, dppC, dppD, dppF, dsbA, dsdA, dsdC, dsdX, dusB, dut, dxs, 

ebgA, ebgC, eda, edd, efeU, efp, entA, entB, entC, entD, entE, entF, entS, envZ, epd, era, evgA, 

evgS, exbB, exbD, fabA, fadA, fadB, fadD, fadI, fadJ, fadL, fbaA, fdnG, fdnH, fdnI, fdx, fecI, fecR, 

fepA, fepB, fepC, fepD, fepE, fepG, fes, fhuA, fhuB, fhuC, fhuD, fhuF, fimA, fimB, fimD, fimE, fimF, 

fimG, fimH, fimI, fis, fiu, fixC, fixX, fkpB, fldB, flgA, flgC, flgD, flgE, flgF, flgG, flgH, flgI, flgJ, 
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flgM, flgN, flhC, flhD, fliA, fliD, fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliL, fliM, fliN, fliP, fliQ, fliR, 

fliS, fliT, fliY, fliZ, fmt, fnr, focA, folA, folK, fpr, frc, frdA, frdB, frdC, frdD, frsA, fruA, fruB, fruK, 

ftnB, ftsA, ftsI, ftsK, ftsL, ftsQ, ftsW, ftsZ, fucA, fucI, fucK, fucO, fucP, fucR, fucU, fumA, fumB, fur, 

gabD, gabP, gabT, galE, galK, galM, galP, galR, galS, galT, gapA, gatA, gatC, gatD, gatY, gatZ, 

gcd, gcvA, gcvH, gcvP, gcvT, gdhA, glcA, glcB, glcC, glcD, glcE, glcG, glgA, glgC, glgP, glmS, 

glmU, glnA, glnB, glnG, glnL, gloA, glpA, glpB, glpC, glpD, glpF, glpK, glpQ, glpT, glpX, gltA, 

gltB, gltD, gltF, gltI, gltJ, gltK, gltL, gltX, glyA, glyQ, glyS, gmr, gnd, gntK, gntP, gntR, gntT, gntU, 

gntY, gph, gpmA, gpt, gspA, gspB, gspC, gspD, gspE, gspF, gspH, gspI, gspJ, gspK, gspL, gspM, 

gspO, guaA, guaB, gutM, gutQ, gyrA, gyrB, hchA, hdeD, hemA, hemF, hemH, hemN, hepA, hflB, 

hflC, hflD, hflK, hflX, hfq, hha, hipA, hipB, hisA, hisB, hisF, hisH, hisI, hisJ, hisM, hisP, hisQ, 

hisS, hns, hokD, hpf, hpt, hscA, hscB, htrE, hupB, hybA, hybB, hybC, hybD, hybE, hybF, hybG, 

hybO, hypF, icd, idnK, ileS, ilvA, ilvB, ilvC, ilvD, ilvE, ilvH, ilvI, ilvL, ilvM, ilvN, ilvY, imp, inaA, 

infA, infB, infC, insD, intQ, iraP, iscA, iscR, iscS, iscU, iscX, ispA, ispH, ivbL, katG, kbaY, kbaZ, 

kbl, kdpA, kdpB, kdpC, kdsA, kdsB, kdsC, kdsD, lacA, lacI, lacY, lacZ, lamB, leuA, leuB, leuD, 

leuL, leuO, lexA, livF, livG, livH, livJ, livK, livM, lldD, lldP, lldR, lpd, lpxC, lrp, lspA, lysA, lysC, 

lysP, lysR, lysU, lyx, malE, malF, malG, malI, malK, malM, malP, malQ, malS, malT, malX, malY, 

manX, manY, manZ, marA, marR, mdh, mdoG, mdoH, melA, melB, melR, menA, menB, menC, 

menE, metA, metB, metC, metF, metH, metI, metJ, metK, metL, metN, metQ, mfd, mgtA, mhpC, 

mhpD, mhpE, mhpF, mhpR, miaA, mioC, mngR, mnmG, modA, modB, modC, moeA, moeB, mpl, 

mprA, mraW, mraY, mraZ, mreB, mreC, mreD, mtlA, mtlD, mtlR, mtr, mukB, mukE, mukF, murC, 

murD, murE, murF, murG, murI, mutL, nadB, nagA, nagB, nagC, nagD, nagE, nanE, nanK, napA, 

napB, napC, napD, napF, napG, napH, narG, narH, narI, narJ, narK, narL, narU, narX, ndh, nfo, 

nfsA, nfsB, nhaA, nhaR, nirB, nirD, nohA, nohB, npr, nrdA, nrdB, nrdD, nrdG, nrdR, nrfA, nrfB, 

nrfC, nrfD, nrfE, nrfF, nrfG, nudB, nuoA, nuoB, nuoC, nuoE, nuoF, nuoG, nuoH, nuoI, nuoJ, 

nuoK, nuoL, nuoM, nuoN, nupC, nupG, nusA, nusB, ompA, ompC, ompF, ompR, oppA, oppB, 

oppC, oppD, oppF, osmC, otsA, otsB, oxyR, paaA, paaB, paaC, paaD, paaE, paaF, paaG, paaH, 

paaI, paaJ, paaK, paaX, paaY, panB, panC, panF, pck, pcm, pcnB, pdhR, pdxJ, pepD, pfkA, pflB, 

pgi, pgk, pgpA, pheP, phnC, phnD, phnE, phnF, phnG, phnH, phnI, phnJ, phnK, phnM, phnO, 

phnP, phoA, phoB, phoE, phoH, phoR, pitB, pncB, pnp, pntA, pntB, polB, ppiA, ppiD, pps, prfA, 

prmA, prmC, proP, proS, proV, proW, proX, prpR, prs, psiE, psiF, pspF, pth, ptsH, ptsI, ptsN, purA, 

purB, purC, purD, purE, purF, purH, purK, purL, purM, purN, purR, putA, putP, pykF, pyrC, 
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pyrD, qseB, qseC, rbfA, rbsA, rbsB, rbsC, rbsD, rbsK, rbsR, rcnA, rcnR, rcsA, rdoA, recA, recF, 

recN, recO, recX, relA, relB, relE, rfaB, rfaC, rfaF, rfaG, rfaI, rfaJ, rfaL, rfaP, rfaQ, rfaS, rfaY, 

rfaZ, rhaA, rhaB, rhaD, rhaR, rhaS, rhaT, ribA, ribD, ribE, ribF, rihB, rimK, rimM, rluA, rnb, rnc, 

rne, rpe, rpiB, rplB, rplC, rplD, rplP, rplQ, rplS, rplT, rplV, rplW, rpmC, rpmI, rpoA, rpoD, rpoE, 

rpoH, rpoN, rpoS, rpsA, rpsC, rpsD, rpsJ, rpsK, rpsM, rpsO, rpsP, rpsQ, rpsS, rpsU, rraA, rrmJ, 

rsd, rseA, rseB, rseC, rutR, ruvC, sbcC, sbcD, sdaB, sdaC, sdhA, sdhB, sdhC, sdhD, secG, serA, 

serC, setA, sfsA, sgbE, sgbH, sgbU, sixA, slmA, slp, smtA, sodA, sodB, sohA, sohB, soxR, soxS, 

speA, speB, speC, speD, speE, spy, srlA, srlB, srlD, srlE, srlR, ssb, ssuB, ssuC, ssuD, ssuE, stpA, 

sucA, sucB, sucC, sucD, sufA, sufB, sufC, sufE, sufS, sulA, surE, symE, tbpA, tdh, tfaD, tfaQ, tfaR, 

thiL, thiP, thiQ, thrA, thrB, thrC, thrL, tig, tnaA, tnaB, tonB, topA, torA, torC, torD, tppB, tpr, tpx, 

treB, treC, treR, trmD, trpA, trpB, trpC, trpD, trpE, trpL, trpR, trpS, truB, trxC, tsr, tsx, tufA, tufB, 

tyrA, tyrB, tyrP, tyrR, ubiA, ubiG, ubiX, udp, ugpA, ugpC, uhpT, ulaB, ulaC, ulaD, ulaE, ulaF, 

umuC, umuD, upp, uraA, uspA, uvrA, uvrB, uvrD, uxuA, valS, ves, waaA, waaU, wcaA, wcaB, 

wzb, wzc, xapB, xapR, xseA, xseB, yacC, yahA, yaiA, yajO, ybaJ, ybdB, ybjC, ybjN, ycaR, yccA, 

ycdN, ychA, ychF, ychH, ychQ, yciU, ydeH, ydeO, ydeP, ydfD, ydfE, ydfN, ydjM, yeaR, yebB, 

yebC, yebE, yejA, yejB, yejE, yejF, yfdX, yfdZ, yffB, yggG, yhaV, yhbC, yhbJ, yhcH, yhdT, yhfA, 

yhhY, yhjA, yiaJ, yiaK, yiaL, yiaM, yiaN, yiaO, yibD, yjaB, yjbE, yjbF, yjbG, yjbH, yjcH, yjeE, 

yjeF, yjjQ, ykgM, yoaE, yoaG, yodA, ypfN, yqjA, yqjB, yrbG, yrbK, zntA, znuB, znuC, zwf 

Sigma24 

ahpF, apaG, apaH, bacA, bamA, bamB, bamC, bamD, cca, cutC, degP, der, dnaE, dsbC, fabZ, 

fkpA, ftnB, fusA, greA, gspA, gspB, hcp, hcr, hpf, htrG, imp, ksgA, lhr, lon, lptA, lpxA, lpxB, lpxD, 

lyx, malQ, narV, narW, pdxA, plsB, prfB, psd, ptsN, recJ, recR, rfaC, rfaF, rfaL, rnhB, rpoD, rpoH, 

rpoN, rseA, rseB, rseC, rseP, rutR, rzoD, rzoR, rzpD, rzpR, sbmA, sgbE, sgbH, sgbU, skp, surA, 

tufA, tufB, uspD, wzb, wzc, yaiW, ybaB, ydhI, ydhJ, ydhK, yeaY, yfeK, yfeS, yfeX, yfeY, yfgC, yfgD, 

yfjO, yggN, yghF, yhbJ, yhjJ, yiaK, yiaL, yiaM, yiaN, yiaO, yicI, yidQ, yieE, yieF, yiiS, yjeP, yqjA, 

yqjB, yraP, ytfJ 

Sigma32 

bssS, creA, creB, creC, fkpB, fxsA, gapA, gntY, hflB, hflC, hflK, hflX, hfq, holC, hspQ, ileS, ispH, 

lnt, lspA, macB, metA, miaA, mutL, mutM, narP, nusB, osmF, pgpA, phoP, phoQ, pphA, ppiD, 

prlC, raiA, rdgB, rfaC, rfaF, rfaL, ribE, rnlA, rpmE, rpoD, rrmJ, sdaA, thiL, topA, trmA, tyrR, 

valS, yafD, yafE, yafU, ybeX, ybeY, ybeZ, yccE, ycjF, ycjX, ydeO, yeaD, yehR, yehW, yehY, yfjV, 

ygaD, ygbF, ygbT, ygcH, ygcI, yggW, yhdN, yhiQ, yiaA, yibA, yjaZ, yjhG, yjhH, yjhI, yjiT, yrdA, 

yrfG, zntR 
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Sigma54 

amtB, argT, astA, astB, astC, astD, astE, atoA, atoB, atoD, atoE, chaC, dcuD, ddpA, ddpB, ddpC, 

ddpD, ddpF, ddpX, fhlA, glnA, glnG, glnH, glnK, glnL, glnP, glnQ, gltI, gltJ, gltK, gltL, hisJ, hisM, 

hisP, hisQ, hycA, hycB, hycC, hycD, hycE, hycF, hycG, hycH, hycI, hydN, hyfA, hyfD, hyfE, hyfF, 

hyfG, hyfH, hyfI, hyfJ, hyfR, hypA, hypB, hypE, hypF, kch, nac, norV, norW, potF, potG, potH, potI, 

prpB, prpC, prpD, prpE, pspA, pspB, pspC, pspD, pspE, pspG, puuP, rpoH, rtcA, rtcB, rtcR, rutA, 

rutB, rutD, rutE, rutG, yaiS, ybhK, yeaG, yfhK, ygjG, yhdW, yhdX, yhdY, yhdZ, zraR, zraS 

Sigma38 

adhE, aldB, ansP, artI, artM, artP, artQ, astA, astB, astC, astD, astE, blc, cfa, csgD, csgE, csgF, 

csgG, fic, fliY, ftsQ, fumC, gabD, gabP, gabT, gadE, gadW, gadX, glgS, gor, hchA, hmp, htrE, ihfA, 

ihfB, katE, ldcC, lsrA, lsrB, lsrC, lsrD, lsrF, lsrG, mdtE, mdtF, msyB, narU, nhaA, nhaR, osmB, 

osmC, osmF, otsA, otsB, pfkB, phr, poxB, proP, rraA, rsd, rssB, talA, tktB, treA, uspB, xthA, ybgA, 

ybjP, yehW, yehY, yeiL, ygaF, yggE, yiaG, yihG, ytfK 
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Appendix E 
 
Introduction 
Software DrDMASS+ has been developed to effectively analyze mass spectral data based on multivariate 

analysis. Figure 1 shows a flow diagram of Data Processing consisting of four stages, (i) Peak Correction, (ii) 

Multivariate Data Preprocessing, (iii) Unsupervised Learning, and (iv) Supervised Learning. In Peak 

Correction process, we can correct experimental m/z values based on the relation between experimental and 

desired values of internal mass calibrants (IMCs). A multivariate data is consisting of a data set of multiple 
samples. In Multivariate Data Preprocessing, we can assess reproducibility of samples with iterative 

measurement, and select useful peaks for separating groups of samples and so on. In Unsupervised Learning, 

we can visualize the multivariate data by using multivariate analysis method such as principal component 

analysis (PCA) and Batch-learning self-organizing map (BL-SOM). In Supervised Learning, we can get the 

regression equation by using Partial Least Squares Regression (PLS). 

 
Figure 1. Flow Diagram of Data Processing in DrDMASS+ (Silver boxes correspond to individual processes, 
and white boxes correspond to prefix in input/output file names). 
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1. Execution of DrDMASS+ 
Java j2sdk-1.4.2 is required to be installed in the user’s computer. First, the compressed file, 

DrDMASSplus.zip is to be downloaded from http://kanaya.naist.jp/DrDMASSplus/. Under the 

‘DrDMASSplus’ folder, there are three folders ‘DMASSRAW’, ‘MASSOriginalData’, and 

‘MetabolometricsOut’, and an executable file ‘DrDMASSplus.jar’. 

 

 

 
1.1 Starting data files  
Put digital mass spectral data and an internal mass calibrant data to ‘DMASSRAW’ folder. The calibrant data 

file name should start with ‘ISDATA’. These file formats are as follows. 

 

Digital mass spectral data 
Digital mass spectral data from an IonSpec Explorer FT-ICR (IonSpec Inc., Lake Forest, CA) equipped with a 

8 tesla actively shielded super conducting magnet is a text file separated by tabs. The first to fifth columns 

correspond to m/z, Frequency, Amplitude, Relative abundant and Resolution, respectively. 

 

ISDATA 
ISDATA consists of m/z values for internal mass calibrants (IMCs).  

 

 

218.96212 
348.10235 
613.38820 
829.32078 

m/z Frequency Amplitude Rel.Abund. Resolution 
72.9895 1475427.93 0.0832 1.81 144100 
73.6554 1462089.917 0.045 0.98 189100 
…… 
…… 
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1.2 Execution of DrDMASS+ 
User can start by clicking the file DrDMASSplus.jar. The main window is shown in Panel 1. The button 
names correspond to those in Figure 1. DrDMASS+ consists of 18 Data processing modules corresponding to 

the button names. In the present system, the processed single mass spectral data is put into 

‘MASSOriginalDATA’, and the multivariate data is put into ‘MetabolometricsOut’ folder. Prefix for each 

input/output file is described in Figure 1. Each process is explained in detail in the next section and the 

summary of the processes is given below. 
1. DMP Selection of m/z values for IMCs from Digital mass spectral data. 
2. DMASS Correction of m/z values for all peaks by those of IMCs. 
3. Peak Matching (D MASS) Matrix construction for multiple samples. 
 m/z value and intensity for each sample is arranged in the matrix. 
4. Av (D MASS) Calculation of average intensity for all samples. 
5. Av (D Mass Non) Calculation of average intensity for samples with non-zero intensity. 
6. M to R Construction of multivariate data consisting of m/z values and the intensity 
 of multiple samples. 
7. Group Definition of categories for individual samples. 
8. t-Test Estimation of p-values by t-statistics for the difference between the average 
 intensities for pairs of groups. 
9. Peak Reduction  Selection of peaks with the group differences by p-values. 
10. Scaling Scaling data. 
11. Pearson correlation Pearson correlations of the intensities for pairs of m/z larger than the 
 threshold set by the user are list up. 
12. Peak-PCA and its Viewer Principal component analysis for peaks and visualization of its results. 
13. Sample-PCA and its Viewer Principal component analysis for samples and visualization of its results. 
14. BL-SOM and its Viewer Batch-learning SOM for peaks and visualization of its results. 
15. Supervised Data Maker Construction of multivariate data for PLS. 
16. PLS and its Viewer Calculation of regression equation by using Partial Least Squares 
 Regression and verifying calculations. 
17. Estimation by PLS model and its Viewer 
 Estimation by PLS model and verifying calculations. 
18. PLS (cross-validation) Calculation of the optimum number of components by using cross 
 validation. 

 
Panel 1. The main window. 
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2 Explanation of individual processes 
 
(i) Peak Correction 
2.1. DMP  

DMP process is a selection process of m/z values for IMCs from Digital mass spectral data. The nearest m/z 

value in the digital mass spectral to those for IMCs is selected.  

Input file (i) Digital spectral data (its naming is free), and (ii) ISDATA 

Output file DMASS 

Execution [1] Click DMP button, so the following panel is displayed.  
[2] Select a suitable IMC file consisting of m/z values in internal mass calibrants. 
[3] Click DMASSP button if the selection process of m/z values for IMCs is carried 
out for all MS files, or click an inputfile name (for example Sample1-1.mit) if the 
selection process is carried out for a targeted input file. In the demonstration data, we 
select ISDATANegative(218).txt and click ‘DMASSP’ button. 

 
Output file 

format 
(DMASS) 

 
1st line represents inputfile name. From 2nd line to ‘//’ (7th line): m/z values for IMCs 
are listed, that is, experimental and theoretical values for individual IMCs correspond 
to the first and second columns. From AllData to ‘//’ (final line), m/z and its intensity 
are arranged. 

>Sample1-1.mit 
Standard 
218.9664 218.96212 
348.1119 348.10235 
613.4106 613.3882 
829.3563 829.32078 
// 
AllData 
72.9895 0.0832 
73.6554 0.045 
…. 
…. 
976.4644 0.0313 
// 
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2.2 DMASS  

All m/z values are corrected by linear relationship between theoretical and experimental values in the interval 

defined by the nearest m/z values for IMCs. 
 

Input file DMASS 

Output file PEAK 

Execution [1] Select samples used by clicking any number of filenames or ‘Select All’ button. 
[2] Click ‘Start Correct’ button. Output files started with ‘PEAK’ are obtained. 

Output file 
format 

(PEAK) 

 
1st line represents inputfile name. From 2nd line to ‘//’ (7th line), m/z values shown for 
IMCs are listed, that is, the theoretical values for individual IMCs correspond to both 
columns. From AllData to ‘//’ (final line), corrected m/z and its intensity are arranged.  

>Sample1-1.mit 
Standard 
218.96212 218.96212 
348.10235 348.10235 
613.3882 613.3882 
829.32078 829.32078 
// 
AllData  
72.99117683367211 0.0832 
73.65704966049918 0.045 
… 
… 
976.4199422981981 0.0313 
// 
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(ii) Multivariate Data Preprocessing 
 
2.3 Peak Matching (D MASS) 
According to m/z values, peaks for multiple samples are arranged to matrix.  

Input file PEAK 

Output file MULTI 

Execution 

  
[1] Input Output file name. 
[2] Input Resolution (margin). This parameter determines the region of m/z as identical 
positions. 
[3] Select samples used by clicking any number of filenames or ‘Select All’ button. 
[4] Click ‘Add’ button, then the selected filenames are moved from left to right side. 
[5] Prepare the order of filenames by selecting a filename and using ‘Up’ and ‘Down’ 
buttons. The order of filenames corresponds to the order from left to right in the 
constructed matrix. 
[4] Click ‘Start Merge’ button. Output files started with ‘MULTI’ are obtained. 

Output file 

format 

(MULTI) 

 
1st line represents Resolution. Lines started with ‘>’ are sample names analyzed. 
Standard [0] to standard [3] represent corrected m/z for IMCs. After IMC line, pairs of 
m/z and its intensities are arranged according to the order of sample names. 

Resolution=0.0010 
>Sample1-1.mit 
>Sample1-2.mit 
... 
>Sample1-1.mit 
standard[0] 218.96212 218.96212 218.96212 218.96212 ... 
… .... ... ... ... ... 
standard[3] 829.32078 829.32078 829.32078 829.32078 ... 
63.67552147 0.0 0.0 0.0 0.0 ... 
72.99098211 72.991176 0.0832 72.98792 0.0912 ... 
... 
... 
976.3983668 976.41994 0.0313 976.3946 0.0353 ... 
// 
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Reproducibility of iterative measurements 
Reproducibility of iterative measurements can be checked by statistical assessment for ‘Av (D MASS)’ and 

‘Av (D Mass Non)’. 

 
2.4 Av (D MASS) 
Calculation of average intensity for all samples. 

Input file MULTI 

Output file (i) PEAK(thr), (ii) StatisticsPEAK(thr) 

Execution 

 
[1] Set peak number threshold by relative value. For each set of m/z values, the 
average for their intensities are calculated when the sample number of non-zero 
intensities for each m/z is larger than the product of relative value and total sample 
number. 
[2] Click filename, statistics for the reproducibility in iterative measurements is output 
to StatisticsPEAK(thr) file, and m/z values and its corrected average intensities by those 
for IMCs are output to a ‘PEAK(thr)’ file.  

Output file 
format 

PEAK(thr) 
Format of PEAK(thr) files is the same as that of PEAK files described in section 2.2. 
The intensity for each m/z is corrected by the average intensities for IMCs. 
The word ‘thr’ in the parentheses represents threshold set in execution of Av (D MASS).   
StatisticsPEAK(thr) 
Statistical information for selected input file is obtained as follows. Details are 
described in the following subsection entitled ‘Statistics of Av (D MASS)’. 

 
 

 >Sample1-1.mit … >Sample1-5.mit Av SD Av/SD 
TOTAL 32.7891 … 34.7244 31.4475 2.32830 13.506 
CRTOTAL 9.88717 … 10.1118 10.5488 1.36673 7.7182 
AvRef 3.31632 … 3.43402 3.02552 0.46837 6.4595 
Threshold=0.7 200 … 193    
  >Sample1-1.mit … >Sample1-5.mit nonzero Av correctAv 
72.9903883 0.0832 … 0.0836 5 0.08486 0.02887 
73.65618938 0.0450 … 0.0496 5 0.05088 0.01731 
… 
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Statistics of Av (D MASS) 
In M iterative measurements, the intensities for IMCs and m/z are represented by data matrices Y and X, 
respectively. Here, the number of IMCs and peaks are denoted by S and N, respectively. 
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Line that stars with ‘AvRef’ in StatisticsPEAK(thr) corresponds to the average of IMCs for jth measurement 
represented by Eq. (2.4.3). 
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The values under the columns Av, SD, Av/SD correspond to y  represented by Eq. (2.4.4), 
)(ySD represented by Eq. (2.4.5), and )(/ ySDy , respectively. 
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Line that starts with ‘TOTAL’ corresponds to the statistical parameters for the intensities in jth measurement 

in a set of m/z whose intensities for all measurements are not zero is denoted by 'ijx . 

Concretely, )'( jxtotal  corresponds to total intensities for jth. 

Line ‘CRTOTAL’ corresponds to statistical parameters for corrected intensities by the average of IMCs, that 

is, 
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In ’Threshold’ line, threshold set by the user and the number of peaks satisfied by this condition is represented. 

From the following line to the last line, m/z value, and corrected intensity for each sample are calculated as 
represented in Eq. (2.4.7). 
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The column ‘nonzero’ corresponds to the number of intensities larger than zero. CorrectAv corresponds to the 
average of )'( ijxc represented by Eq. (2.4.8) 

 
i

j
ij

i M

xc
xav

'

)'(
)'(   (2.4.8) 

Here M’i represents the number of measurements larger than zero for ith m/z. The m/z and its correctedAv are 
arranged in the other output file (PEAK(thr)). 
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2.5 Av (D MASS Non)  

Calculation of average intensity for samples with non-zero intensity. 

Input file MULTI 

Output file PEAKNON(thr), (ii) StatisticsPEAKNON(thr) 

Execution Execution of Av (D MASS Non) is the same as that of Av (D MASS). 
[1] Set peak number threshold by relative value. For each set of m/z values, the 
average for their intensities is calculated when the sample number of non-zero 
intensities for each m/z is larger than the product of relative value and total sample 
number. 
[2] Click filename, statistics for the reproducibility in iterative measurements is output 
to StatisticsPEAK(thr) file, and m/z values and its average intensities are output to a 
‘PEAK(thr)’ file.  

 

 

 

 >Sample1-1.mit … >Sample1-5.mit Av SD Av/SD 
TOTAL 32.7891 … 34.724 31.4475 2.3283 13.5066 
CRTOTAL 9.8871 … 10.111 10.5488 1.3667 7.71827 
AvRef 3.3163 … 3.4340 3.0255 0.4683 6.45957 
Threshold=0.7 200 … 193    
 >Sample1-1.mit … >Sample1-5.mit nonzero Av correctAv 
72.9903 0.1699 … 0.1760 5 0.1815 0.0616 
73.6561 0.0918 … 0.1044 5 0.1093 0.0371 
… 
… 
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2.6 M to R 

In ‘M to R’, a multivariate data matrix consisting of average m/z values and the intensities for multiple 
measurements is constructed. 

Input file MULTI 

Output file RED (data format for multivariate analyses in DrDMASS+ system) 

Execution Click filename, then format in MULTI is exchanged to that in RED file. 

  
Output file 
format 
(RED) 

1st line corresponds to inputfile name, and 2nd and 3rd lines correspond to group index 
and merged filenames, respectively. 4th to the last lines corresponds to m/z and 
intensities for individual measurements.  

 
 

 

>MULTITEST.txt    
>no. 1 2 3 … 
>filename >Sample1-1.mit >Sample1-2.mit >Sample1-3.mit … 
72.99098211 0.0832 0.0912 0.0963 … 
73.65656016 0.0450 0.0535 0.0571 … 
… 
… 
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Feature (m/z) selection 
Peak selection of the statistical significant differences in intensities between groups is carried out by the 

sequential processes entitled Group (Section 2.7), t-Test (Section 2.8), and Peak Reduction (Section 2.9). 

 
2.7 Group 

Definition of categories for individual samples. 

Input file MULTI 

Output file GMULTI 

Execution [1] Click Grouping button, then Group DMASS panel is displayed.  

[2] Select filename, then ‘Select files to group’ panel is displayed. 

 

 
[3] Select files belonging to the same group, and move these files to right side by 
clicking ‘Add’ button.  

 

[4] Click ‘Decide’ button. So selected file is removed and their group is assigned to 
output file started with ‘G’. 
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[5] Continue the manipulation of [3] and [4] until groups for all files are assigned, 
that is, all files are removed. 
[6] Click ‘Start Grouping’ button, then grouping process is started. 

 

Output file 
format 
 

Lines started with ‘>group’ correspond to the numbers of individual groups. The line 
with ‘>no’ corresponds to group ID, the line with ‘filename’ corresponds to the labels 
for individual measurements, and the m/z values and their intensities are arranged.  

 

 

>group1 5       
>group2 5       
>group3 5       
>no. 1 … 1 2 … 2 … 
>filename Sample1-1.mit … Sample1-5.mit Sample2-1.mit … 
72.99098211 0.0832 … 0.0836 0.0635 … 0.0704 … 
73.65656016 0.0450 … 0.0496 0.0477 … 0.0419 … 
77.07104731 0 … 0 0 … 0 … 
…. 
…. 
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2.8 t-Test  

Estimation of p-values by t-statistics for the difference between the average intensities for pairs of groups. 

Input file GMULTI 

Output file PGMULTI 

Execution Click filename, then p-values by t-statistics for the difference between the average 
intensities for pairs of groups are calculated for individual m/z.  

 
Output file 

format 

Lines started with ‘>group’ correspond to measurements belonging to the same groups. 
Line with ‘combination’ represents pairs of groups. The m/z values and two statistical 
parameters, t-values and p-values, for all pairs of groups are arranged.  

 
 

 

>group1 Sample1-1.mit  Sample1-2.mit  Sample1-3.mit Sample1-4.mit Sample1-5.mit  
>group2 Sample2-1.mit Sample2-2.mit Sample2-3.mit Sample2-4.mit Sample2-5.mit  
>group3 Sample3-1.mit Sample3-2.mit Sample3-3.mit Sample3-4.mit Sample3-5.mit  
>combination 1 vs 2  1 vs 3  2 vs 3  
72.99098211 3.903 0.0022 3.817 0.0025 0.938 0.1878 
73.65656016 1.236 0.1257 2.612 0.0154 1.892 0.0475  
… 
…                                                               
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2.9 Peak Reduction  

The m/z for statistically significant differences of the intensity between pairs of groups with p-value smaller 
than the threshold is selected. Thus, noisy intensities can be removed from the multivariate analysis.  

 

Input file PGMULTI, GMULTI 

Output file RED(thr); thr corresponds to p-value set by user. 

Execution [1] Input threshold of p-value. 
[2] Click filename. 

 
Output file 
format 

 
(RED format described in 2.6 ‘M to R’) 
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2.10. Scaling  

For each m/z, peak intensities for multiple measurements are normalized to unity in sum of square.  

Input file RED 

Output file REDS 

Execution [1] Click filename. 

 
Output file 

format 

(RED format described in 2.6 ‘M to R’) 

 
In M measurements, the intensities for individual m/z values are represented by a data matrix X. Here, the 
number of IMCs and is denoted by S are denoted by S and N, respectively.   
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For each m/z, peak intensities for multiple measurements are scaled by using Eq. (2.10.2).  
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2.11. Pearson correlation  

Pearson correlations of the intensities for pairs of m/z larger than the threshold set by the user are list up.   

Input file MULTI 

Output file Pearson(thr) 

Execution [1] Input threshold of Correlation. 
[2] Click filename. 

 

Output file 
format 

1st line started with ‘>Threshold’ corresponds to the threshold set by the user. 2nd to the 
last lines correspond to pairs of peaks (m/z values) and their Pearson correlations. The 
numbers in parentheses represent index number for peaks in the input file. The index 
numbers of peaks (m/z’s) are assigned from up to down in the input file.  
 
 
 
 
 
 

 
 

>Threshold>=0.9 
72.99283739615221(1) 109.48510305120904(7) 0.9802398346382768 
72.99283739615221(1) 153.35659328616688(17) 0.9455749879863627 
72.99283739615221(1) 166.05649834186937(19) 0.9856522752844742 
….. 
….. 
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(iii) Multivariate Analysis 
2.12. Peak-PCA and its Viewer 
Principal component analysis for peaks and visualization of its results. In PCA, three types of parameters, 

Score, Factor loading, and %Var are used for interpreting multivariate data. In Peak-PCA, variables 

correspond to experiments, and objects correspond to peak intensities for individual m/z values. So Score is 

calculated for the peak intensities for each m/z, and Factor loading (correlation between sth principal 

component and tth variable) is calculated for pairs between a vector for sth principal components and a vector 

corresponding to tth experiment.  

Input file RED 

Output file PCA 

Execution [1] Click filename. 

 

[2] After finishing execution of Principal component analysis, the results of PCA can be 
visualized by clicking ‘viewer’ button on right side of ‘Peak-PCA’ button. 
[3] Select file and two variables, then we can obtain PC projection for m/z and Factor 
loadings for measurements. Information of m/z and measurements are obtained by 
clicking dots in the plots, PC projection and Factor loadings, respectively. Percent 
variance is also listed up in the left of the downside.  
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2.13. Sample-PCA and its Viewer 
In Sample-PCA, variables correspond to m/z, and objects correspond to peak intensities for individual 
experiments. So Score is calculated for the peak intensities for each experiment, and Factor loading is 

calculated for pairs between a vector for sth principal components and a vector corresponding to tth m/z.  
 

Input file RED 

Output file PCASP 

Execution [1] Click filename. 

 
[2] After finishing execution of Principal component analysis, the results of PCA can be 
visualized by clicking ‘viewer’ button on right side of ‘Peak-PCA’ button. 
[3] Select file and two variables, then we can obtain PC projection for measurements 
and Factor loadings for m/z. Information of measurements and m/z are obtained by 
clicking dots in the plots, PC projection and Factor loadings, respectively. Percent 
variance is also listed up in the bottom left.  
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2.14. BLSOM and its Viewer 
Batch-learning SOM for peaks and visualization of its results 

 

Input file RED 

Output file CLSOM 

Execution I. Construction of Self-organizing map 
1. Constructing of initial weight vectors by PCA 
[1-1] Input Outputfile name. 
[1-2] Select Inputdata  
[1-3] Set the number of weights in x size, then y size is automatically determined by 
variance ratio of the first and second principal components determined by PCA. 
[1-4] Click ‘PCA Init.’ button. 

 

After execution of ‘PCA Init.’, a weight matrix file whose name is given by user and 
automatically added by ‘WTSPCA’ in the head is constructed in Weight Matrix.  
 
II Learning process by Data Set and Initial Weight Matrix 
[2-1] Input outputfile name. 
[2-2, 2-3] Select an inputfile and its corresponding initial weight matrix in Data Set 
and Weight Matrix, respectively. 
[2-4] Click ‘Som Weight Construction’ button. 
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After execution, weight vectors optimized by input vectors are constructed in a filename 
with WTSSOM. 
 
III Classification of objects (m/z) 
[3-1] Input inputfile name. 
[3-2, 3-3] Select an inputfile and its corresponding weight matrix started with 
WTSSOM in Data Set and Weight Matrix, respectively. 
[3-4] Click ‘Classification’ button. 
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IV Visualization of Classification of objects (m/z) 
(This process is the same as that of Viewer on the right of BL-SOM.  

[4-1] Click ‘SOM Viewer’. 

 
[4-2] Select file. 

 

Then, SOM Viewer is displayed. 

 
Profile analysis 
Click a square, m/z values with similar profiles in multiple measurements are displayed. 
The following example is the profiles in the square at X=19 and Y=10. Two profiles in 
m/z with 255.2329 and 348.1023 are very similar in the multiple measurements.  
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Characterization of individual measurements 
When a user wants to know high and low levels corresponding to individual experiments, 
he/she should click experiment ID. In this example the 5th experiment has been selected. 
Pink and Red lattices include only objects with measurements larger than the average for 
the selected experiment. Sky blue and Blue lattices include only objects with 
measurements smaller than the average for the selected experiment. A red lattice 
indicates that at least one of the objects belonging to it is with a measurement value 
larger than the average plus the standard deviation and a blue lattice indicates that at least 
one of the objects belonging to it is with a measurement value smaller than the average 
minus the standard deviation. 

 
BL-SOM package is also available in our laboratory http://kanaya.naist.jp/SOM/, and is 
applied to several works as bioinformatics tool as follows. 
1. S. Kanaya, M. Kinouchi, T. Abe, Y. Kudo, Y. Yamada, T. Nishi, H. Mori, T. Ikemura. 
Analysis of codon usage diversity for bacterial genes with a self-organizing map (SOM): 
characterization of horizontally transferred genes with emphasis on the E. coli O157 
genome., Gene, 276, 89-99 (2001) 
2. T. Abe, S. Kanaya, M. Kinouchi, Y. Ichiba, T. Kozuki, T. Ikemura, Informatics for 
unvailing hidden genome signature., Genome Res., 13, 693-702 (2003). 
3. M. Hirai, M. Yano, D. Goodenowe, S. Kanaya, T. Kimura, M.Awazuhara, M. Arita, T. 
Fujiwara, K. Saito, Integration of transcriptomics and metabolomics for understanding of 
global responses to nutritional stresses in Arabidopsis thaliana, Proc. Natl. Acad. Sci., 
USA, 101, 10205-10210 (2004). 
4. M. Hirai, M. Klein, Y. Fujikawa, M. Yano, D.B. Goodenowe, Y. Yamazaki, S. Kanaya, 
Y. Nakamura, M. Kitayama, H. Suzuki, N. Sakurai, D. Shibata, J. Tokuhisa, M. Reichelt, 
J. Gershenzon, J. Papenbrock, K. Saito, Elucidation of gene-to-gene and 
metabolite-to-gene networks in arabidopsis by integration of metabolomics and 
transcriptomics. J. Biol. Chem., 280, 25590-5 (2005). 
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2.15 Supervised Data Maker  
Construction of multivariate data for PLS. 

 

Input file Red 

Output file SRed 

Execution [1] Click Supervised Data Maker button, then ‘Select files to group’ panel is 
displayed. 

 

 

[2] Select a filename, then ‘Supervised Data Maker Panel’ is displayed. 

 
 
[3] Select desired data by clicking any number of data or ‘Select All’ button. If 
‘Select All’ button is clicked then all data whose name starts with the text in the textbox 

are automatically selected. 
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[4] Click ‘> Add >’ button, then the selected data are moved from left to right side. 

 
 

[5] Input quantity of targeted variable, in the corresponding textbox. 

 
 
[6] Click ‘Decide’ button. So selected data is removed and their group is assigned to the 
output file started with ‘S’. 
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[7] Continue the manipulation of [3] [4] [5] and [6] till groups for all data are 
assigned. 

 
 

[8] Click ‘Start Grouping’ button, then grouping process is started. 

Output file 
format 
 

Lines started with ‘>group’ correspond to the numbers of individual groups.  The line 
with ‘>no’ corresponds to group ID, the line with ‘filename’ corresponds to the labels 
for individual measurements, and after that the m/z values and their intensities are 
arranged.  

 
 

>group1  5 
>group2  5 
>group3  5 
>no.  1 … 1  2 … 
>filename  Sample1-1.mit … Sample1-5.mit Sample2-1.mit … 
>Target  13.5 … 13.5  15.7 … 
63.67552147001616 0.0 … 0.0  0.0476 … 
72.99098211088538 0.0832 … 0.0836  0.0635 … 
…. 
…. 



162 

2.16 PLS and its Viewer 
Calculation of regression equation by using Partial Least Squares Regression and verifying calculations. 
 
Input file SRED 

Output file CoefPLS(#), PLS(#) 

Execution [1] Click filename and input number of components. 

 
[2] After finishing execution of Partial Least Squares Regression, the results of PLS can 
be verified by clicking ‘viewer’ button on right side of ‘PLS’ button. 
 
[3] By selecting file, we can verify comparison result between original data and 
predicted data obtain from regression equation corresponding to the selected file. 
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2.17 Estimation by PLS model and its Viewer 
Estimation by PLS model and verifying calculations. 

 

Input file CoefPLS(#), RED 

Output file Est 

Execution [1] Click filename. 

 
[2] After finishing execution of estimation by Partial Least Squares Regression, we can 
verify calculations by clicking ‘viewer’ button on right side of ‘Estimation by PLS 
model’ button. 
 
[3] By selecting file, we can verify comparison result between original data and 
predicted data obtain from regression equation corresponding to the selected file. 
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2.18 PLS (cross-validation) 
Calculate the optimum number of latent parameter by using cross validation. 

 

Input file SRed 

Output file PLS(CrossValidation) 

Execution [1] Click filename and input number of components. 

 
[2] After finishing execution of cross validation, the following window can be displayed 
by clicking ‘viewer’ button on right side of ‘PLS (cross-validation)’ button. 
 
[3] By selecting file, we can determine optimum number of components corresponding 
to maximum Rpred2. 

 

 


