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Studies on Kinetic Human-Machine Interaction
Using User’s Biological Signals∗

Tomoya Tamei

Abstract

In this dissertation, I propose a realization of the kinetic interaction between a user
and a machine using his/her biological signals such as motion and surface electromyo-
gram (EMG) signals. A surface EMG signal is a temporal and spatial summation of
action potentials generated by motor units (MU) and thus has a casual relationship with
muscle activities. The surface EMG signal can be measured noninvasively with relative
ease and reflect voluntary signals from the central nervous system prior to muscle con-
tractions. Consequently it has been utilized in various fields such as neurophysiology,
clinical medicine and sports science/engineering. In recent years EMG technology has
become less expensive and measurement devices have improved in performance. Con-
sequently, EMG-based applications such as power assist, prostheses and operational
interfaces are now being extensively studied. Since most existing applications gener-
ally have degrees-of-freedom (DOF) limitations in sensing as well as movement, there
is a need to improve the performance of these applications for use in the real world.
Therefore, in this study, I propose an approach which can realize the kinetic interaction
with machines by estimating force/tactile senses in real-time from the information ob-
tained from noninvasive measurement devices, that is, EMG measurement and motion
capturing devices.

This study first proposes a new approach to designing intelligent machines which
is a virtual realization of force/tactile sensors in machines equipped with no real sen-
sors. Because this approach does not require any sensor attached to a robot, it can
also be applied in principle to various other machines. To investigate the feasibility
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of this approach, I constructed an experimental system which consisted of a robot, a
surface electromyograph and an optical motion capture device. The kinetic and intu-
itive interactions were achieved by estimating the force exerted by a user at the point
of action in real-time and from the user’s motion information and EMG signals. As
a realistic cooperative exercise, the task of cooperatively holding and moving a heavy
load vertically was conducted and successful results were obtained.

Next, I attempted to expand the above cooperative holding task to a three-dimensional
version. However, the conventional method in which the parameters of the estimator
should be trained in advance did not work due to the changes in the EMG signals which
were attributed to time variations in the muscle coordination patterns. To overcome
the difficulty, I introduced a reinforcement learning process which modifies the pol-
icy function based on the user’s biological signals. The benefits of the reinforcement
learning process are: (1) the parameters of the estimator can be adjusted on-line during
the task, and (2) it can be applied without any explicit teacher signal such as a force
sensor output (it can be applied to the robot that possesses no sensors). In addition, the
reinforcement learning based on the user’s biological signals should adaptively assist
the motor learning system to achieve the desired outcome for the user.

Keywords:

human-machine interaction, force/tactile sensing, electromyogram, motion capturing,
reinforcement learning
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ユーザーの生体情報を用いた機械との動的インタラク

ションに関する研究∗

爲井智也

内容梗概

本論文の目的は，ユーザーのモーション・表面筋電信号といった生体情報を用
いた，機械との動的なインタラクションの実現を提案することである．表面筋電
信号とは，皮膚表面で計測される筋活動に因果関係のある電位で，運動単位（MU:
Motor Unit）の活動電位を時間的・空間的に重ね合わせたものにあたる．中枢神経
からの随意信号を非侵襲で比較的容易に記録できることから，従来から神経生理
学や臨床医学，スポーツ工学といった分野で計測・解析が行われてきた．先に述
べたように筋電は運動の原因である脳からの運動指令を含むため，筋肉の収縮よ
りも先に観測することができる．これに加え，近年では計測機器の性能の向上や
普及化といった要素も後押しし，筋電を利用したパワーアシストや義手，機器操
作デバイス等のヒューマンインターフェースの研究が盛んに行われるようになっ
た．しかし，運動に用いる部位を著しく限定したものや運動範囲を平面に拘束し
たもの，静的運動時の使用に限ったものが多く，動的な運動時における使用や運
動空間の制約という点では実社会での使用に向けて向上の余地が多く残されてい
る．そこで本論文では，筋電計測装置とモーションキャプチャという二つの非侵
襲計測機器の情報からユーザーの力覚や触覚を実時間で推定することにより，機
械とのインタラクションを実現する方法を提案する．
まず，ユーザーの生体情報をリアルタイムで通信することにより，センサを

持たない機械に仮想的な力覚・触覚を持たせる新しい知能機械の設計アプローチ
を提案した．本アプローチは制御対象に依存しないため，幅広いロボット・機械
に適用することができる． 本アプローチの有用性を検証するために，センサを
持たない産業用ロボットマニピュレータ，表面筋電（EMG）計測装置，モーショ
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ンキャプチャーシステムからなるシステムを構築して実験を行った．ユーザーの
EMGと姿勢情報からリアルタイムでユーザーの発揮した手先の力を推定するこ
とでロボットに力覚／触覚を持たせ，直感的かつ動的なインタラクションを実現
した．更に，応用例としてユーザーとロボットが協調して鉛直方向への重量物の
持ち上げ・下げ作業を行うタスクも実現した．
次に，ユーザーとロボットによる重量物の協調把持作業の 3次元への拡張を

試みた．しかし，タスクの前に推定器のパラメータを学習しておくという従来の
方法では，筋肉の協調パターンの時間変化による EMG値の変化により，タスク
時には推定精度が著しく悪化してしまう．この問題を解決するため，ユーザーの
生体情報に応じて方策関数を改善する強化学習の導入を提案した．強化学習を用
いることによって，（１）タスクを行いながらオンラインで推定器のパラメータの
調整が可能である，（２）センサの出力等の明示的な教師信号がなくても学習（セ
ンサを持たないロボットへの適用）が可能である，という利点がある．また，生
体情報を用いた強化学習は，将来的に，ユーザーの意図や運動能力，個性に合わ
せて適応的にアシストを行う運動学習支援システムへの応用が期待される．

キーワード

マンマシンインタラクション, 力覚／触覚, 筋電図, モーションキャプチャ, 強化
学習
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1. Introduction

There is an increasing potential market for robots that can provide home-help in an
environment where there is an aging population combined with a diminishing number
of children. Such robots are required to possess not only visual and auditory percep-
tion but also force and tactile sensors which achieve dynamic and cooperative interac-
tions with their users. If this technology is successful, the human affinity for welfare,
livelihood-support and entertainment robots could be greatly increased. In addition, if
it is applied to the teaching of industrial robots operating in factories, of the ability to
perform complex motions could be easier.

Typically force/tactile sensors have been designed to be mounted over the robot’s
body (e.g., [49, 26]). The use of such an approach, however, is generally limited
because of low spatial resolution, small degrees of freedom (DOF) of each sensor,
complicated wiring, the necessity for repairs, and so on. Recently, in the search for re-
alistic ways of designing intelligent robots, the trend has been towards completely au-
tonomous and self-contained sensor robots as well as attempts to place many sensors in
the environment [50, 31]. These robots could obtain a wide range of sensory/perceptive
information in their operating environment.

The aim of this study is to control a robot (as an example of machines) by means
of a user’s biological signals, and to realize dynamic and intuitive interactions between
a robot and a user. The most important key to my approach is that the robot expands
its sensing ability by receiving the user’s biological signals in real time. I particularly
focused on electromyogram (EMG) and motion information as biological signals for
this purpose. EMG signals reflect motor commands from the brain for muscle contrac-
tion, and many processing methods and applications have been proposed [15, 60, 56].
Previous studies showed the possibilities of estimation of joint torques, stiffness, and
the trajectory of an elbow and a shoulder, using EMG and motion signals [33, 34].
Such information, estimated from the user’s biological signals, can be used by the
robot as its own force senses. Since the rise of EMG signals is observed prior to ac-
tual movements, employing EMG signals allows a robot to interact with a user under
delay-compensated control, leading to natural interaction with the user. Furthermore,
the use of EMG seems realistic; since biological signal measurements including EMG
are still maturing, and measurement will become less expensive and easy in the near
future. Additionally, a technique based on a noninvasive measurement is inherently
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safe.
On the other hand, EMG applications have several difficulties. EMG can be in-

fluenced by many unpredictable factors which are physiological and nonphysiological
ones such as crosstalk among nearby muscles, pattern changes of EMG due to muscle
coordination or skin-electrode contact [15, 20, 60, 16]. To realize practical interac-
tion between a user and a machine using user’s EMG signals, a way to deal with these
difficulties is needed.

1.1 The EMG process

Muscle activation occurs from a combination of some muscle fibers supplied by sig-
nals from the central nervous system (CNS) via a motor nerve. This combination of
muscle fibers and a motor nerve is called a motor unit (MU). Motor nerve excitation
reaches the motor end-plate via a motor nerve as an impulse train, and then the muscle
fibers start contracting with the electrophysiological depolarization of its membrane.
Surface EMG is the method for recording signals with the spatial and temporal super-
position of motor unit action potentials (MUAPs) by electrodes attached to the skin on
the upper layer of the target muscle. It has the advantage that it is a noninvasive and
relatively easy way to record the activities of CNS. Therefore, it have been measured
and analysed in various fields such as neurophysiology, clinical medicine and sports
science/engineering [4, 22, 47, 75]. EMG signals can contain information such as mus-
cular effort and fatigue. This information was estimated mainly from signal amplitude
and frequency. There have been evaluation indices of EMG, and muscle effort and
fatigue was estimated mainly from signal amplitude and frequency [59, 36, 53, 18],
respectively. Recently, muscle effort is often used for as an input to the controller of
myoelectric devices like power-assist and prostheses [27, 74, 2].

1.2 Human-Machine Interfaces based on Surface EMG

There have previously been studies of Human-Machine interfaces based on surface
EMG such as prostheses and power assists (e.g., [11, 32, 23, 54, 28, 1, 21]). Most
previous studies estimate joint torque, hand trajectory or hand motion as a pattern
intended to control a specific machine or device, however, the studies that estimate the
force exerted by user’s hand are less common [1]. In this study, for example, I can
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give force/tactile senses to existing robots by estimating the force exerted by the user’s
hand.

This force, applied at the interfaces, can be estimated in two ways using either
anatomical or physiological models [13, 43, 37, 45, 19] which provide a functional
approximation with no knowledge of the underlying and controlling physical phenom-
ena [35, 44, 42]. Each way has advantages and disadvantages. The model-based
way which uses a muscle model such as Hill-based [25, 69] and musculoskeletal-
model [8, 40]. These approach can handle a large variety of situations, because it is
modeled from the muscle activated output force based on a knowledge of phenomeno-
logical analysis. However, since the formulation is complex it is impossible to estimate
with high accuracy for the case of movements which incorporate many muscles and
joints. Furthermore, the model parameters probably depend on user. It is usually
necessary to normalize the EMG with maximum voluntary contractions (MVC) [70]
to quantify muscle activation, because the amplitude of EMG often varied with the
postural changes of the user and the positions of the attached electrodes [10]. Since
each muscle activity is determined from certain EMG signal, The correct interpreta-
tion of the EMG is often questioned for the reasons described above. On the other
hand, the functional approximation way is task dependent, because its parameters re-
lied on training data, and a calibration procedure to obtain a mapping between input
and output may be needed each time a subject is changed. The performance of the
approximator tends to be affected by the time varying nature of the EMG signals and
muscle coordination due to efficiency for the task and fatigue [39, 55, 6]. Although
it is simple to apply and can indicate good performance for simple problems [57], the
relationships between input and output are more complex and higher computational
power is required and solutions are not possible in real-time. In fact, in real-time, ei-
ther modeling method can only estimate the torque for two joint’s which move in the
same plane. We have not achieved estimation for the cases which have a wide range of
movement or changes of velocity.

1.3 Organization of Dissertation

This dissertation is organized as follows. The next section proposes a new approach to
realizing dynamic interactions by using user’s biological signals, and then describes an
experimental system to investigate the feasibility of my approach. Section 3 presents

3



four experiments demonstrating that an industrial robot manipulator can behave as if
it had virtual force/tactile senses and can perform a cooperative exercise with its user.
Section 4 first proposed to apply the reinforcement learning method to the VFS, and
then describe its example application to the cooperative holding task, demonstrating
the feasibility of my approach. Section 5 concludes this study with detailed discussions
and recommendations for future research.
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2. Kinetic Human-Machine Interaction

2.1 Kinetic Human-Machine Interaction

To establish the interface between humans and machines, it is necessary to estimate
the information which reflect the user’s intentions in real-time and to allow a variety of
different motions. Although, most of previous studies of Human-Machine interfaces
based on surface EMG are intended to control a specific machine or device, if the ma-
chine expands its sensing ability by receiving the user’s biological signals, it makes it
possible for the user to interact with many machines. This study proposes an approach
to realize kinetic and intuitive interaction with machines by giving virtual force/tactile
senses to machines equipped with no real sensors .

2.2 Virtual Realization of Force/Tactile Sensing

In this study, I propose a novel approach to virtual realization of force/tactile senses in
robots (machines) which do not normally possess such sensors. Note that, in this arti-
cle, “tactile sense” means the location information around the position at which force
is applied but does not mean any textural information. The key factors to my approach
are: (1) I restrict situations to those in which a robot interacts with its user, and (2)
the robot expands its sensing ability by receiving the user’s biological signals, such
as the surface EMG and postural information in real time. The estimation methods of
the force applied to the manipulator from eiher human or environment sources without
using the force/torque sensor have been proposed [62, 51]. However, these methods
require the accurate dynamics model of the robot. The higher the gear ratio of joints or
the less their back-drivability becomes, the lower the force sensitivity gets. Therefore,
it seems impractical to use these methods widely for human-robot interaction.

Table 1 shows the comparison of the approach proposed in this study with the other
approaches that involve the sensors attached to a robot (real sensors) and those embed-
ded in the environment (environment-integrated sensors). The real sensor approach
allows a user to interact only with the robots in which sensors are mounted. On the
other hand, because my approach does not require the sensors to be attached to a robot,
it can be applied in principle to not only robots but also to various other machines. In
other words, my approach has the possibility of enabling a user to interact with many
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machines by using fewer sensors than the real-sensor approach. Furthermore, my ap-
proach has great advantages as it is highly general and very extensible. As an example
of this, teleoperation is feasible by means of remotely sending biological signals to
a robot. Force measurement can be carried out independently of the positions and
types of sensors. Hence higher spatial resolution and the ability to cope with large
DOFs can be realized rather easily. The real sensor approach has realized high spa-
tial resolution by mounting sheet-like force sensors on a robot [49, 26]. However so
far, this approach has performed only one DOF force measurement at a point. The
environment-integrated approach uses various sensors embedded in the environment.
For example, embedded cameras [31, 30] and a force sensing sheet [52] have been
used. This approach is one promising way to develop intelligent systems, but also has
the difficulty of increasing the number of spatial resolution and measurement DOFs
for force/tactile sensing, compared to my proposed approach. My approach can rather
easily achieve both high spatial resolution and measurement DOFs for force/tactile
sensing in robots which do not possess such sensors, as will be demonstrated in this
study. Furthermore, natural user interfaces could be realized by using the user’s EMG
signals, because the EMG signals reflect motor commands of the user’s brain, and can
be used to estimate muscle tension and joint stiffness. It should be noted, however,
that my approach does not exclude the real-sensor and the environment-integrated ap-
proaches but is complementary to them. My approach will become more advantageous
especially under the ever expanding ubiquitous computing environments in which sen-
sors and devices are networked and are distributed over the environment. For instance,
the problem that the robot cannot detect obstacles except its user could be solved by
employing either external cameras or ultrasonic/touch sensors attached to the robot.
Although the experimental setup described below is large and expensive, the ubiqui-
tous computing environments will provide alternative methods and devices. Further
discussions related to these comparisons will be presented in section 3.5.

2.2.1 Virtual Force Seinsing Procedure

Figure1 shows the comparison of force sensing process between my approach (VFS:
Virtual Force Sensing) and real sensor approach. While real force sensing approach
obtain the force by the force sensor attached on the machine, VFS approach estimates
the force from user’s biological signals such as motion and EMG which are obtained

6



Table 1. Comparison of approaches to force/tactile sensing for robots
Real sensor Environment-integrated Proposed approach

Controlled object limited wide wide
Teleoperation impossible possible possible

Spacial resolution low low high
Measurement DOF low low high
Obstacle detection possible possible impossible

Figure 1. Comparison of force sensing process

by the sensor attache on the user. VFS approach needs the step that train the parameters
of the estimator in advance (calibration stage). In the calibration stage, it is needed a
force sensor or objects which known mass/inertia to obtained the force applied to the
hand, since the force is used for training the parameters of the estimator as a teacher
signal.

2.3 Experimental Setup

Figure 2 shows an experimental system to investigate the feasibility of my approach.
The system consisted of a robot, a surface electromyograph and an optical motion
capture device. The EMG and the markers’ positional data were sent to a standard
PC for controlling the robot in real time. The motor commands for the robot were

7



determined based on these sets of data.

Figure 2. System overview

The detail of system is presented in Figure 3 with diagram. The robot used in the
experiment was an industrial six-DOF manipulator, PA10 (Mitsubishi Heavy Indus-
tries, Ltd.) which possessed no force/tactile sensors. EMG signals were measured by
a compact-electromyograph BA1104 (Digitex Laboratory Co., Ltd.) with active-type
electrodes and the telemeter unit TU-4 (Digitex Laboratory Co., Ltd.). The motion
capture device was Mac3D system (Motion Analysis Corporation). In the future, it is
desired that motion is measured by compact and cheap network camera or acceleration
sensor attached on the user. However, because it make the estimation procedure to
be complex, I employed motion capture device, though the system becomes big and
expensive. EMG signals were digitized by the A/D converter of the Mac3D. The sam-
pling frequency was 200 Hz for both the recording of the EMG signals and the output
driving signals. The angular velocity of each joint of PA10 was similarly controlled at
a frequency of 200 Hz.

8



Figure 3. System diagram
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3. Kinetic Human-Machine Interaction with the Virtual
Sensing Method

To examine the feasibility of my approach, three experiments were conducted. In the
first experiment, two joints of the robot were controlled to see whether the robot can
obtain force senses by receiving user’s biological signals in real-time, and whether the
user can make use of the robot’s simulated dynamics. The second experiment was
conducted to see if the robot can behave as if it had force/tactile sensors over its body.
The third experiment was designed to demonstrate that my approach could be useful
for making a dynamic and cooperative task take place between a robot and a user.

3.1 Experiment 1: Two-joints control using EMG and the postural
information of the hand

The task in this experiment was to control the two joints of the robot (cf. Figure 4)
using both EMG and the postural information of the user’s hand. The applied force
vector was estimated from the amplitude of the estimated force from EMG, and the
direction of the force was determined from the hand posture. The task for the robot
was to make a movement in the direction of the force applied by a user, and to return
to the initial position when the user relaxes its muscle. The applied force vector was

Figure 4. Controlled joints of PA10 in Experiments 1 and 2
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determined by the user’s force estimated from EMG, and the direction of the force
was determined from the user’s hand posture. The task for the robot was to make a
movement in the direction of the force applied by a user, and to return to the initial
position when the user relaxes its muscle.

The muscle subjected to EMG measurement was the flexor carpi radialis (FCR)
(Figure 5(a)), and three markers associated with the motion capture device were at-
tached to the back of the user’s hand (Figure 5(b)).

(a) Electrode positions in experiment 1 and 2 (b) Marker positions in Experi-
ment 1 and 2

Figure 5. Electrodes and markers in Experiment 1 and 2

3.1.1 Estimation of the force applied by the hand

First of all, I conducted a pilot experiment in which the EMG and corresponding force
data were obtained, and the relationship between them was examined. The force was
measured by a force sensor (BL Autotec, Ltd.) with a load rating of 5 [kgf]. The data
were taken from the right hand of a subject (a healthy man, 24 years old). The force
sensor was fixed on the table, and the table’s height was adjusted to touch the subject’s
forearm when the subject was in a relaxed posture. The subject was instructed to place
his palm in the lateral direction and to apply horizontal force to the sensor by wrist
flexion. The force and EMG were recorded simultaneously at a sampling frequency of
500 Hz. The acquired EMG data were processed by full-wave rectification, five-point
averaging, and low-pass filtering (cutoff frequency of 3.6 Hz) (Figure 6, upper panel).
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The lower panel of Figure 6 shows that a linear approximation function is sufficient for
describing the relationship, that is:

F (t) = C1 ·EMGFCR(t)+C2 ·EMGFCR(t−1)+ · · ·+C30 ·EMGFCR(t−29)+C31,

(1)
where F (t) and EMGFCR(t) are the estimates of the force applied by the hand and
the measured EMG of FCR at a time t, respectively. Ci (i = 1, 2, · · · , 31) were de-
termined so as to best match the acquired data in terms of minimizing the root-mean-
square (RMS) of the sum of the differences of the data fit between the measured data
and the linear approximation function. In general, the relationship between EMG and
output force shows nonlinearity due to the muscle properties [38]. So I applied a non-
linear function approximation employing a three-layer perceptron [58] to the data, but
no significant improvement in data fitting was observed. The reason for this linear rela-
tionship is attributed to the fact that the wrist angle of the subject was around 0 degrees
at which both the flexor and the extensor muscles of the wrist were relaxed. The upper
panel of Figure 6 shows the time-series of the rectified EMG and the filtered EMG.
The lower panel of Figure 6 demonstrates the linear mapping from the rectified and
filtered EMG to the filtered force data. The RMS error for the test data was 0.458 [N],
which was small enough for my study. Though the wrist and arm posture may affect
the EMG signal of the FCR, I confirmed that the force amplitude can be accurately
estimated from experimental data without considering the wrist and arm posture. This
occurs because the wrist angle of the subject was consistently around zero degrees as
previously mentioned. Furthermore, the arm posture did not change much. If the pos-
ture had changed a lot, adding terms corresponding to additional joints to Equation (1)
would deal with the errors due to the changes.

3.1.2 Control law

In this task, angular velocity dθ(t)
dt

was calculated from the force of the user’s hand by

J
d2θ(t)

dt2
+ c

dθ(t)

dt
+ kθ(t) = F (t) · A, (2)

where J , c and k were inertia, viscosity and spring. I configured them 0.025 [kg · m2],
0.50 [N · m · s] and 5.0[N · m], respectively. A is constant that has a dimension of [m].
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After that, I divided the desired velocity, dθ(t)
dt

, into horizontal and vertical compo-
nents according to the hand posture as φ(t):

θ̇h =
dθ(t)

dt
cos φ(t)

θ̇v =
dθ(t)

dt
sin φ(t),

(3)

where θ̇h and θ̇v were the joint velocity commands sent to the robot.
Figure 7 shows the definition of the posture of the user’s hand. In this figure, the

coordinate system (x, y, z) is defined so that the z-y plane is frontal to the user and
the x-y plane parallel to the floor. The schematic triangle at the lower right represents
the positions of the three markers attached to the back of the user’s hand, and the
hand posture was represented by φ, i.e., the angle of the normal vector of the triangle
projected onto the frontal plane from the x-axis coordinate.

Figure 7. Definition and coordinates of the hand posture
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3.1.3 Results

Figure 8 shows some examples of motions during this task. The subjects were in-
structed to move the robot in the horizontal direction, vertical direction and oblique
direction, and then to repeat this sequence of movements. Figure 8 shows the changes
of the rectified and the filtered EMG (top panel), the two joint angles (in horizontal
and vertical directions) of the robot (middle panel), and the postural information of
the hand (bottom panel). These results clearly show that the robot changed its motion
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Figure 8. Results of Experiment 1

smoothly according to the amplitude of the subject’s force (EMG) and moved in the
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direction according to the hand posture, indicating that the robot appropriately sensed
the force vector applied by the user.

3.2 Experiment 2: Two-joints control with the power point chang-
ing using EMG and the postural information of the hand

This experiment was designed to demonstrate that my system was able to realize dis-
tributed force/tactile sensing over the robot’s body. The applied force vector was de-
termined by the user’s force estimated from EMG, and the direction of the force was
determined from the user’s hand posture. The procedure of estimating the applied force
by the user’s hand was the same as that described in 3.1.1. The control law for the two
joints of the robot was the same as Experiment 1 except that the robot also modulated
its motion according to the power point at which the user applied the force.

I measured EMG from the muscle, flexor carpi radialis (FCR) (cf. Figure 5(a)),
and three markers were attached to the back of the user’s hand (cf. Figure 5(b)) as in
the case of the Experiment 1. Furthermore, two additional markers were attached to
the robot (Figure 9) to calculate the length of the manipulator’s arm.

3.2.1 Control law

The control law is given by

J
d2θ(t)

dt2
+ c

dθ(t)

dt
+ kθ(t) = F ′(t) · A. (4)

The emulated dynamics by the robot were the same as those in the Experiment 1, but
the input F ′(t) was determined by the following equation:

F ′(t) = F (t)
l(t)

larm
, (5)

where F (t) is the force applied by the user’s hand, larm is the length of the robot’s arm,
and l(t) is a moment arm defined by the distance between the supporting point and the
power point estimated from the positional information of the user’s hand (Figure 9). In
my system, the resolution of l(t) depends on the accuracy of the hand position (power
point) measured by my motion capture device, which was found to be as small as 1
[mm].
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Figure 9. A sample power point and an associated moment arm

3.2.2 Results

Figure 10 shows an example of the results. The subjects were instructed to move the
robot arm in the horizontal direction and then in the vertical direction, by changing
the power point so that the applied force was kept constant (as far as possible). The
figure shows the time course of the rectified and the filtered EMG (top panel), the two
joint angles (in the horizontal and vertical directions) of the robot (second panel), the
postural information of the hand (third panel), and the power point l(t)/larm (bottom
panel). l(t)/larm was one when the power point was at the tip of the arm, while it was
zero at the root of the arm. These panels indicate that the robot arm changed its motion
amplitude according to the power point to which the force was applied, whereas the
subject exerted the equivalent force (see EMG data in Figure 10). The results obtained
in this experiment demonstrate that the robot successfully behaved as if it had sensed
the force vector applied to its body, and changed its behavior according to the changes
of the power points. In addition, the subjects reported that the robot was performing as
intended, and they felt as if they were pushing a springy bar.
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3.3 Experiment 3: One-dimensional Cooperative holding

Third, I attempted a specific cooperative exercise by this system and a user. In this
experiment, the user was requested to move a heavy load up and down along the verti-
cal axis cooperatively with the robot at a defined frequency. Figure 11 is a schematic
diagram of this task. The user and the robot exerted the forces fu (target value) and

Figure 11. Overview of Experiment 3

fr, respectively, to hold a heavy load of mass m. g and a are the gravity and mass
acceleration, respectively. I set m = 2 [kg] and fu was assumed to be m

2
(g + a). If the

force applied to the user’s hand was larger than fu, the robot moved upward, while the
robot was controlled to move downward when the force was smaller than fu. In this
task, the movements of the user and the robot were confined to the sagittal plane, and
the user was asked to use only its right upper extremity. The user was also instructed to
move the load up and down to specific target points in synchronization with the clicks
of a metronome once every 2 [sec]. The target points were set at 0.8, 1.0 and 1.2 [m]

height from the floor. Figure 12 presents examples of the views of this task.
The muscles from which EMG was recorded were the FCR (see section 3.1) and

the extensor carpi radialis longus (ECRL) (Figure 13(a)). Five markers for motion
capture were attached on the right side of the shoulder, elbow, wrist, and the back of
the hand (Figure 13(b)). The joints of PA10 controlled in this experiment were θ1, θ2

and θ3, as shown in Figure 14.
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(a) Moving up (b) Moving down

Figure 12. Example views of Experiment 3

(a) Electrode positions in Experi-
ment 3

(b) Marker positions in Experi-
ment 3

Figure 13. Electrodes and markers in Experiment 3
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Figure 14. Joints of PA10 controlled in Experiment 3

3.3.1 Estimation of the force bearing on the hand

The force applied to the user’s hand, fest(t), was estimated as follows. (1) the es-
timation of the wrist torque from EMG signals and motion information, and (2) the
calculation of fest(t) from the dynamic balance between the force and the torque on
the tip link (hand), assuming the user’s upper extremity to be a three-links manipulator.
The benefit of this method is that it uses the estimated torque at the tip joint only, but
does not use the torques of the other joints. These processes are described below in
detail.

Estimation of the wrist torque The wrist torque τwrist was estimated from EMG sig-
nals, joint angles θj , angular velocities θ̇j and angular accelerations θ̈j (j = shoulder, elbow, wrist).
These kinematic values were calculated from the captured motion information by a lin-
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ear approximation. The wrist torque was approximated by:

τwrist(t) =C1 · θshoulder(t) + C2 · θelbow(t) + C3 · θwrist(t)

+ C4 · θ̇shoulder(t) + C5 · θ̇elbow(t) + C6 · θ̇wrist(t)

+ C7 · θ̈shoulder(t) + C8 · θ̈elbow(t) + C9 · θ̈wrist(t)

+ C10 · EMGFCR(t) + C11 · EMGECRL(t)

+ C12 · EMGFCR(t − 1) + C13 · EMGECRL(t − 1)

+ C14 · EMGFCR(t − 2) + C15 · EMGECRL(t − 2) + · · ·
+ C48 · EMGFCR(t − 20) + C49 · EMGECRL(t − 20) + C50.

(6)

The constants Ci (i = 1, 2, · · · , 50) were obtained by a polynomial fit to the wrist
torques when the subject arbitrarily lifted the weights of 500, 1000, 1500 and 2000
[g] up and down in the calibration stage. The wrist torque was calculated from the
motional information by employing inverse dynamics based on the three-links model.
EMGFCR and EMGECRL were normalized by the average of EMG signals acquired
when the subject exerted the maximum isometric force. This processing was neces-
sary because the amplitude of EMG often varied with the postural changes of the user
and the positions of the attached electrodes. Equation (6) was expected to deal with
changes in posture, because it contains the motion information of three joints in the
calibration stage. I confirmed that Equation (6) with the parameters obtained in the
calibration stage had a generalized power form, through the validation test with the
training and test datasets.

Estimation of the force bearing on the hand The dynamic balancing between the
force and the torque on every link can be described by the Newton-Euler equation of
motion. The torque of tip joints (wrist) was obtained by the procedure above (Equa-
tion (6)), and the applied force to the tip link (hand) was calculated by the following
procedure. The acceleration of gravity center, angular velocity and angular acceler-
ation of the tip link, which were needed to calculate the force applied to the tip link,
were acquired from the motion information. The relationship between the torque at the
i-th joint and the moment vector ni for the i-th link from the (i−1)-th link is given by

τi = qT
i ni + Diθ̇i + Ei(θ̇i, θi). (7)
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qi is the vector denoting the rotational axis, that is, the y-axis, qi = [0 1 0]T . Di and
Ei(θ̇i, θi) are the viscous friction coefficients for the joint and the nonlinear friction
torque, respectively, and they were set at 0 for simplicity. The dynamic balancing
between the force and the moment about the i-th link is described by the Newton-Euler
equation of motion:

ni = Ai+1ni+1 + I iω̇i + ωi × (I iωi) + ai × (mip̈gi) + li × Ai+1f i+1. (8)

Ai, Ii, ωi, ai, mi, pgi, li, and f i are a coordinate transformation matrix from the
(i − 1)-th to the i-th coordinate systems, an inertia matrix on the gravity center of the
i-th link, an angular velocity vector of the i-th link, a vector from the origin to the
gravity center of the ith link, a mass of the i-th link, a vector from the world origin to
the gravity center of the tip link, a vector from the origin of the i-th link to the origin
of the (i + 1)-th link, and a force vector which acts on the i-th link from the (i− 1)-th
link, respectively. Making use of Equations (7) and (8), the force applied to the user’s
hand, fest(t), can be estimated by

fest(t) =
τwrist − I3yω̇3y − a3l3p̈3gx

l3 sin(−θ1 − θ2 − θ3)
, (9)

where I3y, ω3y, p3gx, m3, l3 and a3 are the y-component of the tip link inertia, the
angular velocity of the tip link, the x-component of the vector from the world origin to
the gravity center of the tip link, the mass of the tip link, the length of the tip link, and
the distance between the gravity center and the origin of the tip link, respectively. The
mass of each link of a human can be estimated from the body height and weight [73].

3.3.2 Control law

The dynamics of the robot hand in the z-direction is given by

mz̈(t) + cż(t) + kz = A(fest(t) − fu), (10)

where m, c, k and A are the mass, viscosity, spring of the robot hand and the amplifica-
tion constant, respectively. I configured these four parameters at 0.2 [kg], 1.0 [N · s/m],
0.1 [N/m], and 2.0, respectively. The velocity of the robot hand in the z-direction, ż(t),
was determined by the difference between the force exerted by the subject, fu, and the
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force applied to the subject’s hand, fest(t). The velocity of the robot hand in the x-
direction was controlled so that ẋ(t) was maintained at 0. The angular velocities sent
to PA10, θ̇1 and θ̇2, were calculated by[

θ̇1

θ̇2

]
= J(θ)−1

[
ẋ

ż

]
, (11)

and θ3 was obtained by
θ3 = −θ1 − θ2, (12)

so that the robot hand is maintained in the horizontal position.

3.3.3 Results

Figure 15 represents an example of the motion of this task. The top panel shows
the changes of the estimated force applied to the subject’s hand, fest(t), and the second
panel shows the changes of the joint angles of PA10. In the bottom panel, the trajectory
of the load’s height was plotted with the target points indicated by circles. The results
indicate that when the subject reduced the force to move the load down, (fest(t) was
smaller than fu), θ2 was increased and the robot hand moved downward. Conversely,
when the subject applied an additional force to raise the load (fest(t) was larger than
fu), θ2 was decreased and the robot hand moved upward. θ1 and θ3 moved in collab-
oration with θ2 to keep the posture of the robot hand horizontal. The trajectory of the
load successfully tracked the target points, suggesting the feasibility of my approach
for dynamic man-machine cooperation.

3.4 Experiment4: Three-dimensional cooperative holding

In this study, I first describe my extension of the work conducted by Tamei, et al. [63] in
which the one-dimensional cooperative holding task was achieved by the VFS. In this
task, the user is requested to vertically move a heavy load using its an upper limb coop-
eratively with the robot moving the load vertically, armed with a one-dimensional vir-
tual sensing force operating perpendicular to the back of the user’s hand. They demon-
strated that the vertical trajectory of the load successfully tracked the pre-defined target
points as the user intended, suggesting the feasibility of the VFS approach to kinetic
man-machine cooperation.
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Figure 15. Results of Experiment 3
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In this study, I developed a three-dimensional version of the cooperative holding
task in which the user was asked to use only the right upper extremity of its arm.
Figure 16 provides an overview of this task.

Figure 16. Overview of the Experiment 4

3.4.1 Estimation of the force bearing on the hand based on forward dynamics

For this task, I expanded the force-vector estimator discribed in 3.3.1 to three-dimensional
version. The three-dimensional force applied to the user’s hand, f est(t) ∈ R3×1 was
estimated as following as in the case of the one-dimension; (1) estimation of the each
joint torque τ j(t) ∈ R5×1 from EMG signals and motion information, and (2) calcula-
tion of f est(t) from each joint torque (forward dynamics) using Newton-Euler dynamic
equation by assuming the user’s upper extremity to be a three-link and 5 DOF manip-
ulator in which joint DOF are three-dimensional rotation of shoulder, one-dimensional
rotation of both elbow and wrist. Each joint torque were linearly estimated as

τ(t) = W T [θ(t)T , θ̇(t)T , θ̈(t)T , m(t)T , m(t − 1)T , · · · , m(t − 29)T , 1T ]T , (13)

where m(t) ∈ R8×1 is the EMG signals that were preprocessed by full-wave rectifi-
cation and low-pass filtering (cutoff frequency of 3.6 Hz), θ ∈ R5×1 is the subject’s
joint angle vector consisting of three-dimensional rotation of shoulder, on-dimensional
rotation of both an elbow and a wrist. The joint angle vectors were calculated from the
captured motion information. Parameters in W ∈ R256×5 were obtained by fitting to

26



the data acquired when the subject moved the load cooperatively with the robot using
a force sensor in the calibration stage. I used EMG signals with 30 tapped-delay lines
corresponding to the period of 150 ms so that a suitable filter for each task would be
acquired. The reason for this approach is that it is known that there is a delay between
an EMG signal input and the corresponding muscle contraction, and that the delay time
varies with the muscle shortening velocity [12, 14, 41].

In the calibration stage, the force was measured by a force sensor and was used
to control the robot. In one trial, the force and motion were recorded for 40 seconds,
and 10 trials of data were collected in total. Equation (13) was expected to deal with
changes in posture, because it contains the motion information of three joints in the
calibration stage. Figure 17 shows the performance for the test data. Root-mean-square
(RMS) errors were 0.996, 0.983, 0.826, 0.756 and 0.329 [Nm], respectively, and error
rate was less than 5 % in each joint torque. I confirmed that the trained linear estimator
(Equation (13)) with the parameters obtained in the calibration stage was a good fit to
the data, which was a part of the collected data obtained for the validation test which
included the training and test datasets. Since shoulder joint have three-dimensional
roatation, it makes the forward dynamics calculation to be more complex than one-
dimensional version. More ditails of forward dynamic calculation are described in
Appendix A. However, because this dynamics model has very high-sensitivity to the
input torque, force estimation based on forward dynamics was suspended.

3.4.2 Estimation of the force bearing on the hand using function approximation

Because the estimation of the force bearing on the hand based on forward dynamics
had difficulty discribed above, I reformulated the force estimation as the functional
approximation problem. The applied force to the user’s hand, f est(t) was linearly
estimated as

f est(t) = W T [θ(t)T , θ̇(t)T , θ̈(t)T , m(t)T , m(t − 1)T , · · · , m(t − 29)T , 1T ]T , (14)

where m(t) ∈ R8×1 is the EMG signals that were preprocessed by full-wave rec-
tification and low-pass filtering (cutoff frequency of 3.6 Hz), θ ∈ R5×1 is the sub-
ject’s joint angle vector consisting of a three-dimensional rotation of shoulder, and a
one-dimensional rotation of both an elbow and a wrist. The joint angle vectors were
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calculated from the captured motion information. Parameters in W ∈ R256×3 were
obtained by fitting the same data in 3.4.1.

Equation (14) was expected to deal with changes in posture, because it contains the
motion information of three joints in the calibration stage. I confirmed that the trained
linear estimator (Equation (14)) with the parameters obtained in the calibration stage
was well-generalized for the data, which was a part of the collected data, through the
validation test with the training and test datasets. Figure 20 shows the performance for
the test data. Root-mean-square (RMS) errors in each direction were 0.699, 0.561 and
0.750 [N], respectively.

3.4.3 Control law

The control dynamics of the robot hand in the each-direction is given by:

MRp̈R(t) + CRṗR(t) + KRpR = A(f inp(t) − fu), (15)

where MR, CR, KR and A are the mass, viscosity, spring properties set to the robot
hand and the amplification constant, respectively. I set these four parameters to 0.2 [kg],
1.0 [N · s/m], 0.1 [N/m], and 2.0, respectively. pR = [xR yR zR]T is the Cartesian co-
ordinates of the robot hand. The desired velocity of the robot hand ˆ̇pR was determined
by the difference between the target value of the force applied to the subject’s hand, fu,
and the force input to the controller, f inp(t). I assumed fu = [0 0 − M

2
(g + z̈)]T and

set M = 2 kg. g and z are the gravity acceleration and the z-coordinate of the load,
respectively. The angular velocities, ˆ̇

θR1, ˆ̇
θR2 and ˆ̇

θR3, sent to the robot for control,
were calculated as ⎡

⎢⎢⎣
ˆ̇
θR1

ˆ̇
θR2

ˆ̇
θR3

⎤
⎥⎥⎦ = J(θR)−1

⎡
⎢⎣

ˆ̇xR

ˆ̇yR

ˆ̇zR

⎤
⎥⎦ , (16)

and θ̂R4 was obtained by:
θ̂R4 = −θ̂R2 − θ̂R3, (17)

so that the robot hand was kept horizontal.
Figure 2 shows an overview of an experimental system to investigate the feasibility

of my approach. The system was consisted of a robot, a surface electromyograph and
an optical motion capture device. The EMG and the markers’ positional information
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Figure 18. Example view in the Experiment 4

were sent to a standard PC for controlling the robot in real time. The motor commands
for the robot were determined based on these sets of information.

Figure 18 presents a view in the experiment. The muscles for which EMG was
recorded were Deltoid-clavicular part (DELC), Deltoid-acromial part (DELA), Deltoid-
scapular part (DELS), Biceps brachii long head (BB), Pectralis major Clavicular head
(PM), Triceps brachii lateral head (TB), Flexor carpi radialis (FCR) and Extensor carpi
radialis longus (ECRL) (Figure 19(a)). Six markers for motion capture were attached
to the left shoulder, the right side of the shoulder, the elbow, the wrist, and the back of
the hand (Figure 19(b)). The controlled joints of PA10 were θR1, θR2, θR3 and θR4, as
shown in Figure 16.

3.4.4 Results and problems

Figure 21 presents an example of results in which the experiment was conducted for
f inp(t) = f est(t). The top panel shows the changes of the estimated force applied to
the subject’s hand, f est(t). The second to the bottom panel shows the trajectory of
the load in each direction, with the target points indicated by circles. These figures
show that the load could not be moved to the target points successfully even though
the virtual force estimation was good enough for the test dataset in the calibration
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(a) Front view (b) Side view

Figure 19. Electrodes and markers in the Experiment 4

procedure, as shown in Figure 20.

3.5 Discussion

I have proposed a new approach to designing intelligent machines that can work for
humans not only in industrial factories but also in our daily life such as at home. The
key to the approach is the virtual realization of force/tactile sensors in robots by using
user’s biological signals such as EMG and postural information. In the experiments,
I demonstrated that an industrial robot manipulator possessing no force/tactile sensors
successfully achieved dynamic and even cooperative interactions with humans. In the
first two experiments, the impedance control was performed on the two joints of the
robot arm. The input to the impedance controller was the force vector estimated by an-

31



0 2000 4000 6000 8000 10000

−5

0

5

sample

fx
 [N

]

 

 

true force
estimated force

0 2000 4000 6000 8000 10000

−5

0

5

sample

fy
 [N

]

 

 true force
estimated force

0 2000 4000 6000 8000 10000
−20

−15

−10

−5

0

sample

fz
 [N

]

 

 

true force
estimated force

Figure 20. Validation of the linear estimator
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alyzing the subjects’ biological signals. The observed behaviors acquired by the robot
as well as the results of questionnaires to the subjects assured us that the subjects intu-
itively and easily performed the task, suggesting that my approach could be applicable
to haptic devices. In Experiment 1 and 2, additional calibration processes to update the
parameters of Equation (1) were not critically necessary after the electrodes were re-
placed or the subjects were changed, although the additional calibration process would
increase the accuracy of the force estimation. In the third experiment, as a realistic
cooperative exercise, the task of cooperatively holding and moving a heavy load was
conducted and successful results were obtained. The force applied to the hand was
obtained from the dynamic balance between the torque and the force of the tip link as
shown in Equation (9). This method has such an advantage that it requires the torque
estimation only for the tip joint even in the case of multijoint movement, and then the
number of muscles to measure EMG signals can be small. Therefore, allowing the
user to generate more complicated motion with more joints will be feasible. How-
ever, it was difficult to realize fast and accurate moves of the load. To achieve faster
movements, I am planning to improve the virtual force sensor by incorporating more
muscles as well as a variety of user’s behaviors, which would require a more powerful
function approximation method. A recalibration stage was necessary when a subject
was changed in this experiment. Implicit, easy and automatic calibration is desirable,
which could be achieved, for example, by just recording user’s behaviors including
interactions with objects in ubiquitous computing environments in which mass/inertia
of many objects are known.

Although my current system is relatively large and difficult to carry, this will not be
a big problem in the near future, since networked-cameras and computers are becom-
ing ubiquitous (e.g., [50, 31]), and EMG measurement devices are becoming portable.
Alternatively, it will be possible to estimate the postures and motions of a user only
from EMG signals (e.g., [35, 67]). It will also be possible to estimate the user’s pos-
ture by combining information from a camera and a cheap inertial sensor [64], or cheap
inertial and magnetic sensors attached to the subject without external sensors such as
camera [3, 24]. I could also imagine employing glove-like devices which measure hand
forces, postures [46] and EMG simultaneously. The data of position and posture ob-
tained by cheap sensors may lose some accuracy, but it is expected that good accuracy
is achieved by data fusion(e.g., [64]). Even so, there might be a difficulty in obtaining
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the accurate acceleration which requires double differentiation of the position informa-
tion. Though the angular acceleration of each joint based on motion-captured data was
used for the estimation of wrist torque as shown by Equation (6), I could omit terms us-
ing angular accelerations because I made sure that their contributions to the estimation
is very small (less than 0.0025 %), which can relax the requirement for acceleration
sensing. When calculating the force applied to the hand in Equation (9), acceleration
of the gravity center of the tip link, p̈3gx, was necessary, but it can be easily measured
by a cheap inertial sensor. If the number of sensors to be attached to the user in an
unorganized manner increases, the user would feel uncomfortable. Glove-like devices
in which cheap inertial and positional sensors and electrodes for EMG are attached in
an organized manner could solve the above issue. It is notable that my approach is not
confined to what I call “robots”, but rather it should be useful for various intelligent
machines as mentioned in Section 2.2.

My future work will take more muscles and more sensor devices into account for
more precise and robust force estimation. I am also interested in the estimation of
various internal states of humans, such as the impedance of arms and the ultimate
intentions of the humans, which could be helpful for cooperating tasks [29, 17]. My
long-term goal is to achieve full-body cooperation between a humanoid robot and its
user based on the measurement of the full-body muscles of the users, and possibly of
internal states like the intentions of users.
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4. Reinforcement Learning for Kinetic Human-Robot Co-
operation

In 3.4, I presented ne of the applications of the virtual force sensing approach to the
three-dimensional cooperative holding task, and then pointed out an inherent difficulty
in the use of EMG signals caused by the fact that the muscle coordination can vary
over time. To overcome this difficulty, I proposed an application of reinforcement
learning [61] to the VFS. There are previous papers that relate the interaction of a user
and a robot using reinforcement learning [65, 48], however, papers that is dealing with
physical interaction are less common. The example of applications to the cooperative
holding task demonstrate the feasibility of my approach.

4.1 Overview of reinforcement learning of the cooperative holding
task

As discussed before, my desire was to achieve an accurate three-dimensional cooper-
ative holding task. I introduce reinforcement learning beause it enable the robot con-
troller to be adaptive to the changes of EMG pattern and the muscle coordination in an
on-line without explicit teacher signals. Because no explicit teacher signals could be
given, I reformulated this problem as a reinforcement learning problem. The overview
of reinforcement learning of the task is illustrated in Figure 22. The goal of policy
optimization in reinforcement learning is to optimize the policy parameters so that the
expected reward becomes maximal. In my approach, there are two conditions on ap-
plying reinforcement learning to approximate the whole process as a Markov decision
process (MDP) [5]. First, a computer agent and the user should share the same goal
represented by a reward function. Second, the environment should include the user
because not only the robot’s state but also the user’s state should be observed as much
as possible.

4.2 Formulation

The implimentation overview of reinforcement learning for the task is shown in Fig-
ure 23. The computer agent observes the user’s EMG and motion signals, and opti-
mizes the policy a as the additional term to the estimated force. That is, the force input
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Figure 22. Scheme of reinforcement learning

to the controller (Eq. (15)) is calculated by:

f inp = f est + a. (18)

As stated in Section 4.1, the user and the robot should share the same goal. For this
condition, the task design was rearranged as a reaching task, i.e., the user and the robot
were requested to move a load cooperatively to a specified location in specified time.
In other words, the spatiotemporal specification was the shared goal.

I employed the on-line version of the GARB algorithm [68] for reinforcement
learning. The on-line GARB is a policy-gradient method which is suitable for the
robot learning problem, cf., Appendix. The advantages of the policy gradient method
are that the policy representation can be chosen so that it is meaningful for the task
and can incorporate domain knowledge. This often requires fewer parameters in the
learning process than in value-function based methods. In addition, the policy gradient
method can be used model-free.
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Figure 23. Implementation of the policy gradient learning

4.3 Experiment1: learning based on force estimation using a delay-
line EMG

The detailed setting for learning is as follows. The state s ∈ R8, policy a ∈ R3 and
reward r ∈ R were defined as

s ≡ (m, pR, θR), (19)

ai ∼ π(ai|s, wi) = N (ai|μi, σi), (20)

μi =

NEMG∑
j

wijmj,

σi =
1

1 + exp (−wi9)
, (i = x, y, z),

r =
1

(2π)2 |Σ|1/2
exp

{
−1

2
(x − d)TΣ−1(x − d)

}
(21)

−γA

NθR∑
k

exp (−θ̈ 2
Rk ) − γEMG

NEMG∑
j

mj ,

where m, pR, and θR are the same variables described in the last section, and wi ∈
RNEMG is the parameter vector which was learned by reinforcement learning. The plol-
icy is given based on gaussian distribution and is equivalent to the adjustment of the
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part of parameters of the estimator (14) in on-line. NθR
(= 4) and NEMG(= 8) are the

number of controlled joints of the robot and the measured EMG signals, respectively.
The reward function consists of three terms; the first term represents the reaching accu-
racy in time and space, the second term for smoothness in robot motion, and the third
term for energy efficiency. The first term was a normal probability density function
in which d ∈ R4 is the desired load state specified in time ttarget [s] and the target
position in the world coordinates (xtarget, ytarget and ztarget [m]). x is the current load
state. Σ is a diagonal matrix whose elements were set to 0.2 and 0.002. mj is the
EMG signal of j-th muscle. γA and γEMG are constants balancing the contribution of
the three terms, and both were empirically set to 0.1.

The reason why I used only the current EMG signals m(t) at the time t among 30
tapped-delay lines for the agent’s state s(t) is for learning efficiency based on following
off-line analysis. I assessed explaining performance of various variable to the the force
estimation error for using linear approximation function

yi = Xβ, (22)

where yi and X are objective valiable and matrix of explaining valiable, and β is a
paremeter vector. yi means estimation error that was obtained from difference between
the force estimated from user’s biological signals fest i and the force which measured
for the validation purpose by the force sensor fsens i during the three-dimensional co-
operative task without the learning. Table 2 is shown the comparison of approximation
performance (adjusted coefficient of determination, cf., Appendix C) of each measured
valiable. Using only m(t) already requires nine learning parameters for each direction,
and thus 27 parameters are required in total. I selected m(t) among many candidates
including the joint angle of the robot, the hand tip motion of the user, and their delayed
signals, because it gave the largest coefficient of determination responsible for linearly
explaining the force estimation error. For this off-line analysis, I used the validation
data described in 2, so the force estimation error was available.

Finally, the parameters αp and β for GARB were empirically configured to 10−6

and 0.99.
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Table 2. Comparison of approximation performance of each measured valible
y

yx yy yzX

θ 0.3309 0.3701 0.1539
θ̇ 0.1493 0.0908 0.0440
θ̈ 0.0417 0.0244 0.0395

phand 0.1862 0.2831 0.0719
ṗhand 0.0654 0.1688 0.0095
p̈hand 0.0182 0.0356 0.0376

EMG(t) 0.2259 0.4599 0.2195
EMG(t-5) 0.2223 0.4591 0.2217
EMG(t-10) 0.2182 0.4576 0.2244
EMG(t-15) 0.2145 0.4559 0.2270
EMG(t-20) 0.2114 0.4538 0.2294
EMG(t-25) 0.2089 0.4514 0.2315
EMG(t-30) 0.2071 0.4487 0.2335

4.3.1 Results and problems

I conducted two tasks seven times (seven episodes). One episode consisted of nine
trials. The desired load state d (= [ttarget xtarget ytarget ztarget]

T ) was [2.0 0.2 0.0 0.0]T

and [2.0 0.0 0.0 0.2]T in Task 1 and Task 2, respectively. In each trial, the task was
terminated in 2.5 [s].

Figure 24 and 25 present experimental results of Tasks 1 and 2, respectively. Fig-
ure 24(a) and 25(a) show the mean and standard deviation of the accumulated reward,
while Figure 24(b) and 25(b) show the reaching position error of the load. Both results
were obtained over seven trials. As shown in these figures, policy gradient learning of
each task was quickly accomplished. The learning speed was particularly fast in Task
2, and 24(b) and 25(b) suggest Task 2 was easier than Task 1. The panel 25(b) shows
the reaching error position in the z-axis was achieved from the beginning trial, and
the reaching position in the x-axis was also almost achieved. Therefore, learning was
only necessary for the y-axis, and the position errors nicely decreased over trials. In
contrast, the panel 24(b) shows that, in Task 1, all three reaching positions moved over
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Figure 24. Experimental results obtained in task 1
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trials. The position of x-axis started from the position lower than the goal and ended
around the goal. The position of y-axis started from the position higher than zero, be-
came decreased, and ended around the goal, zero. The position of z-axis started from
a very high position, then lower, and ended at a much lower position but it was still
much higher than zero.

For learning, I selected only the current EMG signals as the agent’s state among
256 possible states. There are two reasons why I selected the current EMG signals.
First, it was for learning efficiency; the selection restricted the number of learning
parameters to 27 only. Second, the current EMG signals were expected to reduce the
force estimation error based on the off-line analysis. However, because corresponding
terms other than the current EMG made a large contribution to the force estimation,
using the current EMG terms did not work perfectly. Furthermore it is difficult to use
all the terms of EMG, since there were too many parameters for efficient learning.

4.4 Experiment2: learning based on force estimation using delay-
filtered EMG

To cope with the problem described above, I introduced a process of transforming
EMG to muscle activation (force) for the estimation of the force applied to the user’s
hand in place of EMG delay-line. There is a time delay between the onset of electrical
activity and exerting tension. Because it can be vary according to muscle contraction
velocity and force [12, 14], I have to achive a suitable time delay between the onset
of the EMG and the force. Thelen et al., modeled the relation ship between EMG
and muscle activation with linear discrete time dynamic model [66]. Zajac et al., used
first-order recursive differential filter for transforming to muscle activation [72], and
Manal et al., proposed second-order model which works more efficiently [45, 43, 7]. I
employed the second-order filter to obtain muscle activation uj(t) given by:

uj = αej(t − d) − β1uj(t − 1) − β2uj(t − 2), (23)

where ej(t) is full-wave rectified and low-pass filtered EMG of muscle j at time t. α,
β1 and β2 are recursive coefficients, and d is the electromechanical delay. To guarantee
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the filter stability of Equation (23), constraint conditions of α, β1 and β2 are neccesary:

β1 = γ1 + γ2 (24)

β2 = γ1 · γ2 (25)

|γ1| < 1 (26)

|γ2| < 1. (27)

To ensure that muscle activation does not exceed 1, the following condition must be
set:

α − β1 − β2 = 1.0. (28)

The parameters of this filter β1, β2 and d are optimized using the Matlab Optimization
Toolbox to be minimize the following cost function:∑

t

(f est − f sens)
2. (29)

where f sens is the measured force by a force sensor in the calibration stage.
Using muscle activation u, I redefined the force estimator (14) and the policy func-

tion (20) as following,

f est(t) = W T [θ(t)T , θ̇(t)T , θ̈(t)T , u(t)T , 1T ]T , (30)

ai ∼ π(ai|s, wi) = N (ai|μi, σi), (31)

μi =

NEMG∑
j

wijuj,

σi =
1

1 + exp (−wi9)
, (i = x, y, z),

4.4.1 Results

I conducted a task five times (five episodes). One episode consisted 18 trials. The
desired load state d (= [ttarget xtarget ytarget ztarget]

T ) was [2.0 0.2 0.0 0.0]T . In each
trial, the task was terminated in 2.5 [s].

4.3
Figure 26 presents experimental results. Figure 26(a) show mean and standard
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Figure 26. Experimental results
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deviation of the accumulated reward, Figure 26(b) show reaching position error of the
load. As shown in this figure, the performance was improved than result in 4.3.1 by
combining the terms which correspond to the EMG, however, the position of z-axis
was not yet perfect. Because θ had large contribution for the force estimation, not only
EMG terms but also θ terms should be adjusted.

4.5 Discussion

In this section, I proposed an approach to the realization of a robot controller which
can adapt to changes in the muscle coordination of a user. More specifically, in this
study, a three-dimensional cooperative holding task was attempted based on the virtual
force sensing approach [63] in 3.4, and then its performance was improved by a pol-
icy gradient learning method. The estimation of the applied force to the user’s hand
that was required for this task was achieved by linear function approximation from the
motion and EMG signals of the user’s upper-limb. I found that this simple linear esti-
mation worked well, even for test data, in the calibration phase. I also found, however,
that it did not work in the actual task, probably due to two major reasons: (1) EMG
patterns were different between in the calibration stage compared to those in the actual
task, (2) the muscle coordination varied, e.g., it is known that many muscles contribute
to shoulder motion, and that the torque vector of each muscle changes dramatically
depending on the shoulder posture [71, 9]. I then introduced a policy gradient learning
method, which is a type of reinforcement learning method, as it has the possibility of
making the robot controller cope with the changes in the EMG pattern and the muscle
coordination in an on-line fashion without an explicit teacher signal, i.e., measured
force data. As a consequence, the goal shared by the user and the computer agent as a
reward function was quickly and stably achieved in the two learning tasks. We found,
however, that the performance was not yet perfect in Task 1, particularly along the
z-axis. By looking into the recorded data, it seems that activated muscles were over-
lapped both in the x-axis and in the z-axis. In Task 2 where the x-position of the load
should be zero, the result showed no interference occurred in movements towards the
z-axis and the x-axis. Therefore, there would be interference created by the movement
towards the x-axis with the estimation of the force along the z-axis. The resolution of
this problem is planned in future studies.

Note that, as stated in 2, my approach is not confined to the cooperative holding
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task. Application of my approach to other tasks such as motor learning and rehabilita-
tion is also planned for future work.
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5. Conclusion

5.1 Summary

In this dissertation, I first proposed a new approach to designing intelligent machines
that can work for humans not only in industrial factories but also in my daily life such
as at home. The key of the approach is the virtual realization of force/tactile sensors
in robots by using user’s biological signals such as EMG and postural information. In
principle because my approach does not require the sensors to be attached to a robot,
it can be applied not only to robots but also to various other machines. It is notable
that my approach is not confined to what I call “robots”, but rather it should be useful
for various intelligent machine applications as mentioned in Section 2.2. My approach
will become more advantageous especially with the advent of ubiquitous computing
environments in which sensors and devices are networked and are distributed over the
environment.

I tried a three-dimensional cooperative holding task based on the virtual force sens-
ing approach in 3.4, however, the calibration method in which the parameters of the
estimator are learned before the actual task did not work due to the variation of EMG
signals attributed to time varying muscle coordination patterns.

Therefore, in this study, I introduced reinforcement learning which modified the
policy function based on the user’s biological signals. This can make the robot con-
troller adaptive to the changes in the EMG pattern and the muscle coordination in an
on-line fashion, without an explicit teacher signal, e.g., force sensor output, and thus
we can conduct experiments in which a subject moves a heavy load to a specified target
point cooperatively with a robot. Experimental results demonstrate the feasibility of
my method.

5.2 Future Works

If the number of sensors, attached to the user in an unorganized manner, increases, the
user would feel uncomfortable. Glove-like devices in which cheap inertial and posi-
tional sensors and electrodes for EMG are attached in an organized manner could re-
solve the above issue My future work will take more muscles and more sensor devices
into account for more precise and robust force estimation. I am also interested in the
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estimation of various internal states of humans, such as impedance of arms, with the
ultimate intention of assisting cooperative tasks [29]. My long-term goal is to achieve
full-body cooperation between a humanoid robot and its user based on the measure-
ment of the full-body muscles of the user, and possibly on the ”internal” intentions of
the user.

Reinforcement learning based on a user’s biological signals is expected to have
applications in motor learning assist-systems that will adaptively assist according to
the user’s intention or ability.
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Appendix

A. Estimation of the three-dimensional force-vector bear-
ing on the hand based on forward dynamics

The dynamic balancing between the force and the torque on every link can be described
by the Newton-Euler formulation. The backward recursive equation for dynamics are,

f i = Ai+1f i+1 + mip̈gi, (32)

ni = Ai+1ni+1 + I iω̇i + ωi × (I iωi) + ai × (mip̈gi) + li × Ai+1f i+1, (33)

τi = qT
i ni + Diθ̇i + Ei(θ̇i, θi), (34)

(i = p, p − 1, · · · , 1),

where, Ai, I i, ωi, ai, mi, pgi, li, f i and ni are a coordinate transformation matrix
from the (i − 1)-th to the i-th coordinate systems, an inertia matrix on the gravity
center of the i-th link, an angular velocity vector of the i-th link, a vector from the
origin to the gravity center of the ith link, a mass of the i-th link, a vector from the
world origin to the gravity center of the tip link, a vector from the origin of the i-th
link to the origin of the (i + 1)-th link, and a force vector which acts on the i-th link
from the (i− 1)-th link, and a moment vector for the i-th link from the (i− 1)-th link,
respectively. qi is the vector denoting the rotational axis and only a element is 1. Di

and Ei(θ̇i, θi) are the viscous friction coefficient for the joint and the nonlinear friction
torque, respectively, and they were set at 0 for simplicity. p is the number of the links.
Although the purpose is calculating the force vector which acts on the tip link fp+1,
it could not be derived analytically, so corss product in (33) has no unique inverse.
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Therefore, I obtained f p+1 numerically by expanding (32), (33) as following,

f i =

⎛
⎜⎝ F i

11 F i
12 F i

13 F i
14

F i
21 F i

22 F i
23 F i

24

F i
31 F i

32 F i
33 F i

34

⎞
⎟⎠

⎛
⎜⎜⎜⎝

f p+1
x

f p+1
y

f p+1
z

1

⎞
⎟⎟⎟⎠ , (35)

ni =

⎛
⎜⎝ N i

11 N i
12 N i

13 N i
14

N i
21 N i

22 N i
23 N i

24

N i
31 N i

32 N i
33 N i

34

⎞
⎟⎠

⎛
⎜⎜⎜⎝

f p+1
x

f p+1
y

f p+1
z

1

⎞
⎟⎟⎟⎠ . (36)

The relationship between τi and matrix N i is specified by using (34), because only one
of elements of qi is 1.

B. GPOMDP Algorithm

(1) The agent observed the state st from the environment and take action at based on
probabilistic policy π(at, st, w(t)),
(2) is given reward rt and observed the next state st+1.
(3) update action selection probability

ei(t) =
∂

∂wi(t)
ln (π(at, st, w(t)))

Di(t) = ei(t) + βDi(t)

b(t) = b(t − 1) +
1

t
(r(t) − b(t − 1))

Δwi(t) = (r(t) − b(t))

w(t + 1) = w(t) + αpΔw(t)

ei(t) and Di(t) are eligibility and eligibility trace. w(t) = (w1(t), w2(t), · · · , wl(t)) is
parameters. β (0 < β < 1) and αp are discount ratio of eligibility trace and learning
ratio, respectively.
(4) set a time t forward and return to step (1).
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C. Adjusted Coefficient of Determination

Adjusted coefficient of determination R̄2 is given by following equations

R2 =

∑n
t=1(ŷ(t) − ȳ)2∑n
t=1(y(t) − ȳ)2

= 1 −
∑n

t=1 e(t)2∑n
t=1(y(t) − ȳ)2

, (37)

R̄2 = 1 − n − 1

n − p − 1
(1 − R2). (38)

ŷ and ȳ are predictive vector and average of objective variable. n and p are number of
samples and parameters of explaining variable, respectively. e is residual vector that
calculated by

e = y − ŷ.
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