
Doctoral Dissertation

Measuring and Characterizing Eye Movements
for Performance Evaluation of Software Review

Hidetake Uwano

Department of Information Systems,
Graduate School of Information Science,
Nara Institute of Science and Technology

February, 2009

A Doctoral dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hidetake Uwano

Thesis Committee:
Professor Ken-ichi Matsumoto (Supervisor)
Professor Hirokazu Nishitani (Co-supervisor)
Associate Professor Akito Monden (Co-supervisor)
Associate Professor Masahide Nakamura (Kobe University)

i

Measuring and Characterizing Eye Movements
for Performance Evaluation of Software Review 1

Hidetake Uwano

Abstract

Software review is a technique to improve the quality of software documents and to
detect defects by reading the documents. To increase review performance (the number of
defect detections and/or defect detection efficiency), many review techniques and support
environments have been proposed. However, the difference between individuals is more
dominant than the review techniques and the other factors. Hence, understanding the fac-
tor of individual differences between a high-performance reviewer and a low-performance
reviewer is necessary to develop practical support and training methods. This thesis re-
veals the factors affecting review performance from an analysis of the reading procedure
in software review.

To analyze the reviewers’ reading procedure quantitatively, this thesis proposes to use
the eye movements of the reviewer. Measuring eye movements on each line and in a docu-
ment allow us a correlation analysis between reading procedure and review performance.
In this thesis, eye movements are classified into two types: Eye movements between lines
and eye movements between documents. Two experiments analyzed the relationship be-
tween the type of eye movements and review performance.

In the first experiment, eye movements between lines of source code were recorded.
As a result, a particular pattern of eye movements, called a scan, in the subjects’ eye
movements was identified. Quantitative analysis showed that reviewers who did not spend
enough time on the scan took more time on average to find defects. These results depict
how the line-wise reading procedure affects review performance. The results suggest that
a more concrete direction of reading improves review performance.

Then, in the second experiment, eye movements between multiple documents (software

requirements specifications, detailed design document, source code, etc.) were recorded.

Results of the experiments showed that reviewers who concentrated their eye movements

on high-level documents (software requirements specifications and detailed design docu-

ment) found more defects in the review target document efficiently. Especially, in code

1Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology,
NAIST-IS-DD0661002, February 5, 2009

ii

review, reviewers who balanced their reading time to software requirements specifications

and detailed design document found more defects than reviewers who concentrate to de-

tailed design document. These results are good evidences to encourage developers to read

high-level documents in review.

Keywords

Software Review, Defect Detection, Human Factor, Eye Movement, Performance Mea-

surement

Contents

1 Introduction 1
1.1 Background . 1
1.2 Quality Improvement Activities in Software Development . . 2
1.3 Problem – Individual Differences 3
1.4 Characterizing Individual Differences in Software Review . . 4
1.5 Thesis Stamement . 5
1.6 Thesis Organization . 6

2 Software Review 7
2.1 Target Document . 8
2.2 Review Technique . 9

2.2.1 Checklist-Based Reading 10
2.2.2 Scenario-Based Reading 10
2.2.3 Ad-Hoc Reading . 15

2.3 Impact of Review Techniques and Individual Differences . . . 15
2.4 Chapter Summary . 18

3 Eye Movement in Software Review 19
3.1 Measurement Perspectives . 20

3.1.1 Eye Movement between Lines 20
3.1.2 Eye Movement between Documents 22

3.2 Terminologies . 23
3.3 Related Work . 24
3.4 Chapter Summary . 25

iii

iv Contents

4 Eye Movement between Lines 27
4.1 System Requirements . 27
4.2 Implementation . 29

4.2.1 System Architecture 29
4.2.2 Eye Gaze Analyzer . 30
4.2.3 Fixation Analyzer . 31
4.2.4 Review Platform . 31

4.3 Experiment . 36
4.3.1 Overview . 36
4.3.2 Experiment Settings 36

4.4 Results . 37
4.4.1 Qualitative Analysis 37
4.4.2 Quantitative Analysis of Scan Pattern 39
4.4.3 Using Recorded Data for Review Training 43

4.5 Chapter Summary . 44

5 Eye Movement between Documents 47
5.1 System Improvement . 48
5.2 Metrics . 50
5.3 Hypotheses . 51
5.4 Experiment . 53

5.4.1 Overview . 53
5.4.2 Review Type . 54
5.4.3 Materials . 55

5.5 Results . 56
5.5.1 Collected Data . 56
5.5.2 Design Review Performance 62
5.5.3 Code Review Performance 62
5.5.4 Detailed Analyses . 64

5.6 Chapter Summary . 67

6 Conclusion 69
6.1 Research Summary . 69
6.2 Contributions . 71
6.3 Future Directions . 72

Contents v

Acknowledgements 75

References 77

List of Publications 85

Appendix 87
A Source Code Used on First Experiment 87

A.1 IsPrime . 87
A.2 Accumulate . 88
A.3 Sum-5 . 89
A.4 Average-5 . 90
A.5 Average-any . 91
A.6 Swap . 92

B Documents Used on Second Experiment 93
B.1 Software Requirements Specifications 93
B.2 Detailed Design Document used on Design Review . . 95
B.3 Detailed Design Document used on Code Review . . . 97
B.4 Source Code . 99
B.5 Data file . 103
B.6 Checklist for Detailed Design Review 104
B.7 Checklist for Code Review 105

List of Figures

2.1 Example of the software documents created at each develop-
ment process. 8

2.2 Example of questions used at DBR. 14
2.3 Effectiveness of Usage-Based Reading and Checklist-Based

Reading. 17
2.4 Individual differences in a review. 18

3.1 Reading procedure between lines. 21
3.2 Source code review with multiple documents. 23

4.1 System architecture of DRESREM. 29
4.2 Eye gaze analyzer EMR-NC. 31
4.3 Example of document viewer. 33
4.4 Result viewer. 35
4.5 Eye movements of subject E reviewing program IsPrime. . . 40
4.6 Eye movements of subject C reviewing program Accumulate. 41
4.7 Normalized first scan time and defect detection time. 42
4.8 Eye movements of subject B reviewing program IsPrime. . . 43

5.1 Improved Architecture of DRESREM 2. 49
5.2 Screenshot of Review Platform. 50
5.3 Eye movements of a high-performance reviewer on code re-

view (Reviewer C). 61
5.4 Eye movements of a low-performance reviewer on code review

(Reviewer F). 61

vii

viii List of Figures

5.5 Relationship between weight to reading requirement specifi-
cation and review quality. 66

5.6 Relationship between weight to reading requirement specifi-
cation and review effectiveness. 66

List of Tables

2.1 Example of checklist for CBR. 11

4.1 Programs reviewed in the experiment. 38
4.2 Comments gathered in interviews. 44

5.1 Checklist for source code review. 57
5.2 Fixation time and the number of defect detections on the code

review. 59
5.3 Fixation time and the number of defect detections on the

design review. 59
5.4 GTR for each document and review performance on code re-

view. 60
5.5 GTR for each document and review performance on design

review. 60
5.6 Correlation between fixation ratio and review performance on

design review. 62
5.7 Correlation between fixation ratio and review performance on

source code review. 63
5.8 Correlation between fixation ratio to target document and

review performance on code review. 65
5.9 Correlation between fixation ratio to target document and

review performance on design review. 65
5.10 Results of testing hypotheses. 68

ix

Chapter 1

Introduction

1.1 Background

Improvement of software quality has become extremely important today be-
cause of the increase in large-scale software systems. Software defects (i.e.
bugs and failures) in large-scale systems such as banking systems cause se-
rious economic and social damage to system users. The defects especially in
power plants, airplanes, and train systems cause fatal accidents [Leveson 95].
The literature reported some serious crises caused by software defects such
as the breakdown of the train station ticket examination system and engine
trouble in running automobiles [Hirayama 07].

Elimination of defects in software before delivery is a necessary activity
in software development organizations. In most software projects, defects
in a system are detected by testing and are removed by debugging the sys-
tem. However, due to growth in the size of recent software systems, defect
detection requires massive costs. In addition, many defects usually remain
in delivered software, and this increases the maintenance cost for fixing de-
fects in the field. Since the size of today’s software systems keeps growing,
effective/efficient defect detection techniques in software development are
indispensable.

1

2 Chapter 1 Introduction

1.2 Quality Improvement Activities in Software
Development

Many of techniques to improve software quality have been proposed in the
field of software engineering. A brief introduction of each method is de-
scribed below.

Software testing is one of the most used techniques in software develop-
ment organizations. Testing activities within the software development and
maintenance process verify system functionality while identifying remaining
defects. Hence, testing is most often used to reveal the presence (and not
the absence) of defects[Laitenberger 98a]. There are many of studies about
testing, such as proposals of new testing techniques and comparison of defect
detection performance with other techniques [Cleve 05, Galli 04, Jones 02,
Laitenberger 98a, Laitenberger 98b]. For example, Jones et al. proposed
a visualization technique of test coverage to evaluate the completeness of
implemented test units [Jones 02].

Software review is also applied in the many software organizations. This
software review is a peer review of software system documents such as source
code or requirements specifications. This review is intended to find and fix
defects (i.e., bugs) overlooked in early development phases, thus, improving
overall system quality [Boehm 81]. Hundreds of studies are performed to
improve the software review performance [Laitenberger 00]. In particular,
studies about software review techniques are most performed. In Chapter
2, a literature review of the software review is presented.

In several organizations, which develop highly reliable software such as
artificial satellites, aviation systems, and military systems, Software Inde-
pendent Verification and Validation (SW IV&V) employed. SW IV&V is a
set of frameworks and techniques to improve software reliability [Arthur 98,
Lewis 92]. In the IV&V framework, a third organization independent from
development organizations and clients can confirm the correctness of soft-
ware documents. Confirmation from the third organization provides an ob-
jective and wide-range evaluation. The National Aeronautics and Space

1.3 Problem – Individual Differences 3

Administration (NASA) uses IV&V techniques for confirmation of software
embedded in spacecrafts.

From these quality improvement techniques, software testing and soft-
ware review are widely used. In particular, the review can apply in the early
phase of the development; hence, the software review is a more effective
technique than testing [Melo 01, Fagan 76, Laitenberger 98a, Wiegers 02].
Especially in developing large-scale software applications, the software re-
view is vital, since it is quite expensive to fix the defects in later integration
and testing stages. A study shows that review and its variants such as walk-
through and inspection can discover 50 to 70 percent of defects in software
products [Wiegers 02].

1.3 Problem – Individual Differences

In much of the literature on software review individual differences of the de-
veloper are considered to heavily affect the effectiveness of software reliabil-
ity [Boehm 75, Boehm 81, Bucher 75, Davis 95, Demarco 99, McBreen 01,
Myers 78, Sackman 68]. As Bucher described in his paper: “the prime factor
affecting the reliability of software is the selection, motivation and manage-
ment of the personnel who design and maintain it” [Bucher 75]. Several
books have described the human issue as a more important factor than
technical issuew such as tools, development techniques, program languages,
and processes [Boehm 81, Demarco 99]. Research that analyzed the project
data of software development showed how the individual differences of the
developer vary from 5 times to 28 times [Boehm 75, Sackman 68].

In the quality improvement activities in software development, the per-
formance of developer is also affected by individual differences. Myers in-
dicated that there is a tremendous amount of variability in individual per-
formance at inspections (a sort of software review) and software testing
[Myers 78]. For example, one subject found nine defects at the inspection;
on the other hand, another subject who inspected the same document found
only three defects. Laitenberger et al. also showed in their paper many dif-
ferences in the performance of the individuals [Laitenberger 02a]. In their

4 Chapter 1 Introduction

experiment, the number of defects, which the subject found, varied from
zero to eighteen.

The Software Engineering Institute (SEI) at Carnegie Mellon University
(CMU) proposed a People Capability Maturity Model (People-CMM) to
manage and develop the workforce in software organizations [P-CMM]. The
People CMM helps organizations characterize the maturity of their work-
force practices, establish a program of continuous workforce development,
set priorities for improvement actions, integrate workforce development with
process improvement, and establish a culture of excellence.

While much of the literatures mentions the importance of individual
differences in software development, only a few studies examine a factor
of the differences. Analyzing the factor of individual differences from an
empirical evaluation is an important way to improve software development
effectiveness. That is, analyzing experienced developers’ activities leads us
to establish a novel development technique that encourages other developers
to perform similar activities for performance improvement. Also, analyzing
inexperienced developers’ activities advances the training method of a novice
developer. Hence, analyzing the factor of the individual differences from
developers’ activities is a fruitful thesis topic.

1.4 Characterizing Individual Differences in Soft-
ware Review

This thesis clarifies the factor of individual differences on one of the quality
improvement activities, software review1. In the review, a reviewer reads
the document, understands the structure and/or functions of the system,
then detects and fixes defects if any. The software review is an off-line task
conducted by human reviewers without executing the system. Basically,
software review is a human-centered activity, hence impact of the individual
differences on the review is quite dominant.

1Hereafter, the word ”review” indicate software review, inspection, walkthrough and/or
other reading techniques.

1.5 Thesis Stamement 5

To characterize the developers’ performance in the review, we propose
using the eye movements of the reviewer. The way of reading software
documents (i.e., reading strategy) should vary among different reviewers.
The reading strategies are indicated by the eye movements of the reviewers.
Thus, we consider that the eye movements can be used as a powerful metric
to characterize the performance in the software review.

In this thesis, two experiments to measure reviewers’ eye movements
on software review are described. To record the reviewers’ eye movements,
gaze-based review evaluation system was created. Using the system, the
way of reading documents was analyzed from two different viewpoints: eye
movements between lines and eye movements between documents.

1.5 Thesis Stamement

The main claim of this thesis is that analysis of individual differences in
software review is a fruitful research topic. As mentioned in Section 1.3,
performance of individual reviewers is more dominant than the review tech-
niques and other factors. However, although hundreds of studies about
software review were performed, there is no research that evaluates individ-
ual differences in software review. This thesis is characterized by analyzing
individual differences in software review from empirical experiments.

Another claim of this thesis is that measuring the eye movements of
reviewer is a suitable way to analyze reviewers’ reading procedure quantita-
tively. In order to measure human activity and psychological status, biologi-
cal information such as eye movements, brain waves (EEG: electroencephalo-
grams), and heart rate variability (HRV) were used [Murata 91, Hazlett 03,
Nakayama 02]. Biological information can be measured without training
the subjects, and can collect quantitative, objective information. Hence,
biological informantion is widely used in the field of psychology and Human
Computer Interaction.

As the related work, we proposed to use an EEG to evaluate the usability
of the software. An EEG measurement allows us an objective and quanti-

6 Chapter 1 Introduction

tative analysis of software usability. The measurement of eye movements
in software review also allow us a quantitative/objective analysis without
subject training. In addition, eye movements in the software review directly
reflect the reviewers’ reading procedure. Hence, measuring eye movement
in software review is a novel, suitable method for evaluation of individual
differences.

1.6 Thesis Organization

This thesis is organized into the following chapters:

• Chapter 1 discussed the problem and an approach is described.

• Chapter 2 describes a variety of software reviews and individual dif-
ferences in the reviews.

• Chapter 3 describes a detailed approach with related work.

• Chapter 4 reports on an experiment, which evaluates reading proce-
dures between lines.

• Chapter 5 reports on an experiment, which evaluates reading proce-
dures between documents.

• Chapter 6 concludes this thesis with a discussion of its contributions
and future directions.

Chapter 2

Software Review

Software review is a technique to improve the quality of software documents
and detect defects (i.e. bugs or faults) by reading the documents [Boehm 81].
In software review, a developer reads software requirements specifications,
designs documents, source code, and other documents to understand the
systems’ functions and structures, and then detects defects from the docu-
ments.

Defect detection by review can be performed in the early phases of soft-
ware development without an implemented system; therefore, rework costs
can be reduced [Laitenberger 02b]. Especially in large-scale projects, defect
detection and defect correction consume huge resources, and defect detec-
tion by review is necessary. A study shows that review and its variants such
as walkthrough and inspection can discover 50 to 70 percent of defects in
software product [Wiegers 02].

This chapter starts with explanation of target documents, which are
used mainly in the experiment on software review in Section 2.1. Section
2.2 gives a list of review techniques used to improve review performance.
Section 2.3 describes the effects of the review techniques and individual
differences. Section 2.4 summarizes this chapter.

7

8 Chapter 2 Software Review

Process flow
Process

Architecture
Design

Detailed
Design

Implementation

Unit Testing

Integration
Testing

Requirements
Specification System Testing

Document

System
Test

DesignSoftware
Requirements
Specifications

Architecture
Design

Document

Detailed
Design

Document

Source Code

Unit
Test

Design

Integration
Test

Design

System
Test

Document

Integration
Test

Document

Unit Test
Document

Figure 2.1: Example of the software documents created at each development
process.

2.1 Target Document

In software development, several software documents are created in each
development process. Figure 2.1 describes an example of the software doc-
uments created at each development process.

Basically, the developer can review every document that was created
at each process. IEEE Standard lists 37 software documents as the review
target [IEEE 1028-1997]. Here, we describe three documents used mainly in
studies of software review.

• Software Requirements Specifications
A software requirements specification (SRS) is a description of the
purpose and environment for software under development. The SRS
fully describes what the software will do and how it will be expected

2.2 Review Technique 9

to perform. Software review is the most common ways of validating
an SRS [Porter 94]. The SRS is the highest level document in the
software development. Defect detection in an early phase decreases
the entire development costs. Hence, a software review of SRS is vital.

• Software Design Document
A software design document (SDD) is a description of a software prod-
uct that a software designer writes in order to give software develop-
ment teams an overall guidance of the architecture of the software
project. There are two kinds of design documents: HLDD – High
Level Design Document and LLDD – Low Level Design Document. In
the study of software review, SDD is written in natural language or as
a Unified Modeling Language (UML).

• Source Code
In the software development, source code is implemented after the
requirement specification phase and design phase. Source code is fre-
quently used as a review target in the literature about software re-
view. Several studies showed that code review was significantly more
effective than testing for defects detection [Melo 01, Ciolkowski 02,
Laitenberger 98a].

2.2 Review Technique

Several methodologies that can be used for software review have been pro-
posed so far. The idea behind these methods is to propose a certain criteria
for reading the documents.

A review without any reading criteria is called Ad-Hoc Reading (AHR).
Checklist-Based Reading (CBR) [Fagan 76] introduces a checklist with which
the reviewers check typical mistakes in the document. A method, called
Perspective-Based Reading (PBR), is used when the reviewers read the doc-
ument from several different viewpoints, such as the designer’s viewpoint,
the programmers and the testers [Shull 00]. Usage-Based Reading (UBR)
[Thelin 01] is reviews the document from the users’ viewpoint. Defect-Based
Reading (DBR) [Porter 95] focuses on detecting specific types of defects.

10 Chapter 2 Software Review

2.2.1 Checklist-Based Reading

Checklist-Based Reading (CBR) has been a commonly used technique in in-
spections since the 1970s. Checklists are based on a set of specific questions
that are intended to guide the inspector during inspection[Sabaliauskaite 02].
Table 2.1 describes an example of a checklist for CBR[Thelin 03].

The checklist assists the reviewer in remembering which aspects are to
be checked, but offers little guidance on what specifically to do. The re-
viewer has to map checklist questions to tasks and plan how to traverse the
document. The reading process that builds up on a given checklist is often
not repeatable and is prone to human variability and fallibility [Halling 01].

Checklists can cover a broad range of issues but may require the reviewer
to read through the document several times sequentially, which restricts the
applicability to documents of a limited suitable size, or makes the reviewer
decide the AHR, which parts of the document to actually review, and which
should actually be a part of the review planning.

Today, CBR is considered to be the standard reading technique in soft-
ware organizations[Laitenberger 00]. Therefore, CBR is often used as a base-
line method in empirical studies when investigating reading techniques.

2.2.2 Scenario-Based Reading

Scenario-Based Reading (SBR) uses procedures to detect specific classes of
defects [Halling 01]. Based on the document and information that is sup-
posed to be important to a stakeholder in development, a scenario consists
of three parts: The introduction of the readers’ role and interest, how to
extract information, and questions, which can be answered with the ex-
tracted information. The scenarios guide readers through a document with
a particular emphasis or viewpoint, and, thus, must be combined to provide
complete coverage of the document.

Scenarios offer algorithmic guidance and encourage the reader to actively
work with the document by taking notes, annotating the document, and con-

2.2 Review Technique 11

Table 2.1: Example of checklist for CBR.

12 Chapter 2 Software Review

structing a mental model, which is supposed to lead to more coherence in
the particular view of a reader. The scenario gives guidance on different
levels of detail starting at major organizational entities and teaching inspec-
tors how to recognize them, how to actively abstract relevant information
and how to integrate this new information with the analysis so far. These
steps are repeated on several levels of detail. SBR is typically distinguished
by the following three types of applied scenarios.

Perspective-Based Reading

The main idea of the Perspective-Based Reading (PBR) technique is that a
software product should be reviewed from the perspective of different stake-
holders [Sabaliauskaite 02]. The perspectives depend on the roles people
have within the software development and the maintenance process such as
users, designers, implementers, and testers. To examine a document from a
particular perspective, PBR technique provides guidance for the inspector
in the form of a PBR scenario on how to read and examine the document.

The PBR scenario consists of three major sections: introduction (de-
scribing the quality requirements, which are most relevant to this perspec-
tive); instructions (describing what kind of documents to use, how to read
them, and how to extract the necessary information) and questions (a set
of questions which the inspector has to answer during the inspection). The
main objective of the instructions for reading a document from different per-
spectives is to gain a better defect detection coverage of a software artifact.

An example of scenario (tester perspective) used in PBR is as follows
[Ciolkowski 97]:

• Do you have all the information necessary to identify the item being
tested and to identify your test criteria? Can you make up reasonable
test cases for each item based upon the criteria?

• Is there another requirement or functional specification for which you
would generate a similar test case, but would get a contradictory re-
sult?

2.2 Review Technique 13

• Can you be sure that the test you generated should yield the correct
value in the correct units?

• Are there other interpretations of this requirement that the imple-
menter might make based upon the way the requirement or functional
specification is defined? Will this affect the tests you make up?

• Does the requirement or functional specification make sense from what
you know about the application or from what is specified in the general
description?

Usage-Based Reading

The principal idea behind Usage-Based Reading (UBR) is to focus the read-
ing effort on detecting the most critical faults in the review target. Hence,
faults are not assumed to be of equal importance, and the UBR method
is aimed at finding the faults that have the most negative impact on the
users’ perception of system quality. The UBR method focuses the reading
effort guided by a prioritized, requirements-level use case model during the
individual preparation of a software review.

In the UBR, reviewers read the design document by following the pro-
cedure:

1. Select the use case with the highest priority.

2. Trace and manually executing the use case through the design docu-
ment and use the requirements document as a reference.

3. Ensure that the document under review fulfills the goal of the use case,
and that the needed functionality is provided, that the interfaces are
correct, etc. Identify and report the issues found.

4. Repeat the review procedure using the next use case until all use cases
are covered, or until a time limit is reached.

14 Chapter 2 Software Review

Figure 2.2: Example of questions used at DBR.

Defect-Based Reading

The main idea behind Defect-based Reading (DBR) is for different reviewers
to focus on different defect classes while scrutinizing the requirements docu-
ments [Laitenberger 00]. For each defect class, there is a scenario consisting
of a set of questions an inspector has to answer while reading. Answering
the questions primarily helps an inspector detect defects of the particular
class.

The defect-based reading technique has been validated in a controlled
experiment with students as subjects. The major finding was that inspectors
applying Defect-based Reading detect more defects than inspectors applying
either Ad-hoc or checklist-based reading. Figure 2.2 illustrates an example
of questions used at DBR [Porter 95].

2.3 Impact of Review Techniques and Individual Differences 15

2.2.3 Ad-Hoc Reading

Ad-hoc reading, by nature, offers very little reading support since a software
product is simply given to inspectors without any direction or guidelines on
how to proceed through it and what to look for [Laitenberger 00]. However,
Ad-hoc does not mean that inspection participants do not scrutinize the
inspected product systematically. The word ’Ad-hoc’ only refers to the
fact that no support is given to them. In this case, defect detection fully
depends on the skill, the knowledge, and the experience of an inspector who
may compensate for the lack of reading support.

2.3 Impact of Review Techniques and Individual
Differences

To evaluate the performance of review techniques, hundreds of empirical
studies have been conducted [Ciolkowski 02]. Some empirical reports have
shown that CBR, which is the most used method in the software industries,
is not more efficient than AHR[Porter 98, Porter 95].

UBR, PBR and DBR achieved a slightly better performance than CBR
and AHR [Basili 96, Porter 98, Porter 95, Shull 98, Thelin 03]. Porter et al.
showed in their study that in most cases DBR reviewers were more effective
than CBR or AHR reviewers at finding the faults the scenario was designed
to uncover [Porter 95]. At the same time, all reviewers, regardless of which
detection method each used, were equally effective at finding those faults
not targeted by any of the scenarios.

On the other hand, Halling et al. [Halling 01] report an opposite obser-
vation that CBR is better than PBR. In their work, reviewers who use a
checklist are more effective regarding all defects in the document than re-
viewers who use a scenario. Several case studies have shown that these
methods had no significant difference [Fusaro 97, Lanubile 00, Miller 98,
Sabaliauskaite 02, Sandahl 98].

Sabaliauskaite et al. compared CBR and PBR when reviewing multiple

16 Chapter 2 Software Review

documents of UML[Sabaliauskaite 02]. In the experiment, four diagrams —
class, activity, sequence and component — were used in the review. Their
results revealed that PBR required less time than CBR to find defects on
average, but had no significant difference. For the period of the detection
rate, the difference between CBR and SBR was not observed.

The reason why the results vary among the empirical studies is that the
performance of individual reviewers is more dominant than the review tech-
nique itself. This is because the review task involves many human factors.

Thelin et al. [Thelin 03] compared the effectiveness between UBR and
CBR. Figure 2.3 describes one of the results in their experiment. In this
Figure, the horizontal axis shows the defect detection ratio (the number
of defects found / the total number of defects in the documents) of each
method, and the vertical axis represents a fault classification, which com-
prises class A (crucial), class B (important) and class C (not important.)
The Figure shows that the effectiveness of UBR is 1.2–1.5 times better than
CBR on average. However, as seen in the dotted lines in the figure, the in-
dividual performance in the same review technique varies much more than
the technique-wise difference.

Laitenberger et al. mentioned individual differences of review perfor-
mance in their study [Laitenberger 02a]. Figure 2.4 shows individual dif-
ferences in a review, which was performed in their experiment. The Figure
shows the inspector’s (reviewer) performance across the inspections per-
formed. The number at the top indicates the number of inspections in
which an inspector participated. Moreover, the number of defects detected
are the ones individually detected normalized with the number of functional
requirements (size measure) to remove the size effect. As can be seen, there
is quite a difference in the performance of the individuals.

These results showed that the individual performance in the same re-
view technique varies much more than the method-wise difference. That is,
large differences of individuals in the same review technique come from more
detailed reviewers’ activities, not from abstract reading guidelines. Foe ex-
ample, PBR instructs reviewers to use perspectives of stakeholders such as

2.3 Impact of Review Techniques and Individual Differences 17

Figure 2.3: Effectiveness of Usage-Based Reading and Checklist-Based
Reading.

user, developer, tester, and so on. Each perspective gives scenarios describ-
ing how the reviewer reads the software documents. However, this scenario
shows only guidelines or criteria, and a more detailed/concrete reading pro-
cedure is not described. Hence, each reviewer reads the documents in their
own way. The results of previous studies showed that the individual differ-
ences of detailed reading procedure are a major factor of review performance.

Analyzing the detailed reading procedure in the review from empirical
evaluation is an important way to improve software development effective-
ness. That is, analyzing experienced developers’ activities leads us to es-
tablish a novel development technique that encourages other developers to
perform similar activities for performance improvement. Also, analyzing in-
experienced developers’ activities advances a training method for the novice
developer. Hence, analyzing the factor of individual differences from the

18 Chapter 2 Software Review

Figure 2.4: Individual differences in a review.

developers’ activities is a fruitfl research activity.

2.4 Chapter Summary

This chapter discussed review target documents and review techniques. The
software review is performed on a number of software documents, with dif-
ferent techniques, such as CBR and PBR. This chapter also described the
impact of individual differences in the software review. From the view-
point of review performance, individual differences are more dominant than
technique-wise differences.

Chapter 3

Eye Movement in Software
Review

To characterize the reviewers’ performance in an objective way, we propose
to use eye movements of the reviewer. The way of reading software doc-
uments (i.e., reading strategy) should vary among different reviewers. The
reading strategy is indicated by the eye movements of the reviewers. Thus,
we consider that the eye movements can be used as a powerful metric to
characterize performance in the software review.

Advantages of using eye movements to evaluate software review are as
follows:

• Measurement of detailed review activity
Generally, most knowledge of the reviewer is difficult to express in
words; hence, a common analysis method such as an interview or
a think-aloud protocol [Ericsson 84] could not extract the reviewers’
characteristics. Detailed analysis of eye movements will capture the
reviewers’ knowledge from their reading procedure.

• Easy to measure
The second advantage in adopting the eye movements is that the eye
movements provide us a data without any training of the reviewers.
A related work, a method called think-aloud protocol, tapes the au-

19

20 Chapter 3 Eye Movement in Software Review

dio and video characteristics of subjects to record their intellectual
activities. However, compared to the think-aloud protocol, the eye
movements do not impose training or expensive preparation upon the
reviewers.

• Quantitative evaluation
Using the eye movements allows us to observe the reviewers’ read-
ing procedure with quantitative data. Quantitative analysis of eye
movements and review performance data (i.e. the number of defect
detection, detection time per review time) will reveal the correlation
between reading procedure and review performance.

This chapter begins with an explanation of two measurement perspec-
tives for eye movement evaluation in Section 3.1. Section 3.2 defines termi-
nology used in this following thesis. Section 3.3 relates my thesis to previous
studies of eye movements. Section 3.4 summarizes this chapter.

3.1 Measurement Perspectives

We chose two measurement perspectives for a structured analysis of eye
movements: (1) Eye movement between lines, and (2) Eye movement be-
tween documents.

3.1.1 Eye Movement between Lines

One of the measurement perspectives is eye movements between lines in a
document. The software documents are not read as ordinary documents
such as newspapers and stories. For instance, let us consider two kinds of
software documents: source code and software requirements specifications.

The source code has a control flow (branches, loops, function calls, etc.),
which defines the execution order among program statements. The reviewer
often reads the code according to the control flow, in order to simulate
exactly how the program works. On the other hand, the reviewer who reads
the source code without the control flow (i.e. reads from the top of the file)
requires more review time to understand the program. Figure 3.1 describes

3.1 Measurement Perspectives 21

int functionA(…){
while(…){

functionB(…);
}
return … ;

}

void functionB(…){
…

}

int main(…)
{

…
if(…){

…
functionA(…);

}else{
…

}
}

Start

Start

Review from the top of
source code
Review along program
control flow

Figure 3.1: Reading procedure between lines.

an example of different reading procedures, review along program control
flow, and review from the top of source code.

The software requirements specification is typically structured, where a
requirement contains several sub-requirements. Each requirement is written
in a labeled paragraph, the set of lines. If a requirement R depends on
other requirements R1 and R2, R refers R1 and R2 by their labels. Hence,
when the reviewer reads the document, he/she frequently jumps from one
requirement to another by traversing the labels.

As seen in above examples, a primary construct of a software document

22 Chapter 3 Eye Movement in Software Review

is a statement. Thus, it is reasonable to consider that the reviewer reads
the document in units of lines. Therefore, reading procedure between lines
in a document affects review performance. In the first experiment reported
in Chapter 4, we evaluate the relationship between review performance and
reading procedure between lines.

3.1.2 Eye Movement between Documents

Another measurement perspective is an eye movement between documents.
According to Wiegers, software review in the industry uses not only the
target document but also other relevant documents, such as a High-level
document [Wiegers 02]. The reviewer reads the high-level document to
confirm the target document correctly contains the system requirements.

For example, in source code review, reviewers read source code as well as
the requirements specification and design document to understand system
structures, functions, and data structures.

Figure 3.2 describes the relationship between source code and other doc-
uments at source code review. Source code has several blocks of functions,
methods, classes, etc. The reviewer reads all the blocks to understand the
program entirely (e.g. through Function A to Function C) and tries to
find any defect during program understanding. In addition, the reviewer
reads related blocks in the system requirements specification as well as in
the detailed design document (e.g. Requirement A and Design A) to find
any inconsistencies among different levels of documents. This activity is a
“comparison” rather than an “understanding.”

As in other relevant documents, the checklist in CBR and the scenario
in SBR are also used in the review [Laitenberger 00, Sabaliauskaite 02]. In
the review using these relevant documents, the reviewer reads the target
document and relevant document alternately to follow these scenarios.

In such multi-document review, the reading procedure between docu-
ments affects the defect detection performance. In the second experiment

3.2 Terminologies 23

Function A

Function B

Function C

Design A

Design B

Design C

Requirement A

Requirement B

Requirement C

Source Code Detailed Design
Document

System Requirements
Specification

Compare

Compare

Compare

Figure 3.2: Source code review with multiple documents.

reported in Chapter 5, we evaluate the relationship between review perfor-
mance and the reading procedure between documents.

3.2 Terminologies

Here, we define several technical words used throughout this thesis. A gaze
point over an object is the point on the object where the user is currently
looking. Strictly speaking, the gaze point refers to an intersection of the
users’ sight line and the object. A fixation is a condition where the gaze
points of a user remain within a small area, fa on a object during a given
period of time ft. The fixation is often used to characterize the interests of
the user.

24 Chapter 3 Eye Movement in Software Review

The pair (fa, ft) characterizing the fixation is called fixation criteria. In
this thesis, we determined the fixation criteria as the area of 30 pixels in
diameter where the eye mark stays more than 50ms. The fixation point is a
gaze point where the fixation criteria hold. The fixation time describes how
long the gaze points fixate to the criteria.

3.3 Related Work

Eye movements have been used often for the purpose of evaluating human
performance, especially in cognitive science. Law et al. [Law 04] analyzed
eye movements of experts and novices in a laparoscopic surgerical training
environment. This study showed that experts tend to watch the affected
parts more than the tool in their hands, compared with novices. Kasarskis
et al. [Kasarskis 01] investigated eye movements of pilots in a landing task
using a flight simulator. In this study, novices tended to concentrate more
on watching the altimeter than the experts did, while the experts watched
the airspeed.

In the field of software engineering, research exists regarding to the
exploitation of eye movements, for the purpose of, for instance, monitor-
ing an online debugging processes [Stein 04, Torii 99], usability evaluation
[Bojko 05, Nakamichi 03], human interface [Robert 95, Zhai 99].

Stein and Brennan evaluated the usefulness of eye movement information
for the support of the debugging process [Stein 04]. They captured the
eye movements of experienced developers while the developers detected a
defect from a source code. The authors then compared the defect detection
time of the developers who read the source code with the visualized eye
movements of an expert and a developer without visualized eye movements.
The results showed that visualized eye movements of experts accelerate the
defect detection of other developers.

As far as we know, no research has directly applied the eye movements
to evaluate the performance of the software review.

3.4 Chapter Summary 25

Few studies have conducted an analysis of a software developers’ eye
movements. Crosby et al. [Crosby 90] and Bednarik et al. [Bednarik 05]
analyzed developers’ eye movements in program understanding. In these
studies, the source code and visualized program behavior were displayed
to the developer. The authors confirmed that eye movements are useful
in revealing differences between the experts’ and novices’ program reading
behavior. While these studies focused on effective program understand-
ing where executable programs are available, we focus on document review
where related upstream documents are available, but executable programs
are not.

3.4 Chapter Summary

This chapter showed our proposed method for the evaluation of the read-
ing procedure of the reviewers. Using the eye movements of the reviewer,
the reading procedures are evaluated from two measurement perspectives.
The following two chapters report experiments performed to evaluate eye
movements between lines and eye movements between documents.

Chapter 4

Eye Movement between
Lines

This chapter reports on an empirical experiment of code review for evalu-
ating eye movements between lines. Using eye movements to measure an
environment, which we made to evaluate reading procedure on software re-
view, 60 review processes were analyzed. As a result, we have identified a
particular pattern, called scan, in the subjects’ eye movements. Quantita-
tive analysis showed that reviewers who did not spend enough time for the
scan tend to take more time for finding defects.

This chapter begins by clarifying system requirements to evaluate the
reading procedure on software review as described in Section 4.1. Section 4.2
gives an explanation of the system implementation that we have developed
based on the requirements. Section 4.3 explains the experimental settings
and materials. Section 4.4 describes the results of the experiment. Section
4.5 summarizes this chapter.

4.1 System Requirements

To evaluate reviewers’ eye movements, an integrated environment to mea-
sure and record the eye movements during the code review is necessary. In
this Section, we present five requirements to be satisfied by the system.

27

28 Chapter 4 Eye Movement between Lines

Requirement R1: Sampling Gaze Points over a Computer Display
First, the system must be able to capture the reviewers’ gaze points over the
software documents. Usually, reviewed documents are either shown on the
computer display, or provided as printed papers. Considering feasibility, we
try to capture gaze points over a computer display. To precisely locate the
gaze points over the documents, the system should sample the coordinates
with sufficiently fine resolutions, distinguishing normal-size fonts around 10–
20 points.

Requirement R2: Extracting Logical Line Information from Gaze
Points
As seen in source code, a primary construct of a software document is a
statement. Software documents are structured, and often written on a one-
statement-per-line basis. Thus, the reviewer reads the document in units of
lines. The system has to be capable of identifying which line of the docu-
ment the reviewer is currently looking at. Note that the information must
be stored as logical line numbers of a document, which is independent of the
font size or the absolute coordinates where the lines are currently displayed.

Requirement R3: Identifying Focuses
Even if a gaze point appears at a certain line in the document, it does not
necessarily mean that the reviewer is reading that line. That is, the sys-
tem has to be able to distinguish a focus (i.e., interest) from reviewers’ eye
movements. It is reasonable that the fixation over a line reflects the fact
that the reviewer is currently reading that line.

Requirement R4: Recording Time-Sequenced Transitions
The order in which the reviewer reads lines is important information that
reflects individual characteristics of software review. Also, each time the
reviewer gazes at a line, it is essential to measure how long the reviewer
focuses on that line. The duration of the focus may indicate the strength of
the reviewers’ attention to the line. Therefore, the system must record the
lines focused on as time sequence data.

4.2 Implementation 29

Window move,
resize, scroll

Fixation
Point / Line
Converter

Eye movement Fixation points
(Absolute coordinate)

Sampled gaze points
(Absolute coordinate)

Review

Fixation line
numbers

Document Viewer Result Viewer

Review Platform

Eye Camera

Image
Processor

Eye Gaze Analyzer

Eye
image

Display

Event
Capturer

Software
document

Time-
sequence
Analyzer

Logical-line-wise
Eye Movement

Fixation line
numbers, dates,

durations

To other
analysis tool

Window info
(Window size,
position, scroll)

Reviewer

Window event

Dates of fixation
points

Fixation
Analyzer

Monitor

Window move,
resize, scroll

Fixation
Point / Line
Converter

Fixation
Point / Line
Converter

Eye movement Fixation points
(Absolute coordinate)

Sampled gaze points
(Absolute coordinate)

Review

Fixation line
numbers

Document ViewerDocument Viewer Result ViewerResult Viewer

Review Platform

Eye CameraEye Camera

Image
Processor

Image
Processor

Eye Gaze Analyzer

Eye
image

DisplayDisplay

Event
Capturer

Event
Capturer

Software
document

Time-
sequence
Analyzer

Time-
sequence
Analyzer

Logical-line-wise
Eye Movement

Fixation line
numbers, dates,

durations

To other
analysis tool

Window info
(Window size,
position, scroll)

ReviewerReviewer

Window event

Dates of fixation
points

Fixation
Analyzer
Fixation
Analyzer

Monitor

Figure 4.1: System architecture of DRESREM.

Requirement R5: Supporting Analysis
Preferably, the system should provide tool supports to facilitate analysis
of the recorded data. Especially, features to play back and visualize the
data significantly contribute to efficient analysis. The tools may be useful
to novice reviewers for subsequent interviews or for educational purposes.

4.2 Implementation

Based on the requirements, we have developed a gaze-based review evalua-
tion environment called DRESREM (Document Review Evaluation System
by Recording Eye Movements).

4.2.1 System Architecture

As shown in Fig. 4.1, DRESREM is composed of three sub systems: (1) an
eye gaze analyzer, (2) a fixation analyzer and (3) a review platform. As a
reviewer interacts with these three sub systems, DRESREM captures the
line-wise eye movements of the reviewers. While a reviewer is reviewing
a software document, the eye-gaze analyzer captures his/her gaze points

30 Chapter 4 Eye Movement between Lines

over the display. Through image processing, the gaze points are sampled
as absolute coordinates. Next, the fixation analyzer converts the sampled
gaze points into fixation points into to filter-gaze points irrelevant for the
review analysis. Finally, the review platform derives the logical line numbers
from the fixation points and corresponding date information, and stores the
line numbers as time-sequenced data. The review platform also provides
interfaces for the reviewers, and analysis support for the analysts.

In the following subsections, a more detailed explanation for each of the
sub systems is given.

4.2.2 Eye Gaze Analyzer

To achieve Requirement R1, the eye-gaze analyzer samples reviewers’ eye
movements on a computer display. To implement the analyzer, we have
selected a non-contact eye-gaze tracker EMR-NC, manufactured by nac Im-
age Technology Inc (http://www.nacinc.jp/). Figure 4.2 describes the
eye-gaze analyzer used in the system. EMR-NC can sample eye movements
within 30Hz. The finest resolution of the tracker is 5.4 pixels on the screen,
which is equivalent to 0.25 lines of 20-point letters. The resolution is fine
enough to satisfy Requirement R1: Sampling Gaze Points over Computer
Display.

EMR-NC consists of an eye camera and image processor. The system
detects reviewers’ eye images, and calculates the position, direction, and
angle of an eye. Then the system calculates the position of a display where
the reviewer is currently looking. Each sample of the data consists of an
absolute coordinate of the gaze point on the screen and sampled date.

To display the document, we used a 21-inch liquid crystal display (EIZO
FlexScanL771) set at 1024x768 resolutions with a dot pitch of 0.3893 mil-
limeters. To minimize the noise data, we prepared a fixed and non-adjustable
chair for the reviewers.

4.2 Implementation 31

Figure 4.2: Eye gaze analyzer EMR-NC.

4.2.3 Fixation Analyzer

For a given fixation criteria (see Section 3.2) and the gaze points sampled
by the eye gaze analyzer, the fixation analyzer derives fixation points (as
absolute coordinates) and their observation date. Extracting the fixation
points from the gaze points is necessary to achieve Requirement R3: Identi-
fying Focuses. To implement the fixation analyzer, we have used the existing
analysis tool EMR-ANY.exe, which is a bundled application of EMR-NC.

4.2.4 Review Platform

The review platform is the core of DRESREM, which handles various tasks
specific to the software review activities. We have implemented the platform
in the Java language with a SWT (Standard Widget Tool), comprising about
4,000 lines of code.

What is most technically challenging is to satisfy Requirement R2: Ex-
tracting Logical Line Information from Gaze Points. In order to judge if the
reviewer is looking at a line of the document, we use fixation points derived
by the fixation analyzer. Here we define a line on which a fixation point

32 Chapter 4 Eye Movement between Lines

overlaps as the fixation line. The goal is to capture the line numbers of the
fixation lines.

Note that the line numbers must be captured as logical line numbers.
The logical line number is a sequence number attached to every line within
the document. The line number is basically independent of the font size or
the absolute position of the line currently being displayed. Hence, we need
a sophisticated mechanism to derive the logical line numbers from fixation
points captured as absolute coordinates. For this, we carefully consider the
correspondence between absolute coordinates of points on the PC display
and the lines of the documents displayed over those coordinates. We refer
to such correspondence as point/line correspondence.

As seen in Fig. 4.1, the review platform consists of the following five
components.

Document Viewer

The document viewer shows the software document to the PC display, with
which the reviewer reads the document. As shown in Fig. 4.3, the viewer
has a slider bar to scroll up and down the document. By default, the viewer
displays 25 lines of the document in a 20-point font, simultaneously. The
viewer polls window information (such as window size, font size, position,
scroll pitch) to the fixation point/line converter. This information is neces-
sary to manage consistent point/line correspondence.

Event Capturer

As a reviewer interacts with the document viewer, the reviewer may scroll,
move, or resize the window of the document viewer. These window events
change the absolute position of the document within the PC display, thus
modifying the point/line correspondence. To keep track of the consistent
correspondence, the event capturer monitors all events issued in the docu-
ment viewer. When an event occurs, the event capturer notes the event and
forwards it to the fixation point/line converter.

4.2 Implementation 33

Figure 4.3: Example of document viewer.

Fixation Point/Line Converter

The fixation point/line converter derives the logical line numbers of fixation
lines (referred as fixation line numbers) from the given fixation points. Let
pa = (xa, ya) be an absolute coordinate of a fixation point on the PC display.
First, the converter converts pa into a relative coordinate pr within the
document viewer, based on the current window position pw = (xw, yw) of
the viewer, i.e., pr = (xr, yr) = pa − pw = (xa − xw, ya − yw). Then, taking
pr, the window height H, the window width W , the font size F , and the
line pitch L into account, the converter computes a fixation line number lpr .
Specifically, lpr is derived by the following computation:

34 Chapter 4 Eye Movement between Lines

lpr =

⌊yr/(F + L)⌋ + 1,

· · · if ((0 ≤ xr ≤ W) and (0 ≤ yr ≤ H))
0 (OUT OF DOCUMENT),

· · · otherwise

Thus, the point/line correspondence is constructed as a pair (pa, lpr).

Note that lpr is changed by the users’ event (e.g., window move or scroll
up/down). Therefore, the converter updates lpr upon receiving every event
polled from the event capturer. For instance, suppose that the reviewer
moves the document viewer to a new position pw′ . The converter is then
notified of a window move event. Upon receiving the event, the converter
re-calculates pr as pa − pw′ , and updates lpr .

Thus, for every fixation point, the fixation point/line converter derives
the corresponding fixation line number, which achieves Requirement R2:
Extracting Logical Line Information from Gaze Points.

Time-Sequence Analyzer

The time-sequence analyzer summarizes the fixation line numbers as time-
sequenced data to satisfy Requirement R4: Recording Time-Sequenced Tran-
sitions. Using the date information sampled by the fixation analyzer, the
time-sequence analyzer sorts the fixation line numbers by date. This is done
to represent the order of lines in which the reviewer reads the document.
It also aggregates successive appearances of the same fixation line number
into one with the duration. The duration for a fixation line then reflects the
strength of the reviewers’ interest in the line.

Result Viewer

The result viewer visualizes the line-wise eye movements using a horizontal
bar chart, based on the time-sequenced fixation line numbers. Figure 4.4

4.2 Implementation 35

Figure 4.4: Result viewer.

shows a snapshot of the result viewer. In the figure, the left side of the
window shows the document reviewed by the reviewer. On the right side of
the window, the sequential eye movements of the reviewer are described as
a bar chart. In this chart, the length of each bar represents the duration for
the fixation line.

The result viewer can play back the eye movements. Using the start/stop
buttons and a slider bar placed under the viewer, the analyst can control
the replay position and the speed. On the result viewer, the time-sequenced
transition of fixation lines is described by the highlighting of the line and
the emphasis of bar. Moreover, the result viewer has a feature that can
superimpose the recorded gaze points and fixation points onto the document
viewer. This feature helps the analyst watch more detailed eye movements
over the document. Thus, the result viewer can be extensively used for the
subsequent analysis of the recorded data, which fulfills Requirement R5:
Supporting Analysis.

36 Chapter 4 Eye Movement between Lines

4.3 Experiment

To demonstrate the effectiveness of DRESREM, we have conducted an ex-
periment of source code review.

4.3.1 Overview

The source code review is a popular software review activity, where each
reviewer reads the source code of the system, and finds bugs without exe-
cuting the code.

The purpose of this experiment is to watch how the eye movements
characterize the reviewers’ performance in the source code review. In the
experiment, we have instructed individual subjects to review source code of
small-scale programs, each of which contains a single defect. Based on a
given specification of the program, each subject tried to find the defect as
quickly as possible. The performance of each reviewer was measured by the
time taken until the injected defect was successfully detected (We call the
time: defect detection time).

During the experiment, the eye movements of the individual subjects
were recorded by DRESREM. Using the recorded data, we investigate the
correlation between the review performance and eye movements.

4.3.2 Experiment Settings

Five graduate students participated in the experiment as reviewers. The
subjects have 3 or 4 years of programming experience, and have at least
once experienced the source code review before the experiment.

We have prepared six small-scale programs written in the C language
(12 to 23 lines of source code). To measure the performance purely with
the eye movements, each program has no comment line. For each program,
we prepared a specification, which is compact and easy enough for the re-
viewers to understand and memorize. Next, in each program a single logical
defect was intentionally injected, which is an error of program logic, but not

4.4 Results 37

of program syntax. Table 4.1 summarizes the programs prepared for the
experiment.

We then instructed individual subjects to review the six programs with
DRESREM. The review technique was the ad-hoc review (AHR, see Sect.
2.2.3). The task for each subject to review each program consisted of the
following five steps.

1. Calibrate DRESREM so that the eye movements are captured cor-
rectly.

2. Explain the specification of the program to the subject verbally. Ex-
plain the fact that there exists a single defect somewhere in the pro-
gram.

3. Synchronize the subject to start the code review to find the defect;
start the capture of eye movements and code scrolling.

4. Suspend the review task when the subject says he/she found the defect.
Then, ask the subject to explain the defect verbally.

5. Finish the code review task if the detected defect is correct. Otherwise,
resume the task by going back to step 3. The review task is continued
until the subject successfully finds the defect, or the total time for the
review exceeds 5 minutes.

The above task is repeated for each of the six programs. Thus, a total
of 30 review tasks (= 6 programs × 5 subjects) have been conducted. The
order of assigning the six programs may yield learning/fatigue effects to the
reviewer. To minimize these effects, we have used the Latin square to shuffle
and balance the order.

4.4 Results

4.4.1 Qualitative Analysis

After the experiment, we investigated the recorded data. Using the result
viewer extensively, we played back the eye movements of the individual re-

38 Chapter 4 Eye Movement between Lines

Table 4.1: Programs reviewed in the experiment.
Program LOC Specification Injected Defect

IsPrime 18 The user inputs an inte-
ger n. The program re-
turns a verdict whether
n is a prime number or
not.

Logic in a conditional
expression is wrongly re-
versed, yielding an op-
posite verdict.

Accumulate 20 The user inputs a non-
negative integer n. The
program returns the
sum of all integers from
1 to n.

A loop condition is mis-
taken. The condition
must be (i <= n), but
is actually (i < n).

Sum-5 12 The user inputs five in-
tegers. The program
outputs the sum of these
integers.

A variable for accumu-
lating the sum is not ini-
tialized.

Average-5 16 The user inputs five in-
tegers. The program
outputs the average of
these.

An explicit type conver-
sion from integer to dou-
ble is forgotten, yielding
a round margin in the
average.

Average-any 22 The user inputs an arbi-
trary number of integers
(up to 255) until zero
is given. The program
outputs the average of
the given numbers.

The number of loops is
wrong. The program al-
ways calculates the av-
erage of 255 numbers re-
gardless of the number
of integers actually en-
tered.

Swap 23 The user inputs two in-
tegers n1, n2. The pro-
gram swaps values of
n1 and n2 using func-
tion swap(), and out-
puts them.

Pointers are mis-
used. As a result, the
two numbers are not
swapped.

4.4 Results 39

viewers, and examined statistics. As a result, we have identified a particular
pattern of the eye movements.

It was observed that the subjects were likely to first read whole lines
of the code from the top to the bottom briefly, and then to concentrate on
some particular portions. The statistics show that 72.8 percent of the code
lines were gazed at in the first 30 percent of the review time. We call this
preliminary reading of the entire code, the scan pattern.

Figures 4.5 and 4.6 describe the eye movements of two subjects C and
E while reviewing programs IsPrime and Accumulate, respectively. The
graphs depict the time sequence of fixation lines. In the figures, the scan
patterns are well observed. As seen in Fig. 4.5, this subject scans the code
twice, then concentrates on the while loop block located in the middle of
the code. In Fig. 4.6 this subject first locates the headers of two function
declarations in lines 1 and 13. Next, the subject scans the two functions
makeSum() and main() in this order. After the scan, he concentrates on the
review of makeSum().

We hypothesize that the scan pattern reflects the following review strat-
egy in source code review: A reviewer first tries to understand the program
structure by scanning the whole code. During the scan, the reviewer iden-
tifies suspected portions where the defect is likely to exist. Therefore, scan
quality significantly influences the efficiency of the defect detection in the
review.

4.4.2 Quantitative Analysis of Scan Pattern

To verify the hypothesis, we conduct a quantitative analysis using the recorded
data as follow. For each review in the experiment, we have measured a de-
fect detection time (DDT) and first scan time (FST). For a reviewer r and
a program p, DDT (r, p) is defined as the time taken for r to detect the
injected defect within p. DDT is supposed to be a metric reflecting the
performance (efficiency) of the review task. On the other hand, FST (r, p)
is defined as the time spent from the beginning of the review until r reads
80 percent of the total lines (except blank lines) of p. FST might be used

40 Chapter 4 Eye Movement between Lines

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 } First scan

1 31 61 91 121 151 181
01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

Fixation Num.

Second scan

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 } First scan

1 31 61 91 121 151 181
01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

Fixation Num.

Second scan

Figure 4.5: Eye movements of subject E reviewing program IsPrime.

as a metric characterizing the quality of the scan.

Note that both DDT and FST depend deeply on the reading speed of
the reviewer. That is, a slow reader tends to spend more time to scan and for
defect detection than a fast reader. The reading speed varies from subject
to subject according to individual experience. Hence, for each reviewer r,
the absolute value of FST (r, p) or (DDT (r, p)) does not necessarily reflect
his/her quality of scanning (or performance, respectively). To minimize the
effect of the reading speed, we normalize DDT (r, p) and FST (r, p) by the
total average. Let r be a reviewer, p be a given program, and Prog be a set
of all programs reviewed. Thus, we define normalized defect detection time
(nDDT) and normalized first scan time (nFST) as follows.

nDDT (r, p) =
DDT (r, p)∑

p′∈Prog DDT (r, p′) / |Prog|

nFST (r, p) =
FST (r, p)∑

p′∈Prog FST (r, p′) / |Prog|

4.4 Results 41

1 31 61 91 121 151
00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. n", sum);
20 }

Function scan

00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. ¥
20 }

Fixation Num.

Header scan

1 31 61 91 121 151
00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. n", sum);
20 }

Function scan

00 OUT OF CODE
01 int makeSum(int max){
02 int i, sum;
03 sum = 0;
04
05 i = 0;
06 while(i < max){
07 sum = sum + i;
08 i = i + 1;
09 }
10 return sum;
11 }
12
13 void main(void)
14 {
15 int input, sum;
16
17 scanf("%d",&input);
18 sum = makeSum(input);
19 printf("Sum from 1 to %d is %d. ¥
20 }

Fixation Num.

Header scan

Figure 4.6: Eye movements of subject C reviewing program Accumulate.

nDDT and nFST are relative metrics for the individual reviewer. When
nDDT (r, p) is greater than 1.0, r spent more time than usual to detect the
defect in p, which represents lower performance. When nFST (r, p) is greater
than 1.0, r spent more time than usual to scan the code, which represents
a higher quality of scanning.

Figure 4.7 depicts a scattered plot, representing the pairs of (nFST (r, p),
nDDT (r, p)), for every reviewer r and every program p. In the figure, the
horizontal axis represents nFST , whereas the vertical axis plots nDDT .
The figure clearly shows a negative correlation between nFST and nDDT .
Pearsons’ product moment showed a significantly negative correlation be-
tween nFST and nDDT (r = −0.568, p = 0.002). That is, the first scan
time is less than the average, and yields the longer defect detection time.
More specifically, the defect detection time increased to 2.5 times of the

42 Chapter 4 Eye Movement between Lines

0.0 0.5 1.0 1.5 2.0 2.5

nFST

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
D
D
T

Figure 4.7: Normalized first scan time and defect detection time.

average detection time when the first scan time is less than 1.0. On the
other hand, in the case where the scanning time is more than 1.0, the defect
detection time is less than the average.

Thus, the experiment showed that the longer a reviewer scanned the
code, the more efficiently the reviewer could find the defect in the code
review. This observation can be interpreted as follows. A reviewer, who
carefully scans the entire structure of the code, is able to identify many
candidates of code lines containing defects during the scan. In Figs. 4.5
and 4.6, the reviewers focus their eye movements on a particular block or a
function after the scanning of the code.

On the other hand, a reviewer with insufficient scanning often misses
some critical code lines, and they stick to irrelevant lines involving no defects.
Figure 4.8 depicts typical eye movements that could not address suspicious
lines through the scanning of a program IsPrime, which is the same source

4.4 Results 43

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

Fixation Num.

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number. ¥n", num);
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

01 void main(void){
02 int i, num, isPrime = 0;
03
04 printf("Input Number:");
05 scanf("%d", &num);
06
07 i = 2;
08 while(i < num){
09 if(num%i == 0)
10 isPrime = 1;
11 i = i + 1;
12 }
13
14 if(isPrime == 1)
15 printf("%d is prime number.
16 else
17 printf("%d is NOT prime number. ¥n", num);
18 }

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

Fixation Num.

Figure 4.8: Eye movements of subject B reviewing program IsPrime.

code as in Fig. 4.5. This reviewer spent insufficient scanning time compared
with his/her average scanning time (nFST = 0.51), and the reviewer could
not detect the defect. Of course, our hypothesis has been proven only with
this experiment. For more generality, we plan to continue more experiments
in our future research.

4.4.3 Using Recorded Data for Review Training

After the experiment, we conducted two kinds of interviews to investigate
what the eye movements actually reflect. In the first interview, each subject
was shown the source code and asked what the subject had been thinking in
the code review. Most subjects commented about abstract review policies,
including the strategy of understanding the code and the flow of the review.
Typical comments are summarized in the first column of Table 4.2.

In the second interview, the recorded eye movements were shown using
the result viewer together with the source code, and the same questions were
asked. As a result, more detailed and code-specific comments were gathered.
As shown in the second column of Table 4.2, each subject explained reasons
why he checked some particular lines carefully and why not for other lines.
It seems that the record of the eye movements well reminded the subjects

44 Chapter 4 Eye Movement between Lines

Table 4.2: Comments gathered in interviews.

First interview (with source
code only)

Second interview (with source
code and eye movements)

· I thought something was wrong in
the second while loop.

· I did not care about the condi-
tional expression of the loop.

· First, I reviewed main function,
and then read another one.

· I watched this variable declaration
to see the initial value of the vari-
able.

· I simulated the program execu-
tion in my mind assuming an input
value.

· I thought this input process was
correct because it is written in a
typical way.

· I checked the while loop several
times.

· I could not understand why this
variable was initialized here.

of their thought.

This fact indicates that the eye movements involve much information
reflecting the reviewers’ thoughts during the code review. Therefore, data
captured by DRESREM can be used for training and educational purposes.
The eye movements of expert reviewers would be especially helpful for novice
reviewers.

4.5 Chapter Summary

In this chapter, we have designed and implemented a system, called DRES-
REM, for the eye-gaze-based evaluation of software review. Integrating three
sub-systems (the eye-gaze analyzer, the fixation-analyzer and the review
platform), DRESREM automatically captures reviewers’ eye movements,
and derives the sequence of logical line numbers of the document in which
the reviewer has focused. Thus, the system allows quantitative evaluation
of how the reviewer reads the document.

4.5 Chapter Summary 45

An experimental evaluation of the source code review using DRESREM
has therefore been conducted. As a result, a particular reading pattern,
called a scan, has been found. Through the statistic analysis, it was shown
that the reviewers who took sufficient time to scan the code tended to de-
tect defects efficiently. In the subsequent interviews, reviewers made more
detailed and code-specific comments when the recorded eye movements were
shown. This fact indicates that the eye movements involve information re-
flecting the reviewers’ thoughts during the code review.

Chapter 5

Eye Movement between
Documents

This chapter reports on an experiment of review for evaluating eye move-
ments between documents. For the measurement of eye movements between
documents, the measurement environment was improved.

Using the extended system, 24 review processes were recorded. In the
experiment, two types of review, design review, and code review were em-
ployed. The reasons why these reviews were employed are as follow: (1)
multiple documents were used in these reviews, (2) both reviews require
elaborate/detailed reading because the documents have more detailed infor-
mation than other documents, such as SRS.

This chapter begins by redefining the requirements of the evaluation sys-
tem for analyzing eye movements between documents as mentioned Section
5.1. Section 5.2 describes metrics for evaluation of eye movements in the
experiment. Section 5.3 describes the hypotheses verified in the experiment.
Section 5.4 explains the experiment settings and materials. Section 5.5 dis-
cusses the results of the experiment. Section 5.6 summarizes this chapter.

47

48 Chapter 5 Eye Movement between Documents

5.1 System Improvement

To observe multi-document review activities, the measurement environment
must identify which document the reviewer reads. Usually, multiple docu-
ments were displayed in multiple windows or in a window that has a tab
to switch documents displayed in the window; hence, documents can be
overlapped with other documents during review tasks. This means that the
current focus of the reviewer cannot be identified from the coordination of
eye movements alone. Therefore, the system should have a functionality to
identify which document the reviewer is currently focused on by recording
tab-switching activities and window-focusing activities.

To achieve the modified requirement, DRESREM was improved. Figure
5.1 shows the architecture of improved system, DRESREM 2.

The Review Platform is improved to show multiple documents for the
reviewers and to record their operations. The procedure of recording the
reviewers’ eye movements and operations is as follows. (Figure 5.1). Doc-
uments used in the review are displayed in the Document Viewer. The
eye gaze analyzer outputs the reviewers’ gaze points, represented as coor-
dinates (x, y) on a display. These sampled gaze points are converted to
fixation points by the Fixation Analyzer. The Window Event Capturer
observes user operations on a Document Viewer and records Window infor-
mation, i.e., window position and window size, and current scroll position
(line number) of the document currently focused on.

Reviewer operations such as defect description recording, keyword search-
ing and note taking are recorded by Operation Recorder, and then the
Review Information Integrator combines the operations and eye move-
ments to create the time series data of the review history.

Recorded eye movements and operations are visualized in the Result
Viewer. Figure 5.2 shows an example of visualized eye movements and
operations in a source code review. In this figure, the left side of the window
shows a source code that is read in the review, and the right side of the
window describes eye movement fixations and operations as a bar chart.

5.1 System Improvement 49

Window movement, resize, Document scroll, switch Fixation Point / Line ConverterFixation Point / Line ConverterEye movement Fixation pointsSampled gaze points

Document Viewer Result Viewer
Review Platform

Eye Camera ImageProcessorImageProcessorEye-Tracking DeviceEyeimage
Window Event CapturerWindow Event Capturer

Softwaredocuments
Logical line numbers, dates, durations
To other analysis tool

ReviewerReviewer Window info. Fixation AnalyzerFixation Analyzer

Keyword search, memo, defect description recording Operation RecorderOperation Recorder Operationinfo. ReviewInformationIntegratorReviewInformationIntegratorReview history

Figure 5.1: Improved Architecture of DRESREM 2.

Also, the sequence of the eye movements can be played back in this window.

DRESREM 2 outputs review history (i.e. time series of eye movements
and operations) as three type formats: document-wise, block-wise, and line-
wise. In each format, eye movements were recorded as a series of fixations
on documents, blocks, or lines. These formats allow users to easily analyze
the review history from different granularities.

Figure 5.3 and Figure 5.4 show examples of the reviewers’ eye movements
recorded by the system. Using the quantitative data of the eye movements,
the system allows a statistical analysis of the reviewers’ activity.

50 Chapter 5 Eye Movement between Documents

Document Tab

Memo Pane

Search Pane

Document Pane

Figure 5.2: Screenshot of Review Platform.

5.2 Metrics

In this Section, two metrics of review performance are defined. Review
Quality (RQ) is defined as the ratio of defect detection in a review. RQ
characterizes how completely defects are detected from the document.
Review Efficiency (RE) is defined as the average detection time needed to
detect a defect from the document. RE characterizes how quickly defects
are detected in a review.

Let us assume that there is a review target document doc and a set
of high-level documents HD = {hd1, hd2, . . . , hdl}. Here, we suppose doc
has n defects Fx = {f1, f2, . . . , fn} which is categorized as defect type x.
Now, a reviewer spent time t to review doc and detect defects Fx,found =
{fi1, fi2, . . . , fik} ⊆ Fx from Fx. Here, review quality (RQ) and review

5.3 Hypotheses 51

efficiency (RE) of defect type x in the doc is described as follows:

RQ(doc, x) = |Fx,found|/|Fx| = k/n

RE(doc, x) = t/|Fx,found| = t/k

The larger value of RQ shows that the review is performed more ex-
tensively, and the smaller value of RE shows that the review is performed
efficiently.

We also introduce the metric Gazing Time Ratio (GTR) to evaluate how
long it takes reviewers to read each document in the review. This metric is
described as the ratio of fixation time to each document, and it characterizes
the concentration to review time to the document.

Here, gtime(d) describes the fixation time to a document d(∈ doc∪HD).
The gazing time ratio to d is defined as the following formula.

GTR(d) =
gtime(d)∑

d′∈doc∪HD

gtime(d′)

These three metrics are collected at each review. Hence, metrics recorded
at each review instance r are described as r.RQ(. . .)，r.RE(. . .)，r.GTR(. . .).

5.3 Hypotheses

The following six hypotheses are about detailed design review and code
review. These hypotheses describes how the review performance increases
while a high-level document is read in both reviews.

52 Chapter 5 Eye Movement between Documents

In the following formula, SRS, detailed design document, and Source
code are described as [Req], [Design], and [Code], for short. Here, r，r′

shows a review instance, and x describes defect type.

Hypothesis DQ: Review Quality in design review
In design review, reviewers who spend more time to read the SRS find

more defects on average.

r.GTR([Req]) > r′.GTR([Req])
⇒ r.RQ([Design], x) > r′.RQ([Design], x)

Hypothesis DE: Review Efficiency in design review
In design review, reviewers who spend more time to read the SRS find

defects efficiently (with less time) on average.

r.GTR([Req]) > r′.GTR([Req])
⇒ r.RE([Design], x) < r′.RE([Design], x)

Hypothesis SQ: Review Quality in code review
In source code review, reviewers who spend more time on average to read

the SRS and the detailed design document find more defects. We verify this
hypothesis for each high-level document.

Hypothesis SQReq

r.GTR([Req]) > r′.GTR([Req])
⇒ r.RQ([Code], x) > r′.RQ([Code], x)

Hypothesis SQDesign

r.GTR([Design]) > r′.GTR([Design])
⇒ r.RQ([Code], x) > r′.RQ([Code], x)

Hypothesis SE: Review Efficiency in code review
In source code review, reviewers who spend more time on average to read

5.4 Experiment 53

the SRS and the detailed design document find defects more efficiently (with
less time). We verify this hypothesis for each high-level document.

Hypothesis SEReq

r.GTR([Req]) > r′.GTR([Req])
⇒ r.RE([Code], x) < r′.RE([Code], x)

Hypothesis SEDesign

r.GTR([Design]) > r′.GTR([Design])
⇒ r.RE([Code], x) < r′.RE([Code], x)

5.4 Experiment

5.4.1 Overview

In the experiment, subjects were asked to find defects from a target docu-
ment in design review and code review. Documents used in the experiment
were about a rental house search system actually used in an industrial train-
ing workshop.

First, subjects performed the design review with four documents (the
SRS, the detailed design document, the data file, and a checklist for design
review) to detect defects injected into the detailed design document before-
hand (See Section 5.4.2 for more details). Next, the subjects performed
code review with five documents (the SRS, the detailed design document, C
source code, the data file, and a checklist for code review) to find injected
defects in the source code (See Section 5.4.2 for more details).

Reviews were finished when a subject (reviewer) concluded the target
document had no more defects. In both reviews, time spent for a review
and the number of detected defects were collected for the analysis.

Subjects were 12 graduate students and faculty members of the Nara
Institute of Science and Technology. The average of their programming
experience was 7.6 years, and 2.4 years for programming with C language.

54 Chapter 5 Eye Movement between Documents

Two of them had experience with software development in industries.

5.4.2 Review Type

Design Review

Design review in this thesis is defined as follows:

Target document: Detailed design document

Document used with target: SRS, checklist for design review, data file

Purpose of the review: Detect inconsistency with SRS.

Defect types: The following three types are adopted.

Non-conforming Design (ND): This defect type means that the
detailed design document contains a function described in the SRS,
but this function does not fulfill the requirements.

Missing Design (MD): MD means that the detailed design docu-
ment has no description about a function described in the SRS.

Excessive Design (ED): This defect type indicates the existence of
excess descriptions in the detailed design document, which have not
been described in the SRS. This defect can be also considered as an
insufficient description of the SRS.

Code Review

Code review in this thesis is defined as follows:

Target document: Source code

Document used with target: SRS, detailed design document, checklist
for code review, data file

Purpose of the review: Detect defects from source code without execut-
ing the program.

5.4 Experiment 55

Defect types: The following four types are adopted refer to defect classi-
fication [Beizer 90, Chillarege 92]

Fault in Data (Data): This defect type includes an incorrect defi-
nition and usage of variables.

Fault in Process (Process): This defect type represents incorrect
functional logic (such as incorrect conditional statements).

Fault in Screen (Screen): This is a defect of display output, which
causes user confusion and/or mistakes.

Excessive Implementation (Excess): This type of defect indi-
cates excess implementation in the source code, which has not de-
scribed in the SRS and the detailed design document. Therefore, this
defect can be also considered an “insufficient description” of the SRS
and the detailed design document.

5.4.3 Materials

Documents used in the experiment were about a rental house search system
actually used in an industrial training workshop. The documents consist of
the requirements specification, the design document, and the data file.

This system reads a data file in which a set of rental houses is listed. A
system user inputs a condition about the rental houses (e.g. distance from
the nearest train station, floor space and rent) that he/she wants to look at.
According to the user input, the system outputs a list of rental houses that
match his or her conditions.

SRS: This document consists of 40 lines of Japanese text, describing
system functions and requirements.

Detailed design document: This document describes details of each
function interface, data, and processes. It consists of 30 lines of
Japanese text.

56 Chapter 5 Eye Movement between Documents

Source code: This is a 5 function, 120 step C language program. All
comments were removed before the experiment.

Data file: This file is read by the system when the system starts. The
file consists of a list of rental houses.

Checklist for design review: This is a generic checklist for a de-
sign document review, written based on existing literature [Porter 95,
Thelin 03].

Checklist for code review: This is a generic checklist for a C source
code review built based on existing literature [Porter 95, Thelin 03].
Table 5.1 shows the checklist.

5.5 Results

5.5.1 Collected Data

The average review time was 60.4 minutes (25.3 minutes for design review,
and 35.0 minutes for code review.) Twenty-four (12 subjects × 2 type
review) eye movement data were collected in the experiment. Two of the
subjects were removed from the analysis because of the insufficient data
accuracy of their eye movements. As a result, 22 (11 subjects’ data for each
review type) data were used for analysis.

From the interview of reviewers conducted after the experiment, we con-
firmed that the motivation of subjects to find defects was kept high during
the experiment. All subjects found at least three bugs (the average was
5.45).

Using the reviewers’ eye movements allowed us to improve the accuracy
of analysis, because eye fixations to the outside of documents (Search pane,
out of Document Viewer, etc.) were removed. The number of detected
defects of each subject was collected from operation logs.

5.5 Results 57

Table 5.1: Checklist for source code review.

Class Item
Completeness Every requirement is implemented correctly.

Initialization

In the following places, variables and parameters are
properly initialized.
- Beginning of the program.
- Beginning of loop blocks.
- Before function call.

Function call
Types and order of the parameters are correct.
Usage of pointer parameters is correct.
The function returns a correct value.

Operation
Operations such as =, ==, && are used correctly.
Each sign of inequality has a correct direction.
Every operator is used with correct priority.

Data

All data in the system have correct types and values.
Access to data is correct.
Every input to the system fulfills the following condi-
tions.
- All input data are correctly stored.
- Input files are opened before access.
- Input files are closed after access.

Conditional statement
Statements start/end correctly.
Statements have correct conditions.

58 Chapter 5 Eye Movement between Documents

Table 5.2 shows the fixation time for each document and the number of
defect detections on the code review, and Table 5.3 shows the fixation time
for each document and the number of defect detections on design review.
The Table described, for example, how reviewer C gazed at documents for
692 seconds in total, and detected eight defects on the code review. On the
other hand, although reviewer F took twice as long to gaze at the documents,
he detected only six defects.

Table 5.4 describes metrics on the code review, and Table 5.5 describes
metrics on the design review. Metrics GTR and RQ are values normalized
by the total time of fixation and the number of detected defects (See Section
5.2). The average of GTR in Table 5.4 shows the source code (the review
target document) was almost read entirely, but the data file and checklist
were not read at all.

These metrics show, for example, on code review, that reviewer C spent
65.3% of his fixation time on the source code (GTR(Code)), spent 11.1% on
the SRS, and 21.5% on the detailed design document. The same reviewer
also detected all defects except the Excess in his review and he detected
each defect at 86.5 seconds (RE(Code, All)). On the other hand, the metrics
of reviewer F depicts his review performance is lower than reviewer C.

Figure 5.3 describes the eye movements of a high-performance reviewer
on the code review (Reviewer C), and Figure 5.4 describes the eye move-
ments of a low-performance reviewer on the code review (Reviewer F). This
graph describes a time series of eye movements on each block of documents
(function or paragraph); the horizontal axis shows fixation ID (transitions
of fixation among lines), and the vertical axis shows the line number of doc-
uments.

The Figure shows that the high-performance reviewer read high-level
documents frequently. Conversely, the low-performance reviewer scarcely
read the high-level documents, and concentrated on the target document
(source code). These results indicate that our hypothesis, “the review per-
formance increases while high-level documents are read in the review” is
correct.

5.5 Results 59

Table 5.2: Fixation time and the number of defect detections on the code
review.Subject Review time (Sec.) Fixation time (Sec.) # defect detectionRequire-ments Design Code Data Checklist Other Total Data Process Screen Excess AllA 716 7.5 55.9 638.3 0.0 11.7 3.0 716 2 2 0 1 5 B 1164 56.9 269.3 826.9 0.0 10.7 0.4 1164 1 3 2 2 8 C 692 76.7 149.2 451.9 0.0 14.4 0.0 692 3 3 2 0 8 D 2257 59.8 248.4 1872.4 6.9 53.2 16.0 2257 1 3 1 1 6 E 658 30.8 179.7 446.3 1.4 0.0 0.0 658 2 3 2 0 7 F 1618 5.3 10.9 1411.9 2.6 22.3 164.7 1618 3 2 1 0 6 G 2248 101.3 253.8 1783.4 1.2 20.5 87.6 2248 2 3 2 1 8 I 1741 129.5 189.6 1346.9 9.0 54.3 11.5 1741 2 3 0 4 9 J 1252 51.6 145.4 1035.1 0.0 0.0 19.5 1252 1 3 2 0 6 K 2042 110.8 136.4 1548.0 3.2 40.3 203.2 2042 2 2 1 3 8 L 1378 31.8 134.0 1209.0 0.3 0.0 2.5 1378 2 2 2 1 7 Average 1433.2 60.2 161.1 1142.7 2.2 20.7 46.2 1433.2 1.9 2.6 1.4 1.2 7.1
Table 5.3: Fixation time and the number of defect detections on the design
review.Subject Review time (Sec.) Fixation time (Sec.) # defect detectionRequire-ments Design Data Checklist Other Total ND MD ED AllA 574 129.8 420.4 0.3 20.6 2.6 574 2 1 2 5 C 543 165.7 366.3 3.2 7.7 0.0 543 0 2 2 4 D 996 335.0 623.6 11.3 23.9 2.6 996 1 3 2 6 E 503 122.1 368.6 2.0 10.0 0.0 503 1 2 0 3 F 1349 266.4 982.7 16.4 31.5 51.9 1349 2 2 2 6 G 1778 491.8 1200.3 7.1 54.9 24.3 1778 1 2 2 5 H 1051 335.8 689.5 1.4 22.9 1.1 1051 0 3 1 4 I 1151 471.3 631.3 3.6 41.2 3.6 1151 1 3 3 7 J 968 284.7 644.5 11.9 19.9 7.5 968 2 3 3 8 K 1471 404.6 1063.3 0.6 0.0 2.3 1471 2 3 3 8 L 1126 287.4 808.8 13.2 13.1 3.8 1126 1 3 0 4 Average 1046.4 299.5 709.0 6.4 22.3 9.1 1046.4 1.2 2.5 1.8 5.5

60 Chapter 5 Eye Movement between Documents

Table 5.4: GTR for each document and review performance on code review.Subject Gaze time ratio Review quality RE(Code,All)GTR(Req) GTR(Design) GTR(Code) GTR(Data) GTR(Checklist) GTR(Other) RQ(Code,Data) RQ(Code,Process) RQ（Code,Screen) RQ(Code,Excess) RQ(Code,All)A 0.010 0.078 0.891 0.000 0.016 0.004 0.667 0.667 0.000 0.250 0.417 143.3 B 0.049 0.231 0.710 0.000 0.009 0.000 0.333 1.000 1.000 0.500 0.667 145.5 C 0.111 0.215 0.653 0.000 0.021 0.000 1.000 1.000 1.000 0.000 0.667 86.5 D 0.027 0.110 0.830 0.003 0.024 0.007 0.333 1.000 0.500 0.250 0.500 376.1 E 0.047 0.273 0.678 0.002 0.000 0.000 0.667 1.000 1.000 0.000 0.583 94.0 F 0.003 0.007 0.873 0.002 0.014 0.102 1.000 0.667 0.500 0.000 0.500 269.6 G 0.045 0.113 0.793 0.001 0.009 0.039 0.667 1.000 1.000 0.250 0.667 281.0 I 0.074 0.109 0.774 0.005 0.031 0.007 0.667 1.000 0.000 1.000 0.750 193.5 J 0.041 0.116 0.827 0.000 0.000 0.016 0.333 1.000 1.000 0.000 0.500 208.6 K 0.054 0.067 0.758 0.002 0.020 0.100 0.667 0.667 0.500 0.750 0.667 255.2 L 0.023 0.097 0.878 0.000 0.000 0.002 0.667 0.667 1.000 0.250 0.583 196.8 Average 0.044 0.129 0.788 0.001 0.013 0.025 0.636 0.879 0.682 0.295 0.591 204.6
Table 5.5: GTR for each document and review performance on design re-
view.Subject Gaze time ratio Review quality RE(Design,All)GTR(Req) GTR(Design) GTR（Data） GTR（Checklist） GTR（Other） RQ(Design, ND) RQ(Design, MD) RQ(Design, ED) RQ(Design, All)A 0.226 0.733 0.001 0.036 0.005 0.667 0.333 0.667 0.556 114.7 C 0.305 0.675 0.006 0.014 0.000 0.000 0.667 0.667 0.444 135.7 D 0.336 0.626 0.011 0.024 0.003 0.333 1.000 0.667 0.667 166.1 E 0.243 0.733 0.004 0.020 0.000 0.333 0.667 0.000 0.333 167.6 F 0.198 0.729 0.012 0.023 0.038 0.667 0.667 0.667 0.667 224.8 G 0.277 0.675 0.004 0.031 0.014 0.333 0.667 0.667 0.556 355.7 H 0.320 0.656 0.001 0.022 0.001 0.000 1.000 0.333 0.444 262.7 I 0.409 0.548 0.003 0.036 0.003 0.333 1.000 1.000 0.778 164.4 J 0.294 0.665 0.012 0.021 0.008 0.667 1.000 1.000 0.889 121.1 K 0.275 0.723 0.000 0.000 0.002 0.667 1.000 1.000 0.889 183.9 L 0.255 0.718 0.012 0.012 0.003 0.333 1.000 0.000 0.444 281.6 Average 0.285 0.680 0.006 0.022 0.007 0.394 0.818 0.606 0.606 198.0

5.5 Results 61

0 250 500 750house_filedataprocessfunction_callinitializationcompletenessmainhouse_searchread_house_fileshow_houseset_housestruct_housedefineincludedesign set_housedesign house_searchdesign read_house_filedesign mainexitoutput formatcondition inputdata exampledata file formatdata file readingfunctionsstructabout program WWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWW

WWWWWW
WWWWWW
WWWWWWWWWWWWWWW
WWW
W
W
WWWWWW
WWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWW
WW
W
WWWWWWWWWWWWWWWWWW

WWWWWWWW
WWWWWWWWWWWWWWWW
WWWW
WWW

WWW
WWW
W
W
WWW
WWWWWWWW
WW
WW
WWWWWWWWW
WWWWWWWW
W
W
W
WWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWW
WWW

WWWWWWWWWWWW

WWWW
W
WWW

WWWWWWWWWWW
WWW
WWWWW
W
WWW
WW
WW
WW

W
WWW
WWW
WWWW
WWWWWWWWWWWWWWWWWWWWWWW

WWW
WWW
WWW
W
WWWWWWWWWWWWWW
WW
WW
W
WWWWWW
WWWWWWWW
WWWWWWWWWW
WWW
W
WWWWWWWWWWWWWW
WWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWW
WW

WWWWW
WWWWWWWWWWWWWWWWWWWWW

WWWWWWW
WW
WW
W
WW
W
WWWWW
WWWWWWWWWWWWWWWWW

WWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWW

WW
WWWWWWWWWWWWWWWWWWWW

W
WW
W
WW
W
WWW
W
WWW

WWWWWW
WWWWWWWWW
WWWWWWWWWWWWWWWWWWWW

WW
W
WWWWWWWWWWWWW
W
WW
WWWWWWWWWWWWWWWWWW

WWWWWWWWWWWW

Data file

Requirements
Source code

Checklist
Design

Figure 5.3: Eye movements of a high-performance reviewer on code review
(Reviewer C).

0 250 500 750 1000house_filecontroldataprocessfunction_callinitializationmainhouse_searchread_house_fileshow_houseset_housestruct_housedefineincludedesign set_housedesign house_searchdesign read_house_filefunctionsstructabout program WW
WWWWWWW
WW
WWW

WWWWWW

WW
WW

WWW
W
WW
W
WWW

WWW
WW

WWWWWWWWWWWWWWWW
WWW

WWWW
WW

WWWWWWWWWWWWWWWW
WWWWWWWWWWW
WW

WWW
WW

WW
WWW

WWW
WWWWWWWWW

Data file

Requirements
Source code

Checklist

Design

Figure 5.4: Eye movements of a low-performance reviewer on code review
(Reviewer F).

62 Chapter 5 Eye Movement between Documents

Table 5.6: Correlation between fixation ratio and review performance on
design review. Quality EffectivenessRQ（Design， RQ（Design， RQ（Design， RQ（Design， RE（Design，All） ND） ED） MD） All）GTR（Req） Pearsons' r 0.272 -0.465 0.372 0.593 0.593 0.593 0.593 -0.123 p-value 0.419 0.150 0.260 0.054 0.054 0.054 0.054 0.719
5.5.2 Design Review Performance

Table 5.6 describes the correlation between GTR and review performance
on the design review. There is no correlation between GTR(Req) and
RQ(Design, All) (r = 0.272, p = 0.419). The Table shows a positive cor-
relation, however, between GTR(Req) and RQ(Design, MD) (r = 0.593,
p = 0.054).

The result describes a reviewer, who, spending a longer time read the
SRS, detected more omissions of the requirements. Hence, the hypothesis
DQ is supported. Thus, reading the SRS yields more understanding of
system requirements than reading only a detailed design document.

There is no correlation between GTR(Req) and RE(Design, All) (r =
−0.123, p = 0.719). Hence, the hypothesis DE is not supported. The
result might be interpreted such that the target software is simple; therefore,
reviewers easily understood system requirements and structures. That is,
differences of fixation time to each document did not make a difference in
understanding efficiency.

5.5.3 Code Review Performance

Table 5.7 describes the correlation (Pearsons’ r and its p-value) between
GTR and review performance on code review. The Table shows a posi-

5.5 Results 63

Table 5.7: Correlation between fixation ratio and review performance on
source code review. Quality EffectivenessRQ(Code, RQ(Code, RQ(Code, RQ(Code, RQ(Code, RE(Code,All） Data） Process） Screen） Excess） All）GTR（Req） Pearsons' r 0.739 0.739 0.739 0.739 0.197 0.561 0.561 0.561 0.561 0.225 0.225 -0.445 p-value 0.009 0.009 0.009 0.009 0.561 0.072 0.072 0.072 0.072 0.506 0.505 0.170 GTR（design） Pearsons' r 0.339 -0.193 0.669 0.669 0.669 0.669 0.539 0.539 0.539 0.539 -0.169 ----0000....666644444444 p-value 0.308 0.570 0.024 0.024 0.024 0.024 0.087 0.087 0.087 0.087 0.619 0000....000033333333
tive correlation between GTR(Req) and RQ(Code, All) (r = 0.739, p =
0.009). Also, the Table shows a positive correlation between GTR(Req) and
RQ(Code, Process) (r = 0.561, p = 0.072), and a positive correlation be-
tween GTR(Design) and RQ(Code, Process) (r = 0.669, p = 0.024). There
is a positive correlation between GTR(Design) and RQ(Code, Screen) (r =
0.539, p = 0.087).

From the above results, the two hypotheses SQReq and SQDesign were
supported. The result suggests that spending more time on the high-level
document promotes more understanding of the software requirements and
improves defect detection performance in the source code review. For ”Pro-
cess” defects especially, reviewers found the defects effectively by reading
the detailed design document, which describes the details of the program’s
functions.

Table 5.7 also shows a negative correlation between GTR(Design) and
RE(Code,All) (r = −0.644, p = 0.033). The result suggests that a reviewer
who spent a longer time reading the detailed design document, detected
defects within a shorter time period.

From the above result, hypothesis SEDesign is supported. Obviously the
design document had meaningful information about system structures and
functions that helped the reviewer to understand the source code. Moreover,
compared to the requirement specifications, the design specification was

64 Chapter 5 Eye Movement between Documents

more affinitive to implementation, hence, reading the design specification
allows more effective defect detection in the source code. Hypothesis SEReq

is not supported from the result.

5.5.4 Detailed Analyses

This Section shows more detailed analyses of eye movements in the review.
The analyses surpass the verification of the hypotheses described in Section
5.3. However, these analyses will indicate a fruitful way of understanding
review activity.

Fixation to Review Target Document

We analyzed the correlation between review performance and fixation time
for the review target document.

Table 5.8 shows the correlation between GTR(Code) and review perfor-
mance on the design review. Table shows a negative correlation between
GTR(Code) and RQ(Code, All) (r = −0.639, p = 0.034) and a nega-
tive correlation between GTR(Code) and RQ(Code, Process) (r = −0.604,
p = 0.049). In addition, there is a positive correlation between GTR(Code)
and RE(Code, All) (r = 0.529, p = 0.094).

This result suggests that a concentration of review time to source code
yields less understanding of the system requirements and design. The result
strengthens the correctness of the hypotheses on code review.

Table 5.9 shows a correlation between GTR(Design) and review perfor-
mance on design review. The table shows there is no correlation on design
review.

Fixation to Different High-level Documents

In the code review of this experiment, two high-level documents (SRS, and a
detailed design document) were used. We suppose concentration of reading
time for different high-level document yields different review performances.
For quantification of which documents were read intensively, the following

5.5 Results 65

Table 5.8: Correlation between fixation ratio to target document and review
performance on code review. Quality EffectivenessRQ(Code, RQ(Code, RQ(Code, RQ(Code, RQ(Code, RE(Code,All） Data） Process） Screen） Excess） All）GTR（Code） Pearsons' r ----0.639 0.639 0.639 0.639 -0.094 ----0.604 0.604 0.604 0.604 -0.418 -0.054 0.529 p-value 0.034 0.034 0.034 0.034 0.784 0.049 0.049 0.049 0.049 0.201 0.874 0.094
Table 5.9: Correlation between fixation ratio to target document and review
performance on design review. Quality EffectivenessRQ（Design， RQ（Design， RQ（Design， RQ（Design， RE（Design，All） ND） ED） MD） All）GTR（Design） Pearsons' r -0.311 0.371 -0.427 -0.502 0.073 p-value 0.352 0.261 0.190 0.115 0.832
metrics are defined.

WeightReq =
gtime(Req)

gtime(Req) + gtime(Design)

WeightReq describes the ratio of fixation time on SRS to fixation time
on high-level documents.

Figure 5.5 shows the relationship between WeightReq and RQ(Code, All),
Figure 5.6 shows the relationship between WeightReq and RE(Code, All).
The maximum value of WeightReq in the experiment is 0.448; hence, the
reviewer plotted the right side of the figure to read two high-level documents
equally.

Statistical analysis shows WeightReq and RQ(Code,All) had a signifi-
cant positive correlation (r = 0.587, p = 0.057). That is, spending a longer

66 Chapter 5 Eye Movement between Documents

RQ
(C

od
e,A

ll)

WeightReq
RequirementsDesign

0.5000.4000.3000.2000.100

0.8000.7000.6000.5000.400
Figure 5.5: Relationship between weight to reading requirement specification
and review quality.

RE
(C

od
e,A

ll)

WeightReq
RequirementsDesign

0.5000.4000.3000.2000.100

40035030025020015010050
Figure 5.6: Relationship between weight to reading requirement specification
and review effectiveness.

5.6 Chapter Summary 67

time to read the SRS than the design document detects more defects from
the source code.

Also, Figure 5.6 suggests a positive correlation between WeightReq and
RE(Code,All). The figure indicates that spending a longer time on the de-
sign document than the SRS increases the defect detection efficiency. How-
ever, there is no significant correlation between them.
This result indicates that there was a different effect on review performance
between spending a longer time to read the SRS and the detailed design doc-
ument. Since the defect detection ratio and the detection time per defect are
both important, developers need to read both the requirements specification
and the design document in the source code review.

5.6 Chapter Summary

This chapter reported a second experiment performed to evaluate the cor-
relation between eye movements between documents and the review per-
formance. Using the improved evaluation environment, design review and
code review with multiple documents were measured, and six hypotheses
were verified.

Table 5.10 summarizes the results of verification. The results of the ex-
periment showed that spending a longer time to read high-level documents
increases review performance and spending a longer time to read the target
document decreases the performance. Also, the result suggests that concen-
tration to the SRS increases the defect detection ratio, and concentration
to the design document increases the defect detection efficiency. This is
good evidence to encourage developers to read high-level documents when
reviewing low-level documents.

68 Chapter 5 Eye Movement between Documents

Table 5.10: Results of testing hypotheses.

Hypothesis Result
DQ Supported (MD)
DE Not supporter
SQReq Supported (All, Process)
SQDesign Supported (Process, Screen)
SEReq Not supported
SEDesign Supported

Chapter 6

Conclusion

This chapter presents the final conclusion of this thesis research. It begins
with a summary of the research in Section 6.1, and then lists the main con-
tributions in Section 6.2. Finally, it discusses future directions are discussed
in Section 6.3.

6.1 Research Summary

This thesis research improves software developers’ performance from the
viewpoint of defect detection. Many of the development techniques to im-
prove software quality, such as software testing and review exist. However,
in software development, the impact of individual differences is a more dom-
inant factor than the techniques themselves. Analyzing the factor of indi-
vidual differences from an empirical evaluation is important to improving
software development effectiveness.

This thesis clarifies the factor of individual differences on software re-
view. Software review is one of the most adopted quality improvement
techniques in the organizations. Several studies showed the review is a more
efficient/effective technique than software testing. The software review is a
human-centered activity; hence, the impact of individual differences on the
review is quite dominant.

69

70 Chapter 6 Conclusion

To characterize the developers’ performance in the review quantitatively,
we used the eye movements of the reviewer. The reading strategy is indicated
by the eye movements of the reviewers. Thus, eye movements can be used
as a powerful metric to characterize performance in the software review.

In this thesis, a gaze-based review evaluation has been designed and
implemented in an environment called DRESREM, for the eye-gaze-based
evaluation of software review. The system allowed us to evaluate how the
reviewers read the software document quantitatively. The system also pro-
vided features to play back the eye movements and the operations for a
qualitative analysis of review activities.

Using this environment, two experiments were used to analyze the re-
viewers’ eye movements from different perspectives: eye movements between
lines, and eye movements between documents.

In the first experiment, we analyzed eye movements between lines in a
source code. The result shows that reviewers who took sufficient time for a
preliminary reading of the entire code tended to detect defects efficiently.

In the second experiment, eye movements between documents were used
in the design and code review. The results of the experiments showed that
spending a longer time to read high-level documents increases review perfor-
mance, and spending a longer time to review a target document decreases
performance. Also, the results suggest that concentration to the SRS in-
creases the defect detection ratio, and concentration to the design document
increases defect detection efficiency. These results are good evidence to en-
courage developers to read high-level documents when reviewing low-level
documents.

6.2 Contributions 71

6.2 Contributions

There are three main contributions from this research:

• The Idea of Eye Movement Measuring in Software Review
To analyze the reviewers’ activity, their eye movements for software
documents were recorded. Eye movements in the software review di-
rectly reflect the reviewers’ reading procedure. Hence, reviewers’ inten-
tions on the review were easily understandable from the data. This is a
great advantage of eye movement compared to interview or think-aloud
protocols. Employment of eye movements also enabled an objective,
quantitative analysis of review procedure.

• The System Implementation
A gaze-based review evaluation environment is the result of this the-
sis research. The environment automatically captures reviewers’ eye
movements, and derives the sequence of logical line numbers of the
document on which the reviewer has focused. This enables a user in
the evaluation environment to conduct a line-wise analysis of reading
procedures. Analysis of the line-wise eye movement data is much easier
than coordinate-wise eye movement data. The system also supported
an analysis to visualize the eye movements. Visualized eye movements
and the operation of the reviewer helps the user to understand the
reviewers’ activity.

• Insight from the Empirical Studies
Two empirical experiments revealed the correlation between reading
procedure and the review performance of the review. The review-
ers spent a longer time “scanning” the source code, and spent a longer
time reading the SRS and/or design document. This result is suggested
from studies of program comprehension. The experiments show em-
pirical evidence for the researchers, and this is one of the achievements
of this thesis.

Also, the result suggested that spending a longer time reading the
SRS increases the defect detection ratio, and conversely, spending a
longer time reading the design document increases the defect detec-
tion efficiency. Since the defect detection ratio and the detection time

72 Chapter 6 Conclusion

per defect are both important, developers need to read both the re-
quirements’ specification and the design document in a source code
review.

These results show a more concrete reading technique that can be used
to increase review performance as follows:

1. Scan the all elements in a high-level document such as an SRS to
comprehend roughly the structures of the system.

2. Select one of the elements in the high-level document and read
intensively for a detailed understanding.

3. Scan a low-level document such as a design document that de-
scribes the elements selected above.

4. Read the low-level document intensively for a detailed under-
standing.

This reading technique defines detailed action in the review that was
not mentioned in the existing techniques. The techniques may improve
the effectiveness of a low-performance reviewer. Moreover, the reading
technique is applicable with existing review techniques such as CBR
and PBR. Hence, developers can implement the technique without
enormous process modification.

The results of the two interviews indicated that subjects perceived
their unconscious activities by watching their own eye movements.
Subjects perceived their ’scan’ pattern from eye movements recorded
from the first experiment. The results suggest that measuring the
reviewers’ eye movements enables experimenter to externalize implicit
knowledge, i.e., the knowledge of how to go about doing something.

6.3 Future Directions

In this thesis, we have conducted experiments of the source code design
review. However, we believe that DRESREM (and DRESREM 2) is appli-
cable to other kinds of practical software documents as well.

6.3 Future Directions 73

As seen in the Section 4.2.4, the primary feature of the environment is
the line-wise gaze tracking, which is especially suitable for (a) structured
documents, (b) documents formed by multiple statements, (c) documents
written in a one-statement-per-line basis, or (d) documents that have spe-
cial flows (e.g., control flow, labeled references, etc.). Such software doc-
uments include requirement specifications, use case descriptions, program
code (source, assembly) and test cases.

On the other hand, the documents mainly constructed from figures, di-
agrams and charts are beyond the scope of DRESREM. In object-oriented
programming, diagram-centered documents such as class diagrams, sequence
diagrams, and state chart diagrams are created. Line-wise analysis of eye
movements is inadequate for such documents. However, for these docu-
ments, the eye movements should be tracked and evaluated on a point-wise
basis, rather than the line-wise basis. Therefore, we can use the sampled
fixation points directly, without performing the point/line conversions (see
Section 4.2.4). We can cope with this by customizing DRESREM 2, or by
using other existing systems. Thus, we believe that this is not a critical
problem.

The evaluation of tool-assisted review is also an interesting topic to es-
tablish an efficient review technique. The recent sophisticated IDEs (Inte-
grated Development Environments) provide many convenient features for
writing/reading software documents, including word searches and the call
hierarchy view. Tracking eye gaze over the IDE may suggest an efficient way
of tool assistance for software review.

This thesis focused on the individual differences in software review. Like-
wise, an evaluation of individual differences in debugging, testing, and im-
plementation is also an interesting research question. Tracking eye gaze over
the IDE may also be a helpful mechanism to measure the developers’ be-
haviors regarding debugging, testing, and implementation.

In this thesis, we extract eye movement patterns manually. Recent study
about eye movement measurement proposed a support system named eye-
Patterns to extract the patterns from subjects’ eye movements [West 06].

74 Chapter 6 Conclusion

Such a support system is suitable for extracting patterns from reviewers’
eye movements efficiently. Also, some modeling methods such as Hidden
Markov Model (HMM) and Dynamic Time Warping (DTW) are useful for
pattern matching.

These are all very interesting research themes, but we are unable to per-
form them at this stage of the research. However, we believe empirical stud-
ies of individual differences in software development will produce extremely
useful insights for excel training methods and support environments.

Acknowledgements

First and foremost, I wish to express my sincere gratitude to my supervisor,
Professor Ken-ichi Matsumoto, for his continuous support and encourage-
ment during this work.

I am also very grateful to Professor Hirokazu Nishitani, for his valuable
comments and helpful criticism of this work as a member of my thesis review.

I am also deeply grateful to Associate Professor Akito Monden. He
gave me the opportunity to study in the field of human factors in software
development. For five years, I have received invaluable assistance from him.
I will always remember his encouragement and enthusiasm.

I also want to thank Associate Professor Masahide Nakamura, for his
patient advice and guidance. I have learned a lot from his knowledge and
positive attitude toward research. I could not have finished this dissertation
without his encouragement.

I also wish to thank Professor Hajimu Iida. I have received helpful advice
and warm support from him for five years.

I also wish to thank Assistant Professor Masao Ohira. His support and
advice were very helpful in the completion of this dissertation.

I also wish to thank Assistant Professor Shuji Morisaki. His comments
and advice encouraged me through this research.

75

76 Chapter 6 Conclusion

I also want to thank Assistant Professor Noboru Nakamichi. He pro-
vided me with knowledge about how to evaluate eye movement using an
eye-tracking device.

I have been fortunate to have received assistance from many colleagues.
I wish to thank all the members of the Software Engineering Lab., Graduate
School of Information Science, Nara Institute of Science and Technology. I
can only mention a few of my helpful colleagues here because the list is
long. I wish to extend thanks to Masateru Tshunoda, Tomoko Matsumura,
Takeshi Kakimoto, Hiroki Yamauchi, Koji Toda, Yasutaka Kamei, Shinsuke
Matsumoto, and Junko Inui.

Finally, I would like to express my warmest gratitude to my parents, my
grandparents, and my friends for their constant encouragement and generous
help.

References

[Arthur 98] Arthur, J. D., Groener, M. K., Hayhurst, K. J., and
Holloway, C. M.: Adding Value to the Software Devel-
opment Process: A Study in Independent Verification
and Validation, Technical report, Technical Report 98-
15, Virginia Tech (1998).

[Basili 96] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F.,
Shull, F., Sørumgȧrd, S., and Zelkowitz, M. V.: The
Empirical Investigation of Perspective-Based Reading,
An International Journal of Empirical Software Engi-
neering, Vol. 1, No. 2, pp. 133–163 (1996).

[Bednarik 05] Bednarik, R., Myller, N., Sutinen, E., and Tuki-
ainen, M.: Applying Eye-Movement Tracking to Pro-
gram Visualization, in Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing, pp. 302–304, Washington, DC, USA (2005),
IEEE Computer Society.

[Beizer 90] Beizer, B.: Software testing techniques (2nd ed.), Van
Nostrand Reinhold Co., New York, NY, USA (1990).

[Boehm 75] Boehm, B. W.: The High Cost of Software, Practi-
cal Strategies for Developing Large Software Systems
(1975).

[Boehm 81] Boehm, B. W.: Software Engineering Economics, Pren-
tice Hall (1981).

77

78 References

[Bojko 05] Bojko, A. and Stephenson, A.: Supplementing Conven-
tional Usability Measures with Eye Movement Data in
Evaluating Visual Search Performance, in Proceedings of
the 11th International Conference on Human-Computer
Interaction (2005).

[Bucher 75] Bucher, D. W.: Maintenance of the computer sciences
teleprocessing system, SIGPLAN Not., Vol. 10, No. 6,
pp. 260–266 (1975).

[Chillarege 92] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M.,
Moebus, D., Ray, B., and Wong, M.: Orthogonal Defect
Classification-A Concept for In-Process Measurements,
IEEE Trans. Softw. Eng., Vol. 18, No. 11, pp. 943–956
(1992).

[Ciolkowski 97] Ciolkowski, M., Differding, C., Laitenberger, O., and
Münch, J.: Empirical Investigation of Perspective-based
Reading:A Replicated Experiment, Technical Report 97-
13, ISERN Technical Report (1997).

[Ciolkowski 02] Ciolkowski, M., Laitenberger, O., Rombach, D.,
Shull, F., and Perry, D.: Software Inspection, Reviews
and Walkthroughs, in Proceedings of the 24th Interna-
tional Conference on Software Engineering, pp. 641–642
(2002).

[Cleve 05] Cleve, H. and Zeller, A.: Locating causes of program
failures, in Proceedings of the 27th international confer-
ence on Software engineering, pp. 342–351 (2005).

[Crosby 90] Crosby, M. E. and Stelobsky, J.: How Do We Read Algo-
rithms? A Case Study, IEEE Computer, Vol. 23, No. 1,
pp. 24–35 (1990).

[Davis 95] Davis, A. M.: 201 Principles of Software Development,
McGraw-Hill (1995).

References 79

[Demarco 99] Demarco, T. and Lister, T.: Peopleware: Productive
Projects and Teams, 2nd Edition, Dorset House (1999).

[Ericsson 84] Ericsson, K. A. and Simon, H. A.: Protocol analysis:
Verbal reports as data, MIT Press, Cambridge, MA,
USA (1984).

[Fagan 76] Fagan, M. E.: Design and Code Inspection to Reduce
Errors in Program Development, IBM Systems Journal,
Vol. 15, No. 3, pp. 182–211 (1976).

[Fusaro 97] Fusaro, P., Lanubile, F., and Visaggio, G.: A Replicated
Experiment to Assess Requirements Inspection Tech-
niques, An International Journal of Empirical Software
Engineering, Vol. 2, No. 1, pp. 39–57 (1997).

[Galli 04] Galli, M., Lanza, M., Nierstrasz, O., and Wuyts, R.: Or-
dering Broken Unit Tests for Focused Debugging, in Pro-
ceedings of the 20th International Conference on Soft-
ware Maintenance, pp. 114–123, Washington, DC, USA
(2004), IEEE Computer Society.

[Halling 01] Halling, M., Biffl, S., Grechenig, T., and Köhle, M.:
Using Reading Techniques to Focus Inspection Perfor-
mance, in Proceedings of the 27th Euromicro Workshop
Software Process and Product Improvement, pp. 248–257
(2001).

[Hazlett 03] Hazlett, R.: Measurement of user frustration: a biologic
approach, in CHI ’03 extended abstracts on Human fac-
tors in computing systems, pp. 734–735, New York, NY,
USA (2003), ACM Press.

[Hirayama 07] Hirayama, M.: http://www.ipa.go.jp/ (2007).

[IEEE 1028-1997] IEEE/ANSI: 1028-1997, Standard for Software Reviews
(1997).

80 References

[Jones 02] Jones, J. A., Harrold, M. J., and Stasko, J.: Visual-
ization of test information to assist fault localization,
in Proceedings of the 24th International Conference on
Software Engineering, pp. 467–477, New York, NY, USA
(2002), ACM Press.

[Kasarskis 01] Kasarskis, P., Stehwien, J., Hichox, J., Aretz, A., and
Wickens, C.: Comparison of Expert and Novice Scan Be-
haviors during VFR Flight, in Proceedings of the 11th In-
ternational Symposium on Aviation Psychology (2001).

[Laitenberger 98a] Laitenberger, O.: Studying the Effects of Code Inspec-
tion and Structural Testing on Software Quality, in Pro-
ceedings of the The Ninth International Symposium on
Software Reliability Engineering, p. 237, Washington,
DC, USA (1998), IEEE Computer Society.

[Laitenberger 98b] Laitenberger, O.: Studying the Effects of Code Inspec-
tion and Structural Testing on Software Quality, in Pro-
ceedings of the The 9th International Symposium on
Software Reliability Engineering, p. 237, Washington,
DC, USA (1998), IEEE Computer Society.

[Laitenberger 00] Laitenberger, O. and DeBaud, J.: An encompassing life
cycle centric survey of software inspection, Journal of
Systems and Software, Vol. 50, No. 1, pp. 5–31 (2000).

[Laitenberger 02a] Laitenberger, O., Beil, T., and Schwinn, T.: An Indus-
trial Case Study to Examine a Non-Traditional Inspec-
tion Implementation for Requirements Specifications,
Empirical Softw. Engg., Vol. 7, No. 4, pp. 345–374
(2002).

[Laitenberger 02b] Laitenberger, O., Beil, T., and Schwinn, T.: An Indus-
trial Case Study to examine a non-traditional Inspection
Implementation for Requirements Specifications, in Pro-
ceedings of the The 8th IEEE International Symposium
on Software Metrics, pp. 97–106 (2002).

References 81

[Lanubile 00] Lanubile, F. and Visaggio, G.: Evaluating Defect Detec-
tion Techniques for Software Requirements Inspections,
Technical Report 08, ISERN Technical Report (2000).

[Law 04] Law, B., Atkins, M. S., Kirkpatrick, A. E., Lomax, A. J.,
and Mackenzie, C. L.: Eye Gaze Patterns Differentiate
Novice and Expert in a Virtual Laparoscopic Surgery
Training Environment, in Proceedings of the 2004 Sym-
posium on Eye Tracking Research and Applications, pp.
41–48 (2004).

[Leveson 95] Leveson, N.: Safeware : System Safety and Computers,
Addison-Wesley Professional (1995).

[Lewis 92] Lewis, R. O.: Independent Verification and Validation:
A Life Cycle Engineering Process for Quality Software,
Wiley (1992).

[McBreen 01] McBreen, P.: Software Craftsmanship: The New Imper-
ative, Addison-Wesley (2001).

[Melo 01] Melo, W., Shull, F., and Travassos, G. H.: Software Re-
view Guideline, Technical report, COPPE/UFRJ Sys-
tems Engineering and Computer Science Program Tech-
nical Report ES556 /01 (2001).

[Miller 98] Miller, J., Wood, M., Roper, M., and Brooks, A.: Fur-
ther Experiences with Scenarios and Checklists, An In-
ternational Journal of Empirical Software Engineering,
Vol. 3, No. 3, pp. 37–64 (1998).

[Murata 91] Murata, A.: Measurement of Mental Workload during
Location Task, IEICE Transactions on Fundamentals,
Vol. 74, No. 4, pp. 706–714 (1991).

[Myers 78] Myers, G. J.: A controlled experiment in program
testing and code walkthroughs/inspections, Commun.
ACM, Vol. 21, No. 9, pp. 760–768 (1978).

82 References

[Nakamichi 03] Nakamichi, N., Sakai, M., Hu, J., Shima, K., Naka-
mura, M., and Matsumoto, K.: WebTracer: Evaluating
Web usability with browsing history and eye movement,
in Proceedings of the 10th International Conference on
Human-Computer Interaction, pp. 813–817 (2003).

[Nakayama 02] Nakayama, M., Takahashi, K., and Shimizu, Y.: The
act of task difficulty and eye-movement frequency for the
’Oculo-motor indices’, in Proceedings of the 2002 sympo-
sium on Eye tracking research & applications, pp. 37–42,
New York, NY, USA (2002), ACM Press.

[P-CMM] People Capability Maturity Model,
http://www.sei.cmu.edu/.

[Porter 94] Porter, A. A. and Votta, L. G.: An Experiment to As-
sess Different Defect Detection Methods for Software Re-
quirements Inspections, in Proceedings of the 16th inter-
national conference on Software engineering, pp. 103–
112 (1994).

[Porter 95] Porter, A. A., Votta, L. G., and Basili, V. R.: Compar-
ing Detection Methods for Software Requirements In-
spection - A Replicated Experiment, IEEE Transaction
on Software Engineering, Vol. 21, No. 6, pp. 563–575
(1995).

[Porter 98] Porter, A. and Votta, L.: Comparing Detection Methods
for Software Requirements Inspection: A Replication
Using Professional Subjects, An International Journal
of Empirical Software Engineering, Vol. 3, No. 4, pp.
355–380 (1998).

[Robert 95] Robert, J. K. J.: Eye tracking in advanced interface de-
sign, pp. 258–288, Oxford University Press (1995).

[Sabaliauskaite 02] Sabaliauskaite, G., Matsukawa, F., Kusumoto, S., and
Inoue, K.: An Experimental Comparison of Checklist-
Based Reading and Perspective-Based Reading for UML

References 83

Design Document Inspection, in Proceedings of the 2002
International Symposium on Empirical Software Engi-
neering, p. 148, Washington, DC, USA (2002), IEEE
Computer Society.

[Sackman 68] Sackman, H., Erikson, W. J., and Grant, E. E.: Ex-
ploratory experimental studies comparing online and
offline programming performance, Commun. ACM,
Vol. 11, No. 1, pp. 3–11 (1968).

[Sandahl 98] Sandahl, K., Blomkvist, O., Karlsonn, J., Krysander, C.,
Lindvall, M., and Ohlsson, N.: An Extended Replication
of an Experiment for Assessing Methods for Software
Requirements Inspections, An International Journal of
Empirical Software Engineering, Vol. 3, No. 4, pp. 327–
354 (1998).

[Shull 98] Shull, F. J.: Developing Techniques for Using Software
Documents: A Series of Empirical Studies, PhD thesis,
Univ. of Maryland (1998).

[Shull 00] Shull, F., Rus, I., and Basili, V.: How Perspective-Based
Reading Can Improve Requirements Inspections, IEEE
Computer, Vol. 33, No. 7, pp. 73–79 (2000).

[Stein 04] Stein, R. and Brennan, S. E.: Another Person’s Eye
Gaze as a Cue in Solving Programming Problems, in
Proceedings of the 6th International Conference on Mul-
timodal Interface, pp. 9–15, ACM Press (2004).

[Thelin 01] Thelin, T., Runeson, P., and Regnell, B.: Usage-Based
reading :An Experiment to Guide Reviewers with Use
Cases, Information and Software Technology, Vol. 43,
No. 15, pp. 925–938 (2001).

[Thelin 03] Thelin, T., Runeson, P., and Wohlin, C.: An Experi-
mental Comparison of Usage-Based and Checklist-Based
Reading, IEEE Transaction on Software Engineering,
Vol. 29, No. 8, pp. 687–704 (2003).

84 References

[Torii 99] Torii, K., Matsumoto, K., Nakakoji, K., Takada, Y.,
Takada, S., and Shima, K.: Ginger2: An Environment
for Computer-Aided Empirical Software Engineering,
IEEE Transactions on Software Engineering, Vol. 25,
No. 4, pp. 474–492 (1999).

[West 06] West, J. M., Haake, A. R., Rozanski, E. P., and
Karn, K. S.: eyePatterns: software for identifying pat-
terns and similarities across fixation sequences, in Pro-
ceedings of the 2006 symposium on Eye tracking re-
search & applications, pp. 149–154, New York, NY, USA
(2006), ACM Press.

[Wiegers 02] Wiegers, K.: Peer Reviews in Software - A Practical
Guide, Addison-Wesley (2002).

[Zhai 99] Zhai, S., Morimoto, C., and Ihde, S.: Manual and Gaze
Input Cascaded (MAGIC) Pointing, in Proceedings of
the SIGCHI conference on Human factors in computing
systems, pp. 246–253 (1999).

List of Major Publications

Journal Papers

1. Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi
Matsumoto, “Exploiting Eye Movements for Evaluating Reviewers’
Performance in Software Review,” IEICE Transactions on Fundamen-
tals, Vol.E90-A, No.10, pp.317-328, October 2007. (Relate with Chap-
ter 2, 3, and 4)

2. Hidetake Uwano, Kyoko Ishida, Yuko Matsuda, Shota Fukushima,
Noboru Nakamichi, Masao Ohira, Ken-ichi Matsumoto, and Yasunori
Okada, “Evaluation of Software Usability Using Electroencephalogram
– Comparison of Frequency Component between Different Software
Versions,” Human Interface Society, Vol.10, No.2, pp.233-242, May
2008. (Relate with Chapter 1) (In Japanese)

International Conference Papers

1. Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi
Matsumoto, “Analyzing Individual Performance of Source Code Re-
view Using Reviewers’Eye Movement,” In the Eye Tracking Research
& Applications Symposium (ETRA 2006), pp.133-140, March 2006.
(Relate with Chapter 2, 3, and 4)

2. Hidetake Uwano, Akito Monden, and Ken-ichi Matsumoto, “Are Good
Code Reviewers Also Good at Design Review?,” In the 2nd Interna-
tional Symposium on Empirical Software Engineering and Measure-

85

86 List of Publications

ment (ESEM 2008), pp.351-353, October 2008. (Relate with Chapter
2, 3, and 5)

3. Hidetake Uwano, Akito Monden, and Ken-ichi Matsumoto, “Dresrem
2: An Analysis System for Multi-Document Software Review Using
Reviewers’ Eye Movements,” In The Third International Conference
on Software Engineering Advances (ICSEA 2008), pp. 177-183, Octo-
ber 2008. (Relate with Chapter 2, 3, and 5)

Domestic Conference Papers with Review

1. Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi
Matsumoto, “Analyzing Performance of Source Code Review Using
Reviewers’ Eye Movement”, Foundation of Software Engineering Work-
shop (FOSE 2006), Japan Society for Software Science and Technology,
pp.103-112, November 2006. (in Japanese)

2. Hidetake Uwano, Noboru Nakamichi, Hiroshi Igaki, Akito Monden,
Masahide Nakamura, and Ken-ichi Matsumoto, “Analysis of Review
Process using Programmers’ Eye Movement”, Technical Report of IE-
ICE, Vol.105, No.128, pp.21-26, June 2005. (in Japanese)

3. Hidetake Uwano, Hiroshi Igaki, Akito Monden, Masahide Nakamura,
and Ken-ichi Matsumoto, “Analysis of Defect detection Process us-
ing Programmers’ Eye Movement”, In the Second Forum on Reliable
Computer Softwar (FORCE 2005), June 2005. (in Japanese)

Appendix

A Source Code Used on First Experiment

A.1 IsPrime

void main(void){
int i, num, isPrime = 0;

printf("Input Number:");
scanf("%d", &num);

i = 2;
while(i < num){

if(num%i == 0)
isPrime = 1;

i = i + 1;
}

if(isPrime == 1)
printf("%d is prime number.\n", num);

else
printf("%d is NOT prime number.\n", num);

}

87

88 Appendix

A.2 Accumulate

int makeSum(int max){
int i, sum;
sum = 0;

i = 0;
while(i < max){

sum = sum + i;
i = i + 1;

}
return sum;

}

void main(void)
{

int input, sum;

scanf("%d",&input);
sum = makeSum(input);
printf("Sum from 1 to %d is %d.\n", input, sum);

}

A Source Code Used on First Experiment 89

A.3 Sum-5

void main(void){
int i, input, sum;

i = 0;
while(i < 5){

scanf("%d", &input);
sum = sum + input;
i = i + 1;

}

printf("Sum:%d\n", sum);
}

90 Appendix

A.4 Average-5

void main(void){
int i, input, sum;
double ave;

sum = 0;

i = 0;
while(i < 5){

scanf("%d", &input);
sum = sum + input;
i = i + 1;

}

ave = sum / i;
printf("Average:%f\n", ave);

}

A Source Code Used on First Experiment 91

A.5 Average-any

#define MAX 255
void main(void){

int i, num, list[MAX];
double sum=0;

i = 0;
while(i < MAX){

scanf("%d", &list[i]);
if(list[i] == 0)break;
i = i + 1;

}

num = i;

i = 0;
while(i < MAX){

sum = sum + list[i];
i = i + 1;

}

printf("Average of %d Num is %f.\n", i, sum/i);
}

92 Appendix

A.6 Swap

void swap(int a, int b){
int tmp;
tmp = a; a = b; b = tmp;

}

void main(void){
int list[2], i;

i = 0;
while(i < 2){

printf("Data #%d:", i+1);
scanf("%d", &list[i]);
i = i + 1;

}

swap(list[0], list[1]);

i = 0;
while(i < 2){

printf("Data #%d:%d\n", i+1, list[i]);
i = i + 1;

}
}

B Documents Used on Second Experiment 93

B Documents Used on Second Experiment

B.1 Software Requirements Specifications

User is requesting a rental house search system using the
following structure:

struct house {
char name[20]; /* Name of house */
int area; /* Floor space */
double distance; /* Distance from nearest station (km) */
int rent; /* Rent per month (JPY)*/

};

Requirement specification of the system is as follow:

- Read data file to get a list of houses.
File name is given as command-line argument:
e.g. $./a.exe house.dat

- Each line of data file consist from name, floor space,
distance from nearest station, and rent per month
as tab separated values.
The maximum number of the data is 100.
More than the maximum number of data is ignored.
The system is exit when the data file is empty.

Example of data file:
LionHouse 40 5.7 150000
PensionTamada 10 2.5 70000

- At first, user selects a search condition from area,
distance, and rent.
Then input a range of the search. Only a integer is accepted.

94 Appendix

- The system output a list of rental house which satisfy the
condition. Output consists from name, area, distance, and
price.

- The system exit when the user selects exit from the condition.

- The system does not consider file format error and file read
error.

B Documents Used on Second Experiment 95

B.2 Detailed Design Document used on Design Review

int main(int argc, char *argv[]);
At first, this function gets a name of data file from command-
line argument.
Then read the data file using read_housefile function, and
store the list of house to filename which used by every other
functions. When the file contains no data, output the message,
then exit. At next, give the user input (search condition and
range) to house_search.
To add the new house data (newhlist), function write_housefile
is used.
The system exit when the user select exit.

int read_housefile(struct house hlist[], char filename[]);
This function reads the data file (filename) and stores a list
of house to house list (hlist).
Each house data is stored to the structure using set_house
function. Return of the function is the number of house read
from the file.

int write_housefile(struct house hlist[], char filename[]);
This function adds new house data (newhlist) to the end of the
data file.
Return is the number of the house added successfully.

void house_search(struct house hlist[], int dataNum,
int selectNum, double lower, double upper);

This function searches hlist using search condition (selectNum)
and search range (lower, upper).
Then output the list of the house at ascending order.
To internal process, the number of the house contained in hlist
(dataNum) is given.
Output of each house data is performed by show_house function.

selectNum: area[0], distance(m)[1], exit[9]

96 Appendix

struct house set_house(char name[], int area, double distance);
This function set a data of house to house structure.
Return is a structure containes the house data.

void show_house(struct house *hs);
Output the house data (name, area, distance, rent) from hs.

B Documents Used on Second Experiment 97

B.3 Detailed Design Document used on Code Review

int main(int argc, char *argv[]);
At first, this function gets a name of data file from command-
line argument.
Then read the data file using read_housefile function, and
store the list of house to filename which used by every other
functions. When the file contains no data, output the message,
then exit. At next, give the user input (search condition and
range) to house_search function.
The system exit when the user select exit.

int read_housefile(struct house hlist[], char filename[]);
This function reads the data file (filename) and stores a list
of house to house list (hlist). The maximum number of the data
is 100. More than the maximum number of data is ignored.
Each house data is stored to the structure using set_house
function. Return of the function is the number of house read
from the file.

void house_search(struct house hlist[], int dataNum,
int selectNum, int lower, int upper);

This function searches hlist using search condition (selectNum)
and search range (lower, upper). Then output the list of the
house. To internal process, the number of the house contained
in hlist (dataNum) is given.
Output of each house data is performed by show_house function.

selectNum: area[0], distance(km)[1], rent(JPY)[2], exit[9]

struct house set_house(char name[], int area, double distance,
int rent);

This function set a data of house to house structure.
Return is a structure containes the house data.

98 Appendix

void show_house(struct house *hs);
Output the house data (name, area, distance, rent) from hs.

B Documents Used on Second Experiment 99

B.4 Source Code

#include<stdio.h>
#include<string.h>

#define MAXHOUSE 255

struct house {
char name[20];
int area;
double distance;
int rent;

};

struct house set_house(char name[], int area,
double distance, int rent){

struct house temp;

strcpy(temp.name, name);
temp.area = area;
temp.distance = distance;
temp.rent = rent;

return temp;
}

void show_house(struct house *hs){
printf("%s\t", hs->name);
printf("%d\t", hs->area);
printf("%lf\t",hs->distance);

}

int read_housefile(struct house hlist[], char filename[]){
int i;
FILE *fp;
char name[20];

100 Appendix

int area;
double distance;
int rent;

fp = fopen(filename,"r");
if(fp == NULL){

printf("Cannot open file %s. \n",filename);
fclose(fp);
return 0;

}else{
i = 0;
while(fscanf(fp,"%s\t%d\t%lf\t%d", name, &area, &distance,

&rent) != EOF){
hlist[i] = set_house(name, area, distance, rent);
i++;

}
fclose(fp);
return i;

}
}

void house_search(struct house hlist[], int dataNum,
int selectNum, int lower, int upper){

struct house *ph;

printf("Name area distance price\n");

for(ph= hlist; ph < hlist+dataNum;ph++){
switch(selectNum){
case 0:
if(ph->area >= lower && ph->area <= upper)

show_house(ph);
break;

case 1:
if(ph->distance >= (double)lower ||

ph->distance <= (double)upper)

B Documents Used on Second Experiment 101

show_house(ph);
break;

case 2:
if(ph->rent >= lower && ph->rent <= upper)

show_house(ph);
break;

}
}

}

int main(int argc, char *argv[]){
struct house houseList[MAXHOUSE];
int i;
int dataNum;
int selectNum;
int lower,upper;

if(argc != 2){
printf("Usage: %s datafile\n", argv[0]);
return 1;

}

dataNum = read_housefile(houseList, argv[1]);

if (selectNum > 0) {

while(1) {
printf("Area[1], distance(km)[2], price[3], exit[9]: ");
scanf("%d", &selectNum);

switch(selectNum){
case 0: printf("Search by Area.\n"); break;
case 1: printf("Search by distance.\n"); break;
case 2: printf("Search by price.\n"); break;
case 9: printf("Exit.\n"); goto Loop_End;
default: printf("Invalid input.\n"); continue;

102 Appendix

}

printf("#Input range by integer \"Upper-Lower\":");
scanf("%d-%d",&lower,&upper);

house_search(houseList, dataNum, selectNum, lower, upper);
}

Loop_End:;
}else{

printf("Empty data file.\n");
}
return 0;

}

B Documents Used on Second Experiment 103

B.5 Data file

LionHouse 40 5.7 150000
PensionTamada 10 2.5 70000
DormitoryNaka 25 3.1 80000
PalaceIgaki 50 1.1 350000
RabbitHome 7 1.7 40000
YamadaSo 12 3.2 60000
OtogiriSo 45 10.0 120000
PrismTanaka 31 15.1 115000
FrontIshii 25 2.2 100000
TowerSuit 33 0.7 250000
HillSasaki 18 7.0 80000
MountTakata 15 3.2 55000
HeavenCry 17 5.5 100000
TearHamada 62 4.8 330000
SkyCourtArima 35 3.2 150000
VogueYoshino 6 2.7 52000
GrandYukari 8 4.1 35000
BeautyUmezawa 21 7.2 72000
SkynetTunoda 9 2.8 68000
RandomMurakami 11 0.9 170000

104 Appendix

B.6 Checklist for Detailed Design Review

Completeness
Required functions are entirely comprised by design specifi-
cation.
Every required output is created correctly.
Every input to the system is provided.
External data such as file is provided.

Data structure
Data structure of the system is defined.
Every roles and functions of data is clarified.

Function
Necessary functions are listed correctly.
Every roles of each function is clarified.
Every interface of each functions is defined.

B Documents Used on Second Experiment 105

B.7 Checklist for Code Review

Completeness
Every requirement is implemented correctly.

Initialization
At following steps, valiables and parameters are initialized.
Beginning of the program.
Beginning of loop blocks.
Before function call.

Function call
Types and order of parameter are correct.
Usage of pointers is correct.
The function returns correct value.

Operation
Operations such as =, ==, && are used correctly.
Each sign of inequality has correct direction.
Every operator is used with correct priority.

Data file
Every data has correct types and values.
Access to data is correct.
Every file fulfills following conditions.
Define correctly before access.
It is opened before access.
It is closed after access.

Conditional statement
Statements start/end correctly.
Statements have correct condition.

Index

absolute coordinate 30
Ad-Hoc Reading 15

Checklist-Based Reading 10

defect . 1
defect detection time 36, 39
Defect-Based Reading 14
DRESREM . 29

eye gaze analyzer. 29
eye movement 5, 19

first scan time. 39
fixation . 23
fixation analyzer 29
fixation criteria 24
fixation line . 32
fixation line number 33
fixation point 24, 30
fixation time . 24

gaze point 23, 30
gazing time ratio 51

high-level document 22
human factor. 16

individual differences 3, 16
inspection . 3, 7

logical line number 30, 32

normalized defect detection time 40
normalized first scan time 40

People Capability Maturity Model 4
Perspective-Based Reading 12
point/line correspondence 32

reading strategy 5, 19
review efficiency. 50
review platform 29
review quality 50
review technique 2, 9

scan pattern . 39
Scenario-Based Reading 10
software design document 9
Software IV and V 2
software quality 1
software requirements specifications

8, 20
software review. 2, 4, 7
software testing 2
source code 9, 20
source code review 36

unified modeling language 9
Usage-Based Reading 13

106

Index 107

walkthrough 4, 7

