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Ben Yan

Abstract

The home network system (HNS, for short) is a system consisting of multiple

networked household appliances and sensors. It is one of the promising applica-

tions of emerging ubiquitous technologies. The great advantage of the HNS lies

in the flexible integration of different home appliances through the network. The

integration achieves value-added integrated services. For example, integrating a

TV, a DVD player, lights, sound systems and curtains implements a DVD The-

ater Service, which allows a user to watch movies in a theater-like atmosphere

within a single operation.

In developing and providing the HNS integrated services, the service provider

must guarantee that the service is safe for inhabitants, house properties and

their surrounding environment. Assuring safety is a crucial issue to guarantee a

high quality of life in smart home. With the conventional (non-networked) home

appliances, safety has been ensured manually by the human user. That is, every

user is supposed to follow the safety instructions typically described in the user’s

manual.

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0661029, December 6, 2008.
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With the HNS integrated services, however, we have to consider the safety

much more carefully. First, the networked appliances are operated automatically

by software agents instead of human users. Second, the integration of multiple

appliances yields global dependencies between the appliances. Moreover, the

residential safety rules of every home, which are independent of appliances and

services, should also be concerned. Most of these issues must be coped with

carefully in the software implementation. Unfortunately however, there exists no

solid framework to handle the safety of the HNS integrated services, as far as we

know.

In this dissertation, we propose a novel framework for the safety, consisting

of the following three contributions.

The first contribution is to propose a way to define the safety of the HNS

integrated services. Considering the nature of the HNS and integrated services, we

define three kinds of safety: (1) local safety is the safety to be ensured by the safety

instructions of individual appliances, (2) global safety is specified over multiple

appliances as required properties of an integrated service, and (3) environment

safety is prescribed as residential rules in the home and surrounding environment.

The second contribution is to propose a requirement-engineering approach

that can systematically derive the verifiable safety properties for the HNS based

on the safety definition above. Specifically, we propose a hazard analysis model

for the HNS, consisting of four levels of abstractions: (1) hazard context, (2) haz-

ardous state, (3) object attribute and (4) object method. For a given HNS model

and the hazard context, we then conduct a goal-oriented analysis to specify logi-

cal relations between the adjacent abstraction levels. The analysis yields cause-

and-effect chains from the abstract hazard contexts to the concrete attributes

and operations of HNS objects (appliances, services, environment). Finally, the

safety properties and their responsible operations are derived from the complete
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model, which give the strong rationale of the safety of the HNS.

The third contribution is to propose a method that validates the three kinds of

safety property which was extracted from the hazard analysis model above. For

this, the proposed method uses the technique of Design by Contract (DbC, for

short) extensively. In general, the HNS involves multiple stakeholders (e.g., ap-

pliance vendors, service providers, house builders, end users, etc.). It is essential

to find out who is responsible in each instance for the safety issue. We consider

every safety property as a contract between a provider and a consumer of an HNS

object. In the proposed method, the contracts for local (global, or environment)

safety are embedded within the implementations of the appliance (service, or

home, respectively) objects. Following this, the contracts are validated through

elaborate testing. In this dissertation, especially for the HNS written in Java, we

implement the method with JML (Java Modeling Language) and JUnit. In order

to cover all possible scenarios where the integrated service is activated, we also

introduce a tool TOBIAS for the combinatorial test-case generation.

Using the proposed framework, one can define and validate the safety of HNS

integrated services, systematically and efficiently. We believe that the proposed

method would be a powerful means not only for validating given services, but

also for providing solid safety guidelines to stakeholders of the HNS.

Keywords:

Home Network System, Object-Oriented Model, Integrated Service, Safety Prop-

erty, Local Safety Property, Global Safety Property, Environment Safety, Require

ment-engineering, Hazard Analysis Model, Hazard Template, Design by Contract,

Java Modeling Language, TOBIAS
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Chapter 1

Introduction

1. Background

The recent ubiquitous/pervasive technologies allow general household appliances

to be connected within the network at home. The home network system (HNS, for

short) is comprised of such networked appliances to provide various services and

applications for home users [31]. The great advantage of HNS lies in integrating

(or orchestrating) features of multiple appliances, which yields more value-added

and powerful services. We call such services HNS integrated services.

For example, we can integrate a TV, a DVD player, lights, sound-systems and

curtains implements a DVD Theater service, which allows a user to watch movies

in a theater-like atmosphere just within a single operation.

We also can integrate a gas system, a ventilator, a kitchen light and an electric

kettle for building Cooking Preparation Service. This service can automatically

set up the kitchen configuration in preparation for cooking. Such as, turn on the

kitchen light, the ventilator, open the gas system and set the kettle into boiling

mode etc..

In developing and providing a HNS integrated service, the service provider
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must guarantee that the service is safe for inhabitants, house properties and their

surrounding environment. As for the HNS integrated services, however, we have

to consider the safety much more carefully. First, the networked appliances are

operated automatically by software agents instead of human user. Second, the in-

tegration of multiple appliances yields global dependencies among the appliances.

Moreover, the residential safety rules of every home, which are independent of

appliances and services, should be also concerned. Most of these issues must be

coped with carefully in the software implementation. Thus, a single fault in the

service application can cause serious accidents to the user.

Despite their importance, the safety issues have not been well studied yet in

the ubiquitous computing area, including smart home. As far as we know, the

safety issues have been mainly studied in critical system, such as transportation,

spacecraft, aerospace systems and nuclear plants etc. [21] [22] [23] [24]. Moreover,

the general solutions of the critical system do not always fit the safety issues of

the home network system, because of the following reasons:

First, compared to the ubiquitous applications including HNS, the safety crit-

ical systems are quite monolithic, where requirements and system configurations

are not frequently changed. On the other hand, for the home network system,

the user can add a new appliance into the system, or even create a new inte-

grated service depending on the requirements. This is quite different from the

above critical system. Thus, we need alternative analysis models suitable for the

object-oriented model.

Second, in such a safety critical system, all components in the system tend

to be tightly coupled with each other under a fixed environment, in order to

provide proprietary services. This is quite different from the HNS, where the

combinations of the components vary flexibly for different purposes. So, we have

to consider the global relationships among appliances, and also the impacts to

2



the environmental issues, which are specific to ubiquitous applications.

At last, most of safety requirement solutions for the critical system focus on

the requirement engineering stage. The main purpose of such solutions is to give

a method for analyzing “how to design a safety system” before implementing the

system, or “why the accident happened” after the accident. Most of them do not

deal with the safety issues on the implementation level. We consider that it is

a weak point for conducting the safety management for the HNS domain, where

the applications are developed in an agile way.

2. Goals of Research

In general, the safety issues are usually considered at online stage [9, 30, 35] or

offline stage. Online stage always proposes a method for watching and preventing

the system into the hazard state or considering what measures should be took for

decreasing the damage after the accident happened. Offline stage always proposes

a method for supporting how to design a safe specification for a system. In order

to achieve the safety within the HNS integrated services systematically at offline

stage, we set three goals for considering the safety issues of HNS form requirement

design stage to test stage.

• GOAL1: Formalizing the Safety of the HNS Integrated Services

The first goal is to propose a way to define the safety of the HNS integrated

services. Considering the nature of the HNS and integrated services, we

define three kinds of safety: (1) local safety is the safety to be ensured by

the safety instructions of individual appliances, (2) global safety is specified

over multiple appliances as required properties of an integrated service,

and (3) environment safety is prescribed as residential rules in the home

and surrounding environment.
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• GOAL2: Proposing a Safety Requirement Engineering Method

for HNS

The second goal is to propose a requirement-engineering approach that can

systematically derive the verifiable safety properties for the HNS. Specifi-

cally, we propose a HNS hazard analysis model (HNS-HAM, for short) for

the HNS. The hazard analysis model consists of four levels: (1) hazard con-

text level, (2) hazardous state level, (3) object attribute level and (4) object

method level. For a given HNS model and the hazard context, we then

conduct a goal-oriented analysis to specify logical relations between the ad-

jacent abstraction levels. The analysis yields cause-and-effect chains from

the abstract hazard contexts to the concrete attributes and operations of

HNS objects (appliances, services, environment). Finally, the safety prop-

erties and their responsible operations are derived. Moreover, in order to

enhance the reusability of the HNS-HAM, we will propose a notion using

hazard template for applying to construct the HNS-HAM.

• GOAL3: Proposing a Safety Validation Framework for Validating

the Safety Properties

Our third goal is to propose a method that validates the three kinds of

safety property which was extracted from the HNS-HAM above. For this,

the proposed method uses the technique of Design by Contract (DbC, for

short) [29], extensively. In general, the HNS involves multiple stakeholders

(e.g., appliance vendors, service providers, house builders, end users, etc.).

It is essential to find out who is responsible in each instance for the safety

issue. We consider every safety property as a contract between a provider

and a consumer of an HNS object.

In the proposed method, the contracts for local (global, or environment)

4



safety are embedded within the implementations of the appliance (service,

or home, respectively) objects. Following this, the contracts are validated

through elaborate testing. In this dissertation, especially for the HNS writ-

ten in Java, we implement the method with Java Modeling Language (JML,

for short) [16] and JUnit. In order to cover all possible scenarios where the

integrated service is activated, we also introduce a tool TOBIAS for the

combinatorial test-case generation.

We believe that the proposed total framework can help the HNS developers

significantly in designing and implementing safe HNS solutions.

3. Overview of the Dissertation

This dissertation is organized as follows:

In Chapter 2, we will introduce the Home Network System based on the Object-

Oriented Model design. We also will introduce some practical integrated services

scenario examples for understanding what is the integrated service of HNS. At

last, in order understand well, we will introduce a language for describing the

design specification of the HNS without considering the safety issues.

In Chapter 3, we will first discuss the safety issues of Home Network System.

After this, we will formalize the safety of the HNS as three kinds of safety prop-

erties. At last, a formal definition of the safety validation of the HNS will be

introduced.

In Chapter 4, we will propose a requirement-engineering approach which can

systematically derive the safety properties for the HNS. For this approach, it

includes constructing the Hazard Analysis Model for specific hazard context. By

constructing this model, the safety properties and their responsible operations

can be derived.
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In Chapter 5, we will introduce a method for validating the three kinds of

safety properties which was derived from the Hazard Analysis Model above. To

evaluate the proposed method, we will conduct the case study for safety validation

within a practical HNS and integrated services.

Finally, we will conclude this dissertation with a summary and make a fore-

sight for our research with the future work in Chapter 6.
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Chapter 2

Preliminaries

1. Home Network System

A Home Network System (HNS, for short) consists of one or more networked

appliances connected to a LAN at home. In general, each appliance has a set

of application program interfaces (APIs), by which the users or external software

agents can control the appliance via the network. To process the API calls,

each appliance generally has embedded devices including a processor and storage.

Figure 2.1 shows an example of HNS,

As seen in Figure 2.1, which consists of various networked appliances and

a home server. An HNS typically has a home server, which manages all the

appliances in the HNS. The home server typically plays a role of gateway to

the external network. It also works as an application server, where services and

applications are installed on the home server.

An HNS integrated service is implemented as a software application that in-

vokes APIs of the appliances. By operating multiple different appliances together,

the integrated service achieves a sophisticated and value-added service. Commu-

nications among the appliances are performed based on the underlying network

7
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Figure 2.1. Home network system
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protocol. Currently, many standard protocols are being standardized for the net-

worked appliances. Major protocols include DLNA [28] for digital audio/video

appliances and ECHONET [41] for white goods (e.g., refrigerator, air condition-

ers, and laundry machines) [13].

In this dissertation, we assume that the device control interface are provided

in the form of APIs, Thus, the appliance can be operated by integrated services.

2. Examples of Integrated Services

Here we introduce four example scenarios of HNS integrated services.

[SS1: DVD Theater Service] Integrating a TV, a DVD player, a sound system,

a light and a curtain, this service automatically sets up the living room in a theater

configuration. Upon a user’s request, the TV is turned on with the DVD input,

the curtains are closed, the sound system is configured for 5.1ch mode, the light

darkens, and finally the DVD player plays back the contents.

[SS2: Sound Healing Service] Integrating a DVD player, a sound system, a

light, and an air-conditioner, this service helps a user be relaxed in the living

room. When the user starts the service, the DVD player is turned on in music

mode, a 5.1ch speaker is selected with an appropriate sound level, the bright-

ness of the light is adjusted, the air-conditioner is configured with a comfortable

temperature.

[SS3: Cooking Preparation Service] Integrating a gas system, a ventilator,

a kitchen light, and an electric kettle. This service automatically sets up the

kitchen configuration in preparation for cooking. When requested, the kitchen

light is turned on, the gas-valve is opened, the ventilator is turned on, and the

kettle is turned on with a boiling mode to prepare hot water for cooking.

[SS4: Bath Preparation Service] Integrating a hot water system, a bathroom

9



Public   DVDTheaterService {

DigitalTV tv = new DigitalTV();

DVDPlayer dvd = new DVDPlayer();

SoundSystem sound =new SoundSystem();

Light   light = new Light();

Curtain  curtain = new  Curtain();

tv.on(); /* Turn on TV */

tv.setVisualInput(‘DVD’);

dvd.on(); /* Turn on the DVD Player */

dvd.setSoundOutput(‘5.1’);

sound.on(); /* Turn on the Sound System */

sound.setInputSource(‘DVD’);

sound.setVolumeLevel(25);

curtain.closeCurtain(); /*  Close curtain  */

light.setBrightnessLevel(1); /*  Minimize brightness  */

tv.playTv(); /*  Play TV   */

dvd.playDvd(); /*  Play DVD  */

}

Figure 2.2. Java implementation of DVD theater service
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light and a bathroom air-conditioner. This service could automatically set up the

bath configuration in preparation for bath. While the service is implemented,

the service will fill the bathtub with hot water at setting temperature, the air-

conditioner will be turn on with the comfortable temperature and the bathroom

light will be turned on.

Figure 2.2 shows a Java-like pseudo code which implements the scenario SS1

of DVD Theater service. In the figure, X.Y() means the invocation of API Y()

of appliance X.

3. Object-Oriented Model for HNS

To understand the HNS clearly, here we introduce an object-oriented model of

HNS [19,32] shown in Figure 2.3.

As represented with the UML class diagram, the model consists of three kinds

of objects (classes): Appliance, Service, and Home. These classes have relation-

ships such that (R1) a Home has multiple Appliances, (R2) a Home has multiple

Services, and (R3) a Service uses multiple Appliances, which reasonably char-

acterize the structure of an HNS.

The basis of the model was built as a simplification of the implementation.

Each component representing the appliances and the services was modified so

that the calls to the remote control APIs were transformed into simple printing

message calls (see Figure 2.4).

3.1 Appliance Object

An appliance object models a networked appliance. The model involves a super

class Appliance, which aggregates attributes and methods commonly contained

in all kinds of electric appliances. It also has a Specification, which stores
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Figure 2.3. Object-oriented model of HNS

public class ElectricKettle extends Appliance{

…

private /*@ spec_public @*/ String mode; //{IDLE, BOILING, WARMING} = IDLE

public void setMode (String wm) { //setting working mode for electric kettle

System.out.println (“ setMode, kettle”);

this.mode = wm;

}

…

}

Figure 2.4. Implementation of setModel() for electric kettle
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static specification information such as power voltage, rated current, size, al-

lowable temperature and humidity. Typical methods involve the power switches

(on(), off()), getting the current power status (getPower()). On the other

hand, operations specific to each kind of appliance are specified in the con-

crete appliance classes. Such methods include Light.setBrighnessLevel(),

Air-Condition.setRequiredTemperature() and Kettle.openLid(). Every ap-

pliance also has a method that returns the current state of the appliance (e.g.

Kettle.getWorkingStatus()), so that the state can be referred by external ob-

jects.

3.2 Service Object

A service object models an integrated service, which uses several appliance ob-

jects. There is a super class Service which has common interfaces like getWorkin

gStatus(). The concrete service scenarios are implemented in sub-classes that

inherit Service. Specifically, each service contains a set of appliance objects,

and invokes methods of the appliance objects according to a certain logic. Figure

2.2 shows a Java implementation of the DVDTheaterService. It can be seen in

activation() that the scenario SS1 (see Section 2) is implemented.

3.3 Home Object

A home object, represented as a singleton object Home, models the house that

involves environmental attributes. The attributes include energy consumption,

sound level, brightness, temperature and humidity.

We assume that values of these attributes can be computed from the cur-

rent states of appliances and services. For instance, the current temperature is

obtained by Home.homeEnvironment.getTemperature().
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The current electricity consumption is computed from specifications and states

of appliances that are currently on. Note that a user may want to operate some

appliances directly and not through the integrated services. To simulate this, we

assume that Home has methods that can directly invoke any appliance methods.

4. Describing HNS Specification

To capture the given HNS model more clearly, we here introduce a language for

describing the design specification of the HNS [19] [32].

4.1 Appliance

As mentioned in Section 3.1, every appliance is characterized as an object consist-

ing of attributes and methods. Figure 2.5 shows the general structure of appliance

specification. Each attribute is defined by associated type and initial value. In our

language, integer (with allowable values), boolean, or enumerate can be used for

the type. For instance, power can take two values ON or OFF, which is initialized

to OFF.

Each method in the specification is simply characterized by a pair of logi-

cal formula over the attributes, namely, pre-condition and post-condition. The

pre-condition of a method is a guard condition that must be satisfied before the

method is executed. On the other hand, the post-condition is a resultant condi-

tion that must be satisfied after the method is executed. In our model, standard

comparative and logical operators 1 (== (equal), ! = (not equal), > (more than),

>= (more than or equal to), < (less than), <= (less than or equal to), && (and),

|| (or), ! (not), => (imply)) can be used.

1 The notation follows the one in the C (or Java) language
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APPLIANCE Appliance_name EXTENDS Appliance

ATTRIBUTES

TYPE attribute_name1 : {value1 ... value2} = Init_val1;

TYPE attribute_name2 : {value1 ... value2} = Init_val2;

...

METHODS

method_name1() {

PRE: Pre-Condition;

POST: Post-Condition;

}

...

INVARIANTS

Invariant Condition;

Figure 2.5. General specification of appliance
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APPLIANCE ElectricKettle EXTENDS Appliance

ATTRIBUTES

isWorking : {true, false} = false;

mode : {IDLE, BOILING, WARMING} = IDLE;

lid : {OPEN, CLOSE} = CLOSE;

temperature : {30,40,50,60,70,80,90,100} = 40;

METHODS

switchOn() { PRE: power == ON && isWorking == false; POST: isWorking == true; }

switchOff() { PRE: power == ON && isWorking == true; POST: isWorking == false; }

openLid() { PRE: power == ON && lid == CLOSE; POST: lid == OPEN; }

closeLid() { PRE: power == ON && lid == OPEN; POST: lid == CLOSE; }

setMode(md) { PRE: power == ON; POST: mode == md; }

setTemperature(tem){ PRE: power == ON; POST: temperature == tem; }

getLid() { PRE: power == ON; POST: ReturnValve == lid; }

getMode() { PRE: power == ON; POST: ReturnValve == mode; }

getTemperature() { PRE: power == ON; POST: ReturnValve == temperature; }

getWorkingStatus(){ PRE: power == ON; POST: ReturnValve == isWorking; }

INVARIANTS

true;

Figure 2.6. Specification of electric kettle
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For instance, Figure 2.6 represents a specification of an electric kettle. This

specification says that the object ElectricKettle has four attributes and six

methods. Let us take openLid() method in Figure 2.6. To execute openLid(),

the lid must be closed and the power must be on. After executing the method, the

lid will be opened. The method setMode() takes a formal parameter md, intended

that the working mode will be updated to the given md in the post-condition.

Our specification language also can specify invariants. The invariant is a

condition that must be satisfied all the time no matter which method is executed.

In Figure 2.6, no specific invariant is given.

4.2 Service

The specification for HNS service can be specified in almost the same way.

Figure 2.7 shows a general structure of service specification. In addition to

the case of individual appliance, a service has a set of appliances used by the

service.

For instance, Figure 2.8 shows a specification of Cooking Preparation Service,

which warms up the kitchen appliances. The specification says that this service

uses four appliances — a ventilator, a gas system, a light, and an electric kettle.

The attribute attr of each appliance app is denoted by app.attr. As specified

in the post condition of activation(), when the service is activated, the light

is turned on, gas valve is opened, ventilator is turned on, and kettle is turned to

the boiling mode. We assume that for every appliance (or every service) in the

HNS, a specification is given.

The detailed specification for other appliances are described in the Appendix.
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SERVICE Service_name EXTENDS Service

APPLIANCES

APPLIANCE appliance_name1;

APPLIANCE appliance_name2;

...

ATTRIBUTES

TYPE attribute_name1 : {value1 ... value2} = Init_val1;

TYPE attribute_name2 : {value1 ... value2} = Init_val2;

...

METHODS

method_name1() {

PRE: Pre-Condition;

POST: Post-Condition;

}

...

INVARIANTS

Invariant Condition;

Figure 2.7. General specification of service
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SERVICE CookingPreparationService EXTENDS Service

APPLIANCES

vent : Ventilator;

gas : GasSystem;

light : Light;

kettle : ElectricKettle;

ATTRIBUTES

brightness : {SOFT, MID, STRONG} = SOFT;

windLevel : {0, 1, 2, 3} = 1;

fireLevel : {ZERO, SOFT, MID, STRONG} = ZERO;

mode : {IDLE, BOILING, WARMING} = IDEL;

METHODS

activation() { //activate the cooking preparation

PRE: service.isWorking==false;

POST: light.power==ON && light.brightness==brightness && light.isWorking==true &&

gas.power==ON && gas.valve==OPEN && gas.fireLevel==fireLevel && gas.isWorking==true &&

vent.power==ON && vent.windLevel==windLevel && vent.isWorking==true &&

kettle.power==ON && kettle.mode==workingMode && kettle.isWorking==true &&

service.isWorking==true;

}

stop() { //shutdown the preparation

PRE: service.isWorking==true;

POST: light.isWorking==false && light.power==OFF &&

gas.valve==CLOSE && gas.isWorking==false && gas.power==OFF &&

vent.isWorking==false && vent.power==OFF &&

kettle.isWorking==false && kettle.power==OFF && service.isWorking==false;

}

setLightBrightness(lb){ PRE: service.isWorking==false; POST: brightness==lb; }

setWindLevel(wl) { PRE: service.isWorking==fasle; POST: windLevel==wl; }

setFireLevel(fl) { PRE: service.isWorking==false; POST: fireLevel==fl; }

setKettleMode(wm) { PRE: service.isWorking==false; POST: mode==wm; }

INVARIANTS

true;

Figure 2.8. Specification of cooking preparation service
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5. Summary

In this chapter, in order to understand the HNS well, we proposed an object-

oriented model an specification language for the HNS. The model mainly consists

of three kinds of objects (classes): Appliance, Service, and Home. These objects

form the following relationships: [R1: a Home has multiple Appliances], [R2: a

Home has multiple Services], and [R3: a Service uses multiple Appliances]. These

relationships match well the intuition of the HNS and integrated services. For

each object, it has the internal state (power, isWorking, etc.) and the operational

interfaces (i.e., APIs). Hence, it is reasonable to model each object with consisting

of attributes and methods.

In order to conduct the safety requirement engineering for HNS (see Chapter

4) and capture the given HNS model more clearly. we have introduced a language

for describing the design specification of the HNS. In this language, we defined a

pair of PRE and POST conditions for each method of the object to specify the func-

tion requirement, INVARIANTS conditions to describe the invariant specification

for each object of the HNS model. Note, that the specification defined in this

chapter does not consider the safety requirements because the safety requirements

have been not been dealt yet.

By using the object-oriented model and the proposed specification language,

we believe it would be enough to model the HNS and specify function requirement

clearly.

6. Related Work

For the related work of [32], they have developed an object-oriented model for

networked appliances. In addition to the appliance object, here we newly intro-
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duce a service object for the integrated service and a home object for the home

environment.

For the related work of [19], they proposed a language for representing in-

tegrated services. The proposed language consists of two parts: (a) system de-

scription for the HNS and (b) service description for integrated service. In this

language, the PRE and POST conditions are only defined in the Appliance object.

Moreover, there is not INVARIANTS condition definition for any object. It does

not fit our HNS object-oriented model very much and it is very difficult for us to

describe the safety requirement specification for each object of HNS by using our

proposed method in Chapter 4.

Because of this, we modified and simplified specification language by giving

PRE, POST and INVARIANTS conditions for each object and made it suitable to

conduct the function and the safety requirements of HNS.
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Chapter 3

Characterizing Safety of HNS

Integrated Services

1. Introduction of HNS Safety Issues

In Chapter 2, we have introduced the HNS by using object-oriented model and

specification language. The great advantage of HNS integrated service lies in

the flexible integration of different home appliances through the network. In

developing and providing a HNS integrated service, the service provider must

guarantee that the service is safe for inhabitants, house properties and their

surrounding environment. Assuring safety is a crucial issue to guarantee high

quality of life in smart home.

In general, for the conventional (non-networked) home appliances, the safety

has been assured manually by the human user. That is, every user is supposed to

follow the safety instructions typically described in the user’s manual. However,

for the HNS integrated services, we have to consider the safety issue much more

carefully than before because the following reasons.
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• Difference in operators

The first reason is that the operators of the appliances and the service are

different. For the conventional home appliances, the operators are the hu-

man users. But for HNS, the service is typically implemented as a software

application, the networked appliances are operated automatically by soft-

ware agents instead of human user, so we can not ensure that the system

(software) can obey the safety instructions.

• Integration of appliances and services

The second reason is that the integrated service is realized on the flexible

integration of multiple appliances or services. In general, the user can only

operate a single appliance simultaneously. But for one integrated service, it

usually operates multiple appliances at a time, which yields global depen-

dencies among different appliances. Moreover, because multiple integrated

services can be executed simultaneously, the unexpected functional conflicts

may occur among the services. Thus, a single fault in the service application

can also cause serious accidents to the user.

• Responsibilities among stakeholders

The third reason is that it is necessary to make it clear who is responsible

for guaranteeing the safety of HNS. As we know, an HNS consists of many

heterogeneous appliances, and the service orchestrates different multiple

appliances simultaneously. For every appliance and service of HNS, the

manufacturer of the appliance and the developer of service should prescribe

some safety instructions for proper and safe use of them under the pro-

vided environment. So we can consider that the safety instructions should

be defined over the heterogeneous objects by multiple stakeholders which
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includes the appliance manufacturers, the service developers and the envi-

ronment providers. For this, it is necessary to clarify who is responsible for

the safety instruction if the system can not satisfy the safety requirements

(an accident has happened).

Most of these issues must be coped with carefully in the software implementa-

tion. Unfortunately however, there exists no solid framework to handle the safety

of the HNS integrated services, as far as we know. For this, in this chapter, we

will propose a way to formalize the safety of the HNS integrated services and

formulate the safety validation problem by considering the nature of the HNS

and integrated services.

2. Formalizing the Safety of HNS

First, we will see what safety is. In a broad sense, the safety of an integrated

services can be defined as follows:

Definition 1 (safety in broad sense) An HNS integrated service s is safe iff

s is free from any condition that can cause [injury or death to home users and

neighbors], or [damage to or loss of home equipment and the surrounding envi-

ronment].

Our long-term goal is to establish a solid framework that can guarantee the

safety in Definition 1. In general however, it is quite difficult to achieve 100%

safety. Hence, safety is often evaluated by means of risk. To assure safety to a

considerable extent, a set of conditions or guidelines minimizing the risk (called,

safety properties) are usually considered [8,11,12]. Considering the nature of the

HNS, we propose to classify the safety properties into the following three types.
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2.1 Local Safety Property

For every electric appliance, the manufacturer of the appliance prescribes a set

of safety instructions for proper and safe use of the appliance. Conventionally,

these instructions have been designated for human users. However, in the HNS

integrated service, the instructions must be guaranteed within the software. For

instance, the following shows a safety instruction for an electric kettle.

L1: Do not open the lid while the water is boiling, or there is a risk

of scald.

Any integrated service using the kettle (e.g., SS3 in Section 2 of Chapter 2)

must be implemented so that the service never opens the lid while the kettle

is in the boiling mode. Other safety instructions include the installation issues.

That is, every appliance must be installed in a proper environment described

by its specification, including power voltage, rated current, power consumption,

allowable temperature and humidity, etc.

Usually the safety instructions of an appliance can be regarded as a set of

safety properties that are locally specified within that appliance only. Thus we

define them as local safety properties as follows:

Definition 2 (local safety property) A safety property lp is called local safety

property, iff lp is defined over a single appliance d.

Let LocalProp(d) = {lp1, lp2, ..., lpm} be the set of all local safety properties

with respect to the appliance d. For a given integrated service s,

let App(s) = {d1, d2, ..., dn} be the set of networked appliances used by s.

Then, we define

LocalProp(s) = ∪di∈App(s)LocalProp(di)

which is the set of local safety properties with respect to the service s.
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2.2 Global Safety Property

Since an integrated service orchestrates different multiple appliances simultane-

ously, it is necessary to consider global properties over the multiple appliances.

For instance, SS4 (bath preparation service) in Section 2 of Chapter 2 should

guarantee the following safety property to prevent the user from getting scald or

heart attack.

G1: When the service opens the bath valve, the water temperature of

the hot water system must be between 35 and 45 degree.

The next example shows a safety property for SS3 (cooking preparation ser-

vice), which avoids carbon monoxide poisoning.

G2: While the gas valve is opened, the ventilator must be turned on.

Note that each of the properties is globally specified over multiple appliances.

These global safety properties are usually service-specific, and are not covered by

the local safety properties of individual appliances. Therefore, we suppose that

the global safety properties are carefully specified by the provider of the integrated

service. So we define them as global safety properties.

Definition 3 (global safety property) A safety property gp is called global

safety property iff gp is defined over multiple appliances d1, d2, ..., dn that are used

by an integrated service s. GlobalProp(s) = {gp1, gp2, ..., gpk} denotes the set of

all global safety properties for s.

2.3 Environment Safety Property

In general, each house has a set of residential rules for inhabitants and neighbors

to make a safe living. Since the integrated services give various impacts against
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the surrounding environment (including the room, the building, the neighbors,

etc.), the services must be safe against the environment by conforming to the

residential rules. For instance, most house has a capacity of electricity, which

yields the following safety property.

E1: The total amount of current used simultaneously must not exceed

30A.

Also for emergency, the following safety property should be concerned.

E2: Do not lock doors and windows in case of fire.

The following property may be derived from community rules.

E3: Do not make loud noise or sound after 9 p.m.

We assume that these safety properties are derived from the residential rules,

including the house manual, the emergency procedure, community rules and poli-

cies, etc. We call such properties environment safety properties.

These residential rules might vary from house to house, but they are usually

independent 1 of appliances or services in the house. The integrated services of

course have to conform to the rules to be safe in the environment.

Definition 4 (environment safety property) A safety property ep is called

an environment safety property iff ep is defined as an environmental or residen-

tial constraint, which is independent of any appliances or services. EnvProp =

{ep1, ep2, ..., epl} denotes the set of all environment properties.

1 Here “independent” means that the definition of each environment property does not require

the direct reference of appliances or services. In reality, each environment property becomes

true or false, indirectly depending on the status of appliances and services.
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2.4 Safety Definition of HNS Integrated Services

Based on the discussion above, we define three kinds of safety as follows:

Definition 5 (safety of integrated service) For a given integrated service s,

and a set P of safety properties, we write s ` P iff s satisfies all properties

contained in P . Then, we define the safety of s as follows.

• s is locally safe iff s ` LocalProp(s).

• s is globally safe iff s ` GlobalProp(s).

• s is environmentally safe iff s ` EnvProp.

• s is safe iff s is locally, globally and environmentally safe.

3. Safety Validation Problem

Once the safety is defined, our next concern is how to validate it. Specifically,

the problem is formulated as follows:

Definition 6 (safety validation problem) Let h be a given implementation

of HNS and s be an integrated service. Let LocalProp(s), GlobalProp(s), and

EnvProp be given. The safety validation problem is to check if s is safe.

[Input:] A HNS h, an integrated service s, LocalProp(s), GlobalProp(s),

and EnvProp().

[Output:] A verdict whether s is safe or not within h.

We assume that the given h and s are implemented based on the object-

oriented model presented in Section 3 of Chapter 2.

28



4. Summary

In order to understand why the safety issues of HNS have to be considered more

carefully than before, we compared the differences of HNS with general appliance

operation in the beginning of this chapter. Based on the discussion about these

differences, we can understand only a single fault in the service application can

cause serious accidents to the user. So considering these safety issues carefully

in the software implementation is a very important point for guaranteeing the

safety of HNS.

In order to consider the safety issues systematically, we also proposed a sys-

tematic approach to formalize the concept of safety in the context of HNS. First,

we gave a definition of “safety in broad sense”. After this, we also formal-

ized the safety properties as LocalSafetyProperty, GlobalSafetyProperty and

EnvironmentSafetyProperty by considering the nature of the HNS. At last,

we formulated the safety validation problem based on the three kinds of safety

definition of HNS integrated service.

For this systematic approach of HNS safety issue, we believe that it can not

only provide a strong rationale to consider the safety issues, but also can assist

the HNS service vendors to guarantee the service is safe for inhabitants, house

properties and their surrounding environment for developing and providing a HNS

integrated service,

5. Related Work

Traditionally, the safety issues have been addressed in safety critical systems

[21–25], such as, aerospace systems and nuclear plants. Despite their impor-

tance, there are yet little research work in the ubiquitous computing area, in-
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cluding smart home. Compared to the ubiquitous applications, the safety critical

systems are quite monolithic, where requirements and system configurations are

not frequently changed. Thus, we needed alternative analysis models suitable for

the object-oriented model. On the other hand, in such a safety critical system,

all components in the system tend to be tightly coupled with each other under a

fixed environment, in order to provide proprietary services. Thus, there is only

local safety. This is quite different from the HNS (or even general ubiquitous

applications), where the combinations of the components vary flexibly for differ-

ent purposes. So, we consider that our notions of global safety and environment

safety are specific to ubiquitous applications.

We believe that the original idea of characterizing safety in the HNS has

substantial values for developing and analyzing safe integrated services system-

atically.
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Chapter 4

Deriving Safety Properties of the

HNS integrated service

1. Introduction

In Chapter 3, we have characterized the safety of the HNS by three types of

properties: (1) local safety properties are safety instructions of each individual

appliance, (2) global safety properties are specified over multiple appliances to

operate the HNS service safely, and (3) environment safety properties are resi-

dential rules in home and surrounding environments, independent of appliances

and services.

Then a question arises: “How can we give the concrete safety properties for

the given HNS (model)?” Of course, one can specify any safety properties in an

ad-hoc and intuitive manner. However, how can we say that the properties are

good or bad?

Here we should note that it is important to have correct and complete safety

properties. The quality of the safety properties has a significant impact on the
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subsequent safety validation process. If a safety property is not correctly specified,

then the validation process yields a wrong verdict. If a critical safety property is

overlooked, then the validation process ignores serious accidents in the HNS. If a

safety property is quite irrelevant to the given HNS model, we should not put it

into the expensive validation process.

Unfortunately however, it is very difficult and challenging to have such a good

set of safety properties in general.

This chapter presents a requirement-engineering approach that can system-

atically derive the verifiable safety properties for the HNS on the offline stage.

Specifically, we propose a new hazard analysis model, called HNS-HAM (HNS

Hazard Analysis Model), which investigates potential hazards within the given

HNS model. The safety properties are then derived so that the properties define

conditions that prevents the hazards from occurring.

The proposed HNS-HAM consists of four levels of abstractions: (1) hazard

context level, (2) hazardous state level, (3) object attribute level, and (4) object

method level, as shown in Figure 4.1. For a given HNS model and the hazard con-

text, we construct the HNS-HAM by a goal-oriented analysis [38], which specifies

logical relations between the adjacent abstraction levels.

Intuitively, the hazard context is a type of hazard to be focused in the hazard

analysis, which is independent of the specific HNS model. The hazard context is

decomposed into several hazardous states, where the context is realized. Then,

the hazardous states are associated by attributes and methods of appliance ob-

jects. The construction of HNS-HAM yields cause-and-effect chains from the

abstract hazard contexts to the concrete attributes and operations of HNS ob-

jects, specified in the given HNS specification.

Finally, the safety properties and their responsible operations are derived from

the complete model, which give the strong rationale of the safety of the HNS. We
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also discuss a technique using hazard template to enhance the reusability of the

HNS-HAM.

2. Goal and Approach

The main problem in this chapter is considering how to derive safety properties

for given HNS specifications (in Figures 2.6 and 2.8), systematically. Moreover,

the derived safety properties should be reflected in the (original) specifications,

so that the safety properties are explicitly considered at the design level.

Among the local, the global and the environment safety properties, we do

not consider the environment property here. By definition, every environment

property heavily depends on the environmental factors, which cannot be captured

by the HNS model and specification. After all, the problem is formulated as

follows:

Input:

- (I) ASpec: a set of appliance specifications, and

- (II) SSpec: a set of service specifications.

Output:

- (a) LProp: a set of local safety properties,

- (b) Safe-ASpec: a set of (safe) appliance specifications, where Safe-ASpec is

a revision of ASpec with considering LProp

- (c) GProp: a set of global safety properties,

- (d) Safe-SSpec: a set of (safe) service specifications, where Safe-SSpec is a

revision of SSpec with considering GProp.

To achieve the goal, we conduct a hazard analysis, which investigates poten-

tially dangerous situations under the given HNS. To perform the analysis effi-

ciently, we propose a HNS hazard analysis model (HNS-HAM, for short). Using
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the HNS-HAM, we then derive the safety properties in a goal-oriented way.

3. Hazard Analysis Model for HNS

3.1 Overview of Hazard Analysis Model

We propose a unique hazard analysis model, called HNS-HAM, consisting of four

levels of abstractions. Figure 4.1 depicts the overview of the proposed model.

The model starts with abstract types of hazards (we call hazard contexts), which

are independent of specific HNS configuration. The hazard contexts (Level 1)

are refined to hazardous states (Level 2), and then mapped to concrete attributes

(Level 3) and methods (Level 4) of the HNS objects. The adjacent levels are

linked by logic relations. The HNS-HAM specifies cause-and-effect chains [23]

from the abstract hazard contexts to the concrete attributes and operations of

the HNS model. We explain the details of each level as follows.

(A) Level1: Hazard Context Level

The top level of the HNS-HAM defines abstract types of hazards to be considered

in the hazard analysis, which we call hazard contexts. Each hazard context must

be independent of the specific HNS instances. Typical hazard contexts for the

HNS include burn, scald, explosion, gas poisoning, flood, deficiency of oxygen,

noise, etc. The purpose of Level 1 is to determine the scope of the hazard analysis.

(B) Level2: Hazardous State Level

For each specific hazard context hc defined in Level 1, this level defines possible

states in the given HNS where the hazard hc is realized. We call such danger-

ous states hazardous states. In general, a hazard occurs due to several related
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factors. Also a hazardous state can be composed of fine-grained sub-states. So

we characterize a hazard context hc by several hazardous states hs1, hs2, ..., hsn

connected by logical operators (AND, OR, NOT). Moreover, a hazardous state

hsi can be decomposed into several sub-states hsi1, ..., hsik. For a hazardous state

hs, if there is no more sub-state into which hs is refined, we call hs an atomic

hazardous state.

Figure 4.2 shows an example of HNS-HAM investigating the hazard context

“scald” within ElectricKettle (let it be HC1). In the Figure 4.2 a rectangle

node represents a hazard context, an oval node represents a hazardous state (other

nodes will be explained later). Each arrow from node A to B denotes a causal

relationship that “B is caused by A”. In this example, the possible cause of the

“(HC1): scald by using kettle” is characterized by the hazard state “(HS1): hot

water could be touched by human users”. Moreover, the hazard state “(HS1)” is

characterized the AND composition of two states, “(HS1-1): water temperature

is very high”, AND “(HS1-2): water could be touched”. In this example, “HS1-

1” and “HS1-2” can be further decomposed into sub-states. For “HS1-1”, it

is characterized the OR composition of “(HS1-1-1): the kettle is in the boiling

mode”, OR “(HS1-1-2): the temperature setting is above 60”. For “HS1-2”, it

is characterized the AND composition of “(HS1-2-1): the lid is opened”, AND

“(HS1-2-2): water is in the kettle”. HS1-1-1, HS1-1-2, HS1-2-1 and HS1-2-2 are

atomic hazardous states.

The purpose of Level 2 is to map the hazard context into concrete causes in

the HNS currently focused on. In this level, we can see a condition under which

the hazard context is realized (in the natural language).
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(C) Level3: Object Attribute Level

This level encodes every atomic hazardous state defined in Level 2, in a formal

condition over attributes of a HNS object. Since each hazardous state is somehow

conceptual representation, this level transforms the state into rigorous expression

in the HNS specification.

In Figure 4.2, a round-box node represents a condition over attributes of

ElectricKettle. For instance, the atomic hazardous state HS1-1-1 is encoded

by an expression mode==BOILING, HS1-1-2 is encoded by an expression tem-

perature > 60. and HS1-2-1 is encoded by an express lid==OPEN. Based on the

function specification of our electrickettle, we note there is not corresponding

attribute or function to manage the atomic hazardous state HS1-2-2. So we can

not translate it to the level3. For this case, it means that the design of this sys-

tem can not capture this hazard state automatically. This hazard state should

be captured by human users.

In this level, the hazard context can be captured in terms of as concrete

attribute values of the HNS objects.

(D) Level4: Object Method Level

Finally, this level identifies object methods that can trigger the hazard context.

More specifically, for each attribute condition cond in Level 3, we find methods

m1, m2, ..., mr that can make cond true. These methods can be easily identified by

investigating post-condition of the methods defined in given HNS specifications.

The purpose of this level is to clarify operations that must be anticipated for the

safety assurance.

In Figure 4.2, a node with brackets represents a method of ElectricKettle

that makes a certain attribute condition true. For instance, we can see that ex-
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ecuting setMode(BOILING) causes a condition mode==BOILING, executing set-

Temperature(temp > 60) causes a condition temperature > 60, executing openLid()

causes a condition lid==OPEN, as specified in the specification in Figure 2.6, and

that these execution would be one factor causing scald.

3.2 Constructing HNS-HAM

The HNS-HAM is constructed by the following procedure. Note in the following

that a HNS-HAM is constructed for every pair of a hazard context hc and a given

specification spec.

Step 1 (Definition of Hazard Contexts): Enumerate any hazard contexts

that might occur in the given HNS. Since this step requires no technical aspect

of the HNS specifications, any stakeholders can join the analysis.

Step 2 (Elaboration of Hazard States): Pick up specification spec from

ASpec (or SSpec). For each hazard context hc, characterize hc by some haz-

ardous states within the object of spec. Then, decompose each hazardous state

into sub-states in a goal-oriented fashion until all atomic states are obtained,

which completes Level 2. Step 2 is the most important step that determines the

quality of the HNS-HAM. Participation of experts in safety engineering would be

encouraged to improve the completeness.

Step 3 (Mapping into Attributes Conditions): Encode each atomic haz-

ardous state hs by a condition over object attributes based on spec. This con-

structs Level 3. If there is no attribute corresponding to hs, check if hs can be

further decomposed. If hs is really atomic, then revise spec.

Step 4 (Obtaining Methods): For each attribute condition cond, find methods

in spec that make cond true, by consulting the post-conditions of the methods.
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3.3 Deriving Safety Properties with HNS-HAM

Suppose that a HNS-HAM ham(o, hc) is constructed with respect to a HNS object

o (defined by spec) and a hazard context hc. Now we derive the safety properties

that must be conformed by o to prevent hc from occurring. For this, we use

Levels 1 and 2 of ham(o, hc), extensively.

According to Levels 1 and 2 of ham(o, hc), hc is characterized by a logical

formula fhc consisting of atomic hazardous states. If fhc holds, then the hazard

hc is realized. Conversely, to prevent hc from occurring, we have to assure ¬fhc

for all the time. Thus, we want to derive the safety properties as a set of rules

R = {r1, r2, ..., rn}, interpreted as a conjunction ¬fhc = r1 ∧ r2 ∧ ... ∧ rn. Using

the clausal normal form [39] in the classical logic programming, we can obtain

such a set R = {r1, ..., rn} that ri = (P1 ∧ ... ∧ Pm) → (Q1 ∨ ... ∨ Qn), where Px

and Qy are literals.

Based on the idea, we derive the safety properties from a given HNS-HAM as

follows.

Input: a HNS-HAM ham(o, hc) constructed for a HNS object o and a hazard

context hc.

Step 1: From Levels 1 and 2 of ham(o, hc), derive a logical formula fhc =

f(hs1, ..., hsl) characterizing hc by atomic hazardous states hsi (1 ≤ i ≤ l).

Step 2: Calculate ¬fhc.

Step 3: Convert ¬fhc into the clausal normal form R = {r1, ..., rn}.

Step 4: Define each ri as a safety property.

Let us derive safety properties for ElectricKettle using the HNS-HAM in

Figure 4.2. According to Level 1 and 2, we get

fHC1 = (HS1-1-1 ∨ HS1-1-2) ∧ HS1-2-1
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Making a negation, and applying the De Morgan’s and distribution lows, we

obtain

¬fHC1 = ¬HS1-1-1 ∧¬ HS1-1-2 ∨¬ HS1-2-1

= (HS1-1-1 → ¬ HS1-2-1 ) ∧ (HS1-1-2 → ¬ HS1-2-1) ∧

(HS1-2-1 → ¬ HS1-1-1) ∧ (HS1-2-1 → ¬ HS1-1-2)

Thus, we derived the following four safety properties for ElectricKettle to

prevent the scald from occurring.

(P1) HS1-1-1 → ¬ HS1-2-1: When the kettle is in the boiling mode, the lid must

not be opened.

(P2) HS1-1-2 → ¬ HS1-2-1: When the setting temperature is higher than 60, the

lid must not be opened.

(P3) HS1-2-1 → ¬ HS1-1-1: When the lid is opened, the kettle must not be in

the boiling mode.

(P4) HS1-2-1 → ¬ HS1-1-2: When the lid is opened, the temperature setting

must be below 60.

All of the above properties are quite reasonable as the safety instructions of

an electric kettle. Note that the properties P1-P4 are all local safety properties,

since they are closed within a single HNS appliance (i.e., Electric Kettle).

3.4 Updating HNS Specifications with Derived Safety Prop-

erties

Based on the safety properties derived, we update the original specification so

that the safety properties are reflected. To achieve this, we use Levels 3 and 4 of

HNS-HAM extensively. Each safety property is a condition over atomic hazardous

states, and Level 3 specifies the correspondence between the atomic states and
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the object attributes of the model. So each safety property can be encoded by a

condition using attributes.

An encoded safety property can be specified as an invariant in the specifica-

tion, intended that the property must hold all the time for the safety. Or, if the

safety property is encoded by attributes in the same appliance, we can specify

the property as pre/post-conditions of methods designated by Level 4.

Because “how to update the specification” has a close relation with the pro-

posal for validating safety properties with design by contract. We will give the

details by conducting some examples in the Section 3 of Chapter 5.

3.5 Procedure of Proposed Method

Finally, we sum up the proposed method against the problem formulated in Sec-

tion 2. If the proposed method is applied to a HNS appliance, the local safety

properties are derived (as seen in the kettle example). If applied to a HNS service,

the global safety property can be obtained.

(A) Safety Analysis for HNS Appliance: For each appliance app specified

in spec ∈ ASpec,

1. Define hazard contexts hc1, hc2 ... hcx.

2. For each hazard context hci, construct a HNS-HAM ham(app, hci).

3. Derive safety properties p1, p2, ..., pn from ham(app, hci). Put p1, ..., pn in

LProp.

4. For all pj, update spec. Put the resultant spec′ in Safe-ASpec.

(B) Safety Analysis for HNS Service: For each service ser specified in

spec ∈ SSpec,
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1. Define hazard contexts hc1, hc2 ... hcx.

2. For each hazard context hci, construct a HNS-HAM ham(ser, hci).

3. Derive safety properties p1, p2, ..., pn from ham(ser, hci). Put p1 , ..., pn in

GProp.

4. For all pj, update spec. Put the resultant spec′ in Safe-SSpec.

For each service ser specified in spec ∈ SSpec,

1. Define hazard contexts hc1, hc2 ... hcx.

2. For each hazard context hci, construct a HNS-HAM ham(ser, hci).

3. Derive safety properties p1, p2, ..., pn from ham(ser, hci). Put p1 , ..., pn in

GProp.

4. For all pj, update spec. Put the resultant spec′ in Safe-SSpec.

4. Case study

As a case study, this section demonstrates analysis of CookingPreparationServi

ce (introduced in Chapter 2 and specified in Figure 2.8).

Figure 4.3 shows a HNS-HAM for this case study. As seen in the model, the

HC1 is caused by the hazard state “(HS1): the gas density could be higher than

the dangerous threshold”. For the HS1, it can be further decomposed into two

sub-states: “(HS1-1): gas is in the room” AND “(HS1-2): air is not ventilated”.

The possible causes of HS1-1 and HS1-2 are the “(HS1-1-1): gas system is being

used” and “(HS1-2-1): the ventilator does not work”. Based on the specification

of this service,, the possible causes of HS1-1-1 was characterized by two atomic

sub-state: “(HS1-1-1-1): gas valve is opened” AND “(HS1-1-1-2): fire is on”. The
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possible causes of HS1-2-1 was characterized by two atomic sub-state: “(HS1-2-

1-1): power of ventilator does not turn on” OR “(HS1-2-1-2): wind level of

ventilator is on 0 level”. Since here, each of these states can not be further

decomposed into other sub-states. From the HNS-HAM, we get

fHC1 = (HS1-1-1-1 ∧ HS1-1-1-2) ∧ (HS1-2-1-1 ∨ HS1-2-1-2)

Then, compute the negation

¬fHC1 = ¬ (HS1-1-1-1 ∧ HS1-1-1-2) ∨ (¬ HS1-2-1-1 ∧¬ HS22)

= (HS1-1-1-1 ∧ HS1-1-1-2 → ¬ HS1-2-1-1) ∧

(HS1-1-1-1 ∧ HS1-1-1-2 → ¬ HS1-2-1-2)

From this, we obtain the following four safety logical formulas:

(GP1) HS1-1-1-1 ∧ HS1-1-1-2 → ¬ HS1-2-1-1: When the gas valve is opened and

the fire is on, the ventilator must be turned on.

(GP2) HS1-1-1-1 ∧ HS1-1-1-2 → ¬ HS1-2-1-2: When the gas valve is opened and

the fire is on, the wind level of the ventilator must not be 0.

(GP3) HS1-2-1-1 → ¬ HS11 ∨¬ HS1-1-1-2: When the ventilator power is in off,

the gas valve must not be opened or fire must not be on

(GP4) HS1-2-1-2 → ¬ HS11 ∨¬ HS1-1-1-2: When the ventilator wind level is 0,

the gas valve must not be opened or fire must not be on.

Note that these properties are global safety properties, since these are specified

over different appliances (i.e., the gas valve and the ventilator). Using Level3 and

Level4 of the HNS-HAM, GP1, GP2, GP3 and GP4 are translated as some kinds

of the conditions in the specification. The details about the method for updating

HNS specifications with safety properties will be described in the next Chapter

5

Based on the same way, we build another HNS-HAM for hotWaterSystem

(Figure 4.4) We also have derived some safety properties based on the HNS-HAM

as below:
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Figure 4.4. HNS-HAM for hot water system (scald)
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(P5) HS1-1-1 → ¬ HS1-1-2-1: While the shower valve is opened, the shower water

temperature setting must not be above 40.

(P6) HS1-1-1 → ¬ HS1-1-2-2: While the shower valve is opened, the shower water

temperature must be not changed.

(P7) HS1-1-2-1 → ¬ HS1-1-1: While the shower water temperature setting is

above 40, the shower water valve must not be opened.

(P8) HS1-1-2-2 → ¬ HS1-1-1: While the shower water temperature is changed,

the shower water valve must not be opened.

(P9) HS1-2-2 → ¬ HS1-2-1-1: While the bath valve is opened, the bath water

temperature setting must not be above 60.

(P10) HS1-2-2 → ¬ HS1-2-1-2: While the bath valve is opened, the bath water

temperature must be not changed.

(P11) HS1-2-1-1 → ¬ HS1-2-2: While the bath water temperature setting is

above 60, the bath water valve must not be opened.

(P12) HS1-2-1-2 → ¬ HS1-2-2: While the bath water temperature is changed,

the bath water valve must not be opened.

5. Improving Reusability of HNS-HAM with Haz-

ard Template

The proposed method with the HNS-HAM can derive safety properties for a

given HNS specification, systematically. The drawback is that the construction

of the HNS-HAM poses not a little cost even for a single instance of the HNS. If

appliances and services in the HNS are added or changed, the expensive analysis

47



has to be performed again for the new configuration, basically. To make the

proposed method more practical, it is necessary to save the analysis cost.

To cope with the problem, we try to reuse the existing hazard analysis model

for various instances of the HNS.

The most expensive (but essential) part of the proposed method is in the

construction of Level 2 (i.e., the elaboration of hazardous states, see Step 2 of

Section 3.2). In the HNS-HAM, Level 1 deals with the quite general context,

whereas Level 3 is quite specific to the given HNS instance. Level 2 plays a role

of bridge between general and specific notions, which complicates the issue.

Our key idea is to find, within the Level 2, generic hazardous states that

are independent of specific HNS configuration, and then to extract the generic

portion as hazard template to be reused.

Let us recall the example of the scald in Figure 4.2. If we consider the causes

of the scald from the most general viewpoint, the following condition appears.

(GHS1-1:) The hot water can be touched by a human user.

GHS1-1 is further decomposed into the following two conditions.

(GHS1-1-1:) The temperature of the water is very high.

(GHS1-1-2:) The water is accessible by the user.

These conditions can be represented as a HNS-HAM shown in Figure 4.5. Here

we should note that the model contains general hazardous states independent of

any specific appliances or services. Therefore, we use the model as a hazard

template for analyzing the scald.

For a given HNS specification, the hazard template is refined into concrete

hazardous states according to the specification. Since the template can be reused

48



GHC1
GHS1-1

GHS1-1-1

Level1

General Hazard Context

Level 2

General Hazardous State

Scald

and

Hot water could 

be touched by 
human users

Water temperature 

is high

Water is accessible

GHS1-1-2

Figure 4.5. Hazard template for scald

49



GHC2

GHS2-1

GHS2-1-1

Level1

General Hazard Context

Level 2

General Hazardous State

Gas poising
and

The gas  density 

could be higher 

than the 

dangerous
threshold

Gas is in the air of 

room

The air of room is not 

being ventilated

GHS2-1-2

Figure 4.6. Hazard template for gas poising

50



for any HNS appliances or services, the cost for constructing Level 2 is significantly

reduced.

For instance, the template in Figure 4.5 can be used for constructing the

HNS-HAM in Figure 4.2, whose context is “scald by ElectricKettle”. In the

construction, GHS1-1-1 is realized by concrete states HS1-1 connected by HS1-1-

1 or HS1-1-2, in accordance with the specific context of ElectricKettle. Similarly,

GHS1-1-2 is realized by HS1-2 connected by HS1-2-1 and HS1-2-2. Thus, we can

see that the structure of the hazard template is inherited in the HNS-HAM.

The hazard template of scald in Figure 4.5 can be used for other appliances

and services. For instance, the HNS-HAM in Figure 4.4, whose context is “scald

by the HotWaterSystem”, is quite different from the HNS-HAM for the kettle

(in Figure 4.2). However, it can be seen that both models inherit the common

structure of the template.

Figure 4.6 shows another template for general hazard context gas poising, and

this template is used for constructing the HNS-HAM for “gas poising by using

the cooking preparation service” in the Figure 4.3.

Figure 4.7 shows the relationship between the hazard template and the HNS-

HAM. The hazard template has two levels of abstraction, where a general hazard

context is explained by general hazardous states. Within the template, these

two levels are linked by the “caused-by” relation (denoted by solid arrows), as in

the original HNS-HAM. Then, the Levels 1 and 2 of the template are respectively

linked to those of the HNS-HAM by the “realized-by” relation (depicted by dotted

arrows).

We assume that every hazard template is constructed carefully by experts in

the safety engineering. Once good templates are obtained for various hazard con-

texts, the cost for constructing concrete HNS-HAMs will be significantly reduced.

Moreover, the derived HNS-HAMs will be more reliable and consistent.
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6. Summary

In order to derive reasonable safety properties, this chapter presented a require

ment-engineering approach that can systematically derive the verifiable safety

properties for the HNS. Specifically, we proposed a new hazard analysis model,

called HNS Hazard Analysis Model (HNS-HAM), which consists of four levels of

abstractions. By constructing the HNS-HAM and investigating potential hazards

within the given HNS model, the safety properties can be derived systematically.

To improve the reusability of HNS-HAM, we have also proposed the notion of

the hazard template, which characterizes the generic portion of the HNS-HAM.

For every hazard context, the hazard template is supposed to be constructed once

by the safety experts. The template can be reused for various kinds of the HNS

objects for the common hazard context. The reusable templates make it possible

to save the analysis cost and improve the quality of the HNS-HAM.

By using the proposed requirement-engineering approach, the potential risks

leading to the hazard are analyzed systematically. As a result, the safety prop-

erties and their responsible HNS objects are identified. This provides the strong

rationale of the safety of the HNS.

To evaluate the effectiveness of the proposed method, we have shown the case

study with some practical appliances and services. We have derived 12 local safety

properties for ElecricKettle and HotWaterSystem, 4 global safety properties for

CookingPreparationService from these HNS-HAM models. It was shown that

the derived safety properties are reasonable and consistent.
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7. Related Work

For the safety requirement analysis of safety critical systems, such as, aerospace

systems and nuclear plants, several proposal have been addressed [2,3,27,36]. For

our proposal, the analysis using the HNS-HAM is similar to the fault tree analysis

(FTA) [42]. However, compared to the conventional fault tree, the HNS-HAM has

the four level of abstractions customized for the HNS model. Also, our approach

is not applied to accidents that were already happened, which is different from

the general FTA.

Our idea of safety analysis in a goal-oriented way was originally motivated

by the goal-oriented requirements engineering [20], which tries to find system

requirements in a goal-oriented way. In this area, there is also a language called

GRL [10] for the goal-oriented requirement analysis. Basically they are usually

applied in the requirements stage where no design specification is developed yet.

On the other hand, our problem setting is to find the non-functional requirements

(i.e., safety), in the design and validation phase, assuming that the functional

specifications of the HNS are available.
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Chapter 5

Validating Safety Properties with

Design by Contract

1. Introduction

In Chapter 4, we have presented a requirement engineering approach for deriving

safety properties in the domain of the home network system. These derived safety

properties can be descried by nature language. Once the safety properties were

derived, the safety requirement specification of HNS can be updated based on

them. These updated HNS specification with considering the safety issues can

give some guidelines for designer to consider “how to design a safe HNS integrated

service”.

For a HNS, as we know, it consists of multiple stakeholders. In developing and

providing an HNS integrated service, each stakeholder should obey the derived

safety properties for guaranteeing the safety of HNS integrated service. Then

two issues arise, for a developed HNS, how can we make clarify “who should be

responsible for these derived safety properties ? ” and “whether did the developers
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obey these derived safety properties or not ? ”. Here, we note that making

the above two questions clear is a very important step of our proposal in this

dissertation.

In order to solute this issue, we will propose a framework for validating the

derived safety properties in the implementation in this chapter. Specifically, we

employ the technique of Design by Contract [29] with JML (Java Modeling Lan-

guage) [16, 17]. The derived safety properties are represented as JML contracts

and embedded in Java source code of the appliance, the service and the home

objects, the derived safety properties are validated through testing using related

testing tools.

2. Exploiting Design by Contract for Safety Val-

idation of HNS

The safety validation problem has been formulated in the Definition 6 of the

Section 3 in Chapter 3. We assume that the given HNS and integrated service

are implemented based on the object-oriented model presented in the Chapter 2.

As seen in Chapter 2, a HNS consists of many heterogeneous objects, and the

safety properties defined over the objects are given by multiple stakeholders. So,

when a safety violation occurs in an object, say obj, it is not always easy to prove

which stakeholder is to be blamed for the accident. To do this rigorously, the

consumer and the provider of obj must agree with mutual responsibility before

obj is used. This motivated us to describe every safety property as a contract

to be fulfilled between the consumer and the provider of any HNS object. To

implement this, we borrow a software design strategy called Design by Contract

(DbC, for short) [29].
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2.1 Design by Contract

Design by Contract is an approach to designing computer software. It prescribes

that software designers should define precise verifiable interface specifications for

software components based on some requirement of the system.

The key idea of DbC is that a software system can be seen as a set of commu-

nicating components (or entities) which have obligations to other entities based

upon formalized rules between them. The specification of software should be

created for each object as “contract” before the software is coded. Program ex-

ecution is then viewed as the interaction between the various modules as bound

by these contracts [1]. There are three kinds of contracts in the DbC.

Pre-Condition: A pre-condition of a method m is a condition that must be

satisfied before executing m, which characterizes a premise of m.

Post-Condition: A post-condition of a method m is a condition that must be

satisfied after executing m, which characterizes a consequence of m.

Class Invariant: A class invariant of a class c is a condition that must be guar-

anteed (i.e., kept unchanged) no matter which methods in c are executed.

In a human contract case, contracts are written between two parts: the sup-

plier and the client. For the client part, the contract means the client should

accept some obligations. The same ideas can apply to software design. In this

case, a contract governs the relations between the method (supplier) and any

potential caller (client). In our proposal, we consider this kind of contract as

pre-conditions. For the supplier part, the contract performs some task of the

supplier for the client. Each party expects some benefits from the contract, and

accepts some obligations in return. In our proposal, we consider this contract as
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post-conditions. At last, if the contract should be followed by both supplier and

client, we considered this contract as class invariant conditions in our proposal.

2.2 Key Idea: Using Design by Contract

The key idea of our method for validating the safety properties is to cope with

the safety validation problem by first describing LocalProp(s), GlobalProp(s) and

EnvProp as the DbC contracts, and then embedding them into the proposed object-

oriented model.

For a given program, the DbC describes properties, conditions and invariants

as a set of contracts between calling and callee objects. The contracts are verified

during the runtime of the program under testing. During the execution, if a

contract is broken, an exception is thrown or an error is reported. Thus, if we

could successfully represent the safety properties as DbC contracts among the

HNS objects, then the safety validation problem can be reduced to the testing of

the HNS implementations.

Here, we should note that our research just considers the safety issues of given

HNS. In our validation approach, we suppose that the given HNS model has been

already verified for satisfying the functional requirement in another approach.

3. Guidelines for Describing Safety Properties as

DbC Contracts

Based on the key idea, to implement the validation of safety properties, the first

step is describing the derived safety properties as DbC contracts and embedding

them in the object. This motivated us to consider “(A) how to choose the type of

contract for each safety property”, and “(B) how to choose an object for embedding
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each contract”.

3.1 Choosing the Type of Contract for Each Safety Prop-

erty

For choosing the type of contract for each safety property, we first need to consider

which type of the DbC contracts is appropriate for representing a given safety

property. For deriving the safety properties from the HNS-HAM (see Chapter 4),

each safety property can be specified as an invariant in the specification, intended

that the property must hold all the time for the safety. Or, if the safety property

is encoded by attributes in the same appliance, we can specify the property as

pre/post-conditions of methods designated by Level 4 of HNS-HAM.

By definition, a pre-condition characterizes a premise of an API m. Therefore,

we represent any safety property that must be satisfied by the consumer side of m

as a pre-condition. On the other hand, a post-condition characterizes a conclusion

of m. We describe any safety property to be guaranteed by the provider side of

m in a post-condition. For a safety property that must hold globally without

depending on any specific APIs, we use the class invariant to represent it.

3.2 Choosing an Object for Each Contract

For choosing an object for each contract, we must consider carefully which ob-

ject (Appliance, Service, or Home) should be responsible for LocalProp(s),

GlobalProp(s) and EnvProp. We suppose that a safety property p is repre-

sented as a DbC contract cp. We then have to choose an appropriate object

(class) in Figure 2.3 where cp is embedded. For this, we propose the following

criteria based on the property type:

• If p ∈ LocalProp(s), then embed cp in Appliance or its sub-classes.
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• If p ∈ GlobalProp(s), then embed cp in Service or its sub-classes.

• If p ∈ EnvProp, then embed cp in Home or its sub-classes.

Moreover, for choosing the specific attribute and method for each contract, we

use level 3 and level 4 of HNS-HAM (see Chapter 4) extensively. In HNS-HAM,

each safety property is a condition over atomic hazardous states, and Level 3

specifies the correspondence between the atomic states and the object attributes

of the model. So each safety property can be encoded by a condition using

attributes.

The above criteria is quite reasonable, considering the definition of each type

of safety properties and the role of each class in the object-oriented model.

3.3 Examples for Describing Safety Properties

Based on the guideline above, let us describe some contracts for the safety prop-

erties described in Chapter 4.

(A) Describing Local Safety Properties

Since the local safety properties are defined for individual appliance, Appliance

or its sub classes should be responsible for LocalProp(s). For instance, let us

update the specification of ElectricKettle in Figure 2.6, based on the HNS-

HAM in Figure 4.2 and the safety properties P1 to P4 derived in Section 3.3 of

Chapter 4.

First we take (P1): When the kettle is in the boiling mode, the lid must not

be opened. According to Level 3 and Level 4 of the HNS-HAM, (P1) is encoded

to the condition mode==BOILING => !(lid==OPEN) over object attributes mode

and object method setMode(md). To satisfy the above invariant, we can refine

the specification of method setMode(md) so as to check the lid status.
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setMode(md) {

PRE: power==ON ;

POST: mode==md && mode == "BOILING" => lid != "OPEN";

}

The updated post-condition says that setMode(md) can not set the mode to

“BOILING” when the lid is “OPEN”. Similarly, we can update the specifications

of ElectricKettle and HotWaterSystem for all the safety properties which were

derived in Chapter 4 (see Table 5.1 and Table 5.2).

(B) Describing Global Safety Properties

The global safety properties depend on the contents of each integrated service.

Hence, it is reasonable to specify GlobalProp(s) as DbC contracts in Service or

its sub classes. For example, the global safety property “GP1: When the gas valve

is opened and fire is on, the ventilator must be turned on”, which was derived in

Section 3.3 of Chapter 4, can be encoded as the following contract embedded in

CookingPrepatationService:

Contractor: CookingPreparationService class

Class Invariant: gas.valve == "OPEN" && gas.fire == "OFF"

=> vent.power != "OFF"

The above contract prescribes a condition that at any time when the gas valve is

opened and fire is on, the ventilator must be turned on. This contract is a class

invariant, which must be guaranteed no matter what operations are executed

within the integrated service.

Similarly, we can update the specifications for GP2, GP3 and GP4 as Table

5.3.
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(C) Describing Environment Safety Properties

Since the environment safety properties are derived from residential issues, includ-

ing the house manual, the emergency procedure, community rules and policies,

etc. Home class should be in charge of EnvProp().

For instance, we considered that the environment safety property which is

described in Table 5.4 are required for our HNS. The EnvProp1 can be encoded

as follows:

Contractor: Home class

Class Invariant: home.currentEnvironment.consumption <= 30

The attribute consumption is supposed to return the current total consumption

of electricity, which is computed from the appliances that are being turned on.

This contract is also an invariant, which must be assured whatever services or

appliances are operated.

4. Implementing Safety Validation

Based on the discussion above, we implement a method of safety validation,

especially for the Java implementations of the HNS.

Figure 5.2 depicts the overview of the proposed method. The method mainly

consists of the following three steps.

Step1: Describe the DbC contracts in JML.

Step2: Generate test cases.

Step3: Run the test.
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// Contract LocalProp1: when the kettle is in the boiling mode, the lid must not be opened.

/*@ public behavior

@ requires power.equals("ON");

@ assignable mode;

@ ensures mode == wm && power == \old(power);

@ ensures mode.equals("BOILING") ==> !(lid.equals("OPEN")); //Contract LocalProp1

@*/

public void setMode(String wm){

// Implementation

}

// Contract LocalProp2: when the setting temperature is higher than 60, the lid must not be opened.

/*@ public behavior

@ requires power.equals("ON");

@ assignable temperature;

@ ensures power == \old(power) && temperature == tem;

@ ensures (temperature > 60) ==> !(lid.equals("OPEN")); //Contract LocalProp2

@*/

public void setTemperature(int tem){

// Implementation

}

// Contract LocalProp3: when the lid is opened, the kettle must not be in the boiling mode.

// Contract LocalProp4: when the lid is opened, the temperature setting must be below 60.

/*@ public behavior

@ requires power.equals("ON");

@ requires !(mode.equals("BOILING")); //Contract LocalProp3

@ requires temperature < 60; //Contract LocalProp4

@ assignable power, isWorking, lid;

@ ensures power == \old(power) && isWorking == \old(isWorking) && lid.equals("OPEN");

@*/

public void openLid(){

// Implementation

}

Figure 5.1. ElectricKettle.java with JML annotations
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4.1 Describing DbC Contracts in JML (Step1)

The proposed method extensively uses the JML (Java Modeling Language) [17] to

implement the DbC-based safety validation. The JML is a specification language

that can be used to describe the DbC contracts in the form of Java comments,

called JML annotations. [4, 16,17]

In Step 1, for each safety property p given, we represent DbC contract cp

in the JML annotation, and embed cp to the Java source code according to the

guideline in Section 3.

Figure 5.1 shows the JML annotation describing contracts for the property

LocalProp of ElectricKettle (see Table 5.1). The contracts are described in com-

ment lines above method setMode(String wm), setTemperature(int tm) and

openLid(). The line starting with requires (or ensures) represents the pre-

condition (or post-condition, respectively). The word spec public is for exporting

the attribute to be used in the JML annotation. Just for convenience, we describe

lid and mode as simple string variables.

As shown in Figure 5.2, the source code with the JML annotations is then com-

piled by the JML compiler into instrumented bytecode, implementing assertion-

based checking routines of the DbC contracts.

Note that one might want to encode DbC contracts directly in the source

code using the Java assertions. However, the great advantage of using JML

rather than Java assertions is that we can completely separate the contracts from

the implementation. Thus, the safety properties can be specified in the code as

comment lines, without modifying the original code.
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Figure 5.2. Proposed safety validation method
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4.2 Generating Test Cases (Step2)

The next step is to construct test cases used for safety validation. In real life,

integrated services can be activated under various situations (i.e., states) in the

HNS. For instance, the CookingPreparationService may be activated when all

the appliances are off. Or, it may be activated when the ventilator is already

on and the lid of the kettle is initially opened. CoolingPreparationService

must be implemented so that the service behaves safely, in whatever state it is

activated. Therefore, for a given integrated service s, we generate test cases

activating s under all possible states.

To generate such test cases systematically and efficiently, we use a combi-

natorial test generation tool, called TOBIAS [5, 6, 18]. TOBIAS allows us to

define abstract test patterns, in which similar operations and parameter values

are managed by sets, called groups. The groups are combined algebraically based

on regular expressions, to construct more sophisticated test schemas. The test

schemas are then translated by TOBIAS into a large set of executable test cases

for JUnit [15], where all elements in each group are unfolded.

Now we present our key idea. Suppose that s is a given integrated service

and that we want to validate a method s.m(). Then, we construct the following

TOBIAS test schema T :

T ::= Init ; AppOpn ; s.m()

In the schema, ; represents a sequential operator. Init represents a group

containing initialization operations (typically constructors of HNS objects, or

settings of environment parameters). AppOp is a group containing any appli-

ance operations (methods). AppOpn means the n-time product of AppOp, which

characterizes all possible sequences m1; m2; ...; mn (mi ∈ AppOp). Thus, the part
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“Init; AppOpn” is a preamble to generate possible states before s.m() is activated.

Note that the preamble can also be used as test schemas of individual appliances.

Figure 5.3 shows an example of TOBIAS schemas, which define the pream-

ble using operations of ElectricKettle In the figure, HomeInit creates a Home

object. OneKettleOperation contains 8 methods for operating the kettle in

home from outside (see Chapter 2). ThreeKettleOperaions is 3-time product of

OneKettleOperation. Concatenating HomeInit and ThreeKettleOperations

yields a preamble of the proposed method. Note that the preamble can be used

to test ElectricKettle itself, we name the schema TestAllKettleOperations,

from which 512 (= 8 × 8 × 8) test cases will be unfolded.

By using the same way, we created another example of TOBIAS schemas (Fig-

ure 5.4) to test operations of HotWaterSystem. Because the OneHotWaterSyst

emOperation contains 8 methods for operating in home from outside, the schema

TestAllHotWaterSystem Operations also created 512 (= 8 × 8 × 8) test cases

for testing. For integrated service of HNS, we created three TOBIAS schemas for

testing. (see Figure 5.5 and Figure 5.6.

The first schema TestCookingPreparationServiceWRTkettleOP of Figure

5.5 tests the activation of CookingPreparationService by using ThreeKettleOp

erations as its preamble.

The second schema TestBathPreparationServiceWRThotWaterSystemOP of

Figure 5.5 tests the activation of BathPreparationService by using ThreeHotWat

erSystemOperations as its preamble.

The third schema TestEachServiceWRTenvironmentSettings of Figure 5.6

deals with one activation of integrated service with initializing Home with varying

environment parameters. For this, the safety properties concerning the environ-

ment can be validated thoroughly.

The test schemas are then translated by TOBIAS into JUnit test classes. For
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Group HomeInit ::= { begin seq Home home := new Home() end seq };

Group OneKettleOperation ::= {

begin seq home.OnKettle() end seq ,

begin seq home.SwitchOnKettle() end seq ,

begin seq home.SwitchOffKettle() end seq ,

begin seq home.CloseLidKettle() end seq ,

begin seq home.OpenLidKettle() end seq ,

begin seq home.SetWaterTemperatureKettle(98 ) end seq ,

begin seq home.SetModeKettle("BOILING" ) end seq ,

begin seq home.OffKettle() end seq };

Group ThreeKettleOperations ::= OneKettleOperation ^3..3;

Group TestAllKettleOperations ::= { begin seq HomeInit ; ThreeKettleOperations end seq }

Figure 5.3. TOBIAS test schemas for electric kettle

Group HomeInit ::= { begin seq Home home := new Home() end seq };

Group OneHotWaterSystemOperation ::= {

begin seq home.OnHotWaterSystem() end seq ,

begin seq home.OffHotWaterSystem() end seq ,

begin seq home.SetBathTemWaterSystem(98 ) end seq ,

begin seq home.SetShowerTemWaterSystem(80 ) end seq ,

begin seq home.OpenShowerHotWaterSystem() end seq ,

begin seq home.CloseShowerHotWaterSystem() end seq ,

begin seq home.OpenBathHotWaterSystem() end seq ,

begin seq home.CloseBathHotWaterSystem() end seq };

Group ThreeHotWaterSystemOperations::= OneHotWaterSystemOperation ^3..3;

Group TestAllHotWaterSystemOperations::=

{ begin seq HomeInit ; ThreeHotWaterSystemOperations end seq }

Figure 5.4. TOBIAS test schemas for hot water system
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Group TestCookingPreparationServiceWRTkettleOp ::= {

begin seq

HomeInit; ThreeKettleOperations;home.CookingPreparationServiceActivation()

end seq }

Group TestBathPreparationServiceWRThotWaterSystemOp ::= {

begin seq

HomeInit; ThreeHotWaterSystemOperations;home.BathPreparationServiceActivation()

end seq }

Figure 5.5. TOBIAS test schemas for service with appliance operations

Group OneActivationForEachService ::= {

begin seq home.CookingPreparationServiceActivation() end seq ,

begin seq home.BathPreparationServiceActivation() end seq };

Group TestEachServiceWRTevironmentSettings ::= {

begin seq Home home := new Home(temperatureValues,12,10,8,0 ) ;

OneActivationForEachService

end seq ,

begin seq Home home := new Home(21,brightnessValues,10,8,0 ) ;

OneActivationForEachService

end seq ,

begin seq Home home := new Home(22,1,volumeValues,9,15 ) ;

OneActivationForEachService

end seq ,

begin seq Home home := new Home(17,20,5,timeValues,13 ) ;

OneActivationForEachService

end seq ,

begin seq Home home := new Home(19,2,15,11,powerConsuptionValues ) ;

OneActivationForEachService

end seq }

Figure 5.6. TOBIAS test schemas for service with environment settings
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instance, from the group TestEachServiceWRTenvironmentSettings, the total

66 JUnit tests 1 have been automatically generated within just 0.078 sec. (in a

mid-class PC, Pentium-M 1GHz, 760MB). Thus, using TOBIAS we can manage

a large number of test cases in a very compact form, which significantly reduces

the cost of test case generation.

4.3 Running Test (Step3)

In this step, we conduct the test using the JUnit testing framework for Java.

According to the test cases obtained in Step 2, JUnit automatically runs the in-

strumented bytecode under test. During the execution, if any contract is broken,

then a JML exception is thrown to JUnit. Then, we can get a report about which

safety property is violated. Thus we can solve the safety validation problem in

Definition Section 2.4 of Chapter 3.

5. Case Study

To evaluate the proposed method, we have conducted safety validation for a

practical HNS and integrated services.

5.1 Preparations

For the experiment, we have prepared Java implementations of 10 appliances and

2 integrated services, as follows:

Appliances: AirConditioner, ElectricKettle, GasSystem, Light, Ventilator.

DVDPlayer, Door, SoundSystem, TV, Curtain.

1 OneActivationForEachService contained 2 integrated services.
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Integrated Services: CookingPreparationService, BathPreparationService

Although the appliance classes behave as virtual appliances without hardware

devices, their source code has been partially taken from the service layer of a real

HNS [31] under operation in our laboratory.

In the source code, we then inserted the total 209 JML annotations (17 pre-

conditions, 150 post-conditions, and 42 invariants). Table 5.1 - 5.4 show a part of

safety properties which will be validated in our experiment. The experiment has

been performed in a PC with Pentium-M 1GHz, 760MB RAM, Windows XP Pro,

J2SDK 1.4.2, JUnit 3.8.1, JML tools release 5.3 and TOBIAS Eclipse plug-in.

5.2 Experiment

The safety validation experiment has been conducted based on incremental test-

ing. That is, taking one TOBIAS test schema at a time, we ran the generated

test cases. If the proposed method detected any safety violation, we fixed the

related faults in the source code, and then tested the revised version again. If

all the test cases were passed, we took the next test schema to validate. Thus,

the HNS implementations have been incrementally updated to a safer version for

each run of testing.

5.3 Results

Table 5.5 summarizes the validation statistics of each test schema. The table

contains the total number of test cases generated from the schema, the number

of test cases failed, the time taken for testing, and the safety properties violated

during the test. The table shows only some interesting results. For each safety

violation detected, we explain the cause of the violation as follows.
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(A) Violation of LocalProp1, LocalProp2, LocalProp3 and LocalProp4

The test cases from testAllKettleOperations revealed violations of local safety

properties LocalProp1 LocalProp2 LocalProp3 and LocalProp4 within the orig-

inal implementation of ElectricKettle class.

First, the violation of LocalProp1 and LocalProp2 were caused by a omis-

sion in methods kettle.setMode(wm) and kettle.setTemperature(tm), which

sometimes bypassed the checking of the lid status. Hence in some sequences, the

kettle entered boiling mode or set the water temperature in high degree (in our

test case, the water temperature was set in 98 degree) without checking if the lid

was surely closed.

The violation of LocalProp3 and LocalProp4 caused by a logical error among

setMode(wm), setTemperature(tm) and openLid() method. Therefore, a se-

quence such as kettle.setTemperature(98); kettle.openLid() (LocalProp3)

or kettle.setMode("BOILING"); kettle.openLid() (LocalProp4) lead to an

unsafe situation where the lid is opened during the boiling mode or setting the

water temperature in high degree.

(B) Violation of LocalProp5, LocalProp7, LocalProp9 and LocalProp11

The test cases from testAllHotWaterSystemOperations revealed violations of

local safety properties LocalProp5, LocalProp7, LocalProp9 and LocalProp11

within the implementation of HotWaterSystem class.

The violation of LocalProp5 and LocalProp9 were due to the omission of

checking the water temperature in the methods openShower() and openBath.

Therefore when the bathWaterTemperature and the showerWaterTemperature

were set above the limited temperature, openShower() and openBath lead to an

unsafe situation.
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The violation of LocalProp7 and LocalProp11 were due to the omission of

checking the water valve status when we executed setTemperatureforBath()

and setTemperatureforShower(). Therefore, the unsafe operation for changing

water temperature under the valve opening status was not forbade.

According to the test result, we fixed the errors in HotWaterSystem class

before proceeding to the next test schema.

(C) Violation of GlobalProp2

In the validation of testCookingWRTKettleOp, the proposed method detected the

violation of the global safety property GlobalProp2 within the CookingPreparati

onService class. The code inspection revealed that the invocation of ventilator.

setVentilatorLevel() has a mistake in construct method of the service (the

wind level was set in 0). Hence, the ventilator did not start the fan although the

power of the ventilator was on.

(D) Violation of EnvProp1

We have found that the environment safety property EnvProp1 was violated

in some test cases from TestEachServiceWRTevironmentSettings. When the

total power consumption was close to maximum, if CookingPreparationService

or BathPreparationService was activated, the consumption exceeded 35A. To

assure environment safety, the home should have a mechanism that estimates the

total consumption before every integrated service is activated.

6. Summary

In this chapter, we have proposed a comprehensive framework for describing the

derived safety properties and validating the safety of HNS integrated services in
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the implementation. Moreover, we believe that our key idea of introducing DbC

for safety validation fits well the nature of HNS.

Thanks to JML, we have developed a safety validation method that can be

directly applied to implementations written in Java. By using powerful tools

such as JUnit and TOBIAS, a major portion of the validation can be automated.

As demonstrated in the case study, the time taken for each test was very short.

Thus, the proposed method is quite promising for many other practical settings.

The limitation of this proposal is that complex TOBIAS schemas may yield

the combinatorial explosion of test cases. As a result, TOBIAS generates so many

test cases that the Java VM cannot accept them for execution. For such complex

schemas, we need a technique to prune irrelevant test cases.

7. Related Work

Despite safety issues of HNS importance, the safety issues have not been well

studied yet in the ubiquitous computing area. As far as we know there exists

only a small amount of research work related to our contribution.

Pattara et al. [19] proposed a method that verifies the functional properties

of HNS integrated services based on model checking. A model of services and

appliances was proposed and expressed in the SMV language. Expected proper-

ties of the services were also expressed and the SMV model-checker was used to

prove that the services satisfy the properties. The method gives an automatic and

complete proof if given properties hold against an abstract HNS model defined

in a finite state space. However, this approach appears to be not sufficient for at

least four reasons [6].

First, the use of a model-checker greatly increases confidence in the model.

But the model was not derived from the real system. Abstraction and/or mis-
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takes in the model or the incorrect property expression may lead to misleading

conclusions.

Second, HNS are supposed to ease the development of new services and/or

user applications. It is not reasonable to ask a user to translate the applications

to SMV and prove them. At least, an automatic translation would be necessary.

Third, it should be noticed that appliances have some influence on the en-

vironment. Switching on (resp. off) an appliance increases (resp. decreases)

the power consumption. It may also have an influence on the temperature, the

brightness, the sound level in the house. Modification of these parameters can in-

fluence the behavior of the whole system. For instance, temperature is measured

by the air-conditioner to determine if it should heat or cool the air with respect

to the required temperature. Relations between appliances and environment are

very difficult to model.

Finally, for HNS, the stakeholders just provide APIs of each object for cre-

ating integrated service, so the safety validation of HNS is just wanted to be

implemented at implementation level.

Yang et al. [44] proposed a programming model that identifies safe and unsafe

contexts in a smart home. Using standard ontology, the model builds a context

graph enumerating all possible states, where each state is marked as desirable,

transitional, or impermissible. Since the graph is constructed to quite a higher

level of abstraction, it cannot be applied directly to the safety validation problem

at the implementation level.

We believe that our proposal has substantial value for validating the safety of

HNS.
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Table 5.1. Local safety properties of electric kettle

LocalProp1: When the kettle is in the boiling mode, the lid must not be opened (Electric Kettle).

Contractor: setMode(wm)

Condition type: Post-Condition

Specification : mode == “BOILING” => lid != “OPEN”

LocalProp2: When the setting temperature is higher than 60, the lid must not be opened (Electric

Kettle).

Contractor : setTemperature(tm)

Condition type: Post-Condition

Specification : temperature > 60 => lid != “OPEN”

LocalProp3: When the lid is opened, the kettle must not be in the boiling mode (Electric Kettle).

Contractor : openLid()

Condition type: Pre-Condition

Specification : mode != “BOILING”

LocalProp4: When lid is opened, the temperature setting must below 60 (Electric Kettle).

Contractor : openLid()

Condition type: Pre-Condition

Specification : temperature <= 60
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Table 5.2. Local safety properties of hot water system

LocalProp5: While the shower valve is opened, the shower water temperature setting must not be above

40 (Hot Water System).

Target Object : openShower()

Condition type: Post-Condition

Specification : showerValve == “OPEN” => showerWaterTemperature <= 40

LocalProp6: While the shower valve is opened, the shower water temperature must be not changed

(Hot Water System).

Target Object : openShower()

Condition type: Post-Condition

Specification : showerWaterTemperature == old(showerWaterTemperature)

LocalProp7: While the shower water temperature setting is above 40, the shower water valve must not

be opened (Hot Water System).

Target Object : setTemperatureforShower()

Condition type: Pre-Condition

Specification : tem > 40 => showerValve != “OPEN”

LocalProp8: While the shower water temperature is changed, the shower water valve must not be

opened (Hot Water System).

Target Object : setTemperatureforShower(tm)

Condition type: Pre-Condition

Specification : showerValve != “OPEN”

LocalProp9: While the bath valve is opened, the bath water temperature setting must not be above

60 (Hot Water System).

Target Object : openBath()

Condition type: Post-Condition

Specification : bathValve == “OPEN” => bathWaterTemperature < 60

LocalProp10: While the bath valve is opened, the bath water temperature must be not changed (Hot

Water System).

Target Object : openBath()

Condition type: Post-Condition

Specification : bathWaterTemperature == old(bathWaterTemperature)

LocalProp11: While the bath water temperature setting is above 60, the bath water valve must not be

opened (Hot Water System).

Target Object : setTemperatureforBath()

Condition type: Pre-Condition

Specification : tem > 60 => bathValve != “OPEN”

LocalProp12: While the bath water temperature is changed, the bath water valve must not be opened

(Hot Water System).

Target Object : setTemperatureforBath(tm)

Condition type: Pre-Condition

Specification : bathValve != “OPEN”
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Table 5.3. Global safety properties of cooking preparation service

GlobalProp1: When gas valve is opened and fire is on, the ventilator must be turned on (for

cookingPreparationService).

Target Object : CookingPreparationService

Condition type: Invariant Condition

Specification : gas.valve == “OPEN” && gas.fire == “ON” => vent.power == “ON”

GlobalProp2: When gas valve is opened and fire is on, the ventilator wind level must not be 0 (for

cookingPreparationService).

Target Object : CookingPreparationService

Condition type: Invariant Condition

Specification : gas.valve == “OPEN” && gas.fire == “ON” => vent.windLevel !=0

GlobalProp3: When the ventilator power is in off, the gas valve must not be opened or fire must not be

on (for cookingPreparationService).

Target Object : CookingPreparationService

Condition type: Invariant Condition

Specification : vent.power! = “OFF” => (gas.valve != “OPEN” || gas.fire != “ON”)

GlobalProp4: When the ventilator wind level is 0, the gas valve must not be opened or fire must not be

on (for cookingPreparationService).

Target Object : CookingPreparationService

Condition type: Invariant Condition

Specification : vent.windLevel == 0 => (gas.valve != “OPEN” || gas.fire != “ON”)

Table 5.4. Environment safety properties of home

EnvProp1: The total amount of current used simultaneously must not exceed 35A.

Target Object : Home class

Condition type: Invariant Condition

Specification : home.currentEnvironment.getTotalConsumption() <= 35

EnvProp2: Do not make a loud noise or sound after 9 p.m.

Target Object : Home class

Condition type: Invariant Condition

Specification : home.time >= 21 => home.currentEnvironment.voiceVolume <= 80

Table 5.5. Results of safety validation
TOBIAS Test Schemas # of Total TC # of Failed TC Time Elapsed Safety Violation

TestAllKettleOperations 512 397 2.375 sec. LocalProp1, LocalProp2

LocalProp3, LocalProp4

TestAllHotWaterSystemOperations 512 476 2.125 sec. LocalProp5 LocalProp7

LocalProp9, LocalProp11

TestCookingPreparationWRTkettleOp 512 512 2.719 sec. GlobalProp2

TestBathPreparationWRThotWaterSystemOp 512 0 1.469 sec. null

TestEachServiceWRTevironmentSettings 66 4 0.187 sec. EnvProp1
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Chapter 6

Conclusion

1. Achievement

In this dissertation, we have proposed a total framework for characterizing, deriv-

ing and validating the safety properties within the integrated service of emerging

home network system. The primary purpose of the framework is to give a strong

rationale and a systematic method for addressing the safety issues of HNS from

the system specification design stage to the testing stage.

First, we introduced the HNS by giving some examples of the integrated ser-

vices. To clarify the whole structure formed by the HNS objects, we presented an

object-oriented model for HNS. Then to capture the behavior of each HNS object,

we introduced a specification language, which describes the design requirements

of the HNS.

Second, we formalized the safety of the HNS by considering the nature of the

HNS and integrated services. The safety was defined as (1) local safety which is

the safety to be ensured by the safety instructions of individual appliances, (2)

global safety which is specified over multiple appliances as required properties of

an integrated service, and (3) environment safety which is prescribed as residential
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rules in the home and surrounding environment. We also formulated the safety

validation problem based on the safety classification.

Third, in order to derive the correct and complete safety properties, we pro-

posed a requirement-engineering approach for deriving the verifiable safety prop-

erties systematically. The approach is realized by constructing a new hazard

analysis model, called HNS-HAM (HNS Hazard Analysis Model), which investi-

gates potential hazards within the given HNS model. The hazard analysis model

consists of four levels: (Level 1) hazard context, (Level 2) hazardous state, (Level

3) object attribute and (Level 4) object method. The construction of HNS-HAM

yields cause-and-effect chains from the abstract hazard contexts to the concrete

attributes and operations of HNS objects, specified in the given HNS specifica-

tion. In order to enhance the reusability of the HNS-HAM, we have also discussed

a technique using hazard template.

Finally, we proposed a framework that validates the derived safety properties

for the given implementation. The proposed validation method extensively uses

the technique of design by contract (DbC, for short). Specifically, we describe

each safety property as a set of DbC contracts between calling and callee objects.

Then we embed the contracts into the proposed object-oriented model. The

contracts can be verified during the runtime of the program under testing. During

the execution, if a contract is broken, an exception is thrown or an error is

reported. Thus, the safety validation problem can be reduced to the testing

problem of the HNS implementations. To evaluate the proposed method, we also

have conducted a case study for validating the derived safety properties above.

During the validating, several safety property violations were detected.

We believe that the proposed total framework can help the HNS developers

significantly in designing and implementing safe HNS solutions.
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2. Future Directions

We consider that the proposed safety framework is not limited within the HNS

only. It can be applied to the safety issues in various kinds of other ubiquitous and

distributed systems, where every service is implemented by integrating multiple

objects [37]. The typical applications include the building control system [26, 33,

34], the health telematics system [40], and the automotive network system [14,43].

One future direction is to generalize the proposed framework so that it can

be used in a broader domain. Our perspective of the generalization is justified

by the following characteristics of the proposed framework.

(A) The structure of the HNS is not so unique in the ubiquitous domain

The structure of the HNS, where a service is implemented by multiple autonomous

and self-contained objects, is not quite specific to the HNS. It can be seen in

general ubiquitous and service-oriented distributed systems. Thus, we believe

that the proposed object-oriented model can be adapted to other ubiquitous

systems without much effort.

(B) The safety definition and validation methods are general

In such ubiquitous and distributed systems, the safety issues should be addressed

carefully since many stakeholders are involved in developing the system. It is

important to clarify who bears the responsibility of every instance of the safety

issue. For this, the proposed three kinds of safety properties (with the validation

by the DbC) works reasonably. We should note that the emerging ubiquitous

systems are not quite the same as the conventional safety-critical systems, where

all components are tightly coupled to achieve a monolithic and reliable system.
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(C) The hazard templates can be reused in other domains

The idea of using the hazard template, which extracts the system-independent

portion of the hazard analysis, is not limited in the hazard analysis of the HNS.

Once the solid hazard templates are constructed, the templates can be used for

other ubiquitous systems. We need to investigate the framework on how to pre-

pare the solid template for every kind of hazard.

Another future direction is to improve the performance of the proposed method

through more experimental evaluations. Application to the existing HNS imple-

mentation [31] to find the safety risk is also an interesting challenge.

82



Acknowledgements

The research of this dissertation could not have been accomplished without the

collaboration of many other people.

First, I would like to thank my supervisor Professor Ken-ichi Matsumoto,

Graduate School of Information Science, Nara Institute of Science and Tech-

nology. Professor Matsumoto gave me a lot of advice in not only my research

work but also daily life. I would like to thank him for his valuable advice in the

laboratory.

I am also very grateful to the members of my thesis review committee: Pro-

fessor Hiroyuki Seki and Associate Professor Akito Monden for their valuable and

insightful comments.

I would like to sincerely, deeply thank Associate Professor Masahide Naka-

mura, the Graduate School of Engineering at Kobe University, for his professional

advice and technical help, extensive guidance, patience, encouragement and sup-

port through the course of this work. Without his help, I could not have the

opportunity to work in his research group. I would like to thank so much for his

kindness and help in all aspects of my research and daily life.

I would like to thank Associate Professor Lydie du Bousquet, Joseph Fourier

University, Grenoble, France, for her professional advice and technical help,

through the course of this work.

I would like to express my gratitude to all the teachers and students in the

83



software engineering laboratory, and the students who have graduated in the last

two years. It is a pleasant and fruitful experience for me to work with them, and

thank for making a good and friendly research environment.

I would like to thank Professor Soichi Onishi, Graduate School of Informatics,

Okayama University of Science, who was the supervisor of my master’s course.

Professor Onishi gave me a lot of advice in not only my master research but

also daily life during the first two years after I came to Japan. Without his

recommendation, I could not continue doctoral course in Nara Institute of Science

and Technology. I really appreciate his kindness and help during my master’s

period.

Finally, I would like to express my warmest gratitude to my parents, my

wife, my daughter, and my sister for their constant encouragement and generous

remarks.

The research in this dissertation has been supported by the Comprehensive

Development of e-Society Foundation Software program of the Ministry of Educa-

tion, Culture, Sports, Science and Technology, the Ministry of Education, Science,

Sports and Culture, Grant-in-Aid for Young Scientists (B)(No.18700062) and Sci-

entific Research (B) (No.17300007), and JSPS and MAE under the Japan-France

Integrated Action Program (SAKURA).

84



References

[1] A. I. Andronescu and O. Muntean.: Formal Specification of Business Com-

ponents - a Design by Contract Perspective, Proceedings of 6th Inter-

national Conference on Computer Systems and Technologies (CompSys-

Tech’06), Vol.2, pp.1-6, Jun.2006.

[2] K. Allenby and T. Kelly.: Deriving Safety Requirements Using Scenarios,

Proceedings of the 5th International Symposium on Requirements Engineer-

ing (RE’01), pp.228-235, Aug.2001.

[3] J.L. Boulanger, V. Delebarre, S. Natkin and J.P. Ozello.: Deriving Safety

Properties of Critical Software from the System Risk Analysis, Application to

Ground Transportation Systems, Proceedings of 2nd IEEE High-Assurance

Systems Engineering Workshop, pp.228-235, 1997.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. Rustan

M. Leino, and E. Poll.: An Overview of JML Tools and Applications, Inter-

national Journal on Software Tools for Technology Transfer (STTT), Vol.7,

No.3, pp.212-232, Jun.2005.

[5] L. du Bousquet, Y. Ledru, O. Maury, and P. Bontron.: A Case Study in JML-

based Software Validation, Proceedings of 19th IEEE International Confer-

ences on Automated Software Engineering (ASE’04), Linz, pp.294-297, IEEE

Computer Society Press, Sep.2004.

[6] L. du Bousquet, M. Nakamura, B. Yan, and K. Matsumoto.: Using Formal

Methods to Increase Confidence in a Home Network System Implementation,

Case Study, 2007 ISoLA Workshop On Leveraging Applications of Formal

Methods, Verification and Validation (ISOLA 2007), pp.203-214, Dec.2007.

85



[7] C. Damas, B. Lambeau and A. van Lamsweerde.: Scenarios, Goals, and State

Machines: a Win-Win Partnership for Model Synthesis, Proceedings of the

14th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp.197-207, Nov.2006.

[8] Functional Safety and IEC 61508, available from

(www.iec.ch/zone/fsafety/pdf-safe/hld.pdf).

[9] P. Gupta and J. Schumann.: A Tool for Verification and Validation of Neu-

ral Network Based Adaptive Controllers for High Assurance Systems, Pro-

ceedings of 8th IEEE International Symposium on High Assurance Systems

Engineering (HASE’04), pp.277-278, 2004.

[10] Goal-oriented Requirement Language (GRL), available from

(www.cs.toronto.edu/km/GRL/)

[11] International Electrotechnical Commission, Household and Similar Electrical

Appliances — Safety, IEC 60335-1, Sep.2006.

[12] International Electrotechnical Commission, Functional Safety of Electri-

cal/Electronic/Programmable Electronic Safety-related Systems IEC61508,

available from (www.ja.wikipedia.org/wiki/IEC61508).

[13] H. Igaki, M. Nakamura, K. Matsumoto, and M. Aoyama.: Adopting Model-

Driven Development for Integrated Services and Appliances in Home Net-

work Systems, Proceedings of 13th Asia-Pacific Software Engineering Con-

ference (APSEC 2006), pp.45-52, Dec.2006.

[14] K. Itao.: Sensor Network Technology for Realization of Safe and Secure

Driving, Journal of Society of Automotive Engineers of Japan, Vol.61,

No.2(20070201), pp.107-113.

86



[15] JUnit, Testing Resources for Extreme Programming, available from

(www.junit.org/).

[16] The Java Modeling Language (JML), available from

(www.eecs.ucf.edu/ leavens/JML/).

[17] G. T. Leavens and Y. Cheon.: Design by Contract with JML, available from

(www.jmlspecs.org), May.2006.

[18] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron.: Filtering TOBIAS

Combinatorial Test Suites, Proceedings of International Conferences on Fun-

damental Approaches to Software Engineering (ETAPS/FASE’04), LNCS

2984, Springer-Verlag, Mar.2004.

[19] P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Matsumoto, and T. Kikuno.:

Describing and Verifying Integrated Services of Home Network Systems,

Proceedings of 12th Asia-Pacific Software Engineering Conferences (APSEC

2005), pp.549-558, Dec.2005.

[20] E. Letier and A. van Lamsweerde.: Deriving Operational Software Specifica-

tions from System Goals, Proceedings of 10th ACM S1GSOFT symposium

on the Foundations of Software Engineering (FSE’10), Charleston, Nov.2002.

[21] N. G. Leveson.: Safeware: System Safety and Computers, Addison-Wesley,

1995.

[22] N. G. Leveson and K. A. Weiss.: A New Accident Model for Engineering

Safer Systems, Journal of Safety Science, Vol.42, No.4, pp.237-270, Apr.2004.

[23] N. G. Leveson.: Safety in Integrated Systems Health Engineering and Man-

agement Proceedings of Safety Science, Vol.42, No.4, Apr.2004.

87



[24] N. G. Leveson, K. A. Weiss.: Making Embedded Software Reuse Practical

and Safe, Proceedings of Foundations of Software Engineering, Nov.2004.

[25] N. G. Leveson.: A Systems-Theoretic Approach to Safety in Software-

Intensive Systems, IEEE Transactions on Dependable and Secure Comput-

ing, Vol.1, Is.1, pp.66-86, Jan.2004.

[26] A. Metzger, C. Webel.: Proceedings of Feature Interaction Detection in

Building Control Systems by Means of a Formal Product Model, Feature

Interaction in Telecommunications and Software Systems VII, Amsterdam,

IOS Press, pp.105-121, 2003.

[27] M. A. de Miguel, B. Pauly, T. Person and J. Fernandez.: Model-Based Inte-

gration of Safety Analysis and Reliable Software Development, Proceedings

of the 10th IEEE International Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS’05), Is.2-4, pp.312-319, Feb.2005.

[28] M. Motoharu, Y. Takashi, N. Masaharu and T. Atsushi.: Home Network

Technology Trends and Interworking between DLNA and Mobile Devices,

IEICE Technical Report. Information networks, Vol.107, No.314(20071108)

pp. 25-30, IN2007-93, 2007.

[29] B. Meyer.: Applying Design by Contract, IEEE Computer, vol.25, No.10,

pp.40-51, Oct.1992.

[30] A. Mili, G. Jiang, B. Cukic, Y. Liu and RB. Ayed.: Towards the Verification

and Validation of Online Learning Systems: General Framework and Appli-

cations, Proceedings of the 37th Annual Hawaii International Conference on

System Sciences (HICSS’04), pp.90304a, Sep.2004.

88



[31] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. Matsumoto.: Adapt-

ing Legacy Home Appliances to Home Network Systems Using Web Services,

Proceedings of International Conferences on Web Services (ICWS 2006),

pp.849-858, Sep.2006.

[32] M. Nakamura, H. Igaki, and K. Matsumoto.: Feature Interactions in

Integrated Services of Networked Home Appliances -An Object-Oriented

Approach-, Proceedings of International Conferences on Feature Interac-

tions in Telecommunication Networks and Distributed Systems (ICFI’05),

pp.236-251, Jul.2005.

[33] S. Nishizawa, M. Nakamura, H. Igaki, K. Matsumoto, and K. Miura.: Ap-

plying Service-Oriented Architecture to Building Management Systems -

Integration of Heterogeneous Services and Consideration of Safety-, IE-

ICE Technical Report, Vol.107, No.261 pp.3-8, NS2007-81, Oct.2007. (in

Japanese)

[34] S. Nishizawa, M. Nakamura, H. Igaki, K. Matsumoto, and K. Miura.: For-

malizing Heterogeneous Building Automation Systems and Feature Interac-

tion Problem, SIG Technical Report, Vol.2008, No.29 pp.179-186, Mar.2008.

(in Japanese)

[35] B. Nicolescu, R. Velazco, M. Sonza-Reorda, M. Rebaudengo and M. Vi-

olante.: A Software Fault Tolerance Method for Safety-Critical Systems:

Effectiveness and Drawbacks, Proceedings of 15th Symposium on Integrated

Circuits and Systems Design (SBCCI’02), pp.101-106, 2002.

[36] C. Ponsarda, P. Massoneta, A. Rifauta, J.F. Moldereza, A. van Lam-

sweerdea, and H. Tran Vana.: Early Verification and Validation of Mission

Critical Systems, Proceedings of the 9th International Workshop on Formal

89



Methods for Industrial Critical Systems (FMICS 2004), Vol.133, pp.237-254,

May 2005.

[37] M. P. Papazoglou and D. Georgakopoulos.: Service-Oriented Computing,

Communications of the ACM, Vol.46, No.10, pp.25-28, Sep.2003.

[38] S. Supakkul and L. Chung.: Applying a Goal-Oriented Method for Hazard

Analysis: A Case Study, Proceedings of the 4th International Conference on

Software Engineering Research, Management and Applications (SERA’06),

Is.09-11, pp.22-30, Aug.2006.

[39] R. Socher.: Optimizing the Clausal Normal form Transformation, Journal of

Automated Reasoning, Vol.7, No.3, pp. 325-336, 1991.

[40] V.F. Siang Fook, J.H. Tee, K.S. Yap, A.A. Phyo wai, J. Maniyeri, B. Jit, and

P. Hin Lee.: Smart Mote-Based Medical System for Monitoring and Handling

Medication Among Persons with Dementia, Proceedings of 5th International

Conferences on Smart Homes and Health Telematics (ICOST2007), LNCS

4541, pp.54-62, Jun.2007.

[41] Y. Tajika, A. Toba and S. Kyuuma.: Standard Technologies for Home Net-

work Systems (BluetoothTM , ECHONETTM), Journal of TOSHIBA RE-

VIEW, Vo.57, No.10, pp.11-15, 2002.

[42] J. Xiang, K. Futatsugi, and Y. He.: Formal Fault Tree Construction and

System Safety Analysis, Proceedings of IASTED International Conferences

on Software Engineering, pp.378-384, Feb.2004.

[43] T. Yokoyama.: A Distributed System Framework for Automotive Control,

IEICE Technical Report, Vol.99, No.725, pp.3-10, CPSY99-118, Mar.2000.

(in Japanese)

90



[44] H.-I Yang, J. King, S. Helal, and E. Jansen.: A Context-Driven Programming

Model for Pervasive Spaces, Proceedings of 5th International Conferences on

Smart homes and health Telematics (ICOST2007), pp.31-43, Jun.2007.

91



Appendix

A. Specification of Appliance

APPLIANCE Appliance

ATTRIBUTES

power : {ON, OFF} = OFF;

METHODS

on(){

PRE: power == OFF;

POST: power == ON;

}

0ff(){

PRE: power == ON;

POST: power == OFF;

}

getPower(){

PRE: power == ON;

POST: ReturnValue == power;

}

INVARIANTS

true;
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B. Specification of HotWaterSystem

APPLIANCE HotWaterSystem EXTENDS Appliance

ATTRIBUTES

bathWaterTemperature : {30, 31…49, 50｝= 40;

showerWaterTemperature : {30, 31…39, 40} = 35;

showerValve : {OPEN, CLOSE} = CLOSE;

bathValve : {OPEN, CLOSE} = CLOSE;

showerIsWorking : {true, false} = false;

bathIsWorking : {true, false} = false;

METHODS

openShower(){

PRE: power == ON && showerValve == CLOSE && showerIsWorking ==false;

POST: showerValve == OPEN && showerIsWorking == true;

}

closeShower(){

PRE: power == ON && showerValve == OPEN && showerIsWorking == true;

POST: showerValve == CLOSE && showerIsWorking == false;

}

openBath(){

PRE: power == ON && bathValve == CLOSE && bathIsWorking ==false;

POST: bathValve == OPEN && bathIsWorking == true;

}

closeBath(){

PRE: power == ON && bathValve == OPEN && bathIsWorking ==true;

POST: bathValve == CLOSE && bathIsWorking == false;

}

setTemperatureforBath(tem){

PRE: power == ON && bathIsWorking == false;

POST: bathWaterTemperature == tem;

}

setTemperatureforShower(tem){

PRE: power == ON && showerIsWorking == false;

POST: showerWaterTemperature == tem;

}

getShowerWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == showerIsWorking;

}
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getBathWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == bathIsWorking;

}

getBathWaterTemperature(){

PRE: power == ON;

POST: ReturnValue == bathWaterTemperature;

}

getShowerWaterTemperature(){

PRE: power == ON;

POST: ReturnValue == showerWaterTemperature;

}

INVARIANTS

true;
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C. Specification of Air-Conditioner

APPLIANCE Air-Conditioner EXTENDS Appliance

ATTRIBUTES

requiredTemperature : {20, 21…29, 30} = 20;

currentTemperature : {20, 21…29, 30} = 20;

mode : {COLDING, HEATING, WAITING} = WAITING;

windLevel : {SOFT, MID, STRONG} = SOFT;

isWorking : {false, true} = false;

METHODS

switchOn(){

PRE: power == ON && isWorking == false;

POST: isWorking == true;

}

switchOff(){

PRE: power == ON && isWorking == true;

POST: isWorking == false;

}

setNewMode(){

PRE: power == ON;

POST: mode == COLDING || mode == HEATING || mode == WAITING;

}

setRequiredTemperature(tp){

PRE: power == ON;

POST: requiredTemperature == tp;

}

upRequiredTemperature(){

PRE: power == ON && requiredTemperature < 30;

POST: requiredTemperature == requiredTemperature + 1;

}

downRequiredTemperature(){

PRE: power == ON && requiredTemperature > 20;

POST: requiredTemperature == requiredTemperature - 1;

}

setWindLevel(wl){

PRE: power == ON;

POST: windLevel == wl;

}
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getRequiredTemperature(){

PRE: power == ON;

POST: ReturnValue == requiredTemperature;

}

getCurrentTemperature(){

PRE: power == ON;

POST: ReturnValue == currentTemperature;

}

getWindLevel(){

PRE: power == ON;

POST: ReturnValue == windLevel;

}

getMode(){

PRE: power == ON;

POST: ReturnValue == mode;

}

getWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == isWorking;

}

INVARIANTS

true;
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D. Specification of WaterValve

APPLIANCE WaterValve EXTENDS Appliance

ATTRIBUTES

valve : {OPEN, CLOSE} = CLOSE;

waterVolume : {LOW, MID, LARGE} = LOW;

METHODS

open(){

PRE: power == ON && valve == CLOSE;

POST: valve == OPEN;

}

close(){

PRE: power == ON && valve == OPEN;

POST: valve == CLOSE;

}

setWaterVolume(lev){

PRE: power == ON;

POST: waterLevel == lev;

}

getValve(){

PRE: power == ON;

POST: ReturnValue == valve;

}

getWaterVolume(){

PRE: power == ON && valve == OPEN;

POST: ReturnValue== waterVolume;

}

INVARIANTS

true;
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E. Specification of Light

APPLIANCE Light EXTENDS Appliance

ATTRIBUTES

isWorking : {true, false} = false ;

brightness : {SOFT, MID, STRONG} = MID;

METHODS

switchOn(){

PRE: power == ON && isWorking == false;

POST: isWorking == true;

}

switchOff(){

PRE: power == ON && isWorking == true;

POST: isWorking == false;

}

setBrightnessLevel(lev){

PRE: power == ON && (lev == SOFT || lev == MID || lev == STRONG);

POST: brightness == lev;

}

getWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == isWorking;

}

getBrightness(){

PRE: power == ON;

POST: ReturnValue == brightness;

}

INVARIANTS

true;

98



F. Specification of Ventilator

APPLIANCE Ventilator EXTENDS Appliance

ATTRIBUTES

isWorking : {false, true} = false;

windLevel : {0, 1, 2, 3} = 0;

METHODS

switchOn(){

PRE: power == ON && isWorking == false;

POST: isWorking == true;

}

switchOff(){

PRE: power == ON && isWorking == true;

POST: isWorking == false;

}

setWindLevel(lev){

PRE: power == ON && (lev == 0 || lev == 1 || lev == 2 || lev ==3);

POST: windLevel == lev;

}

upWindLevel(){

PRE: power == ON && isWorking == true && windLevel < 3;

POST: windLevel == windLevel + 1;

}

downWindLevel(){

PRE: power == ON && isWorking == true && windLevel > 0;

POST: windLevel == windLevel - 1;

}

getWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == isWorking;

}

getWindLevel(){

PRE: power == ON;

POST: ReturnValue == windLevel;

}

INVARIANTS

true;
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G. Specification of GasSystem

APPLIANCE GasSystem EXTENDS Appliance

ATTRIBUTES

isWorking : {false, true} = false;

fireLevel : {1, 2, 3} = 1;

valve : {OPEN, CLOSE} = CLOSE;

METHODS

fireOn(){

PRE: power == ON && valve == OPEN && isWorking == false;

POST: isWorking == true;

}

fireOff(){

PRE: power == ON && valve == OPEN && isWorking == true;

POST: isWorking == false;

}

setFireLevel(lev){

PRE: power == ON;

POST: fireLevel == lev;

}

openGasValve(){

PRE: power == ON && valve == CLOSE && isWroking == false;

POST: valve == OPEN;

}

closeGasValve(){

PRE: power == ON && valve == OPEN && isWorking == false;

POST: valve == CLOSE;

}

getWorkingStatus(){

PRE: power == ON;

POST: ReturnValue == isWorking;

}

getFireLevel(){

PRE: power == ON;

POST: ReturnValue == fireLevel;

}

getGasValve(){

PRE: power == ON;

POST: ReturnValue == valve;

INVARIANTS

true;
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H. Specification of Service

SERVICE Service

ATTRIBUTES

serviceNumbber : {0, 1, 2, 3} = 0;

isWorking : {true, false} = false;

METHODS

getServiceNumber(){

PRE: true;

POST: ReturnValue == serviceNumbber;

}

getWorkingStatus(){

PRE: true;

POST: ReturnValue == isWorking;

}

INVARIANTS

true;
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I. Specification of BathPreparationService

SERVICE BathPreparationService EXTENDS Service

APPLIANCES

hotWaterSys : hotWaterSystem;

bathLight : Light;

bathAirCon : airConditioner;

ATTRIBUTES:

bathWaterTem : {30, 31…49, 50} = 40;

bathRoomBrightness : {SOFT, MID, STRONG} = MID;

bathAirConWind : {SOFT, MID, STRONG} = SOFT;

bathAirConTem : {20…35} = *;

METHODS

activation(){

PRE: service.isWorking == false;

POST: hotWaterSys.power == ON && hotWaterSys.waterTemperatureForBath == bathWaterTem &&

hotWaterSys.bathIsWorking == true && hotWaterSys.bathValve == OPEN &&

bathLight.power == ON && bathLight.brightness == bathRoomBrightness &&

bathLight.isWorking == true && bathAirCon.Power == ON &&

bathAirCon.isWorking == true && bathAirCon.windLevel == bathAirConWind &&

bathAirCon.requiredTemperature == bathAirConTem && service.isWorking == true;

}

stop(){

PRE: service.isWorking == true;

POST: hotWaterSys.bathValve == CLOSE && hotWaterSys.bathIsWorking == false &&

hotWaterSys.power == OFF && bathLight.isWorking == false &&

bathLight.power == OFF && bathAirCon.isWorking == false &&

bathAirCon.power == OFF && service.isWorking == false;

}

setBathWaterTemperature (tem){

PRE: service.isWorking == false;

POST: bathWaterTem == tem;

}

setBathRoomLightBrightness (lb){

PRE: service.isWorking == false;

POST: bathRoomBrightness == lb;

}

setBathRoomAirConTemperature (tem){

PRE: service.isWorking == false;

POST: bathAirConTem == tem;

}
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setBathRoomAirConWindLevel (wl){

PRE: service.isWorking == false;

POST: bathAirConWind == wl;

}

INVARIANTS

true;
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