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Efficient Task-independent
Reinforcement Learning Methods

based on Policy Gradient®

Tetsuro Morimura

Abstract

This dissertation presents research results about decision making rules in an
uncertain environment, called reinforcement learning (RL). We focus on RL meth-
ods based on gradient descent, so-called policy gradient reinforcement learning
(PGRL), and give efficient task-independent algorithms through mathematical
studies and numerical experiments.

PGRL attempts to find the policy as the decision-making rule that locally
maximize the objective function such as the average or temporal discounted re-
ward. It is performed by estimating the gradient of the objective function with
respect to the policy parameter from the experienced system trajectories of states,
actions, and rewards, and improving the policy parameter on the basis of gradi-
ent descent. As long as the policy is parameterized appropriately, PGRL can be
instantly implemented to Markov decision process (MDP) without the explicit
knowledge about the environment and the learning agent. Moreover, since it is
possible to treat the parameter controlling the randomness of the policy as the
policy parameters, PGRL can obtain the appropriate stochastic policy and be
applied to partially observable MDP (POMDP). Therefore, PGRL is expected to
be applied to various fields and draws much attention. However, there are three
difficulties at least for PGRL to come into practice use:

1) tendency of learning times to be huge amounts,
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2) hardship in setting of hand-tuning parameters as meta-parameters,

3) hardship in parameterizing of appropriate policies.

Although there are many studies for the above problems, most these studies
suppose some specific tasks and use the prior knowledge about the tasks. It
indicates that the methods of these studies could lack versatility. Therefore,
it requires such improvements of the PGRL algorithm as keeping intact about
the standard framework of RL, i.e., task-independent modifications rather than
task-dependent. In this thesis, in order to resolve the above problems we probe
efficient task-independent PGRL algorithms.

For the problem 1), we focus on the structure of the learning (policy) pa-
rameter space, in order to keep away plateau phenomenon where the learning
curve is almost flat in a long period, and study the natural gradient proposed by
Amari. It takes into consideration the sensitivity of each element of the policy
parameter and the correlation between the elements, to probability distribution
of MDP. Firstly, we develop the natural policy gradient (NPG) method with the
Riemannian metric matrix proposed by Kakade, to an efficient algorithm with-
out a matrix inversion. Next, new NPGs based on valid Riemannian metrics are
proposed by utilizing the state-stationary distribution. These gradients take into
account the changes in the state-action joint distributions for improving the pol-
icy parameter, while kakade’s NPG takes into account only changes in the action
distribution and omits changes in the state distribution.

For the problem 2), we focus on the meta-parameter that controls the temporal
discounting for the cumulative rewards, so-called forgetting or discounting factor
v, since the usefull methods have not been proposed for this parameter so far. In
ordinary PG methods (Kimura and Kobayashi, 1998; Baxter and Bartlett, 2001),
the forgetting factor v controls the bias-variance trade-off of the estimation for the
average reward gradient with respect to the policy parameter. This is because the
ordinary PG methods omit a term regarding the derivative of the state-stationary
distribution, in order to estimate the gradients. By deriving a method to estimate
the derivative of the stationary distribution, we develop y-free PGRL algorithms.

For the problem 3), a criterion is derived, in order to judge whether or not
the current parameterization of the policy is sufficient for the achievement of

task objective. If the criterion converges to zero, the policy parameterization is

il



sufficient.
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Chapter 1
Introduction

This dissertation presents research results about learning of decision-making rules
in an uncertain environment, called reinforcement learning (RL). We focus on
and study RL based on gradient descent, and give efficient task-independent

algorithms through mathematical studies and numerical experiments.

1.1 Overview of Reinforcement Learning

Reinforcement learning (RL) is a theoretical scheme for learning the decision
making rule, so-called a “policy”, by which an agent or a system decides and
executes an action corresponding to an observed state (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998). The criterion of learning is an average or a tempo-
ral discounted cumulation of observed immediate rewards. In an RL framework,
namely, the agent attempts to maximize a cumulative reward by interacting with
environment described as a Markov decision process (MDP). Therefore, if “what
the agent should achieve” is induced to the (immediate) reward, the agent learns
“how” autonomously in the RL framework. This would be one of the great ad-
vantages of RL because it is often intractable for engineers to design the “how”
corresponding to all possible situations in engineering fields, e.g., the game agents
for backgammon (Tesauro, 1995), tetris (Bertsekas and Tsitsiklis, 1996), etc., and
robot controllers for RoboCup soccer (Stone and Veloso, 1999), helicopter flight
(Abbeel et al., 2007), etc.

There are various methods for RL. These are categorized to two classes: (I)



model-based RL and (II) model-free RL, where the model is the prior knowledge
of environment, i.e., the functions about state transitions by the agent taking an
action and the immediate rewards. Model-based RL utilizes the model to max-
imize a cumulative reward , implemented by dynamic programming (Bertsekas,
1995), Dyna-Q (Sutton and Barto, 1998), and so on. Accordingly, in the model-
based RL framework, the agent has also to learn the model from data when the
model is unknown. While model-based RL is tackled by various ways (Dearden
et al., 1999; Brafman and Tennenholtz, 2003; Strehl and Littman, 2005; Poupart
et al., 2006) and would be an important field in recent years, it is not included
in this thesis.

Model-free RL does not use the model as the prior knowledge of the environ-
ment and can be roughly categorized to two classes: (i) the value update based
RL and (i) the direct policy-optimization based RL. In the value-update based
RL, the policy is not explicitly represented by adjustable policy parameters, but
it is implicitly represented by value functions that approximate expectations of
(discounted) cumulative rewards from a state or a state-action pair. The methods
of this type of RL attempt to find a good policy through the update of the value
function, e.g., Q-learning, SARSA learning (Sutton and Barto, 1998). On the
other hand, the policy is explicitly represented by adjustable policy parameters
in the direct policy-optimization based RL. This RL optimizes directly the policy
parameter to maximize the objective function as the cumulative reward. Most
methods of this RL are based on gradient descent scheme and are called Policy
Gradient Reinforcement Learning (PGRL) or merely policy gradient (PG) meth-
ods, implemented by REINFORCE (Williams, 1992), GPOMDP (Baxter and
Bartlett, 2001), or (natural) Actor-Critic algorithms (Sutton and Barto, 1998;
Kimura and Kobayashi, 1998; Baird and Moore, 1999; Sutton et al., 2000; Konda
and Tsitsiklis, 2003; Kakade, 2002; Peters et al., 2003). Comparing PGRL with
value based RL, PGRL has advantages such that PGRL could be easily applied
to the cases of a continuous state-action environment and optimize stochastic
policy, while these are often hard for value-based RL. Consequently, PGRL is
drawing much attention in recent years. However, PGRL has weekness that it
often takes more time-steps to find the good policy than value based RL.

In this thesis, we focus on and study PGRL since it has potential for many



engineering applications and is still a developing research topic as described above.

1.2 Motivation

While PGRL is expected to be applied various fields and draws much attention
as described above, there are three difficulties at least for PGRL to come into

practice use:

1) tendency of learning times to be huge amounts,
2) hardship in parameterizing of appropriate policies, and
3) hardship in setting of hand-tuning parameters as meta-parameters.

Although there are many studies to overcome the above problems, most of these
studies suppose some certain tasks and use the prior knowledge about tasks (Ng
et al., 1999; Ronsenstein and Barto, 2004; Bagnell et al., 2004). It indicates
that the methods of these studies could lack versatility. Therefore, it requires
such modifications of the PGRL algorithm as keeping intact about the standard
framework of RL, i.e., task-independent modifications. In this thesis, in order to
resolve the above problems we probe efficient task-independent PGRL algorithms.

For the first problem 1), there is a limitation of standard gradient descent
algorithms to consume huge learning time, that the ordinary gradient of a fucn-
tion does not necessarily indicate its steepest direction, because the parameters
might not be expressed in orthonormal coordinates. In order to overcome this
problem, Amari (1998) proposed the concept of natural gradient, and Kakade
(2002) introduced it in policy gradient RL and proposed the “natural policy gra-
dient” method (NPG). However, the drawbacks of their algorithms require the
computation of the inverse of a matrix and the Riemannian metric matrix having
effect of the NPG direction was heuristic. We present a new algorithm based on
Kakade’s NPG, Natural policy gradient utilizing Temporal Differences (NTD) al-
gorithm, which estimates the natural policy gradient in an online manner without
matrix inversion (Morimura et al., 2005), and also propose a new NPG based on
a valid Riemannian metric matrix by utilizing the state-stationary distribution
(Morimura et al., 2007b).



For the second problem 2), we derive a criterion to judge whether or not the
current parameterization of the policy is sufficient for the achievement of task
objective. When the criterion converges to zero, the policy parameterization is
sufficient. We develop the auto-adjustmenting algorithm for the number of hidden
units of a multi-layer perceptron used as the policy.

For the final problem 3), we focus on the meta-parameter that controls the
temporal discounting for the cumulative rewards, so-called forgetting or discount-
ing factor ~, since the usefull methods have not been proposed for this parame-
ter so far. In ordinary PG methods (Kimura and Kobayashi, 1998; Baxter and
Bartlett, 2001), the forgetting factor v controls the bias-variance trade-off of the
estimation for the average reward gradient with respect to the policy parameter.
This is because the ordinary PG methods omit a term regarding the derivative of
the state-stationary distribution, in order to estimate the gradients. By deriving
a method to estimate the derivative of the stationary distribution, we develop
~v-free PGRL algorithms.

1.3 Contents of dissertation

This dissertation is organized as follows. In chapter 2, we explain the basic
framework of PGRL and the natural gradient as preliminaries. The following
chapters are divided into two main branches.

Studies in the first branch do not utilize the derivative and tackles the problem
1) regarding the learning times by utilizing the Kakade’s NPG and deriving a
baseline adjustment function for variance reduction, and also tackles the problem
2) regarding the parameterization of the policy. These topics are included in
chapter 3.

Studies in the second branch utilize the derivative of the stationary distribu-
tion. We first derive the method estimating the derivative and develop v-free
PGRL algorithms for the problem 3) regarding the forgetting factor v as the
meta-parameter in chapter 4. Next, we derive a new NPG based on a valid
Riemannian metric matrix by utilizing the derivative in chapter 5.

In chapter 6, we conclude this dissertation.



Chapter 2

Preliminaries

2.1 Policy gradient reinforcement learning (PGRL)

We review the conventional reinforcement learning (RL) methods based on policy
gradient (PG)—PGRL. PGRL is modeled on a discrete time Markov decision
process (MDP) (Bertsekas, 1995; Sutton and Barto, 1998). It is defined by the
quintuplet (S, A, p,r,7), where S 3 s, A 3 a are finite sets of states and actions,
respectively. p: S x A x S — [0,1] is a state transition probability function of
a current state s; € S, a current action a; € A and a following state s, € S
from a time step t (> 0) to t + 1, i.e., p(Sey1]Se, ar) = Pr(sipq]se, ar), satisfying
Zst+165 p(sir1]se,ar) = 1. 7 SXAXS — [Runin, Rumax] 18 a reward function of s,
a;, and s;41 and is bounded below by R, and above by Rax, which defines an
immediate reward 7, ; observed by a learning agent *. 7: S x A x R% — [0,1] is
a function for an action probability given a state and a policy parameter 8 € R¢,
so-called a stochastic policy, i.e., m(as|s;;0) = Pr(aylsi, ), which defines the
decision-making of a learning agent and is adjustable by learning of the policy
parameter 6.

We assume that the policy 7(a|s; @) is differentiable with @ for all s € S and
a € A2 and would notate my(a|s) as m(als; @) for simplicity. We also posit the

following assumption:

Even if r(s¢, at, s¢+1) is a random variable, all results of this thesis can be applied directly
by replacing r (s, at, s¢4+1) With E{r(s¢, ar, st+1)|8t, ar, St41}-
2| Vylnmg(als)|| < oo.



Assumption 1 The Markov chain M(0) = {S, A,p,my} is ergodic (irreducible
and aperiodic) for all policy parameters 6. Then, there exists a unique stationary
state distribution d™(s) = Pr(s|M(0)), equated to the limiting distribution, which

1s independent of the initial state,
d(s') = 1tlirn Pr(S;, = 5'|Sy = s, M(0)), "secS. (2.1)
The stationary distribution satisfies the following balance equation

d'(s') =Y > p(s'|s, a)m(als, 0)d(s), (2.2)

s€S acA

= D pues’sals)d(s),

s€S acA

where py(g)(s’, als) = p(s'|s,a)m(als; @). The following equation instantly holds
(Bertsekas, 1995),

T—00 T

T
1
d(s') = lim —> Pr(S, = ¢|Sy = 5,M(B)), "s€S. (2.3)
t=1

The goal of PGRL is to find the policy parameter 8* that maximizes the

average of the immediate rewards called the average reward:

R(#) = lim %EM(Q) {Z T 50} , (2.4)

T—o0
t=1
where Ejsg) denotes the expectation over the Markov chain M (). It is noted

that, under Assumption 1, the average reward is independent of the initial state

sp and can be shown to be equal (Bertsekas, 1995):

R(0) = Enre) {r(s. a, )} (2.5)
=33 N d(s)mo(als)p(s']s, a)r(s, a, ) (2.6)
S€ES acA s'eS
= Z Z d"(s)mg(a|s)7(s,a),
sES acA



where 7(s,a) = Y, s P(s'|s,a)r(s, a, s") does not depend on the policy parameter
6. Accordingly, the derivative of the average reward with respect to the policy

parameter 6, which is often referred as the policy gradient (PG) for short,

OR(6) OR(0)]"
o6, 06, |

VeR(0) = {
where T denotes transpose, is calculated to

VoR(0) = > Vy(d(s)me(als))r(s, a) (2.7)

s€S acA

=" d(s)m(als) (Volnmo(als) + Velnd(s)) 7(s, a). (2.8)

sES acA

The ordinary policy gradient RL algorithms update the policy parameter 8 in
the direction of the ordinary gradient of the average reward, VyR(0), with the

sufficient small learning rate a:
0 :=0+ aVyR(0),

where := denotes the the right-to-left substitution. Similarly, the natural policy
gradient RL algorithms update 0 in the direction of the natural gradient of the
average reward, Vo R(6), which is introduced in the following section 2.2.

As the derivation of the log stationary state distribution Vylnd™(s) is non-
trivial, the conventional PG algorithms (Baxter and Bartlett, 2001; Kimura and
Kobayashi, 1998) utilize an alternative representation of the PG (see appendix

for this derivation)

VoR(0) =Y Y d(x)my(als)Velnmy(als)Q7 (s, a)

s€S acA

Y)Y d™(x)Volnd(s) V] (), (2.9)

seS

where
K
Q7 (51, a1) = I%LIHOOEM(G) {Z Vk_lrt+k|3taat}
k=1

is an action value function and

K
VI(se) = Jim Eoe) {Z’Yk_lrmﬂst}

k=1

8



is a state value function with discount factor v € [0, 1) (Sutton and Barto, 1998).
Since the contribution of the second term of Eq.2.9 becomes smaller as v ap-
proaches 1 (Baxter and Bartlett, 2001), the conventional algorithms (Baxter and
Bartlett, 2001; Kimura and Kobayashi, 1998) approximate the PG only from the
first term by taking v ~ 1 as a biased PG, i.e.,

VoR(0) = ) > d™(x)my(als)Velnmy(als)QI(s,a), 0<<y<1 (2.10)

s€S acA
— VIR(6).

The dependence on 7 of the biased PG is explained in the following lemma:

Lemma 1 We define ¢ by

co B2 ses 2iaea @) Volnd(s)V (s)]|
1 ses 2Zaea d(s)mo(als) Velnmo(als)Q™ (s, a)||”

where ||c|| is Euclidean norm of vector e¢. Then, an angle between VjR(0) and

(2.11)

the true gradient VoR(0) is bounded by cosil(}i). In the limit v — 1, € is equal

to zero; then, the biased policy gradient becomes the true policy gradient, i.e.,
V,R(0) = VyR(0).

Proof: see the appendix 1.2.

Since Vyln d™(s) can be estimated by the method proposed in chapter 4 or Morimura
et al. (2007b), € in Eq.2.11 can also be estimated. Thus, lemma 1 would be use-
ful in order to adapt v, although Baxter and Bartlett (2001) and Kakade (2001)
provide other relations between v and the biased PG with regard to the second
eigenvalue of the state transition matrix.

Although the bias introduced by this omission becomes smaller as v is close
to 1, the variance of the estimate becomes larger. In chapter 3, we discuss PG al-
gorithms computing the derivative of the average reward based on eq.2.10, which
ignores the derivative of the stationary distribution. In chapter 4, we propose an
alternative approach, which estimates the log stationary distribution derivative
(LSD), Vylnd™(s), and uses eq.2.8 to compute the derivative of the average re-
ward. A marked feature is that we do not need to learn the value function, and
thus, the algorithm is free from the bias-variance trade-off in the choice of the

forgetting (or discount) factor ~.



2.2 Natural gradient

As mentioned in chapter 1, the ordinary gradient (derivative) of a fucntion does
not necessarily correspond to its steepest direction if its parameters are not ex-
pressed in orthonormal coordinates in terms of a manifold defined by the function.
Therefore, to solve the problem, we consider the application of the natural gra-
dient (Amari, 1998), which can represent the steepest descent direction in this
case. In this section, we introduce the background of the natural gradient (NG)
and the natural policy gradient (NPG) as the NG for the PG.

In a Riemannian manifold of a parameter a, the steepest descent direction of

a function g(a) is expressed as
Veag(a) = G Y (a)V,g(a),

where G(a) is the Riemannian metric matrix of a, which is defined by the Fisher
information matrix in the case that the parameter space of a is in a statisti-
cal model, and V,g(a) is called the natural gradient. The Fisher information
matrix is a unique metric matrix of the second-order Taylor expansion of the
KL-divergence on a fixed probability distribution. When a different statistical
model or a probability distribution is considered, obviously, the Fisher informa-
tion matrix varies and the direction of the NG has to vary.

For NPG (the application of the NG to PGRL), it should be discussed what
statistical model or probability distribution on MDP is appropriate to the basis
of the Riemannian metric matrix. While we provide some answers about above
question in chapter 5, we propose efficient NPG algorithm based on the Rieman-
nian metric matrix proposed by Kakade (2002) in chapter 3. In chapter 5, we
derive a valid Riemannian metric matrix for PGRL and propose a new NPG,
which utilizes LSD.

10



Chapter 3

A Natural Policy Gradient on

Kakade’s Riemannian Metric

Since most previous algorithms which implement the natural policy gradient
(NPG) on Kakade’s Riemannian metric matrix (Kakade, 2002; Peters et al., 2003;
Mori et al., 2005), use matrix inversion, they suffer from numerical instability
and high computational costs. In section 3.2, we propose a novel NPG estima-
tion method without matrix inversion by regressing the temporal difference (TD)
reward prediction errors by using a set of basis functions given by the parame-
terization of the policy. We also show that the bias in the gradient estimate can
be reduced by employing “eligibility traces” in the TD regression. The proposed
algorithm, the natural policy gradient utilizing the temporal differences (NTD)
algorithm, is applied to a simple Markov decision problem and a more challenging
nonlinear pendulum-control problem to demonstrate its effectiveness.

In section 3.3, we discuss the baseline function for the NPG estimate based on
NTD algorithm with respect to the variance and show a condition that an optimal
baseline function reducing the variance is equivalent to the state value function.
Because the state value could be much different from the optimal baseline outside
of the condition, an extended version of the NTD algorithm is proposed for such
cases. It introduces an auxiliary function to adjust the baseline, being state value
estimates in the original version, to the optimal baseline. The proposed algorithm
is applied to simple MDP and a challenging pendulum swing-up problem.

In section 3.4, we discuss the problem what policy parameterizations are ap-

11



propriate for some tasks, and propose the average absolute value of the auxiliary
function to adjust the baseline as a criterion to judge whether or not the current
parameterization of the policy is sufficient for the achievement of task objective.
An auto-adjustmenting algorithm for the number of hidden units of a multi-layer
perceptron used as the policy is developed by the fact that the criterion being
zero means the policy parameterization is sufficient.

It must be noted that, in this chapter, because we deal only with the biased
PGs and the discounted value functions, we omit the term biased ! and discounted,
respectively. For instance, when we discuss about the bias of an estimated PG,
we imply the bias from the biased PG to the estimate.

3.1 Definition of Kakade’s NPG

Kakade (2002) supposed that the Fisher information matrix of RL is the average

of F,(s,0) weighted by the stationary state distribution, F,(0) = >, , d(s)F.(s, ),

and then showed (see appendix for the derivation)

Fo(0)' > ) d(s)mp(als)Velnmo(als) f (s, a;w) = w, (3.1)

s€S acA
where f(s,a;w) = Vjlnmy(als) w is termed as the compatible function (Sut-
ton et al., 2000). Peters et al. (2003), and Bagnell and Schneider (2003) in-
dependently proved that F,(0) is equivalent to the scaled Fisher information
matrix of the probability distribution of the system trajectories, p(&7|0); & =
(50, ag, 51, ..., ar_1,87) ", with respect to the policy parameter 6 with the limit
T — o0, ie., 2

F,(0) — lim %F&(e). (3.2)

T—o0
Since the maximization of the average reward can be regarded as the optimization
of the integration of rewards over the space of possible system trajectories, the

scaled Fisher information matrix of the trajectory distribution could be one of the

!The bias from PG to a biased PG is discussed in Baxter and Bartlett (2001)
2See chapter 5 for the derivation of 3.2 and detailed discussions about the Riemannian metric

and the Fisher information matrices for RL.

12



reasonable Riemannian metrics for RL 3. The natural policy gradient as natural

gradient of RL on Kakade’s Riemannian metrix is
Ve.oR(0) = Fu(0) "'V, R(6). (3-3)

We simplify @Fmg to 69 from here in this chapter, because F,(8) is the only
Riemannian matrix used for NPG in this chapter.

However, the algorithms (Kakade, 2002; Peters et al., 2003) that implement
the natural policy gradient require the computation of the matrix inversion. With
this background, we present the natural policy gradient utilizing the temporal
differences (NTD) algorithm that estimates the natural policy gradient in an

online manner without matrix inversion.

3.2 Utilizing incremental temporal differences for
natural actor-critic (NAC)—NTD algorithm

The actor-critic framework for NPG is called the natural actor-critic (NAC) (Pe-
ters et al., 2003). The critic estimates NPG @ and the actor executes the ac-
tion drawn from the policy my(als), which is updated by the critic’s estimate:
0 := 0 + aw, where “:=" denotes the substitution of the right to the left and « is
learning rate. In the following sections, we show the original and extended NTD

algorithms.

3.2.1 Organization of NAC and the NTD Algorithm

We first introduce the overall architecture of the NTD algorithm and then we
explain how each component works. The NTD algorithm comprises three com-

ponents?, as shown in Figure 3.1. The first component is the value estimator that

3This Riemannian metric matrix takes into account only changes in the action distribution
for improving the policy parameter and omits changes in the state distribution, which also
depends on the policy in almost all cases. In chapter 5, we propose a new Riemannian metric
considering the state distribution as well as the action distribution and derive a new natural

policy gradient based on the metric.
4If it is regarded as an actor-critic model (Sutton and Barto, 1998), the value and NPG

estimators configure the critic and the policy is the same as the actor.
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estimates the state value function. This is performed by ordinary TD(A) (Sutton,
1988) or LSTD()) (Bradtke and Barto, 1996; Boyan, 1999) learning. The second
is the natural policy gradient (NPG) estimator. It is realized by regressing the
temporal differences (TD) given by the first component with a linear function
approximator comprising basis functions defined by policy parameterization and
the weight vector. The final component is the policy, which is updated toward
the direction of the NPG estimate given as the weight vector of the second com-
ponent. We term this framework the Natural policy gradient utilizing Temporal
Differences —the NTD Algorithm.

Natural Policy Gradient Estimator

sgﬁg;al Policy Temporal
gradient eligibility difference
Policy Value Estimator
mCulx) V(0O
Action Reward
State

Enviroment

Figure 3.1. Architecture of the NTD algorithm.

In section 3.2.2, we show the following. When the compatible function f(s, a; w)
with respect to the policy parameterization (Sutton et al., 2000), which is a lin-
ear function with the weight w and the policy eligibility Vgln my(a|s) as the basis
function, regresses the temporal difference of the state value function, the weight
becomes an estimate of NPG. In section 3.2.3, we show that the weight can be
an unbiased estimate of NPG if eligibility traces are applied to the TD regression
at an eligibility decay rate of A = v under a fixed policy.
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3.2.2 Function Approximation to TD for PG
Function approximation for policy gradient

As Konda and Tsitsiklis (2003) and Sutton et al. (2000) have shown that the
unbiased PG is expressed by the compatible function regressing a “differential cost
function” defined as a solution of the Poisson equation, the compatible function
f(s,a;w) = w'Vylnmy(als) can also be used to represent the PG defined by
eq.2.10 as (see the appendix 2.2),

VoR(0) =Y > d(s)me(als)Velnmo(als) f (s, a; w"|gn(s.a)-b(s)) (3.4)

s€S acA

=Y d(s)ma(als)p(s, a)ep(s,a) w*|gr(s.a)-pis),

s€S acA

where (s, a) = Vylnmy(als) is termed the policy eligibility and w*|gr(s,q)-b(s)
is the weight that minimizes the mean square error between Q™ (s, a) — b(s) and

f(s,a;w),
) == ZZd” s)mo(als) {Q7(s,a) — b(s) — d)(s,a)T'w}Q. (3.5)

568 acA

Hereafter, w*|gr(s,a)—s(s) Will be abbreviated as w* for simplicity. In this case,

ZZCZ” s)me(als) {Q7(s,a) — b(s) — P(s,a) 'w*} P(s,a) = 0.
s€S acA
It is noted that w*|g~(s,)—s(s) remains unchanged by the choice of the baseline

function b(s) because f(s,a;w) has zero mean for each state,

Z?Tg(a|8) S, a;w) TZVMQ ’LUTVQZTF@(Q|S) =0, "ses,

acA acA acA
(3.6)

then Eq.3.5 is calculated as e(w) = 1/23 " o> ,ca d"(s)mg(als) {Q7(s,a) — f(s,a; w)}?
However, when the number of samples is finite, b(s) affects the variance of the
estimate of the regressor f(s,a; W|on(s,a)-b(s)) Where W|or(s,a)—p(s) 15 a weight re-

W

gressed to the regressand “Q7(s,a) — b(s)” with finite samples. Therefore, in
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practice, it is important to set b(s) appropriately. Sutton et al. (2000) and Peters
et al. (2003) suggest that a value of b(s) satisfying

> molals) (Q7(s,a) = b(s)) =0, (3.7)
acA
that is, b(s) = V7™(s), is a better baseline function than b(s) = 0 because of the
constraint of the compatible function, Eq.3.6 °. That may be supported by the

following proposition

Proposition 1 If the baseline function b(s) is equal to the state value function

V™ (s), a residual sum of squares

RSS¢(Q"(s,a) —b(s)) = Z Z d"(s)me(als) {Q™(s,a) — b(s) — f(s,a;w)}?

s€S acA

is minimized about b(s) for any w.

Proof: see the appendix 2.3.

Function approximation to TD as advantage function

When b(s) = V™(s), the regressand is equal to the advantage function A™(s,a) =
Q" (s,a) — V™(a) (Baird, 1993)°. Tt is noted that the advantage function cannot
be learned by TD learning that uses f(s,a;w) exclusively (Peters et al., 2003).
Although there are some methods for learning, they are considerably difficult be-
cause they require an argmax operator or a matrix inversion computation (Baird,
1993; Dayan and Singh, 1996; Peters et al., 2003). Here, we present lemma 2
for the feasible construction of f(s,a; W|a~(sq)), which is the same as that under
b(s) = V™(s), by utilizing the TD of the state value function. The TD (also re-
ferred to as the TD error) is defined in the Bellman equation (Sutton and Barto,
1998),
O =11 YV (8441) — V7 (s1).

°The detailed discussions regarding the baseline function are present in Greensmith et al.

(2004) and Peters and Schaal (2006), which propose optimal baseline functions minimizing the
bounds of variances, and Morimura et al. (2007a), which show that the state value function is
equivalent to these optimal baseline functions when the policy parameterization is proper and
f(s,a;w) converges to f(s,a; w*).

5The advantage function provided by Baird (1993) is A™(s,a) = Q™ (s, a)—argmax,Q™ (s, a).
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In practice, §; is only used to update the value function and is discarded in each
trial 7. However, the basic concept of our algorithm is that the TD §, is considered

as a function of the state and the action,
0" (81, ar) = 7(se, ar, Se1) + YV (s141) — V7 (s80),

and 0™ (s, a) is considered as target function of the regression function f(s,a;w).
The TD ¢7(s,a) is a random variable because s;,; is a random variable, except
in the case of p(si11|st,a) = 1, and the reward function 7 (s, at, s;1+1) may also
be a random variable. It is noted that the expectation of the TD given s and
a, (07(s,a)), does not necessarily become zero on the stochastic policy; this is
applied to the derivation of proposition 2. Of course, the expectation of the TD

given s is equal to zero.

Proposition 2 The expectation of the TD of the state value function in the state-
action space 1s equal to the advantage function,

Ene) {07 (s, a)ls,a} = A™(s, a). (3.8)
If Var, (0™ (s,a)) = 0, the following equation holds:
0" (s,a) = A" (s,a),

where the function Var, (07 (s,a)) is the average of the variance of d™ (s, a), based
on the state and action distribution, Y s > . 4 d(s)mo(a|s)Ere){ (07 (s,a) — A™(s, a))’|s, a}.

Proof: see the appendix 2.4.

Lemma 2 (1) Let regressions be performed with infinite number of samples from
Markov chains M(0) with an appropriate regression method. Then, the following
equation holds: f(s,a; W*|s=(s.q)) = [(S, a;W*| an(5.0)) = [(5,a;w*) 5.

(11) Let regressions be performed with a finite number of samples from M ().
(1-1) If Var, (6™ (s,a)) = 0, the following equation holds:

f(S, a; wlé"(s,a)) - f(87 as; 'uA)|A"(s,a))'
"The TD is also used for the policy updating in actor-critic RL, but it is also discarded in
each trial (Kimura and Kobayashi, 1998).
8(1) means f (s,a; Erro){Wls7(s,0)}) = f (5, a; Eng(o){Wlar(s.a)}) = f(s,a;w")
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(11-2) If Var, (6" (s, a)) is sufficiently smaller than RSS¢(A™(s,a)), then,

f(s,a;Wlsm(s,0)) = f(8,a;W|am(s,a))-

Proof: (1) is proved in the appendix 2.5, shown as both the regression func-
tions, f(s,a;W|sv(s,q0)) and f(s,a; W|ax(s,q)), converge to f(s,a;w*) with infinite
samples. (1I-1) is apparent, since 0™ (s,a) = A™(s, a) holds by proposition 2 when
Var,(6"(s,a)) = 0. (11-2) is provided by (1), (11-1), and the following two things;
First, the regression of the compatible function to 0™ (s, a) uses the state value
function V7 (s) as the baseline function, as in the case of f(s,a;W|ax(s,q)), which
is apparent from the definition of 6™(s,a). Second, the residual sum of squares
of the compatible function regressed for §7(s,a) is larger than that for A™(s,a)
only for Var,(0"(s,a)),

RSS;(0™(s,a)) = RSS§(A™(s,a)) + Var.(6"(s,a)), (3.9)

which is derived in the appendix 2.5. That is, if Var,(07(s,a)) is sufficiently
small, then f(s,a; W|ar(sa)) = f(5,a;W|57(s,q)) holds. O
Lemma 2 indicates that it is effective to use 0™(s,a) as the regressand for the
construction of f(s,a;w*) under a small Var, (07 (s, a)), as well as the case to use
A™(s,a), which is hard to be estimated. Even if Var, (0™ (s, a)) is large, where the
entropy about the state transition probability p(s;1|ss, a;) is high and/or the the
reward function has a large random noise, w|ss , remains an unbiased estimate of
w*. However, in this case, A™(s,a) is a better regressand than 6™ (s, a) because
RSS;(07(s,a)) is much larger than RSS;(A™(s,a)).

By applying lemma 1 and lemma 2, we obtain the convergence property of
the NPG estimation with the TD with regard to the natural policy gradient.

Theorem 1 Let ¢ defined in Eq.2.11 and Var,(6"(s,a)) be sufficiently close to
zero. Then, the natural policy gradient 69R(0) 15 approximated by the vector
W|5(s,0) which is the weight of the compatible function regressed to the TD with
finite samples from the Markov chains M (8),

69R(0) ~ ’w‘(g(s’a).
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Proof:

VoR(6) ~ V]R(0) = F,(0)~ 1WR(9) [eq.2.10, lemma 1, & eq.3.3]
=F,.(0 IZZdW s)mp(als)Volnmy(als) f(s,a; w") leq.3.4]
s€S acA
~Fo(0)7' Y > d(s)m(als)Volnmg(als) f(s,a; W|ar(sa))
s€S acA

[proposition 1]
Z Zd” s)mg(als)Volnmy(als) f(s, a; W|sm(sq)) [lemma 2]
s€S acA

= 'li]|57r(57a), [eq.S.l]

| 2

O
It is noted that, if the number of samples is infinite, the fourth and fifth transfor-
mations of the above proof has an equality instead of a near equality ~, and then
Ve R(6) = W|s~(s,q) holds with an appropriate regression method. For simplicity,

henceforth, we notate w as the estimate of W|sr (s q)-

3.2.3 Eligibility traces with value function estimates

When the state value function is known, the exact TD §7(s,a) is available and
then the estimation of NPG, w, on the NTD algorithm is reduced to a gen-
eral supervised problem as a linear regression of the TD with the basis function
Volnmg(als). Thus, many methods on supervised learning are available, e.g., the
least squares and various gradient descent regressions. To compute the exact state
value function analytically, it is necessary that the state transition probability and
the reward function are known. However,the above situation is rare during actual
tasks. In cases other than the above situation, a critical problem for the imple-
mentation of the NTD algorithm is to estimate w appropriately with a state value
function estimate V“(s), which would have estimation errors; that is, when a com-
mon supervised algorithm for the regression of “6(s;, a;) = 1, +~V (si01) — V(s)”
is applied, the NPG estimates w would be biased. To solve the the problem, we
propose regression algorithms using the eligibility trace of the policy.

Two algorithms using eligibility traces for the TD regression with an estimate

~

V(s) are proposed: Algorithm 1 is based on a gradient descent algorithm like
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TD(A) (Sutton and Barto, 1998). Algorithm 2, which is shown in appendix,
is based on a least squares algorithm like LSTD(A) (Boyan, 1999). In these
algorithms, := denotes the substitution of the back for the front. Both algorithms
estimate NPG at time step t, by regarding the eligibility trace as

t

z = Z(’y/\)t’kvgln mo(ak|sk),
k=0

and the immediate error as
g =1+ 7V (s041) — Vis) — ' (Vgln mo(az|st) — tVgln 7r9(at+1|st+1)>, (3.10)

where the eligibility decay rate A € [0,1] and the ¢+ € R are meta-parameters
which are decided by hand. Although ¢ should be equal to v, following the
ordinary eligibility manner, it is a free parameter because of the property of
Eq.3.6, > ,camo(als)f(s,a;w) = 0. However, it should set in [0,yA]. This is
because, when ¢ = 0, the immediate error ¢; does not have the randomness
from the following time step ¢ + 1 about fi41 = w ' Vlnme(asi1|si41) in Eq.3.10;
however, Aw; in eq.3.11 or eq.a-11 ? has the randomness from the f; of the
following time steps k € {t + 1,...,T}. When ¢ = v\, the feature is the opposite
of that mentioned above, and ¢ € (0,7\) fills the gap between these limiting
cases. We set « = 0 in all the numerical experiments in this study, because the
differences between the numerical results obtained with various values of ¢ € [0, 1]
are not significant. There are other meta-parameters in algorithm 1, based on
the gradient descent: k is the interval for the update of w and «, which would
change in time steps (Bertsekas and Tsitsiklis, 1996), is the learning rate of w.

The proposed algorithm has a nice property as the following theorem.

9Although A = 1 in these equations, it is the same in A € [0, 1].
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Algorithm 1 Estimation of NPG based on gradient descent

Given:
e a policy my(als).
e the system trajectory and rewards by the policy, {so, ag, 71, ..., 71, S, ar}.
e an estimated state value function V(s).
Initialize: k, v, a, A, ¢, and w.
Set: Aw :=0; z :=0;
Fort=0:T—-1do
z =y Az + Vylnmg(as|s;);
AW = Aw + z{ry1 + YV (se41) — V(s¢)
—w " (Volnmy(as|ss) — tVolnmg(ari1]si+1)) };
If mod(t, k) =
w = w + aAw/k;
reset: Aw :=0; z := 0;
end
end

Return: w.

T mod(t, k) computes modulus of ¢ after division by k.

Theorem 2 Let the TD regression be conducted with a fized policy and a state
value estimate V(s) If the eligibility decay rate X\ is equal to one, the NPG

estimate 1s unbiased.

Proof: We prove the theorem in the gradient descent case, algorithm 1, based on
Kimura and Kobayashi (1998), while the proof in the least squares case, algorithm

~

2, is shown in the appendix 2.6. We denote 1, = Vyln my(a,|s;) and V, = V(s)
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for simplicity. Then,

(Aw) = lim — Z €12

T—oo T’
= t
= Jim T Z; [Tt+1 W = Vi = (¥ — L¢t+1)T'ﬁ7] 2}7”%

= lim — ZTM [ZV {TT+1 + 7‘7r+1 - Vr — (- — L¢T+1>T"b}]

T—oo T

%EEOTZ%{ZV R e/

T-2
— (Pt ) A = e - ’YTlt“.bT)T'UAJ] (3.11)

=33 d(s)m(als) Volnmo(als) [Q“(s,a) —V(x) - Vgln7rg(a|5)T1i)} (3.12)
SES acA
= Vye(w),

where Eq.3.12 is obtained from the definition of the state-action value function
and the properties of the TD regressor that has a zero mean for each state, Eq.3.6,
and is independent between different time steps, and e(w) defined at Eq.3.5 is
the mean square error about w. O
Therefore, because w in the TD approximation could converge to the unbiased
natural policy gradient © when A\ = 1, the NTD algorithm can have almost the
same suitable properties, as shown in Kakade (2002) and Bagnell and Schneider
(2003). That is, the policy parameter is unaffected by the correlation of the
parameters. When A\ = 0, @ is updated in the direction of the value function
estimate. The eligibility trace by A € (0, 1) fills the gap between the above two
limiting cases. The characteristics of A are similar to those of the decay rates used
in TD(A) (Sutton, 1988) and the actor-critic architecture proposed by Kimura and
Kobayashi (1998).

10Tn fact, eq.2.10 implies that the gradient is also biased about the average reward. However,
as mentioned in the previous section, we neglect the bias in this paper.
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3.2.4 Implementation of NTD Algorithm

Heretofore, we have focussed on the estimations of NPG. Here, the NTD algo-
rithm is presented as a RL algorithm, where the policy parameter is updated by

the estimated NPG w with an appropriate learning rate «,
0:=0+ aw.

We propose a simple implementation of the NTD algorithm based on the gradi-
ent descent NPG estimation as algorithm 1. As mentioned in section 3.2.1, the
NTD algorithm comprises three components—the value function estimator, the
TD regressor as the NPG estimator, and the policy. Although it is preferable that
the policy update waits for the other components to complete the estimations, a
heuristic procedure would be effective in training all the components simultane-
ously. It is that the weight of the TD regressor is forgotten by a rate 5 € [0, 1] at
each time step, w < Bw. Thus, the adverse affect derived from the strong vari-
ance of the TD estimator during incomplete learning can be avoided because the
elements of w which couple with rarely experienced state-action pairs decays to
zero and then the corresponding elements of the policy parameter vector are not
updated. Indeed, if § # 1, w will be biased. When 8 = 0, the NTD algorithm
corresponds to a standard policy gradient algorithm (Kimura and Kobayashi,
1998). Therefore, the forgetting rate, /3, fills the gap between the standard policy
gradient and the natural policy gradient. Table 3.1 specifies the NTD algorithm
with eligibility traces.

3.2.5 Numerical Experiments

In this section, we test the performance of the NTD algorithm in not only a MDP
but also in a continuous state problem. In the application of the NTD algorithm
to continuous state problems, consider a continuous state problem as a finite state

POMDP by function approximation.

Two state MDP (Kakade, 2002)

We first apply the NTD algorithm to a two-state MDP (Kakade, 2002) in or-

der to investigate whether it can avoid plateaus and the property concerning the
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forgetting rate f. A comparison with the natural actor-critic algorithm (NAC)
(Peters et al., 2003) as an alternative NPG is also presented. Each state has
self- and cross-transition actions and rewards, as shown in Figure 3.2. The op-
timal policy is to maintain the execution of the self-transition action in state s;

and obtains two as the maximum average reward. The policy has a sigmoidal

parameterization
(1 = self]s = 1 :
u = self|s =i =—
" 1 + exp(—b);)
m(u=cross|s =1i) =1—7(u=self|s=1),

and the policy parameter is initialized to corresponds to the following stationary
distributions: d(s = 1) = .8 and d(s = 2) = .2. Under this setting, Kakade
(2002) demonstrated that an ordinary policy gradient method was trapped in
a plateau as the suboptimal policy in contrast to the natural policy gradient
method, where the chance of a self-loop at the state s = 1 increases and then the

stationary probability of the state s = 2 decreases.

-

U = Cross
r =

Figure 3.2. The task setting of 2-state MDP.

Performance of NTD algorithm at various (: The NTD algorithm was
applied at each forgetting rate 5 € {0,.99,.995,.999,.9995,1} on w, which con-
trols the trade-off between the ordinary and the natural gradient. The other
meta-parameters were set appropriately by trial and error, as shown in table 3.2.
The policy parameter was initialized as @ = [1.4,—2.2]" to set the stationary
distribution as d(1) = .8 and d(2) = .2. Figure 3.3 (a) shows the average rewards
over the time course. Although the agents with larger § could find the optimal
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policy, the agents with lower /3 were trapped in the plateau. Figure 3.3 (b) shows
the phase plane of the policy parameter 8 = [0, 0,]". When 6; is small and 6, is
large, the policy is optimal. The left side of Figure 3.3 (b) shows that the NTD
algorithm with ( closer to 1 learns along a better trajectory of #, and the trajec-
tory with = 1 is observed to be approximately the same that as in (Kakade,
2002). This indicates that the NTD algorithm with /3 close to 1 can estimate the
natural policy gradient appropriately. The ordinary policy gradient method with
the eligibility traces of the policy proposed by Kimura and Kobayashi (1998),
Kimura’s method, is also applied to each decay rate A\ € {.0,.5,.9,.99,.999} of
the eligibility trace. Kimura’s method is similar to the NTD algorithm from the
viewpoint of the usage of the TD error for policy updating. The essential differ-
ence is that the NTD algorithm stores the TD error based on the eligibility of
the policy, while Kimura’s method stores the eligibility by itself. The right side
of Figure 3.3 (b) shows that Kimura’s method was trapped in the plateau and
ultimately failed to achieve the optimal policy.

(a)
2.0 B=00 A=0
—— —B=099 6 S
- == B=0.995 o
o |l poosee | AT N p=0999 [ [ | 29; gig
§ 1.6 g:?:gggs 4 - xZ: 0.999 | -
(0]
% Sy
o 1.2
]
0
0.8 ’ .
— - -2 M: ==
6 8 0 2 4 6 8

Figure 3.3. Two-state MDP: the averages of ten independent runs. (a) The
average rewards over the time course at each value of 5. (b) The phase plane
—left: the NTD algorithm; right: the ordinary policy gradient method Kimura
and Kobayashi (1998).
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Comparison with NAC algorithm (Peters et al., 2003): With regard to
the actual computational times and trial time steps required for learning, we
compared the NTD algorithm with NAC (Peters et al., 2003) as an alternative
natural policy gradient algorithm that requires the computation the inverse of a
matrix. In the experiments, various values of the dimensional observation state
feature vector 1(s) € R?, R5 R'"®, R or R were applied. Because the
feature vectors, except for the two-dimensional case, were redundant, we used the
Moore-Penrose pseudoinverse of the matrix for the matrix inversion in NAC in all
dimensional cases. Each vector was initialized in two steps: first, each the element
of temporal vectors ¢(s;) at i € {1,2} was decided by uniform distribution [0, 1];
and second, each the vector was normalized as ¢(s;) := @(s;)/||@d(s;)||- The meta-
parameters of each algorithm were set to estimate the optimal policy as quick as
possible, which are shown in table 3.3. We define an episode as being a “success”
when the policy in that the episode reaches the optimal, i.e., 6, < 0 and 6, > D,
within 50000 time steps, where

i - In 7p(u = self|p(s;))
"7 Inme(u = cross|é(s;))”

Otherwise, the episode is called a “failure” and is not used for the results of fig-
ure 3.5. Figure 3.4 shows the success rate of each algorithm at each dimensional
feature vector and suggests that most of simulation runs on both methods suc-
ceeded in learning. It supports that the setting of the meta-parameters was nearly
appropriate with regard to the learning speed. Figure 3.5 shows the computa-
tional times and the time steps at each dimensional feature vector for learning.
The NTD algorithm was faster in the most dimensional cases with regard to the
computational time required for learning, although the NTD algorithm needed
larger time steps. It indicates that the NTD algorithm is more suitable for actual
complex problems, where we need to consider large dimensional feature vectors,
while NAC would work better in the case of proper low-dimensional state feature

vectors.
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Figure 3.4. Two-state MDP: 100 independent runs. The learning success rate of
each algorithm at each dimensional feature vector. NAC is natural actor-critic
algorithm Peters et al. (2003).
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Figure 3.5. Two-state MDP: 100 independent runs. NAC is natural actor-critic
algorithm Peters et al. (2003). (a) Actual computational times [s] at each dimen-
sional feature vector for learning. (b) Trial time steps at each dimensional feature
vector for learning.
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Continuous State Problem

Interpretation of continuous state problems as POMDP: Although pol-
icy gradient RL algorithms, including the NTD algorithm, has been developed
with finite states and actions, we can apply these algorithms to continuous state
problems with function approximation by the following interpretation. When the
policy (or the state value estimate) in a continuous problem is represented by
the function approximator which has finite basis functions with bounded activa-
tion values and finite parameters, the continuous problem can be regarded as a
POMDP by regarding the activations biased to non-negative values and normal-
ized as the belief states of finite-state POMDPs (Aberdeen, 2003). Therefore,
if the NTD algorithm is applied to continuous state problems with function ap-
proximation by using bounded basis functions, the NTD algorithm can estimate
a local optimal policy parameter in terms of a POMDP model defined by the

function approximator .

Pendulum swing-up problem: In this section, we compare the NTD algo-
rithm with other policy gradient methods, NAC (Peters et al., 2003) and Kimura’s
actor-critic method (Kimura and Kobayashi, 1998), and examine the effect of
the eligibility trace for NPG estimation, with regard to the pendulum swing-up
problem, which is a continuous state problem. The pendulum swing-up problem
with limited torque is a well known benchmark in RL (Doya, 2000). The state
@(s) = [x,#]" comprises the angle and the angular speed, as shown in Figure 3.6
(a). The action is a target torque w and is a probability variable following the
Gaussian distribution defined by the policy

mo(uls) =

1 (u — ue(S))z) |

Vairods) <_W

where the mean, py(s), and the standard deviation, oy(s), are defined by the

policy parameterization and parameter. The pendulum dynamics are given by

. —pt+mglsin(x) + a
Tr =
ml?

Y

1Tn order to guarantee the above theoretical results, the stochastic process model of this
POMDP satisfies the ergodicity condition.
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where 7, is the actual torque of the system with the signum function sign(u),

max

u lu| < uma

=41
Il

max

sign(u) u otherwise.

The physical parameters are m = 1[kg], | = 1[m], ¢ = 9.8[m/s’], u = .01|N -
m|, and u™* = 5[N - m|. An episode lasts for 20 seconds and the sampling is
executed with the time step of 0.02[sec]. In many cases, a heuristic is employed,
where an episode ends when the pendulum is over-rotated in order to eliminate
the suboptimal policy that keeps the pendulum rotating continuously. In this
experiment, instead of introducing the heuristic, we set the reward function as

Tey1 = cos(T4y1) — (@411/507)?, in order to make this problem more challenging.

(a)

Figure 3.6. Pendulum swing-up task setting. (a) Control of a pendulum with lim-
ited torque. (b) Policy setting. The policy is a three-layer neural network based
on sigmoidal functions with ten hidden units, the outputs of which correspond

with the mean and the standard deviation of the normal distribution.

Here we use a general basis function setting. As shown in Figure 3.6 (b), the
mean and the standard deviation of the policy are implemented by a three-layer
neural network with ten hidden units, that is, the number of policy parameter el-
ements is 64. Each the element 6; was initialized by uniform distribution [—.5, .5]
at each simulation run. The state value function is implemented by normalized

radial basis function (RBF) network (Doya, 2000), the parameter of which was
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initialized as 0. We add a typical heuristic to all methods, where the update
of the policy is not executed in the first 100 episodes, in order to avoid using
the incomplete estimates from the critics for the policy updates. We also add a
heuristic operation to the NTD algorithm, where the learning rate of NPG esti-
mator, «,,, is adapted per ten episodes, according to the average of the norm of

the basis function Vglnmy(als) for ten episodes, Ejpepisodes { || Volnmg(als)|| },

Qy
B IE:1043pisocles { Hveln WQ(GIS)H }

That is because E { | Vglnmy(als)|| } varies during learning for the policy follow-

Qo

ing the Gaussian distribution, since ||Vylnmy(a|s)| is inversely proportional to
o¢(s) and oy(s) varies (decreases in many cases) during learning. In NAC, the
computation of the matrix inversion and the policy update are executed only at
the end of each episode, instead of each time step, in order to suppress computa-
tional costs. Despite this, NAC consumed about three times computational costs
than other methods in this experiment.

The comparison among the policy gradient algorithms was conducted under
a proper setting of the basis function for the state value estimation, which has
15 x 15 RBFs about = € (—m, 7] and & € [—15,15]. The meta-parameters of
each algorithm were set appropriately, as shown in table 3.4. Figure 3.7 (a) and
(b) show the average rewards and the average numbers of pendulum rotations
over the time course, respectively. Figure 3.7 (a) shows that the NTD algorithm
obtained the optimal policy quickly, while NAC and Kimura’s method needed
considerably more time steps for learning. Figure 3.7 (b) indicates that Kimura’s
method appeared to be trapped in a plateau, in which the pendulum continued
rotating, because this method did not follow the natural policy gradient. Al-
though Peters (2005) shows that NAC can be applied to the pendulum swing-up
problem appropriately with elaborate basis functions, the problem of setting the
basis function still remains very difficult. In most actual problems, we would not
know the elaborate setting for the basis function. Hence, we would use general
function approximators such as those used in this experiment.

The comparison among the NTD algorithms at the various eligibility decay
rates A\, € {0,.95,.99,1} was conducted under a rough setting for the state

value estimation as 3 x 3 RBF's, which cannot represent the state value function
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adequately. Figure 3.8 shows the average rewards over the time course, which
demonstrates that the performance improves as A, is close to one. Therefore,
we confirmed that the eligibility trace for the NPG estimator worked effectively
when the estimated state value function was poor or rough, consisting with the
theoretical result in the section 3.2.3. It is noted and supports the effectiveness
of the eligibility trace, that the system at A, = 0, which is without the eligibility
trace, was unstable since the learning parameters diverged at a rate of 20% each
simulation run, while the systems at the high eligibility decay rates were stable
since the divergence rates at A\, = .95, .99, and 1 were 3%, 3%, and 0%, respec-
tively. Figure 3.8 does not use the results of the episodes where the parameters
diverged.

(a)

=

—=— NTD T —=— NTD
1r|-e- NAC ‘ 0 B -e- NAC
E B » AC

100

Average Reward
Average Number of Rotations

1 10 100 1 10 100
Episodes [x102] Episodes [xlOz]

Figure 3.7. Pendulum swing-up problem; the averages over 30 independent runs.
Comparison among the policy gradient algorithms under the proper RBF setup,
[15 x 15], for the state value estimation, about (a) the average rewards and
(b) the average number of rotations in a episode, over the time course. NAC is
natural actor-critic (Peters et al., 2003) and AC is Kimura’s actor-critic method
(Kimura and Kobayashi, 1998).
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Average Reward

Episodes [xlOZ]

Figure 3.8. Pendulum swing-up problem; the averages over 30 independent runs.
Comparison among various A, of the NTD algorithm about the average rewards
over the time course under the improper (rough) RBF setup, [3 x 3], for the state

value estimation.
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Table 3.1. The NTD algorithm

Input:
e Initial parameters; 8, w and v define the policy my(als),
the NPG estimator (s, a) = w' Vglnmy(als) and
the value estimator V (s), respectively.
e Metaparameters; v is the discouted rate of the value function,
g, i, and a,, are the learning rates of @, w and v,
Ay and A, are the eligibility decay rates of w and v,

[ is the forgetting rate of w, and ¢ is a free parameter.

Initialization:
e Eligibility traces; z, :=0; z, :=0;.
e Initial condition; so ~ p(sg), ag ~ mg(ap|so)-
Fort=0,1,2--- do
a. Sampling
Execute action a;, observe next state s;;; and reward 741,
and decide next action a;1 ~ m(ap1|Se41)-
b. Critic update
o Forget NPG estimator parameter
w = fw;
o Compute TD-errors
Oy = Te41 + ’YV(St+1) — V(St)
0w = 0p — 5(5t, ay) + [/S(St+1, aii1);
o Update eligibility traces
Zw = VAW, + Vylnmg(als);
Zy = Y A2y + VUV(st);
o Update value function parameter
V=0 + Q,0,2y;
o Update NPG estimator parameter
W = W + 0y 2,
c. Actor update
0 =0+ yw;
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Table 3.2. Meta-parameters in the experiment, “Performance of NTD algorithm

at various (3”.

Algorithm  ~ J6] g Qy QA Ay
NTD .9 0 .3 1 .05 0 0
NTD .9 .99 .0015 1 .05 0 0
NTD 9 995 7.5x107% 1 .05 0 0
NTD 9 999 1.5x107* 1 05 0 0
NTD 9 9995 T7.5x107° .1 .05 0 0
NTD .9 1 4.5%x107° 1 .05 0 0
AC .9 - .03 - 05 O 0
AC 9 - .015 - .05 5 0
AC .9 - .005 - 05 9 0
AC .9 - .004 - .05 .99 0
AC 9 - .003 - 05 999 0

Table 3.3. Meta-parameters in the experiment, “Comparison with NAC algo-

rithm”.
Algorithm  ~ 1] oy Quw Oy A Ay €
NTD .9 1 0003 5 2 0 O -
NAC 9 999 .001 - - 0 - /180

Table 3.4. Meta-parameters in the experiment, “Pendulum swing-up problem”.

Algorithm RBF [z,2] ~ 8 o O Qy, A Ao €
NTD [15x15] 98 .99997 .001 .005 05 0 .95 -
NAC [15%15] .98 .99995 .005 - -0 - /18
AC [15>< 15] .98 - .0007 - 05 0 .95 -
NTD [3%3] 98 .99999 .0001 .0002 .02 O .02 -
NTD [3x3] 98 .99999 .0001 .0005 .02 .95 .02 -
NTD [3><3] 98 .99999 .0001 .001 .02 .99 .02 -
NTD [3><3] 98 .99999 .0001 .001 02 1 .02 -
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3.3 Extended NTD algorithm for variance reduc-
tion

In previous section and Morimura et al. (2005), we propose the NTD algorithm
as an implementation of NAC without matrix inversion, which comprise the
repetition of following three procedures. The first procedure updates the state
value estimate V(s) by TD()) learning (Sutton and Barto, 1998). The second
updates the NPG estimate w through the regression with the linear function
IT(st,a;) = @' Vglnmg(as|s;) to the temporal difference (TD) given from the
first,
8(se,a1) = o1 + YV (5141) — V™ (s0).

That is, the update direction of NPG estimate @ is 2

~
_

Aw = (0(st,at) — fZ(st,ar)) Volnma(ag|se). (3.13)

N[ =

t

Il
=)

The third updates the policy parameter € is updated by the weight w of fI in
the second.
Since f7(s, a) has the property for an arbitrary function g(s), dueto ), Vmy(als) =
0,
Exe)19(s)VeInm(als)|s} =0,

the expectation of Aw at a time-step ¢ (eq.3.13) does not depend on the value of
V(st). Therefore, the NTD algorithm uses the state value estimate at the current
time-step as the baseline function b(s) for estimating the NPG. However it has
not been clarified whether the state value function is a valid baseline function for

the variance reduction of w.

12While the NTD algorithm uses the eligibility trace in this procedure, here is the decay rate
A = 0. We omit the cases of arbitrary A € [0, 7], though results in this report are applicable.
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3.3.1 Variance Reduction for Natural Policy Gradient Es-

timates
Optimal baseline function b*(z, )

Consider a trace of the covariance matrix of the NPG estimates w as the variance
of w, 13

Var™(@) = Eyo){(@ — &)’}
where a? denotes a'a for an arbitrary vector a, and w* = E ) {@} has to be
equal to w* for the unbiased regression. In gradient descent regressions, how-
ever, it is difficult to treat directly with the variance of w. Instead we consider
Var"(Aw), the variance of the update direction Aw for w (at a fixed policy
0). Although a sequence of samples [sy, ..., s7] is not drawn independently in
almost cases of RL, where the relationship Var™(+ ", f(s:)) = 7 Var™(f(s)) does
not hold due to correlation between the different time-step samples, Greensmith
et al. (2004) derive useful results about the variance at a finite ergodic Markov
chain. By applying Corollary 5 and Lemma 6 with the increasing function A™ in
Greensmith et al. (2004), the following inequality holds

Var" (Aw) < o+ (3.14)
h™ (%V&WT ((Q(s,a) —b(s) — f}j(s,a))vglnﬁg(ﬂs))) ,

where o is independent with the choice of b(s), and Q(st, ar) = Ere) {Tt+1 + 7V(3t+1)\st, at}
and b(s) = V(s).
Because we are interested in the choice of the baseline function as b(s) = V (s),
the following looks for the optimal baseline function b*(s,w) that minimizes the
upper bound of Var™(Aw) with respect to b(s) and also minimizes the part of

the argument of the function h™,
03(b(s)) = Var ((Q(s,a) = bls) = fZ(s,)) Volnmy(als)
~ B { (1Q0s,) = 805) ~ f2(s,) Vil mfal) ~ Buro {80)) .

13(Peters and Schaal, 2006) consider ((w — (w))" G(8)(w — (w))) taking account of the met-
ric of the policy parameters as a proper variance about w, instead of Var™ (). These results

of this section can be applied instantly to the case of the above variance.
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Accordingly, since the optimal baseline b*(s,w) holds

9034(b(s))
b(s)

b(s)=b* (s,&)

it is derived as

Exr(o { Volnmo(als)*(Q(s.a) = fZ(s,0))s}

b* (s, 1) =
(5, ) E 0 Voln mo(als)?]s}

(3.15)

Note that b* has arguments not only s but also @ due to fZ(s,a) = @' Vglnmy(als).

Consistency of V" (s) and b*(s,w)
We show the following proposition for the policy parameterization:

Proposition 3 Let S and A; denote the numbers of states and available actions
at state s;, respectively. Let the matriz W(0) denote the subspace spanned by
Volnmg(a|s) over states and actions. If the rank of ¥(0) is equal to (or greater

than) Zle(Ai — 1), the policy parameterization is nondegenerate for the task:
fr.(s,a) = w* ' Velnmy(a|s) = Q" (s,a) — V(s). (3.16)

Proof: It comes from the fact that the constraint of f7(s,a) (eq.3.6) is satisfied,

because

S molals)Q(s.a) = V7(s) = 0,

ac A
for each state. U

From proposition 3 and eq.3.15, it is just under the following case for the state
value function to be equal to the optimal baseline function.
Proposition 4 If the condition of proposition 3 is satisfied,
b (s,w*) = V{(s).

Proof: It is obvious by substituting eq.3.16, “Q(s,a) — f&(s,a) = V(s)”, to
eq.3.15. U
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Proposition 4 means that the optimal baseline is equivalent to the state value, if
following two conditions are satisfied; (i) the policy parameterization is nonde-
generate for the task and (ii) the NPG estimate converges to the exact NPG.

In the NTD algorithm, the condition (ii), @ ~ w*, should be realized under
appropriate updatings on both the policy parameter as the actor parameter and
the NPG estimate in the critic parameter. It indicates that the state value func-
tion would not be different from the optimal baseline function so much in cases
using “appropriate” policy parameterization. Therefore, the state value function

could be a valid baseline function in such cases.

3.3.2 Extended NTD algorithm

In this section, we deal with the cases where the condition (i) and/or (ii) could be
violated. In these cases, the state value function could be much different from the
optimal baseline function. Therefore, we propose an extended N'TD algorithm,
which compensates for the differences between the state value function and the

optimal baseline function by introducing an auxiliary function,

oy Bre{ Vil mels Qs @) - V(s) - s als}
(5, @) = Eng) {Velnmg(a|s)?|s} ' (3:17)

The extended NTD algorithm is the same as the original one, except that the
auxiliary function is subtracted from TD as the regressand for the NPG estima-
tion,

d(st,ar) — B(sg,w) = i1 + YV (S141) — 0" (s, w). (3.18)

Although eq.3.18 seems roundabout to apply the optimal baseline, it is useful for
an eligibility trace technique with estimated value functions (see fig.3.9). In order
to estimate B(s,w), the gradient of UQA’LiJ(b(S))|b(s):V”(s)+Bb(s,w) with respect to

the parameter b of Bb(s) is used. Fig.3.9 is one of the complete algorithms.
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Input:
e Initial parameters; 6, w, v, [ b | are the parameters of
mo(als), f(s,a)=w  Vylnmy(als), V(s), [ B(s) ].
e Metaparameters; v is the discouted rate of the value function,
(g, Q, O, [ p | are the learning rates of 8, w, v, [ b |.
Aw, Aus[ Ay | are the eligibility decay rates of w, v, [ b ].
[ is the forgetting rate of w.

Fort=0,1,2--- do
a. Sampling
Execute action a;, observe next state s;;; and reward
Ti41, and decide next action ayyq ~ mo(api1|Sit1)-
b. Critic update
o Forget TD estimator parameter
w = fw;
o Compute TD-errors
0y 1= Tyy1 + ’Yv(stﬂ) - V(St)
0w = 0y — [T (1, ar);
[ 0y := 00 — B(3t=w> + VAbB(StH,W); ]
o Update critic eligibilities
Zy =Y \2Zy + VUV(st);
Zy = YAZw + Volnmg(ag|s:);
[ 25 == Yoz + Voln my(ae]s,) 2V, B(sp, w); |
o Update value function parameter|s]
V=V + 00y 2y
[b:=b+ apdpzs; |
o Update NPG estimator parameter
W= w+ a,0,2,;
c. Actor update
0 =0+ oyw;

Figure 3.9. The [extended] NTD algorithm; The normal NTD algorithm is spec-
ified by skipping the contents in the square brackets. In the case of the extended
NTD algorithm, the square bracket symbols are ignored.
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Current Following State

State | Action | S; | S5 S
S1 Ay 1 0 0
S1 Ag 0
S Ay 021]02] 0.6
S Ag 06|02 0.2
Ss Ay 0.8]0.1| 0.1
Ss Ao 0.1]01] 0.8

Table 3.5. Transition probabilities on the three-state MDP

r(S) =1,  &(S) =1 01]"
r(Sy) =0, (%) =[1,1]
r(Ss) =2,  #(Ss)=[1,10]"

Table 3.6. The reward function and the feature vector of the state on the three-
state MDP

3.3.3 Numerical Experiments
MDP with inadequate policy

We selected the 3-state 2-action MDP in Baxter et al. (2001) where the state-
transition probability and the parameterization of policy are modified from orig-
inal. There are three kinds of states Si, 53,53 and each state has two kinds
of actions A;, A;. The state-transtion probability is showed in table 3.5. Each
state is obserbed as two-dimentinal vector ¢(s) = R? and has the corresponding
reward r(s) as table 3.6.

Under this policy parameterization, the condition of proposition 3 cannot be
satisfied. Thus, even when w is equal to the exact NPG, the state value could
not be the optimal baseline function by proposition 4. Fig.3.10 indicates that the
extended NTD suppresses the variance of the NPG estimates than the normal
NTD.
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, [—extend || o6 : | ——normal]+
Initial @ Initial ©

Figure 3.10. MDP; phase plane analyses; policy parameter trajectories (a) the ex-
tended NTD, (b) the normal NTD.

Pendulum swing-up problem

This section gives the comparison between NTD algorithms and other policy
gradient methods; NAC (Peters et al., 2003), Kimura Actor-Critic (Kimura and
Kobayashi, 1998) in the same setting as the pendulum swing-up problem in sec-
tion 3.2.5.
The auxiliary function B(s,w) in the extended NTD is decomposed to two
);

terms; B(s,w) = by(s) — ba(s,w), where

o) = BT ma(als P(Q(s.0) = V()

! E"{Vylnmy(als)?} ’

_ E{Vylnmy(a|s)?fZ(s,a)}
EYVylnmy(als)?}

When we use the Gaussian distribution policy in section 3.2.5, while b;(s) has
to be estimated, bo(s,w) could be solved analytically: b,(s) = Vous(s), bs(s)
VOUQ(S)a

(2b7b,b] + 4bTb,b] + SbT b,b] )
obib, +20b, b, '

bQ(S, (:J) =
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Fig.3.11 showed that the extended NTD algorithm works better than the other
PG algorithms.

(a) (b)

'["'@ NTD
0.8r|-@-Ext NTD :
| ——Ext NTD* :
0.6r  NAC : '
o —=AC | & A
[
5 04
@
(]
g
5 0.2r
>
2
O,
-0.2f
. . ! 0 30 60 ) 120 150
Input . cos(x) sin(x) X Episodes [x107]

Figure 3.11. Swing-up pendulum problem; (a) The policy is a three-layer neural
network with 10 hidden units. (b) The average rewards over 30 independent
runs. Comparison among PGs under the improper RBF setup, [5x 5|, for the
state value estimation. Extended NTD* is the alternative algorithm computing

by analytically.
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3.4 Utilizing Baseline Adjustment Function for

Policy Parameterization

As mentioned in chapter 1, it would be a difficult and important matter how
to parameterize an appropriate policy for RL problems. Here, we discuss this
problem and focus especially on the problem how to regulate the number of

hidden-units of multi-layer perceptron as the policy automatically.

3.4.1 Absolute value of auxiliary function as criterion

From eq.3.17, the auxiliary function of extended NTD algorithm to adjust base-
line, B(s,w), represents the differences between the state value function V7(s)

and the optimal baseline function b*(s, w),
B(s,w) =b*(s,w) — V7(s).

When the policy parameterization is nondegenerate for the task (and the NPG
estimate converges to the exact NPG), the state value is equal to the optimal

baseline by proposition 4,
V7™(s) = b*(s,w").

Accordingly, if the policy parameterization is nondegenerate for the task, the

absolute value of auxiliary function becomes zero,

Meanwhile, if the policy parameterization is degenerate (or not sufficient),
B(s,&")| £ 0.

also holds by proposition 3 '*. Therefore, the absolute value of auxiliary function

could be a valid criterion for the policy parameterization,
c(m) =) d(s)|B(s, "),
seES

where the parameterization of the policy 7 is better in smaller ¢(m).

14Even when the policy parameterization is degenerate, | B(s,@*)| = 0 holds under 7y (a;|s) =

mg(a;|s) for all a; A and a; € A. However, such case seldom occurs in RL
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3.4.2 Autonomous adjustment of the number of hidden-

units of multi-layer perceptron

As one of applications utilizing the criterion ¢(m), an auto-adjustmenting algo-
rithm for the number of hidden units of a multi-layer perceptron (MLP) used as
the policy is proposed here. Although the estimation for the exact value of the
criterion ¢(m) would be intractable, some properties of the criterion ¢(7) can be
evaluated and is enough to adjust the number of hidden-units, e.g.:
- when ¢(7) is increasing, add the hidden-unit,
- when ¢(7) is decreasing, do nothing,
- when ¢(m) does not change and is larger than sufficiently small constant ¢,
add the hidden-unit,
- when ¢(m) does not change and is smaller than sufficiently small constant ,
do nothing.
In order to evaluate the above properties about ¢(7), we use favor of stochastic
process (Osogami and Kato, 2007), especially random walk (figure 3.12). The
complete algorithm is shown in Algorithm 3 that adjusts the number of MLP’s
hidden-units.

30=Xmax [
20r

10r

0 20 40 60 80 100

Figure 3.12. Example of random walk; p(xer1 = 7 + 1|xe = j) = €. horizontal

and vertical axes represent episodes e and a state x of the random walk.
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Algorithm 3 Adjustment of number of MLP’s hidden-units

Inputs:
e Inputs for extended NTD algorithm (Fig. 3.9)

e Metaparameters for random walk; &, ¢pax, Xmax, €maxand 3

Initialization:

e Initialization for extended N'TD algorithm

e Parameters of random walk; y := 0; e := 0;.

e Criterion of policy parameterization; ¢_1 := cpay; ¢ := 0.
Fort=0,1,2--- do

Extended NTD algorithm (Fig. 3.9);

c:=c+ ‘B(st,w) ;

If mod(t, k) =

c:=c/k;
e:=e+1;
If c.i <c
X =x+1L
If Xmax < x (cis increasing)
addHiddenUnit;
x:=0; e:=0;
c_1 :=min(c,2¢_1);
end
else
x=x-1
If —x < —Xmax (cis decreasing )
x:=0; e:=0;
c_1 :=max(c,c_1/2);
end
end

end
If enax < € and cpax <= c_1 (¢ does not change and is not be sufficiently small)

addHiddenUnit;
x:=0; e:=0;
end

end




3.4.3 Numerical experiment

We apply the proposed algorithm into the pendulum swing-up problem as ex-
plained in section 3.2.5. Figure 3.13 shows the time courses of the average rewards
and the estimated criterion ¢(). It indicates that proposed adjustment algorithm
works better than or as well as the case of a fixed appropriate number of MLP’s
hidden-units. The time course of the number of the MLP’s hidden-units shown
in figure 3.14, where it was confirmed that the number converged to about 10. It
suggests that the MLP of 10 hidden-units would be sufficient policy parameteri-
zation for pendulum swing-up problem. Figure 3.15 showed detail results about

algorithm 3 of one simulation run.

—~
5
N—
—
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N~—

0.27

0.001}
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Episodes [x102] Episodes [x102]

Figure 3.13. Pendulum swing-up problem; the averages rewards and the the
criterion estimates ¢(m) over 30 independent runs. Comparison between fixing
and auto-adjustmenting NTD algorithms about the number of hidden-units of

the policy under the improper RBF setup, [5 x 5].
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Average Number of Hidden Units

0 10 20 30
Episodes [x102]

Figure 3.14. Pendulum swing-up problem; the number of the MLP’s hidden-units

of the policy over 30 independent runs.
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3.5 Summary and Discussion

This chapter presents the NTD algorithm, in which the regression weights of the
TD error with the basis functions defined by the policy parameterization repre-
sents the natural policy gradient. If the eligibility decay rate of the NPG estimator
is equal to one, the NPG estimate is updated by using the gradient of the actual
observed rewards and not those of the estimated state value function; hence, the
estimate is unbiased under a fixed policy. The experimental results showed that
the NTD algorithm could represent the natural policy gradient and could avoid
plateaus, which is consistent with the results of Amari (1998). This is extremely
useful because plateaus often occur in RL problems when a suboptimal policy
is more easily obtained than an optimal policy, as presented in the pendulum
swing-up problem, The experimental results also demonstrated that the NTD
algorithm suppresses computational costs than the existing NPG method (Peters
et al., 2003) and the eligibility trace for the NPG estimator works efficiently.

This chapter also presented that the state value function could become a valid
baseline function with an appropriate policy parameterization for a task. For the
case where the state value function diverges from the optimal baseline function,
the extended version of the NTD algorithm was proposed, which compensates for
the differences between the state value and the optimal baseline by introducing
the auxiliary function.

For the policy parameterization of the policy, we derived the criterion to
judge whether or not the current parameterization of the policy is sufficient for
the achievement of task objective, and proposed the algorithm to adjust the
number of hidden units of a multi-layer perceptron. Additional theoretical and
experimental analyses are necessary to further understand the properties and the
effectiveness of the NTD algorithm.
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Chapter 4

Policy Gradient with Derivative

of Stationary Distribution

As pointed out in previous chapter, policy gradient reinforcement learning (PGRL)
is a popular family of algorithms in reinforcement learning (RL) for improving a
policy parameter to maximize the average reward by using the average reward gra-
dients with respect to a policy parameter, which are called policy gradients (PGs)
(Williams, 1992; Kimura and Kobayashi, 1998; Baird and Moore, 1999; Sutton
et al., 2000; Baxter and Bartlett, 2001; Konda and Tsitsiklis, 2003). However,
most of conventional PG algorithms for the infinite-horizon problem neglect a
term associated with the derivative of the stationary distribution in PGs, since
there are no algorithms to estimate this derivative so far (Baxter and Bartlett,
2001; Kimura and Kobayashi, 1998). The derivative means the measurement of
how the stationary distribution changes due to the changes of the policy param-
eter. While the biases introduced by this omission can be reduced by taking a
forgetting (or discouted) rate v close to 1, it often increases the variance of the
PG estimates and the setting “y = 1”7 cannot be tolerated in these algorithms.
This tradeoff makes it difficult to find an appropriate v in practice. Meanwhile,
there is the average reward PG algorithm (Tsitsiklis and Van Roy, 1999; Konda
and Tsitsiklis, 2003), which eliminates the use of the forgetting rate by introduc-

ing a differential cost function as a solution of Poisson’s equation. Because that
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was one and only PG framework proposed for maximizing the average reward!,
such studies about the average reward optimization are needed and significant.

Here, we propose a new PG framework with estimating the log stationary
distribution derivative (LSD) as an alternative and useful form of the derivative
of the stationary distribution for estimating PG. It is our main result in this
chapter that an method to estimate LSD is derived through backward Markov
chain formulation and a temporal difference learning method. The realization of
this LSD estimation naturally enables the average reward gradient to be estimated
regardless of the value of v. Especially, in the case of “y = 07, the estimation
PG does not need to learn value functions. That is, a learning agent estimates
LSD instead of value functions in this PG framework. One possible advantage
of this framework is that a closed-form solution for an optimal baseline function
of the PG can be computed by least squares, while that for the conventional
PG framework has not yet been proposed and would be intractable (Greensmith
et al., 2004).

The following is the outline: In Section 1, we describe motivation to estimate
LSD. In Section 2, we propose an LSLSD(A) algorithm for the estimation of
LSD by a Least Squares temporal difference method based on the backward
Markov chain formulation. In Section 3, the LSLSD(A)-PG algorithm is instantly
derived, which is a new -free PG algorithm utilizing LSLSD(\). To verify the
performances of the proposed algorithms, the numerical results in simple Markov
Decision Processes (MDP) are shown in Section 4. In Section 5, we summarize
this chapter and also give other posibility brought by the realization of the LSD

estimation, which concerns a natural policy gradient.

4.1 Why log stationary distribution derivative is

important for PG estimation

We briefly review the conventional PGRL methods and present the main idea
of our new algorithm. The policy gradient RL algorithms update the policy

parameter @ in the direction of the gradient of the average reward R(€) with

L Although there is R-learning for maximizing the average reward, it is the algorithm based
on the value function not the PG algorithm (Sutton and Barto, 1998).
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respect to 6
OR(0) OR(6)]"
26, 7 06, ’
which is often referred as the policy gradient (PG) for short (see Chapter 2.1 in

VoR(6) = {

detail). This is given by

Ve R (0 ZZ Z d"(s)me(als) (Velnmg(a|s) + Velnd™(s)) p(si1|s, a)r(s, a, s41).

s€S a€A s11ES

(4.1)

It is noted that, in this chapter, s x, a,x, and r,; denote a state, an action,
and an immediate reward after k time-steps from a state s, an action a, and
an immediate reward r, respectively, and vice versa in —k. As the derivation of
the gradient of the log stationary state distribution Vylnd™(s) is nontrivial, the
conventional PG algorithms (Baxter and Bartlett, 2001; Kimura and Kobayashi,

1998) utilize an alternative representation of the PG

VoR(0) = ) ) d(s)mo(als)Velnmy(als)Q] (s, a)

s€S acA
Y)Y d(s)Volnd(s)V](s), (4.2)

seS

where Q7 (7,u) = limg o EM(Q){ZkI:{:l v 1r k|s,a} is an action value function
and V(r) = limg .o EM(@){Zszl vl ]s} is a state value function with dis-
couted rate v € [0,1) (Sutton and Barto, 1998).

Since the contribution of the second term of Eq.4.2 becomes smaller as
approaches 1 (Baxter and Bartlett, 2001), the conventional algorithms (Baxter
and Bartlett, 2001; Kimura and Kobayashi, 1998) approximated the PG only from
the first term by taking v ~ 1. Although the bias introduced by this omission
becomes smaller as 7 is set close to 1, the variance of the estimate becomes larger.

Here we propose an alternative approach, which estimates the log stationary
distribution derivative (LSD), Vylnd™(s), and uses Eq.4.1 for the derivation of
the PG. A marked feature is that we do not need to learn the value function, and
thus, the algorithm is free from the bias-variance trade-off in the choice of the
discouted rate 7.

We should note that two methods to estimate the gradient of the (station-
ary) state distribution have already been proposed, although these are different
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from our proposal and have the following problems. The first is the method in
operations research called “the likelihood ratio gradient” or “the score function”
(Glynn, 1991; Rubinstein, 1991). However, their applicability is limited to regen-
erative processes (Baxter and Bartlett, 2001) 2. Another method proposed by Ng
et al. (2000) is not a direct estimation of the gradient of the state distribution
and is done via the estimation of the state distribution with density propagation.
Therefore, these methods require the knowledge of which state the agent is in,

while our method only needs to observe the feature vector of the state.

4.2 Estimation of the Log Stationary Distribu-
tion Derivative (LSD)

In this section, we propose an LSD estimation algorithm based on least squares,
LSLSD(A). For this purpose, we formulate the backwardness of the ergodic
Markov chain M (8), and show that LSD can be estimated in the temporal dif-
ference framework (Sutton, 1988; Bradtke and Barto, 1996; Boyan, 2002).

4.2.1 Properties of forward and backward Markov chains

According to Bayes’ theorem, a backward probability from a current state to a

past state-action pair is given by

p(s|s_1,a1)p(s_1,a_1)
s_1,a_1 p(S"S*la a*l)p(sfly CL,1> .

q(s-1,a-1s) = >

The posterior g(s_1,a_1|s) depends upon the prior distribution p(s_1,a_1). When
the prior distribution follows the stationary distribution and the policy—p(s_1,a_1) =

mo(a_1|s_1)d™(s_1)—the posterior is termed as the stationary backward probabil-

2While the log stationary distribution gradient with respect to the policy parameter is one
of the notations of the likelihood ratio gradient or score function and might be referred to as
such; we term it LSD in this paper.
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ity and the subscript B(0) is appended to it, where it appears as gg(g(s—1, a_1|x),

p(s|s—1,a—1)mp(a—1|s—1)d"(s—1)
dm(s)
pM(O)(S, a_q|s—1)d"(s_1)

- e . (4.3)

QB(B)(S—la CL_1|S) =

If a Markov chain follows gg(g)y(s—1,a—1|s), we term it as the backward Markov
chain B(0) associated with M (8) following pas(g)(s, a—1|s—1). Both Markov chains—
M (0) and B(@)—are closely related as described in the following two proposi-

tions:

Proposition 5 Let a Markov chain M(0) characterized by a transition proba-
bility paey(s|s—1) = >, Pue)(s,a—1|s—1) be irreducible and ergodic. Then the
backward Markov chain B(0) characterized by the backward (stationary) transi-
tion probability qpe)(s-1|s) = >_, | aefs5-1,a-1|s) against pye) is also ergodic
and has the same unique stationary distribution of M(0):

dur(o)(s) = dp(e)(s), (4.4)

where dyg)(s) = d(s) and dpe)(s) are the stationary distributions of M(0) and
B(6), respectively.

Proof: By multiplying both sides of Eq.4.3 by d™(s) and summing over all possible

a_1 € A, we obtain

ap(o)(5-1|8)d"(s) = parcey(sls—1)d"(s-1). (4.5)

Then, > s asofs-1]s)d™(s) = d™(s_1) holds by summing both sides of Eq.4.5
over all possible s € S, indicating that (i) B(@) has the same stationary distri-
bution of M(0) and (ii) B(0) has the same irreducible property as M (0). Eq.4.5
is reformulated by the transition probability, pr(e)(s|s—1) or gse(s-1]s), assem-
bled to the matrix notation, Py @) or Qp), respectively 3 and the stationary

distribution to the vector notation d™: 4

Qs = diag(d™)™! PMT(O) diag(d™).
3Tt is noted the bold Qp(6) has no relationship with the state-action value function Q" (s,a)
4The function “diag(a)” for a vector a € R¢ denotes the diagonal matrix of a, that is,
diag(a) € RI*4,
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We can easily see that the diagonal components of (Pyg))" are equal to those
of (Qp(e))" for any natural number n. This implies that (iii) B(@) has the same
aperiodic property as M (0). Eq.4.4 is directly proven by (i)—(iii) (Schinazi, 1999).
UJ

Proposition 6 Let the distribution of s_k follow d™(s); then, the expectations
of both the directional Markov chains regarding the sum of arbitrary functions

f(s—k,a_x) over k € [0, K| are equivalent:

EB(O){ i f(s_p,a_) S} = EM(G){ i J(5-k,ag)
k=0

k=0
where Epgy and Ky gy denote the expectations over the forward and backward
Markov chains, B(0) and M(8), respectively, and E{-|d"(s_x)} = E{-|p(s_k) =
d"(s_k)}. Eq.4.6 holds even at the limitation, K — oc.

s, d”(s_K)}, (4.6)

Proof: By utilizing the Markov property and substituting Eq.4.3, we have the
following relationship:

QB(O)(th A_1,...yS—_K, afKIS)
= qB(o)(5-1,a-1[8) -+ - qB(o)S—K, A-K |5 K1)

X pM(e)(S, a_1|s_1) e 'pM(O)(S—K—f—l; a—K|3—K>dﬂ<S—K)-

It instantly proves the proposition in the case of the finite K. Since the following
equations are derived with Proposition 5, the proposition in the limit case K —

oo is also instantly proven,

Aim Ep@f{f(s-k,a-k)|s} = Aim Evo{f(s-x,a-r)[s,d"(s-x)}

= > > mlals)d(s)f(s.a).

s€S acA
O

Propositions 5 and 6 are significant because they indicate that the samples
from the forward Markov chain M (@) can be used directly for estimations con-
cerning the backward Markov chain B(0) under the state distribution converging

the stationary distribution, and thus can be utilized in the following sections.
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4.2.2 Temporal difference learning for LSD from the back-

ward to forward Markov chains

LSD, Vyglnd™(s), is decomposed using Eq.4.3 to

Volnd(s

p(s|s_1,a_1)mg(a_1|s_1)d"(s_1)
{Vgln 7T9(a_1|8_1) + VQIII dW(S_l)}
= Z Z aaoyS—1,a—1|s){Velnmg(a_1|s_1) + Velnd(s_1)}

s_1€ESa_1€A

= Ego{ Volnmg(a_1|s-1) + Vglnd™(s_1)|s}. (4.7)

s_1€Sa_ 1€A

Noting that there exist Vylnd™(s) and Vylnd™(s_y) in Eq.4.7, the recursion of
Eq.4.7 yields

K
Volnd'(s) = lim EB(Q){ > Vilnmg(a_yls_i) + Voln d’r(s_K)‘s}. (4.8)
k=1
Eq.4.8 implies that the LSD of a state s is the infinite-horizon cumulation of
the policy eligibility Vylnmy(a|s) through the backward Markov chain B(0) from
state s. From Eqgs.4.7 and 4.8, LSD could be estimated with temporal difference
(TD) learning (Sutton, 1988) concerning the following backward TD § on the
backward Markov chain B(0) rather than M (6).

d(s) = Vylnmg(a_1|s_1) + Velnd"(s_1) — Velnd'(s),

where the first two terms are regarded as the one-step actual observation of the
policy eligibility and the one-step ahead LSD on B(0) against the LSD of current
state, which is the last term °.. While d(s) is a random variable, Egg{d(s)|s} = 0
holds. It motivates the minimization of the mean squares of the backward TD-
error, Epg{d(s)?} for the estimation of LSD, where &(s) is comprised by the
LSD estimate Vglnd™(s) rather than LSD Vylnd(s). &(s)? denotes &(s)Td(s)
for simplicity.

SWhile the TD for the value functions is well-known and concerns 7 on M (6) (Sutton and
Barto, 1998), this TD for LSD concerns Vylnmy(als) on B(6).
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With an eligibility decay rate A\ € [0,1] and a backtrace time-step K € N,

Eq.4.8 is generalized, where N denotes the set of natural numbers:

K
Volnd'(s) = EB(Q){ Z NV olnmp(ag|s_)+(1 — A)Velnd(s_y) }
k=1
+ MVln d”(sK)\s}.

Along with this modification, the backward TD is modified into the backward
TD()), ) x(s),

K

5)\7[((5) = Z )\k_l{Van We(a_k|3_k)+(1 — /\)V@ln dﬂ(S_k)}

k=1

+ MEVylnd"(s_x) — Volnd™(s),

where the unbiased property, Eg@{dx k(s)|s} = 0, is still retained. The mini-
mization of ]EB(Q){S,\K(S)Z} in A\ = 1 and the limit K — oo is regarded as the
Widrow-Hoff supervised learning procedure. Even in a larger A\ and K instead of
the above setting, this minimization would be less sensitive to a non-Markovian
effect as in the case of the conventional TD(A) learning for the value functions
(Peng and Williams, 1996).

In order to minimize EB(Q){S,\K(S)Q} as the estimation of LSD, we need to
gather many samples drawn from the backward Markov chain B(8); however,
actual samples are drawn from a forward Markov chain M (@). Fortunately, by

utilizing Propositions 5 and 6, we can use the following exchangeable property:

EB(B){&,K(S)Q} = dpefs) EB(O){(§)\,K(S)2|S}
seS
=3 @) B {dk(s)?ed*(s i)}

seS

_ ]EM(G){sA,K(s>2|dW(3_K)}. (4.9)

Namely, the actual samples can be reused for minimizing EB(B){S/\, x(s)?}, pro-
vided s_x ~ d7(s). In real problems, however, the initial state is rarely drawn
from the stationary distribution d(s). To interpolate the gap between theoreti-

cal assumption and realistic applicability, we would need to adopt either of the
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following two strategies: (i) K is not set at such a large integer if A ~ 1; (i) A
is not set at 1 if K ~ t, where t is the current time-step of the actual forward
Markov chain M (80).

4.2.3 LSD estimation algorithm: Least squares on back-
ward TD()\) with constraint

In the previous sections, we introduced the theory that the estimation of LSD
is conducted by the minimization of the mean squares of & x(z)2 on M(),
EM(Q){S/\7K(Q7)2|CZ7T(S_K)}. However, LSD also has the following constraint derived
from ) od"(z) =1

Eno{Velnd(s)} =) d(s)Velnd(s) = Vo > _d(s) = 0. (4.10)

s€S s€S
In this section, we propose an LSD estimation algorithm, LSLSD()\), based on
least squares (Young, 1984; Bradtke and Barto, 1996; Boyan, 2002), which si-
multaneously attempts to decrease the mean squares and satisfy the constraint.
We consider the situation where the LSD estimate Vyln d™(s) is represented by a

linear vector function approximator

f(s:92) = Qe(s),

where ¢(s) € R¢ is a basis function and Q = [wy,...,wy]" € R¥€ is an ad-
justable parameter matrix, and assume that the optimal parameter £2* satis-
fies Volnd™(s) = Q*¢(s) . For simplicity, we focus our attention only on the
i'th element ; of the policy parameter 8, notating f(s;w;) = w;' ¢(s) and
Vi, Inmy(als) = dlnmy(als)/00; and oy k(s,w;) as the i'th element of &y x(s).

Accordingly, the objective function to be minimized is

c(wi) = 3Euo (Brr(sw a0} + 3B (w0, (1)

STf the estimator cannot represent LSD exactly, LSLSD(A) would behave as suggested by
Sutton (1988); Peng and Williams (1996), which will be confirmed in a numerical experiment.

However, we do not analyze it theoretically.
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where the second term of the right side is for the constraint of Eq.4.10 7. Then,

the derivative is

. A 1
V€ (Wi) = Epre){0a 1 (85 wi) Vi, 00k (83w:)|[d(sk)} + §VwZ~EM(e){f(8; w)}?,
(4.12)

where

K
Ori(s;w;) = Z A, Inmg(ag|s—_i) + w; Vi, 0xx (s3w0),
k=1

Vi (siwi) = (1=2) > N 7'd(s k) + N p(s_x) — B(s).

Although the conventional least squares method aims to find the parameter sat-
isfying V,,.e(w;) = 0 as the true parameter w}, it induces estimation bias if a
correlation exists between the error oy x(s;w?) and its derivative Vi, g (s; w?)
concerning the first term of the right-hand side in Eq.4.11. That is, if

Enr(o){0nx (51 w]) Vidax(s;w])|d(s_x)} # 0,

then V,,e(w}) # 0. Since this correlation exists in general RL problems, we apply
the instrumental variable method to eliminate the bias (Young, 1984; Bradtke
and Barto, 1996). It requires that leﬁ Ak (8;w;) is replaced by the instrumental
variables ¢(s) that has a correlation with V05 x (s; w?) but not dy x (s;w?). This
condition is obviously satisfied when ¢(s) = ¢(s) as well as LSTD()) (Bradtke
and Barto, 1996; Boyan, 2002). Instead of Eq.4.12, we aim to find the parameter

making the equation

Vie(wi) = Earo){onx(501)B(5)|d(5- k) } + Enrio) {D(5) Eario){(s)}  wi
(4.13)
be equal to zero, in order to compute the true parameter w;, that is, %wie(wj) =
0.
From here, we change the notation to s; denoting the state at time-step ¢
on the actual Markov chain M(0). The proposed LSD estimation algorithm,

TAs LSLSD()) consider the two objectives in equal measure, we can instantly extend it for
the problem minimizing ]EM(g){sf\ (2)]d™(s—k)} subject to the constraint of Eq.4.10 with the
Lagrange multiplier method.
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LSLSD()) sets that the backtrace time-step K is equal to the time-step ¢ of the
current state s; under the eligibility decay rate A € [0,1). That is,

Onrc(s15w:) = gai(se-1) + (2a(s021) — @(s0)) T wi,

where gy ;(st) = ZZ:O ARV, Inmg(ag|sk) and zy(s;) = (1 —\) 22:1 AR p(sy) +
A (sp). The expectations in Eq.4.13 are estimated by &

[gi_IgOEM(e){gA,K(S;wi)¢(3)|d7r($—f<)}

~ D Bl gl ) — (B(s) — zalsin) Twi)

=br — Ar w;,
where by = £ Y, $(si) gri(si-1) and Ap = 230, dsi)((s0) — za(s11))T,

and

9){¢ T+1Z¢5t

= Cr.

Therefore, by substituting these estimators to Eq.4.13, the estimate w; at
time-step 1" is computed by

LSLSD()) for the case of the matrix parameter Q* rather than & is shown
at Algorithm 1.

8When the limit T — oo at A € [0, 1), these estimators converge to the true values. Although
it could be proven based on the results of Bradtke and Barto (1996); Boyan (2002), we omit
the proof here.
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Algorithm 1
LSLSD()): Estimation for Vyln d™(s)

Given:
e a policy my(als) with a fixed 6,
e a feature vector function of state ¢(s).
Initialize: A € [0,1).
Set: ¢c:=0;z =0;,9g:=0; A:=0; B:=0.
fort=0to7T —1do

if t =0 then

z = P(s0); ¢:= @(s0);
else

z: =AMz + (1= N)p(s);
end if

=+ P(s141);
g = A\g + Vlnmg(alsy);
A=A+ d(si11)(P(s111) — 2)7;
B := B+ ¢(s111)9";
end for
Q:=(A—-cc'/t)'B;
Return: Volnd™(s) = Q ¢(s).

4.3 Policy update with the LSD estimate

Now let us define the PGRL algorithm based on the above LSD estimate. The
realization of the estimation for Vylnd™(s) by LSLSD(\) instantly derives the
following estimate for the PG (eq.4.1), being independent of the discount factor
:

T—

>—‘

VoR(0 (Volnmg(ag|s) + Volnd™(s;)) r(se, at, Se41) (4.14)

12
’ﬂlH
N

N[ =

(Vgln mo(ae|sy) + ﬁgln d”(st)> (8¢, g, Sev1) (4.15)
0

~+~
I
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The policy parameter can then be updated through the stochastic gradient method
with an appropriate stepsize a (Bertsekas and Tsitsiklis, 1996):°

0 =0+ a(Volnmg(as|s;) + 6911& d"(s¢))res1,

where := denotes the substitution of the right to the left and r,,; is the immediate
reward defined by the reward function r(s; at, se41). LSLSD(N)-PG without
baseline function is shown at Algorithm 2 as one of the simplest realizations on
PG algorithm, utilizing LSLSD(A). In algorithm 2, the forgetting rate parameter
B3 €10,1) is introduced to discard the past estimate given by old values of 8.

Algorithm 2
LSLSD(A)-PG: Optimization for the policy

without baseline function

Given:
e a policy my(ay|s;) with an adjustable 8,
e a feature vector function of state ¢(s).
Initialize: 6, A € [0,1), 5 € [0,1), .
Set: ¢c:=0;z =0;g:=0; A:=0; B:=0.
fort=0to7 —1do

if t =0 then
z:=P(s0); €:= P(s0);
else

z:= Az + (1 — N)p(s);
0 := 0 + a,{Volnmg(as|s;) + QT d(s¢) }ress;
end if
c:= fe+ @(sev1);
g = [BAg + Volnmg(as|ss);
A= BA+ P(ser1)(B(s11) — 2)T;
B =3B+ ¢(s141)9";
Q= (A—cc /) B,
end for

Return: p(a|s; 0) = my(als).

9 Alternatively, @ can also be updated through the bath gradient method: := 0+Oé§9R(0).
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There is the other important topic for function approximation: how to set the
basis function ¢(s) of approximator, particularly in the continuous state prob-
lems. For the PG algorithm, the objective concerning LLSD estimate is just to pro-
vide the estimate of PG ) __ s> .1 d"(s)mg(a|s)Veln d™(s)7(s, a), but not to pro-
vide the precise estimate of LSD Vgln d"(s), where 7(s,a) = 37, csp(st1]s, a)r(s, a, s41).

Therefore, the following proposition would be useful:

Proposition 7 Let the basis function of the LSD estimator be

é(s) = molals)r(s,a),
acA
where 7(s,a) = ZS+1€S p(st1ls,a)r(s,a,si1), then the function estimator, f(s;w) =
W .eaTolals)T(s,a), has the ability to represent the second term of the PG,
Y oees 2oaca d(s)mo(als)Velnd(s)7(s,a), where the adjustable parameter w is a

d dimensional vector:

N d(s)molals)r(s,a)Velnd(s) =Y > " d(s)m(als)(s, a) f(s;w),

s€S acA s€ES acA

where w* minimizes the mean error, e(w) = 3 > s d"(s){Volnd(s) — f(s; w)}>.

Proof: It is proven by

Voe(w*) =Y > " d'(s)m(als)7(s,a){Velnd(s) — f(s;w*)} = 0.

s€S acA

4.3.1 Baseline function for variance reduction of policy
gradient estimates with LSD

Since the variance of PG estimates with LSD, eq.4.15, might be huge, we consider

the variance reduction by using a baseline function. The following proposition

provides what kind of functions can be used as the baseline function for the PG
estimation with LSD.
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Proposition 8 With the following function of the state s and the following state
Sy1 on M(6),

p(s;s41) = c+g(s) — g(s41), (4.16)
where ¢ and g(S) are an arbitrary constant and an arbitrary function of the state,

respectively, the derivative of the average reward R(0) with respect to the policy
parameter 0 (eq.4.1), VoR(0), is transformed to

VoR(0) = 330 3 ds)malals)plsails,0)

SES a€A s1E€S

{Volnmy(als) + Velnd™(s)} r(s,a, s11) (4.1)

= ZZ Z d"(s)mo(als)p(si1ls, a)

s€S acA s 1ES

{Volnmy(a|s) + Volnd™(s)} {r(s,a,s+1) — p(s,s41).}  (4.17)

Proof: If the following equation is proved,

Z Z Z d"(s)me(als)p(si1]s,a) {Velnmy(al|s) + Velnd™(s)} p(s,s41) =0

s€S acA s €S

(4.18)

the transformation to eq.4.18 obviously holds. Because of eq.4.16 and

Y aeaTolals)Volnmg(als) c = Voc =0,
Y oses A(5)Volnd(s) c = Voc =0,

=33 S dmlals)psials,a) {Valnmo(als) + Volnd(s)} p(s, 511)

s€S acAs €S

= Z Z Z d"(s)mg(a|s)p(s4+1]s,a) {Velnmg(als) + Velnd™(s)} {g(s11) — g(s)}

SES a€A s1€S

(4.19)
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holds. Since a time average is equivalent to a state-action space average in ergodic
Markov chain M(60) by eq.2.3 and eq.2.2, eq.4.19 is transformed to

T-1
1 -
Tlgrolo T ?O {Volnmo(as|s:) + Volnd(s)} {g(se+1) — g(s¢)}

= Z Z Zdﬂ(Sfl)ﬂ—O(afl‘Sfl)p(slsflaafl)ﬂe(ays)

s_1€Sa_1€A s€8S

{Volnmg(a_i|s_1) + Velnd(s_1) — Velnmy(als) — Velnd™(s)} g(s)

=3 3 > ds)melani|so)p(sls1,a0)

s_1€ESa_1€A seS

{Volnmg(a_1|s_1) + Veln d(s_1) — Valn d™(s) } g(s)
= d(s)g(s) > > asefs-r.a—1ls) {Volnme(a_|s_1) + Volndi(s_1)}

seS S_ 1€Sa 1€A
=) d(s)g(s)Veln d(s)
seS
= d'(s)g(s) [Bu@f Volnmo(a_i|s_1) + Volnd(s_1)|s} — Volnd(s)]
seS
pu— O’

where the final transformation is executed by eq.4.7. Therefore, eq.4.18 holds.
O

Proposition 8 means that any p(s, s;1) defined in eq.4.16 can be used as the base-
line function of immediate reward r.; = r(s,a, sy1) for the computing the PG,
as eq.4.17. Therefore, the PG can be estimated with baseline function p(s, s41)

with large time-steps T,

T-1
1
VoR(0) ~ 7 Z (Volnmg(as|s) + Valnd™(s;)) {r(se, at, Se41) — p(St, Se41) }
=0
= ng( ) (4.20)

When we consider the trace of the covariance matrix of the PG estimates 69}2(0)

as the variance of 69}%(0), as discussed with the results of Greensmith et al.
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(2004) in chapter 3.3, an upper bound of the variance is derived as

Var, [%R(@)}

< Ene) {[[Volnmo(als) + Volnd(s)[*(r(s, a, s+1) = p(s, 5+1))%|s, 41} + 0
(4.21)

U%QR(g) (p(s,s41)) + o. (4.22)

where o is independent term of p(s, s;1). Accordingly, since the optimal baseline

function b*(s, sy1) satisfies

80%9R(0) (p(87 8+1))

= 0, VS S 87 v5+1 < S’
3/)(57 8+1> p(s,541)=b*(s,5¢1)

the optimal baseline function b*(s, s;1) is computed as

o Eve {IVolnmo(als) + Volnd(s)[2[ 5,501}

Meanwhile, there is the alternative decent baseline function b(s, s41)

b(8,8+1) = EM(G) {T(S,CL,S+1)’S,S+1}, (4'24)

which minimizes the residual sum of squares about (s, a, s;1) and corresponds to
the state-value function in the case of the PG estimation with the value function.

When an approximator of the baseline function (eq.4.16) is parameterized as
the following linear combination with a feature vector function of state, ¢(s), and

a coefficient parameter v,

b(s) — P(s41)

p(s,s11;0) =o' ( 1

> = UT¢(57 S+1)7

both baseline functions, b*(s, s.1) and b(s, s.1), are estimated by least squares,
though the estimation for b* requires LSD estimates. The LSLSD(A)-PG algo-

rithm with baseline function is shown in algorithm 3 9.

10Although the technique of eligibility traces is instantly applied for the baseline estimate,

we omit it.

66



Algorithm 3
LSLSD(M)-PG: Optimization for the policy

with “optimal” baseline function

Given:

e a policy my(ay|s;) with an adjustable 6,

e a feature vector function of state ¢(s).
Define: (s, si+1) = [@(se) "= p(s141) T, 1]
Initialize: 6, A € [0,1), 3 € [0,1), .

Set: ¢ := ¢(s0); z:= @(s0)/3;9g:=0; A:=0; B:=0;
w:=1,X:=0;y:=0;
fort=0to7T —1do
if ¢t > 1 then
0 := 0 + a{Volnmg(as|s:) + QT d(s:) Hrizr — ¥ (s, s001) " Xyl

end if
c = fe+ d(st41);
z =0 z+ (1 = N)op(s1);
g = [BAg + Volnmg(as|s;);
A= BA+ P(sep1)(P(s011) — 2)T;
B := B+ ¢(s111)9";
Q:=(A-cc'/|e])"'B;
“w = ||Volnmg(aelse) + QT (sy) ||
X = 3X +wip(sy, 5141 (se, 5041)
Y = BY + wp(Se, Se1)Te13

end for

Return: p(a|s; 0) = mp(als).

* In the case of the (decent) baseline function b(s, s’), instead of b*(s, ),

7

all the content of “---” in the algorithm are omited.
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4.4 Numerical Experiments

We verified the performance of our proposed algorithms in a stochastic “one-
dimensional torus grid-world” with a finite set of grids S = {1, ..,|S|} and a set
of two possible actions A = {L, R}. This is a typical |S|-state MDP task where

the state transition probabilities p are given by

p(8_1|S7L) = (s p(8_1|S>R) = 172(]S
pols ) =5E QpGlsR) =
p(s+1|s,L) = 1_2‘75 p(s+1|s,R) = qs,

otherwise p = 0, where s = 0 and s = |S| (s = 1 and s = |S| + 1) are the
identical states and g5 € [0,1] is a task-dependent constant. In this experiment,
a stochastic policy was represented by a sigmoidal function:

B 1

~ L+exp(07¢(s))

Here, all elements of state-feature vectors ¢(1),...,¢(|S|) € RIS were indepen-

mo(a = L|s) =1 —my(a = R|s)

dently drawn from the Gaussian distribution N(u =0, 0? = 1) for each episode
(simulation run). This was for verifying how the parameterization of the stochas-
tic policy affected the performance of our algorithms. The state-feature vectors

¢(s) were also used as the basis function for the LSD estimate Voln d"(s).

4.4.1 Performance of LSLSD()\) algorithm

At first, we verified how precisely LSLSD()) algorithm estimates Vyln d™(s) re-
gardless of the setting of ¢, and the policy parameter 8. The each element of
0 and the each task-dependent constant ¢s were randomly initialized according
to N(p=0, 0>=0.5%) and U(a=.7, b= 1), respectively, where U(a=.7, b=1) is
the uniform distribution over the interval of [a,b]. These were fixed during each
episode.

Figure 4.1(A) shows a typical time course of the LSD estimate Vglnd™(s)
in case of |S| = 3-state MDP, where nine different colors indicate all different
elements of LSD, respectively. The solid lines denote the values estimated by
LSLSD(0), and the dotted lines denote the analytical solution of LSD. This
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Figure 4.1. Performances of LSLSD(\) for the estimation of LSD Vylnd™(s).
(A) A typical time course of LSD estimate in a 3-state MDP. (B, C) The relative
errors averaged over 200 episodes in 7-state MDPs for various As; (B) with proper
basis function ¢(s) € R7, (C) with improper basis function ¢(s) € RS.

result demonstrates that the proposed LS-LSD algorithm could estimate LSD
Velnd™(s). We also confirmed that the estimates by LSLSD(0) always converged
to the analytical solution at |S| = 3 as the result in Figure 4.1(A), though these
are not, given here.

Second, we investigated the effect of the eligibility decay rate A using 7-
state MDPs. In order to evaluate the average performance over various settings,
we employed a “relative error” criterion that is defined by Esg){(f(z; Q%) —
I (;:92)2}Ene){(f(x; 2)*}, where Q* is the optimal parameter defined in
Proposition 7. Figure 4.1(B) and (C) show the time courses of relative error
averages over 200 episodes for A = 0, 0.3, 0.9, and 1. The only difference between
these two figures was the number of elements of the feature-vectors ¢(s). The
feature-vectors ¢(s) € R” used in (B) were appropriate and enough to distin-
guish all the different states, while the feature-vectors ¢(s) € RS used in (C)
were inappropriate and deficient. These results were consistent with theoretical
prospects. Namely, we could set A arbitrarily in [0, 1) if the basis function was
appropriate (Figure 4.1 (B)), otherwise we would need to set A close to 1 except
for A =1 (Figure 4.1 (C)).
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Figure 4.2. Reward setting of 3-state MDPs used in our comparative studies. ¢
is selected by the uniform distribution U[0.95, 1) for each simulation run. Z(c) is

a normalizing function to assure maxgR(0) = 1.

4.4.2 Comparison to other PG methods

We compared the LSLSD(A=0)-PG algorithm with the other PG algorithm in 3-
state MDPs, concerned with the estimation of PG V,R(0) and the optimization
of the policy parameter 8. The policy and the state transition probability were
set as each 6; ~ N(0,0.5%) and ¢; ~ U[0.95, 1] for every i € {1,2,3}, respectively.
Figure 4.2 shows the reward setting in the MDP. There are two types of rewards:
“r=(£)2/Z(c)” and “r = (£)¢/Z(c)”, where the variable ¢ was initialized by
the uniform distribution over [0.95, 1) for each episode and the function Z(c) was
the normalizing constant to assure maxgR(0) = 1. Note that the reward ¢ defines
the minimum value of v to find the optimal policy: ~% +~ > 22ch Therefore,
the setting of v is important and difficult in this task. From the performance
baselines of the existing PG methods, we adopted two algorithms: GPOMDP
(Baxter and Bartlett, 2001) and Konda’s actor-critic (Konda and Tsitsiklis, 2003).
These algorithm used the baseline function being state value estimates which were
estimated by LSTD(0) (Bradtke and Barto, 1996; Boyan, 2002; Yu and Bertsekas,
2006), while these original did not use the baseline function.

Figure 4.3 shows the results about the estimation of PG V,R(0) by eq.4.14.

The forgetting rates for the sufficient statistics were set as 3 = 1 for all algorithms.
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Figure 4.3. Comparison with various PG algorithms about the estimation of the
PG over 2500 episodes: (A) and (B) are the mean and the standard deviation of

angles between the estimates and the exact PG, respectively

(A) and (B) represents the mean and the standard deviation of angles between the
estimates and the exact PG, respectively. These results was that LSLSD-PG with
estimating the optimal baseline function b*(s, s;1), termed LSLSD-PG:b*(s, s41),
worked best to estimate the PG.

Finally, we examined the optimization of the policy parameter 6, i.e. the
average reward, by these PG methods. In this experiment, the forgetting rate
was set as § = 0.99. In order to avoid the effect from poor estimations of the
functions for the PG estimate, there was pre-learning period of 50 time-steps,
where the learning rate o was set to zero. Figures 4.4 shows the comparison with
PG algorithms about various learning rate a over independent 1000 simulation
runs (episodes). It is confirmed that LSLSD-PG:b*(s, s;1) worked best except for
the high learning rate, in which the learning speed of b*(s, s;1) could not properly
follow the changes of the policy rather than that of b(s, s;1). Figure 4.5 shows the
time courses of the average reward, where we chosen appropriate learning rates
for the PG algorithms by drawing upon the previous results; a=.16 in LSLSD-
PG:b(s, s41), a=.08 in LSLSD-PG:b*(s, s41), a=.08 in Actor-Critic:V(s), and
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a = .007 in GPOMDP:V(s). This result also indicates that our LSLSD-PG
algorithm with the optimal baseline function b*(s, sy;) outperformed the other
PG algorithms, since the algorithm increased the average reward and suppressed

its standard deviation most efficiently.
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Figure 4.4. Comparison with various PG algorithms about the optimization of

the policy parameter with various learning rates over 1000 episodes.
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Figure 4.5. Comparison with various PG algorithms about the optimization of

the policy parameter with the appropriated learning rate over 1000 episodes.

4.5 Summary and Discussion

We showed that the actual forward and backward Markov chains are closely
related and have common properties in the propositions. Utilizing these, we pro-
posed LSLSD(A) as the estimation algorithm of the log stationary distribution
derivative (LSD), and LSLSD(A)-PG as the PG algorithm utilizing the LSD es-
timate. The experimental results also demonstrated that LSLSD(A) could work
at A € [0,1) and LSLSD(A)-PG could learn regardless of the task’s requirment
of the smallest value of v to optimize the average reward. However, it has been
suggested that there is theoretically no significant difference in performances be-
tween the average reward based PG methods and the regular based PG methods
with discount factor v close to 1 (Tsitsiklis and Van Roy, 2002). It might hold
true in the case of our proposed PG, LSLSD-PG.

The realization of LSD estimation opens up new possibility of a natural pol-
icy gradient (NPG) learning. That is, it enables model-free computation of an

alternative, effective Riemannian metric matrix G(6) for NPG especially in the
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large scale MDP, which is proposed in chapter 5: for ¢ € [0.1]
G(6) = ]EM(g){Vgln mo(als)Volnmo(als)T + (Vlnd(s)Vyln d”(s)T}.

This realization of LSD estimation would also open novel methods for the trade-
off problem between exploration and exploitation. This is because LSD gives
statistical information how much a change of the state stationary distribution is
caused by the perturbation of each element of policy parameter, while an awful

biasing of the stationary distribution would make the exploration hard.
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Chapter 5

Natural Policy Gradients on

Valid Riemannian Metrics

Amari (1998) proposed the concept of the natural gradient. Kakade (2002) de-
rived a natural policy gradient by applying the natural gradient to the policy
gradient reinforcement learning (RL). Since the natural gradient depends on the
applied Riemannian metric, the design of the metric is an important issue. How-
ever, the only Riemannian metric for RL, proposed by Kakade, takes into account
only changes in the action distribution for improving the policy parameter and
omits changes in the state distribution, which also depends on the policy in al-
most all cases. In this chapter, we propose a new Riemannian metric considering
the state distribution as well as the action distribution and, based on the metric,
derive a new robust natural policy gradient named “Natural Stationary policy
Gradient” (NSG). We also prove that NSG becomes equal to the adjustable pa-
rameter of the linear function approximator with the basis function defined by the
policy parameter, if the linear function approximates the immediate rewards. In
the numerical experiments with Markov decision problems with varying number
of states, we showed that the proposed method in comparison to previous studies,

improved the performances especially in cases of a large number of states.
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5.1 Background of natural policy gradients

In section 5.1.1, we briefly review the concept of natural gradients (NGs) proposed
by Amari (1998) and the natural policy gradient (NPG) as NG for PGRL. In

section 5.1.2, we introduce the controversy of NPGs.

5.1.1 Natural gradient (Amari, 1998)

Natural gradient learning is a gradient method on a Riemannian space. The
parameter space being a Riemannian space implies that the parameter @ € R? is
on the Riemannian manifold defined by the Riemannian metric matrix G(0) €
R4 (positive definite matrix) and the squared length of a small incremental

vector A@ connecting 6 to 8 + A is given by

d d
1A60]1E =) g:i;(0)d6:db; = d0'G(6)d6,

i=1 j=1

where g; ; is the [z, j]-th element of matrix G *. Under the constraint || A8||% = &2

for a sufficiently small constant ¢, the steepest ascent direction of a function R(8)
is given by

Ve R(0) = G(0) 'VyR(6). (5.1)
It is called the natural gradient of R in a Riemannian space. In RL, the parameter
0 is the policy parameter, the function R(@) is the average reward, and the

gradient is called the natural policy gradient (NPG) (Kakade, 2002). Accordingly,
in order to (locally) maximize R(@), 0 is incrementally updated by

0:=0+aVesR(0), (5.2)

where is 77 is the learning rate.
When we consider a statistical model of a variable z defined by a parameter
0, Pr(x|0), the Fisher information matric (FIM) F,(0) is often selected as as the

"When G is the unit matrix, the parameter space is called a Euclidean space, especially.
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Riemannian metric matrix:2

F,(0) =) Pr(z]6) Vs InPr(z(6) Vo In Pr(x0) "
==Y Pr(z|0) V;InPr(z(6), (5.3)

zekX

where X is a set of possible values taken by z. V3ag denotes Vy(Vyag). The
reason for using F'(0) as G(6) comes from the fact that F(0) is a unique metric
matrix of the second-order Taylor expansion of Kullback-Leibler (KL) divergence
(Amari and Nagaoka, 2000)3, i.e.,

1
Dy {Pr(z|0)| Pr(z|0+A0)} = éAOTFx(O) A+ O(]|Ag]*),

where ||a|| denotes the Euclidean norm of a vector a.

5.1.2 Controversy of natural policy gradients

Policy gradient reinforcement learning (PGRL) is regarded as an optimizing pro-
cess of the policy parameter @ on some statistical models relevant to both a
stochastic policy my(als) and a state transition probability p(s'|s,a). If a Rie-
mannian metric matrix G(0) can be designed on the basis of the FIM of an
apposite statistical model, F*(), an efficient NPG Vi-oR(6) is instantly de-
rived by eq.5.1. Since the natural policy gradient method is the gradient descent
in the Riemannian space defined by G(0) rather than the space defined by an
arbitrarily-parameterized policy, it is very efficient to use the NPG with a valid
Riemannian metric for PGRL.

As Kakade (2002) pointed out, the choice of the Riemannian metric matrix
G(0) for PGRL is not unique and the question what metric is apposite to G(8)
is still open. Therefore, it is much important to discuss what is an appropri-
ate Riemannian metric. Nevertheless, all previous studies on NPGs (Bagnell
and Schneider, 2003; Peters et al., 2003, 2005; Nakamura et al., 2004; Morimura

The last equality is derived by differentiating >, Pr(z|6) Ve InPr(z|6) = 0 with respect
to the parameter 6

31t is same in the case of all f -divergences in general, except for scale (Amari and Nagaoka,
2000)
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et al., 2005; Richter et al., 2007) did not seriously address the above problem
and (naively) used the Riemannian metric matrix proposed by Kakade (2002).
We discuss the statistical models and meric spaces for PGRL and propose a new

Riemannian metric matrix.

5.2 Riemannian metric matrix for PGRL

In section 5.2.1, a novel Riemannian metric matrix for RL is proposed. In sections
5.2.2 and 5.2.3, we discuss the validity of this Riemannian metric by comparing it
with the Riemannian metric proposed by Kakade (2002) and the Hessian matrix

of the average reward.

5.2.1 A novel Riemannian metric matrix and NPG based

on state-action probability

Since the only adjustable function in PGRL is the policy function my(als), pre-
vious studies on NPG focused on the policy function my(als), i.e., the statistical
models Pr(als, M(0)). However, the perturbations in the policy parameter @
cause the probability of the state Pr(s|M(€)) to change. Because the average
reward R(@) as the objective function of PGRL is specified by the joint prob-
ability distribution of the state and the action (s,a) € S x A (eq.2.6), it is
natural and adequate to focus on the statistical model Pr(s,a|M(0)). For this
case, the FIM of Pr(s,a|M(@)) can be used as the Riemannian metric G(8).
Then, its NPG consists with the direction maximizing the average reward under
the constraint that a measure of changes in the KL divergence of the stationary
state-action distribution with respect to @ is fixed by a sufficient small constant
e: Dxp{Pr(s,a|M(0))|Pr(s,a]M(0 + AB))} = 2. The FIM of this statistical
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model, F;,(0), is calculated with Pr(s,a|M(0)) = d"(s)m(a|s) and eq.5.3 to be

F,.(0)=> Y Pr(s,alM(8))VyInPr(s,a|M(0))V,InPr(s,a|M(6))"

s€S acA
==Y > d(s)m(als)ViIn (d(s)my(als))
s€S acA
=F.(0)+) d¥(s) F.(s,0), (5.4)
SES
where
F,(0) = Z d"(s)Veln d™(s)Velnd (s)" (5.5)

seS
is the FIM defined from the statistical model comprising the state distribution,
Pr(s|M(0))=d"(s), and

F.(s,0) = Z mo(als)Voln my(als)Velnmy(als) " (5.6)
acA

is the FIM of the policy comprising the action distribution given the state s,
Pr(als, M(0)) = my(als). Hence, the new NPG on the FIM of the stationary

state-action distribution is
Vreao R(O) = F, ,(0)' VyR(6).

We term it the “natural stationary policy gradient” (NSG).

5.2.2 Comparison with Kakade’s Riemannian metric ma-
trix
The only Riemannian metric matrix for RL that has been proposed so far is the

following matrix, which was proposed by Kakade (2002) and was the weighted
sum of the FIMs of the policy by the stationary state distribution d™(s),

Fo(0) =) d¥(s) Fu(s,0). (5.7)
SES

This is equal to the second term in eq.5.4. If it is assumed that the stationary
state distribution is not changed by a variation in the policy, i.e., if Vod™(s) =
0 holds, then Fy(68) = 0 holds according to eq.5.5. Under this assumption,
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Kakade’s metric F,(8) is equivalent to F,,(8), while this assumption is not true
in general. These facts indicate that F,(0) is the Riemannian metric matrix
ignoring the the change in the stationary state distribution d™(s) brought about
by the perturbation in the policy parameter @ in terms of the statistical model
of the stationary state-action distribution Pr(s,a|M(8)).

Meanwhile, Bagnell and Schneider (2003) and Peters et al. (2003) indepen-
dently, showed the relationship between the Kakade’s metric and the system
trajectories & = (S, ag, S1, -, ar—1,S7) € Zr: When the FIM of the statistical

model for the system trajectory &7,

=
L

Pr(&r|M(8)) = Pr(so) | | mo(a.ls,)p(sislsi, ar),

Il
=)

is normalized by the time steps T" with the limit T" — oo, it is equivalent to the

Kakade’s Riemannian metric,

T—oo '

T-1
lim -+ F, (6) = ~ Jim. % > Pr(&r|M(6))V; {Zlm(amz)}
t=0

§r€Er
- — Z d™(s) Z mo(als)V5Inma(als)
seS acA
= " d(s) Fu(s,0) = Fo(6) (5.8)
s€S

Since the PGRL objective, i.e., the maximization of the average reward, is reduced
to the optimization of the system trajectory by eq.2.4, Bagnell and Schneider
(2003); Peters et al. (2003) suggest that the Kakade’s metric F,(6) could be a
good metric. However, being equal to F,(8), the normalized FIM for the infinite-
horizon system trajectory obviously differs with F; ,(0) and is the metric that
ignores the information Fy(0) about the stationary state distribution Pr(s|M (8)).
This is due to the fact that the statistical model of the system trajectory considers
not only the state-action joint distribution but also the progress for the (infinite)
time steps, as follows.

Here, s,; and a,,; are the state and the action, respectively, progressed in ¢
time steps after converging the stationary distribution. Since the distribution of

the system trajectory for T time steps from the stationary distribution, &, =
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(S7a‘+07 S+1y -0 A4T—1, SJrT) € or, 18

-1
Pr(&,r|M(6)) = d'(s H 7o ( +t|3+t (Set1]84e, 1),
t=0
its FIM is calculated such that
F§+T (0) = Fs(e) + TFa(9)7 (59)

the derivation of which is shown in 3.1. Because of limy_.oo F¢,, /T = F,(0), the
Kakade’s metric F,(8) is regarded as the limit 7 — oo of the system trajectory
distribution for 7" time steps from the stationary state distribution. Consequently,
F,(0) omits the FIM of the state distribution, F,(8). On the other hand, the
FIM of the system trajectory distribution for one time step is obviously equivalent
to the FIM of the state-action joint distribution, i.e., F¢,, (6) = F;,(6).

Now, discuss which FIM is adequate for the average reward maximization. As
declared in section 5.2.1, the average reward in eq.2.6 is the expectation of 7(s, a)
from the distribution of the state-action (or 1-time-step system trajectory) and
does not depend on the system trajectories after +2 time steps. Therefore, it
indicates that the Kakade’s metric F,(8) supposed a redundant statistical model
and the proposed metric for state-action distribution, F,(@), would be more
natural and adequate for PGRL. We give comparisons among various metrics
such as F,(0), F,(0), and a unit matrix I through the numerical experiments
in section 5.5.

Similarly, when the reward function is temporarily a function of T" time steps,
(8¢, Qgy -y Qpyr, Ser711), instead of one time step, r(sq, ay, S;11), the FIM of the
T-time-step system trajectory distribution, Fe, (@), would be a natural metric
because the average reward becomes R(0) = 3 = Pr(&4r[M(0))r(&4r).

5.2.3 Analogy with Hessian matrix

We discuss the analogies between the Fisher information matrices Fj,(6) and

F,(0) and the Hessian matrix H (8), which is the second derivative of the average
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reward with respect to the policy parameter 6,
H(9) =V;R(9)

=> ) #(s,a)V5(d(s)mo(als))

s€S acA

=" " #(s.a)d(s)mg(als)

sES acA
{VZ In(d(s)mg(als)) + Vo In(d(s)mg(als)) Ve ln(d“(s)we(a|3))T}

(5.10)
=> ) (s, a)d(s)m(als)
s€S acA
{vg Ing(als) + V2Ind(s)
+ Vylnmy(al|s)Vylnmy(als)" + Velnd(s)VgInd (s)"
+ Voln d™(s)Vgln mg(als) " + Velnmy(a|s)Veln d’r(s)T}. (5.11)

Comparing eq.5.7 of the Kakade’s metric matrix F,(6) with eq.5.11 of the Hessian
matrix H (0), the Kakade’s metric does not have any information about the last
two terms in curly brackets {-} of eq.5.11, as Kakade (2002) pointed out®. This is
because F,(8) is derived under Vyd™(s) = 0. By eq.5.4 and eq.5.10, meanwhile,
the proposed metric F; ,(0) obviously has some information about all the terms
of H(0). Therefore, even through the comparison with the Hessian matrix, it is
suggested that F,(@) should be an appropriate metric for PGRL. Additionally,
F; .(0) becomes equivalent to the Hessian matrix in the cases using an atypical
reward function that depends on @ (see Appendix 3.2).

It is noted that the average reward would not be a quadratic form with re-
spect to the policy parameter 8 in general. In particularly when 0 is far from the
optimal parameter 6*, the Hessian matrix H (0) is prone to an indefinite matrix.
Meanwhile, no FIM F'(0) becomes an indefinite matrix and is always positive
(semi-)definite, assured by its definition in eq.5.3. Accordingly, the natural gra-
dient method using FIM might be a more versatile covariant gradient ascent for
PGRL than the Newton-Raphson method (Nocedal and Wright, 2006), the gradi-

ent direction of which is the same as that of V-#.6 R(8). Comparison experiments

4H(0) is sligthtly different from the Hessian matrix used in (Kakade, 2002) in a precise
sense. However, the burden of the argument is the same as in (Kakade, 2002).
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are presented in section 5.5.

5.3 NPG on Fisher information matrix F; ,(0)

In this section, we view the estimation of the NSG, the NPG on the metric F ,(0).
It will be shown that this estimation can be reduced to the regression problem of
the immediate rewards.

Consider the following linear regression model

M (s,a) = ¢po(s,a)" w, (5.12)

where w is the adjustable parameter and ¢y(s, a) is the basis function of the state

and action, also depending on the policy parameter 6,
Py(s,a) = Vgln (d(s)mg(als))
= Vylnd™(s) + Velnmg(als). (5.13)
Then, the following theorem holds:

Theorem 3 Let the Markov chain M (@) have the fized policy parameter 6, if
the objective is to minimize the mean square error e(w) of the linear regression

model fT(sy,a;) in eq.5.12 for the rewards ryyq,

e(w) Tlglgo ﬁ Z {res1 — fr(s0,a0)}, (5.14)

then the optimal adjustable parameter w* is equal to NSG as the natural policy
gradient on F ,(0):
VFS@,GR(9> =w".

Proof: By the ergodic property of M(8), eq.5.14 is transcribed to

— %Z Zdﬂ(s)ﬂg(alb‘) (7(s,a) — f7(s, a))Z.

s€S acA
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Since the optimal adjustable parameter w* that minimizes the error £(w) satisfies
Ve (W)|wew =0,

Z Zd” s)mo(als)Po(s,a)(7(s,a) — Po(s,a) w*) =0

s€S acA

= z; ZAd” o(a|s)po(s, a)de(s, a) w*
= Z > d(s)mo(als)po(s, a)i(s, a)

s€S acA

holds. By the definition of the basis function (eq.5.13),
Zdﬂ s)mo(als)pe(s,a)ey(s, a) = F;.(0),
Zdﬂ— 7T¢9 ¢9(8 CL) ( ,CL) = VGR(G)a

hold. Therefore,

holds. O

It is confirmed by theorem 3 that if the least-square regression to the imme-
diate reward 7,1 by the linear function approximator f7(s;,a;) with the basis
function ¢g(s,a) = Vyln (d"(s)mg(als)) is performed, the adjustable parameter
w becomes the unbiased estimate of NSG Ve, ..o R(0). Therefore, since the NSG
estimation problem is reduced to the regression problem of the reward function,
NSG would be simply estimated by the least-square technique or by such a gra-
dient descent technique as the method with the eligibility traces proposed by
Morimura et al. (2005), where the matrix inversion is not required.

It is to be noted that, in order to implement this estimation, the computa-
tion of both the derivatives, Vyln mg(als) and Vyln d™(s), is required for the basis
function ¢y(s,a). While Vylnmy(a|s) can be instantly calculated, Vyln d™(s) can-
not be solved analytically because the state transition probabilities are generally

unknown in RL. However, an efficient online estimation manner for Vylnd™(s),
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which is similar to the method of estimating the value function, has been estab-
lished by Morimura et al. (2007b). However, we have not discussed the concrete

implementations in the thesis.

5.4 Numerical experiment I: comparison of Rie-

mannian metrics

In this section, we look into the differences among the fixed-distance spaces de-
fined by the Riemannian metric matrices G(0)—the proposed metric F;,(0),
Kakade’s metric F,(6), and unit matrix I-—in a simple two-state MDP (Kakade,
2002), where each state s € {1, 2} has self- and cross-transition actions A = {l, m}
and each state transition is deterministic. The policy with 8 € R? is represented

by the sigmoidal function:

1
T Tt exp(—07T4(i))
m(ml|i;0) =1—n(l|i;0),

7(l|z; 0)

where 1(s) € RISl is the feature vector of the state. Here, we set 4(1)=[1,0]"
and (2) = [0,1]. Figure 5.1 shows the phase planes of the policy parame-
ter 8. The gray level denotes the log ratio of the stationary state distribution,
and each ellipsoid corresponds to the set of A8 satisfying a constant distance
AO'G(0) A0 = £? as the fixed distance spaces by G(6), in which NPG looks for
the steepest direction maximizing the average reward. It is confirmed that the
ellipsoids by the proposed metric F; ,(6) coped with the changes in the state dis-
tribution by the perturbation in @ because the alignment of the minor axis of the
ellipsoid on Fj ,(@) complied with the direction significantly changing the d(s).
This indicates that the policy update with NSG does not drastically change d™(s)
and also VyR(0) in eq.2.7. Thus, though it does not get out of our prospect, it
might not be easy that VyR(0) (and also NSG) becomes 0 by the update with
NSG. If it is true, the speed of approach to plateau and also the local maximum
might be slow in NSG learning. On the contrary the other metrics could not
grasp the changes even though F,(0) is the expectation of F,(8) over d"(s), as

we see in theoretical studies.
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(i) AOTF,,(0)A0 =0.14

(i) AOTF,(0)A0 =0.12 (ii) AOTIAO =0.35

Figure 5.1. Phase planes of a policy parameter in a two-state MDP: The gray
level denotes Indg(1)/dg(2). Each ellipsoid denotes the fixed distance spaces by
each metric G(0) := (i) F..(0), (i) F,(0), or (ii) I.
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5.5 Numerical experiment 1I: comparison of pol-
icy optimization

In this section, we compare the proposed NPG (NSG) learning with the Kakade’s
NPG and the other policy gradient learnings through arbitrary Markov decision

problems with various number of states.

5.5.1 Experimental setting
Setting of MDP

For each |S| € {3,6,10,15,20,25,30,40} states MDP with |A| = 2 actions is
constructed by the following procedures.

The state transition matrix p(s’[s, a) was set not to break the ergodicity of the
Markov chain M (8) for any policy, which is the assumption required in theoretical
study, and for the connections between the states to be rough. Specifically, for
each condition of p(s'ls,a), each pair of the state s € S = {1,2,...,|S|} and the

action a € A = {l, m}, unnormalized probabilities are temporarilly set

(il . .
q; ifs=i+1
p(s'li, 1) = gb' if ' =i

\ 0 otherwise

.
g oifsd=i—-1

p(s'li,m) =< g™ if &' =i

\ 0 otherwise,

where s’ =0 and s’ = [S| (s’ =1 and s’ = |S| 4+ 1) are the identical states. The

set values are normalized to satisfy > s p(s']s,a) =1,

p(*i, ) + 1 — ¢ — g5
p(j"i,m) +1— g™ — g5™.

p("i, 1) :
p(i°™ i, m) :

Here, ¢, g5, and j5 are the following random variables for each state-action
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pair (s, a),

s,a 1
N T T exp(U(=10, 10))
sa _ 1— q1,s,a
T T exp(U(—10, 10))
7% =Ua(|S]),

where U(a,b) and Ugq(n) denote the uniform random number of [a,b] and the
discrete uniform random number from 1 to n, respectively. An example of p(s's, a)
set by the above procedures is shown figure in 5.2, where each line thickness

corresponds to each measure of p(s'|s,a) °.

Figure 5.2. An expample of the setting of the state transition probability p(s'|s, a)
on MDP.

The reward function r(s,a,s’) was temporarilly set for each combination of

arguments by standard normal distribution N(0, 1) and was normalized to uniform

Sthe line thickness h is defined by an inverse sigmoidal function of the state transition
probability p:

- {m(p/(l —p)+5 i W(p/(1-p)>5

0 otherwise.
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the maximum and the minimum of the average reward, i.e., maxg R(0) = 1 and
ming R(6) = 0:
r(s,a,s") — ming R(O)

ris,a,8) = maxg R(0) — ming R(0)"

The policy my(a|s) was parameterized with the policy parameter 8 € RIS by
the sigmoidal function:

N B 1
ml6) = T e T ®)
w(m|i;0) =1—m(l]i;0),

where (i) € R!S| was the feature vector, each element of which was set by a
normal distribution N(0, 1). Similarly, each element of the initial policy parameter
vector By was set by the normal distribution N(0, 1).

Setting of policy gradient algorithms

Four types of gradient descents, the proposed and three policy gradient methods,
are applied to the MDPs set in previous section. The only difference among these
is as to the Riemannian metric matrix G(6) defining the direction of the gradient
(eq.5.1):

(i) G(0) := F;,(0) as the proposed NPG method,

(i) G(O) := F,(0) as the Kakade’s NPG method (Kakade, 2002),

(

(

i) G(0) := I as the ordinary policy gradient method, and
iv) G(0) := —H(8) as a pseudo-Newton method ©.

5.5.2 Results and discussions

We first introduce results by each individual episode and then show a success rate
and a plateau extent of learning by all (900) episodes.

Figure 5.3 is the results about the learning curves by a total of six episodes
on the MDPs of a k’th settings, (pk, 7k, ¥r.1) and (pk, 7k, ¥k 2), about the number
of states |S| = 30. It is noted that similar results were confirmed in the other

61t is noted that this pseudo-Newton method is different with so-called “the quasi Newton
method”.
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settings than k’th. Figure 5.3 showed that the proposed natural policy gradient
method could uniformly succeed at the optimization of the policy parameter,
compared with the other policy gradient methods. Also, the results in figure 5.3
consistent with the results about the application of the natural gradient method

for the learning of the multi-layer perceptron (Amari et al., 2000).

() G(6) = F..(6) (i) G(6):=TF.(0)
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Figure 5.3. Examples of the time courses of average reward : (i) proposed natural

policy gradient, (i) Kakade’s natural policy gradient (Kakade, 2002), (iii) ordinary
policy gradient, (iv) pseudo-Newton policy gradient.

The results about the success rate of the learning by 900 episodes at each
number of states |S| € {3, 6, 10, 15, 20, 25, 30,40} is shown in figure 5.4. Since the
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maximum of the average reward was set to 1, we regarded the episodes satisfying
R(07) > 0.95 as “success” episodes of the learning. It suggests that, in the case of
the MDPs with small number of states, the proposed NPG method and Kakade’s
NPG method could avoid to fall sevire plateau phenomenons and learns appro-
priately, compared with the other methods. The reason that Kakade’s method
could work as well as the proposed method, is thought that the Riemannian met-
ric used in Kakade’s method has partial information about the statistical model
Pr(s,a|M(0)). Meanwhile, Kakade’s method was more losing the learning than
the proposed method in the case of the MDPs with large number of states. This is
thought that Kakade’s Riemannian metric omits the Fisher information about the
state distribution, Fy(0), but the proposed metric takes over Fy(0), as discussed
theoretically in section 5.2.2.
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Figure 5.4. Learning success rates of the policy gradient methods

Finally, we analyzed how much of plateau each PG method, (i)~(iv), fell

to. For its criterion, we utilized a smoothness of the learning curve (discrete

curvature),

A’R(6,) = AR(0,1) — AR(6,)
= R(60:1) — 2R(6;) + R(6;-1),

where AR(0;) = R(0;) — R(0;-1). The criterion for the plateau extent (PE) of a
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episod was defined by
T-1

PE =7 |[IA’R(6,)].

t=1
Figure 5.5 represents the average of PE in 900 episodes for each PG method
and shows that the proposed NPG method could learn most smoothly. This
results indicates that the proposed NPG method was most avoidable from plateau

phenomenons, as consisting with all other results in this chapter.
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Figure 5.5. Plateau extents of the policy gradient methods.

From avobe numerical experiments, it was confirmed that the proposed NPG
method could avoid from falling the plateau and learn appropriately without seri-
ous effect of the setting MDP (p, r, 1)) and the initial policy parameter, especially,
even if the number of states is large. Consequently, it is thought that the proposed
NPG method is more natural NPG method than the NPG method proposed by
(Kakade, 2002).
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5.6 Summary and discussion

In this chapter, we proposed a new Riemannian metric matrix on the state-action
joint distribution for the natural gradient of the average reward with respect to
the policy parameter. We elucidated that the natural gradient method that has
been proposed by Kakade (2002) and widely used as the natural policy gradient
in RL, omited the changes in the state probability distribution brought about by
the perturbation in the policy parameter, which was took into account by the
proposed natural gradient method. This difference was confirmed in numerical
experiments, where the proposed method worked better than the other policy
gradients and rarely fell into the plateau. Additionally, it was proven that, if the
immediate rewards were appropriated by using the linear function with the basis
function defined by the policy, the adjustable parameter of the linear function

became the unbiased estimate of the proposed natural policy gradient (NSG).

94



Chapter 6
Conclusion

In this thesis, we studied and developed the efficient task-independent reinforce-
ment based on policy gradient and natural gradient.

In chapter 3, we presents the NTD algorithm, in which the regression weights
of the TD error with the basis functions defined by the policy parameterization
represents the natural policy gradient. If the eligibility decay rate of the NPG
estimator is equal to one, the NPG estimate is updated by using the gradient of
the actual observed rewards and not those of the estimated state value function;
hence, the estimate is unbiased under a fixed policy. The experimental results
showed that the NTD algorithm could represent the natural policy gradient and
could avoid plateaus, which is consistent with the results of Amari (1998). This is
extremely useful because plateaus often occur in RL problems when a suboptimal
policy is more easily obtained than an optimal policy, as presented in the pendu-
lum swing-up problem, The experimental results also demonstrated that the NTD
algorithm suppresses computational costs than the existing NPG method (Peters
et al., 2003) and the eligibility trace for the NPG estimator works efficiently.

In chapter 4, we showed that the actual forward and backward Markov chains
are closely related and have common properties in the propositions. Utilizing
these, we proposed LSLSD(A) as the estimation algorithm of the log stationary
distribution derivative (LSD), and LSLSD(M)-PG as the PG algorithm utilizing
the LSD estimate. The experimental results also demonstrated that LSLSD(\)
could work at A € [0,1) and LSLSD(A)-PG could learn independent of the tem-

poral discounted rate 7.
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In chapter 5, we proposed a new Riemannian metric matrix on the state-action
joint distribution for the natural gradient of the average reward with respect to
the policy parameter. We elucidated that the natural gradient method that has
been proposed by Kakade (2002) and widely used as the natural policy gradient in
RL, omited the changes of the state probability distribution by the perturbation
of the policy parameter, which was took into account by the proposed natural
gradient method. This difference was confirmed in numerical experiments, where
the proposed method worked better than the other policy gradients and rarely fell
into the plateau. Additionally, it was proven that, if the immediate rewards were
appropriated by the linear function with the basis function defined by the policy,
the adjustable parameter of the linear function became the unbiased estimate of

the proposed natural policy gradient.
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Appendix

1 For chapter 2

1.1 Derivation of Eq.2.9

Using the relation between the discounted state value function and the average
reward, R(0) = (1 —7) > .5 d™(s)V(s) (Singh et al., 1994), PG is calculated as

VeR(0 (Z Vod(s)V(s) + ) d(s)V(;V(s)> : (1)

seS seES

where V,AB implies (V,A)B. The second term is transformed as follows:

D d(s)VeV(s) =Y > d(s)Ve{ms(als)Q(s,a)}

seS s€S acA

_ ZZd |:V97r9 Q(S,CL) + W@(als)VGQ(‘S?a)}
s€ES acA

= 305" d(s) [ Vmolals)Q(s. a) + 7ol )90 L psls, ) (55,0 +V()}]
s€S acA

=" d(s)Vem(als)Q(s, a) +72d )VaV™(s) (2)
s€S acA

:—sz )WVemg(als)Q(s,a). (3)

sES acA

Eq.2 is given by the property of stationary distribution, d(s') = >, , d(s)me(als)
p(d]s, a) Substituting Eq.3 in Eq.1,

VR(6 MY Ved(s)V(s)+ Y > d(s)Veme(als)Q(s, a)
s€eS s€ES acA
=) Y Ved(s)V(s)+ Y Y d(s)Vems(als){Q(s,a) — b(s)}, (4)
seS se€S acA
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where the property > . Vomg(als) = 0 is utilized. O

1.2 Proof of lemma 1

For simplicity, we use V as Vy and R as R(8), and define the numerator of Eq.2.11
as £ = (1 =) D .cs 2onen Vd(s)m(als)Q(s,a). Then, we rewrite Eq.2.11 as

e
* = VR (5)

It is noted that € represents the ratio between the norms of the first and second
terms in Eq.4. Therefore, it implies the dominancy of the first term, which is
ignored in the biased policy gradient. The cosine of the angle ¢ between the
policy gradient VR and the biased V7R is bounded below by

VRTV'R
IVRI[|[VR]|
_ (£+YV'R)TV'R
(€ + VR)|[[[VIR]]
VOR[> — | [€]| [IVYR]]
— e+ VIR|[[|[VR]]
IVYR|| — |l€]]
— e+ [[VR]|
_ 1 [|4l/IIV'R]]
L+ lell/[IV R

cos ¢ =

That is,
1—¢

l+e
It indicates that ¢ lies within (—m/2,7/2) for ¢ < 1.

If the discounted value functions are normalized in the limit v — 1, they

cos ¢ >

(6)

are equal to the average reward for state-action pairs {s,a} € {S , A} satisfying
d(s) > 0 and my(als) > 0,

R(0) = lim inﬂl(s) = lim %Qvﬂl(s,a), {s,a} € {S, A}.

T—o0 T—o00

Then,
Q" (84, aa)

=1, as € S7 ) € A 7
@ o) o €8 s "
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Therefore, it is apparent that in the limit v — 1, € becomes zero by Eq.2.11 and
then cos® = 1 by Eq.6; hence, ¢ = 0 holds. It indicates that the biased policy
gradient direction is the same as the true policy gradient direction in the limit
v — 1. Il

2 For chapter 3

2.1 Derivation of Eq.3.1 (Kakade, 2002)

Fu(0)(0) 33 d"(s)mo(als)Vslog ma(als) f(s, a3 w)

s€S acA

— (Z > d(s)Fy(s, 9)) >N d(s)me(als) Volnmo(als)Velnmy(als) " w

s€S acA s€S acA

= (ZZd“(s)Fa(s,O)) (Z Zd”(s)Fa(s, 0)) w

s€S acA s€S acA

= w

2.2 Derivation of Eq.3.4

We introduce a proposition for the derivation of Eq.3.4, derived based on Sutton
et al. (2000). Suppose that a state z is sampled by a probability density function
p(2), ¥(z) is a known vector function and v(z) is an unknown scalar function.

The object is to express the marginalized vector g = [ dz p(z)p(2z)v(2).

Proposition 9 The marginalized vector g is rewritten as

/ 0z p(2)(z)u(z) = / dz p(2)(2)9(2) W' lue,

where w*|y () s the weight vector that minimizes the mean square error e(w) =

L[ dz p(2) {9(2)Tw - v(2)}.
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Proof: When e(w) is minimized at w*|,(z), Vwe(w*|y(z)) = 0 holds, that is,
[z ) (9wl — viz)} =0
o [dzpEwEuE) = [ dz pbEwE) W e

In the case of the policy gradient, if [ dz is replaced by Y sq and p(z)
pls,0) = d"(s)mylals), v(2) = v(s,0) = Q7(s,a) — b(s), and (2) = (s, )
Vo log mg(als) are substituted in Eq.9, then

V,R(0 ZZd’r s)Vglogmg(als) f(s,a; w*|gr(s,a)—b(s))- (3.4)

s€S acA

O

2.3 Proof of proposition 1

The variation of the residual sum of squares in terms of b(s) is

i {Z a"(s)m(als) (Q7(s,a) = b(s) ~ f “"”w))g}

= Zd’f ) (Q(s,a) = b(s) — f(s,a;w))
= Zd” ) (Q"(s,a) — b(s)) ,

using the property of the compatible function f(s,a;w) (Eq.3.6) for last transfor-

mation. By the variation principle, when the residual sum of squares is minimized,
> (k) (Q"(5:0) = #6)) =0

holds. This is satisfied, if b(s) = V"™ (s). O
In addition, when the baseline, b, is just a scalar instead of the function of a

state, the residual sum of squares is minimized at

1(6)

b=
-y

where R(6) is the average reward. Similarly, it is derived by the condition
ﬂ' s . 2 J—
db{zd ) (Q(s,a) —b— f(s,a;w)) }—O.
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2.4 Proof of proposition 2

Consider the expectation of the TD of the state value function in state-action

space, Sso = {(s,a) € (S, A)},

(6(s,a)) = _p(s'ls,a) ((r(s, s’ a)) + 4V (') = V™ (s).
Note that (d(s)) = 0. With the Bellman equation, Q™(s,a) is expressed as

Q7(s,a) = Y p(s']s,a) ({r(s,',a)) + V() . (8)

By subtracting V™ (s) from both-sides of Eq.8, we obtain
A"(s,a) = (6"(s,a)).

If Var,(07(s,a)) = Y s Yoaca d(s)malals) ((07(s,a) — (5”(3,a)>)2> is equal to
zero, 0™ (s,a) = (d™(s,a)) holds; hence, A™(s,a) = §"(s,a) holds. O

2.5 Supplement of the proof of lemma 2

We show two things; the convergence of f(s,a;W|s~(s,q)) and Eq.3.9. V;, f;, and
W, denote f(sy, ai;w), V™(sy), and Vylnmy(as|s;), respectively.

Convergence of f(s,a;W|s~(s,qa)) to f(s,a;w*)

Let the regression, gradient descent-like algorithm 1 or least squares-like algo-
rithm 2 be performed with infinite samples from Markov chain M ().

In the case of gradient descent, algorithm 1 at A = 0 and ¢ = 0, the expectation
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of the gradient as the update direction of Aw is

(bl 0) = i 5370 e
= khi{.lo % ; (ree1 + Vi = Vi = fo)
= Z d(s)m(als)p(s'le,a) ((r(s',s,a)) + 4V (s") = V(z) — f(s,a;w)) Volnmg(as|s;)
=) d(s)m(als) ((5(s,a)) — f(s,a;)) Volnmg(ay|s)
s€S acA
= V. {ZZd(s)w(aw (A7(s,0) - f(s,anmf} ,
s€S acA

where the last transformation is with ((s,a)) = A™(s,a) in proposition 2. There-
fore, f(s,a;W|s~(s,a)) converges to f(s,a;w*) with an appropriate learning rate
(Bertsekas and Tsitsiklis, 1996), because w|a=(s,q) clearly converges w* by the
definition A7 (s,a) = Q™ (s,a) — V™(s) with an appropriate method.

In the case of least squares, algorithm 2 at A =0 and ¢ = 0,

Ailb = ’lf]’(g(s,a)

do fo
01 bil
& (Yo P ... Pp) : = (o Y1 ... Yr) :
or fr

= =
<~ T;%@e = T ;U%Jct-

With infinite samples, by similar transformations as the gradient descent case,

T—oo 1’

1 T-1
lim = b (6 — fi) =0
t=0

& VY, {chz(sm(a|s) (A™(s,a) — f(s,a;zi)](;(s,a)))Q} =0.

s€S acA

Therefore, the fact that f(s,a;W|s~(s,q)) converges to f(s,a;w*) is proved by

similar way as in the gradient descent case.
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Derivation of eq.3.9

RSS (6 E;X;Z mo(a ,a) = f(s,a;w))?
= d(s Z i (s']s,a)
) ;:<s' s,a) + w( )= Q(s,a) + Q(s,a) = V(s) — f(s,a;w))
= Y d(s)mo(als)p(s']s, a)(r(s',s,a) + 7V (s) = V(s) = A(s,a))’
S tZSZAd(s>We<a!s>(Q<s,a) = V(s) = f(s,a;w))” 9)
=3 d( ;e 6:9 (s's,a)(r(s',s,a) + 4V (s") = V(s) = (8(s,a)))?
s jzs%d(s>We<a!s)(A<s,a> = f(s,q;w))* (10)
- Z ;E(s)a;<a|s> ((0(s,a) = (d(s,a)))*) + RSS;(A(s,a))

— Varg (0(s,a)) + RSS(A(s, a)),

where the transformation to Eq.9 utilizes Eq.3.6 and the property of Q(s,a) in
Eq.8 and the transformation to Eq.10 uses Eq.3.8.
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2.6 Estimation of NPG based on least squares

Algorithm 2 Estimation of NPG based on least squares

Given:
e a policy my(als).
e the system trajectory by the policy, {so, ag,r1, ..., 71, ST, ar}.
e an estimated state value function V(s).
Initialize: v, A, ¢.
Set: z=0;, A:=0;,b:=0;.
Fort=0:7T—-1do
z =y Az + Vylnmy(a|s;);
A = A+ 2(Volnmg(as;) — tVolnmg(asii|sis1)) s
b:=b+ z(r + 7V (sie1) — V(s));
end
w = A 'b;

Return: w .

Proof of theorem 2 in the least squares case:
We denote 1, = Vylog ma,|s; and V, = V(mt) for simplicity. Then,

b=Aw

7’1‘1‘7‘71—‘70
T R
_ ro+yVo—V;
<~ (lbo Ypot+pr ... E ’YT t¢t1> .
t=1

TT+7VT—VT—1

(o—tap1)"

T _ T

— <¢0 Yo+ ... Z")/T_t";bt—l) W :L'l,bg) w
t=1 :

(’¢T—1—L'¢T)T
1 T-1 n .
= T Z Py (Z Y T TV — Vr)
t=0 T=t

= T—1 T
T >t <¢t = T =P - VT_I_tLQPT) w.  (11)
t=0 T=t
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By similar transformations as those for Eq.3.12,

S5 d(s)ma(als) Volnmo(als) (Qws, a) — V(s) — (w)" Vglnﬂg(a|s)> )

s€S acA
. 2
s Y, {Z > d(s)moals) (Q7(s,) = V(s) ~ ()T Volno(als)) } ~0
s€S acA
For the above equality to be true,
(w) = w*
holds. 0

2.7 Finite Markov chain

We consider a finite Markov chain M (@, 7) in which the chain terminates with a
probability 1 —7 at each time step and the chain is restarted from the initial state
sq following the initial state distribution p(sq = s) '. The state distribution at
time step ¢ > 1 is calculated as p(s; = s'[s0,0) =7, , p(s']s, a)mg(als)p(si—1 =
s|so, @), and then the discounted stationary distribution of the state is d};. (s) =
(1 —7)> 20 T'p(st = s|so,0) because the average time steps of this chain is
1/(1 — 7). Therefore, the discounted average reward as an objective function is
Rus(0.7) = S5 Saea 03 (5)molal)r(s.0) .

Corollary 1 When the discount rate of the value function, 7y is equal to T of the
finite Markov chain M(0,7), W|ss,q) is an unbiased estimate of the natural policy
gradient in the finite Markov chain M(0,T):

%GRdis<9aT) = (W|5(s.0)) -

Proof: The average reward is calculated as

1 o
Rdis(e, 7') = 11—~ <Z Ttr(st, at)>
t=0

= LS pse = 5)V(s).

1—7

! Although the initial state distribution does not depend on the policy, we will notate p(so =
s]so, @) for simplicity, instead of p(sg = s).
2Corollary 1 is approved in the case that the reward function is 7(s;y1,s,a), by simple

extension of the proof
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The gradient of the average reward about 0 is

VoRun(6,7) = - ; p(so = $)VgV™ (s)
_ % z; a;p(so = 5)Va {me(als)Q™"(s,a)}
- 3 3 oo = I Vemals)Q™ (5.0) 7 3 = b 0%V}
_ %{ ;;gft—lp(st — sso, 0)V97r9(a|s)Q”’T(s,a)}
= 3 X G olam(als) Q7 (ssa

These transformations are similar to those in 1.1. Therefore, when ™7 (s, a) is de-
fined as the TD about V™7 (s), Vg Ry (0, 7) = dy;. (s)Velnmg(als) f (s, a; (W|smr(s,0)))
holds as Eq.3.4 and lemma 2 (1). Hence, with the Fisher information matrix on
M(0,7) derived as G7,,(0) = > cs D uea i (5)Volnmg(als)Velnmg(als) " (Bag-
nell and Schneider, 2003; Peters et al., 2003), the natural policy gradient on
M(0,7) is calculated as

6GRdis(9>7—) = gis(g)_lv9Rdis(977—)
= (W57 (s,0)) - O

106



3 For chapter 5

3.1 Derivation of eq.5.9

For simplicity, we notate 74, = mp(a_,|s,,), Pt = P(Si¢|St1—1,a44-1). Since Eyr
is the system trajectory for 7' time steps from d™(s), Fe,.(0) is calculated to be

F§+T (0)
T—1
S Z Pr(&ir) Vﬁ{ Ind(s) + Z In 7T9(a+t|8+t)}
§+TEET t=0
=—) dTs) (Vz Ind(s) + Y 40740 (vg In 7o+
SGS aeA
Z +1P+1 Z F1T41 (V§ Inm, 1+
seS acA
Z +2P+2 Z +2T 42 <V3 Inmio+---+
seS acA
Z +T-1P+T-1 Z +T-1T4T—1 Vz In 7T+T,1) ) . ) ,
s€S acA

and, by using the balance equation of the stationary distribution (eq.2.2), the
following holds:

S

S (ZHd s+1) F 9|3+t))

seS

a(0). O

F§+T (0) = +

(.

t

= F,(0)+T

|

3.2 Consistency of F;,(0) and H ()
If the immediate reward is dependent on 6

Pr(s,a|M(6*))
Pr(s,a|M(0))

r(s,a;0) = InPr(s, a|M(0)), (12)

then the average reward becomes the negative cross entropy

= Z Pr(s,a|M(6%))InPr(s,a|M(8)).

s,a
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Hence, Pr(s,a|M(0%))=Pr(s,a|M(8)) holds, if the average reward is maximized.
The Hessian matrix becomes H(6) =", Pr(s,a|M(0))V;InPr(s,a|M(8)). If
the policy parameter is nearly optimal 8 ~ 6*, Pr(s,a|M(0)) ~ Pr(s,a|M(6*))
holds by the assumption of the smoothness of my(a|s) with respect to 6. There-
fore, at this time, the Hessian matrix approximately equates the negative, pro-
posed FIM:

H(0) ~ Z Z Pr(s,a|M(0))V3InPr(s,a|M(6))

s€S acA
= —F;.(0).

H(0*) = —F,(0*) obviously holds. Therefore, when the reward function is in
eq.12 and the policy parameter is close to the optimal, NSG almost consists with

the Newton direction and the NSG learning attains quadratic convergence.
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