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Efficient Task-independent

Reinforcement Learning Methods

based on Policy Gradient∗

Tetsuro Morimura

Abstract

This dissertation presents research results about decision making rules in an

uncertain environment, called reinforcement learning (RL). We focus on RL meth-

ods based on gradient descent, so-called policy gradient reinforcement learning

(PGRL), and give efficient task-independent algorithms through mathematical

studies and numerical experiments.

PGRL attempts to find the policy as the decision-making rule that locally

maximize the objective function such as the average or temporal discounted re-

ward. It is performed by estimating the gradient of the objective function with

respect to the policy parameter from the experienced system trajectories of states,

actions, and rewards, and improving the policy parameter on the basis of gradi-

ent descent. As long as the policy is parameterized appropriately, PGRL can be

instantly implemented to Markov decision process (MDP) without the explicit

knowledge about the environment and the learning agent. Moreover, since it is

possible to treat the parameter controlling the randomness of the policy as the

policy parameters, PGRL can obtain the appropriate stochastic policy and be

applied to partially observable MDP (POMDP). Therefore, PGRL is expected to

be applied to various fields and draws much attention. However, there are three

difficulties at least for PGRL to come into practice use:

1) tendency of learning times to be huge amounts,
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2) hardship in setting of hand-tuning parameters as meta-parameters,

3) hardship in parameterizing of appropriate policies.

Although there are many studies for the above problems, most these studies

suppose some specific tasks and use the prior knowledge about the tasks. It

indicates that the methods of these studies could lack versatility. Therefore,

it requires such improvements of the PGRL algorithm as keeping intact about

the standard framework of RL, i.e., task-independent modifications rather than

task-dependent. In this thesis, in order to resolve the above problems we probe

efficient task-independent PGRL algorithms.

For the problem 1), we focus on the structure of the learning (policy) pa-

rameter space, in order to keep away plateau phenomenon where the learning

curve is almost flat in a long period, and study the natural gradient proposed by

Amari. It takes into consideration the sensitivity of each element of the policy

parameter and the correlation between the elements, to probability distribution

of MDP. Firstly, we develop the natural policy gradient (NPG) method with the

Riemannian metric matrix proposed by Kakade, to an efficient algorithm with-

out a matrix inversion. Next, new NPGs based on valid Riemannian metrics are

proposed by utilizing the state-stationary distribution. These gradients take into

account the changes in the state-action joint distributions for improving the pol-

icy parameter, while kakade’s NPG takes into account only changes in the action

distribution and omits changes in the state distribution.

For the problem 2), we focus on the meta-parameter that controls the temporal

discounting for the cumulative rewards, so-called forgetting or discounting factor

γ, since the usefull methods have not been proposed for this parameter so far. In

ordinary PG methods (Kimura and Kobayashi, 1998; Baxter and Bartlett, 2001),

the forgetting factor γ controls the bias-variance trade-off of the estimation for the

average reward gradient with respect to the policy parameter. This is because the

ordinary PG methods omit a term regarding the derivative of the state-stationary

distribution, in order to estimate the gradients. By deriving a method to estimate

the derivative of the stationary distribution, we develop γ-free PGRL algorithms.

For the problem 3), a criterion is derived, in order to judge whether or not

the current parameterization of the policy is sufficient for the achievement of

task objective. If the criterion converges to zero, the policy parameterization is
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sufficient.

Keywords:

Reinforcement learning, Markov decision process, Policy gradient method, Natu-

ral gradient method, derivative of state-stationary distribution.
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方策勾配に基づく効率の良い課題非依存な強化学習法∗

森村 哲郎

内容梗概

方策勾配強化学習法は，エージェントが環境と相互作用する際に得られる報酬
の平均値を目的関数とし，この目的関数を局所最大化する方策（行動則）の獲得を
目指した方策探索法で，方策パラメータを目的関数の勾配により逐次更新するこ
とで実現される．方策さえ適切にパラメータ化すればエージェントや環境に関す
る知識を必要とせず直ちにマルコフ決定過程（Markov Decision Process; MDP）
に実装可能であり，またランダム性を制御するパラメータを方策パラメータに含
めることで確率的な方策の獲得も可能なため部分観測マルコフ決定過程にも適用
可能である．そのため方策勾配強化学習法は様々な分野への応用が期待され，近
年注目を集めている．しかしながら，実用化に向けて解決すべき問題が少なくと
も 3つ挙げられる；

1)学習所要時間が膨大になり易い，
2)実験者が事前に与えるパラメータ（メタパラメータ）の設定が困難，
3)適切な方策のパラメータ化が困難．

これらに対する先行研究は多々あるが，そのほとんどは特定の課題を想定してお
り，課題の事前知識を利用したものであったため，汎用性に欠けていた．よって
標準的な強化学習の枠組みに手を加えない，つまり課題に依存しないような方策
勾配アルゴリズムの改良が望まれる．そこで，本研究では上記問題の解決を目指
して，効率の良い方策勾配強化学習アルゴリズムを数理的に探った．
問題 1)に対しては，特にプラトー（学習の停滞期間）に注目して，MDPの

確率分布に対して各方策パラメータの敏感さの相違やその相関を考慮した自然勾
配法の研究を行った．そこでは初めに，Kakadeの提案した自然方策勾配 (NPG)

の逆行列演算を必要としない適応的な方法で推定する自然時間差分学習法（NTD

アルゴリズム）を提案した．これは状態行動を条件とする状態価値関数の時間的
∗奈良先端科学技術大学院大学 情報科学研究科 情報生命科学専攻 博士論文, NAIST-IS-

DD0561034, 2008年 3月 日.
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差分（TD）の期待値がアドバンテージ関数と一致する事実を利用して，一般に
推定が困難であるアドバンテージ関数の代わりにTDを最小二乗近似することで
NPGを推定し，方策を更新する勾配法である．振り子振上げ課題等に適用した
数値実験により提案法の有効性を示した．次に，NTDアルゴリズムに従って推定
されるNPGの分散に関して理論的に解析し，その分散の上限を最小にするよう
にベースライン関数を補正する補助関数を導入した拡張型NTDアルゴリズムを
提案した．数値実験により従来法に比べ効率よくNPGの推定が可能であること
を確認した．さらに自然（方策）勾配で必要とされるリーマン計量行列について
も解析し，最適な方策への収束を遅くしている理由を学習すべきパラメータ空間
の構造の性質から考察して新しいNPGを導出した．従来用いられてきたKakade

のリーマン計量行列は方策のパラメータ摂動による行動の確率分布変化だけを考
慮した計量行列であったのに対して，提案するNPGで用いるリーマン計量行列
は行動の分布同様に方策の影響を受ける状態の分布までもを考慮したものになっ
ている．そして数値実験より，特に状態数が多い場合でもプラトーに陥らず有効
に働くことを示した．
問題 2)に対しては、メタパラメータの中でもこれまで有効な調節法が提案さ

れていない積算報酬の割引率に関する研究を行った．一般の方策勾配法により推
定される方策パラメータに関する平均報酬の偏微分値は，状態の定常分布の偏微
分の計算が困難であったため，その偏微分に関する項を無視したものであった．
この影響（推定値の偏り）は割引率を 1に近づければ減少するが，一方で分散は
大きくなってしまう．つまり，割引率に関して偏り・分散のトレードオフ問題が
あった．そこで本研究では，逆方向マルコフ連鎖の性質を利用して定常分布の偏
微分を推定する方法を導出し，割引率に依存しない新しい方策勾配法を提案した．
割引率の設定が困難なMDPに適用した数値実験により提案法の有用性を示した．
問題 3)に対しては、上記の拡張型NTDアルゴリズムにおける理論的解析結

果「適切にパラメータ化された方策であれば補助関数が 0に収束する」ことを利
用した方策の自動パラメタライズ法を考案した．一例として方策が三層パーセプ
トロンにより表現される場合に，その隠れ層の素子の数を課題に応じて調節でき
るかを検証した．数値実験により適切な隠れ素子の数を持つパーセプトロンが獲
得されることを確認した．

キーワード

強化学習，マルコフ決定過程, 方策勾配法, 自然勾配法，状態定常分布の勾配.
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Chapter 1

Introduction

This dissertation presents research results about learning of decision-making rules

in an uncertain environment, called reinforcement learning (RL). We focus on

and study RL based on gradient descent, and give efficient task-independent

algorithms through mathematical studies and numerical experiments.

1.1 Overview of Reinforcement Learning

Reinforcement learning (RL) is a theoretical scheme for learning the decision

making rule, so-called a “policy”, by which an agent or a system decides and

executes an action corresponding to an observed state (Bertsekas and Tsitsiklis,

1996; Sutton and Barto, 1998). The criterion of learning is an average or a tempo-

ral discounted cumulation of observed immediate rewards. In an RL framework,

namely, the agent attempts to maximize a cumulative reward by interacting with

environment described as a Markov decision process (MDP). Therefore, if “what

the agent should achieve” is induced to the (immediate) reward, the agent learns

“how” autonomously in the RL framework. This would be one of the great ad-

vantages of RL because it is often intractable for engineers to design the “how”

corresponding to all possible situations in engineering fields, e.g., the game agents

for backgammon (Tesauro, 1995), tetris (Bertsekas and Tsitsiklis, 1996), etc., and

robot controllers for RoboCup soccer (Stone and Veloso, 1999), helicopter flight

(Abbeel et al., 2007), etc.

There are various methods for RL. These are categorized to two classes: (I)
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model-based RL and (II) model-free RL, where the model is the prior knowledge

of environment, i.e., the functions about state transitions by the agent taking an

action and the immediate rewards. Model-based RL utilizes the model to max-

imize a cumulative reward , implemented by dynamic programming (Bertsekas,

1995), Dyna-Q (Sutton and Barto, 1998), and so on. Accordingly, in the model-

based RL framework, the agent has also to learn the model from data when the

model is unknown. While model-based RL is tackled by various ways (Dearden

et al., 1999; Brafman and Tennenholtz, 2003; Strehl and Littman, 2005; Poupart

et al., 2006) and would be an important field in recent years, it is not included

in this thesis.

Model-free RL does not use the model as the prior knowledge of the environ-

ment and can be roughly categorized to two classes: (i) the value update based

RL and (ii) the direct policy-optimization based RL. In the value-update based

RL, the policy is not explicitly represented by adjustable policy parameters, but

it is implicitly represented by value functions that approximate expectations of

(discounted) cumulative rewards from a state or a state-action pair. The methods

of this type of RL attempt to find a good policy through the update of the value

function, e.g., Q-learning, SARSA learning (Sutton and Barto, 1998). On the

other hand, the policy is explicitly represented by adjustable policy parameters

in the direct policy-optimization based RL. This RL optimizes directly the policy

parameter to maximize the objective function as the cumulative reward. Most

methods of this RL are based on gradient descent scheme and are called Policy

Gradient Reinforcement Learning (PGRL) or merely policy gradient (PG) meth-

ods, implemented by REINFORCE (Williams, 1992), GPOMDP (Baxter and

Bartlett, 2001), or (natural) Actor-Critic algorithms (Sutton and Barto, 1998;

Kimura and Kobayashi, 1998; Baird and Moore, 1999; Sutton et al., 2000; Konda

and Tsitsiklis, 2003; Kakade, 2002; Peters et al., 2003). Comparing PGRL with

value based RL, PGRL has advantages such that PGRL could be easily applied

to the cases of a continuous state-action environment and optimize stochastic

policy, while these are often hard for value-based RL. Consequently, PGRL is

drawing much attention in recent years. However, PGRL has weekness that it

often takes more time-steps to find the good policy than value based RL.

In this thesis, we focus on and study PGRL since it has potential for many
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engineering applications and is still a developing research topic as described above.

1.2 Motivation

While PGRL is expected to be applied various fields and draws much attention

as described above, there are three difficulties at least for PGRL to come into

practice use:

1) tendency of learning times to be huge amounts,

2) hardship in parameterizing of appropriate policies, and

3) hardship in setting of hand-tuning parameters as meta-parameters.

Although there are many studies to overcome the above problems, most of these

studies suppose some certain tasks and use the prior knowledge about tasks (Ng

et al., 1999; Ronsenstein and Barto, 2004; Bagnell et al., 2004). It indicates

that the methods of these studies could lack versatility. Therefore, it requires

such modifications of the PGRL algorithm as keeping intact about the standard

framework of RL, i.e., task-independent modifications. In this thesis, in order to

resolve the above problems we probe efficient task-independent PGRL algorithms.

For the first problem 1), there is a limitation of standard gradient descent

algorithms to consume huge learning time, that the ordinary gradient of a fucn-

tion does not necessarily indicate its steepest direction, because the parameters

might not be expressed in orthonormal coordinates. In order to overcome this

problem, Amari (1998) proposed the concept of natural gradient, and Kakade

(2002) introduced it in policy gradient RL and proposed the “natural policy gra-

dient” method (NPG). However, the drawbacks of their algorithms require the

computation of the inverse of a matrix and the Riemannian metric matrix having

effect of the NPG direction was heuristic. We present a new algorithm based on

Kakade’s NPG, Natural policy gradient utilizing Temporal Differences (NTD) al-

gorithm, which estimates the natural policy gradient in an online manner without

matrix inversion (Morimura et al., 2005), and also propose a new NPG based on

a valid Riemannian metric matrix by utilizing the state-stationary distribution

(Morimura et al., 2007b).
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For the second problem 2), we derive a criterion to judge whether or not the

current parameterization of the policy is sufficient for the achievement of task

objective. When the criterion converges to zero, the policy parameterization is

sufficient. We develop the auto-adjustmenting algorithm for the number of hidden

units of a multi-layer perceptron used as the policy.

For the final problem 3), we focus on the meta-parameter that controls the

temporal discounting for the cumulative rewards, so-called forgetting or discount-

ing factor γ, since the usefull methods have not been proposed for this parame-

ter so far. In ordinary PG methods (Kimura and Kobayashi, 1998; Baxter and

Bartlett, 2001), the forgetting factor γ controls the bias-variance trade-off of the

estimation for the average reward gradient with respect to the policy parameter.

This is because the ordinary PG methods omit a term regarding the derivative of

the state-stationary distribution, in order to estimate the gradients. By deriving

a method to estimate the derivative of the stationary distribution, we develop

γ-free PGRL algorithms.

1.3 Contents of dissertation

This dissertation is organized as follows. In chapter 2, we explain the basic

framework of PGRL and the natural gradient as preliminaries. The following

chapters are divided into two main branches.

Studies in the first branch do not utilize the derivative and tackles the problem

1) regarding the learning times by utilizing the Kakade’s NPG and deriving a

baseline adjustment function for variance reduction, and also tackles the problem

2) regarding the parameterization of the policy. These topics are included in

chapter 3.

Studies in the second branch utilize the derivative of the stationary distribu-

tion. We first derive the method estimating the derivative and develop γ-free

PGRL algorithms for the problem 3) regarding the forgetting factor γ as the

meta-parameter in chapter 4. Next, we derive a new NPG based on a valid

Riemannian metric matrix by utilizing the derivative in chapter 5.

In chapter 6, we conclude this dissertation.
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Chapter 2

Preliminaries

2.1 Policy gradient reinforcement learning (PGRL)

We review the conventional reinforcement learning (RL) methods based on policy

gradient (PG)—PGRL. PGRL is modeled on a discrete time Markov decision

process (MDP) (Bertsekas, 1995; Sutton and Barto, 1998). It is defined by the

quintuplet (S,A, p, r, π), where S 3 s, A 3 a are finite sets of states and actions,

respectively. p : S × A × S → [0, 1] is a state transition probability function of

a current state st ∈ S, a current action at ∈ A and a following state st+1 ∈ S
from a time step t (≥ 0) to t + 1, i.e., p(st+1|st, at) ≡ Pr(st+1|st, at), satisfying∑

st+1∈S p(st+1|st, at) = 1. r : S×A×S → [Rmin,Rmax] is a reward function of st,

at, and st+1 and is bounded below by Rmin and above by Rmax, which defines an

immediate reward rt+1 observed by a learning agent 1. π : S ×A×Rd → [0, 1] is

a function for an action probability given a state and a policy parameter θ ∈ Rd,

so-called a stochastic policy, i.e., π(at|st;θ) ≡ Pr(at|st,θ), which defines the

decision-making of a learning agent and is adjustable by learning of the policy

parameter θ.

We assume that the policy π(a|s;θ) is differentiable with θ for all s ∈ S and

a ∈ A 2, and would notate πθ(a|s) as π(a|s;θ) for simplicity. We also posit the

following assumption:

1Even if r(st, at, st+1) is a random variable, all results of this thesis can be applied directly
by replacing r(st, at, st+1) with E{r(st, at, st+1)|st, at, st+1}.

2‖∇θlnπθ(a|s)‖ <∞.
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Assumption 1 The Markov chain M(θ) = {S,A, p, πθ} is ergodic (irreducible

and aperiodic) for all policy parameters θ. Then, there exists a unique stationary

state distribution dπ(s) ≡ Pr(s|M(θ)), equated to the limiting distribution, which

is independent of the initial state,

dπ(s′) = lim
t→∞

Pr(St = s′|S0 = s,M(θ)), ∀s ∈ S. (2.1)

The stationary distribution satisfies the following balance equation

dπ(s′) =
∑
s∈S

∑
a∈A

p(s′|s, a)π(a|s,θ)dπ(s), (2.2)

≡
∑
s∈S

∑
a∈A

pM(θ)(s
′, a|s)dπ(s),

where pM(θ)(s
′, a|s) = p(s′|s, a)π(a|s;θ). The following equation instantly holds

(Bertsekas, 1995),

dπ(s′) = lim
T→∞

1

T

T∑
t=1

Pr(St = s′|S0 = s, M(θ)), ∀s ∈ S. (2.3)

The goal of PGRL is to find the policy parameter θ∗ that maximizes the

average of the immediate rewards called the average reward:

R(θ) ≡ lim
T→∞

1

T
EM(θ)

{
T∑

t=1

rt

∣∣∣∣s0

}
, (2.4)

where EM(θ) denotes the expectation over the Markov chain M(θ). It is noted

that, under Assumption 1, the average reward is independent of the initial state

s0 and can be shown to be equal (Bertsekas, 1995):

R(θ) = EM(θ) {r(s, a, s′)} (2.5)

=
∑
s∈S

∑
a∈A

∑
s′∈S

dπ(s)πθ(a|s)p(s′|s, a)r(s, a, s′) (2.6)

=
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)r̄(s, a),
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where r̄(s, a) ≡
∑

s′∈S p(s′|s, a)r(s, a, s′) does not depend on the policy parameter

θ. Accordingly, the derivative of the average reward with respect to the policy

parameter θ, which is often referred as the policy gradient (PG) for short,

∇θR(θ) ≡
[
∂R(θ)

∂θ1

, . . . ,
∂R(θ)

∂θd

]>
,

where > denotes transpose, is calculated to

∇θR(θ) =
∑
s∈S

∑
a∈A

∇θ(d
π(s)πθ(a|s))r̄(s, a) (2.7)

=
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s) (∇θln πθ(a|s) +∇θln dπ(s)) r̄(s, a). (2.8)

The ordinary policy gradient RL algorithms update the policy parameter θ in

the direction of the ordinary gradient of the average reward, ∇θR(θ), with the

sufficient small learning rate α:

θ := θ + α∇θR(θ),

where := denotes the the right-to-left substitution. Similarly, the natural policy

gradient RL algorithms update θ in the direction of the natural gradient of the

average reward, ∇̃,θ R(θ), which is introduced in the following section 2.2.

As the derivation of the log stationary state distribution ∇θln dπ(s) is non-

trivial, the conventional PG algorithms (Baxter and Bartlett, 2001; Kimura and

Kobayashi, 1998) utilize an alternative representation of the PG (see appendix

for this derivation)

∇θR(θ) =
∑
s∈S

∑
a∈A

dπ(x)πθ(a|s)∇θln πθ(a|s)Qπ
γ(s, a)

+ (1− γ)
∑
s∈S

dπ(x)∇θln dπ(s)V π
γ (x), (2.9)

where

Qπ
γ(st, at) ≡ lim

K→∞
EM(θ)

{
K∑

k=1

γk−1rt+k|st, at

}
is an action value function and

V π
γ (st) ≡ lim

K→∞
EM(θ)

{
K∑

k=1

γk−1rt+k|st

}
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is a state value function with discount factor γ ∈ [0, 1) (Sutton and Barto, 1998).

Since the contribution of the second term of Eq.2.9 becomes smaller as γ ap-

proaches 1 (Baxter and Bartlett, 2001), the conventional algorithms (Baxter and

Bartlett, 2001; Kimura and Kobayashi, 1998) approximate the PG only from the

first term by taking γ ≈ 1 as a biased PG, i.e.,

∇θR(θ) ≈
∑
s∈S

∑
a∈A

dπ(x)πθ(a|s)∇θln πθ(a|s)Qπ
γ(s, a), 0 << γ < 1 (2.10)

≡ ∇γ
θR(θ).

The dependence on γ of the biased PG is explained in the following lemma:

Lemma 1 We define ε by

ε ≡
(1− γ) ||

∑
s∈S
∑

a∈A dπ(s)∇θln dπ(s)V π,γ(s)||
||
∑

s∈S
∑

a∈A dπ(s)πθ(a|s)∇θln πθ(a|s)Qπ,γ(s, a)||
, (2.11)

where ||c|| is Euclidean norm of vector c. Then, an angle between ∇γ
θR(θ) and

the true gradient ∇θR(θ) is bounded by cos−1(1−ε
1+ε

). In the limit γ → 1, ε is equal

to zero; then, the biased policy gradient becomes the true policy gradient, i.e.,

∇γ
θR(θ) = ∇θR(θ).

Proof: see the appendix 1.2.

Since∇θln dπ(s) can be estimated by the method proposed in chapter 4 or Morimura

et al. (2007b), ε in Eq.2.11 can also be estimated. Thus, lemma 1 would be use-

ful in order to adapt γ, although Baxter and Bartlett (2001) and Kakade (2001)

provide other relations between γ and the biased PG with regard to the second

eigenvalue of the state transition matrix.

Although the bias introduced by this omission becomes smaller as γ is close

to 1, the variance of the estimate becomes larger. In chapter 3, we discuss PG al-

gorithms computing the derivative of the average reward based on eq.2.10, which

ignores the derivative of the stationary distribution. In chapter 4, we propose an

alternative approach, which estimates the log stationary distribution derivative

(LSD), ∇θln dπ(s), and uses eq.2.8 to compute the derivative of the average re-

ward. A marked feature is that we do not need to learn the value function, and

thus, the algorithm is free from the bias-variance trade-off in the choice of the

forgetting (or discount) factor γ.
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2.2 Natural gradient

As mentioned in chapter 1, the ordinary gradient (derivative) of a fucntion does

not necessarily correspond to its steepest direction if its parameters are not ex-

pressed in orthonormal coordinates in terms of a manifold defined by the function.

Therefore, to solve the problem, we consider the application of the natural gra-

dient (Amari, 1998), which can represent the steepest descent direction in this

case. In this section, we introduce the background of the natural gradient (NG)

and the natural policy gradient (NPG) as the NG for the PG.

In a Riemannian manifold of a parameter a, the steepest descent direction of

a function g(a) is expressed as

∇̃G,ag(a) = G−1(a)∇ag(a),

where G(a) is the Riemannian metric matrix of a, which is defined by the Fisher

information matrix in the case that the parameter space of a is in a statisti-

cal model, and ∇̃ag(a) is called the natural gradient. The Fisher information

matrix is a unique metric matrix of the second-order Taylor expansion of the

KL-divergence on a fixed probability distribution. When a different statistical

model or a probability distribution is considered, obviously, the Fisher informa-

tion matrix varies and the direction of the NG has to vary.

For NPG (the application of the NG to PGRL), it should be discussed what

statistical model or probability distribution on MDP is appropriate to the basis

of the Riemannian metric matrix. While we provide some answers about above

question in chapter 5, we propose efficient NPG algorithm based on the Rieman-

nian metric matrix proposed by Kakade (2002) in chapter 3. In chapter 5, we

derive a valid Riemannian metric matrix for PGRL and propose a new NPG,

which utilizes LSD.
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Chapter 3

A Natural Policy Gradient on

Kakade’s Riemannian Metric

Since most previous algorithms which implement the natural policy gradient

(NPG) on Kakade’s Riemannian metric matrix (Kakade, 2002; Peters et al., 2003;

Mori et al., 2005), use matrix inversion, they suffer from numerical instability

and high computational costs. In section 3.2, we propose a novel NPG estima-

tion method without matrix inversion by regressing the temporal difference (TD)

reward prediction errors by using a set of basis functions given by the parame-

terization of the policy. We also show that the bias in the gradient estimate can

be reduced by employing “eligibility traces” in the TD regression. The proposed

algorithm, the natural policy gradient utilizing the temporal differences (NTD)

algorithm, is applied to a simple Markov decision problem and a more challenging

nonlinear pendulum-control problem to demonstrate its effectiveness.

In section 3.3, we discuss the baseline function for the NPG estimate based on

NTD algorithm with respect to the variance and show a condition that an optimal

baseline function reducing the variance is equivalent to the state value function.

Because the state value could be much different from the optimal baseline outside

of the condition, an extended version of the NTD algorithm is proposed for such

cases. It introduces an auxiliary function to adjust the baseline, being state value

estimates in the original version, to the optimal baseline. The proposed algorithm

is applied to simple MDP and a challenging pendulum swing-up problem.

In section 3.4, we discuss the problem what policy parameterizations are ap-
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propriate for some tasks, and propose the average absolute value of the auxiliary

function to adjust the baseline as a criterion to judge whether or not the current

parameterization of the policy is sufficient for the achievement of task objective.

An auto-adjustmenting algorithm for the number of hidden units of a multi-layer

perceptron used as the policy is developed by the fact that the criterion being

zero means the policy parameterization is sufficient.

It must be noted that, in this chapter, because we deal only with the biased

PGs and the discounted value functions, we omit the term biased 1 and discounted,

respectively. For instance, when we discuss about the bias of an estimated PG,

we imply the bias from the biased PG to the estimate.

3.1 Definition of Kakade’s NPG

Kakade (2002) supposed that the Fisher information matrix of RL is the average

of Fa(s,θ) weighted by the stationary state distribution, F a(θ) ≡
∑

a∈A dπ(s)Fa(s,θ),

and then showed (see appendix for the derivation)

F a(θ)
−1
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)f(s, a;w) = w, (3.1)

where f(s, a;ω) ≡ ∇θln πθ(a|s)>ω is termed as the compatible function (Sut-

ton et al., 2000). Peters et al. (2003), and Bagnell and Schneider (2003) in-

dependently proved that F a(θ) is equivalent to the scaled Fisher information

matrix of the probability distribution of the system trajectories, p(ξT |θ); ξT =

(s0, a0, s1, ..., aT−1, sT )>, with respect to the policy parameter θ with the limit

T →∞, i.e., 2

F a(θ) = lim
T→∞

1

T
FξT

(θ). (3.2)

Since the maximization of the average reward can be regarded as the optimization

of the integration of rewards over the space of possible system trajectories, the

scaled Fisher information matrix of the trajectory distribution could be one of the

1The bias from PG to a biased PG is discussed in Baxter and Bartlett (2001)
2See chapter 5 for the derivation of 3.2 and detailed discussions about the Riemannian metric

and the Fisher information matrices for RL.
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reasonable Riemannian metrics for RL 3. The natural policy gradient as natural

gradient of RL on Kakade’s Riemannian metrix is

∇̃F a,θ R(θ) = F a(θ)
−1∇θR(θ). (3.3)

We simplify ∇̃F a,θ to ∇̃θ from here in this chapter, because F a(θ) is the only

Riemannian matrix used for NPG in this chapter.

However, the algorithms (Kakade, 2002; Peters et al., 2003) that implement

the natural policy gradient require the computation of the matrix inversion. With

this background, we present the natural policy gradient utilizing the temporal

differences (NTD) algorithm that estimates the natural policy gradient in an

online manner without matrix inversion.

3.2 Utilizing incremental temporal differences for

natural actor-critic (NAC)—NTD algorithm

The actor-critic framework for NPG is called the natural actor-critic (NAC) (Pe-

ters et al., 2003). The critic estimates NPG ω̂ and the actor executes the ac-

tion drawn from the policy πθ(a|s), which is updated by the critic’s estimate:

θ := θ+αω̂, where “:=” denotes the substitution of the right to the left and α is

learning rate. In the following sections, we show the original and extended NTD

algorithms.

3.2.1 Organization of NAC and the NTD Algorithm

We first introduce the overall architecture of the NTD algorithm and then we

explain how each component works. The NTD algorithm comprises three com-

ponents4, as shown in Figure 3.1. The first component is the value estimator that

3This Riemannian metric matrix takes into account only changes in the action distribution
for improving the policy parameter and omits changes in the state distribution, which also
depends on the policy in almost all cases. In chapter 5, we propose a new Riemannian metric
considering the state distribution as well as the action distribution and derive a new natural
policy gradient based on the metric.

4If it is regarded as an actor-critic model (Sutton and Barto, 1998), the value and NPG
estimators configure the critic and the policy is the same as the actor.
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estimates the state value function. This is performed by ordinary TD(λ) (Sutton,

1988) or LSTD(λ) (Bradtke and Barto, 1996; Boyan, 1999) learning. The second

is the natural policy gradient (NPG) estimator. It is realized by regressing the

temporal differences (TD) given by the first component with a linear function

approximator comprising basis functions defined by policy parameterization and

the weight vector. The final component is the policy, which is updated toward

the direction of the NPG estimate given as the weight vector of the second com-

ponent. We term this framework the Natural policy gradient utilizing Temporal

Differences –the NTD Algorithm.

π π

Figure 3.1. Architecture of the NTD algorithm.

In section 3.2.2, we show the following. When the compatible function f(s, a;w)

with respect to the policy parameterization (Sutton et al., 2000), which is a lin-

ear function with the weight w and the policy eligibility ∇θln πθ(a|s) as the basis

function, regresses the temporal difference of the state value function, the weight

becomes an estimate of NPG. In section 3.2.3, we show that the weight can be

an unbiased estimate of NPG if eligibility traces are applied to the TD regression

at an eligibility decay rate of λ = γ under a fixed policy.
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3.2.2 Function Approximation to TD for PG

Function approximation for policy gradient

As Konda and Tsitsiklis (2003) and Sutton et al. (2000) have shown that the

unbiased PG is expressed by the compatible function regressing a “differential cost

function” defined as a solution of the Poisson equation, the compatible function

f(s, a;w) ≡ w>∇θln πθ(a|s) can also be used to represent the PG defined by

eq.2.10 as (see the appendix 2.2),

∇γ
θR(θ) =

∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)f(s, a;w∗|Qπ(s,a)−b(s)) (3.4)

=
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)ψ(s, a)ψ(s, a)>w∗|Qπ(s,a)−b(s),

where ψ(s, a) ≡ ∇θln πθ(a|s) is termed the policy eligibility and w∗|Qπ(s,a)−b(s)

is the weight that minimizes the mean square error between Qπ(s, a)− b(s) and

f(s, a;w),

ε(w) ≡ 1

2

∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)
{
Qπ(s, a)− b(s)−ψ(s, a)>w

}2
. (3.5)

Hereafter, w∗|Qπ(s,a)−b(s) will be abbreviated as w∗ for simplicity. In this case,

∇wε(w∗) =
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)
{
Qπ(s, a)− b(s)−ψ(s, a)>w∗}ψ(s, a) = 0.

It is noted that w∗|Qπ(s,a)−b(s) remains unchanged by the choice of the baseline

function b(s) because f(s, a;w) has zero mean for each state,∑
a∈A

πθ(a|s)f(s, a;w) = w>
∑
a∈A

∇θπθ(a|s) = w>∇θ

∑
a∈A

πθ(a|s) = 0, ∀s ∈ S,

(3.6)

then Eq.3.5 is calculated as ε(w) = 1/2
∑

s∈S
∑

a∈A dπ(s)πθ(a|s) {Qπ(s, a)− f(s, a;w)}2.
However, when the number of samples is finite, b(s) affects the variance of the

estimate of the regressor f(s, a; ŵ|Qπ(s,a)−b(s)) where ŵ|Qπ(s,a)−b(s) is a weight re-

gressed to the regressand “Qπ(s, a) − b(s)” with finite samples. Therefore, in
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practice, it is important to set b(s) appropriately. Sutton et al. (2000) and Peters

et al. (2003) suggest that a value of b(s) satisfying∑
a∈A

πθ(a|s) (Qπ(s, a)− b(s)) = 0, (3.7)

that is, b(s) = V π(s), is a better baseline function than b(s) = 0 because of the

constraint of the compatible function, Eq.3.6 5. That may be supported by the

following proposition

Proposition 1 If the baseline function b(s) is equal to the state value function

V π(s), a residual sum of squares

RSSf (Q
π(s, a)− b(s)) ≡

∑
s∈S

∑
a∈A

dπ(s)πθ(a|s) {Qπ(s, a)− b(s)− f(s, a;w)}2

is minimized about b(s) for any w.

Proof: see the appendix 2.3.

Function approximation to TD as advantage function

When b(s) = V π(s), the regressand is equal to the advantage function Aπ(s, a) ≡
Qπ(s, a)− V π(a) (Baird, 1993)6. It is noted that the advantage function cannot

be learned by TD learning that uses f(s, a;w) exclusively (Peters et al., 2003).

Although there are some methods for learning, they are considerably difficult be-

cause they require an argmax operator or a matrix inversion computation (Baird,

1993; Dayan and Singh, 1996; Peters et al., 2003). Here, we present lemma 2

for the feasible construction of f(s, a; ŵ|Aπ(s,a)), which is the same as that under

b(s) = V π(s), by utilizing the TD of the state value function. The TD (also re-

ferred to as the TD error) is defined in the Bellman equation (Sutton and Barto,

1998),

δt ≡ rt+1 + γV π(st+1)− V π(st).

5The detailed discussions regarding the baseline function are present in Greensmith et al.
(2004) and Peters and Schaal (2006), which propose optimal baseline functions minimizing the
bounds of variances, and Morimura et al. (2007a), which show that the state value function is
equivalent to these optimal baseline functions when the policy parameterization is proper and
f(s, a; ŵ) converges to f(s, a;w∗).

6The advantage function provided by Baird (1993) is Aπ(s, a) ≡ Qπ(s, a)−argmaxaQπ(s, a).
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In practice, δt is only used to update the value function and is discarded in each

trial 7. However, the basic concept of our algorithm is that the TD δt is considered

as a function of the state and the action,

δπ(st, at) ≡ r(st, at, st+1) + γV π(st+1)− V π(st),

and δπ(s, a) is considered as target function of the regression function f(s, a;w).

The TD δπ(s, a) is a random variable because st+1 is a random variable, except

in the case of p(st+1|st, a) = 1, and the reward function r(st, at, st+1) may also

be a random variable. It is noted that the expectation of the TD given s and

a, 〈δπ(s, a)〉, does not necessarily become zero on the stochastic policy; this is

applied to the derivation of proposition 2. Of course, the expectation of the TD

given s is equal to zero.

Proposition 2 The expectation of the TD of the state value function in the state-

action space is equal to the advantage function,

EM(θ) {δπ(s, a)|s, a} = Aπ(s, a). (3.8)

If Varπ(δπ(s, a)) = 0, the following equation holds:

δπ(s, a) = Aπ(s, a),

where the function Varπ(δπ(s, a)) is the average of the variance of δπ(s, a), based

on the state and action distribution,
∑

s∈S
∑

a∈A dπ(s)πθ(a|s)EM(θ)

{
(δπ(s, a)− Aπ(s, a))2 |s, a

}
.

Proof: see the appendix 2.4.

Lemma 2 (i) Let regressions be performed with infinite number of samples from

Markov chains M(θ) with an appropriate regression method. Then, the following

equation holds: f(s, a; ŵ∗|δπ(s,a)) = f(s, a; ŵ∗|Aπ(s,a)) = f(s, a;w∗) 8.

(ii) Let regressions be performed with a finite number of samples from M(θ).

(ii-1) If Varπ(δπ(s, a)) = 0, the following equation holds:

f(s, a; ŵ|δπ(s,a)) = f(s, a; ŵ|Aπ(s,a)).

7The TD is also used for the policy updating in actor-critic RL, but it is also discarded in
each trial (Kimura and Kobayashi, 1998).

8(i) means f
(
s, a; EM(θ)

{
ŵ|δπ(s,a)

})
= f

(
s, a; EM(θ)

{
ŵ|Aπ(s,a)

})
= f(s, a;w∗)
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(ii-2) If Varπ(δπ(s, a)) is sufficiently smaller than RSSf (A
π(s, a)), then,

f(s, a; ŵ|δπ(s,a)) ' f(s, a; ŵ|Aπ(s,a)).

Proof: (i) is proved in the appendix 2.5, shown as both the regression func-

tions, f(s, a; ŵ|δπ(s,a)) and f(s, a; ŵ|Aπ(s,a)), converge to f(s, a;w∗) with infinite

samples. (ii-1) is apparent, since δπ(s, a) = Aπ(s, a) holds by proposition 2 when

Varπ(δπ(s, a)) = 0. (ii-2) is provided by (i), (ii-1), and the following two things;

First, the regression of the compatible function to δπ(s, a) uses the state value

function V π(s) as the baseline function, as in the case of f(s, a; ŵ|Aπ(s,a)), which

is apparent from the definition of δπ(s, a). Second, the residual sum of squares

of the compatible function regressed for δπ(s, a) is larger than that for Aπ(s, a)

only for Varπ(δπ(s, a)),

RSSf (δ
π(s, a)) = RSSf (A

π(s, a)) + Varπ(δπ(s, a)), (3.9)

which is derived in the appendix 2.5. That is, if Varπ(δπ(s, a)) is sufficiently

small, then f(s, a; ŵ|Aπ(s,a)) ' f(s, a; ŵ|δπ(s,a)) holds. �
Lemma 2 indicates that it is effective to use δπ(s, a) as the regressand for the

construction of f(s, a;w∗) under a small Varπ(δπ(s, a)), as well as the case to use

Aπ(s, a), which is hard to be estimated. Even if Varπ(δπ(s, a)) is large, where the

entropy about the state transition probability p(st+1|st, at) is high and/or the the

reward function has a large random noise, ŵ|δs,a remains an unbiased estimate of

w∗. However, in this case, Aπ(s, a) is a better regressand than δπ(s, a) because

RSSf (δ
π(s, a)) is much larger than RSSf (A

π(s, a)).

By applying lemma 1 and lemma 2, we obtain the convergence property of

the NPG estimation with the TD with regard to the natural policy gradient.

Theorem 1 Let ε defined in Eq.2.11 and Varπ(δπ(s, a)) be sufficiently close to

zero. Then, the natural policy gradient ∇̃θR(θ) is approximated by the vector

ŵ|δ(s,a) which is the weight of the compatible function regressed to the TD with

finite samples from the Markov chains M(θ),

∇̃θR(θ) ' w|δ(s,a).
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Proof:

∇̃θR(θ) ' ∇̃γ
θR(θ) = F a(θ)

−1∇γ
θR(θ) [eq.2.10, lemma 1, & eq.3.3]

= F a(θ)
−1
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)f(s, a;w∗) [eq.3.4]

' F a(θ)
−1
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)f(s, a; ŵ|Aπ(s,a))

[proposition 1]

' F a(θ)
−1
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)f(s, a; ŵ|δπ(s,a)) [lemma 2]

= ŵ|δπ(s,a), [eq.3.1]

�
It is noted that, if the number of samples is infinite, the fourth and fifth transfor-

mations of the above proof has an equality instead of a near equality ', and then

∇̃,θ R(θ) = ŵ|δπ(s,a) holds with an appropriate regression method. For simplicity,

henceforth, we notate ŵ as the estimate of ŵ|δπ(s,a).

3.2.3 Eligibility traces with value function estimates

When the state value function is known, the exact TD δπ(s, a) is available and

then the estimation of NPG, w, on the NTD algorithm is reduced to a gen-

eral supervised problem as a linear regression of the TD with the basis function

∇θln πθ(a|s). Thus, many methods on supervised learning are available, e.g., the

least squares and various gradient descent regressions. To compute the exact state

value function analytically, it is necessary that the state transition probability and

the reward function are known. However,the above situation is rare during actual

tasks. In cases other than the above situation, a critical problem for the imple-

mentation of the NTD algorithm is to estimatew appropriately with a state value

function estimate V̂ π(s), which would have estimation errors; that is, when a com-

mon supervised algorithm for the regression of “δ̂(st, at) ≡ rt +γV̂ (st+1)− V̂ (st)”

is applied, the NPG estimates ŵ would be biased. To solve the the problem, we

propose regression algorithms using the eligibility trace of the policy.

Two algorithms using eligibility traces for the TD regression with an estimate

V̂ (s) are proposed: Algorithm 1 is based on a gradient descent algorithm like
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TD(λ) (Sutton and Barto, 1998). Algorithm 2, which is shown in appendix,

is based on a least squares algorithm like LSTD(λ) (Boyan, 1999). In these

algorithms, := denotes the substitution of the back for the front. Both algorithms

estimate NPG at time step t, by regarding the eligibility trace as

zt ≡
t∑

k=0

(γλ)t−k∇θln πθ(ak|sk),

and the immediate error as

εt ≡ rt + γV̂ (st+1)− V̂ (st)− ŵ>
(
∇θln πθ(at|st)− ι∇θln πθ(at+1|st+1)

)
, (3.10)

where the eligibility decay rate λ ∈ [0, 1] and the ι ∈ R are meta-parameters

which are decided by hand. Although ι should be equal to γλ, following the

ordinary eligibility manner, it is a free parameter because of the property of

Eq.3.6,
∑

a∈A πθ(a|s)f(s, a;w) = 0. However, it should set in [0, γλ]. This is

because, when ι = 0, the immediate error εt does not have the randomness

from the following time step t + 1 about ft+1 ≡ ŵ>∇θln πθ(at+1|st+1) in Eq.3.10;

however, ∆ŵt in eq.3.11 or eq.a-11 9 has the randomness from the fk of the

following time steps k ∈ {t + 1, ..., T}. When ι = γλ, the feature is the opposite

of that mentioned above, and ι ∈ (0, γλ) fills the gap between these limiting

cases. We set ι = 0 in all the numerical experiments in this study, because the

differences between the numerical results obtained with various values of ι ∈ [0, 1]

are not significant. There are other meta-parameters in algorithm 1, based on

the gradient descent: k is the interval for the update of ŵ and α, which would

change in time steps (Bertsekas and Tsitsiklis, 1996), is the learning rate of ŵ.

The proposed algorithm has a nice property as the following theorem.

9Although λ = 1 in these equations, it is the same in λ ∈ [0, 1].
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Algorithm 1 Estimation of NPG based on gradient descent

Given:

• a policy πθ(a|s).

• the system trajectory and rewards by the policy, {s0, a0, r1, ..., rT , sT , aT}.
• an estimated state value function V̂ (s).

Initialize: k, γ, α, λ, ι, and ŵ.

Set: ∆w := 0; z := 0;

For t = 0 : T − 1 do

z := γλz +∇θln πθ(at|st);

∆ŵ := ∆ŵ + z
{
rt+1 + γV̂ (st+1)− V̂ (st)

−ŵ>(∇θln πθ(at|st)− ι∇θln πθ(at+1|st+1))
}
;

If mod(t, k)† = 0

ŵ := ŵ + α∆ŵ/k;

reset: ∆ŵ := 0; z := 0;

end

end

Return: ŵ.

† mod(t, k) computes modulus of t after division by k.

Theorem 2 Let the TD regression be conducted with a fixed policy and a state

value estimate V̂ (s). If the eligibility decay rate λ is equal to one, the NPG

estimate is unbiased.

Proof: We prove the theorem in the gradient descent case, algorithm 1, based on

Kimura and Kobayashi (1998), while the proof in the least squares case, algorithm

2, is shown in the appendix 2.6. We denote ψt ≡ ∇θln πθ(at|st) and V̂t ≡ V̂ (st)
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for simplicity. Then,

〈∆ŵ〉 = lim
T→∞

1

T

T−1∑
t=0

εtzt

= lim
T→∞

1

T

T−1∑
t=0

[
rt+1 + γV̂t+1 − V̂t − (ψt − ιψt+1)

>ŵ
] t∑

τ=1

γt−τψτ

= lim
T→∞

1

T

T−1∑
t=0

ψt

[ T−1∑
τ=t

γτ−t
{

rτ+1 + γV̂τ+1 − V̂τ − (ψτ − ιψτ+1)
>ŵ
}]

= lim
T→∞

1

T

T−1∑
t=0

ψt

[T−1∑
τ=t

γτ−trτ+1 + γT−tV̂T − V̂t

−
(
ψt +

T−2∑
τ=t

γτ−t(γ − ι)ψτ+1 − γT−1−tιψT

)>
ŵ

]
(3.11)

=
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)
[
Qπ(s, a)− V̂ (x)−∇θln πθ(a|s)>ŵ

]
(3.12)

= ∇wε(ŵ),

where Eq.3.12 is obtained from the definition of the state-action value function

and the properties of the TD regressor that has a zero mean for each state, Eq.3.6,

and is independent between different time steps, and ε(w) defined at Eq.3.5 is

the mean square error about w. �
Therefore, because ŵ in the TD approximation could converge to the unbiased

natural policy gradient 10 when λ = 1, the NTD algorithm can have almost the

same suitable properties, as shown in Kakade (2002) and Bagnell and Schneider

(2003). That is, the policy parameter is unaffected by the correlation of the

parameters. When λ = 0, θ is updated in the direction of the value function

estimate. The eligibility trace by λ ∈ (0, 1) fills the gap between the above two

limiting cases. The characteristics of λ are similar to those of the decay rates used

in TD(λ) (Sutton, 1988) and the actor-critic architecture proposed by Kimura and

Kobayashi (1998).

10In fact, eq.2.10 implies that the gradient is also biased about the average reward. However,
as mentioned in the previous section, we neglect the bias in this paper.
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3.2.4 Implementation of NTD Algorithm

Heretofore, we have focussed on the estimations of NPG. Here, the NTD algo-

rithm is presented as a RL algorithm, where the policy parameter is updated by

the estimated NPG ŵ with an appropriate learning rate α,

θ := θ + αŵ.

We propose a simple implementation of the NTD algorithm based on the gradi-

ent descent NPG estimation as algorithm 1. As mentioned in section 3.2.1, the

NTD algorithm comprises three components—the value function estimator, the

TD regressor as the NPG estimator, and the policy. Although it is preferable that

the policy update waits for the other components to complete the estimations, a

heuristic procedure would be effective in training all the components simultane-

ously. It is that the weight of the TD regressor is forgotten by a rate β ∈ [0, 1] at

each time step, w ← βw. Thus, the adverse affect derived from the strong vari-

ance of the TD estimator during incomplete learning can be avoided because the

elements of ŵ which couple with rarely experienced state-action pairs decays to

zero and then the corresponding elements of the policy parameter vector are not

updated. Indeed, if β 6= 1, ŵ will be biased. When β = 0, the NTD algorithm

corresponds to a standard policy gradient algorithm (Kimura and Kobayashi,

1998). Therefore, the forgetting rate, β, fills the gap between the standard policy

gradient and the natural policy gradient. Table 3.1 specifies the NTD algorithm

with eligibility traces.

3.2.5 Numerical Experiments

In this section, we test the performance of the NTD algorithm in not only a MDP

but also in a continuous state problem. In the application of the NTD algorithm

to continuous state problems, consider a continuous state problem as a finite state

POMDP by function approximation.

Two state MDP (Kakade, 2002)

We first apply the NTD algorithm to a two-state MDP (Kakade, 2002) in or-

der to investigate whether it can avoid plateaus and the property concerning the
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forgetting rate β. A comparison with the natural actor-critic algorithm (NAC)

(Peters et al., 2003) as an alternative NPG is also presented. Each state has

self- and cross-transition actions and rewards, as shown in Figure 3.2. The op-

timal policy is to maintain the execution of the self-transition action in state s1

and obtains two as the maximum average reward. The policy has a sigmoidal

parameterization
π(u = self|s = i) =

1

1 + exp(−θi)

π(u = cross|s = i) = 1− π(u = self|s = i),

and the policy parameter is initialized to corresponds to the following stationary

distributions: d(s = 1) = .8 and d(s = 2) = .2. Under this setting, Kakade

(2002) demonstrated that an ordinary policy gradient method was trapped in

a plateau as the suboptimal policy in contrast to the natural policy gradient

method, where the chance of a self-loop at the state s = 1 increases and then the

stationary probability of the state s = 2 decreases.

Figure 3.2. The task setting of 2-state MDP.

Performance of NTD algorithm at various β: The NTD algorithm was

applied at each forgetting rate β ∈ {0, .99, .995, .999, .9995, 1} on w, which con-

trols the trade-off between the ordinary and the natural gradient. The other

meta-parameters were set appropriately by trial and error, as shown in table 3.2.

The policy parameter was initialized as θ = [1.4,−2.2]> to set the stationary

distribution as d(1) = .8 and d(2) = .2. Figure 3.3 (a) shows the average rewards

over the time course. Although the agents with larger β could find the optimal
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policy, the agents with lower β were trapped in the plateau. Figure 3.3 (b) shows

the phase plane of the policy parameter θ = [θ1, θ2]
>. When θ1 is small and θ2 is

large, the policy is optimal. The left side of Figure 3.3 (b) shows that the NTD

algorithm with β closer to 1 learns along a better trajectory of θ, and the trajec-

tory with β = 1 is observed to be approximately the same that as in (Kakade,

2002). This indicates that the NTD algorithm with β close to 1 can estimate the

natural policy gradient appropriately. The ordinary policy gradient method with

the eligibility traces of the policy proposed by Kimura and Kobayashi (1998),

Kimura’s method, is also applied to each decay rate λ ∈ {.0, .5, .9, .99, .999} of

the eligibility trace. Kimura’s method is similar to the NTD algorithm from the

viewpoint of the usage of the TD error for policy updating. The essential differ-

ence is that the NTD algorithm stores the TD error based on the eligibility of

the policy, while Kimura’s method stores the eligibility by itself. The right side

of Figure 3.3 (b) shows that Kimura’s method was trapped in the plateau and

ultimately failed to achieve the optimal policy.
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Figure 3.3. Two-state MDP: the averages of ten independent runs. (a) The

average rewards over the time course at each value of β. (b) The phase plane

–left: the NTD algorithm; right: the ordinary policy gradient method Kimura

and Kobayashi (1998).
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Comparison with NAC algorithm (Peters et al., 2003): With regard to

the actual computational times and trial time steps required for learning, we

compared the NTD algorithm with NAC (Peters et al., 2003) as an alternative

natural policy gradient algorithm that requires the computation the inverse of a

matrix. In the experiments, various values of the dimensional observation state

feature vector ψ(s) ∈ R2, R5, R15, R50, or R100, were applied. Because the

feature vectors, except for the two-dimensional case, were redundant, we used the

Moore-Penrose pseudoinverse of the matrix for the matrix inversion in NAC in all

dimensional cases. Each vector was initialized in two steps: first, each the element

of temporal vectors φ(si) at i ∈ {1, 2} was decided by uniform distribution [0, 1];

and second, each the vector was normalized as φ(si) := φ(si)/‖φ(si)‖. The meta-

parameters of each algorithm were set to estimate the optimal policy as quick as

possible, which are shown in table 3.3. We define an episode as being a “success”

when the policy in that the episode reaches the optimal, i.e., θ̃1 < 0 and θ̃2 > 5,

within 50000 time steps, where

θ̃i =
ln πθ(u = self|φ(si))

ln πθ(u = cross|φ(si))
.

Otherwise, the episode is called a “failure” and is not used for the results of fig-

ure 3.5. Figure 3.4 shows the success rate of each algorithm at each dimensional

feature vector and suggests that most of simulation runs on both methods suc-

ceeded in learning. It supports that the setting of the meta-parameters was nearly

appropriate with regard to the learning speed. Figure 3.5 shows the computa-

tional times and the time steps at each dimensional feature vector for learning.

The NTD algorithm was faster in the most dimensional cases with regard to the

computational time required for learning, although the NTD algorithm needed

larger time steps. It indicates that the NTD algorithm is more suitable for actual

complex problems, where we need to consider large dimensional feature vectors,

while NAC would work better in the case of proper low-dimensional state feature

vectors.
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Figure 3.4. Two-state MDP: 100 independent runs. The learning success rate of

each algorithm at each dimensional feature vector. NAC is natural actor-critic

algorithm Peters et al. (2003).
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Figure 3.5. Two-state MDP: 100 independent runs. NAC is natural actor-critic

algorithm Peters et al. (2003). (a) Actual computational times [s] at each dimen-

sional feature vector for learning. (b) Trial time steps at each dimensional feature

vector for learning.
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Continuous State Problem

Interpretation of continuous state problems as POMDP: Although pol-

icy gradient RL algorithms, including the NTD algorithm, has been developed

with finite states and actions, we can apply these algorithms to continuous state

problems with function approximation by the following interpretation. When the

policy (or the state value estimate) in a continuous problem is represented by

the function approximator which has finite basis functions with bounded activa-

tion values and finite parameters, the continuous problem can be regarded as a

POMDP by regarding the activations biased to non-negative values and normal-

ized as the belief states of finite-state POMDPs (Aberdeen, 2003). Therefore,

if the NTD algorithm is applied to continuous state problems with function ap-

proximation by using bounded basis functions, the NTD algorithm can estimate

a local optimal policy parameter in terms of a POMDP model defined by the

function approximator 11.

Pendulum swing-up problem: In this section, we compare the NTD algo-

rithm with other policy gradient methods, NAC (Peters et al., 2003) and Kimura’s

actor-critic method (Kimura and Kobayashi, 1998), and examine the effect of

the eligibility trace for NPG estimation, with regard to the pendulum swing-up

problem, which is a continuous state problem. The pendulum swing-up problem

with limited torque is a well known benchmark in RL (Doya, 2000). The state

φ(s) = [x, ẋ]> comprises the angle and the angular speed, as shown in Figure 3.6

(a). The action is a target torque u and is a probability variable following the

Gaussian distribution defined by the policy

πθ(u|s) =
1√

2π σ2
θ(s)

exp

(
−(u− µθ(s))

2

2 σ2
θ(s)

)
,

where the mean, µθ(s), and the standard deviation, σθ(s), are defined by the

policy parameterization and parameter. The pendulum dynamics are given by

ẍ =
−µẋ + mgl sin(x) + ũ

ml2
,

11In order to guarantee the above theoretical results, the stochastic process model of this
POMDP satisfies the ergodicity condition.
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where ũt is the actual torque of the system with the signum function sign(u),

ũ =

 u |u| ≤ umax,

sign(u) umax otherwise.

The physical parameters are m = 1[kg], l = 1[m], g = 9.8[m/s2], µ = .01[N ·
m], and umax = 5[N · m]. An episode lasts for 20 seconds and the sampling is

executed with the time step of 0.02[sec]. In many cases, a heuristic is employed,

where an episode ends when the pendulum is over-rotated in order to eliminate

the suboptimal policy that keeps the pendulum rotating continuously. In this

experiment, instead of introducing the heuristic, we set the reward function as

rt+1 = cos(xt+1)− (ẋt+1/50π)2, in order to make this problem more challenging.

(a) (b)

x

ẋ

μ

sin(x)

bias

Input :

Output : σ

 cos(x)

Figure 3.6. Pendulum swing-up task setting. (a) Control of a pendulum with lim-

ited torque. (b) Policy setting. The policy is a three-layer neural network based

on sigmoidal functions with ten hidden units, the outputs of which correspond

with the mean and the standard deviation of the normal distribution.

Here we use a general basis function setting. As shown in Figure 3.6 (b), the

mean and the standard deviation of the policy are implemented by a three-layer

neural network with ten hidden units, that is, the number of policy parameter el-

ements is 64. Each the element θi was initialized by uniform distribution [−.5, .5]

at each simulation run. The state value function is implemented by normalized

radial basis function (RBF) network (Doya, 2000), the parameter of which was
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initialized as 0. We add a typical heuristic to all methods, where the update

of the policy is not executed in the first 100 episodes, in order to avoid using

the incomplete estimates from the critics for the policy updates. We also add a

heuristic operation to the NTD algorithm, where the learning rate of NPG esti-

mator, αw, is adapted per ten episodes, according to the average of the norm of

the basis function ∇θln πθ(a|s) for ten episodes, E10episodes { ‖∇θln πθ(a|s)‖ },

αw =
α̃w

E10episodes { ‖∇θln πθ(a|s)‖ }
.

That is because E { ‖∇θln πθ(a|s)‖ } varies during learning for the policy follow-

ing the Gaussian distribution, since ‖∇θln πθ(a|s)‖ is inversely proportional to

σθ(s) and σθ(s) varies (decreases in many cases) during learning. In NAC, the

computation of the matrix inversion and the policy update are executed only at

the end of each episode, instead of each time step, in order to suppress computa-

tional costs. Despite this, NAC consumed about three times computational costs

than other methods in this experiment.

The comparison among the policy gradient algorithms was conducted under

a proper setting of the basis function for the state value estimation, which has

15 × 15 RBFs about x ∈ (−π, π] and ẋ ∈ [−15, 15]. The meta-parameters of

each algorithm were set appropriately, as shown in table 3.4. Figure 3.7 (a) and

(b) show the average rewards and the average numbers of pendulum rotations

over the time course, respectively. Figure 3.7 (a) shows that the NTD algorithm

obtained the optimal policy quickly, while NAC and Kimura’s method needed

considerably more time steps for learning. Figure 3.7 (b) indicates that Kimura’s

method appeared to be trapped in a plateau, in which the pendulum continued

rotating, because this method did not follow the natural policy gradient. Al-

though Peters (2005) shows that NAC can be applied to the pendulum swing-up

problem appropriately with elaborate basis functions, the problem of setting the

basis function still remains very difficult. In most actual problems, we would not

know the elaborate setting for the basis function. Hence, we would use general

function approximators such as those used in this experiment.

The comparison among the NTD algorithms at the various eligibility decay

rates λw ∈ {0, .95, .99, 1} was conducted under a rough setting for the state

value estimation as 3 × 3 RBFs, which cannot represent the state value function
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adequately. Figure 3.8 shows the average rewards over the time course, which

demonstrates that the performance improves as λw is close to one. Therefore,

we confirmed that the eligibility trace for the NPG estimator worked effectively

when the estimated state value function was poor or rough, consisting with the

theoretical result in the section 3.2.3. It is noted and supports the effectiveness

of the eligibility trace, that the system at λw = 0, which is without the eligibility

trace, was unstable since the learning parameters diverged at a rate of 20% each

simulation run, while the systems at the high eligibility decay rates were stable

since the divergence rates at λw = .95, .99, and 1 were 3%, 3%, and 0%, respec-

tively. Figure 3.8 does not use the results of the episodes where the parameters

diverged.
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Figure 3.7. Pendulum swing-up problem; the averages over 30 independent runs.

Comparison among the policy gradient algorithms under the proper RBF setup,

[15 × 15], for the state value estimation, about (a) the average rewards and

(b) the average number of rotations in a episode, over the time course. NAC is

natural actor-critic (Peters et al., 2003) and AC is Kimura’s actor-critic method

(Kimura and Kobayashi, 1998).
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Figure 3.8. Pendulum swing-up problem; the averages over 30 independent runs.

Comparison among various λw of the NTD algorithm about the average rewards

over the time course under the improper (rough) RBF setup, [3 × 3], for the state

value estimation.
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Table 3.1. The NTD algorithm

Input:

• Initial parameters; θ, w and v define the policy πθ(a|s),

the NPG estimator δ̂(s, a) ≡ w>∇θln πθ(a|s) and

the value estimator V̂ (s), respectively.

• Metaparameters; γ is the discouted rate of the value function,

αθ, αw and αv are the learning rates of θ, w and v,

λw and λv are the eligibility decay rates of w and v,

β is the forgetting rate of w, and ι is a free parameter.

Initialization:

• Eligibility traces; zw := 0; zv := 0;.

• Initial condition; s0 ∼ p(s0), a0 ∼ πθ(a0|s0).

For t = 0, 1, 2 · · · do

a. Sampling

Execute action at, observe next state st+1 and reward rt+1,

and decide next action at+1 ∼ π(at+1|st+1).

b. Critic update

◦ Forget NPG estimator parameter

w := βw;

◦ Compute TD-errors

δv = rt+1 + γV̂ (st+1)− V̂ (st)

δw = δv − δ̂(st, at) + ιδ̂(st+1, at+1);

◦ Update eligibility traces

zw := γλwww +∇θln πθ(a|s);

zv := γλvzv +∇vV̂ (st);

◦ Update value function parameter

v := v + αvδvzv;

◦ Update NPG estimator parameter

w := w + αwδwzw;

c. Actor update

θ := θ + αθw;
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Table 3.2. Meta-parameters in the experiment, “Performance of NTD algorithm

at various β”.

Algorithm γ β αθ αw αv λ λv

NTD .9 0 .3 .1 .05 0 0
NTD .9 .99 .0015 .1 .05 0 0
NTD .9 .995 7.5×10−4 .1 .05 0 0
NTD .9 .999 1.5×10−4 .1 .05 0 0
NTD .9 .9995 7.5×10−5 .1 .05 0 0
NTD .9 1 4.5×10−5 .1 .05 0 0

AC .9 - .03 - .05 0 0
AC .9 - .015 - .05 .5 0
AC .9 - .005 - .05 .9 0
AC .9 - .004 - .05 .99 0
AC .9 - .003 - .05 .999 0

Table 3.3. Meta-parameters in the experiment, “Comparison with NAC algo-

rithm”.
Algorithm γ β αθ αw αv λ λv ε

NTD .9 1 .0003 .5 .2 0 0 -
NAC .9 .999 .001 - - 0 - π/180

Table 3.4. Meta-parameters in the experiment,“Pendulum swing-up problem”.

Algorithm RBF [x, ẋ] γ β αθ α̃w αv λ λv ε

NTD [15×15] .98 .99997 .001 .005 .05 0 .95 -
NAC [15×15] .98 .99995 .005 - - 0 - π/18
AC [15×15] .98 - .0007 - .05 0 .95 -

NTD [3×3] .98 .99999 .0001 .0002 .02 0 .02 -
NTD [3×3] .98 .99999 .0001 .0005 .02 .95 .02 -
NTD [3×3] .98 .99999 .0001 .001 .02 .99 .02 -
NTD [3×3] .98 .99999 .0001 .001 .02 1 .02 -
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3.3 Extended NTD algorithm for variance reduc-

tion

In previous section and Morimura et al. (2005), we propose the NTD algorithm

as an implementation of NAC without matrix inversion, which comprise the

repetition of following three procedures. The first procedure updates the state

value estimate V̂ (s) by TD(λ) learning (Sutton and Barto, 1998). The second

updates the NPG estimate ω̂ through the regression with the linear function

fπ
ω̂ (st, at) = ω̂>∇θ ln πθ(at|st) to the temporal difference (TD) given from the

first,

δ(st, at) = rt+1 + γV̂ π(st+1)− V̂ π(st).

That is, the update direction of NPG estimate ω̂ is 12

∆ω̂ =
1

T

T−1∑
t=0

(δ(st, at)− fπ
ω̂ (st, at))∇θln πθ(at|st). (3.13)

The third updates the policy parameter θ is updated by the weight ω̂ of fπ
ω̂ in

the second.

Since fπ
ω (s, a) has the property for an arbitrary function g(s), due to

∑
u∇πθ(a|s) =

0,

EM(θ){g(s)∇θ ln π(a|s)|s} = 0,

the expectation of ∆ω̂ at a time-step t (eq.3.13) does not depend on the value of

V̂ (st). Therefore, the NTD algorithm uses the state value estimate at the current

time-step as the baseline function b(s) for estimating the NPG. However it has

not been clarified whether the state value function is a valid baseline function for

the variance reduction of ω̂.

12While the NTD algorithm uses the eligibility trace in this procedure, here is the decay rate
λ = 0. We omit the cases of arbitrary λ ∈ [0, γ], though results in this report are applicable.

35



3.3.1 Variance Reduction for Natural Policy Gradient Es-

timates

Optimal baseline function b∗(x, ω̂)

Consider a trace of the covariance matrix of the NPG estimates ŵ as the variance

of ω̂, 13

Varπ(ω̂) = EM(θ){(ω̂ − ω̂∗)2},

where a2 denotes a>a for an arbitrary vector a, and ω̂∗ ≡ EM(θ){ω̂} has to be

equal to w∗ for the unbiased regression. In gradient descent regressions, how-

ever, it is difficult to treat directly with the variance of ŵ. Instead we consider

Varπ(∆ŵ), the variance of the update direction ∆ŵ for ŵ (at a fixed policy

θ). Although a sequence of samples [s1, ..., sT ] is not drawn independently in

almost cases of RL, where the relationship Varπ( 1
T

∑
t f(st)) = 1

T
Varπ(f(s)) does

not hold due to correlation between the different time-step samples, Greensmith

et al. (2004) derive useful results about the variance at a finite ergodic Markov

chain. By applying Corollary 5 and Lemma 6 with the increasing function hπ in

Greensmith et al. (2004), the following inequality holds

Varπ(∆ŵ) ≤ o+ (3.14)

hπ

(
1

T
Varπ

((
Q̂(s, a)− b(s)− fπ

ω̂ (s, a)
)
∇θln πθ(a|s)

))
,

where o is independent with the choice of b(s), and Q̂(st, at) = EM(θ)

{
rt+1 + γV̂ (st+1)|st, at

}
and b(s) = V̂ (s).

Because we are interested in the choice of the baseline function as b(s) = V̂ (s),

the following looks for the optimal baseline function b∗(s, ω̂) that minimizes the

upper bound of Varπ(∆ŵ) with respect to b(s) and also minimizes the part of

the argument of the function hπ,

σ2
∆ŵ(b(s)) ≡ Varπ

((
Q̂(s, a)− b(s)− fπ

ω̂ (s, a)
)
∇θln πθ(a|s)

)
= EM(θ)

{(
(Q̂(s, a)− b(s)− fπ

ω̂ (s, a))∇θln πθ(a|s)− EM(θ) {∆ŵ}
)2
}

.

13(Peters and Schaal, 2006) consider
〈
(ŵ − 〈ŵ〉)>G(θ)(ŵ − 〈ŵ〉)

〉
taking account of the met-

ric of the policy parameters as a proper variance about ŵ, instead of Varπ(ŵ). These results
of this section can be applied instantly to the case of the above variance.
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Accordingly, since the optimal baseline b∗(s, ω̂) holds

∂σ2
∆ŵ(b(s))

∂b(s)

∣∣∣∣
b(s)=b∗(s,ω̂)

= 0, ∀s ∈ S,

it is derived as

b∗(s, ŵ) =
EM(θ)

{
∇θln πθ(a|s)2(Q̂(s, a)− fπ

ω̂ (s, a))|s
}

EM(θ){∇θln πθ(a|s)2|s}
. (3.15)

Note that b∗ has arguments not only s but also ω̂ due to fπ
ω̂ (s, a) = ω̂>∇θln πθ(a|s).

Consistency of V π(s) and b∗(s, ω̂)

We show the following proposition for the policy parameterization:

Proposition 3 Let S and Ai denote the numbers of states and available actions

at state si, respectively. Let the matrix Ψ(θ) denote the subspace spanned by

∇θln πθ(a|s) over states and actions. If the rank of Ψ(θ) is equal to (or greater

than)
∑S

i=1(Ai − 1), the policy parameterization is nondegenerate for the task:

fπ
ω∗(s, a) ≡ w∗>∇θln πθ(a|s) = Qπ(s, a)− V π(s). (3.16)

Proof: It comes from the fact that the constraint of fπ
ω (s, a) (eq.3.6) is satisfied,

because ∑
a∈A

πθ(a|s)Qπ(s, a)− V π(s) = 0,

for each state. �

From proposition 3 and eq.3.15, it is just under the following case for the state

value function to be equal to the optimal baseline function.

Proposition 4 If the condition of proposition 3 is satisfied,

b∗(s, ω̂∗) = V̂ (s).

Proof: It is obvious by substituting eq.3.16, “Q̂(s, a) − fπ
ω̂∗(s, a) = V̂ (s)”, to

eq.3.15. �
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Proposition 4 means that the optimal baseline is equivalent to the state value, if

following two conditions are satisfied; (i) the policy parameterization is nonde-

generate for the task and (ii) the NPG estimate converges to the exact NPG.

In the NTD algorithm, the condition (ii), ω̂ ' ω̂∗, should be realized under

appropriate updatings on both the policy parameter as the actor parameter and

the NPG estimate in the critic parameter. It indicates that the state value func-

tion would not be different from the optimal baseline function so much in cases

using “appropriate” policy parameterization. Therefore, the state value function

could be a valid baseline function in such cases.

3.3.2 Extended NTD algorithm

In this section, we deal with the cases where the condition (i) and/or (ii) could be

violated. In these cases, the state value function could be much different from the

optimal baseline function. Therefore, we propose an extended NTD algorithm,

which compensates for the differences between the state value function and the

optimal baseline function by introducing an auxiliary function,

B(s, ω̂) =
EM(θ)

{
∇θln πθ(a|s)2(Q̂(s, a)− V̂ (s)− fπ

ω̂ (s, a))|s
}

EM(θ) {∇θln πθ(a|s)2|s}
. (3.17)

The extended NTD algorithm is the same as the original one, except that the

auxiliary function is subtracted from TD as the regressand for the NPG estima-

tion,

δ(st, at)−B(st, ω̂) = rt+1 + γV (st+1)− b∗(st, ω̂). (3.18)

Although eq.3.18 seems roundabout to apply the optimal baseline, it is useful for

an eligibility trace technique with estimated value functions (see fig.3.9). In order

to estimate B(s, ŵ), the gradient of σ2
∆ŵ(b(s))|b(s)=V π(s)+B̂b(s,ŵ) with respect to

the parameter b of B̂b(s) is used. Fig.3.9 is one of the complete algorithms.
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Input:

• Initial parameters; θ, ω, v, [ b ] are the parameters of

πθ(a|s), fπ
ω (s, a)=ω>∇θln πθ(a|s), V̂ (s), [ B̂(s) ].

• Metaparameters; γ is the discouted rate of the value function,

αθ, αω, αv, [ αb ] are the learning rates of θ, ω, v, [ b ].

λω, λv,[ λb ] are the eligibility decay rates of ω, v, [ b ].

β is the forgetting rate of ω.

For t = 0, 1, 2 · · · do

a. Sampling

Execute action at, observe next state st+1 and reward

rt+1, and decide next action at+1 ∼ πθ(at+1|st+1).

b. Critic update

◦ Forget TD estimator parameter

ω := βω;

◦ Compute TD-errors

δv := rt+1 + γV̂ (st+1)− V̂ (st)

δω := δv − fπ
ω (st, at);

[ δb := δω − B̂(st,ω) + γλbB̂(st+1,ω); ]

◦ Update critic eligibilities

zv := γλvzv +∇vV̂ (st);

zω := γλωzω +∇θln πθ(at|st);

[ zb := γλbzb +∇θln πθ(at|st)
2∇bB̂(st,ω); ]

◦ Update value function parameter[s]

v := v + αvδvzv;

[ b := b+ αbδbzb; ]

◦ Update NPG estimator parameter

ω := ω + αωδωzω;

c. Actor update

θ := θ + αθω;

Figure 3.9. The [extended] NTD algorithm; The normal NTD algorithm is spec-

ified by skipping the contents in the square brackets. In the case of the extended

NTD algorithm, the square bracket symbols are ignored.
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Current Following State

State Action S1 S2 S2

S1 A1 1 0 0

S1 A2 0 1 0

S2 A1 0.2 0.2 0.6

S2 A2 0.6 0.2 0.2

S3 A1 0.8 0.1 0.1

S3 A2 0.1 0.1 0.8

Table 3.5. Transition probabilities on the three-state MDP

r(S1) = 1, φ(S1) = [1, 0.1]>

r(S2) = 0, φ(S2) = [1, 1]>

r(S3) = 2, φ(S3) = [1, 10]>

Table 3.6. The reward function and the feature vector of the state on the three-

state MDP

3.3.3 Numerical Experiments

MDP with inadequate policy

We selected the 3-state 2-action MDP in Baxter et al. (2001) where the state-

transition probability and the parameterization of policy are modified from orig-

inal. There are three kinds of states S1, S2, S3 and each state has two kinds

of actions A1, A2. The state-transtion probability is showed in table 3.5. Each

state is obserbed as two-dimentinal vector φ(s) = R2 and has the corresponding

reward r(s) as table 3.6.

Under this policy parameterization, the condition of proposition 3 cannot be

satisfied. Thus, even when ω̂ is equal to the exact NPG, the state value could

not be the optimal baseline function by proposition 4. Fig.3.10 indicates that the

extended NTD suppresses the variance of the NPG estimates than the normal

NTD.
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Figure 3.10. MDP; phase plane analyses; policy parameter trajectories (a) the ex-
tended NTD, (b) the normal NTD.

Pendulum swing-up problem

This section gives the comparison between NTD algorithms and other policy

gradient methods; NAC (Peters et al., 2003), Kimura Actor-Critic (Kimura and

Kobayashi, 1998) in the same setting as the pendulum swing-up problem in sec-

tion 3.2.5.

The auxiliary function B(s, ω̂) in the extended NTD is decomposed to two

terms; B(s, ω̂) = b1(s)− b2(s, ω̂), where

b1(s) =
Eπ{∇θln πθ(a|s)2(Q̂(s, a)− V̂ (s))}

Eπ{∇θln πθ(a|s)2}
,

b2(s, ω̂) =
Eπ{∇θln πθ(a|s)2fπ

ω̂ (s, a)}
Eπ{∇θln πθ(a|s)2}

.

When we use the Gaussian distribution policy in section 3.2.5, while b1(s) has

to be estimated, b2(s, ω̂) could be solved analytically: bµ(s) ≡ ∇θµθ(s), bσ(s) ≡
∇θσθ(s),

b2(s, ω̂) =
(2b>µ bµb

>
σ + 4b>µ bσb

>
µ + 8b>σ bσb

>
σ )ω̂

σb>µ bµ + 2σb>σ bσ

.
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Fig.3.11 showed that the extended NTD algorithm works better than the other

PG algorithms.
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Figure 3.11. Swing-up pendulum problem; (a) The policy is a three-layer neural

network with 10 hidden units. (b) The average rewards over 30 independent

runs. Comparison among PGs under the improper RBF setup, [5× 5], for the

state value estimation. Extended NTD* is the alternative algorithm computing

b1 analytically.
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3.4 Utilizing Baseline Adjustment Function for

Policy Parameterization

As mentioned in chapter 1, it would be a difficult and important matter how

to parameterize an appropriate policy for RL problems. Here, we discuss this

problem and focus especially on the problem how to regulate the number of

hidden-units of multi-layer perceptron as the policy automatically.

3.4.1 Absolute value of auxiliary function as criterion

From eq.3.17, the auxiliary function of extended NTD algorithm to adjust base-

line, B(s, ω̂), represents the differences between the state value function V π(s)

and the optimal baseline function b∗(s, ω̂),

B(s, ω̂) = b∗(s, ω̂)− V π(s).

When the policy parameterization is nondegenerate for the task (and the NPG

estimate converges to the exact NPG), the state value is equal to the optimal

baseline by proposition 4,

V π(s) = b∗(s, ω̂∗).

Accordingly, if the policy parameterization is nondegenerate for the task, the

absolute value of auxiliary function becomes zero,

|B(s, ω̂∗)| = 0.

Meanwhile, if the policy parameterization is degenerate (or not sufficient),

|B(s, ω̂∗)| 6= 0.

also holds by proposition 3 14. Therefore, the absolute value of auxiliary function

could be a valid criterion for the policy parameterization,

c(π) ≡
∑
s∈S

dπ(s)|B(s, ω̂∗)|,

where the parameterization of the policy π is better in smaller c(π).
14Even when the policy parameterization is degenerate, |B(s, ω̂∗)| = 0 holds under πθ(ai|s) =

πθ(aj |s) for all aiA and aj ∈ A. However, such case seldom occurs in RL
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3.4.2 Autonomous adjustment of the number of hidden-

units of multi-layer perceptron

As one of applications utilizing the criterion c(π), an auto-adjustmenting algo-

rithm for the number of hidden units of a multi-layer perceptron (MLP) used as

the policy is proposed here. Although the estimation for the exact value of the

criterion c(π) would be intractable, some properties of the criterion c(π) can be

evaluated and is enough to adjust the number of hidden-units, e.g.:

· when c(π) is increasing, add the hidden-unit,

· when c(π) is decreasing, do nothing,

· when c(π) does not change and is larger than sufficiently small constant ε,

add the hidden-unit,

· when c(π) does not change and is smaller than sufficiently small constant ε,

do nothing.

In order to evaluate the above properties about c(π), we use favor of stochastic

process (Osogami and Kato, 2007), especially random walk (figure 3.12). The

complete algorithm is shown in Algorithm 3 that adjusts the number of MLP’s

hidden-units.
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Figure 3.12. Example of random walk; p(χe+1 = j + 1|χe = j) = ε. horizontal

and vertical axes represent episodes e and a state χ of the random walk.
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Algorithm 3 Adjustment of number of MLP’s hidden-units

Inputs:

• Inputs for extended NTD algorithm (Fig. 3.9)

• Metaparameters for random walk; k, cmax, χmax, emaxand β

Initialization:

• Initialization for extended NTD algorithm

• Parameters of random walk; χ := 0; e := 0;.

• Criterion of policy parameterization; c−1 := cmax; c := 0.

For t = 0, 1, 2 · · · do

Extended NTD algorithm (Fig. 3.9);

c := c +
∣∣B̂(st, ω̂)

∣∣;
If mod(t, k)† = 0

c := c/k;

e := e + 1;

If c−1 < c

χ := χ + 1;

If χmax < χ (c is increasing)

addHiddenUnit;

χ := 0; e := 0;

c−1 := min(c, 2c−1);

end

else

χ := χ− 1;

If −χ < −χmax (c is decreasing )

χ := 0; e := 0;

c−1 := max(c, c−1/2);

end

end

end

If emax < e and cmax <= c−1 (c does not change and is not be sufficiently small)

addHiddenUnit;

χ := 0; e := 0;

end

end
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3.4.3 Numerical experiment

We apply the proposed algorithm into the pendulum swing-up problem as ex-

plained in section 3.2.5. Figure 3.13 shows the time courses of the average rewards

and the estimated criterion ĉ(π). It indicates that proposed adjustment algorithm

works better than or as well as the case of a fixed appropriate number of MLP’s

hidden-units. The time course of the number of the MLP’s hidden-units shown

in figure 3.14, where it was confirmed that the number converged to about 10. It

suggests that the MLP of 10 hidden-units would be sufficient policy parameteri-

zation for pendulum swing-up problem. Figure 3.15 showed detail results about

algorithm 3 of one simulation run.
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Figure 3.13. Pendulum swing-up problem; the averages rewards and the the

criterion estimates ĉ(π) over 30 independent runs. Comparison between fixing

and auto-adjustmenting NTD algorithms about the number of hidden-units of

the policy under the improper RBF setup, [5 × 5].
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3.5 Summary and Discussion

This chapter presents the NTD algorithm, in which the regression weights of the

TD error with the basis functions defined by the policy parameterization repre-

sents the natural policy gradient. If the eligibility decay rate of the NPG estimator

is equal to one, the NPG estimate is updated by using the gradient of the actual

observed rewards and not those of the estimated state value function; hence, the

estimate is unbiased under a fixed policy. The experimental results showed that

the NTD algorithm could represent the natural policy gradient and could avoid

plateaus, which is consistent with the results of Amari (1998). This is extremely

useful because plateaus often occur in RL problems when a suboptimal policy

is more easily obtained than an optimal policy, as presented in the pendulum

swing-up problem, The experimental results also demonstrated that the NTD

algorithm suppresses computational costs than the existing NPG method (Peters

et al., 2003) and the eligibility trace for the NPG estimator works efficiently.

This chapter also presented that the state value function could become a valid

baseline function with an appropriate policy parameterization for a task. For the

case where the state value function diverges from the optimal baseline function,

the extended version of the NTD algorithm was proposed, which compensates for

the differences between the state value and the optimal baseline by introducing

the auxiliary function.

For the policy parameterization of the policy, we derived the criterion to

judge whether or not the current parameterization of the policy is sufficient for

the achievement of task objective, and proposed the algorithm to adjust the

number of hidden units of a multi-layer perceptron. Additional theoretical and

experimental analyses are necessary to further understand the properties and the

effectiveness of the NTD algorithm.
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Chapter 4

Policy Gradient with Derivative

of Stationary Distribution

As pointed out in previous chapter, policy gradient reinforcement learning (PGRL)

is a popular family of algorithms in reinforcement learning (RL) for improving a

policy parameter to maximize the average reward by using the average reward gra-

dients with respect to a policy parameter, which are called policy gradients (PGs)

(Williams, 1992; Kimura and Kobayashi, 1998; Baird and Moore, 1999; Sutton

et al., 2000; Baxter and Bartlett, 2001; Konda and Tsitsiklis, 2003). However,

most of conventional PG algorithms for the infinite-horizon problem neglect a

term associated with the derivative of the stationary distribution in PGs, since

there are no algorithms to estimate this derivative so far (Baxter and Bartlett,

2001; Kimura and Kobayashi, 1998). The derivative means the measurement of

how the stationary distribution changes due to the changes of the policy param-

eter. While the biases introduced by this omission can be reduced by taking a

forgetting (or discouted) rate γ close to 1, it often increases the variance of the

PG estimates and the setting “γ = 1” cannot be tolerated in these algorithms.

This tradeoff makes it difficult to find an appropriate γ in practice. Meanwhile,

there is the average reward PG algorithm (Tsitsiklis and Van Roy, 1999; Konda

and Tsitsiklis, 2003), which eliminates the use of the forgetting rate by introduc-

ing a differential cost function as a solution of Poisson’s equation. Because that
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was one and only PG framework proposed for maximizing the average reward1,

such studies about the average reward optimization are needed and significant.

Here, we propose a new PG framework with estimating the log stationary

distribution derivative (LSD) as an alternative and useful form of the derivative

of the stationary distribution for estimating PG. It is our main result in this

chapter that an method to estimate LSD is derived through backward Markov

chain formulation and a temporal difference learning method. The realization of

this LSD estimation naturally enables the average reward gradient to be estimated

regardless of the value of γ. Especially, in the case of “γ = 0”, the estimation

PG does not need to learn value functions. That is, a learning agent estimates

LSD instead of value functions in this PG framework. One possible advantage

of this framework is that a closed-form solution for an optimal baseline function

of the PG can be computed by least squares, while that for the conventional

PG framework has not yet been proposed and would be intractable (Greensmith

et al., 2004).

The following is the outline: In Section 1, we describe motivation to estimate

LSD. In Section 2, we propose an LSLSD(λ) algorithm for the estimation of

LSD by a Least Squares temporal difference method based on the backward

Markov chain formulation. In Section 3, the LSLSD(λ)-PG algorithm is instantly

derived, which is a new γ-free PG algorithm utilizing LSLSD(λ). To verify the

performances of the proposed algorithms, the numerical results in simple Markov

Decision Processes (MDP) are shown in Section 4. In Section 5, we summarize

this chapter and also give other posibility brought by the realization of the LSD

estimation, which concerns a natural policy gradient.

4.1 Why log stationary distribution derivative is

important for PG estimation

We briefly review the conventional PGRL methods and present the main idea

of our new algorithm. The policy gradient RL algorithms update the policy

parameter θ in the direction of the gradient of the average reward R(θ) with

1Although there is R-learning for maximizing the average reward, it is the algorithm based
on the value function not the PG algorithm (Sutton and Barto, 1998).
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respect to θ

∇θR(θ) ≡
[
∂R(θ)

∂θ1

, . . . ,
∂R(θ)

∂θd

]>
,

which is often referred as the policy gradient (PG) for short (see Chapter 2.1 in

detail). This is given by

∇θR(θ) =
∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s) (∇θln πθ(a|s) +∇θln dπ(s)) p(s+1|s, a)r(s, a, s+1).

(4.1)

It is noted that, in this chapter, s+k, a+k, and r+k denote a state, an action,

and an immediate reward after k time-steps from a state s, an action a, and

an immediate reward r, respectively, and vice versa in −k. As the derivation of

the gradient of the log stationary state distribution ∇θln dπ(s) is nontrivial, the

conventional PG algorithms (Baxter and Bartlett, 2001; Kimura and Kobayashi,

1998) utilize an alternative representation of the PG

∇θR(θ) =
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)Qπ
γ(s, a)

+ (1− γ)
∑
s∈S

dπ(s)∇θln dπ(s)V π
γ (s), (4.2)

where Qπ
γ(x, u) ≡ limK→∞ EM(θ){

∑K
k=1 γk−1r+k|s, a} is an action value function

and V π
γ (x) ≡ limK→∞ EM(θ){

∑K
k=1 γk−1r+k|s} is a state value function with dis-

couted rate γ ∈ [0, 1) (Sutton and Barto, 1998).

Since the contribution of the second term of Eq.4.2 becomes smaller as γ

approaches 1 (Baxter and Bartlett, 2001), the conventional algorithms (Baxter

and Bartlett, 2001; Kimura and Kobayashi, 1998) approximated the PG only from

the first term by taking γ ≈ 1. Although the bias introduced by this omission

becomes smaller as γ is set close to 1, the variance of the estimate becomes larger.

Here we propose an alternative approach, which estimates the log stationary

distribution derivative (LSD), ∇θln dπ(s), and uses Eq.4.1 for the derivation of

the PG. A marked feature is that we do not need to learn the value function, and

thus, the algorithm is free from the bias-variance trade-off in the choice of the

discouted rate γ.

We should note that two methods to estimate the gradient of the (station-

ary) state distribution have already been proposed, although these are different
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from our proposal and have the following problems. The first is the method in

operations research called “the likelihood ratio gradient” or “the score function”

(Glynn, 1991; Rubinstein, 1991). However, their applicability is limited to regen-

erative processes (Baxter and Bartlett, 2001) 2. Another method proposed by Ng

et al. (2000) is not a direct estimation of the gradient of the state distribution

and is done via the estimation of the state distribution with density propagation.

Therefore, these methods require the knowledge of which state the agent is in,

while our method only needs to observe the feature vector of the state.

4.2 Estimation of the Log Stationary Distribu-

tion Derivative (LSD)

In this section, we propose an LSD estimation algorithm based on least squares,

LSLSD(λ). For this purpose, we formulate the backwardness of the ergodic

Markov chain M(θ), and show that LSD can be estimated in the temporal dif-

ference framework (Sutton, 1988; Bradtke and Barto, 1996; Boyan, 2002).

4.2.1 Properties of forward and backward Markov chains

According to Bayes’ theorem, a backward probability from a current state to a

past state-action pair is given by

q(s−1, a−1|s) =
p(s|s−1, a−1)p(s−1, a−1)∑

s−1,a−1
p(s|s−1, a−1)p(s−1, a−1)

.

The posterior q(s−1, a−1|s) depends upon the prior distribution p(s−1, a−1). When

the prior distribution follows the stationary distribution and the policy—p(s−1, a−1) =

πθ(a−1|s−1)d
π(s−1)—the posterior is termed as the stationary backward probabil-

2While the log stationary distribution gradient with respect to the policy parameter is one
of the notations of the likelihood ratio gradient or score function and might be referred to as
such; we term it LSD in this paper.
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ity and the subscript B(θ) is appended to it, where it appears as qB(θ)(s−1, a−1|x),

qB(θ)(s−1, a−1|s) =
p(s|s−1, a−1)πθ(a−1|s−1)d

π(s−1)

dπ(s)

=
pM(θ)(s, a−1|s−1)d

π(s−1)

dπ(s)
. (4.3)

If a Markov chain follows qB(θ)(s−1, a−1|s), we term it as the backward Markov

chain B(θ) associated with M(θ) following pM(θ)(s, a−1|s−1). Both Markov chains—

M(θ) and B(θ)—are closely related as described in the following two proposi-

tions:

Proposition 5 Let a Markov chain M(θ) characterized by a transition proba-

bility pM(θ)(s|s−1) ≡
∑

a−1
pM(θ)(s, a−1|s−1) be irreducible and ergodic. Then the

backward Markov chain B(θ) characterized by the backward (stationary) transi-

tion probability qB(θ)(s−1|s) ≡
∑

a−1
qB(θ)(s−1, a−1|s) against pM(θ) is also ergodic

and has the same unique stationary distribution of M(θ):

dM(θ)(s) = dB(θ)(s), (4.4)

where dM(θ)(s) ≡ dπ(s) and dB(θ)(s) are the stationary distributions of M(θ) and

B(θ), respectively.

Proof: By multiplying both sides of Eq.4.3 by dπ(s) and summing over all possible

a−1 ∈ A, we obtain

qB(θ)(s−1|s)dπ(s) = pM(θ)(s|s−1)d
π(s−1). (4.5)

Then,
∑

s∈S qB(θ)(s−1|s)dπ(s) = dπ(s−1) holds by summing both sides of Eq.4.5

over all possible s ∈ S, indicating that (i) B(θ) has the same stationary distri-

bution of M(θ) and (ii) B(θ) has the same irreducible property as M(θ). Eq.4.5

is reformulated by the transition probability, pM(θ)(s|s−1) or qB(θ)(s−1|s), assem-

bled to the matrix notation, PM(θ) or QB(θ), respectively 3, and the stationary

distribution to the vector notation dπ: 4

QB(θ) = diag(dπ)−1P >
M(θ) diag(dπ).

3It is noted the bold QB(θ) has no relationship with the state-action value function Qπ(s, a)
4The function “diag(a)” for a vector a ∈ Rd denotes the diagonal matrix of a, that is,

diag(a) ∈ Rd×d.
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We can easily see that the diagonal components of (PM(θ))
n are equal to those

of (QB(θ))
n for any natural number n. This implies that (iii) B(θ) has the same

aperiodic property as M(θ). Eq.4.4 is directly proven by (i)–(iii) (Schinazi, 1999).

�

Proposition 6 Let the distribution of s−K follow dπ(s); then, the expectations

of both the directional Markov chains regarding the sum of arbitrary functions

f(s−k, a−k) over k ∈ [0, K] are equivalent:

EB(θ)

{ K∑
k=0

f(s−k, a−k)
∣∣∣s} = EM(θ)

{ K∑
k=0

f(s−k, a−k)
∣∣∣s, dπ(s−K)

}
, (4.6)

where EB(θ) and EM(θ) denote the expectations over the forward and backward

Markov chains, B(θ) and M(θ), respectively, and E{·|dπ(s−K)} ≡ E{·|p(s−K) =

dπ(s−K)}. Eq.4.6 holds even at the limitation, K →∞.

Proof: By utilizing the Markov property and substituting Eq.4.3, we have the

following relationship:

qB(θ)(s−1, a−1, ..., s−K , a−K |s)
= qB(θ)(s−1, a−1|s) · · · qB(θ)(s−K , a−K |s−K+1)

∝ pM(θ)(s, a−1|s−1) · · · pM(θ)(s−K+1, a−K |s−K)dπ(s−K).

It instantly proves the proposition in the case of the finite K. Since the following

equations are derived with Proposition 5, the proposition in the limit case K →
∞ is also instantly proven,

lim
K→∞

EB(θ){f(s−K , a−K)|s} = lim
K→∞

EM(θ){f(s−K , a−K)|s, dπ(s−K)}

=
∑
s∈S

∑
a∈A

πθ(a|s)dπ(s)f(s, a).

�
Propositions 5 and 6 are significant because they indicate that the samples

from the forward Markov chain M(θ) can be used directly for estimations con-

cerning the backward Markov chain B(θ) under the state distribution converging

the stationary distribution, and thus can be utilized in the following sections.
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4.2.2 Temporal difference learning for LSD from the back-

ward to forward Markov chains

LSD, ∇θln dπ(s), is decomposed using Eq.4.3 to

∇θln dπ(s) =
1

dπ(s)

∑
s−1∈S

∑
a−1∈A

p(s|s−1, a−1)πθ(a−1|s−1)d
π(s−1)

{∇θln πθ(a−1|s−1) +∇θln dπ(s−1)}

=
∑

s−1∈S

∑
a−1∈A

qB(θ)(s−1, a−1|s){∇θln πθ(a−1|s−1) +∇θln dπ(s−1)}

= EB(θ){∇θln πθ(a−1|s−1) +∇θln dπ(s−1)|s}. (4.7)

Noting that there exist ∇θln dπ(s) and ∇θln dπ(s−1) in Eq.4.7, the recursion of

Eq.4.7 yields

∇θln dπ(s) = lim
K→∞

EB(θ)

{ K∑
k=1

∇θln πθ(a−k|s−k) +∇θln dπ(s−K)
∣∣∣s}. (4.8)

Eq.4.8 implies that the LSD of a state s is the infinite-horizon cumulation of

the policy eligibility ∇θln πθ(a|s) through the backward Markov chain B(θ) from

state s. From Eqs.4.7 and 4.8, LSD could be estimated with temporal difference

(TD) learning (Sutton, 1988) concerning the following backward TD δ on the

backward Markov chain B(θ) rather than M(θ).

δ(s) ≡ ∇θln πθ(a−1|s−1) +∇θln dπ(s−1)−∇θln dπ(s),

where the first two terms are regarded as the one-step actual observation of the

policy eligibility and the one-step ahead LSD on B(θ) against the LSD of current

state, which is the last term 5.. While δ(s) is a random variable, EB(θ){δ(s)|s} = 0

holds. It motivates the minimization of the mean squares of the backward TD-

error, EB(θ){δ̂(s)2} for the estimation of LSD, where δ̂(s) is comprised by the

LSD estimate ∇̂θln dπ(s) rather than LSD ∇θln dπ(s). δ(s)2 denotes δ(s)>δ(s)

for simplicity.

5While the TD for the value functions is well-known and concerns r on M(θ) (Sutton and
Barto, 1998), this TD for LSD concerns ∇θlnπθ(a|s) on B(θ).
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With an eligibility decay rate λ ∈ [0, 1] and a backtrace time-step K ∈ N ,

Eq.4.8 is generalized, where N denotes the set of natural numbers:

∇θln dπ(s) = EB(θ)

{ K∑
k=1

λk−1
{
∇θln πθ(a−k|s−k)+(1− λ)∇θln dπ(s−k)

}
+ λK∇θln dπ(s−K)|s

}
.

Along with this modification, the backward TD is modified into the backward

TD(λ), δλ,K(s),

δλ,K(s) ≡
K∑

k=1

λk−1
{
∇θln πθ(a−k|s−k)+(1− λ)∇θln dπ(s−k)

}
+ λK∇θln dπ(s−K)−∇θln dπ(s),

where the unbiased property, EB(θ){δλ,K(s)|s} = 0, is still retained. The mini-

mization of EB(θ){δ̂λ,K(s)2} in λ = 1 and the limit K → ∞ is regarded as the

Widrow-Hoff supervised learning procedure. Even in a larger λ and K instead of

the above setting, this minimization would be less sensitive to a non-Markovian

effect as in the case of the conventional TD(λ) learning for the value functions

(Peng and Williams, 1996).

In order to minimize EB(θ){δ̂λ,K(s)2} as the estimation of LSD, we need to

gather many samples drawn from the backward Markov chain B(θ); however,

actual samples are drawn from a forward Markov chain M(θ). Fortunately, by

utilizing Propositions 5 and 6, we can use the following exchangeable property:

EB(θ)

{
δ̂λ,K(s)2

}
=
∑
s∈S

dB(θ)(s) EB(θ)

{
δ̂λ,K(s)2|s

}
=
∑
s∈S

dπ(s) EM(θ)

{
δ̂λ,K(s)2|x, dπ(s−K)

}
= EM(θ)

{
δ̂λ,K(s)2|dπ(s−K)

}
. (4.9)

Namely, the actual samples can be reused for minimizing EB(θ){δ̂λ,K(s)2}, pro-

vided s−K ∼ dπ(s). In real problems, however, the initial state is rarely drawn

from the stationary distribution dπ(s). To interpolate the gap between theoreti-

cal assumption and realistic applicability, we would need to adopt either of the
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following two strategies: (i) K is not set at such a large integer if λ ≈ 1; (ii) λ

is not set at 1 if K ≈ t, where t is the current time-step of the actual forward

Markov chain M(θ).

4.2.3 LSD estimation algorithm: Least squares on back-

ward TD(λ) with constraint

In the previous sections, we introduced the theory that the estimation of LSD

is conducted by the minimization of the mean squares of δ̂λ,K(x)2 on M(θ),

EM(θ){δ̂λ,K(x)2|dπ(s−K)}. However, LSD also has the following constraint derived

from
∑

s∈S dπ(x) = 1:

EM(θ){∇θln dπ(s)} =
∑
s∈S

dπ(s)∇θln dπ(s) = ∇θ

∑
s∈S

dπ(s) = 0. (4.10)

In this section, we propose an LSD estimation algorithm, LSLSD(λ), based on

least squares (Young, 1984; Bradtke and Barto, 1996; Boyan, 2002), which si-

multaneously attempts to decrease the mean squares and satisfy the constraint.

We consider the situation where the LSD estimate ∇̂θln dπ(s) is represented by a

linear vector function approximator

f(s;Ω) ≡ Ωφ(s),

where φ(s) ∈ Re is a basis function and Ω ≡ [ω1, ...,ωd]
> ∈ Rd×e is an ad-

justable parameter matrix, and assume that the optimal parameter Ω∗ satis-

fies ∇θln dπ(s) = Ω∗φ(s) 6. For simplicity, we focus our attention only on the

i’th element θi of the policy parameter θ, notating f(s;ωi) ≡ ω>
i φ(s) and

∇θi
ln πθ(a|s) ≡ ∂ ln πθ(a|s)/∂θi and δ̂λ,K(s,ωi) as the i’th element of δ̂λ,K(s).

Accordingly, the objective function to be minimized is

ε(ωi) =
1

2
EM(θ){δ̂λ,K(s;ωi)

2|dπ(s−K)}+
1

2
EM(θ){f(s;ωi)}2, (4.11)

6If the estimator cannot represent LSD exactly, LSLSD(λ) would behave as suggested by
Sutton (1988); Peng and Williams (1996), which will be confirmed in a numerical experiment.
However, we do not analyze it theoretically.
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where the second term of the right side is for the constraint of Eq.4.10 7. Then,

the derivative is

∇ωi
ε(ωi) = EM(θ){δ̂λ,K(s;ωi) ∇ωi

δ̂λ,K(s;ωi)|dπ(s−K)}+
1

2
∇ωi

EM(θ){f(s;ωi)}2,

(4.12)

where

δ̂λ,K(s;ωi) =
K∑

k=1

λk−1∇θi
ln πθ(a−k|s−k) + ω>

i ∇ωi
δ̂λ,K(s;ωi),

∇ωi
δ̂λ,K(s;ωi) = (1− λ)

K∑
k=1

λk−1φ(s−k) + λKφ(s−K)− φ(s).

Although the conventional least squares method aims to find the parameter sat-

isfying ∇ωi
ε(ωi) = 0 as the true parameter ω∗

i , it induces estimation bias if a

correlation exists between the error δ̂λ,K(s;ω∗
i ) and its derivative ∇ωi

δ̂λ,K(s;ω∗
i )

concerning the first term of the right-hand side in Eq.4.11. That is, if

EM(θ){δ̂λ,K(s;ω∗
i ) ∇ωi

δ̂λ,K(s;ω∗
i )|dπ(s−K)} 6= 0,

then∇ωi
ε(ω∗

i ) 6= 0. Since this correlation exists in general RL problems, we apply

the instrumental variable method to eliminate the bias (Young, 1984; Bradtke

and Barto, 1996). It requires that ∇ωi
δ̂λ,K(s;ωi) is replaced by the instrumental

variables ι(s) that has a correlation with ∇ωi
δ̂λ,K(s;ω∗

i ) but not δ̂λ,K(s;ω∗
i ). This

condition is obviously satisfied when ι(s) = φ(s) as well as LSTD(λ) (Bradtke

and Barto, 1996; Boyan, 2002). Instead of Eq.4.12, we aim to find the parameter

making the equation

∇̃ωi
ε(ωi) ≡ EM(θ){δ̂λ,K(s;ωi)φ(s)|dπ(s−K)}+ EM(θ){φ(s)}EM(θ){φ(s)}>ωi

(4.13)

be equal to zero, in order to compute the true parameter ω∗
i , that is, ∇̃ωi

ε(ω∗
i ) =

0.

From here, we change the notation to st denoting the state at time-step t

on the actual Markov chain M(θ). The proposed LSD estimation algorithm,
7As LSLSD(λ) consider the two objectives in equal measure, we can instantly extend it for

the problem minimizing EM(θ){δ̂2
λ(x)|dπ(s−K)} subject to the constraint of Eq.4.10 with the

Lagrange multiplier method.
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LSLSD(λ) sets that the backtrace time-step K is equal to the time-step t of the

current state st under the eligibility decay rate λ ∈ [0, 1). That is,

δ̂λ,K(st;ωi) = gλ,i(st−1) + (zλ(st−1)− φ(st))
> ωi,

where gλ,i(st) =
∑t

k=0 λt−k∇θi
ln πθ(ak|sk) and zλ(st) = (1−λ)

∑t
k=1 λt−kφ(sk)+

λtφ(s0). The expectations in Eq.4.13 are estimated by 8

lim
K→∞

EM(θ){δ̂λ,K(s;ωi)φ(s)|dπ(s−K)}

' 1

T

T∑
t=1

φ(st){gλ,i(st−1)− (φ(st)− zλ(st−1))
>ωi}

= bT −AT ωi,

where bT ≡ 1
T

∑T
t=1φ(st) gλ,i(st−1) and AT ≡ 1

T

∑T
t=1φ(st)(φ(st) − zλ(st−1))

>,

and

EM(θ){φ(x)} ' 1

T + 1

T∑
t=0

φ(st)

≡ cT .

Therefore, by substituting these estimators to Eq.4.13, the estimate ω̂∗
i at

time-step T is computed by

bT −AT ω̂
∗
i + ctc

>
T ω̂

∗
i = 0

⇔ ω̂∗
i = (AT − cTc

>
T )−1 bT .

LSLSD(λ) for the case of the matrix parameter Ω̂∗ rather than ω̂∗
i is shown

at Algorithm 1.

8When the limit T →∞ at λ ∈ [0, 1), these estimators converge to the true values. Although
it could be proven based on the results of Bradtke and Barto (1996); Boyan (2002), we omit
the proof here.
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Algorithm 1

LSLSD(λ): Estimation for ∇θln dπ(s)

Given:

• a policy πθ(a|s) with a fixed θ,

• a feature vector function of state φ(s).

Initialize: λ ∈ [0, 1).

Set: c := 0; z = 0; g := 0; A := 0; B := 0.

for t = 0 to T − 1 do

if t = 0 then

z := φ(s0); c := φ(s0);

else

z := λz + (1− λ)φ(st);

end if

c := c+ φ(st+1);

g := λg +∇θln πθ(at|st);

A := A+ φ(st+1)(φ(st+1)− z)>;

B := B + φ(st+1)g
>;

end for

Ω := (A− cc>/t)−1B;

Return: ∇̂θ ln dπ(s) = Ωφ(s).

4.3 Policy update with the LSD estimate

Now let us define the PGRL algorithm based on the above LSD estimate. The

realization of the estimation for ∇θln dπ(s) by LSLSD(λ) instantly derives the

following estimate for the PG (eq.4.1), being independent of the discount factor

γ:

∇θR(θ) ' 1

T

T−1∑
t=0

(∇θln πθ(at|st) +∇θln dπ(st)) r(st, at, st+1) (4.14)

' 1

T

T−1∑
t=0

(
∇θln πθ(at|st) + ∇̂θln dπ(st)

)
r(st, at, st+1) (4.15)
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The policy parameter can then be updated through the stochastic gradient method

with an appropriate stepsize α (Bertsekas and Tsitsiklis, 1996):9

θ := θ + α(∇θln πθ(at|st) + ∇̂θln dπ(st))rt+1,

where := denotes the substitution of the right to the left and rt+1 is the immediate

reward defined by the reward function r(st, at, st+1). LSLSD(λ)-PG without

baseline function is shown at Algorithm 2 as one of the simplest realizations on

PG algorithm, utilizing LSLSD(λ). In algorithm 2, the forgetting rate parameter

β ∈ [0, 1) is introduced to discard the past estimate given by old values of θ.

Algorithm 2

LSLSD(λ)-PG: Optimization for the policy

without baseline function

Given:

• a policy πθ(at|st) with an adjustable θ,

• a feature vector function of state φ(s).

Initialize: θ, λ ∈ [0, 1), β ∈ [0, 1), αt.

Set: c := 0; z = 0; g := 0; A := 0; B := 0.

for t = 0 to T − 1 do

if t = 0 then

z := φ(s0); c := φ(s0);

else

z := λz + (1− λ)φ(st);

θ := θ + αt{∇θln πθ(at|st) + Ω>φ(st)}rt+1;

end if

c := βc+ φ(st+1);

g := βλg +∇θln πθ(at|st);

A := βA+ φ(st+1)(φ(st+1)− z)>;

B := βB + φ(st+1)g
>;

Ω := (A− cc>/‖c‖)−1B;

end for

Return: p(a|s;θ) = πθ(a|s).

9Alternatively, θ can also be updated through the bath gradient method: θ := θ+α∇̂θR(θ).
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There is the other important topic for function approximation: how to set the

basis function φ(s) of approximator, particularly in the continuous state prob-

lems. For the PG algorithm, the objective concerning LSD estimate is just to pro-

vide the estimate of PG
∑

s∈S
∑

a∈A dπ(s)πθ(a|s)∇θln dπ(s)r̄(s, a), but not to pro-

vide the precise estimate of LSD∇θln dπ(s), where r̄(s, a) ≡
∑

s+1∈S p(s+1|s, a)r(s, a, s+1).

Therefore, the following proposition would be useful:

Proposition 7 Let the basis function of the LSD estimator be

φ(s) =
∑
a∈A

πθ(a|s)r̄(s, a),

where r̄(s, a) ≡
∑

s+1∈S p(s+1|s, a)r(s, a, s+1), then the function estimator, f(s;ω) =

ω
∑

a∈A πθ(a|s)r̄(s, a), has the ability to represent the second term of the PG,∑
s∈S
∑

a∈A dπ(s)πθ(a|s)∇θln dπ(s)r̄(s, a), where the adjustable parameter ω is a

d dimensional vector:∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)r̄(s, a)∇θln dπ(s) =
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)r̄(s, a)f(s;ω?),

where ω? minimizes the mean error, ε(ω) = 1
2

∑
s∈S dπ(s){∇θln dπ(s)−f(s;ω)}2.

Proof: It is proven by

∇ωε(ω?) =
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)r̄(s, a){∇θln dπ(s)− f(s;ω?)} = 0.

�

4.3.1 Baseline function for variance reduction of policy

gradient estimates with LSD

Since the variance of PG estimates with LSD, eq.4.15, might be huge, we consider

the variance reduction by using a baseline function. The following proposition

provides what kind of functions can be used as the baseline function for the PG

estimation with LSD.
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Proposition 8 With the following function of the state s and the following state

s+1 on M(θ),

ρ(s, s+1) = c + g(s)− g(s+1), (4.16)

where c and g(S) are an arbitrary constant and an arbitrary function of the state,

respectively, the derivative of the average reward R(θ) with respect to the policy

parameter θ (eq.4.1), ∇θR(θ), is transformed to

∇θR(θ) =
∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s)p(s+1|s, a)

{∇θln πθ(a|s) +∇θln dπ(s)} r(s, a, s+1) (4.1)

=
∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s)p(s+1|s, a)

{∇θln πθ(a|s) +∇θln dπ(s)} {r(s, a, s+1)− ρ(s, s+1).} (4.17)

Proof: If the following equation is proved,∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s)p(s+1|s, a) {∇θln πθ(a|s) +∇θln dπ(s)} ρ(s, s+1) = 0

(4.18)

the transformation to eq.4.18 obviously holds. Because of eq.4.16 and
∑

a∈A πθ(a|s)∇θln πθ(a|s) c = ∇θc = 0,∑
s∈S dπ(s)∇θln dπ(s) c = ∇θc = 0,

−
∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s)p(s+1|s, a) {∇θln πθ(a|s) +∇θln dπ(s)} ρ(s, s+1)

=
∑
s∈S

∑
a∈A

∑
s+1∈S

dπ(s)πθ(a|s)p(s+1|s, a) {∇θln πθ(a|s) +∇θln dπ(s)} {g(s+1)− g(s)}

(4.19)
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holds. Since a time average is equivalent to a state-action space average in ergodic

Markov chain M(θ) by eq.2.3 and eq.2.2, eq.4.19 is transformed to

lim
T→∞

1

T

T−1∑
t=0

{∇θln πθ(at|st) +∇θln dπ(st)} {g(st+1)− g(st)}

=
∑

s−1∈S

∑
a−1∈A

∑
s∈S

dπ(s−1)πθ(a−1|s−1)p(s|s−1, a−1)πθ(a|s)

{∇θln πθ(a−1|s−1) +∇θln dπ(s−1)−∇θln πθ(a|s)−∇θln dπ(s)} g(s)

=
∑

s−1∈S

∑
a−1∈A

∑
s∈S

dπ(s−1)πθ(a−1|s−1)p(s|s−1, a−1)

{∇θln πθ(a−1|s−1) +∇θln dπ(s−1)−∇θln dπ(s)} g(s)

=
∑
s∈S

dπ(s)g(s)
∑

s−1∈S

∑
a−1∈A

qB(θ)(s−1, a−1|s) {∇θln πθ(a−1|s−1) +∇θln dπ(s−1)}

−
∑
s∈S

dπ(s)g(s)∇θln dπ(s)

=
∑
s∈S

dπ(s)g(s)
[
EB(θ){∇θln πθ(a−1|s−1) +∇θln dπ(s−1)|s} − ∇θln dπ(s)

]
= 0,

where the final transformation is executed by eq.4.7. Therefore, eq.4.18 holds.

�

Proposition 8 means that any ρ(s, s+1) defined in eq.4.16 can be used as the base-

line function of immediate reward r+1 ≡ r(s, a, s+1) for the computing the PG,

as eq.4.17. Therefore, the PG can be estimated with baseline function ρ(s, s+1)

with large time-steps T ,

∇θR(θ) ' 1

T

T−1∑
t=0

(∇θln πθ(at|st) +∇θln dπ(st)) {r(st, at, st+1)− ρ(st, st+1)}

≡ ∇̂θR(θ) (4.20)

When we consider the trace of the covariance matrix of the PG estimates ∇̂θR(θ)

as the variance of ∇̂θR(θ), as discussed with the results of Greensmith et al.
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(2004) in chapter 3.3, an upper bound of the variance is derived as

Varπ

[
∇̂θR(θ)

]
≤ EM(θ)

{
‖∇θln πθ(a|s) +∇θln dπ(s)‖2(r(s, a, s+1)− ρ(s, s+1))

2|s, s+1

}
+ o

(4.21)

≡ σ2
b∇θR(θ)

(ρ(s, s+1)) + o. (4.22)

where o is independent term of ρ(s, s+1). Accordingly, since the optimal baseline

function b∗(s, s+1) satisfies

∂σ2
b∇θR(θ)

(ρ(s, s+1))

∂ρ(s, s+1)

∣∣∣∣
ρ(s,s+1)=b∗(s,s+1)

= 0, ∀s ∈ S, ∀s+1 ∈ S,

the optimal baseline function b∗(s, s+1) is computed as

b∗(s, s+1) =
EM(θ) {‖∇θln πθ(a|s) +∇θln dπ(s)‖2r(s, a, s+1) | s, s+1}

EM(θ) {‖∇θln πθ(a|s) +∇θln dπ(s)‖2 | s, s+1}
. (4.23)

Meanwhile, there is the alternative decent baseline function b(s, s+1)

b(s, s+1) = EM(θ) {r(s, a, s+1)|s, s+1} , (4.24)

which minimizes the residual sum of squares about r(s, a, s+1) and corresponds to

the state-value function in the case of the PG estimation with the value function.

When an approximator of the baseline function (eq.4.16) is parameterized as

the following linear combination with a feature vector function of state, φ(s), and

a coefficient parameter υ,

ρ(s, s+1;υ) = υ>

(
φ(s)− φ(s+1)

1

)
≡ υ>ψ(s, s+1),

both baseline functions, b∗(s, s+1) and b(s, s+1), are estimated by least squares,

though the estimation for b∗ requires LSD estimates. The LSLSD(λ)-PG algo-

rithm with baseline function is shown in algorithm 3 10.

10Although the technique of eligibility traces is instantly applied for the baseline estimate,
we omit it.
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Algorithm 3

LSLSD(λ)-PG: Optimization for the policy

with “optimal” baseline function

Given:

• a policy πθ(at|st) with an adjustable θ,

• a feature vector function of state φ(s).

Define: ψ(st, st+1) ≡ [φ(st)
>−φ(st+1)

>, 1]>

Initialize: θ, λ ∈ [0, 1), β ∈ [0, 1), αt.

Set: c := φ(s0); z := φ(s0)/β; g := 0; A := 0; B := 0;

w := 1; X := 0; y := 0;

for t = 0 to T − 1 do

if t ≥ 1 then

θ := θ + αt{∇θln πθ(at|st) + Ω>φ(st)}{rt+1 −ψ(st, st+1)
>X−1y};

end if

c := βc+ φ(st+1);

z := βλz + (1− λ)φ(st);

g := βλg +∇θln πθ(at|st);

A := βA+ φ(st+1)(φ(st+1)− z)>;

B := βB + φ(st+1)g
>;

Ω := (A− cc>/‖c‖)−1B;

“w := ‖∇θln πθ(at|st) + Ω>φ(st)‖2;”
X := βX + wψ(st, st+1)ψ(st, st+1)

>;

y := βy + wψ(st, st+1)rt+1;

end for

Return: p(a|s;θ) = πθ(a|s).

∗ In the case of the (decent) baseline function b(s, s′), instead of b∗(s, s′),

all the content of “· · · ” in the algorithm are omited.
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4.4 Numerical Experiments

We verified the performance of our proposed algorithms in a stochastic “one-

dimensional torus grid-world” with a finite set of grids S = {1, .., |S|} and a set

of two possible actions A = {L,R}. This is a typical |S|-state MDP task where

the state transition probabilities p are given by
p(s−1|s, L) = qs

p(s|s, L) = 1−qs

2

p(s+1|s, L) = 1−qs

2


p(s−1|s,R) = 1−qs

2

p(s|s,R) = 1−qs

2

p(s+1|s,R) = qs,

otherwise p = 0, where s = 0 and s = |S| (s = 1 and s = |S| + 1) are the

identical states and qs ∈ [0, 1] is a task-dependent constant. In this experiment,

a stochastic policy was represented by a sigmoidal function:

πθ(a = L|s) = 1− πθ(a = R|s) =
1

1 + exp(θ>φ(s))
.

Here, all elements of state-feature vectors φ(1), . . . ,φ(|S|) ∈ R|S| were indepen-

dently drawn from the Gaussian distribution N(µ = 0, σ2 = 1) for each episode

(simulation run). This was for verifying how the parameterization of the stochas-

tic policy affected the performance of our algorithms. The state-feature vectors

φ(s) were also used as the basis function for the LSD estimate ∇̂θln dπ(s).

4.4.1 Performance of LSLSD(λ) algorithm

At first, we verified how precisely LSLSD(λ) algorithm estimates ∇θln dπ(s) re-

gardless of the setting of qs and the policy parameter θ. The each element of

θ and the each task-dependent constant qs were randomly initialized according

to N(µ = 0, σ2 = 0.52) and U(a = .7, b = 1), respectively, where U(a = .7, b = 1) is

the uniform distribution over the interval of [a, b]. These were fixed during each

episode.

Figure 4.1(A) shows a typical time course of the LSD estimate ∇̂θln dπ(s)

in case of |S| = 3-state MDP, where nine different colors indicate all different

elements of LSD, respectively. The solid lines denote the values estimated by

LSLSD(0), and the dotted lines denote the analytical solution of LSD. This
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Figure 4.1. Performances of LSLSD(λ) for the estimation of LSD ∇θln dπ(s).

(A) A typical time course of LSD estimate in a 3-state MDP. (B, C) The relative

errors averaged over 200 episodes in 7-state MDPs for various λs; (B) with proper

basis function φ(s) ∈ R7, (C) with improper basis function φ(s) ∈ R6.

result demonstrates that the proposed LS-LSD algorithm could estimate LSD

∇θln dπ(s). We also confirmed that the estimates by LSLSD(0) always converged

to the analytical solution at |S| = 3 as the result in Figure 4.1(A), though these

are not given here.

Second, we investigated the effect of the eligibility decay rate λ using 7-

state MDPs. In order to evaluate the average performance over various settings,

we employed a “relative error” criterion that is defined by EM(θ){(f(x;Ω?) −
f(x;Ω))2}/EM(θ){(f(x;Ω?)2}, where Ω? is the optimal parameter defined in

Proposition 7. Figure 4.1(B) and (C) show the time courses of relative error

averages over 200 episodes for λ = 0, 0.3, 0.9, and 1. The only difference between

these two figures was the number of elements of the feature-vectors φ(s). The

feature-vectors φ(s) ∈ R7 used in (B) were appropriate and enough to distin-

guish all the different states, while the feature-vectors φ(s) ∈ R6 used in (C)

were inappropriate and deficient. These results were consistent with theoretical

prospects. Namely, we could set λ arbitrarily in [0, 1) if the basis function was

appropriate (Figure 4.1 (B)), otherwise we would need to set λ close to 1 except

for λ = 1 (Figure 4.1 (C)).
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s=1 s=2 s=3

r = - c/Z(c)
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r = - c/Z(c)

r = c/Z(c)

r = 2/Z(c)
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r = - 2/Z(c)
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Figure 4.2. Reward setting of 3-state MDPs used in our comparative studies. c

is selected by the uniform distribution U[0.95, 1) for each simulation run. Z(c) is

a normalizing function to assure maxθR(θ) = 1.

4.4.2 Comparison to other PG methods

We compared the LSLSD(λ=0)-PG algorithm with the other PG algorithm in 3-

state MDPs, concerned with the estimation of PG ∇θR(θ) and the optimization

of the policy parameter θ. The policy and the state transition probability were

set as each θi ∼ N(0, 0.52) and qi ∼ U[0.95, 1] for every i ∈ {1, 2, 3}, respectively.

Figure 4.2 shows the reward setting in the MDP. There are two types of rewards:

“r = (±)2/Z(c)” and “r = (±)c/Z(c)”, where the variable c was initialized by

the uniform distribution over [0.95, 1) for each episode and the function Z(c) was

the normalizing constant to assure maxθR(θ) = 1. Note that the reward c defines

the minimum value of γ to find the optimal policy: γ2 + γ > 2c
2−c

. Therefore,

the setting of γ is important and difficult in this task. From the performance

baselines of the existing PG methods, we adopted two algorithms: GPOMDP

(Baxter and Bartlett, 2001) and Konda’s actor-critic (Konda and Tsitsiklis, 2003).

These algorithm used the baseline function being state value estimates which were

estimated by LSTD(0) (Bradtke and Barto, 1996; Boyan, 2002; Yu and Bertsekas,

2006), while these original did not use the baseline function.

Figure 4.3 shows the results about the estimation of PG ∇θR(θ) by eq.4.14.

The forgetting rates for the sufficient statistics were set as β = 1 for all algorithms.
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Figure 4.3. Comparison with various PG algorithms about the estimation of the

PG over 2500 episodes: (A) and (B) are the mean and the standard deviation of

angles between the estimates and the exact PG, respectively

(A) and (B) represents the mean and the standard deviation of angles between the

estimates and the exact PG, respectively. These results was that LSLSD-PG with

estimating the optimal baseline function b∗(s, s+1), termed LSLSD-PG:b∗(s, s+1),

worked best to estimate the PG.

Finally, we examined the optimization of the policy parameter θ, i.e. the

average reward, by these PG methods. In this experiment, the forgetting rate

was set as β = 0.99. In order to avoid the effect from poor estimations of the

functions for the PG estimate, there was pre-learning period of 50 time-steps,

where the learning rate α was set to zero. Figures 4.4 shows the comparison with

PG algorithms about various learning rate α over independent 1000 simulation

runs (episodes). It is confirmed that LSLSD-PG:b∗(s, s+1) worked best except for

the high learning rate, in which the learning speed of b∗(s, s+1) could not properly

follow the changes of the policy rather than that of b(s, s+1). Figure 4.5 shows the

time courses of the average reward, where we chosen appropriate learning rates

for the PG algorithms by drawing upon the previous results; α= .16 in LSLSD-

PG:b(s, s+1), α = .08 in LSLSD-PG:b∗(s, s+1), α = .08 in Actor-Critic:V (s), and
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α = .007 in GPOMDP:V (s). This result also indicates that our LSLSD-PG

algorithm with the optimal baseline function b∗(s, s+1) outperformed the other

PG algorithms, since the algorithm increased the average reward and suppressed

its standard deviation most efficiently.
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Figure 4.4. Comparison with various PG algorithms about the optimization of

the policy parameter with various learning rates over 1000 episodes.
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Figure 4.5. Comparison with various PG algorithms about the optimization of

the policy parameter with the appropriated learning rate over 1000 episodes.

4.5 Summary and Discussion

We showed that the actual forward and backward Markov chains are closely

related and have common properties in the propositions. Utilizing these, we pro-

posed LSLSD(λ) as the estimation algorithm of the log stationary distribution

derivative (LSD), and LSLSD(λ)-PG as the PG algorithm utilizing the LSD es-

timate. The experimental results also demonstrated that LSLSD(λ) could work

at λ ∈ [0, 1) and LSLSD(λ)-PG could learn regardless of the task’s requirment

of the smallest value of γ to optimize the average reward. However, it has been

suggested that there is theoretically no significant difference in performances be-

tween the average reward based PG methods and the regular based PG methods

with discount factor γ close to 1 (Tsitsiklis and Van Roy, 2002). It might hold

true in the case of our proposed PG, LSLSD-PG.

The realization of LSD estimation opens up new possibility of a natural pol-

icy gradient (NPG) learning. That is, it enables model-free computation of an

alternative, effective Riemannian metric matrix G(θ) for NPG especially in the
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large scale MDP, which is proposed in chapter 5: for ι ∈ [0.1]

G(θ) := EM(θ)

{
∇θln πθ(a|s)∇θln πθ(a|s)> + ι∇θln dπ(s)∇θln dπ(s)>

}
.

This realization of LSD estimation would also open novel methods for the trade-

off problem between exploration and exploitation. This is because LSD gives

statistical information how much a change of the state stationary distribution is

caused by the perturbation of each element of policy parameter, while an awful

biasing of the stationary distribution would make the exploration hard.
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Chapter 5

Natural Policy Gradients on

Valid Riemannian Metrics

Amari (1998) proposed the concept of the natural gradient. Kakade (2002) de-

rived a natural policy gradient by applying the natural gradient to the policy

gradient reinforcement learning (RL). Since the natural gradient depends on the

applied Riemannian metric, the design of the metric is an important issue. How-

ever, the only Riemannian metric for RL, proposed by Kakade, takes into account

only changes in the action distribution for improving the policy parameter and

omits changes in the state distribution, which also depends on the policy in al-

most all cases. In this chapter, we propose a new Riemannian metric considering

the state distribution as well as the action distribution and, based on the metric,

derive a new robust natural policy gradient named “Natural Stationary policy

Gradient” (NSG). We also prove that NSG becomes equal to the adjustable pa-

rameter of the linear function approximator with the basis function defined by the

policy parameter, if the linear function approximates the immediate rewards. In

the numerical experiments with Markov decision problems with varying number

of states, we showed that the proposed method in comparison to previous studies,

improved the performances especially in cases of a large number of states.

76



5.1 Background of natural policy gradients

In section 5.1.1, we briefly review the concept of natural gradients (NGs) proposed

by Amari (1998) and the natural policy gradient (NPG) as NG for PGRL. In

section 5.1.2, we introduce the controversy of NPGs.

5.1.1 Natural gradient (Amari, 1998)

Natural gradient learning is a gradient method on a Riemannian space. The

parameter space being a Riemannian space implies that the parameter θ ∈ Rd is

on the Riemannian manifold defined by the Riemannian metric matrix G(θ) ∈
Rd×d (positive definite matrix) and the squared length of a small incremental

vector ∆θ connecting θ to θ + ∆θ is given by

‖∆θ‖2G =
d∑

i=1

d∑
j=1

gi,j(θ)dθidθj = dθ>G(θ)dθ,

where gi,j is the [i, j]-th element of matrixG 1. Under the constraint ‖∆θ‖2G = ε2

for a sufficiently small constant ε, the steepest ascent direction of a function R(θ)

is given by

∇̃G ,θ R(θ) = G(θ)−1∇θR(θ). (5.1)

It is called the natural gradient of R in a Riemannian space. In RL, the parameter

θ is the policy parameter, the function R(θ) is the average reward, and the

gradient is called the natural policy gradient (NPG) (Kakade, 2002). Accordingly,

in order to (locally) maximize R(θ), θ is incrementally updated by

θ := θ + α ∇̃G ,θ R(θ), (5.2)

where is η is the learning rate.

When we consider a statistical model of a variable x defined by a parameter

θ, Pr(x|θ), the Fisher information matric (FIM) Fx(θ) is often selected as as the

1When G is the unit matrix, the parameter space is called a Euclidean space, especially.
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Riemannian metric matrix:2

Fx(θ) ≡
∑
x∈X

Pr(x|θ)∇θ ln Pr(x|θ)∇θ ln Pr(x|θ)>

= −
∑
x∈X

Pr(x|θ)∇2
θ ln Pr(x|θ), (5.3)

where X is a set of possible values taken by x. ∇2
θaθ denotes ∇θ(∇θaθ). The

reason for using F (θ) as G(θ) comes from the fact that F (θ) is a unique metric

matrix of the second-order Taylor expansion of Kullback-Leibler (KL) divergence

(Amari and Nagaoka, 2000)3, i.e.,

DKL{Pr(x|θ)|Pr(x|θ+∆θ)} =
1

2
∆θ>Fx(θ) ∆θ + O(‖∆θ‖3),

where ‖a‖ denotes the Euclidean norm of a vector a.

5.1.2 Controversy of natural policy gradients

Policy gradient reinforcement learning (PGRL) is regarded as an optimizing pro-

cess of the policy parameter θ on some statistical models relevant to both a

stochastic policy πθ(a|s) and a state transition probability p(s′|s, a). If a Rie-

mannian metric matrix G(θ) can be designed on the basis of the FIM of an

apposite statistical model, F ∗(θ), an efficient NPG ∇̃F ∗,θ R(θ) is instantly de-

rived by eq.5.1. Since the natural policy gradient method is the gradient descent

in the Riemannian space defined by G(θ) rather than the space defined by an

arbitrarily-parameterized policy, it is very efficient to use the NPG with a valid

Riemannian metric for PGRL.

As Kakade (2002) pointed out, the choice of the Riemannian metric matrix

G(θ) for PGRL is not unique and the question what metric is apposite to G(θ)

is still open. Therefore, it is much important to discuss what is an appropri-

ate Riemannian metric. Nevertheless, all previous studies on NPGs (Bagnell

and Schneider, 2003; Peters et al., 2003, 2005; Nakamura et al., 2004; Morimura

2The last equality is derived by differentiating
∑

x∈X Pr(x|θ)∇θ ln Pr(x|θ) = 0 with respect
to the parameter θ

3It is same in the case of all f -divergences in general, except for scale (Amari and Nagaoka,
2000)
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et al., 2005; Richter et al., 2007) did not seriously address the above problem

and (naively) used the Riemannian metric matrix proposed by Kakade (2002).

We discuss the statistical models and meric spaces for PGRL and propose a new

Riemannian metric matrix.

5.2 Riemannian metric matrix for PGRL

In section 5.2.1, a novel Riemannian metric matrix for RL is proposed. In sections

5.2.2 and 5.2.3, we discuss the validity of this Riemannian metric by comparing it

with the Riemannian metric proposed by Kakade (2002) and the Hessian matrix

of the average reward.

5.2.1 A novel Riemannian metric matrix and NPG based

on state-action probability

Since the only adjustable function in PGRL is the policy function πθ(a|s), pre-

vious studies on NPG focused on the policy function πθ(a|s), i.e., the statistical

models Pr(a|s,M(θ)). However, the perturbations in the policy parameter θ

cause the probability of the state Pr(s|M(θ)) to change. Because the average

reward R(θ) as the objective function of PGRL is specified by the joint prob-

ability distribution of the state and the action (s, a) ∈ S × A (eq.2.6), it is

natural and adequate to focus on the statistical model Pr(s, a|M(θ)). For this

case, the FIM of Pr(s, a|M(θ)) can be used as the Riemannian metric G(θ).

Then, its NPG consists with the direction maximizing the average reward under

the constraint that a measure of changes in the KL divergence of the stationary

state-action distribution with respect to θ is fixed by a sufficient small constant

ε: DKL{Pr(s, a|M(θ))|Pr(s, a|M(θ + ∆θ))} = ε2. The FIM of this statistical
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model, Fs,a(θ), is calculated with Pr(s, a|M(θ)) = dπ(s)πθ(a|s) and eq.5.3 to be

Fs,a(θ) =
∑
s∈S

∑
a∈A

Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))∇θ ln Pr(s, a|M(θ))>

= −
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇2
θ ln (dπ(s)πθ(a|s))

= Fs(θ) +
∑
s∈S

dπ(s)Fa(s,θ), (5.4)

where

Fs(θ) =
∑
s∈S

dπ(s)∇θln dπ(s)∇θln dπ(s)> (5.5)

is the FIM defined from the statistical model comprising the state distribution,

Pr(s|M(θ))=dπ(s), and

Fa(s,θ) =
∑
a∈A

πθ(a|s)∇θln πθ(a|s)∇θln πθ(a|s)> (5.6)

is the FIM of the policy comprising the action distribution given the state s,

Pr(a|s,M(θ)) = πθ(a|s). Hence, the new NPG on the FIM of the stationary

state-action distribution is

∇̃Fs,a,θ R(θ) = Fs,a(θ)
−1∇θR(θ).

We term it the “natural stationary policy gradient”(NSG).

5.2.2 Comparison with Kakade’s Riemannian metric ma-

trix

The only Riemannian metric matrix for RL that has been proposed so far is the

following matrix, which was proposed by Kakade (2002) and was the weighted

sum of the FIMs of the policy by the stationary state distribution dπ(s),

F a(θ) ≡
∑
s∈S

dπ(s)Fa(s,θ). (5.7)

This is equal to the second term in eq.5.4. If it is assumed that the stationary

state distribution is not changed by a variation in the policy, i.e., if ∇θd
π(s) =

0 holds, then Fs(θ) = 0 holds according to eq.5.5. Under this assumption,

80



Kakade’s metric F a(θ) is equivalent to Fs,a(θ), while this assumption is not true

in general. These facts indicate that F a(θ) is the Riemannian metric matrix

ignoring the the change in the stationary state distribution dπ(s) brought about

by the perturbation in the policy parameter θ in terms of the statistical model

of the stationary state-action distribution Pr(s, a|M(θ)).

Meanwhile, Bagnell and Schneider (2003) and Peters et al. (2003) indepen-

dently, showed the relationship between the Kakade’s metric and the system

trajectories ξT = (s0, a0, s1, ..., aT−1, sT ) ∈ ΞT : When the FIM of the statistical

model for the system trajectory ξT ,

Pr(ξT |M(θ)) = Pr(s0)
T−1∏
t=0

πθ(at |st)p(st+1|st, at),

is normalized by the time steps T with the limit T → ∞, it is equivalent to the

Kakade’s Riemannian metric,

lim
T→∞

1

T
FξT

(θ) = − lim
T→∞

1

T

∑
ξT∈ΞT

Pr(ξT |M(θ))∇2
θ

{
T−1∑
t=0

ln πθ(at |st)

}
= −

∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)∇2
θ ln πθ(a|s)

=
∑
s∈S

dπ(s)Fa(s,θ) = F a(θ) (5.8)

Since the PGRL objective, i.e., the maximization of the average reward, is reduced

to the optimization of the system trajectory by eq.2.4, Bagnell and Schneider

(2003); Peters et al. (2003) suggest that the Kakade’s metric F a(θ) could be a

good metric. However, being equal to F a(θ), the normalized FIM for the infinite-

horizon system trajectory obviously differs with Fs,a(θ) and is the metric that

ignores the information Fs(θ) about the stationary state distribution Pr(s|M(θ)).

This is due to the fact that the statistical model of the system trajectory considers

not only the state-action joint distribution but also the progress for the (infinite)

time steps, as follows.

Here, s+t and a+t are the state and the action, respectively, progressed in t

time steps after converging the stationary distribution. Since the distribution of

the system trajectory for T time steps from the stationary distribution, ξ+T ≡
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(s, a+0, s+1, ..., a+T−1, s+T ) ∈ ΞT , is

Pr(ξ+T |M(θ)) = dπ(s)
T−1∏
t=0

πθ(a+t |s+t)p(s+t+1|s+t, a+t),

its FIM is calculated such that

Fξ+T
(θ) = Fs(θ) + TF a(θ), (5.9)

the derivation of which is shown in 3.1. Because of limT→∞ Fξ+T
/T = F a(θ), the

Kakade’s metric F a(θ) is regarded as the limit T →∞ of the system trajectory

distribution for T time steps from the stationary state distribution. Consequently,

F a(θ) omits the FIM of the state distribution, Fs(θ). On the other hand, the

FIM of the system trajectory distribution for one time step is obviously equivalent

to the FIM of the state-action joint distribution, i.e., Fξ+1(θ) = Fs,a(θ).

Now, discuss which FIM is adequate for the average reward maximization. As

declared in section 5.2.1, the average reward in eq.2.6 is the expectation of r̄(s, a)

from the distribution of the state-action (or 1-time-step system trajectory) and

does not depend on the system trajectories after +2 time steps. Therefore, it

indicates that the Kakade’s metric F a(θ) supposed a redundant statistical model

and the proposed metric for state-action distribution, Fs,a(θ), would be more

natural and adequate for PGRL. We give comparisons among various metrics

such as Fs,a(θ), F a(θ), and a unit matrix I through the numerical experiments

in section 5.5.

Similarly, when the reward function is temporarily a function of T time steps,

r(st, at, ..., at+T , st+T+1), instead of one time step, r(st, at, st+1), the FIM of the

T -time-step system trajectory distribution, Fξ+T
(θ), would be a natural metric

because the average reward becomes R(θ) =
∑

ξ+T∈ΞT
Pr(ξ+T |M(θ))r(ξ+T ).

5.2.3 Analogy with Hessian matrix

We discuss the analogies between the Fisher information matrices Fs,a(θ) and

F a(θ) and the Hessian matrixH(θ), which is the second derivative of the average

82



reward with respect to the policy parameter θ,

H(θ) ≡ ∇2
θR(θ)

=
∑
s∈S

∑
a∈A

r̄(s, a)∇2
θ

(
dπ(s)πθ(a|s)

)
=
∑
s∈S

∑
a∈A

r̄(s, a)dπ(s)πθ(a|s){
∇2

θ ln
(
dπ(s)πθ(a|s)

)
+∇θ ln

(
dπ(s)πθ(a|s)

)
∇θ ln

(
dπ(s)πθ(a|s)

)>}
(5.10)

=
∑
s∈S

∑
a∈A

r̄(s, a)dπ(s)πθ(a|s){
∇2

θ ln πθ(a|s) +∇2
θ ln dπ(s)

+∇θ ln πθ(a|s)∇θ ln πθ(a|s)> +∇θ ln dπ(s)∇θ ln dπ(s)>

+∇θln dπ(s)∇θln πθ(a|s)> +∇θln πθ(a|s)∇θln dπ(s)>
}

. (5.11)

Comparing eq.5.7 of the Kakade’s metric matrix F a(θ) with eq.5.11 of the Hessian

matrix H(θ), the Kakade’s metric does not have any information about the last

two terms in curly brackets {·} of eq.5.11, as Kakade (2002) pointed out4. This is

because F a(θ) is derived under ∇θd
π(s) = 0. By eq.5.4 and eq.5.10, meanwhile,

the proposed metric Fs,a(θ) obviously has some information about all the terms

of H(θ). Therefore, even through the comparison with the Hessian matrix, it is

suggested that Fs,a(θ) should be an appropriate metric for PGRL. Additionally,

Fs,a(θ) becomes equivalent to the Hessian matrix in the cases using an atypical

reward function that depends on θ (see Appendix 3.2).

It is noted that the average reward would not be a quadratic form with re-

spect to the policy parameter θ in general. In particularly when θ is far from the

optimal parameter θ∗, the Hessian matrix H(θ) is prone to an indefinite matrix.

Meanwhile, no FIM F (θ) becomes an indefinite matrix and is always positive

(semi-)definite, assured by its definition in eq.5.3. Accordingly, the natural gra-

dient method using FIM might be a more versatile covariant gradient ascent for

PGRL than the Newton-Raphson method (Nocedal and Wright, 2006), the gradi-

ent direction of which is the same as that of ∇̃−H ,θ R(θ). Comparison experiments

4H(θ) is sligthtly different from the Hessian matrix used in (Kakade, 2002) in a precise
sense. However, the burden of the argument is the same as in (Kakade, 2002).
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are presented in section 5.5.

5.3 NPG on Fisher information matrix Fs,a(θ)

In this section, we view the estimation of the NSG, the NPG on the metric Fs,a(θ).

It will be shown that this estimation can be reduced to the regression problem of

the immediate rewards.

Consider the following linear regression model

fπ
ω (s, a) ≡ φθ(s, a)>ω, (5.12)

where ω is the adjustable parameter and φθ(s, a) is the basis function of the state

and action, also depending on the policy parameter θ,

φθ(s, a) ≡ ∇θ ln (dπ(s)πθ(a|s))

= ∇θln dπ(s) +∇θln πθ(a|s). (5.13)

Then, the following theorem holds:

Theorem 3 Let the Markov chain M(θ) have the fixed policy parameter θ, if

the objective is to minimize the mean square error ε(ω) of the linear regression

model fπ
ω (st, at) in eq.5.12 for the rewards rt+1,

ε(ω) = lim
T→∞

1

2T

T−1∑
t=0

{rt+1 − fπ
ω (st, at)}2 , (5.14)

then the optimal adjustable parameter ω∗ is equal to NSG as the natural policy

gradient on Fs,a(θ):

∇̃Fs,a,θ R(θ) = ω∗.

Proof: By the ergodic property of M(θ), eq.5.14 is transcribed to

ε(ω) =
1

2

∑
s∈S

∑
a∈A

dπ(s)πθ(a|s) (r̄(s, a)− fπ
ω (s, a))2 .
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Since the optimal adjustable parameter ω∗ that minimizes the error ε(ω) satisfies

∇ωε(ω)|ω=ω∗ = 0,∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)φθ(s, a)
(
r̄(s, a)− φθ(s, a)>ω∗) = 0

⇔
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)φθ(s, a)φθ(s, a)>ω∗

=
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)φθ(s, a)r̄(s, a)

holds. By the definition of the basis function (eq.5.13),∑
s,a

dπ(s)πθ(a|s)φθ(s, a)φθ(s, a)> = Fs,a(θ),∑
s,a

dπ(s)πθ(a|s)φθ(s, a)r(s, a) = ∇θR(θ),

hold. Therefore,

ω∗ = Fs,a(θ)
−1∇θR(θ)

= ∇̃R,θ (θ)

holds. �
It is confirmed by theorem 3 that if the least-square regression to the imme-

diate reward rt+1 by the linear function approximator fπ
ω (st, at) with the basis

function φθ(s, a) ≡ ∇θ ln (dπ(s)πθ(a|s)) is performed, the adjustable parameter

ω becomes the unbiased estimate of NSG ∇̃Fs,a,θ R(θ). Therefore, since the NSG

estimation problem is reduced to the regression problem of the reward function,

NSG would be simply estimated by the least-square technique or by such a gra-

dient descent technique as the method with the eligibility traces proposed by

Morimura et al. (2005), where the matrix inversion is not required.

It is to be noted that, in order to implement this estimation, the computa-

tion of both the derivatives, ∇θln πθ(a|s) and ∇θln dπ(s), is required for the basis

function φθ(s, a). While ∇θln πθ(a|s) can be instantly calculated, ∇θln dπ(s) can-

not be solved analytically because the state transition probabilities are generally

unknown in RL. However, an efficient online estimation manner for ∇θln dπ(s),
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which is similar to the method of estimating the value function, has been estab-

lished by Morimura et al. (2007b). However, we have not discussed the concrete

implementations in the thesis.

5.4 Numerical experiment I: comparison of Rie-

mannian metrics

In this section, we look into the differences among the fixed-distance spaces de-

fined by the Riemannian metric matrices G(θ)—the proposed metric Fs,a(θ),

Kakade’s metric F a(θ), and unit matrix I—in a simple two-state MDP (Kakade,

2002), where each state s ∈ {1, 2} has self- and cross-transition actionsA = {l,m}
and each state transition is deterministic. The policy with θ ∈ R2 is represented

by the sigmoidal function:
π(l|i;θ) =

1

1 + exp(−θ>ψ(i))

π(m|i;θ) = 1− π(l|i;θ),

where ψ(s) ∈ R|S| is the feature vector of the state. Here, we set ψ(1) = [1, 0]>

and ψ(2) = [0, 1]>. Figure 5.1 shows the phase planes of the policy parame-

ter θ. The gray level denotes the log ratio of the stationary state distribution,

and each ellipsoid corresponds to the set of ∆θ satisfying a constant distance

∆θ>G(θ)∆θ = ε2 as the fixed distance spaces by G(θ), in which NPG looks for

the steepest direction maximizing the average reward. It is confirmed that the

ellipsoids by the proposed metric Fs,a(θ) coped with the changes in the state dis-

tribution by the perturbation in θ because the alignment of the minor axis of the

ellipsoid on Fs,a(θ) complied with the direction significantly changing the dπ(s).

This indicates that the policy update with NSG does not drastically change dπ(s)

and also ∇θR(θ) in eq.2.7. Thus, though it does not get out of our prospect, it

might not be easy that ∇θR(θ) (and also NSG) becomes 0 by the update with

NSG. If it is true, the speed of approach to plateau and also the local maximum

might be slow in NSG learning. On the contrary the other metrics could not

grasp the changes even though F a(θ) is the expectation of Fa(θ) over dπ(s), as

we see in theoretical studies.
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(i) ∆θ>Fs,a(θ)∆θ = 0.14

(ii) ∆θ>F a(θ)∆θ = 0.12 (iii) ∆θ>I∆θ = 0.35

Figure 5.1. Phase planes of a policy parameter in a two-state MDP: The gray

level denotes ln dθ(1)/dθ(2). Each ellipsoid denotes the fixed distance spaces by

each metric G(θ) := (i) Fs,a(θ), (ii) F a(θ), or (iii) I.
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5.5 Numerical experiment II: comparison of pol-

icy optimization

In this section, we compare the proposed NPG (NSG) learning with the Kakade’s

NPG and the other policy gradient learnings through arbitrary Markov decision

problems with various number of states.

5.5.1 Experimental setting

Setting of MDP

For each |S| ∈ {3, 6, 10, 15, 20, 25, 30, 40} states MDP with |A| = 2 actions is

constructed by the following procedures.

The state transition matrix p(s′|s, a) was set not to break the ergodicity of the

Markov chain M(θ) for any policy, which is the assumption required in theoretical

study, and for the connections between the states to be rough. Specifically, for

each condition of p(s′|s, a), each pair of the state s ∈ S = {1, 2, ..., |S|} and the

action a ∈ A = {l,m}, unnormalized probabilities are temporarilly set

p(s′|i, l) :=


qi,l
1 if s′ = i + 1

qi,l
2 if s′ = i

0 otherwise

p(s′|i,m) :=


qi,m
1 if s′ = i− 1

qi,m
2 if s′ = i

0 otherwise,

where s′ = 0 and s′ = |S| (s′ = 1 and s′ = |S| + 1) are the identical states. The

set values are normalized to satisfy
∑

s′∈S p(s′|s, a) = 1,

p(ji,l|i, l) := p(ji,l|i, l) + 1− qi,l
1 − qi,l

2

p(ji,m|i,m) := p(ji,l|i,m) + 1− qi,m
1 − qi,m

2 .

Here, qs,a
1 , qs,a

2 , and js,a are the following random variables for each state-action
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pair (s, a),

qs,a
1 =

1

1 + exp(U(−10, 10))
,

qs,a
2 =

1− q1,s,a

1 + exp(U(−10, 10))
,

js,a = Ud(|S|),

where U(a, b) and Ud(n) denote the uniform random number of [a, b] and the

discrete uniform random number from 1 to n, respectively. An example of p(s′s, a)

set by the above procedures is shown figure in 5.2, where each line thickness

corresponds to each measure of p(s′|s, a) 5.

1 2

5 4

36

a=l

a=m

Figure 5.2. An expample of the setting of the state transition probability p(s′|s, a)

on MDP.

The reward function r(s, a, s′) was temporarilly set for each combination of

arguments by standard normal distribution N(0, 1) and was normalized to uniform

5the line thickness h is defined by an inverse sigmoidal function of the state transition
probability p:

h ∝

{
ln(p/(1− p)) + 5 if ln(p/(1− p)) > 5

0 otherwise．
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the maximum and the minimum of the average reward, i.e., maxθ R(θ) = 1 and

minθ R(θ) = 0:

r(s, a, s′) :=
r(s, a, s′)−minθ R(θ)

maxθ R(θ)−minθ R(θ)
.

The policy πθ(a|s) was parameterized with the policy parameter θ ∈ R|S| by

the sigmoidal function:
π(l|i;θ) =

1

1 + exp(−θ>ψ(i))

π(m|i;θ) = 1− π(l|i;θ),

where ψ(i) ∈ R|S| was the feature vector, each element of which was set by a

normal distribution N(0, 1). Similarly, each element of the initial policy parameter

vector θ0 was set by the normal distribution N(0, 1).

Setting of policy gradient algorithms

Four types of gradient descents, the proposed and three policy gradient methods,

are applied to the MDPs set in previous section. The only difference among these

is as to the Riemannian metric matrix G(θ) defining the direction of the gradient

(eq.5.1):

(i) G(θ) := Fs,a(θ) as the proposed NPG method,

(ii) G(θ) := F a(θ) as the Kakade’s NPG method (Kakade, 2002),

(iii) G(θ) := I as the ordinary policy gradient method, and

(iv) G(θ) := −H̃(θ) as a pseudo-Newton method 6.

5.5.2 Results and discussions

We first introduce results by each individual episode and then show a success rate

and a plateau extent of learning by all (900) episodes.

Figure 5.3 is the results about the learning curves by a total of six episodes

on the MDPs of a k’th settings, (pk, rk,ψk,1) and (pk, rk,ψk,2), about the number

of states |S| = 30. It is noted that similar results were confirmed in the other

6It is noted that this pseudo-Newton method is different with so-called “the quasi Newton
method”.
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settings than k’th. Figure 5.3 showed that the proposed natural policy gradient

method could uniformly succeed at the optimization of the policy parameter,

compared with the other policy gradient methods. Also, the results in figure 5.3

consistent with the results about the application of the natural gradient method

for the learning of the multi-layer perceptron (Amari et al., 2000).

(i) G(θ) := Fs,a(θ) (ii) G(θ) := F a(θ)
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(iii) G(θ) := I (iv) G(θ) := H̃(θ)
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Figure 5.3. Examples of the time courses of average reward：(i) proposed natural

policy gradient, (ii) Kakade’s natural policy gradient (Kakade, 2002), (iii) ordinary

policy gradient, (iv) pseudo-Newton policy gradient.

The results about the success rate of the learning by 900 episodes at each

number of states |S| ∈ {3, 6, 10, 15, 20, 25, 30, 40} is shown in figure 5.4. Since the
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maximum of the average reward was set to 1, we regarded the episodes satisfying

R(θT ) > 0.95 as “success” episodes of the learning. It suggests that, in the case of

the MDPs with small number of states, the proposed NPG method and Kakade’s

NPG method could avoid to fall sevire plateau phenomenons and learns appro-

priately, compared with the other methods. The reason that Kakade’s method

could work as well as the proposed method, is thought that the Riemannian met-

ric used in Kakade’s method has partial information about the statistical model

Pr(s, a|M(θ)). Meanwhile, Kakade’s method was more losing the learning than

the proposed method in the case of the MDPs with large number of states. This is

thought that Kakade’s Riemannian metric omits the Fisher information about the

state distribution, Fs(θ), but the proposed metric takes over Fs(θ), as discussed

theoretically in section 5.2.2.
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Kakade’s NPG
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Ordinary PG

Figure 5.4. Learning success rates of the policy gradient methods

Finally, we analyzed how much of plateau each PG method, (i)∼(iv), fell

to. For its criterion, we utilized a smoothness of the learning curve (discrete

curvature),

∆2R(θt) = ∆R(θt+1)−∆R(θt)

= R(θt+1)− 2R(θt) + R(θt−1),

where ∆R(θt) ≡ R(θt)−R(θt−1). The criterion for the plateau extent (PE) of a
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episod was defined by

PE =
T−1∑
t=1

‖∆2R(θt)‖.

Figure 5.5 represents the average of PE in 900 episodes for each PG method

and shows that the proposed NPG method could learn most smoothly. This

results indicates that the proposed NPG method was most avoidable from plateau

phenomenons, as consisting with all other results in this chapter.
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Figure 5.5. Plateau extents of the policy gradient methods.

From avobe numerical experiments, it was confirmed that the proposed NPG

method could avoid from falling the plateau and learn appropriately without seri-

ous effect of the setting MDP (p, r,ψ) and the initial policy parameter, especially,

even if the number of states is large. Consequently, it is thought that the proposed

NPG method is more natural NPG method than the NPG method proposed by

(Kakade, 2002).
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5.6 Summary and discussion

In this chapter, we proposed a new Riemannian metric matrix on the state-action

joint distribution for the natural gradient of the average reward with respect to

the policy parameter. We elucidated that the natural gradient method that has

been proposed by Kakade (2002) and widely used as the natural policy gradient

in RL, omited the changes in the state probability distribution brought about by

the perturbation in the policy parameter, which was took into account by the

proposed natural gradient method. This difference was confirmed in numerical

experiments, where the proposed method worked better than the other policy

gradients and rarely fell into the plateau. Additionally, it was proven that, if the

immediate rewards were appropriated by using the linear function with the basis

function defined by the policy, the adjustable parameter of the linear function

became the unbiased estimate of the proposed natural policy gradient (NSG).
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Chapter 6

Conclusion

In this thesis, we studied and developed the efficient task-independent reinforce-

ment based on policy gradient and natural gradient.

In chapter 3, we presents the NTD algorithm, in which the regression weights

of the TD error with the basis functions defined by the policy parameterization

represents the natural policy gradient. If the eligibility decay rate of the NPG

estimator is equal to one, the NPG estimate is updated by using the gradient of

the actual observed rewards and not those of the estimated state value function;

hence, the estimate is unbiased under a fixed policy. The experimental results

showed that the NTD algorithm could represent the natural policy gradient and

could avoid plateaus, which is consistent with the results of Amari (1998). This is

extremely useful because plateaus often occur in RL problems when a suboptimal

policy is more easily obtained than an optimal policy, as presented in the pendu-

lum swing-up problem, The experimental results also demonstrated that the NTD

algorithm suppresses computational costs than the existing NPG method (Peters

et al., 2003) and the eligibility trace for the NPG estimator works efficiently.

In chapter 4, we showed that the actual forward and backward Markov chains

are closely related and have common properties in the propositions. Utilizing

these, we proposed LSLSD(λ) as the estimation algorithm of the log stationary

distribution derivative (LSD), and LSLSD(λ)-PG as the PG algorithm utilizing

the LSD estimate. The experimental results also demonstrated that LSLSD(λ)

could work at λ ∈ [0, 1) and LSLSD(λ)-PG could learn independent of the tem-

poral discounted rate γ.
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In chapter 5, we proposed a new Riemannian metric matrix on the state-action

joint distribution for the natural gradient of the average reward with respect to

the policy parameter. We elucidated that the natural gradient method that has

been proposed by Kakade (2002) and widely used as the natural policy gradient in

RL, omited the changes of the state probability distribution by the perturbation

of the policy parameter, which was took into account by the proposed natural

gradient method. This difference was confirmed in numerical experiments, where

the proposed method worked better than the other policy gradients and rarely fell

into the plateau. Additionally, it was proven that, if the immediate rewards were

appropriated by the linear function with the basis function defined by the policy,

the adjustable parameter of the linear function became the unbiased estimate of

the proposed natural policy gradient.
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Appendix

1 For chapter 2

1.1 Derivation of Eq.2.9

Using the relation between the discounted state value function and the average

reward, R(θ) = (1− γ)
∑

s∈S dπ(s)V (s) (Singh et al., 1994), PG is calculated as

∇θR(θ) = (1− γ)

(∑
s∈S

∇θd(s)V (s) +
∑
s∈S

d(s)∇θV (s)

)
, (1)

where ∇αAB implies (∇αA)B. The second term is transformed as follows:∑
s∈S

d(s)∇θV (s) =
∑
s∈S

∑
a∈A

d(s)∇θ{πθ(a|s)Q(s, a)}

=
∑
s∈S

∑
a∈A

d(s)
[
∇θπθ(a|s)Q(s, a) + πθ(a|s)∇θQ(s, a)

]
=
∑
s∈S

∑
a∈A

d(s)
[
∇θπθ(a|s)Q(s, a) + πθ(a|s)∇θ

∑
s′

p(s′|s, a)
{
〈r(s′, s, a)〉+ γV (s′)

}]
=
∑
s∈S

∑
a∈A

d(s)∇θπθ(a|s)Q(s, a) + γ
∑

s

d(s)∇θV
π(s) (2)

=
1

1− γ

∑
s∈S

∑
a∈A

d(s)∇θπθ(a|s)Q(s, a). (3)

Eq.2 is given by the property of stationary distribution, d(s′) =
∑

s,a d(s)πθ(a|s)

p(s′|s, a). Substituting Eq.3 in Eq.1,

∇R(θ) = (1− γ)
∑
s∈S

∇θd(s)V (s) +
∑
s∈S

∑
a∈A

d(s)∇θπθ(a|s)Q(s, a)

= (1− γ)
∑
s∈S

∇θd(s)V (s) +
∑
s∈S

∑
a∈A

d(s)∇θπθ(a|s){Q(s, a)− b(s)}, (4)
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where the property
∑

a∈A∇θπθ(a|s) = 0 is utilized. �

1.2 Proof of lemma 1

For simplicity, we use∇ as∇θ and R as R(θ), and define the numerator of Eq.2.11

as ` ≡ (1− γ)
∑

s∈S
∑

a∈A∇d(s)πθ(a|s)Q(s, a). Then, we rewrite Eq.2.11 as

ε =
||`||
||∇γR||

. (5)

It is noted that ε represents the ratio between the norms of the first and second

terms in Eq.4. Therefore, it implies the dominancy of the first term, which is

ignored in the biased policy gradient. The cosine of the angle φ between the

policy gradient ∇R and the biased ∇γR is bounded below by

cos φ =
∇R>∇γR

||∇R|| ||∇γR||

=
(`+∇γR)>∇γR

||(`+∇γR)|| ||∇γR||

≥ ||∇
γR||2 − ||`|| ||∇γR||
||`+∇γR|| ||∇γR||

≥ ||∇
γR|| − ||`||

||`||+ ||∇γR||

=
1− ||`||/||∇γR||
1 + ||`||/||∇γR||

.

That is,

cos φ ≥ 1− ε

1 + ε
. (6)

It indicates that φ lies within (−π/2, π/2) for ε < 1.

If the discounted value functions are normalized in the limit γ → 1, they

are equal to the average reward for state-action pairs {s, a} ∈ {S̀, À} satisfying

d(s) > 0 and πθ(a|s) > 0,

R(θ) = lim
T→∞

1

T
V γ→1(s) = lim

T→∞

1

T
Qγ→1(s, a), {s, a} ∈ {S̀, À}.

Then,
Qγ→1(sa, aa)

Qγ→1(sb, ab)
= 1, sa, ab ∈ S̀, sb, ab ∈ À. (7)
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Therefore, it is apparent that in the limit γ → 1, ε becomes zero by Eq.2.11 and

then cos φ = 1 by Eq.6; hence, φ = 0 holds. It indicates that the biased policy

gradient direction is the same as the true policy gradient direction in the limit

γ → 1. �

2 For chapter 3

2.1 Derivation of Eq.3.1 (Kakade, 2002)

F a(θ)(θ)
−1
∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θ log πθ(a|s)f(s, a;w)

=

(∑
s∈S

∑
a∈A

dπ(s)Fa(s,θ)

)−1∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)∇θln πθ(a|s)>w

=

(∑
s∈S

∑
a∈A

dπ(s)Fa(s,θ)

)−1(∑
s∈S

∑
a∈A

dπ(s)Fa(s,θ)

)
w

= w

�

2.2 Derivation of Eq.3.4

We introduce a proposition for the derivation of Eq.3.4, derived based on Sutton

et al. (2000). Suppose that a state z is sampled by a probability density function

p(z), ψ(z) is a known vector function and υ(z) is an unknown scalar function.

The object is to express the marginalized vector % ≡
∫

dz p(z)ψ(z)υ(z).

Proposition 9 The marginalized vector % is rewritten as∫
dz p(z)ψ(z)υ(z) =

∫
dz p(z)ψ(z)ψ(z)>w∗|υ(z),

where w∗|υ(z) is the weight vector that minimizes the mean square error ε(w) ≡
1
2

∫
dz p(z)

{
ψ(z)>w − υ(z)

}2
.
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Proof: When ε(w) is minimized at w∗|υ(z), ∇wε(w∗|υ(z)) = 0 holds, that is,∫
dz p(z)ψ(z)

{
ψ(z)>w∗|υ(z) − υ(z)

}
= 0

⇔
∫

dz p(z)ψ(z)υ(z) =

∫
dz p(z)ψ(z)ψ(z)>w∗|υ(z) �

In the case of the policy gradient, if
∫

dz is replaced by
∑

s,a and p(z) =

p(s, a) ≡ dπ(s)πθ(a|s), υ(z) = υ(s, a) ≡ Qπ(s, a) − b(s), and ψ(z) = ψ(s, a) ≡
∇θ log πθ(a|s) are substituted in Eq.9, then

∇γ
θR(θ) =

∑
s∈S

∑
a∈A

dπ(s)π(a|s)∇θ log πθ(a|s)f(s, a;w∗|Qπ(s,a)−b(s)). (3.4)

2.3 Proof of proposition 1

The variation of the residual sum of squares in terms of b(s) is

δ

δb(s)

{∑
s,a

dπ(s)π(a|s) (Qπ(s, a)− b(s)− f(s, a;w))2

}
=
∑
s,a

dπ(s)π(a|s) (Qπ(s, a)− b(s)− f(s, a;w))

=
∑
s,a

dπ(s)π(a|s) (Qπ(s, a)− b(s)) ,

using the property of the compatible function f(s, a;w) (Eq.3.6) for last transfor-

mation. By the variation principle, when the residual sum of squares is minimized,∑
s,a

dπ(s)π(a|s) (Qπ(s, a)− b(s)) = 0

holds. This is satisfied, if b(s) = V π(s). �
In addition, when the baseline, b, is just a scalar instead of the function of a

state, the residual sum of squares is minimized at

b =
R(θ)

1− γ
,

where R(θ) is the average reward. Similarly, it is derived by the condition

d

db

{∑
s,a

dπ(s)π(a|s) (Qπ(s, a)− b− f(s, a;w))2

}
= 0.
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2.4 Proof of proposition 2

Consider the expectation of the TD of the state value function in state-action

space, Ssa = {(s, a) ∈ (S,A)},

〈δ(s, a)〉 =
∑

s′

p(s′|s, a) (〈r(s, s′, a)〉+ γV π(s′))− V π(s).

Note that 〈δ(s)〉 = 0. With the Bellman equation, Qπ(s, a) is expressed as

Qπ(s, a) =
∑

s′

p(s′|s, a) (〈r(s, s′, a)〉+ γV π(s′)) . (8)

By subtracting V π(s) from both-sides of Eq.8, we obtain

Aπ(s, a) = 〈δπ(s, a)〉 .

If Varπ(δπ(s, a)) ≡
∑

s∈S
∑

a∈A d(s)πθ(a|s)
〈
(δπ(s, a)− 〈δπ(s, a)〉)2〉 is equal to

zero, δπ(s, a) = 〈δπ(s, a)〉 holds; hence, Aπ(s, a) = δπ(s, a) holds. �

2.5 Supplement of the proof of lemma 2

We show two things; the convergence of f(s, a; ŵ|δπ(s,a)) and Eq.3.9. Vt, ft, and

ψt denote f(st, at; ŵ), V π(st), and ∇θln πθ(at|st), respectively.

Convergence of f(s, a; ŵ|δπ(s,a)) to f(s, a;w∗)

Let the regression, gradient descent-like algorithm 1 or least squares-like algo-

rithm 2 be performed with infinite samples from Markov chain M(θ).

In the case of gradient descent, algorithm 1 at λ = 0 and ι = 0, the expectation
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of the gradient as the update direction of ∆ŵ is

〈
∆ŵ|δ(s,a)

〉
= lim

k→∞

1

T

T−1∑
t=0

(δt − ft)ψt

= lim
k→∞

1

T

T−1∑
t=0

(rt+1 + γVt+1 − Vt − ft)ψt

=
∑
s′,s,a

d(s)π(a|s)p(s′|x,a) (〈r(s′, s, a)〉+ γV (s′)− V (x)− f(s, a; ŵ))∇θln πθ(at|st)

=
∑
s∈S

∑
a∈A

d(s)π(a|s) (〈δ(s, a)〉 − f(s, a; ŵ))∇θln πθ(at|st)

= ∇w

{∑
s∈S

∑
a∈A

d(s)π(a|s) (Aπ(s, a)− f(s, a; ŵ))2

}
,

where the last transformation is with 〈δ(s, a)〉 = Aπ(s, a) in proposition 2. There-

fore, f(s, a; ŵ|δπ(s,a)) converges to f(s, a;w∗) with an appropriate learning rate

(Bertsekas and Tsitsiklis, 1996), because ŵ|Aπ(s,a) clearly converges w∗ by the

definition Aπ(s, a) ≡ Qπ(s, a)− V π(s) with an appropriate method.

In the case of least squares, algorithm 2 at λ = 0 and ι = 0,

A−1b = ŵ|δ(s,a)

⇔ (ψ0 ψ1 . . . ψT )


δ0

δ1

...

δT

 = (ψ0 ψ1 . . . ψT )


f0

f1

...

fT


⇔ 1

T

T−1∑
t=0

ψtδt =
1

T

T−1∑
t=0

ψtft.

With infinite samples, by similar transformations as the gradient descent case,

lim
T→∞

1

T

T−1∑
t=0

ψt (δt − ft) = 0

⇔ ∇w

{∑
s∈S

∑
a∈A

d(s)πθ(a|s)
(
Aπ(s, a)− f(s, a; ŵ|δ(s,a))

)2}
= 0.

Therefore, the fact that f(s, a; ŵ|δπ(s,a)) converges to f(s, a;w∗) is proved by

similar way as in the gradient descent case.
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Derivation of eq.3.9

RSSf (δ(s, a)) =
∑
s∈S

∑
a∈A

d(s)πθ(a|s)(δ(s, a)− f(s, a;w))2

=
∑
s′,s,a

d(s)πθ(a|s)p(s′|s, a)

(r(s′, s, a) + γV (s′)−Q(s, a) + Q(s, a)− V (s)− f(s, a;w))2

=
∑
s′,s,a

d(s)πθ(a|s)p(s′|s, a)(r(s′, s, a) + γV (s′)− V (s)− A(s, a))2

+
∑
s∈S

∑
a∈A

d(s)πθ(a|s)(Q(s, a)− V (s)− f(s, a;w))2 (9)

=
∑
s′,s,a

d(s)πθ(a|s)p(s′|s, a)(r(s′, s, a) + γV (s′)− V (s)− 〈δ(s, a)〉)2

+
∑
s∈S

∑
a∈A

d(s)πθ(a|s)(A(s, a)− f(s, a;w))2 (10)

=
∑
s′,s,a

d(s)πθ(a|s)
〈
(δ(s, a)− 〈δ(s, a)〉)2

〉
+ RSSf (A(s, a))

= Varπ(δ(s, a)) + RSSf (A(s, a)),

where the transformation to Eq.9 utilizes Eq.3.6 and the property of Q(s, a) in

Eq.8 and the transformation to Eq.10 uses Eq.3.8.

103



2.6 Estimation of NPG based on least squares

Algorithm 2 Estimation of NPG based on least squares

Given:

• a policy πθ(a|s).

• the system trajectory by the policy, {s0, a0, r1, ..., rT , sT , aT}.
• an estimated state value function V̂ (s).

Initialize: γ, λ, ι.

Set: z = 0;, A := 0;, b := 0;.

For t = 0 : T − 1 do

z := γλz +∇θln πθ(at|st);

A := A+ z(∇θln πθ(at|st)− ι∇θln πθ(at+1|st+1))
>;

b := b+ z(rt + γV̂ (st+1)− V̂ (st));

end

ŵ := A−1b;

Return: ŵ .

Proof of theorem 2 in the least squares case:

We denote ψt ≡ ∇θ log πat|st and V̂t ≡ V̂ (xt) for simplicity. Then,

b = Aŵ

⇔

(
ψ0 γψ0+ψ1 . . .

T∑
t=1

γT−tψt−1

)
r1+γV̂1−V̂0

r2+γV̂2−V̂1

...

rT +γV̂T−V̂T−1



=

(
ψ0 γψ0+ψ1 . . .

T∑
t=1

γT−tψt−1

)
(ψ0−ιψ1)

>

(ψ1−ιψ2)
>

...

(ψT−1−ιψT )>

 ŵ

⇔ 1

T

T−1∑
t=0

ψt

(
n∑

τ=t

γτ−1rτ+1 + γT−tVT − V̂τ

)

=
1

T

T−1∑
t=0

ψt

(
ψt −

T−1∑
τ=t

γτ−t(ι− γ)ψτ+1 − γT−1−tιψT

)>

ŵ. (11)
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By similar transformations as those for Eq.3.12,∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)∇θln πθ(a|s)
(
Qπ(s, a)− V̂ (s)− 〈ŵ〉>∇θln πθ(a|s)

)
= 0

⇔ ∇w

{∑
s∈S

∑
a∈A

dπ(s)πθ(a|s)
(
Qπ(s, a)− V̂ (s)− 〈ŵ〉>∇θln πθ(a|s)

)2
}

= 0

For the above equality to be true,

〈ŵ〉 = w∗

holds. �

2.7 Finite Markov chain

We consider a finite Markov chain M(θ, τ) in which the chain terminates with a

probability 1−τ at each time step and the chain is restarted from the initial state

s0 following the initial state distribution p(s0 = s) 1. The state distribution at

time step t ≥ 1 is calculated as p(st = s′|s0,θ) = τ
∑

s,a p(s′|s, a)πθ(a|s)p(st−1 =

s|s0,θ), and then the discounted stationary distribution of the state is dπ,τ
dis (s) =

(1 − τ)
∑∞

t=0 τ tp(st = s|s0,θ) because the average time steps of this chain is

1/(1 − τ). Therefore, the discounted average reward as an objective function is

Rdis(θ, τ) ≡
∑

s∈S
∑

a∈A dπ,τ
dis (s)πθ(a|s)r(s, a) 2.

Corollary 1 When the discount rate of the value function, γ is equal to τ of the

finite Markov chain M(θ, τ), ŵ|δ(s,a) is an unbiased estimate of the natural policy

gradient in the finite Markov chain M(θ, τ):

∇̃θRdis(θ, τ) =
〈
ŵ|δ(s,a)

〉
.

Proof: The average reward is calculated as

Rdis(θ, τ) =
1

1− τ

〈
∞∑

t=0

τ tr(st, at)

〉
=

1

1− τ

∑
s∈S

p(s0 = s)V π,τ (s).

1Although the initial state distribution does not depend on the policy, we will notate p(s0 =
s|s0,θ) for simplicity, instead of p(s0 = s).

2Corollary 1 is approved in the case that the reward function is r(st+1, s, a), by simple
extension of the proof
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The gradient of the average reward about θ is

∇θRdis(θ, τ) =
1

1− τ

∑
s∈S

p(s0 = s)∇θV
π,τ (s)

=
1

1− τ

∑
s∈S

∑
a∈A

p(s0 = s)∇θ {πθ(a|s)Qπ,τ (s, a)}

=
1

1− τ

{∑
s∈S

∑
a∈A

p(s0 = s)∇θπθ(a|s)Qπ,τ (s, a) + τ
∑
s∈S

p(s1 = s|s0,θ)∇θV
π,τ (s)

}

=
1

1− τ

{∑
s∈S

∑
a∈A

∞∑
t=1

τ t−1p(st = s|s0,θ)∇θπθ(a|s)Qπ,τ (s, a)

}
=
∑
s∈S

∑
a∈A

dπ,τ
dis (s)∇θln πθ(a|s)Qπ,τ (s, a)

These transformations are similar to those in 1.1. Therefore, when δπ,τ (s, a) is de-

fined as the TD about V π,τ (s),∇θRdis(θ, τ) = dπ,τ
dis (s)∇θln πθ(a|s)f(s, a;

〈
ŵ|δπ,τ (s,a)

〉
)

holds as Eq.3.4 and lemma 2 (i). Hence, with the Fisher information matrix on

M(θ, τ) derived as Gτ
dis(θ) =

∑
s∈S
∑

a∈A dπ,τ
dis (s)∇θln πθ(a|s)∇θln πθ(a|s)> (Bag-

nell and Schneider, 2003; Peters et al., 2003), the natural policy gradient on

M(θ, τ) is calculated as

∇̃θRdis(θ, τ) = Gτ
dis(θ)

−1∇θRdis(θ, τ)

=
〈
ŵ|δπ,τ (s,a)

〉
. �
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3 For chapter 5

3.1 Derivation of eq.5.9

For simplicity, we notate π+t ≡ πθ(a+t |s+t)，p+t ≡ p(s+t|s+t−1, a+t−1). Since ξ+T

is the system trajectory for T time steps from dπ(s), Fξ+T
(θ) is calculated to be

Fξ+T
(θ)

= −
∑

ξ+T∈ΞT

Pr(ξ+T )∇2
θ

{
ln dπ(s) +

T−1∑
t=0

ln πθ(a+t|s+t)
}

= −
∑
s∈S

dπ(s)
(
∇2

θ ln dπ(s) +
∑
a∈A

+0π+0

(
∇2

θ ln π+0+∑
s∈S

+1p+1

∑
a∈A

+1π+1

(
∇2

θ ln π+1+∑
s∈S

+2p+2

∑
a∈A

+2π+2

(
∇2

θ ln π+2 + · · ·+∑
s∈S

+T−1p+T−1

∑
a∈A

+T−1π+T−1∇2
θ ln π+T−1

))
· · ·
)
,

and, by using the balance equation of the stationary distribution (eq.2.2), the

following holds:

Fξ+T
(θ) = Fs(θ) +

T−1∑
t=0

(∑
s∈S

+td
π(s+t)Fa(θ|s+t)

)
= Fs(θ) + TF a(θ). �

3.2 Consistency of Fs,a(θ) and H(θ)

If the immediate reward is dependent on θ

r(s, a;θ) =
Pr(s, a|M(θ∗))

Pr(s, a|M(θ))
ln Pr(s, a|M(θ)), (12)

then the average reward becomes the negative cross entropy

R(θ) =
∑
s,a

Pr(s, a|M(θ∗)) ln Pr(s, a|M(θ)).
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Hence, Pr(s, a|M(θ∗))=Pr(s, a|M(θ)) holds, if the average reward is maximized.

The Hessian matrix becomes H(θ) =
∑

s,aPr(s, a|M(θ∗))∇2
θ ln Pr(s, a|M(θ)). If

the policy parameter is nearly optimal θ ≈ θ∗, Pr(s, a|M(θ)) ≈ Pr(s, a|M(θ∗))

holds by the assumption of the smoothness of πθ(a|s) with respect to θ. There-

fore, at this time, the Hessian matrix approximately equates the negative, pro-

posed FIM:

H(θ) ≈
∑
s∈S

∑
a∈A

Pr(s, a|M(θ))∇2
θ ln Pr(s, a|M(θ))

= −Fs,a(θ).

H(θ∗) = −Fs,a(θ
∗) obviously holds. Therefore, when the reward function is in

eq.12 and the policy parameter is close to the optimal, NSG almost consists with

the Newton direction and the NSG learning attains quadratic convergence.
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