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Abstract

In general, automatic speech recognition (ASR) is sensitive to ambient noise. Therefore,
the original commercial ASR products used close-talk microphones. Now many ASR
products are equipped with far-field microphones, relying on noise-reducing front-ends
and multi-style training in their acoustic models. Typical examples are car navigation
systems and consumer electronic devices. However, most of them assume moderate and
stationary noise sources and limited vocabularies of several hundreds words. Their noise
robustness is still inadequate for many tasks.

In our daily life, we encounter a large variety of noises. For example, in automobiles,
there are stationary noises such as cruising noises and fan noises, and non-stationary
noises such as passengers’ voices, radios or other audio devices, squeaking windshield
wipers, or the sounds of passing traffic. Also, the mix of noises and signals will change,
even with relatively stable noise sources such as cruising noise, resulting in fluctuations
of the SNR that impact automatic speech recognition.

In this dissertation, three novel methods are proposed and evaluated to cope with
variations in the noise. The first method is a new microphone array technology called
Profile Fitting (PF) to cope with non-stationary noise using directional information. This
method focuses on a profile of the shape of the power distribution according to the
beamforming direction. An observed profile can be decomposed into known template
profiles for directional sound sources and a non-directional background sound source.

Evaluations confirmed this method significantly reduced the error rate in automatic
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speech recognition.

PF can also be used for sound source localization. The sound source location (or
direction) is essential information for beamformers unless Blind Signal Separation
(BSS) is used for signal separation. Conventionally, localization methods such as
MUSIC and CSP are used in addition to non-BSS beamformers. However, PF can
integrate localization and signal separation into a single process. Furthermore, PF can
extend the localization capability for a combination of sound reflectors, because the
“profile” introduced by PF contains all of the localization cues such as reflections and
diffusion effects as well as inter-channel time differences (ITD), and inter-channel
sound intensity differences (IID). Experiments show this method combined with sound
reflectors can provide a rough estimate of a vertical location even in a noisy
environment, which was a difficult task for conventional microphone array technologies
using two microphones.

The second method is a new echo cancellation technology named SSEC
(Simultaneous adaptation of spectral Subtraction and Echo Cancellation) to cope with
non-stationary noises such as music or human voices coming from a radio,
car-navigation system, or other audio device. It uses reference signals from those
devices to cancel echo components in the observed signals. Most of the conventional
echo cancellers are based on time domain LMS, which requires heavy computations and
suffers from performance degradation in high ambient noise environments. To avoid
these difficulties, echo cancellation can be implemented using spectral subtraction.
However, in automobiles, there is a practical problem of how to estimate the cruising
noise while music is playing continuously. SSEC solves this problem by estimating the
ambient noise component and the echo canceller’s coefficients simultaneously under the
assumption that ambient noises such as cruising noises and fan noises are relatively
constant in automobiles. Experiments show SSEC significantly reduced the errors in
automatic speech recognition compared with the conventional combination of an echo
canceller and spectral subtraction.

The third method is a new speech enhancement method exploiting the harmonic
structures observed in human voices. This is designed to improve the accuracy of
automatic speech recognition in very low SNR situations such as high-speed cruising
with an open window or a noisy fan. In such situations, speech signals are often buried

in broadband noise and the accuracy of automatic speech recognition is greatly

i



degraded.

Microphone array technology can improve the output SNR. However, when adaptive
beamformer is configured with small number of microphones and the noise source is
non-directional (i.e. not from a single point), such as cruising noise, then the degree of
improvement is very limited. Therefore, a different approach using harmonic structure
was investigated to retrieve the speech information buried in the broadband noise. A
new method called LPE (Local Peak Enhancement) was devised. Most of the
conventional methods are based on comb filtering, which depends on accurate pitch
frequency and reliable voiced/unvoiced detection. However, the detection is not
accurate enough in very low SNR situations. LPE does not depend on this, because it
designs a filter for speech enhancement directly from the observed spectrum.
Experiments using automatic speech recognition show that LPE significantly improves
the accuracy in very noisy conditions such as a noisy fan or an open window. They also
confirmed that LPE can be combined with existing noise reduction algorithms such as

SS and Wiener Filtering for further improvements.

Keywords:
automatic speech recognition, beamformer, acoustic echo canceller, harmonics, ITD,
IID, microphone array, noise reduction, sound reflector, sound source localization,

spectral subtraction, speech enhancement
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1. Introduction

1.1. Background

For human beings, Automatic Speech Recognition (ASR) is a natural extension for the

man-machine interface. Early ASR products required headsets with close-talk

microphone to capture the speech without noise. Noise reduction technology and

advances in acoustic modeling allowed far-field microphones to be used. This is called

hands-free speech recognition and allows for a more natural interface without wires.

Nowadays these interfaces are used in various situations, but users agree their noise

robustness should be improved. Here are some restrictions of current products:

® Car navigation system: When the Talk-Button is pressed, the car audio and fan are
automatically stopped or quieted in most systems.

® Robot (Humanoid): Many of them have a speech interface. However, it is rare to
see a hands-free ASR demo in a noisy convention hall.

® Consumer electronic devices: In TVs or game machines, microphone is often

equipped in a remote commander, so to get microphone closer to users..

Noise robustness is not easy to achieve, because we need to cope with various types of
noises. For example, in robot applications, there are other people’s voices, background
noises, actuator noises of the robot itself, and the synthesized voice of the robot (Figure
1.1). In automobiles, there are cruising noises, audio noises, passenger’s voices, and
various environmental noises such as horns, the squeaks of windshield wipers,
neighboring cars, train crossing signals, etc. Table 1.1 summarizes some features of
these types of noises as observed in automobiles. Here, to simplify discussion in this
dissertation, cruising noise is treated as a stationary noise, and non-stationary sounds

such as potholes are classified as environmental noise.
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Figure 1.1. Various noises in a robot application.

For stationary noise, we can compensate in a straightforward manner by estimating
the noise spectrum in the non-speech segments and subtracting it from the observed
spectrum. For further improvements, we can use model-based compensation.

For non-stationary noise, we still have various methods as long as the noise does not
have a harmonic structure while the target signal is speech. Comb filtering [TO98] is
one of the approaches to enhance the harmonic spectrum of vowels. In this dissertation,
we may refer to this type of compensation as speech enhancement rather than noise
reduction.

If the noise is non-stationary and it has a harmonic structure, as is true with music or
irrelevant human speech, then the compensation is not easy when using a single channel
microphone. If two or more microphones are available, we can use beamformer
focusing on the target by configuring the microphones as a microphone array. For
automobiles, this may filter for only those sounds arriving from the driver’s direction.
Sounds from other directions such as passenger seats and audio loudspeakers can be
filtered out. In current automobiles, standard position of the microphone is considered
to be near a map-lamp on the ceiling. As shown in Figure 1.2, this position has also a
good advantage to distinguish the driver’s voice from passengers’ voices by

directionality of the sounds when multiple microphones are installed.



Table 1.1. Types of noises observed in automobiles

Directionality Stability Harmonic | Reference Possible
structure signal solution
Cruising noise | Non-directional Stationary No Not Single channel
available | noise reduction
Audio Sound Directional Non-stationary Yes Possibly | Echo canceller,
(CD,TV,Radio, Available Beamformer
Car-Navigation)
Passenger’s Directional Non-Stationary Yes Not Beamformer
voice available
Environmental Directional Stationary Yes Not Beamformer,
noise or or or available | Single channel
Non-directional | Non-stationary No noise reduction

i:%jj

Figure 1.2. Standard position of microphone and directionality of driver's and

passengers’ voices in automobiles.

Direction to each
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Figure 1.3. Automatic speech recognition system.

A beamformer depends on the direction (or location) of the sound sources. Therefore,
a noise will not be reduced if it arrives from the same direction as the target. For
example, guidance messages from the car navigation system, which are broadcasted
from a loudspeaker on the driver’s side, may escape filtering. In this case, we can use an
echo canceller if a reference signal for the broadcast sound is available. An echo
canceller can specifically reduce the noise component correlated with a reference signal.

However, most of current products support only stationary noise with single-channel
noise reduction technology and an acoustic model trained with certain noises depending

on their task..

1.2. Automatic Speech Recognition System

Figure 1.3 shows a diagram of a standard ASR system. The feature extraction part
converts the input signal to feature vectors such as MFCC. It may also compensate for
the multiplicative distortion and additive noise using CMS, CDCN [AS90], or other
techniques. The Acoustic Model (AM) part contains statistical data trained from a large
corpus of speech sounds with phonetic labels. The AM is often modeled as a HMM

using EM algorithm. It is common to train the speech data along with noise to increase



the noise robustness. This technique is called multi-style training. Adaptation methods
such as MLLR [LW95] and HMM Composition (PMC) [GY96] may be done at this
stage for speaker and environmental adaptations. The Language Model (LM) part
contains statistical data about word sequences. For transcription, it is often modeled
using an N-Gram approach. For command input, it is modeled using a constrained
grammar. In both case, the LMs are often compiled into a Finite State Machine (FSM)
to be used in decoding. The decoder part searches for the most likely word sequences
using the AM and LM data. The Viterbi algorithm is often used for the search.

For noise robustness, a noise reduction part can be placed in the front-end part to
pre-process the input data. This dissertation focuses on this noise reduction part. This
includes multi-channel signal processing such as microphone arrays or echo cancellers.

Generally speaking, noise reduction may involve some side effects. The processed
signal may have been altered in an undesirable way depending on the noise reduction
method. Therefore, if necessary, the AM should be retrained with data that was

processed with the noise reduction method.

1.3. Conventional Noise Reduction Technology

1.3.1. Single-channel noise reduction

For single-channel noise reduction, candidate methods include spectral subtraction (SS)
[Bol79], Wiener Filters [ETS02], MMSE [EM&84], CDCN [AS90], model-based
compensation [STB+01][ATIO6], noise and speech model reconstruction [KHO03], and
particle filtering [FNO5]. Many noise reduction methods rely on the assumption that the
noise is stationary. Particle filtering and model-based reconstruction appear to support
filtering non-stationary noises. However, further research is still required for its use in
realistic environments.

A comb filter [TO98] passes only the harmonic bins in the voiced segments. It works
based on the estimated pitch (FO) information. Therefore, the performance is highly

dependent on the accuracy of pitch detection [Boe93][NIZ03].



1.3.2. Multi-channel noise reduction

1.3.2.1. Microphone array
Microphone array technology includes beamformers, localization, Blind Signal
Separation (BSS), and supporting technologies.

The most basic beamformer is called Delay and Sum (DS). This sums up the signals
for all of the channels with their own delays so that all of the signals are synchronized to
the target sound source. An Adaptive Beamformer (ABF) also sum up signals with
individual delays and gains so that the residual noise may be minimized. When a noise
source is directional and the room is non-reverberant, ABF will have a
null-beamforming pattern for each noise source. ABF is also known as a Minimum
Variance (MV) beamformer [AAMOO0]. Griffiths-Jim (GJ) [GJ82] consists of two
beamformers. The added one is a null-beamformer used on the target signal source so as
to enhance only the output noise component. The noise component is then subtracted
from GJ’s main beamformer output to further reduce the noise. This can be
implemented using spectral subtraction as a Spatial Subtraction Array (SSA) [ONS+05].
This subtracts the sub-beamformer output from the main-beamformer output in the
power spectrum domain. In this dissertation, the two-channel version of SSA is also
referred to as 2-channel (Adaptive) SS [KAS+96].

A beamformer needs to know the location (or direction) of the target signal.
Therefore, some localization methods such as MUSIC [JD] and CSP [OS96] are often
used in conjunction. In contrast, BSS does not require that information. It can separate a
mixed signal into separate signal components using the statistical independence
between the signals based on the ICA algorithm [SKT+03]. For further improvements,
it is extended to be combined with Binary Mask [MTS+06] and SSA [TTS+06].

1.3.2.2. Echo canceller
The most basic adaptation algorithm for an echo canceller is LMS. The normalized form
is known as N-LMS. RLS, Sub-band LMS, and the ES algorithm [MK92] were
developed for faster convergence. They are implemented in the time domain using long

filter taps that should be sufficiently long relative to the the room’s reverberation.



Therefore, they tend to require intensive computations. This drawback becomes much
more severe when they are extended for stereo or a 5.1-channel surround system.

The echo canceller can be implemented in the spectrum domain or in the power
spectrum domain for reduced computation. The implementation in the power spectrum
domain works like spectral subtraction and is sometimes used as a post-processing step
with a time domain echo canceller to suppress the remaining noise [DP97].

There are some extended versions of echo canceller.r MCDCN [DDIO4] that
enhanced CDCN technique so to utilize reference signal. Semi-blind source separation
(SBSS) [MTM+06] adopted independent component analysis (ICA) to achieve echo

cancellation without double talk detector.

1.4. Contribution

In this dissertation, the following three novel methods for noise reduction or speech

enhancement are proposed to improve the accuracy of automatic speech recognition in

noisy environments.

® A new microphone array technology using a power distribution profile for
beamforming and sound source localization.

® A new echo canceller that can simultaneously perform echo adaptation and ambient
noise estimation.

® A new speech enhancement method using harmonic structures without relying on
pitch and voiced/unvoiced detection.

As shown in Figure 1.4, the above three proposed methods should be placed in the noise

reduction part of the front-end. They should be switched depending on the hardware

availability or the variation of the noise to cope with.

1.5. Thesis Outline

This dissertation is organized as follows. In Chapter 2, we briefly review robust ASR
to position the three novel methods proposed in this dissertation. In Chapter 3, a new

microphone array technology that shows higher noise reduction capability with limited
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Figure 1.4. Integration of the proposed methods.

numbers of microphones is investigated, and the new method named Profile Fitting
(PF) is proposed. In Chapter 4, PF is further discussed in an application of sound
source localization. In Chapter 5, a new echo canceller named SSEC (Simultaneous
adaptation of spectral Subtraction and Echo Cancellation) is proposed. In Chapter 6, a
new speech enhancement method named Local Peak Enhancement (LPE) is proposed.
Chapter 5 and Chapter 6 focus on the particular challenges in automobiles, but the

proposed technologies are applicable for other applications. Finally, Chapter 7

summarizes this work and suggests future research directions.



2. Robust Automatic Speech
Recognition

2.1. Introduction

In this chapter, we briefly review robust ASR to have a clear image of what robustness
is, what is involved in robustness, and how the three novel methods proposed in this

dissertation can contribute to the robustness of ASR systems.

2.2. Robustness of Automatic Speech

Recognition System

As shown in Figure 2.1, ASR systems have been evolving to push against the following
limitations:

® Environmental robustness

Usability

Speaking style

Task complexity

Speaker dependency

Speaking in the broad sense, advances in any of these areas affects the robustness of the
ASR. The various kinds of research described in this dissertation are related to primarily
to environmental robustness and usability. These topics will be further addressed in the

following chapters.
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Figure 2.1. Evolution of automatic speech recognition.

2.2.1. Environmental robustness

Modern automatic speech recognition is based on statistical modeling from a large
corpus. Therefore, the first steps involve training the acoustic model with realistic
speech data. If the situation permits, the data should be recorded in the same
environment as will be used and with the same conditions for types of noise, SNR,
microphones, and room reverberation. This approach is known as multi-style training
and is widely used in commercial products. However, the environments of the actual
usage are highly unpredictable and usually there is some acoustic mismatch.
Environmental robustness in speech recognition represents the ability to minimize
performance degradation that occurs as a result of mismatches between system training
and test conditions [Ros04].

Acoustic mismatches are classified into two types, additive noise and multiplicative
distortion. Figure 2.2 illustrates how a speech signal is corrupted by these two factors.
The variables X, S, N, and H denote the observed noisy speech signal, the clean speech
signal, the observed noise signal, and the acoustic transmission function. The observed
signal can be represented by Equation (2.1):

X=H®S+N, (2.1)

_10_
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Figure 2.2. Transmission of a speech signal.

where ® denotes the convolution operation. Distortion in the transmission channel is
ignored here. As shown in Equation (2.1), N is additive and H is multiplicative. In
automobiles, cruising noise, fan noise, passengers’ voices, and sounds from radios or
other audio devices are possible additive noises. Multiplicative distortion becomes
conspicuous when the distance from the subject speaker to the microphone is large or
when the transmission path involves reflection or diffusion. Also, a reverberant room
significantly increases multiplicative distortion.

In order to minimize the acoustic mismatch that might be involved in realistic
environments, these N and H components should be compensated in both the training
and decoding. As long as the subject speaker is not moving relative to the microphone,
Cepstrum Mean Subtraction (CMS) is a simple but effective method to compensate
multiplicative distortion. CDCN can also compensate for it. However, these methods
work within frames, and they cannot handle the later parts of the reverberations beyond
the frame size. Therefore, some de-reverberation algorithms [SCO0][NMO3] can be used
in very reverberant environments.

For additive noise, we should be aware that there are two type of additive noise,
stationary noise (which is almost time-constant) and non-stationary noise (which is
time-varying). Unless the SNR is very low, it is not difficult to compensate for
stationary noise. We can subtract the estimated value of N in Equation (2.1) in the power
spectrum domain or in the log-power spectrum or cepstrum domain. When the SNR is
very low, the compensation may be excessive and result in losing speech information or

it may insufficient and leave too much residual noise. Therefore, other methods that not
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only reduce the noise but that also enhance the speech signal should be combined. We
follow up on this idea in Chapter 6 of this dissertation.

For non-stationary noise, it is difficult to estimate time-varying N in a reliable
manner in a single channel system. Therefore, multiple-channel signal processing
technologies such as microphone arrays and echo cancellation are pursued in Chapter 3
and Chapter 5 in this dissertation.

Instead of using front-end processing, the minimizing of acoustic mismatch can be
done in the acoustic model. MLLR [LW95] and HMM Composition (PMC) [GY96] can be
used for environmental adaptation. HMM Composition can be extended to support
moving speakers to compensate for location dependent multiplicative distortions
[Tak99].

Another approach for minimizing acoustic mismatch is to use robust features instead
of MFCC. RASTA-PLP [HM94], multi-band spectral features [NSI+04], distinctive
phonetic features [Fuk05], spectral peak-weighted liftering [KL00O], SBCOR [KI95],
and MVDR [DRO01] are some of the candidates.

2.2.2. Usability

Usability involves various features of the ASR systems that make them more friendly
for users.

Voice Activity Detection (VAD) has a large impact on usability. Most of the current
car-navigation systems use a Push-To-Activate (PTA) mode, for which a user need to
push a button when starting to speak. The end of the utterance is detected automatically
by the car-navigation system. Using a Push-To-Talk (PTT) mode, the user would need
to continue pressing the talk button while speaking. As the driver may need to turn the
steering wheel, PTT is considered as an unacceptable scenario for driving. VAD
typically utilizes information about the likelihood of speech, the speech power and also
the sound directivity when a microphone array is used. The noise reduction methods
described in Chapters 3, 5, and 6 of this dissertation can contribute to VAD by
enhancing evaluation of the likelihood of speech and the speech power. Also, the sound
source localization from Chapter 4 can contribute to the use of sound directivity

information.
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In near future automobiles, PTA mode will evolve to Always Listening (AL) mode,
allowing the user to start speaking at any time without pushing a talk button. AL mode
is already a common interface for humanoid robots. For cars, this will require higher
VAD accuracy, as well as some language understanding technologies. Therefore, VAD
improvements are important.

Another usability issue is the restriction that the car audio be stopped or the volume
minimized upon pressing a talk button. Many current car-navigation systems have this
restriction. The enhancement of echo cancellation technology discussed in Chapter 5 of
this dissertation can contribute to addressing this problem.

In the near future, car-navigation systems will support a Barge-In interface that
allows a user to start speaking even while the car-navigation system is broadcasting
informative messages. This will require higher capabilities for the echo cancellation.
Therefore, improvements in echo cancellation are important.

In the use of microphone arrays, reducing the number of microphones is also an
improvement of the usability in terms of lower failure rates and lower costs for the
equipment. In Chapter 3 in this dissertation, we pursue small-scale microphone arrays

that outperform conventional approaches.

2.2.3. Speaking style

Speaking style affects pronunciation and thus the recognition. In general, discrete
utterances such as commands and digits have less ambiguity. Continuous speech such as
dictation has a lot of variation caused by co-articulation, stress, and so forth.
Spontaneous speech has even more, because of the increased co-articulation,
intonational phrasing, disfluencies, and speech repairs.

In order to support spontaneous speech in automatic speech recognition, many
corpus-based approaches have been investigated. In Japan, a large corpus called the
Corpus of Spontaneous Japanese (CSJ) was developed and many research projects have
used it [Fru05].
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2.2.4. Task complexity

Task complexity has a direct impact on ASR accuracy. If the task is a grammar-based
task with a small vocabulary, we can probably expect higher ASR accuracy, but less
flexibility in the acceptable expressions. If the task involves transcription with a large
vocabulary, Large Vocabulary Continuous Speech Recognition (LVCSR), it is not easy
to achieve higher ASR accuracies, because there are vastly more variations in what can
be said.

In the LM context, task complexity can be measured by perplexity. An LM with
lower perplexity is considered to be a good LM. To build such an LM, it should be
trained with a text corpus well-matched to the actual usage. In that sense, an LM with
lower perplexity tends to be task-specific, resulting in a narrow scope. Therefore, some
topic detection algorithm or topic adaptation algorithm are sometimes used to switch or

adapt the prepared LMs according to the detected current task.

2.2.5. Speaker dependency

Historically, original ASR systems were speaker dependent. The AM had to be trained
with each speaker’s voice. Now, it is common to train the AM with a large speech
corpus containing various subject speakers’ voices. It is called the speaker-independent
model.

However, there are still some speakers who have poor results with ASR systems that
use the speaker-independent model. Model adaptation technologies such as MAP,
VTLN [LR96], and MLLR [LW95] are effective to boost the accuracy. Also, some
canonical modeling such as SAT [AMS+96] is known to increase the benefit of model
adaptation.

Though it is not a speaker adaptation, it is worth noting that discriminative training
such as MPE [PWO02] generally boosts the accuracy in ASR including such problematic

speakers.
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3. Noise Reduction by Profile
Fitting Method

3.1. Introduction

Previous research estimated that more than 50 microphones are required to achieve high
performance for automatic speech recognition using microphone arrays at distances of 1
m [ElkO1]. This also requires a special interface to enable simultaneous multi-channel
audio input. However this requirement would not be acceptable for many consumer
products like mobile PCs, PDAs, etc.

On the other hand, the directional pattern formed by a small-scale microphone array
such as a 2-channel (left and right) Delay and Sum beamformer is not sufficiently
focused on the target. This means the output of the beamformer will contain too much
noise arriving from other directions, and therefore additional logic to estimate and
subtract the noise signal mixed in the output of the beamformer is essential.

The basic concept was provided by the Griffiths-Jim-type adaptive beamformer
[GJ82]. It can be implemented in spectral subtraction as Spatial Subtraction Array
(SSA) [ONS+05]. It subtracts sub-beamformer output from main-beamformer output in
power spectrum domain. In this dissertation, two-channel version of SSA is also
referred as 2-channel (Adaptive) SS. This logic is shown in Figure 3.1 or Figure 3.2.
The main-beamformer forms a directivity pattern focused on the target direction and the
sub-beamformer forms a directional null on the target. In Figure 3.1, the output of the
sub-beamformer is assumed to be the noise power and it is simply subtracted from the
output of the main-beamformer [INK97]. In this chapter, we call this method
“Two-Channel Spectral Subtraction (2-channel SS).”
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Figure 3.1. Two-channel Spectral Subtraction.
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Figure 3.2. Two-channel Adaptive Spectral Subtraction.

In order to improve the performance, the level of the noise power to be subtracted
should be estimated more accurately. Figure 3.2 shows one of the solutions, which
estimates the subtraction weight at each frequency adaptively using an LMS algorithm
so as to minimize the output when the target sound is absent (i.e. when only the noise is
active). In this chapter, we call this method “Two-Channel Adaptive Spectral
Subtraction (2-channel Adaptive SS).” This method is equivalent to the method of Kim
et al. [KAS+96] except for the online adaptation capability. Saruwatari et al. described
the weight as complementary weight vectors at the microphone elements to provide
twice the directional nulls compared to the conventional adaptive beamformer
[SKT+00]. Mizumachi et al. added a third microphone to detect the arrival direction of
the noise so the weight can be estimated analytically without relying on the adaptation
[MA9S].
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Figure 3.3. Preliminary experimental results of automatic speech recognition
on data from two microphone processed by various conventional methods.
The experimental data was prepared from simulations with impulse
responses in RWCP and recordings of 125 utterances by a male speaker.
Noise data for the Exhibition Hall in the Denshi-Kyo DB was overlapped at an
SNR of 20 dB. The distance between the microphones was 11.3 cm. The
distance to the subject speaker was 2 m. The Acoustic Model was trained
with clean speech.

These methods are much more effective compared with the conventional
beamformers such as Delay and Sum (DS) and Minimum Variance (MV) as shown in
Figure 3.3 of our preliminary investigation. However, the performance is not still
optimized, because they rely on the information from only the 2 points that are the focal
directions of the main beamformer and the sub-beamformer. In this chapter, an
optimized method that utilizes the information from all spatial directions is proposed.
This approach makes the noise estimation more accurate and it provides a reasonable
solution for the case of multiple noise sources, for which 2-channel Adaptive SS is not

well adapted.
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3.2. Two-Channel Adaptive Spectral Subtraction
Method and Problem

In Figure 3.2, the beamformer output (Z,, r) before the I-FFT can be written as Equation
(3.1):
Zor=Mly1r- Wy M2, 1
=801+t {Nor-Wo M2, 1}, (3.1)

where the index w is a frequency for each sub-band, and the index 7 is a time frame
number. The variable M1/, r represents the power spectrum of the main beamformer
output. The variable M2, r represents the power spectrum of the sub beamformer output.
The variable S, r represents the signal power and the variable N, r represents the noise
power in the main beamformer output. The variable W, is the subtraction weight
parameters that minimize the following Equation (3.2):

Vey = E[{Nu1- Woy -M24 1 7], (3.2)
where the expectation operation denoted by E[ ] should be performed only when the
signal is absent. Using this adaptation, we can minimize the noise power in the
beamformer output of Equation (3.1).

Figure 3.4 shows an example of the weight parameters W, adapted for a single noise
source in a non-reverberant environment. We see the weight value is very large in
certain frequency ranges. In those ranges, the variance of the remaining noise power
defined by the Equation (3.2) is large. As a result, the beamformer output will have
more remaining noise. That banded distortion of the output power spectrum causes an
adverse affect on the mel-cepstrum coefficients (MFCC) that are used in automatic
speech recognition.

For multiple noise sources, another issue arises with the 2-channel Adaptive SS.
Let’s assume that there are two noise sources around the signal source. Adaptation of
the weight parameters will be performed over long intervals in an averaging manner.
However the noise sources are not necessarily stationary. In the frame-by-frame view,
one of the noise powers may sometimes be zero or very small. Therefore, the weight

parameters are not always consistent for all the time frames.
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Figure 3.4. An example of the weight parameters (single noise case).
The distance between the two microphones is 30 cm.

Experiments in the later section show that the resulting SNR (Signal Noise Ratio) of the
2-channel Adaptive SS is acceptable, but the output has considerable distortion as

remarked above.

3.3. Proposed Method (Profile Fitting)

In order to support multiple non-stationary noise sources, a new method that does not
rely on adaptation is proposed. Instead, we introduce the critical assumption that the
locations of the noise sources are known.

Our proposed method is based on the information in a profile consisting of a series of
points. Figure 3.8 and Figure 3.9 show some examples of profiles, which are power
distribution patterns observed at varying look directions 6 for a Delay and Sum
beamformer.

Profiles are measured at each frequency. In general, they have specific peaks
corresponding to a sound source direction. If the sound source is non-directional or it
involves distinct reflections in the transmission paths, the profile does not have steep
peaks and valleys. If the sound source is in near field, the two microphones often
involve gain imbalance so to make the profile have a bias value.

MYV beamformer sometimes uses similar measures associated with each candidate

location of sound source, known as steering vector. But, it only contains time delay
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Figure 3.5. Decomposition of power distribution pattern.

information and distant information, based on a simple sound source assumption. On
the other hand, the profile can include the effect of reflection and diffusion.

Since the locations of the sound sources are known, we can prepare the profiles a
priori. Observed sound signals can be decomposed into linear combinations of the
profiles on a frame-by-frame basis. This approach is still valid even if one (or more) of
the noise sources is intermittently inactive.

For a single noise source, the proposed method will also have banded distortion due
to the aliasing we experienced with the 2-channel Adaptive SS. However the distortion
is more moderate in favor of the decomposition process that utilizes the information
from all spatial directions.

The first step is to prepare “known profiles.” We need to imagine placing a sound
source in a possible direction and measuring its power distribution profiles (P, (6y,6),
0,(0)) for this microphone array at each frequency @ by using white noise or any
standard signal. P,(0)0) represents a profile for a directional sound source in the
direction 6, while Q,(0) represents a profile for a non-directional background sound
source. After making these measurements, they should be normalized so that the area of
the pattern at each frequency is equal to 1, because the shape is the only essential
information. These shapes are considered as the characteristics of the microphone array.
They do not represent any acoustic features of the target signal or the noise signals.
They are referred to as the known profiles.

The next step is to work with an “observed profile” for each time frame 7. When an
observed sound signal can be assumed to consist of a directional target sound and a

non-directional background noise as in Figure 3.5, the observed profile X, 7(6) can be
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approximately represented as the weighted sum of the two known profiles as Equation
(3.3):

X, @)=, F,(0,,0)+5,,-0,0), 3.3)
where we assumed there is no correlation between the target sound and the noise. The
variable a,, 7 1s a weight coefficient for a profile P, and S, r is a weight coefficient for a
profile O, . These coefficients can be determined so as to minimize the following

evaluation function @, :

max_6

O, = [(X,rO) =,y Py(6.0)— B,y - Q,(O)f dE. (3.4)

min_0
The values of a,7 and f,r can be determined from o®,,/de,, =0 and
od,, - /0B, =0 under the following constraints:
1) 047>0.
2) Bur=0.
3) w1 <Xur(60)/ Pu(6s,0,).
The conditions 1) and 2) mean the power should not be negative. Condition 3) means

the output should be less than the observed power as the noise is reduced.

aq) max_6

S =2 [P(6,0) 1, (O) =00 P(6:,6) =By Qu(O)1d6=0
aa),T min_6@ . (3 5 )
max_6@
T
=2 (0O W oar O =0l - (61,0)= B - 0,(0)}d0=0
Bor min_6 _ (3.6)
Equations (3.5) and (3.6) can be expressed in a matrix and vectors as Equation (3.7).
Cw,T = Aw 'Bw,T > (37)
where A,, B,;,and C,, are defined as follows:
_max7€ max_ 6 T
[P, 6,.6)-P,(6,.0)0a0 [0, (6)-P,(6,.6)d6
A, = mirl:l;i)?79 m:ﬁfﬁ
[P,6,.0)-0,0)00  [0,©)-0,6)d0
| min_ @ min_6 | (38)
o
Ba),T :|: ‘U’T:|
Bor (3.9)
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_max76
j P,(6,,0)- X, ,(6)d6
Ca),T = mirI;QZG
[0.©)-x,,(6)d6
| min_6 4, (310)

The values of a,, rand f,, r can be determined from Equation (3.11):

B,,=A, C,;. (3.11)

[0

If B, r is less than 0, the variable S, r should be set to 0. In this case, A, and
C,r should be modified per Equations (3.12) and (3.13), and B, should be

re-calculated using Equation (3.11).

A = ma>].;w é,,0)-P,6,,6)dé 0
@ min_@
7 0 ) (3.12)
max_@
c,, - jP (00,60 X, (6)d0
7 0 . (3.13)
Finally, the variable a,, 7 should be adjusted as follows:

O, 7= 0 ifa,r<0.
0.7 =Xo.1 (00) / Poy(00,0p) if 0,7 >Xo,7 (00) / P(60,0,) .

Now we can determine the power of the enhanced speech signal Z,, r at the frequency w
for that time frame 7 as Equation (3.14):

ZoT = 0o, Py (00,00). (3.14)
In the process above, the noise power estimated as S, 7 -Q.(0y) is actually subtracted
from the observed power X, r (6y), which is the output of the conventional Delay and
Sum beamformer.

The observed profiles X, 7 (6) are obtained for each time frame (every 10-20 ms).
The above decomposition should be done for every time frame 7" and at every frequency
.

If there 1s not only a background noise but also a directional noise arriving from the
direction #;, we can add the profile for the directional sound source as R, (6,,6) with

coefficient y,, r to the right hand side of the Equation (3.3), producing Equation (3.15).
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The additional term accounts for the power distribution from the additional noise source.
Additional known profiles can be added if there are more known noise sources.

X,r@)=a,;-F,00,0)+,r-0,(0)+7,rR,(6,.0). (3.15)
Similar to the two-profile case, the negative value check should be done for each
coefficient. First, the coefficient S, r or y,r should be checked. If it is negative, it
should be set to zero and all other coefficients should be recalculated per Equations
(3.12) and (3.13). The coefficient a,, 7 should be checked last.

3.4. Spectral Smoothing and Inverse Smoothing

When the SNR of the observed sound is small, the correlation term omitted in Equation
(3.3) cannot be ignored. Because no profiles are available for the correlation term, the
decomposition becomes inaccurate.

Kitaoka et al. proposed SMT for spectral smoothing over the time dimension for
single channel spectral subtraction in order to minimize the correlation term [KANOI].

We applied this technique to Profile Fitting using Equation (3.16):

Xor(0) = fct X, (0), (3.16)

=0
where X or (0)1s the smoothed observed profile, the ¢, are the smoothing coefficients,
and L is the smoothing width. When SMT is applied, Xor (@) should be used instead
of X, 7 (6) in Equations (3.3), (3.4), (3.5), (3.6) and the follow-on equations.

As a side effect of SMT, the output of the enhanced speech signal is also smoothed.
This means the dynamic features detected by automatic speech recognition will be
affected by SMT. In order to compensate for this, we used I-SMT (Inverse SMT) with a
limiter for stability. When I-SMT 1is used, the enhanced speech signal Z,r can be

obtained as follows:

Yor =day,or P,,6,)- (3.17)
_ L-1
Y,, = max{OD]] Bl—{Yw,r >, Yyr H
€ = , (3.18)
Z,p =minlX,, (6,0 7, . (3.19)
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Above SMT and I-SMT operation is an option for Profile Fitting. In our experiments at
moderate SNRs higher than 15 dB described in this chapter, we found the accuracy of
the automatic speech recognition was not degraded without SMT and I-SMT operation,
although the resulting SNR was sometimes degraded. Therefore, SMT and I-SMT
operation was not used in our experiments in this chapter.

In this chapter, the SNR was measured simply by the power histogram from
Equation (3.20):

SNR = 10 “log10(Smax / Nmod)- (3.20)

The variable N,,,4 is the mode value in the noise power histogram, and S, is the 90th

percentile value above the mode value in the signal power histogram.

3.5. Preliminary Experiment

Before evaluating the proposed method in automatic speech recognition, we briefly
checked the distortion of the beamformer output from the original sound. We defined
the MFCC distance (MCEP) in Equation (3.21) as the measurement of the distortion.
MCEP = Nl ii {Cuut (l) - Corigimzl (l)}z 2
; (3.21)

where C(i) is the i-th mel-cepstrum, and N, is the number of the mel-cepstrum except
C(0). We set N, = 23 for the sampling rate 22.05 kHz so that it would be consistent
with the decoder of the automatic speech recognition program. The subscript “out”
means the output of the beamformer and “original” means the original sound without

adding noise.

3.5.1. Preliminary experiment stationary noise case

We placed two microphones at a distance of 30 cm in the soundproof chamber. The
arrival angle of the target signal was 0° (directly in front), and the distance was 15 cm.
As a directional noise, white noise was played back at an arrival angle of +40° (right
side) at a distance of 1 m. The SNR was 18.3 dB.
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Figure 3.6. Estimated and expected coefficients at w =600 Hz.

For Profile Fitting, two profiles were used, each associated with one directional
sound source. Figure 3.6 shows the estimated and expected coefficients at @ = 600 Hz.
The expected values were calculated using the separated signal and noise. When the
target signal is active (i.e. when the expected value of a,, 1 is large), the estimated a,, r
matches well to the expected a,, 7. The estimated f,, 7 seems to be affected by the large
a1, but the absolute value of the estimated f,, 7 is still very small compared with the
estimated o, 7, since Figure 3.6 is plotted with a logarithmic scale. When the target
signal is not active, the estimated value of 5, y matches well to the expected S, 1.

Table 3.1 shows the averaged MFCC distance. It shows the 2-channel Adaptive SS
has a larger MFCC distance than Profile Fitting.

3.5.2. Non-stationary noise case

In addition to the configuration in the previous paragraph, we added a directional noise
source playing back white noise at an arrival angle of -50° (left side) at a distance of 1
m. In order to simulate the worst case of multiple non-stationary noise sources, the new
noise source was stopped in the entire speech period, and both noise sources were active

during the adaptation of the 2-channel Adaptive SS. Profile Fitting does not require any
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Table 3.1. MFCC distance between clean speech and output of beamformer.
Sample utterance is /oi henijishiro/ in Japanese (stationary case)

MCEP
2-channel Adaptive SS 16.8
Profile Fitting 11.6

Table 3.2. MFCC distance between clean speech and output of beamformer.
Sample utterance is /oi henjishiro/ in Japanese (non-stationary case)

MCEP
2-channel Adaptive SS 22.6
Profile Fitting 9.6

adaptation. Instead, three profiles were prepared, each associated with one directional
sound source. The SNR without the additional noise source was 20.5 dB.
Table 3.2 shows the averaged MFCC distance. The advantage of Profile Fitting over

the 2-channel Adaptive SS is more evident than for the single stationary noise case.

3.6. Experiment in Automatic Speech

Recognition

3.6.1. Non-reverberant environment

Figure 3.7 shows the configuration for this test. The distance between the two
microphones was 30 cm. The speech recognition task was a transcription of a robot

conversation (size of vocabulary = 1,200, test set perplexity = 9.2). Two sets of 125
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Figure 3.7. Testing configuration (in soundproof chamber).

sentences, each spoken by a male speaker and a female speaker in our soundproof
chamber, were used for the evaluation as the target signal. The arrival angle of the target
signal was 0° (directly in front), and the distance was 50 cm. Jazz music as a directional
noise was recorded in the soundproof chamber. The arrival angle was 36° (right side),
and the distance was 1 m. The background noise was recorded separately at lunchtime
in our cafeteria. Those recorded noises were mixed with the target signal data manually
so that the SNR could be controlled.

The sampling frequency of the audio stream was 22.05 kHz. The frame shift was 10
ms. The windowing function was a Hamming Window. The FFT width was 512
samples. Profiles were measured by the Delay and Sum beamformer in the time domain.
The horizontal axis of the profiles represents the time delay measured as the number of
delayed samples. Here, this value corresponds to the look direction of beamformer. This
was varied from the —max to the +max value at every specified step value. For
lower frequency profiles (< 1 kHz), we used a 5 times larger maximum value and a
bigger step value to acquire the whole pattern, since the shapes have gentle slopes at
those frequencies. For higher frequency profiles, we used the original maximum value

and the minimum step value (= 1 sample) to be more accurate.
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Figure 3.8. An example of a profile for a directional sound source.

Figure 3.9. An example of a profile for a background sound source.
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Figure 3.8 shows the actual profile for the directional sound source at 0°/50 cm.
Figure 3.9 shows one for a non-directional background sound source. Although it is not
shown here, the profile for the directional sound source at 36°/1 m was also used in the
decomposition process. In total, three profiles were used in this experiment, two for the
directional sound sources, and one for the background noise source. The decomposition
is defined by Equation (3.15). As the directivity of the background noise is not
rigorously determined, the profile for the background noise is only valid in terms of the
average. In other words, it was introduced for an approximate solution. In general, if
there is a distinct noise source in the background, it should be defined separately as a
directional noise source.

These profiles were measured by using white noise in our soundproof chamber
before the experiment began. As shown in Figure 3.9, the profiles are not completely
flat even for a non-directional sound, because of the directivity pattern of the unit
microphone.

The test cases are as follows:

1) Only a background noise was added

2) Only a directional noise was added

3) Both a background noise (reduced to 83%) and a directional noise (reduced to 40%)
were added

All the three profiles were used for all of the test cases.

The SNR for each case was almost constant around 20 dB. The SNR of the original
signal without adding noise was 31.4 dB for the male speaker and 36.0 dB for the
female speaker.

We measure the error rate with CER (Character Error Rate), because the evaluation
task is transcription and there is some ambiguity in word segmentation in Japanese as an

agglutinating language. The definition of CER is in Equation (3.22).

number of substituted characters)+ (number of inserted characters)+ (number of deleted characters)

CER = (
(number of all expected characters)

(3.22)
The CER measured using only the left channel of the original signal without adding

noise was 3.3% for the male speaker and 5.4% for the female speaker.
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Figure 3.10. Resulting character error rate (in soundproof chamber).
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Figure 3.11. Resulting signal-to-noise ratios (in soundproof chamber).
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Figure 3.12. Testing configuration (in meeting room).

The conventional methods to be compared were chosen as follows:
1) No beamformer (Left or Right only)
2) Delay and Sum (DS)
3) Two-Channel Spectral Subtraction (2-ch SS)
4) Two-Channel Adaptive Spectral Subtraction (2-ch Adaptive SS)
Figure 3.10 and Figure 3.11 show the resulting CERs and SNRs, respectively, for this
experiment. The speech recognition was done only when the target signal was active.
Compared with the conventional methods, Profile Fitting (PF) shows superior
performance for CER. Generally speaking, CER was reduced by more than 20% from
the best result of the conventional beamformers (2-ch Adaptive SS). The SNR was

almost the same as for 2-channel Adaptive SS.

3.6.2. Realistic environment

We also evaluated the performance in a more realistic environment. Figure 3.12 shows
the testing configuration in our meeting room with a reverberant time of 0.22 seconds.
The geometry of the microphone array, the tested recognition task and the signal
processing parameters were the same as in the previous test.

Two sets of 125 sentences, each spoken by a male speaker and a female speaker were

played back using a loudspeaker located at the angle of 0° (directly in front) and at the
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distance of 50 cm. The jammer voices were two human speeches by a male and a
female speaker respectively, and they were played back continuously using 2
loudspeakers that were located at the angles of +40° and —50°, both at a distance of 1 m.
In the decomposition process, we used three profiles for the directional sound sources of
+40° at 1 m, 0° at 50 cm, and -50° at 1 m. These profiles were measured in the meeting
room before the experiment began.

Figure 3.13 and Figure 3.14 show the resulting CERs and SNRs, respectively, for
this experiment. The speech recognition was done only when the target signal was
active. Profile Fitting (PF) reduced the CER by approximately 11% from the best result
of the conventional beamformers (2-ch SS). The extent of the improvement was
relatively smaller than in the previous experiment. The SNR for Profile Fitting was

almost the same as for the 2-channel Adaptive SS.

3.7. Concluding Remarks

The proposed method focuses on the power distribution profile of a microphone array to
decompose an observed profile into some known profiles so as to extract the target
signal only.

Experiments in a non-reverberant environment with a dictation system configured
with 2 microphones showed the proposed method (Profile Fitting) reduced CER by
more than 20% from the best results of the conventional beamformers (2-ch Adaptive
SS). However, in a realistic environment, the extent of the improvement was reduced to
11%. One of the factors of this degradation could be the reverberation in the room.

The application of Profile Fitting is not limited to the 2-microphone system. It can be
easily extended to systems with small numbers of microphones like 3 or 4 microphones
configured in 2-dimensional or 3-dimensional geometries, where the associated profiles
should have multiple directional axis, each associated directly or indirectly with the

spatial dimensions
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Figure 3.13. Resulting character error rates (in meeting room).
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Figure 3.14. Resulting signal-to-noise ratios (in meeting room).
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4. Sound Source Localization by
Profile Fitting Method

4.1. Introduction

Profile Fitting can be used also for sound source localization. The sound source location
(or direction) is essential information for beamformers so as to focus on the target.
Therefore conventional beamformers combine some external logic to detect the target
source location.

In a two-microphone array system, the interchannel cues (ITD and IID) are often
referred to for horizontal localization. There have also been several attempts to apply
ITD and IID for vertical localization outside of the median plane [Mar95]. In the
median plane, ITD and IID do not contribute to vertical localization [MN82] since they
are minimized. To achieve vertical localization in the median plane, it was suggested
that a spectral cue model [ZC93][HO97] be integrated. However, since the spectral cues
depend on the spectrum of the signal source, they are not robust enough against signal
variations and environmental noise. Also, it may require special considerations to
consolidate the interchannel cues (ITD and IID) and the spectral cues in one localization
system [MII02].

In this chapter, we enhance the localization cues for a specific reflection by using
reflectors correlated with the location of the sound source. We call this a reflection cue.
It can be detected by CSP analysis directly, or it can be observed as a modification of
the ITD, IID, or the profile. By using this reflection cue, we believe equi-distant vertical
localization in the median plane becomes possible without relying on the spectral cues.

For noise robustness, we introduce Profile Fitting (PF) method for sound source

localization. It was originally proposed for speech enhancement in Chapter 3, but we
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show it is also effective for localization in a noisy field because of its noise reduction
feature. For the conventional method using ITD and IID, several techniques have been
proposed to improve the performance in noisy fields [Mar95][NHO1][NOKO02]. One of
them is to use the onsets to get a locally high signal-to-noise ratio (SNR). Another
technique is to train the probability density function of the sound location in the actual
noise field. However those methods do not have a function to subtract noise, so they
depend on the SNR where ITD and IID are trained.

4.2. Reflector Design

4.2.1. Reflector design for vertical localization

In the HRTF approach, the pinna shape is just a given parameter. In our approach, we
deliberately designed the shape of a pinna-like reflector so that the following process
can retrieve the localization cues provided by the reflector.

Figure 4.1 shows the concept of the design. The ellipses are plotted where the two
foci for each ellipse are at the microphone location and one of the candidate locations of
the sound source. The reflector shape is given by the envelope curve for these ellipses.
At the upper part of the reflector, sound waves from a high elevation are reflected to
focus on the microphone. At the lower part of the reflector, sound waves from a low
elevation are reflected so as to focus on it. Sound waves from unmatched elevations
should be diffused by the reflection. Therefore the microphone receives both a direct
wave and a reflected wave whose delay time is correlated with the sound source
elevation. It should be noted that the actual reflector has a 3D-shape designed as an

envelope of the revolutions of the ellipses (spheroids).

4.2.2. Verifying prototype reflector using CSP analysis

For our experiment, the reflector was made of gypsum molded from a handmade clay

model. We verified the working accuracy by Cross-power Spectrum Phase (CSP)

_36_



Candidate Locations of

Reflector
Shape

Microp
Location

Figure 4.1. Concept of reflector design.

X : Microphone Location

O : Signal Source Location

Figure 4.2. Testing configuration for the verification of the prototype reflector.

analysis [OS94] to check that the reflector generated the desired main reflected wave
according to the sound source location.
Figure 4.2 shows the configuration for this test. Human speech in calls for attention

(“oh-1”, “moshi-moshi”, etc. in Japanese) of about 5 seconds in length were played back
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Figure 4.3. Output of CSP analysis with reflector for a signal source at an
elevation angle of 30°.

Table 4.1. Peak locations detected by CSP analysis

Elevation angle of 0° 15° 30° 45° 60°
sound source
Peak in 1st place 0 0 0 0 0
Peak in 2nd place | N/A 10 9 6 2
Peak in 3rd place | N/A N/A N/A -6 -10
Design point +14 +12 +9 +5.5 +2.5

in a soundproof chamber using a loudspeaker located directly in front at a distance of 2
m with elevation angles of 0°, 15°, 30°, 45°, and 60°. Two microphones with reflectors
recorded the sound signal at a 48 kHz sampling frequency.

As shown in Figure 4.3, the output of CSP analysis shows many sub-peaks, so the
criteria of the intensity for the acceptable sub-peaks are arbitrary. Here we took the top
3 peaks whose intensities were greater than a tenth of the main peak as valid peaks.
Table 4.1 shows the result of the analysis. The peak in first place is the main peak
representing a direct wave. It was observed at position 0. This means the signal source
was directly in front. In second and third places, two sub-peaks caused by correlations
between the direct wave and the reflected wave should be detected at the designated

positions. In these experiments, we observed at least one sub-peak at the designated
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positions except for 0°, where the area of the designed surface for the reflection (at the
root of the reflector) was zero. The absence of an intense reflection can also be treated

as a localization cue.

4.3. Sound Source Localization

CSP analysis can be used for sound source localization. However, this depends on the
assumption that the specific reflected wave is distinct. In a noisy environment, it is
difficult for CSP analysis to detect the specific reflected wave, because the sub-peaks
associated with the noise sources become dominant. Also, the specific reflected wave
can be distinct only when a signal source is located exactly on the designated positions
and the working accuracy of the reflectors is precise. Therefore, the conventional
method using ITD and IID, and Profile Fitting using a profile are investigated in this
section. They do not directly utilize the specific reflected wave, but we expect the
design method discussed in Section 4.2 will work to make the large modification in the
ITDs, IIDs, and profiles, so that the localization methods can utilize these reinforced

localization cues.

4.3.1. Conventional method using ITD and IID

The probability density function, the likelihood that a source is located at a particular
position, can be approximated by the product of the marginal distribution of the ITD
and IID at each sub-band frequency [Mar95][NHO1]. We applied the Gaussian
distribution for the likelihood as Equation (4.1):

Y =K -exp| —%; ZT: (IIDa),T _E)z

(7D, , 11D,

+

2 2
o o

ITD,w 1ID,w , (41)
where ¥, is the likelihood expected for a signal source at n, w is the sub-band
frequency, 7 is the time frame number, ‘712TD,w and ‘7121D,a) are the variances of the

interchannel differences under consideration, and K is a normalizing constant.
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(b) ITD plots with reflectors.

Figure 4.4. ITD plots with and without reflectors for a signal source in the
median plane at various elevation angles. The plots are smoothed over 8

sub-bands (=375 Hz).
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We defined the interchannel differences and the variances in Equations (4.2) to (4.7):

ITD, 7 = A(Ra,j -LZ,,T)-L

270 (4.2)
R
Dy = IOIOg[‘ ol ‘J

‘ La),T‘ | 4.3)
- 1
ITD n,w — N_T;ITDCU’T source=n , (44)
J— 1
Do = N—T; Do e | (4.5)
) 1 1 ITD ’
Oipw =2 2|\ TDor ~Dno
Nn NT - T source=n , (46)
» 11 Do)
Olpw = N, Nr ;‘ ;(IID&T soureet HDMU) (4.7)

>

where R, and L, are the short-time Fourier transforms of the observations for
each of the right and left channels, N7 is the total number of frames to be examined, and
N, 1s the total number of candidate locations. IID i1s measured in dB and ITD is
measured in units of the sampling count. We selected time frames of 0.2 sec around the

onset for the each utterance to be examined.
Before the experiment, /7Dy, IIDnw, © %TD’ w, and o IZID’ » should be trained

using a signal from each candidate location n with or without noise at a specific SNR.

4.3.2. Reflector effect on I'TD and IID

If the left and right reflectors are configured completely symmetrically, ITD and 11D
still take near-zero values. However, as shown in the CSP output of our prototype
(Figure 4.3), the desired reflected waves generated by the actual left and right reflectors
are not necessarily at the same level. In that case, the ITD and IID values are
significantly modified by the reflected waves. Also, it is difficult to predict the actual

modification before measurement, because there are many reflected waves and their
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Figure 4.5. Template profiles for a signal source at elevation angles of 0° and 30°
measured with reflector.

levels are not balanced. The expectation here is that the reflectors should just cause
large modifications at the characteristic positions. For an example, Figure 4.4 shows the
ITDs with and without our reflectors. Without reflectors, ITD plots are similar against
variations of signal source elevation. This implies it is difficult to determine the signal
source elevation by ITD without reflectors. With reflectors, we can observe the shape of
ITD plots varies a lot against signal source elevation. As the localization process checks
the shapes as a whole, it should not be a problem, even if they are partially similar,

under the assumption that the signal is broadband.

4.3.3. Profile Fitting

For robustness against noise, we introduce a Profile Fitting for sound source localization
utilizing the residual of the approximate decomposition of signal and noise. It is based
on the concept that the power distribution observed at varying look direction can be
approximated by the linear combinations of the template distributions, each associated
with a signal source and a noise source. When the assumed location n is correct,
Equation (4.8) is justified.
X 0)= Py 0)+ B0, (0), (4.8)

where X, (6) is the power distribution of the sub-band frequency @ observed at the

particular look direction @ for a delay and sum beamformer. This is called an “observed
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profile.” P,,(0) is a “template profile” measured by white noise coming from the
candidate location n for the signal source. O, (0) is a “template profile” measured for the
noise source. The template profile for the noise source can be measured using a white
noise originating from the noise source before the experiment if the location of the noise
source is known a priori. Otherwise it should be measured from the actual noise by
averaging over noise segments during the experiment.

Profile Fitting determines each of the weight coefficients a,, and f,, for the
template profiles of a signal source and a noise source, so as to minimize the evaluation

function @, , defined by Equation (4.9):
max_6
D= [(X00)=a,, P,,0)- B, 0,0 do
min_6 _ (4.9)
We configure the delay and sum beamformer in the time domain, using Equation (4.10),
and the observed profile X, () is derived by using Equations (4.11) and (4.12):
s(t,0)=1(t)+r(t+0), (4.10)
Swr(6)=DFT[s(1,6)], 4.11)
Xy (0)= - 35,,7(0)- 5, (6)
Nr 7 , (4.12)
where /(¢) and r(¢) are the time domain observations of the left and right channels at the
t-th sample, and the look direction & is measured by the delay in the samples. 7T is the
time frame number and N7 is the total number of frames. Since the template profile
should contain only the directivity information, it is normalized by the power at each
sub-band as Equation (4.13):

N C) .
Pn,a) (9) — . |source—n
.[ X” (0 )| source=n do
min_6 . (4.13)

For speech enhancement, the decomposition using Equation (4.9) should be done in
each time frame, but for sound source localization, it should be done only once.
Therefore, X,,(0) 1s an averaged observation over a few seconds. As Profile Fitting does
not rely on onsets, test data can include non-speech frames before and after the

utterances.
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The coefficients a,, and pf,, can be determined by variation method with
non-negative conditions.

Once the coefficients are determined, then the residual @, , can be determined. With
Equation (4.14), we calculate the normalized residual @, as a function of n by dividing
the sub-band power and averaging over the £ sub-bands. Using Equation (4.15), the
location of the signal source is estimated as 7 so as to minimize the normalized

residual.

= 1 ¢n,w
Pn = Ez max 6

° [x, 0 de

min 6

(4.14)

n=arg min(&gn )
" : (4.15)

4.3.4. Reflector effect on profile

A profile contains ITD information as peak-shifts and IID information as a bias. Also,
diffusion or reflection of the target signal increases the bias of the profile. Therefore, it
should be noted that even though the desired reflected waves generated by the left and
right reflectors are completely identical, the bias of the profile still retains the reflection
cue, while the peak-shift might be zero in that case.

Figure 4.5 compares the template profile for an elevation angle of 30° with the one
for 0°. At the frequency of 3,375 Hz, the peak-shift and bias are observed in the profile

for 30°. They are caused by the reflected waves arriving with their own delays.
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Figure 4.6. Testing configuration for the preliminary experiment.

4.4. Experiments and Results

4.4.1. Preliminary experiment

In order to verify Profile Fitting with the designed reflectors works correctly, we
performed a preliminary experiment using a limited amount of data for vertical
localization in a sound proof chamber.

The recording parameters and the geometry are the same as in Section 4.2.2 for the
CSP analysis. In a soundproof chamber, four utterances about 5 seconds in length were
played back from each candidate location for a signal source. As a noise source, white
noise was played from a loudspeaker at an azimuth angle of 15°, a distance of 1 m, and
an elevation angle of 0° (Figure 4.6). The recorded noise was manually mixed with the
recorded signal, so that the SNR could be controlled.

Before the experiment, the template profiles for the signal sources and the noise
source were individually measured using white noise coming from each sound source

location.
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Figure 4.7. Resulting score for sound source localization by Profile Fitting. (*)
denotes a reference trial without using the template profile for the noise source.

Using Equations (4.16) and (4.17), a score p is introduced to define the relative
degrees of superiority using the second best (smallest) normalized residual as the base
value. Here, n° denotes the correct location. When the correct location has the
minimum value, it should be selected by Equation (4.15) and the score will have a
positive value. If the normalized residual is zero, the score becomes 100%. A positive
large score means it is estimated with high confidence. If the score decreases close to
zero, it means the chances increase that the second best candidate might be incorrectly
taken as a result of noise or some other influence. If the correct location does not have
the minimum value, then Equation (4.15) will fail to select the correct location, and the

score will have a negative value.

p _ 5% —5}10
D (4.16)
n= argmir{an )
n#n® ) (4.17)

On calculating the normalized residual in Equation (4.14), an averaging operation was
performed over the sub-band frequencies from 938 Hz to 7,453 Hz where the reflector

effect is most apparent.
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Figure 4.7 shows the experimental results. All elevations maintain large positive
scores in spite of SNR degradation. This means the correct signal location was
selected from the five candidates without being affected by noise, showing the
superiority of the approximate decomposition by Profile Fitting. On the other hand, the
reference experiment (marked * in Figure 4.7) without using the template profile for the

noise source failed in the noisy environment.

4.4.2. Experiments in a realistic environment

In order to evaluate the capability in more realistic conditions, we performed an
experiment using more utterances from more locations in a slightly reverberant meeting
room with realistic noise.

As shown in Figure 4.8, 21 locations were defined as a signal source location. They
are also candidate locations for the localization. They have 5 horizontal steps from -30°
to +30°, and 5 vertical steps from 0° to 60°. As a noise source, cafeteria noise in stereo
was played from two loudspeakers at azimuth angles of 30° and -30°, a distance of 2 m,
and an elevation angle of 0°. The recorded noise was manually mixed with the recorded
signal, so that the SNR could be controlled. The recording was done in our meeting
room whose reverberant time is about 0.22 sec.

Per location, a total of 108 utterances of personal names spoken by 6 male and 6
female speakers were played back. In order to evaluate the robustness, we projected an
imaginary grid around each candidate location as shown in Figure 4.9, and played back
almost same numbers of utterances from each grid point. Here, we categorize the
utterances by the offset error from the candidate location. Category A is for the
utterances from the exact candidate location. Category B is for the utterances whose
azimuth angle and elevation angle are correct but whose distance contains about +10%
error. Category C is for the utterances whose azimuth angle is correct but whose
elevation angle contains about +4° error or whose distance contains about +10% error.
Category D is for all the utterances that contain at least one of the errors in azimuth of
about +4°, elevation of about +4°, or distance of about £10%. It should be noted
Category B, Category C and Category D do not include Category A, and therefore the

Categories other than A involve offset errors in one or multiple dimensions.
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Figure 4.8. Testing configuration for the experiment in a realistic environment.

Category A

Category D -20 cm \\3 +4°

Figure 4.9. Category by the offset from the location.
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The sizes of the offset errors should not be too large with reference to the design
points and the neighboring candidate locations. Here, the offset errors in azimuth and
elevation are about a quarter of the angles between the candidate locations. The offset
error in distance is chosen as a simple fraction of the distance between the microphone
and the candidate locations, so that it will be near to the actual length of the offset errors
in azimuth and elevation.

For Profile Fitting, the template profile for the noise source was measured from the
actual noise for 1 sec just before each utterance. It should be noted that the template
does not contain any spectral information, but just records the directivity information as
it is normalized by a power at each sub-band.

Both for Profile Fitting and the conventional method, the sub-bands to be examined
were selected from 938 Hz to 7,453 Hz where the reflector effect is most apparent.

Figure 4.10 shows the success rates for the localization of 5 signal source locations in
the median plane out of 21 candidate locations. The SNR was 11 dB. Both Profile
Fitting and the conventional method (trained by the utterances in Category A) showed
high success rates for the utterances in Category A that have very little offset error from
the candidate locations. On the other hand, the success rates are significantly decreased
for the utterances in Category D that have much larger offset errors. Figure 4.10 also
shows the result of the conventional method trained using the utterances in Category D.
This improved the success rate for the utterances in Category D. In that case, the
probability density functions have broad distributions, as they are trained with large
offset errors associated with Category D. Therefore, that causes a significant loss of
accuracy for the utterances in Category A.

In order to evaluate the dependency on SNR, we also tried this localization without
adding noise. The SNR was 28 dB. Figure 4.11 shows the resulting success rate. It also
shows the result of the conventional method that was trained in a noisy environment (11
dB). In that case, the SNR was unmatched between the training and the localization.
The success rate of this unmatched case was worse than the matched cases shown in
Figure 4.10 (at 11 dB) and Figure 4.11 (at 28 dB). We conclude the conventional
method is dependent on the SNR when it is trained. Also, there is concern that the
conventional method is dependent on the noise color as well as the SNR, because the
probability density functions are trained for each sub-band. On the other hand, Profile

Fitting is less dependent on them, because it does not require any training in advance.
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Figure 4.10. Success rates for the localization of 5 signal source locations in the
median plane out of 21 candidate locations at the SNR of 11 dB.
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Figure 4.11. Success rates for the localization of 5 signal source locations in the
median plane out of 21 candidate locations at the SNR of 28 dB.
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Figure 4.12. Success rates for the localization of 21 signal source locations out
of 21 candidate locations at the SNR of 11 dB.
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Figure 4.13. Maps of the signal source locations and the estimated
locations for the utterances included in Categories A, B, and C (187
utterances), localizing 5 signal source locations in the median plane out of
21 candidate locations at the SNRs of 28 dB and 11 dB.

The conventional method was trained using the utterances in Category A
at the matched SNR. The area of the each bubble is proportional to the
number of estimations.

Using not only the 5 signal source locations in the median plane, but also using all of
the 21 signal source locations, Figure 4.12 shows the success rates resulting for the
localization out of 21 candidate locations. We see Profile Fitting outperformed the
conventional method in all categories. It should be noted that the conventional method
checked the utterances only around onsets where the SNR was locally high, both for
training and localization. Profile Fitting did not use this technique and still had an
advantage in the experimental results.

Figure 4.13 shows maps of the signal source locations and the estimated locations for

the utterances from the 5 signal source locations in the median plane in Categories A, B,
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and C. In the error cases, the locations estimated by Profile Fitting were closer to the
correct locations than the ones using the conventional method. This trend was still
observed when the SNR was reduced to 11 dB. In both methods, the azimuth estimation

Was very accurate.

4.5. Concluding Remarks

We have proposed a framework for sound source localization using Profile Fitting. This
can reduce the effect of noise by exploiting the approximate decomposition of signal
and noise. In Profile Fitting combined with reflectors, the process for horizontal
localization and the process for vertical localization can be consolidated into a single
process. Experiments showed this method can correctly provide a rough estimate of the
vertical location in the median plane even in a noisy environment. Profile Fitting
showed more robustness against SNR variations than the conventional method using
ITD and IID.
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5. Echo-Cancellation and Noise
Reduction by SSEC Method

5.1. Introduction

Automatic speech recognition is widely used in cars to input commands for car
navigation and hands-free telephone dialers. However, the current systems are not
sufficiently robust against noise. As most of the current systems are based on the
techniques of multi-conditional training and spectral subtraction [Bol79][BSM79], they
rely on the assumption that there is only a stationary cruising noise. Therefore, the
recognition rate is degraded when there are non-stationary noises such as those created
by road bumps or oncoming cars. The degradation is much more severe when there is
music or news coming from a radio or a CD player in the car.

Music and news are actually non-stationary noises. However, if they are coming
from a radio or a CD player in a car, we may have a chance to use an echo canceller,
because it is not technically difficult to rout the reference signals from such devices to
the recognition system.

Previous research reported that an echo canceller works well in a quiet environment.
However its performance is poor for low signal to noise ratios [BSNOO]. There has been
a lot of research on ways to improve the performance of echo cancellers along with
noise reduction [MV96][AFB96][DP97][SNH+03]. However, many of the target uses
were for teleconference and hands-free telephones, where auditory intelligibility has the
highest priority. Our objective is to find a solution for automatic speech recognition with
high performance echo cancellation and noise reduction. Our second objective is to
retain practical compatibility with the current acoustic model trained with stationary

cruising noise and spectral subtraction. In this chapter, we assume the cruising noise can
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be treated as stationary.

5.2. Conventional Methods

In order to improve the performance of an echo canceller in a noisy environment, the
background noise should be reduced before echo cancellation. If many microphones are
available, a beamformer can be used to reduce the noise before or at the same step as the
echo cancellation [DCN97][KFK04].

Since we assume a single microphone, we need to consider one-channel noise
reduction instead of using a beamformer approach. A Wiener Filter [LO79], MMSE
[EM84], and spectral subtraction are candidates for the noise reduction. For automatic
speech recognition, spectral subtraction is often used because of the computational cost
and the performance. As the output is not for humans, the annoying side effect known
as musical noise is acceptable. However, the problem for this application is that we
cannot place the noise reduction stage before the echo canceller because of the
nonlinearity in the echo path [BSNOO]. Therefore, the conventional combination is echo
cancellation first and noise reduction second, as shown in Figure 5.1.

The conventional time-domain echo-cancellers based on LMS rely on phase
correlation as well as magnitude correlation between the observed signal and the
reference signal. However the phase information is susceptible to noise. That’s one of
the reasons why it takes longer time in adaptation in noisy environment. On the other
hand, the echo canceller based on spectral subtraction does not rely on phase
information. Therefore, the adaptation will quickly converge with some trade off in
accuracy due to the lack of phase information. However, it should be noted that the
remaining echo can be further reduced by introducing an over-subtraction technique
with the echo canceller based on spectral subtraction.

If the echo canceller is implemented using spectral subtraction, the noise reduction
stage can be placed before or at the same step as the echo canceller, and we can expect
better performance. However, the question is how to estimate the stationary noise power
for the noise reduction under the influence of the echo. If the application is a telephone,
we can expect noise-only periods in which no one is speaking [Tak97]. However, we

cannot expect such a period in our application, because a car-radio or a car-CD
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Figure 5.1. Conventional combination of echo canceller and spectral subtraction.

produces sound continuously. Therefore, we propose a new method that estimates the
stationary noise power during the adaptation of the echo canceller using spectral
subtraction.

Dreiseitel et al. placed a time-domain echo canceller before the combination of noise
reduction and echo canceller in spectral subtraction form [DP97]. By preprocessing the
input using the echo canceller, the stationary noise is estimated more reliably at the
noise reduction stage. Our proposed method can also work with this type of
preprocessing for further improvement.

Since the reverberation in a car is longer than the processing frame, it degrades the
performance of frame-based echo cancellation using spectral subtraction. In order to
solve this problem, Sakauchi et al. introduced a second term, a scaled echo component
estimated in the previous frame [SHN+03]. However, their scaling factor should be
preset depending on the reverberation in the room. In contrast, our system does not
require any a priori knowledge about the room reverberation, because we extended the
echo cancellation to refer to the last several frames, and the factors can be determined
through the adaptation. The structure is similar to the taps of an adaptive filter in the
time domain. In this way, our echo canceller can be adapted to cancel the echoes

including the reverberations from past frames.
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5.3. Proposed Method (SSEC)

We propose a method named SSEC (Simultaneous adaptation of spectral Subtraction
and Echo Cancellation). A stationary noise component for spectral subtraction is
estimated through the adaptation of an echo canceller. Figure 5.2 shows a block diagram
of our proposed Method 1 (without preprocessing), and Figure 5.3 shows our proposed
Method 2 (with preprocessing). As the preprocessing stage is a standard N-LMS echo
canceller in the time domain, we describe our method after the preprocessor.

The echo canceller stage and the spectral subtraction stage are integrated into the

same stage. This estimates both the stationary noise power N, and the echo power

[0

O.(T). They are subtracted from the observed noise power X,,(7) with the subtraction
weights a; and ay, respectively. The compensated output Y,,(7) is written as Equation

(5.1).

Y,(T)=Xx,T)-e,-0,(T)-e-N,, (5.1)

[0

where 7T is a frame number. The index w is a bin number of the DFT corresponding to
the sub-band frequency, and the process described in this section should be performed
for each w.

In general, flooring is an essential technique for spectral subtraction. The floored output
Z(T) 1s given by Equations (5.2a) and (5.2b).

Z,(T)=Y,(T) if v,(I)=p8-N, , (5.2a)

z,(T)=p-N, if ¥,(T)<pB-N, . (5.2b)

where S is a flooring coefficient. a; and £ should be set to the same value with which
the acoustic model was trained. The value of a, can be larger than «; for
over-subtraction in order to cancel more of the echo component, which has a large
effect on the performance of automatic speech recognition. We introduce an
over-subtraction factor y as Equation (5.3).

o, =y« . (5.3)
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Next we describe how to estimate N_wand Qu(T). The value of Q,(7) is estimated as

the weighted sum of the reference signal power R,(7) for the present and the most
recent L frames so as to cope with reverberation that lasts longer than the processing

frame.

L-1

0,(T)=>w,(1)-R,(T-1). (5.4)

~

For convenience, N_wis formulated as a product of an arbitrary constant C and its
weight.

N,=W,(L)-C. (5.5)

[ [

Although we only consider the stationary cruising noise of a car, the stationary noise

power may fluctuate around the average in the frame-wise observation, so N, can be

estimated as an averaged value. Figure 5.4 shows the concept of the estimation.
Therefore, our goal is to estimate the non-negative adaptive weights W, (l) where /
ranges from O fo L. They should be set so as to minimize Equation (5.6) during

non-speech periods with the subtraction weights a; and a; set to 1.

o, = El{p, (1)F], (5.6)

where D, (7T) is the error signal as defined in Equation (5.7). E[ ] denotes the expectation

operator and we calculate it as the frame-wise average during non-speech periods.

w_(0)
Ww(l;—l) '
w. (L)

[0

The values of W,(l) can be determined from 0® /oW, (l ) = 0. This can be expressed

=X,(T)-[R,(T). - R,(T-(L-1), C] (5.7)

in a matrix and vectors as Equations (5.8) to (5.11).
C,=A,'B,. (5.8)
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I ;RM(T)Rw(T) o Y R(T-(L-1))-R,(T)
A= ;Rwa)-ze;,(r—u—l» e S RT—(L1) BT (L 1)
Y'R,(T)-C o MR, (T-(L-1))-C
w,(0)
B, = Ww(.L—l) _
w,(L)
COYRMM)

Co= ;Rw(T—(L:—l))-Xw(T) :

> C-Xx,(T)

T

The values of W,,(I) can be determined from Equation (5.12).

B =A '.C

[ [ [0

> C-R,(T)

T

ZC-RW(;"—(L—I)) :
' Yc.c

(_5.9)

(5.10)

(5.11)

(5.12)

Since this off-line form requires the inverse matrix, it has considerable computational

cost. By introducing the diagonal approximation for the matrix A, we can formulate

the adaptive weights W,(l) so as to be successively updated in each non-speech frame

using Equations (5.13a), (5.13b) and (5.14). The parameter 6 is an updating factor and

¢ 1s a constant for stability.

R,(T=1)-D,(T)

AW, (1)=6- ; if I<L.
) Y R(T—1)-R,(T-1)+¢ 1
T
AWw(I):H-géé—”gﬂa if I=0L.
T

)" +aw, (1).

[0}

This on-line form has a weak dependency on the constant C.
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Table 5.1. The signal-to-noise ratio of the data in the experiment. They are the
averaged values for all 24 subject speakers. Ngrise, Nmusic and Ngj denote the
cruising noise component, the music noise component and the total noise

respectively
(dB) Stationary |City Drv. [Highway
S/Ncruise 10.5 4.5 2.6
S/Nmusic 10.1 6.5 9.8
S/Nan 6.4 1.1 1.2
X (Observation)

A

Xoo=We * Bor+Neo

© :Observation plots
against Reference

WEstimated Stationary Noise
» Fw Reference)

Power

Figure 5.4. The concept how to estimate the averaged stationary noise power

Vw through the adaptation of W,,. (L is set to 1 for simplicity.)

5.4. Preliminary Experiment

Before evaluating the proposed method in automatic speech recognition, we first
checked that it can properly estimate the stationary noise power through the adaptation
of the echo canceller. We selected one male utterance from the test set for this trial. It

was recorded in an actual car driving on a highway, and manually mixed with the music
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sound recorded separately. As shown in Figure 5.5, our method was able to estimate the
stationary noise power in an acceptable way. Here, the actual stationary noise was
measured as the average of the cruising noise. If we estimated the stationary noise
power by the simple average of the observation regardless of the existence of the echo,
it would be very different from the actual values, as plotted with the “by Direct
Average” line in Figure 5.5. For the proposed methods, we see some deviation in the
rage of 1,600-2400 Hz, 3,500-4,000 Hz and 4,500-5,000 Hz. Our interpretation is that
the estimation error increased because the echo component is much larger than the
stationary noise in those range. In other words, the deviation is relatively small

compared to the echo power, which is why they are plotted with a logarithmic scale.

5.5. Experiment in Automatic Speech

Recognition

A microphone was installed on the visor in a car. The subject speakers were 12 females
and 12 males. Each speaker read 13 Japanese sentences for the digit recognition task
and for the command recognition task in a car at each of three speeds (stationary, city
driving, or highway speed). The total number of utterances was 936 for each test subject
over all of the tasks. They were recorded with a sampling frequency of 22 kHz. The
cruising noise in the recorded data was almost constant.

The music playing from the in-vehicle loud speakers was recorded separately by a
microphone, along with a reference signal. The music was up-tempo popular music with
a female vocalist. The in-vehicle loud speakers are stereo, but the music source was
monaural in this experiment. The recorded music was mixed with the recorded
utterances to generate the test data. The averaged SNRs are shown in Table 5.1. The
noise power and the signal power were measured by the average in the non-speech and
speech periods respectively in the recorded data.

The digit recognition task involves connected digits with no grammar constraints on
the length. Therefore, it is sensitive to insertion errors, mostly occurring in the

non-speech periods, and this allows measuring the amount of residual echo.
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Figure 5.5. Power plots for the actual stationary noise and the estimated
stationary noise under the influence of the echo. The proposed method
estimated the stationary noise using the off-line formula.

The command recognition task is a set of commands used in a car, such as “North
Up”, “Input Address”, etc. As the grammar only allows 1 command per utterance, we
do not have to worry about insertion errors. Therefore, this allows measuring the
amount of distortion of the speech (possibly caused by the echo canceller).

The acoustic model used for this automatic speech recognition was a speaker
independent model trained with various cruising noises including idling, city driving
and highway driving. The acoustic model was trained using spectral subtraction with the
subtraction weight set to 1.0. Since the training data was sampled at 11 kHz, the test
data was down-sampled before recognition. In this experiment, we did not use a
speech-silence detector for the automatic speech recognition and the complete

utterances were decoded in order to measure the front-end performance accurately.
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Figure 5.6. Word error rate using the proposed method 1 for various values of
the over-subtraction factor y and the length of the adaptive weights L, for the
digit recognition task.
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Figure 5.7. Word error rate using the proposed method 1 for various values of
the over-subtraction factor y and the length of the adaptive weights L, for the
command recognition task.

On the other hand, the performance of speech-silence detector is critically important
for the front-end processing including echo cancellation, spectral subtraction and the
proposed method. In this experiment, we used the oracle speech-silence information for
the front-end processing. This was prepared using the data without adding the music. In
order to get the most reliable speech-silence information, we installed two additional
microphones to do the speech-silence detection based on the coherence between the

microphone outputs [AM97].
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Figure 5.8. Word error rate using the proposed method 1 for various values of
the base subtraction weight a4 and the over-subtraction factor y for the echo
component, for the digit recognition task.
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Figure 5.9. Word error rate using the proposed method 1 for various values of
the base subtraction weight a4 and the over-subtraction factor y for the echo
component, for the command recognition task.

We measure the error rate with WER (Word Error Rate) defined in Equation (5.15),
because the evaluation involves lots of insertion words and deletion words with the digit

task.

number of substituted words)+ (number of inserted words)+ (number of deleted words) ( 5.15 )

WER = (
(number of all expected words)
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Table 5.2. Detailed word error rates for the conventional methods and the
proposed methods
Digit Task WER (%)

Stationary | City Drv. | Highway | Average

Case 1: SS only (reference without music) 0.5 0.6 1.1 0.8
Case 2: SS only 3.1 14.1 12.1 9.8
Case 3: Echo Canceller + SS 14 2.2 3.6 2.4
Case 4: Proposed Method 1 (L=5, a1=1.0, a2=2.0) 1.0 2.0 2.6 1.9

Case 5! Proposed Method 2 with Preprocessor
1.0 1.2 1.5 1.2

(L=5, a1=1.0, 02=2.0)

Command Task WER (%)

Stationary | City Drv. | Highway | Average

Case 1: SS only (reference without music) 2.6 1.0 3.5 2.4
Case 2: SS only 3.5 11.9 12.5 9.3
Case 3: Echo Canceller + SS 4.2 1.9 4.8 3.6
Case 4: Proposed Method 1 (=5, a1=1.0, az=2.0) 3.2 2.6 4.2 3.3

Case 5! Proposed Method 2 with Preprocessor
2.9 1.0 3.2 2.4
(L=5, a1=1.0, a2=2.0)

Figure 5.6 and Figure 5.7 show the resulting WERs depending on the various
over-subtraction factors y and the lengths of the adaptive weights L, for the proposed
Method 1. This used the on-line formula with the parameters Const=103,9 =0.1,
ande =10". The WERs are averaged values for the three speeds and the 24 subject
speakers. Based on the results, the over-subtraction of the echo improved the
recognition accuracy. The optimum factor was around 1.5 to 2.0. Also, introducing a
sufficient length of adaptive weights improved the recognition accuracy. In the
following experiment, we select y=2.0 and L=5 as the default setting.

Figure 5.8 and Figure 5.9 show the resulting WERs depending on the various
over-subtraction factors y and the base subtraction weight a,, for the proposed Method 1.

Based on the results, the optimum weight was around 1.0 to 1.5, which is close to the
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Table 5.3. Word error rates for component reduction only cases

Digit Task WER (%)
Stationary | City Drv. | Highway | Average

Case 4: Proposed Method 1 (Z=5, a1=1.0, a2=2.0) 1.0 2.0 2.6 1.9
Case 6: Proposed Method 1 --- stationary noise

7.6 20.8 19.6 16.0
reduction only (Z=5, a1=1.0, a2=0.0)
Case 7: Proposed Method 1 --- echo reduction

1.3 2.5 3.5 2.5
only (Z=5, a1 =0.0 , az =2.0)

Command Task WER (%)

Stationary | City Drv. | Highway | Average

Case 4: Proposed Method 1 (=5, a1=1.0, a2=2.0) 3.2 2.6 4.2 3.3
Case 6: Proposed Method 1 --- stationary noise

3.5 3.2 6.1 4.3
reduction only (Z=5, a1=1.0, a2=0.0)
Case 7: Proposed Method 1 --- echo reduction

4.2 4.5 4.8 4.5

only (Z=5, 01=0.0, a2=2.0)

value used for the acoustic model training. In the following experiment, we select
a;=1.0 as the default setting.

Table 5.2 shows performance comparisons with the conventional methods. Case 1 is
for reference. Music was NOT mixed into the test data. It was processed by
conventional spectral subtraction and decoded. Automatic speech recognition performs
very well for the stationary cruising noise. Case 2 and the following cases have music
mixed into the test data. Case 2 processed the test data only with conventional spectral
subtraction. Since there is no echo cancellation, the recognition performance was
severely degraded. Case 3 processed the test data by using the conventional
combination of echo cancellation and spectral subtraction as shown in Figure 5.1. The
echo canceller was N-LMS in the time domain with a tap length of 2,048. The
recognition performance was much improved from Case 2 as a result of the echo

canceller. Case 4 processed the test data using the proposed Method 1 with the
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parameters y=2 and L=5. L was selected so to be comparable with the tap length in Case
3. This shows performance superior to Case 3. Case 5 processed the test data by the
proposed Method 2 with the parameters y=2 and L=5. The tap length of the
preprocessing echo canceller was 512. The performance is improved in favor of the
preprocessing.

Table 5.3 shows the performance of the two additional cases in order to measure the
contributions of the proposed Method 1 to the stationary noise reduction and the echo
reduction separately. Case 6 reduces only the stationary noise component, and Case 7
reduces only the echo component, while the adaptation processes were the same as in
Case 4. Based on the results, the echo component reduction of the proposed method was
very effective in the digit task. Also, the stationary noise reduction of the proposed

method was effective in the command task.

5.6. Concluding Remarks

In order to reduce both background noise and echo effectively for automatic speech
recognition in a car, we proposed a new method that adapts echo cancellation and
spectral subtraction simultaneously. The stationary noise component is estimated
through the adaptation of an echo canceller. As the echo canceller is also implemented
using spectral subtraction, the echo component can be further reduced by introducing
over-subtraction. We can still use the existing acoustic model trained only with the
background noises and spectral subtraction, since we kept the subtraction weight the
same as for the stationary noise and introduced over-subtraction only for the echo. The
performance can be improved even more by introducing a shot-tap echo cancellation as
a preprocessor. In our experiment, this method showed superior recognition accuracy

compared to the conventional combination of echo cancellation and spectral subtraction.
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6. Local Peak Enhancement

6.1. Introduction

The performance of automatic speech recognition in automobiles is affected by various
noises. Beamformer [SSL+03] technology reduces directional noise such as voices from
passengers and sounds coming from a car radio, TV, or CD player. However, it does not
have sufficient signal recovery in very low SNR situations with ambient noise (such as
“Fan high” or “Window open”) unless the size of the beamformer is very large. For
single channel signal processing, existing noise reduction algorithms such as a Wiener
Filter [ETS02] or Spectral Subtraction (SS) [Bol79] are known to improve the accuracy,
but improvements are still needed in those situations. Therefore, different approaches
beyond reducing noise should be combined with existing noise reduction algorithms.

One of the candidate approaches involves enhancements of the harmonic structures
in human voices. Comb filtering [TO98] and its variants [GR01] were proposed and
showed good performance, especially in mixed speech cases. However, they are rarely
integrated into commercial ASR products, and especially not for automobiles. This is
because designing a comb filter relies on the accurate estimation of FO (the fundamental
frequency or pitch) and the accurate discrimination between voiced and unvoiced
speech. It was reported that errors at this stage have detrimental effects on the
performance [NIZ03]. Szymanski et al. proposed Comb Filter Decomposition [SBOS5]
that does not require FO estimation, but their experiment was limited to white Gaussian
noise.

Another candidate would use a matching algorithm to put larger weights on
frequencies having larger spectral powers as the decoder calculates likelithoods
[SS80][NSI+04]. This is based on the assumption that frequencies having more spectral

power are noise robust and most likely to be the formant frequencies in voiced speech

_69_



frames. Huang et al. enhanced the logic for the MFCC domain [HHS+06], but this
involved adding autocorrelation into their decoding process.

In this chapter, we propose a novel approach for the speech enhancement. It uses a
filter designed to enhance the harmonic structure which is observed as local peaks at
regular distances in the spectrum domain. It does not depend on FO or voiced/unvoiced
detection. Since it works as a front-end for both training and decoding, it does not
require any changes in existing decoders. This new method will be referred to as LPE

(Local Peak Enhancement) in the following sections.

6.2. Proposed Method (LPE)

Figure 6.1 shows the whole process of LPE and sample outputs at each step for both a
voiced frame and a noise frame. The process is the same for entire frames, but the
generated filter looks very different depending on whether or not the frame is voiced
speech, as shown in the figure.

In the first step, an observed spectrum y,( j) is converted to a log power spectrum
Y, (/).

Y, (j)=logly, () (6.1)
where, the index 7 is a frame number and j is the bin number of the DFT corresponding
to the subband frequency. The process described in this section should be performed for
each T.

Then the log power spectrum is converted to a cepstrum C,(i)) by using D(i, /), a

DCT (Discrete Cosine Transformation) matrix.

Cr(0)= 2D /)Y, (/). (6.2)

The cepstra represent the curvatures of the log power spectra. The lower cepstra
correspond to long oscillations, and the upper cepstra correspond to short oscillations.
We need only the medium oscillations. The range of the cepstra is chosen to cover
possible harmonic structures in the human voice. Therefore the lower and the upper
cepstra should be filtered out.

R Coli) ifi<l >
CT(i):{g T(l) i< lower or 1> upper

6.3
C,(i) otherwise ’ (63)
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Figure 6.1. Process of LPE.

_71_



In this experiments, /=40 and I,,,,~160 for a 16 kHz sampling frequency with an
FFT length of 512 samples. This corresponds to an FO range from 100 Hz to 400 Hz for
the human voice, with & being close to zero. We set it to 107,

The filtered cepstrum C, (i ) is converted back to a log power spectrum by using an
I-DCT.

W, (j)=2. D7 (.)€, ). (6:4)

Then it is converted back to a linear power spectrum, and it is normalized so that the

average is 1.0.
wy ()= exp; (/). (6.5)

5, () = wy (/) gt 6.6)
> v (k)
k
where Ny, 1s the number of bins used in the FFT. The filter is obtained as w; ( j).
Finally, the enhanced output z,(j) is obtained as
2, ()=, () v: (). (6.7)
In order to reduce the amount of computation, the steps of the Equations (6.2), (6.3), and

(6.4) can be combined into a single step using the pre-calculated matrix 4 as follows.

0 ifi#j
A, j)=1¢ ifi=jand (i<l or i>I ), (6.8)
1 otherwise
A=D"AD. (6.9
W, =AY, . (6.10)

As shown in Figure 6.1, the filter for LPE is derived directly from the observed
spectrum. Therefore, FO estimation is not required. For a noise frame or an unvoiced
speech frame, it will be designed to be almost flat. This means LPE does almost nothing
to such frames, and therefore, LPE does not require voiced/unvoiced detection.

For voiced speech frames, the LPE filter is designed to enhance the harmonic
structures in the observed spectrum. Unlike a comb filter, the LPE filter is not uniform
over all frequencies. It is more focused on the frequencies where harmonic structures
are observed in the input spectrum. Therefore the acoustic model should be retrained

with LPE for automatic speech recognition.
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(d) Fan noise overlapped at SNR 0 dB and processed by LPE after SS.

Figure 6.2. Spectrums of vowel /u/ recorded in a stationary car with and
without fan noise overlapping at the specified SNR. The spectrum
envelope is plotted with Mel-Filtering.

Figure 6.2 shows how a spectrum is degraded by a noise. In Figure 6.2(a), the
original clean spectrum shows three formants around 600 Hz, 1200 Hz, and 3500 Hz.
However, in Figure 6.2(b), they are less conspicuous, and the spectrum contour is close
to flat. In contrast, LPE retains more of the characteristics of the formants, as shown in

Figure 6.2(c). The combination of SS and LPE retains even more, as shown in Figure
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6.2(d). An advantage of LPE is that voiced speech immersed in heavy noise should be
more distinct and distinguishable for decoding.

Harmonic structures are conspicuous around frequencies having larger spectral
powers in the voiced speech frames, and they are most likely to be formant frequencies.
Therefore, this approach inherently involves formant enhancement as well as harmonic
enhancement, under the assumption that the noise has a broad spectrum and the

harmonic structure is not locally destroyed by the noise.

6.3. Experiments

6.3.1. Testing data

We used CENSREC-3, an evaluation framework for isolated Japanese word recognition
in actual moving-automobile environments. This data was collected by IPSJ, and is
widely used to evaluate noise reduction algorithms [FNT+05]. It has speech data both
for training and testing for automatic speech recognition using matched acoustic
models.

The test data in the database was recorded under 16 environmental conditions using
combinations of three vehicle speeds and six kinds of in-car environments as shown in
Table 6.1. A total of 14,216 utterances spoken by 18 speakers (8 males and 10 females)
were recorded at a 16 kHz sampling frequency. The performance is measured with word
accuracy as CENSREC-3 defines.

For training, each driver’s speech saying phonetically balanced sentences was
recorded under two conditions: while idling and while driving on a city street in a
normal in-car environment. A total of 14,050 utterances spoken by 293 drivers (202
males and 91 females) were recorded with a close-talking microphone and a hands-free
microphone.

In this experiment, we used only hands-free microphone data for both training and
testing. The acoustic models were trained with both idling data and driving data for the
front-end processing being tested. This corresponds to Condition 3 as defined in

CENSREC-3. The evaluation category is zero, which means no changes at the backend.
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Figure 6.3. FO output by Pitch command in SPTK. For unvoiced frames, SPTK
outputs zero. The test data was prepared by overlapping noise at different
SNRs.

6.3.2. Conventional methods

Comb-filtering needs FO estimation and voiced/unvoiced detection. We used the “Pitch
command” in SPTK-3.0 [SPTK] to obtain this information. We used a low-end
frequency of 100 Hz and an upper frequency limit of 400 Hz, so to be compatible with
LPE experiment. The voiced/unvoiced threshold was empirically set to 7.0, because it

gave us a better result than the SPTK default value. Figure 6.3 shows an example of FO
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information by SPTK. We see many outliers in the low SNR conditions. Also, the
vowels in the last part of the sentence were not recognized as voiced sounds. Based on
the FO and voiced/unvoiced information, the comb filter was designed in the spectrum
domain for each frame as in Equation (6.11), and the comb-filtering output was obtained

using Equation (6.12).

1.0 if T isunvoiced frame

Wcombr(j): 1.0 if T isvoiced frame and j is harmonic bin, (6.11)
0.01 otherwise

z; (1) =y, () Weomb,(j). (6.12)

For the combination of LPE and existing noise reduction algorithms, SS and ETSI
Advanced Front-End (ES202-050) [ETS02] were introduced in the evaluations. For SS
processing, the first 0.1 second of each utterance was assumed to be a non-speech
segment where the noise spectrum N(j)could be estimated. The SS output was
obtained as Equation (6.13).

(- {yf(j)—a-_N(j) ifyf(jh)—a-N(j)zﬂ-N(j), 6.13)

B-N(j) otherwise

In this experiment, the subtraction weight o was set to 1.0, and the flooring

coefficient [ wassetto 0.1.

6.3.3. Results of standalone test

Table 6.1 shows the resulting word accuracies for various environmental conditions.
The baseline is the evaluation without using any speech enhancement or noise reduction
algorithms. Table 6.1 also shows the estimated SNRs of the test data using the VAD
(Voice Activity Detection) information came from the ETSI ES202-050. Note that the
accuracy of SNR depends on the VAD information. Table 6.2 shows the estimated SNRs
of the training data. We see CENSREC-3 trains an acoustic model at relatively better
SNRs than for the test data. Therefore, speech enhancement and noise reduction are

expected to help the test performance.
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Table 6.1. Word accuracy and estimated SNRs according to the environmental
conditions. SNR was calculated for the baseline data after a 250 Hz high-pass

filtering
CENSREC-3
Word Accuracy (%
(Condition 3) SNR | Base | Comb
(dB) | Line | Filter | LPE
Normal 162 1 99.7 | 98.8 | 99.7
Hazard on 153 1 98.7 | 953 | 96.8
. Audio off |Fan low 113 1946 | 87.7 | 94.8
Idling .
Fan high 6.2 | 53.4 | 55.0 | 60.3
Window open] 10.5 | 90.0 | 85.4 | 92.7
Normal 10.9 1 99.3 | 96.6 | 98.7
. Fan low 9.7 | 95.1 | 91.8 | 94.7
SII;ZZG Audio off | high 6.7 | 627 | 662 | 69.1
Window open] 9.3 | 66.2 | 70.6 | 74.3
Audio on 6.7 79.0 74.7 61.6
Normal 7.5 1 95.0 | 943 | 96.2
. . Fan low 7.1 1 89.0 | 86.7 | 89.7
;Lge}; Audio off | high 6.1 | 582 | 62.1 | 63.6
Window open] 7.2 | 22.2 | 35.8 | 40.4
Audio on 39 1793 ] 69.0 | 66.6
Average (ALL) 789 | 77.6 | 78.4
Average (Audio off) 78.8 | 78.9 | 82.4
Average (Audio on) 79.9 | 72.3 | 61.5
Average (Fan high) 58.1 | 61.1 | 64.3
Average (Window open) 59.5 |1 63.9 | 69.1

LPE enhances the local peaks considered to be harmonic structures. Therefore, a
drawback is expected with LPE when the background noise contains music or speech
from audio devices such as a radio, TV, or CD player, because the filter is designed to
enhance that audio, too. This is a known restriction of LPE. Comb filtering shares this
problem, and a multi-pitch tracker was proposed to address it [WWBO02]. In this chapter,
we accept this restriction and we focus only on the results of the “Audio off” cases. The
restriction should not matter with current car navigation systems, because most of them
are designed to disable audio on pushing a talk button. Also, we can expect an echo

canceller to eliminate audio components before processing by LPE.
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Figure 6.4. Combinations of LPE and noise reduction algorithms.

For the average “Audio off” case, LPE outperformed the baseline by 17.0% in error
reduction. Most of the improvement was gained in very noisy conditions of “Fan high”
and “Window open” conditions with error reductions of 14.8% and 23.7%, respectively.
An advantage of LPE is that voiced speech immersed in heavy noise should be more
distinct and distinguishable for decoding. Comb-filtering also improved the accuracy in
these conditions. However, the improvement was smaller than LPE.

In relatively clean conditions such as “Normal” or “Fan low” at “Idling” or “Low
speed”, the accuracy of LPE was almost the same or slightly degraded from the baseline.
However, the degree of loss was small enough for practical use. In contrast,
comb-filtering shows noticeable degradation in these conditions, possibly caused by

inaccurate FO estimation and errors in the voiced/unvoiced detection.
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Table 6.2. Estimated SNRs of CENSREC-3 training data. SNR was calculated
for the baseline data after a 250 Hz high-pass filter

Training Data SNR (dB)
Idling 21.1
Driving 18.7

Table 6.3. Word accuracy with existing noise reduction methods and the
combinations of LPE

CENSREC-3
Word Accuracy (%)
(Condition 3) LPE +| SS + LPE +|ETSI H

SS SS LPE | ETSI | ETSI | LPE
Normal 99.8 [ 99.6 | 99.0 ]100.0 | 99.8 |100.0

Hazard on 96.8 [ 96.9 | 96.7 ] 98.1 | 98.1 | 98.6

Idling Audio off |Fan low 952 [ 957 1953 199.2 |199.6 | 99.7
Fan high 58.1 | 65.7 | 67.6 | 85.3 | 89.9 | 88.9

Window open| 90.4 [ 94.1 | 93.8 ] 97.2 | 98.2 | 98.0

Audio on 74.8 | 57.0 | 61.4 | 89.5 | 77.7 | 82.6

Normal 98.4 [ 97.8 | 97.5 1 99.7 | 98.6 | 99.7

. Fan low 946 | 944 | 942 197.8 | 97.5 | 98.7

S];)zzi Audio off | high 669 | 71.1 | 743 | 87.9 | 89.5 | 915
Window open| 72.4 | 76.7 | 78.5 | 87.0 | 89.6 | 88.7

Audio on 79.5 [ 62.1 | 62.8 ] 90.8 | 81.3 | 87.6

Normal 97.8 [ 953 | 959 ] 98.1 | 97.2 | 98.8

: . Fan low 91.7 [ 91.9 | 91.6 ] 96.7 | 94.8 | 97.6
;g; Audiooff | high 613 | 683 | 69.6 | 88.4 | 89.1 | 88.1
Window open| 40.1 | 442 | 454 ] 65.0 | 694 | 66.7

Audio on 843 | 674 | 69.1 | 92.8 | 84.0 | 89.7
Average (ALL) 81.3 | 79.8 | 80.7 | 92.1 | 90.9 | 92.1

Average (Audio off) 81.8 | 84.0 | 84.6 | 92.3 | 93.2 | 935
Average (Audio on) 79.5 [ 62.2 | 644 1 91.0 | 81.0 | 86.6
Average (Fan high) 62.1 [ 684 | 70.5 | 87.2 | 89.5 | 89.5
Average (Window open) 67.6 | 71.7 | 72.6 | 83.1 | 85.7 | 84.5
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6.3.4. Results of combination test

LPE can be used in combination with existing noise reduction algorithms. In Table 6.3,
SS and ETSI ES202-050 were introduced in the evaluations. Figure 6.5 shows the
average word accuracies in combined “Audio off” cases.

As shown in Figure 6.4, “LPE+SS” means LPE pre-processes the input of SS, and
“SS+LPE” means LPE post-processes the output of SS. Since ETSI ES202-050 splits
the 16 kHz input into a less-than-8-kHz part and an upper-8-kHz part, “ETSI+LPE”
applied LPE only to the less-than-8-kHz part of the ETSI ES202-050 output.

The “SS+LPE” combination outperformed SS or LPE alone, as well as the baseline. It
reduced the average error rate for the “Audio off” case by 27.3% from the baseline.
Likewise, the “ETSI+LPE” combination showed the best performance, reducing the
error rate by 69.2%.

6.4. Concluding Remarks

We are proposing a new approach to speech enhancement to improve automatic speech
recognition in very noisy conditions. It generates a filter to enhance the harmonic
structure observed in the input spectrum, without relying on FO estimation and
voiced/unvoiced detection. Experiments using automatic speech recognition showed
this method significantly improved the accuracy in very noisy conditions such as “Fan
high” or “Window open.” However, it showed some drawbacks in “Audio on” cases.
This method can be combined with existing noise reduction algorithms such as SS and
ETSI ES202-050 for further improvements.
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Figure 6.5. Averaged word accuracy of “Audio off” cases for the combinations of
noise reduction method and LPE.
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7. Conclusion

7.1. Thesis Summary

To increase the applications of ASR in the real world, improved robustness against
noise is a key. For better noise reduction, we may need to consider such questions as
“What is the definition of noise?” Someone may say “Any undesired signal is noise.”
Yet that begs the question of how can we determine whether a signal is desired or
undesired? In this dissertation, features such as the direction of a sound, correlations to
already known reference signals, constancy, or harmonic structure are used as cues to
determine whether some sound is noise or signal, depending on the assumed noise
characteristics. Using these traits, three novel approaches are proposed to perform noise
reduction or speech enhancement.

In Chapter 3, a new microphone array technology named Profile Fitting (PF) is
proposed. It focuses on the directivity of arriving sounds. The directivity is measured
as a distribution profile. PF decomposes an observed profile into certain known
profiles so as to extract only the target signal. Experiments in a non-reverberant
environment with a dictation system configured with 2 microphones showed PF
reduced error rate by more than 20% from the best results of the conventional
beamformers (2-ch Adaptive SS). In a realistic environment, the extent of the
improvement was 11%.

In Chapter 4, PF is further discussed in an application of sound source localization. It
is shown that PF is noise robust and the concept of profiles allows extended sound
source localization in combination with sound reflectors.

In Chapter 5, a new echo canceller named SSEC (Simultaneous adaptation of
spectral Subtraction and Echo Cancellation) is proposed. In automobiles, sound from

audio devices may be overlapping with the speech signal. In the echo canceller
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Table 7.1. Coverage of noise variations in automobiles and the current
achievement levels in subjective views

Cruising | Fan | Radio, | Passenger | Door | Road | Outside Current
noise Navi, voice slam, | bump | events achievement
CD Wiper levels
e Acceptable
PF \ \ N, v (\/) accuracy
e Need some
improvement
to work in
real-time
e Satisfactory
SSEC l V V accuracy

e Can work
in real-time

e Acceptable

LPE v v accuracy

e Can work
in real-time

Acoustic N N () (V)

model

framework, such sources are treated as echos to be cancelled. However, conventional
echo cancellers do not perform well in noisy environments such as moving cars. SSEC
solves this difficulty by simultaneous adaptation of echo cancellation and spectral
subtraction. This assumes that cruising noise can be treated as stationary. In the
experiment, SSEC showed superior recognition accuracy compared to the conventional
combination of echo cancellation and spectral subtraction.

In Chapter 6, a new speech enhancement method named Local Peak Enhancement
(LPE) is proposed. The objective of LPE is to retrieve a voiced speech signal immersed
in broadband noise with a very low SNR, such as occurs in a “window open” or “fan
high” situation in a moving car. It uses the harmonic structure in the human voice and
assumes that the noise does not contain the same structure. Unlike a comb filter, LPE
does not require pitch estimation or voiced/unvoiced detection. In the “Audio off” case,
LPE outperformed the baseline by 17.0% in error reduction, and it showed further
improvements in combination with existing noise reduction methods.

Table 7.1 summarizes the coverage of noise variation in automobiles with the above

three methods. It also indicates over-all achievement measures at the current technology
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levels, from my subjective view. The coverage is almost satisfactory, but they still
require some improvement in accuracy or speed. As the current PF formulation requires
intensive computation, it is somewhat heavy to run it in real-time on many of the
current embedded devices. It may require some improvement in the implementation to
speed up the whole process, or more powerful processors that possibly appear in the
near future. LPE improved ASR accuracy in “window open” or “fan high” situation in a
moving car, but the accuracy needs to be further improved up to around 90% to be

acceptable for many of the users.

7.2. Future Research

This dissertation proposed three novel approaches for noise reduction and speech
enhancement to improve the accuracy in automatic speech recognition. They are
designed to work in specific configurations and with specific types of noise. In other
words, they have their own limitations and they are not universal solutions for every
situation as shown in Table 7.2.

PF can reduce both directional and ambient (non-directional) noise. It supports
non-stationary noise including music and human speech. However, the major
drawbacks of this method are the requirement for multiple microphones and the
availability of pre-measured template profiles. Also, the location of noise source must
be different from the signal source.

SSEC can reduce any kind of noise whose reference signal is available. That can be
non-stationary noise including music and human speech. The location of the noise
source does not matter. However, the availability of reference signals is the critical
requirement, which is sometimes not satisfied in actual situations.

LPE can enhance speech signals degraded to very low SNRs. It does not require
multiple microphones or reference signals. However, LPE does not allow harmonic
structure in noise and the spectrum of the noise need to be broad. This means the noise

cannot be music or human speech.
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Table 7.2. Noise reduction capabilities and requirements of the proposed methods

Noise reduction capabilities Requirements
Work with Work with Multiple Reference signal
non-stationary noise? | harmonic noise? microphones required?
required?

PF Yes Yes Yes No
SSEC Yes Yes No Yes

(No for ambient noise)
LPE Yes No No No

i)

Profe Fitting SSEC LPE —

Y

\ 4

i)

5

Uy

zz;%fle Fitting SSEC [—

A 4

w1l

Figure 7.1. Possible combinations of the proposed methods.
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Therefore, some new methods were desired, which can reduce any kind of noise
including music and human speech without using multiple microphones or reference
signals. There are already several research projects with these goals
[ASO1][KHO3][FNO5]. However, they still more improvements for practical
applications in computational cost and accuracy.

Another approach would be a combination of the three proposed methods. Figure 7.1
shows some possible combinations of the methods. In automobiles, PF is unable to
reduce guidance messages from the car navigation system, which are broadcasted from
a loudspeaker on the driver’s side, then SSEC successively processes the output to
reduce it. LPE may be introduced to enhance the speech output, under the assumption
that remaining noise does not contain harmonic structure.

This dissertation only discussed the noise robustness of automatic speech recognition.
However, from the viewpoint of human interface systems, we may also need to consider
two major capabilities for the near future, “Always Listening” and “Barge-In.” “Always
Listening” would allow us to talk to a system without pushing a talk button. A
“Barge-In” system would allow us to initiate utterances before the completion of system
messages. Both of these are essential capabilities for natural man-machine interactions,
especially in robot applications. They require a critical level of noise reduction
technology, as well as speech command detection technology. I will continue my
research on noise reduction for automatic speech recognition, focusing on ways to solve

these problems.

7.3. Future Applications

Improved levels of noise reduction will make various advanced ASR applications a
reality.

In automobiles, speech will become the main interface to input complicated
information. Even in a very noisy situation such as an open car cruising at high speed,
the driver’s natural phrases will be correctly transcribed and interpreted for the desired
actions. Since the supported vocabulary will be very large, the recognized words can
even be used for Internet searches as with a personal computer. The system will be able

to search for music titles and facilities information and the returned information will be
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sent to the car’s audio and navigation systems. The passengers and car audio do not
have to be silent when the driver initiates his/her utterance. Of course such systems will
not need any talk button, so that signal for silence will be gone. The driver can change
settings of auxiliary machines or retrieve information interactively as the dialog system
asks for the missing information needed to complete actions. In such interactions, the
driver will not have to wait for the completion of each of the dialog system’s messages,
because the system will support a Barge-In mode.

Robots will have similar capabilities. However, they will need more robustness than
automobiles. For example, people will be able to talk at robots from any direction from
up to several meters distance even in very noisy rooms such as convention halls,
factories, or living rooms with noisy TVs.

Advances in noise robustness will also support military uses of ASR systems. There
are already needs for translators supporting local languages.

Currently, manufacturing industries are threatened by losing the skills of older and
experienced workers before those skills are transmitted to the next generation.
Noise-robust ASR will help address this situation by storing the skills within
manufacturing machines so that new comers can retrieve them via voice.

There is even an ambitious idea of a personal life recorder, a portable device that will
record every sound the wearer hears for 24 hours a day. Since people cannot use 24
hours to check the recorded content of each recorded 24 hours, noise robust ASR will be

indispensable in the future to analyze and search such voluminous recordings.
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Appendix

Abbreviation List

ABF
AL
AM
ASR
BSS
CDCN
CER
CMS
CSJ
CSP
DS
EM
ETSI
GJ
GMM
HMM
ICA
1D
ITD
LM
LMS
LPE
MFCC

Adaptive Beam Former

Always Listening

Acoustic Model

Automatic Speech Recognition

Blind Signal Separation

Codeword Dependent Cepstral Normalization
Character Error Rate

Cepstrum Mean Subtraction

Corpus of Spontaneous Japanese
Cross—power Spectrum Phase

Delay and Sum

Expectation Maximization

European Telecommunications Standards Institute
Griffiths—Jim

Gaussian Mixture Model

Hidden Markov Model

Independent Component Analysis
Inter—channel sound Intensity Differences
Inter—channel Time Differences

Language Model

Least Mean Square

Local Peak Enhancement

Mel Frequency Cepstrum Coefficient
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MLLR Maximum Likelihood Liner Regression

MMSE Minimum Mean Square Error

MUSIC Multiple Signal Classification method
MV Minimum Variance

PF Profile Fitting

PMC Parallel Model Combination

PTA Push To Activate

PTT Push To Talk

RLS Recursive Least Squares

SAT Speaker Adaptive Training

SMT Smoothing Method of Time direction
SNR Signal to Noise Ratio

SS Spectral Subtraction

SSA Spatial Subtraction Array

SSEC Simultaneous adaptation of spectral Subtraction and Echo Cancellation
VAD Voice Activity Detection

VTLN Vocal Tract Length Normalization
WER Word Error Rate
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