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Noise Reduction Front-End for Robust Speech Recognition 

Using Multi-Channel Signals and Harmonic Structures∗∗∗∗ 

 

Osamu Ichikawa 
 
 
 

Abstract 
 
In general, automatic speech recognition (ASR) is sensitive to ambient noise. Therefore, 
the original commercial ASR products used close-talk microphones. Now many ASR 
products are equipped with far-field microphones, relying on noise-reducing front-ends 
and multi-style training in their acoustic models. Typical examples are car navigation 
systems and consumer electronic devices. However, most of them assume moderate and 
stationary noise sources and limited vocabularies of several hundreds words. Their noise 
robustness is still inadequate for many tasks. 

In our daily life, we encounter a large variety of noises. For example, in automobiles, 
there are stationary noises such as cruising noises and fan noises, and non-stationary 
noises such as passengers’ voices, radios or other audio devices, squeaking windshield 
wipers, or the sounds of passing traffic. Also, the mix of noises and signals will change, 
even with relatively stable noise sources such as cruising noise, resulting in fluctuations 
of the SNR that impact automatic speech recognition. 

In this dissertation, three novel methods are proposed and evaluated to cope with 
variations in the noise. The first method is a new microphone array technology called 
Profile Fitting (PF) to cope with non-stationary noise using directional information. This 
method focuses on a profile of the shape of the power distribution according to the 
beamforming direction. An observed profile can be decomposed into known template 
profiles for directional sound sources and a non-directional background sound source. 
Evaluations confirmed this method significantly reduced the error rate in automatic 
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speech recognition. 
PF can also be used for sound source localization. The sound source location (or 

direction) is essential information for beamformers unless Blind Signal Separation 
(BSS) is used for signal separation. Conventionally, localization methods such as 
MUSIC and CSP are used in addition to non-BSS beamformers. However, PF can 
integrate localization and signal separation into a single process. Furthermore, PF can 
extend the localization capability for a combination of sound reflectors, because the 
“profile” introduced by PF contains all of the localization cues such as reflections and 
diffusion effects as well as inter-channel time differences (ITD), and inter-channel 
sound intensity differences (IID). Experiments show this method combined with sound 
reflectors can provide a rough estimate of a vertical location even in a noisy 
environment, which was a difficult task for conventional microphone array technologies 
using two microphones. 

The second method is a new echo cancellation technology named SSEC 
(Simultaneous adaptation of spectral Subtraction and Echo Cancellation) to cope with 
non-stationary noises such as music or human voices coming from a radio, 
car-navigation system, or other audio device. It uses reference signals from those 
devices to cancel echo components in the observed signals. Most of the conventional 
echo cancellers are based on time domain LMS, which requires heavy computations and 
suffers from performance degradation in high ambient noise environments. To avoid 
these difficulties, echo cancellation can be implemented using spectral subtraction. 
However, in automobiles, there is a practical problem of how to estimate the cruising 
noise while music is playing continuously. SSEC solves this problem by estimating the 
ambient noise component and the echo canceller’s coefficients simultaneously under the 
assumption that ambient noises such as cruising noises and fan noises are relatively 
constant in automobiles. Experiments show SSEC significantly reduced the errors in 
automatic speech recognition compared with the conventional combination of an echo 
canceller and spectral subtraction. 

The third method is a new speech enhancement method exploiting the harmonic 
structures observed in human voices. This is designed to improve the accuracy of 
automatic speech recognition in very low SNR situations such as high-speed cruising 
with an open window or a noisy fan. In such situations, speech signals are often buried 
in broadband noise and the accuracy of automatic speech recognition is greatly 
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degraded. 
Microphone array technology can improve the output SNR. However, when adaptive 

beamformer is configured with small number of microphones and the noise source is 
non-directional (i.e. not from a single point), such as cruising noise, then the degree of 
improvement is very limited. Therefore, a different approach using harmonic structure 
was investigated to retrieve the speech information buried in the broadband noise. A 
new method called LPE (Local Peak Enhancement) was devised. Most of the 
conventional methods are based on comb filtering, which depends on accurate pitch 
frequency and reliable voiced/unvoiced detection. However, the detection is not 
accurate enough in very low SNR situations. LPE does not depend on this, because it 
designs a filter for speech enhancement directly from the observed spectrum. 
Experiments using automatic speech recognition show that LPE significantly improves 
the accuracy in very noisy conditions such as a noisy fan or an open window. They also 
confirmed that LPE can be combined with existing noise reduction algorithms such as 
SS and Wiener Filtering for further improvements. 
 
Keywords: 
automatic speech recognition, beamformer, acoustic echo canceller, harmonics, ITD, 
IID, microphone array, noise reduction, sound reflector, sound source localization, 
spectral subtraction, speech enhancement 
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一般に音声認識は背景雑音の影響を受けやすい。そのため、音声認識が初めて実

用化された当時は、音声の入力手段として接話マイクロフォンを利用するのが一般的

であった。現在では、雑音除去フロントエンドと音響モデルのマルチスタイル学習の適

用により、カーナビゲーションシステムや家庭用電気製品など遠隔マイクロフォンを利

用した実用製品が数多く市販されるようになった。しかしながら、そのほとんどが中程

度のレベルの定常雑音と数百単語の語彙サイズの単語認識を前提としており、十分な

耐雑音性を備えているとは、言えないのが現状である。 

日常生活において経験する雑音は、多種多様である。例えば、自動車内では、ほ

ぼ定常と考えられる走行雑音や空調騒音の他に、助手席や後部座席の同乗者からの

発声、ラジオなどオーディオ機器からの再生音、ワイパー動作音、他車通過音などの

非定常雑音が存在する。また、走行雑音についても、低速・窓閉め走行などの比較的

高い SN 比を確保できるケースと、高速・窓開け走行など、非常に低い SN 比のケース

では、音声認識に与える影響はかなり異なる。 

本論文では、それら多様な雑音に対処するために、３つの手法を提案・検証する。1

つ目の手法は、プロファイルフィッティング(PF)と名付けた新しいマイクロフォンアレイ

の技術である。音源方向性を利用することにより、非定常雑音に対処する。到来する

音声の角度別パワー分布（観測プロファイル）に着目し、これを既知のテンプレートプ

ロファイルに成分分解することにより、目的方向の信号成分を抽出するものである。実

験によれば、この方式を音声認識のための雑音除去フロントエンドとして用いることに

より、従来技術に比べ大幅に音声認識率を改善することができた。 
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PFは、音源位置推定として用いることもできる。信号音源の位置を正しく推定するこ

とは、BSS (Blind Signal Separation)以外のビームフォーマにおいては、不可欠な要素

である。従来は音源位置推定には、MUSICや CSPなど信号分離とは系統の異なる手

法を併用することが多かったが、PFは、信号分離と音源位置推定の処理を統一するこ

とができる。さらに、PFが導入したプロファイルという概念は、音源位置推定の手がかり

となる、チャネル間の位相差と強度差、さらには反射や拡散性の情報を包含してので、

これを用いて高度な音源位置推定が可能になった。実験では、マイクロフォンに装着

した反射板との併用で、従来、２つのマイクロフォンでは困難であった正中面の音源仰

角の推定精度を大幅に改善した。 

２つ目の手法は、SSEC (Simultaneous adaptation of spectral Subtraction and Echo 

Cancellation) と名付けた新しいタイプのエコーキャンセラの技術である。自動車のオ

ーディオ機器からの音楽やカーナビのガイダンス音声が雑音源である場合には、それ

らの機器から参照信号を得て、エコーキャンセラを構成することで、観測音声に含まれ

るそれら雑音成分を効果的に除去することができる。従来のエコーキャンセラは、時間

領域の２乗誤差最小化の原理に基づくものが多い。しかし、それらは計算量負荷が大

きく、また、背景雑音がある場合に性能が劣化する点が問題であった。これに対し、エ

コーキャンセラをスペクトルサブトラクションの形式に書き直し、処理を軽くした形式が

期待されるが、自動車の場合、エコー成分（音楽など）とは無関係な走行雑音が存在

し、この成分を容易には推定できないことが問題であった。SSEC は、走行雑音が定常

であるという仮定のもとに、スペクトルサブトラクション形式のエコーキャンセラの適応と

定常雑音成分の推定とを同時に行う。これにより、走行中にオーディオ音声が再生さ

れ続けているという状況でも走行雑音成分とエコー成分（再生音）の両方を推定し除

去することができる。実験では、従来技術であるエコーキャンセラとスペクトルサブトラク

ションの組み合わせよりも、大幅に音声認識率を向上させることができた。 

３つ目の手法は、調波構造を利用した新しい音声強調の手法である。これは、自動

車の高速・窓開け走行など、非常に低い SN 比の状況での音声認識率を改善するた

めのものである。この領域では音声は広帯域に広がった雑音に埋もれかかっている。

マイクロフォンアレイ技術によっても SN 比は改善することができるが、マイクロフォン数

が小規模の適応ビームフォーマで、かつ、雑音源が走行雑音のように拡散性（非点音

源）である場合、その SN 比改善効果は限定的なものに留まることが知られている。そ

のため、ここでは、埋もれかかった音声を強調するために、音声の持つ調波構造を利

用する。調波構造を利用する従来技術の多くは、くし型フィルタをベースとしており、正

確なピッチ周波数の推定と有声音・無声音判定を前提としている。しかし、この推定・
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判定は高騒音の環境下では不正確になるという問題があった。そこで、ここでは、観測

パワースペクトルそのものから、直接フィルタを設計する手法 LPE (=Local Peak 

Enhancement)を提案する。くし型フィルタと異なり、ピッチ周波数の推定や有声音・無

声音判定は必要ない。本編に示した音声認識実験では、自動車の高速・窓開け走行

やファン最大のケースで特に大きな改善を示した。また、スペクトルサブトラクションや

ウィーナフィルターなど既存の雑音除去手法と組み合わせることで、さらに大きな改善

が得られることを確認した。 
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1. Introduction 

1.1. Background 
For human beings, Automatic Speech Recognition (ASR) is a natural extension for the 
man-machine interface. Early ASR products required headsets with close-talk 
microphone to capture the speech without noise. Noise reduction technology and 
advances in acoustic modeling allowed far-field microphones to be used. This is called 
hands-free speech recognition and allows for a more natural interface without wires. 
Nowadays these interfaces are used in various situations, but users agree their noise 
robustness should be improved. Here are some restrictions of current products: 
� Car navigation system: When the Talk-Button is pressed, the car audio and fan are 

automatically stopped or quieted in most systems. 
� Robot (Humanoid): Many of them have a speech interface. However, it is rare to 

see a hands-free ASR demo in a noisy convention hall. 
� Consumer electronic devices: In TVs or game machines, microphone is often 

equipped in a remote commander, so to get microphone closer to users.. 
 
Noise robustness is not easy to achieve, because we need to cope with various types of 
noises. For example, in robot applications, there are other people’s voices, background 
noises, actuator noises of the robot itself, and the synthesized voice of the robot (Figure 
1.1). In automobiles, there are cruising noises, audio noises, passenger’s voices, and 
various environmental noises such as horns, the squeaks of windshield wipers, 
neighboring cars, train crossing signals, etc. Table 1.1 summarizes some features of 
these types of noises as observed in automobiles. Here, to simplify discussion in this 
dissertation, cruising noise is treated as a stationary noise, and non-stationary sounds 
such as potholes are classified as environmental noise.  



- 2 - 

For stationary noise, we can compensate in a straightforward manner by estimating 
the noise spectrum in the non-speech segments and subtracting it from the observed 
spectrum. For further improvements, we can use model-based compensation. 

For non-stationary noise, we still have various methods as long as the noise does not 
have a harmonic structure while the target signal is speech. Comb filtering [TO98] is 
one of the approaches to enhance the harmonic spectrum of vowels. In this dissertation, 
we may refer to this type of compensation as speech enhancement rather than noise 
reduction. 

If the noise is non-stationary and it has a harmonic structure, as is true with music or 
irrelevant human speech, then the compensation is not easy when using a single channel 
microphone. If two or more microphones are available, we can use beamformer 
focusing on the target by configuring the microphones as a microphone array. For 
automobiles, this may filter for only those sounds arriving from the driver’s direction. 
Sounds from other directions such as passenger seats and audio loudspeakers can be 
filtered out. In current automobiles, standard position of the microphone is considered 
to be near a map-lamp on the ceiling. As shown in Figure 1.2, this position has also a 
good advantage to distinguish the driver’s voice from passengers’ voices by 
directionality of the sounds when multiple microphones are installed. 

 
Figure 1.1. Various noises in a robot application. 
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Table 1.1. Types of noises observed in automobiles 
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Figure 1.2. Standard position of microphone and directionality of driver’s and 
passengers’ voices in automobiles. 

Microphone

Direction to each 
passenger and driver

Microphone

Direction to each 
passenger and driver



- 4 - 

Output Decoder Noise 
Reduction 

Front-End 

AM LM 

( ) ( )WpWXP
W

W ⋅= |argmaxˆ  
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A beamformer depends on the direction (or location) of the sound sources. Therefore, 
a noise will not be reduced if it arrives from the same direction as the target. For 
example, guidance messages from the car navigation system, which are broadcasted 
from a loudspeaker on the driver’s side, may escape filtering. In this case, we can use an 
echo canceller if a reference signal for the broadcast sound is available. An echo 
canceller can specifically reduce the noise component correlated with a reference signal. 

However, most of current products support only stationary noise with single-channel 
noise reduction technology and an acoustic model trained with certain noises depending 
on their task.. 

1.2. Automatic Speech Recognition System 
Figure 1.3 shows a diagram of a standard ASR system. The feature extraction part 
converts the input signal to feature vectors such as MFCC. It may also compensate for 
the multiplicative distortion and additive noise using CMS, CDCN [AS90], or other 
techniques. The Acoustic Model (AM) part contains statistical data trained from a large 
corpus of speech sounds with phonetic labels. The AM is often modeled as a HMM 
using EM algorithm. It is common to train the speech data along with noise to increase 

 

 

 
 
 
 
 
 
 
 

Figure 1.3. Automatic speech recognition system. 
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the noise robustness. This technique is called multi-style training. Adaptation methods 
such as MLLR [LW95] and HMM Composition (PMC) [GY96] may be done at this 
stage for speaker and environmental adaptations. The Language Model (LM) part 
contains statistical data about word sequences. For transcription, it is often modeled 
using an N-Gram approach. For command input, it is modeled using a constrained 
grammar. In both case, the LMs are often compiled into a Finite State Machine (FSM) 
to be used in decoding. The decoder part searches for the most likely word sequences 
using the AM and LM data. The Viterbi algorithm is often used for the search. 

For noise robustness, a noise reduction part can be placed in the front-end part to 
pre-process the input data. This dissertation focuses on this noise reduction part. This 
includes multi-channel signal processing such as microphone arrays or echo cancellers. 

Generally speaking, noise reduction may involve some side effects. The processed 
signal may have been altered in an undesirable way depending on the noise reduction 
method. Therefore, if necessary, the AM should be retrained with data that was 
processed with the noise reduction method. 

1.3. Conventional Noise Reduction Technology 

1.3.1. Single-channel noise reduction 

For single-channel noise reduction, candidate methods include spectral subtraction (SS) 
[Bol79], Wiener Filters [ETS02], MMSE [EM84], CDCN [AS90], model-based 
compensation [STB+01][ATI06], noise and speech model reconstruction [KH03], and 
particle filtering [FN05]. Many noise reduction methods rely on the assumption that the 
noise is stationary. Particle filtering and model-based reconstruction appear to support 
filtering non-stationary noises. However, further research is still required for its use in 
realistic environments. 

A comb filter [TO98] passes only the harmonic bins in the voiced segments. It works 
based on the estimated pitch (F0) information. Therefore, the performance is highly 
dependent on the accuracy of pitch detection [Boe93][NIZ03]. 
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1.3.2. Multi-channel noise reduction 

1.3.2.1. Microphone array 
Microphone array technology includes beamformers, localization, Blind Signal 
Separation (BSS), and supporting technologies. 

The most basic beamformer is called Delay and Sum (DS). This sums up the signals 
for all of the channels with their own delays so that all of the signals are synchronized to 
the target sound source. An Adaptive Beamformer (ABF) also sum up signals with 
individual delays and gains so that the residual noise may be minimized. When a noise 
source is directional and the room is non-reverberant, ABF will have a 
null-beamforming pattern for each noise source. ABF is also known as a Minimum 
Variance (MV) beamformer [AAM00]. Griffiths-Jim (GJ) [GJ82] consists of two 
beamformers. The added one is a null-beamformer used on the target signal source so as 
to enhance only the output noise component. The noise component is then subtracted 
from GJ’s main beamformer output to further reduce the noise. This can be 
implemented using spectral subtraction as a Spatial Subtraction Array (SSA) [ONS+05]. 
This subtracts the sub-beamformer output from the main-beamformer output in the 
power spectrum domain. In this dissertation, the two-channel version of SSA is also 
referred to as 2-channel (Adaptive) SS [KAS+96]. 

A beamformer needs to know the location (or direction) of the target signal. 
Therefore, some localization methods such as MUSIC [JD] and CSP [OS96] are often 
used in conjunction. In contrast, BSS does not require that information. It can separate a 
mixed signal into separate signal components using the statistical independence 
between the signals based on the ICA algorithm [SKT+03]. For further improvements, 
it is extended to be combined with Binary Mask [MTS+06] and SSA [TTS+06]. 

1.3.2.2. Echo canceller 
The most basic adaptation algorithm for an echo canceller is LMS. The normalized form 
is known as N-LMS. RLS, Sub-band LMS, and the ES algorithm [MK92] were 
developed for faster convergence. They are implemented in the time domain using long 
filter taps that should be sufficiently long relative to the the room’s reverberation. 
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Therefore, they tend to require intensive computations. This drawback becomes much 
more severe when they are extended for stereo or a 5.1-channel surround system. 

The echo canceller can be implemented in the spectrum domain or in the power 
spectrum domain for reduced computation. The implementation in the power spectrum 
domain works like spectral subtraction and is sometimes used as a post-processing step 
with a time domain echo canceller to suppress the remaining noise [DP97]. 

There are some extended versions of echo canceller. MCDCN [DDI04] that 
enhanced CDCN technique so to utilize reference signal. Semi-blind source separation 
(SBSS) [MTM+06] adopted independent component analysis (ICA) to achieve echo 
cancellation without double talk detector. 

1.4. Contribution 
In this dissertation, the following three novel methods for noise reduction or speech 
enhancement are proposed to improve the accuracy of automatic speech recognition in 
noisy environments. 
� A new microphone array technology using a power distribution profile for 

beamforming and sound source localization. 
� A new echo canceller that can simultaneously perform echo adaptation and ambient 

noise estimation. 
� A new speech enhancement method using harmonic structures without relying on 

pitch and voiced/unvoiced detection. 
As shown in Figure 1.4, the above three proposed methods should be placed in the noise 
reduction part of the front-end. They should be switched depending on the hardware 
availability or the variation of the noise to cope with. 
 

1.5. Thesis Outline 
This dissertation is organized as follows. In Chapter 2, we briefly review robust ASR 

to position the three novel methods proposed in this dissertation. In Chapter 3, a new 
microphone array technology that shows higher noise reduction capability with limited 
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numbers of microphones is investigated, and the new method named Profile Fitting 
(PF) is proposed. In Chapter 4, PF is further discussed in an application of sound 
source localization. In Chapter 5, a new echo canceller named SSEC (Simultaneous 
adaptation of spectral Subtraction and Echo Cancellation) is proposed. In Chapter 6, a 
new speech enhancement method named Local Peak Enhancement (LPE) is proposed. 
Chapter 5 and Chapter 6 focus on the particular challenges in automobiles, but the 
proposed technologies are applicable for other applications. Finally, Chapter 7 
summarizes this work and suggests future research directions. 

 
 

 

 

 
 
 
 
 
 
 
 

Figure 1.4. Integration of the proposed methods. 
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Ŵ  

( )WXP | ( )WP  

X

Feature 
Extraction

Profile Fitting

SSEC

LPE

Output Decoder Noise 
Reduction 

Front-End 

AM LM 

( ) ( )WpWXP
W

W ⋅= |argmaxˆ  
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2. Robust Automatic Speech 
Recognition 

2.1. Introduction 
In this chapter, we briefly review robust ASR to have a clear image of what robustness 
is, what is involved in robustness, and how the three novel methods proposed in this 
dissertation can contribute to the robustness of ASR systems. 

2.2. Robustness of Automatic Speech 

Recognition System 
As shown in Figure 2.1, ASR systems have been evolving to push against the following 
limitations: 
� Environmental robustness 
� Usability 
� Speaking style 
� Task complexity 
� Speaker dependency 
Speaking in the broad sense, advances in any of these areas affects the robustness of the 
ASR. The various kinds of research described in this dissertation are related to primarily 
to environmental robustness and usability. These topics will be further addressed in the 
following chapters. 
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2.2.1. Environmental robustness 

Modern automatic speech recognition is based on statistical modeling from a large 
corpus. Therefore, the first steps involve training the acoustic model with realistic 
speech data. If the situation permits, the data should be recorded in the same 
environment as will be used and with the same conditions for types of noise, SNR, 
microphones, and room reverberation. This approach is known as multi-style training 
and is widely used in commercial products. However, the environments of the actual 
usage are highly unpredictable and usually there is some acoustic mismatch. 
Environmental robustness in speech recognition represents the ability to minimize 
performance degradation that occurs as a result of mismatches between system training 
and test conditions [Ros04]. 

Acoustic mismatches are classified into two types, additive noise and multiplicative 
distortion. Figure 2.2 illustrates how a speech signal is corrupted by these two factors. 
The variables X, S, N, and H denote the observed noisy speech signal, the clean speech 
signal, the observed noise signal, and the acoustic transmission function. The observed 
signal can be represented by Equation (2.1):  

NSHX +⊗= , (2.1) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Evolution of automatic speech recognition. 
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where ⊗  denotes the convolution operation. Distortion in the transmission channel is 
ignored here. As shown in Equation (2.1), N is additive and H is multiplicative. In 
automobiles, cruising noise, fan noise, passengers’ voices, and sounds from radios or 
other audio devices are possible additive noises. Multiplicative distortion becomes 
conspicuous when the distance from the subject speaker to the microphone is large or 
when the transmission path involves reflection or diffusion. Also, a reverberant room 
significantly increases multiplicative distortion. 

In order to minimize the acoustic mismatch that might be involved in realistic 
environments, these N and H components should be compensated in both the training 
and decoding. As long as the subject speaker is not moving relative to the microphone, 
Cepstrum Mean Subtraction (CMS) is a simple but effective method to compensate 
multiplicative distortion. CDCN can also compensate for it. However, these methods 
work within frames, and they cannot handle the later parts of the reverberations beyond 
the frame size. Therefore, some de-reverberation algorithms [SC00][NM03] can be used 
in very reverberant environments. 

For additive noise, we should be aware that there are two type of additive noise, 
stationary noise (which is almost time-constant) and non-stationary noise (which is 
time-varying). Unless the SNR is very low, it is not difficult to compensate for 
stationary noise. We can subtract the estimated value of N in Equation (2.1) in the power 
spectrum domain or in the log-power spectrum or cepstrum domain. When the SNR is 
very low, the compensation may be excessive and result in losing speech information or 
it may insufficient and leave too much residual noise. Therefore, other methods that not 

 
 

Figure 2.2. Transmission of a speech signal. 
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only reduce the noise but that also enhance the speech signal should be combined. We 
follow up on this idea in Chapter 6 of this dissertation. 

For non-stationary noise, it is difficult to estimate time-varying N in a reliable 
manner in a single channel system. Therefore, multiple-channel signal processing 
technologies such as microphone arrays and echo cancellation are pursued in Chapter 3 
and Chapter 5 in this dissertation.  

Instead of using front-end processing, the minimizing of acoustic mismatch can be 
done in the acoustic model. MLLR [LW95] and HMM Composition (PMC) [GY96] can be 
used for environmental adaptation. HMM Composition can be extended to support 
moving speakers to compensate for location dependent multiplicative distortions 
[Tak99]. 

Another approach for minimizing acoustic mismatch is to use robust features instead 
of MFCC. RASTA-PLP [HM94], multi-band spectral features [NSI+04], distinctive 
phonetic features [Fuk05], spectral peak-weighted liftering [KL00], SBCOR [KI95], 
and MVDR [DR01] are some of the candidates. 

2.2.2. Usability 

Usability involves various features of the ASR systems that make them more friendly 
for users. 

Voice Activity Detection (VAD) has a large impact on usability. Most of the current 
car-navigation systems use a Push-To-Activate (PTA) mode, for which a user need to 
push a button when starting to speak. The end of the utterance is detected automatically 
by the car-navigation system. Using a Push-To-Talk (PTT) mode, the user would need 
to continue pressing the talk button while speaking. As the driver may need to turn the 
steering wheel, PTT is considered as an unacceptable scenario for driving. VAD 
typically utilizes information about the likelihood of speech, the speech power and also 
the sound directivity when a microphone array is used. The noise reduction methods 
described in Chapters 3, 5, and 6 of this dissertation can contribute to VAD by 
enhancing evaluation of the likelihood of speech and the speech power. Also, the sound 
source localization from Chapter 4 can contribute to the use of sound directivity 
information. 
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In near future automobiles, PTA mode will evolve to Always Listening (AL) mode, 
allowing the user to start speaking at any time without pushing a talk button. AL mode 
is already a common interface for humanoid robots. For cars, this will require higher 
VAD accuracy, as well as some language understanding technologies. Therefore, VAD 
improvements are important. 

Another usability issue is the restriction that the car audio be stopped or the volume 
minimized upon pressing a talk button. Many current car-navigation systems have this 
restriction. The enhancement of echo cancellation technology discussed in Chapter 5 of 
this dissertation can contribute to addressing this problem. 

In the near future, car-navigation systems will support a Barge-In interface that 
allows a user to start speaking even while the car-navigation system is broadcasting 
informative messages. This will require higher capabilities for the echo cancellation. 
Therefore, improvements in echo cancellation are important. 

In the use of microphone arrays, reducing the number of microphones is also an 
improvement of the usability in terms of lower failure rates and lower costs for the 
equipment. In Chapter 3 in this dissertation, we pursue small-scale microphone arrays 
that outperform conventional approaches. 

2.2.3. Speaking style 

Speaking style affects pronunciation and thus the recognition. In general, discrete 
utterances such as commands and digits have less ambiguity. Continuous speech such as 
dictation has a lot of variation caused by co-articulation, stress, and so forth. 
Spontaneous speech has even more, because of the increased co-articulation, 
intonational phrasing, disfluencies, and speech repairs. 

In order to support spontaneous speech in automatic speech recognition, many 
corpus-based approaches have been investigated. In Japan, a large corpus called the 
Corpus of Spontaneous Japanese (CSJ) was developed and many research projects have 
used it [Fru05]. 
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2.2.4. Task complexity 

Task complexity has a direct impact on ASR accuracy. If the task is a grammar-based 
task with a small vocabulary, we can probably expect higher ASR accuracy, but less 
flexibility in the acceptable expressions. If the task involves transcription with a large 
vocabulary, Large Vocabulary Continuous Speech Recognition (LVCSR), it is not easy 
to achieve higher ASR accuracies, because there are vastly more variations in what can 
be said. 

In the LM context, task complexity can be measured by perplexity. An LM with 
lower perplexity is considered to be a good LM. To build such an LM, it should be 
trained with a text corpus well-matched to the actual usage. In that sense, an LM with 
lower perplexity tends to be task-specific, resulting in a narrow scope. Therefore, some 
topic detection algorithm or topic adaptation algorithm are sometimes used to switch or 
adapt the prepared LMs according to the detected current task. 

2.2.5. Speaker dependency 

Historically, original ASR systems were speaker dependent. The AM had to be trained 
with each speaker’s voice. Now, it is common to train the AM with a large speech 
corpus containing various subject speakers’ voices. It is called the speaker-independent 
model. 

However, there are still some speakers who have poor results with ASR systems that 
use the speaker-independent model. Model adaptation technologies such as MAP, 
VTLN [LR96], and MLLR [LW95] are effective to boost the accuracy. Also, some 
canonical modeling such as SAT [AMS+96] is known to increase the benefit of model 
adaptation. 

Though it is not a speaker adaptation, it is worth noting that discriminative training 
such as MPE [PW02] generally boosts the accuracy in ASR including such problematic 
speakers. 
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3. Noise Reduction by Profile 
Fitting Method 

3.1. Introduction 
Previous research estimated that more than 50 microphones are required to achieve high 
performance for automatic speech recognition using microphone arrays at distances of 1 
m [Elk01]. This also requires a special interface to enable simultaneous multi-channel 
audio input. However this requirement would not be acceptable for many consumer 
products like mobile PCs, PDAs, etc. 

On the other hand, the directional pattern formed by a small-scale microphone array 
such as a 2-channel (left and right) Delay and Sum beamformer is not sufficiently 
focused on the target. This means the output of the beamformer will contain too much 
noise arriving from other directions, and therefore additional logic to estimate and 
subtract the noise signal mixed in the output of the beamformer is essential. 

The basic concept was provided by the Griffiths-Jim-type adaptive beamformer 
[GJ82]. It can be implemented in spectral subtraction as Spatial Subtraction Array 
(SSA) [ONS+05]. It subtracts sub-beamformer output from main-beamformer output in 
power spectrum domain. In this dissertation, two-channel version of SSA is also 
referred as 2-channel (Adaptive) SS. This logic is shown in Figure 3.1 or Figure 3.2. 
The main-beamformer forms a directivity pattern focused on the target direction and the 
sub-beamformer forms a directional null on the target. In Figure 3.1, the output of the 
sub-beamformer is assumed to be the noise power and it is simply subtracted from the 
output of the main-beamformer [INK97]. In this chapter, we call this method 
“Two-Channel Spectral Subtraction (2-channel SS).” 
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In order to improve the performance, the level of the noise power to be subtracted 
should be estimated more accurately. Figure 3.2 shows one of the solutions, which 
estimates the subtraction weight at each frequency adaptively using an LMS algorithm 
so as to minimize the output when the target sound is absent (i.e. when only the noise is 
active). In this chapter, we call this method “Two-Channel Adaptive Spectral 
Subtraction (2-channel Adaptive SS).” This method is equivalent to the method of Kim 
et al. [KAS+96] except for the online adaptation capability. Saruwatari et al. described 
the weight as complementary weight vectors at the microphone elements to provide 
twice the directional nulls compared to the conventional adaptive beamformer 
[SKT+00]. Mizumachi et al. added a third microphone to detect the arrival direction of 
the noise so the weight can be estimated analytically without relying on the adaptation 
[MA98].  
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Figure 3.1. Two-channel Spectral Subtraction. 
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Figure 3.2. Two-channel Adaptive Spectral Subtraction. 
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These methods are much more effective compared with the conventional 
beamformers such as Delay and Sum (DS) and Minimum Variance (MV) as shown in 
Figure 3.3 of our preliminary investigation. However, the performance is not still 
optimized, because they rely on the information from only the 2 points that are the focal 
directions of the main beamformer and the sub-beamformer. In this chapter, an 
optimized method that utilizes the information from all spatial directions is proposed. 
This approach makes the noise estimation more accurate and it provides a reasonable 
solution for the case of multiple noise sources, for which 2-channel Adaptive SS is not 
well adapted. 
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Figure 3.3. Preliminary experimental results of automatic speech recognition 
on data from two microphone processed by various conventional methods. 
The experimental data was prepared from simulations with impulse 
responses in RWCP and recordings of 125 utterances by a male speaker. 
Noise data for the Exhibition Hall in the Denshi-Kyo DB was overlapped at an 
SNR of 20 dB. The distance between the microphones was 11.3 cm. The 
distance to the subject speaker was 2 m. The Acoustic Model was trained 
with clean speech. 
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3.2. Two-Channel Adaptive Spectral Subtraction 

Method and Problem 
In Figure 3.2, the beamformer output (Zω,T) before the I-FFT can be written as Equation 
(3.1): 

Zω,T = M1ω,T - Wω ·M2ω,T 
= Sω,T + {Nω,T - Wω ·M2ω,T }, (3.1) 

where the index ω is a frequency for each sub-band, and the index T is a time frame 
number. The variable M1ω,T represents the power spectrum of the main beamformer 
output. The variable M2ω,T represents the power spectrum of the sub beamformer output. 
The variable Sω,T represents the signal power and the variable Nω,T represents the noise 
power in the main beamformer output. The variable Wω is the subtraction weight 
parameters that minimize the following Equation (3.2): 

Vω = E[{Nω,T - Wω ·M2ω,T }2],  (3.2) 
where the expectation operation denoted by E[ ] should be performed only when the 
signal is absent. Using this adaptation, we can minimize the noise power in the 
beamformer output of Equation (3.1). 

Figure 3.4 shows an example of the weight parameters Wω adapted for a single noise 
source in a non-reverberant environment. We see the weight value is very large in 
certain frequency ranges. In those ranges, the variance of the remaining noise power 
defined by the Equation (3.2) is large. As a result, the beamformer output will have 
more remaining noise. That banded distortion of the output power spectrum causes an 
adverse affect on the mel-cepstrum coefficients (MFCC) that are used in automatic 
speech recognition. 

For multiple noise sources, another issue arises with the 2-channel Adaptive SS. 
Let’s assume that there are two noise sources around the signal source. Adaptation of 
the weight parameters will be performed over long intervals in an averaging manner. 
However the noise sources are not necessarily stationary. In the frame-by-frame view, 
one of the noise powers may sometimes be zero or very small. Therefore, the weight 
parameters are not always consistent for all the time frames. 
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Experiments in the later section show that the resulting SNR (Signal Noise Ratio) of the 
2-channel Adaptive SS is acceptable, but the output has considerable distortion as 
remarked above. 

3.3. Proposed Method (Profile Fitting) 
In order to support multiple non-stationary noise sources, a new method that does not 
rely on adaptation is proposed. Instead, we introduce the critical assumption that the 
locations of the noise sources are known. 

Our proposed method is based on the information in a profile consisting of a series of 
points. Figure 3.8 and Figure 3.9 show some examples of profiles, which are power 
distribution patterns observed at varying look directions θ for a Delay and Sum 
beamformer. 

Profiles are measured at each frequency. In general, they have specific peaks 
corresponding to a sound source direction. If the sound source is non-directional or it 
involves distinct reflections in the transmission paths, the profile does not have steep 
peaks and valleys. If the sound source is in near field, the two microphones often 
involve gain imbalance so to make the profile have a bias value. 

MV beamformer sometimes uses similar measures associated with each candidate 
location of sound source, known as steering vector. But, it only contains time delay 
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Figure 3.4. An example of the weight parameters (single noise case). 
The distance between the two microphones is 30 cm. 
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information and distant information, based on a simple sound source assumption. On 
the other hand, the profile can include the effect of reflection and diffusion. 

Since the locations of the sound sources are known, we can prepare the profiles a 
priori. Observed sound signals can be decomposed into linear combinations of the 
profiles on a frame-by-frame basis. This approach is still valid even if one (or more) of 
the noise sources is intermittently inactive. 

For a single noise source, the proposed method will also have banded distortion due 
to the aliasing we experienced with the 2-channel Adaptive SS. However the distortion 
is more moderate in favor of the decomposition process that utilizes the information 
from all spatial directions. 

The first step is to prepare “known profiles.” We need to imagine placing a sound 
source in a possible direction and measuring its power distribution profiles (Pω(θ0,θ), 
Qω(θ)) for this microphone array at each frequency ω by using white noise or any 
standard signal. Pω(θ0,θ) represents a profile for a directional sound source in the 
direction θ0, while Qω(θ) represents a profile for a non-directional background sound 
source. After making these measurements, they should be normalized so that the area of 
the pattern at each frequency is equal to 1, because the shape is the only essential 
information. These shapes are considered as the characteristics of the microphone array. 
They do not represent any acoustic features of the target signal or the noise signals. 
They are referred to as the known profiles. 

The next step is to work with an “observed profile” for each time frame T. When an 
observed sound signal can be assumed to consist of a directional target sound and a 
non-directional background noise as in Figure 3.5, the observed profile Xω,T(θ) can be 

Power(θ) 

θ 
Observed Profile 
(frequency ω) 

Power(θ) 

θ 
Known Profile for a directional 
sound source 
(frequency ω, source directionθ0) 

θ 
Known Profile for a background sound 
source 
(frequency ω, non-directional sound）

≒  ××××(coefficient)    ＋＋＋＋  
θ0 

Power(θ)

××××(coefficient)    

 

Figure 3.5. Decomposition of power distribution pattern. 



- 21 - 

approximately represented as the weighted sum of the two known profiles as Equation 
(3.3):  

)(),()( ,0,, θβθθαθ ωωωωω QPX TTT ⋅+⋅≅ , (3.3) 

where we assumed there is no correlation between the target sound and the noise. The 
variable αω,T is a weight coefficient for a profile Pω and βω,T is a weight coefficient for a 
profile Qω . These coefficients can be determined so as to minimize the following 
evaluation function T,ωΦ :  

{ }� ⋅−⋅−=Φ
θ

θ
ωωωωωω θθβθθαθ

max_

min_

2
,0,,, )(),()( dQPX TTTT .    (3.4) 

The values of αω,T and βω,T can be determined from 0,, =∂Φ∂ TT ωω α  and 
0,, =∂Φ∂ TT ωω β  under the following constraints: 

1) αω,T ≥ 0. 

2) βω,T ≥ 0. 

3) αω,T ≤ Xω,T (θ0) / Pω(θ0,θ0). 

The conditions 1) and 2) mean the power should not be negative. Condition 3) means 
the output should be less than the observed power as the noise is reduced. 
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Equations (3.5) and (3.6) can be expressed in a matrix and vectors as Equation (3.7). 

TT ,, ωωω BAC ⋅= , (3.7) 
where ωA , T,ωB , and T,ωC  are defined as follows: 
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The values of αω,T and βω,T can be determined from Equation (3.11): 

TT ,
1

, ωωω CAB ⋅= − .  (3.11) 

If βω,T is less than 0, the variable βω,T should be set to 0. In this case, ωA and 

T,ωC should be modified per Equations (3.12) and (3.13), and T,ωB should be 

re-calculated using Equation (3.11). 
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Finally, the variable αω,T should be adjusted as follows: 
αω,T = 0        if αω,T < 0 . 
αω,T =Xω,T (θ0) / Pω(θ0,θ0)   if αω,T >Xω,T (θ0) / Pω(θ0,θ0) .  

Now we can determine the power of the enhanced speech signal Zω,T at the frequency ω 
for that time frame T as Equation (3.14): 

Zω,T  = αω,T ·Pω (θ0,θ0). (3.14) 
In the process above, the noise power estimated as βω,T ·Qω(θ0) is actually subtracted 
from the observed power Xω,T (θ0), which is the output of the conventional Delay and 
Sum beamformer. 

The observed profiles Xω,T (θ) are obtained for each time frame (every 10–20 ms). 
The above decomposition should be done for every time frame T and at every frequency 
ω. 

If there is not only a background noise but also a directional noise arriving from the 
direction θ1, we can add the profile for the directional sound source as Rω(θ1,θ) with 
coefficient γω,T to the right hand side of the Equation (3.3), producing Equation (3.15). 
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The additional term accounts for the power distribution from the additional noise source. 
Additional known profiles can be added if there are more known noise sources. 

),()(),()( 1,,0,, θθγθβθθαθ ωωωωωωω RQPX TTTT ⋅+⋅+⋅≅ . (3.15) 

Similar to the two-profile case, the negative value check should be done for each 
coefficient. First, the coefficient βω,T or γω,T should be checked. If it is negative, it 
should be set to zero and all other coefficients should be recalculated per Equations 
(3.12) and (3.13). The coefficient αω,T should be checked last.  

3.4. Spectral Smoothing and Inverse Smoothing 
When the SNR of the observed sound is small, the correlation term omitted in Equation 
(3.3) cannot be ignored. Because no profiles are available for the correlation term, the 
decomposition becomes inaccurate. 

Kitaoka et al. proposed SMT for spectral smoothing over the time dimension for 
single channel spectral subtraction in order to minimize the correlation term [KAN01]. 
We applied this technique to Profile Fitting using Equation (3.16): 

�
−

=
−⋅=

1

0
,, )()(

L

t
tTtT XcX θθ ωω , (3.16) 

where )(, θω TX is the smoothed observed profile, the ct are the smoothing coefficients, 
and L is the smoothing width. When SMT is applied, )(, θω TX should be used instead 
of Xω,T (θ) in Equations (3.3), (3.4), (3.5), (3.6) and the follow-on equations. 

As a side effect of SMT, the output of the enhanced speech signal is also smoothed. 
This means the dynamic features detected by automatic speech recognition will be 
affected by SMT. In order to compensate for this, we used I-SMT (Inverse SMT) with a 
limiter for stability. When I-SMT is used, the enhanced speech signal Zω,T can be 
obtained as follows: 
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Above SMT and I-SMT operation is an option for Profile Fitting. In our experiments at 
moderate SNRs higher than 15 dB described in this chapter, we found the accuracy of 
the automatic speech recognition was not degraded without SMT and I-SMT operation, 
although the resulting SNR was sometimes degraded. Therefore, SMT and I-SMT 
operation was not used in our experiments in this chapter. 

In this chapter, the SNR was measured simply by the power histogram from 
Equation (3.20):  

SNR = 10 ·log10(Smax / Nmod).                        (3.20) 
The variable Nmod is the mode value in the noise power histogram, and Smax is the 90th 
percentile value above the mode value in the signal power histogram. 

3.5. Preliminary Experiment 
Before evaluating the proposed method in automatic speech recognition, we briefly 
checked the distortion of the beamformer output from the original sound. We defined 
the MFCC distance (MCEP) in Equation (3.21) as the measurement of the distortion. 
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,      (3.21) 

where C(i) is the i-th mel-cepstrum, and Ncep is the number of the mel-cepstrum except 
C(0). We set Ncep = 23 for the sampling rate 22.05 kHz so that it would be consistent 
with the decoder of the automatic speech recognition program. The subscript “out” 
means the output of the beamformer and “original” means the original sound without 
adding noise. 

3.5.1. Preliminary experiment stationary noise case 

We placed two microphones at a distance of 30 cm in the soundproof chamber. The 
arrival angle of the target signal was 0° (directly in front), and the distance was 15 cm. 
As a directional noise, white noise was played back at an arrival angle of +40° (right 
side) at a distance of 1 m. The SNR was 18.3 dB. 
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For Profile Fitting, two profiles were used, each associated with one directional 
sound source. Figure 3.6 shows the estimated and expected coefficients at ω = 600 Hz. 
The expected values were calculated using the separated signal and noise. When the 
target signal is active (i.e. when the expected value of αω,T is large), the estimated αω,T 
matches well to the expected αω,T. The estimated βω,T seems to be affected by the large 
αω,T, but the absolute value of the estimated βω,T is still very small compared with the 
estimated αω,T, since Figure 3.6 is plotted with a logarithmic scale. When the target 
signal is not active, the estimated value of βω,T matches well to the expected βω,T. 

Table 3.1 shows the averaged MFCC distance. It shows the 2-channel Adaptive SS 
has a larger MFCC distance than Profile Fitting. 

3.5.2. Non-stationary noise case  

In addition to the configuration in the previous paragraph, we added a directional noise 
source playing back white noise at an arrival angle of -50° (left side) at a distance of 1 
m. In order to simulate the worst case of multiple non-stationary noise sources, the new 
noise source was stopped in the entire speech period, and both noise sources were active 
during the adaptation of the 2-channel Adaptive SS. Profile Fitting does not require any 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6. Estimated and expected coefficients at ω=600 Hz. 
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adaptation. Instead, three profiles were prepared, each associated with one directional 
sound source. The SNR without the additional noise source was 20.5 dB. 

Table 3.2 shows the averaged MFCC distance. The advantage of Profile Fitting over 
the 2-channel Adaptive SS is more evident than for the single stationary noise case. 
 

3.6. Experiment in Automatic Speech 

Recognition 

3.6.1. Non-reverberant environment 

Figure 3.7 shows the configuration for this test. The distance between the two 
microphones was 30 cm. The speech recognition task was a transcription of a robot 
conversation (size of vocabulary = 1,200, test set perplexity = 9.2). Two sets of 125 

Table 3.1. MFCC distance between clean speech and output of beamformer. 
Sample utterance is /oi henjishiro/ in Japanese (stationary case) 

 MCEP 

2-channel Adaptive SS 16.8 

Profile Fitting 11.6 

 

Table 3.2. MFCC distance between clean speech and output of beamformer. 
Sample utterance is /oi henjishiro/ in Japanese (non-stationary case) 

 MCEP 

2-channel Adaptive SS 22.6 

Profile Fitting 9.6 
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sentences, each spoken by a male speaker and a female speaker in our soundproof 
chamber, were used for the evaluation as the target signal. The arrival angle of the target 
signal was 0° (directly in front), and the distance was 50 cm. Jazz music as a directional 
noise was recorded in the soundproof chamber. The arrival angle was 36° (right side), 
and the distance was 1 m. The background noise was recorded separately at lunchtime 
in our cafeteria. Those recorded noises were mixed with the target signal data manually 
so that the SNR could be controlled. 

The sampling frequency of the audio stream was 22.05 kHz. The frame shift was 10 
ms. The windowing function was a Hamming Window. The FFT width was 512 
samples. Profiles were measured by the Delay and Sum beamformer in the time domain. 
The horizontal axis of the profiles represents the time delay measured as the number of 
delayed samples. Here, this value corresponds to the look direction of beamformer. This 
was varied from the max−  to the max+  value at every specified step value. For 
lower frequency profiles (< 1 kHz), we used a 5 times larger maximum value and a 
bigger step value to acquire the whole pattern, since the shapes have gentle slopes at 
those frequencies. For higher frequency profiles, we used the original maximum value 
and the minimum step value (= 1 sample) to be more accurate. 

 

(Cafeteria)

30 cm

50 cm
Voice

Background Noise

1 m

Jazz

+36°

 

Figure 3.7. Testing configuration (in soundproof chamber). 
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Figure 3.8. An example of a profile for a directional sound source. 
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Figure 3.9. An example of a profile for a background sound source. 



- 29 - 

Figure 3.8 shows the actual profile for the directional sound source at 0°/50 cm. 
Figure 3.9 shows one for a non-directional background sound source. Although it is not 
shown here, the profile for the directional sound source at 36°/1 m was also used in the 
decomposition process. In total, three profiles were used in this experiment, two for the 
directional sound sources, and one for the background noise source. The decomposition 
is defined by Equation (3.15). As the directivity of the background noise is not 
rigorously determined, the profile for the background noise is only valid in terms of the 
average. In other words, it was introduced for an approximate solution. In general, if 
there is a distinct noise source in the background, it should be defined separately as a 
directional noise source. 

These profiles were measured by using white noise in our soundproof chamber 
before the experiment began. As shown in Figure 3.9, the profiles are not completely 
flat even for a non-directional sound, because of the directivity pattern of the unit 
microphone. 
The test cases are as follows: 
1) Only a background noise was added 
2) Only a directional noise was added 
3) Both a background noise (reduced to 83%) and a directional noise (reduced to 40%) 

were added 
All the three profiles were used for all of the test cases. 

The SNR for each case was almost constant around 20 dB. The SNR of the original 
signal without adding noise was 31.4 dB for the male speaker and 36.0 dB for the 
female speaker.  

We measure the error rate with CER (Character Error Rate), because the evaluation 
task is transcription and there is some ambiguity in word segmentation in Japanese as an 
agglutinating language. The definition of CER is in Equation (3.22). 

( ) ( ) ( )
( )characters expected all ofnumber 

characters deleted ofnumber characters inserted ofnumber characters dsubstitute ofnumber ++=CER
 ,     

 (3.22) 
The CER measured using only the left channel of the original signal without adding 
noise was 3.3% for the male speaker and 5.4% for the female speaker. 
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Figure 3.10. Resulting character error rate (in soundproof chamber). 
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Figure 3.11. Resulting signal-to-noise ratios (in soundproof chamber). 
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The conventional methods to be compared were chosen as follows: 
1) No beamformer (Left or Right only) 
2) Delay and Sum (DS) 
3) Two-Channel Spectral Subtraction (2-ch SS) 
4) Two-Channel Adaptive Spectral Subtraction (2-ch Adaptive SS) 
Figure 3.10 and Figure 3.11 show the resulting CERs and SNRs, respectively, for this 
experiment. The speech recognition was done only when the target signal was active. 
Compared with the conventional methods, Profile Fitting (PF) shows superior 
performance for CER. Generally speaking, CER was reduced by more than 20% from 
the best result of the conventional beamformers (2-ch Adaptive SS). The SNR was 
almost the same as for 2-channel Adaptive SS. 

3.6.2. Realistic environment  

We also evaluated the performance in a more realistic environment. Figure 3.12 shows 
the testing configuration in our meeting room with a reverberant time of 0.22 seconds. 
The geometry of the microphone array, the tested recognition task and the signal 
processing parameters were the same as in the previous test. 

Two sets of 125 sentences, each spoken by a male speaker and a female speaker were 
played back using a loudspeaker located at the angle of 0° (directly in front) and at the 
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Voice

1 m

Jammer 
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+40°
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Jammer 
Voice 2

-50°

3.2 m 

 6.2 m

 

Figure 3.12. Testing configuration (in meeting room). 
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distance of 50 cm. The jammer voices were two human speeches by a male and a 
female speaker respectively, and they were played back continuously using 2 
loudspeakers that were located at the angles of +40° and –50°, both at a distance of 1 m. 
In the decomposition process, we used three profiles for the directional sound sources of 
+40° at 1 m, 0° at 50 cm, and -50° at 1 m. These profiles were measured in the meeting 
room before the experiment began. 

Figure 3.13 and Figure 3.14 show the resulting CERs and SNRs, respectively, for 
this experiment. The speech recognition was done only when the target signal was 
active. Profile Fitting (PF) reduced the CER by approximately 11% from the best result 
of the conventional beamformers (2-ch SS). The extent of the improvement was 
relatively smaller than in the previous experiment. The SNR for Profile Fitting was 
almost the same as for the 2-channel Adaptive SS. 

3.7. Concluding Remarks 
The proposed method focuses on the power distribution profile of a microphone array to 
decompose an observed profile into some known profiles so as to extract the target 
signal only. 

Experiments in a non-reverberant environment with a dictation system configured 
with 2 microphones showed the proposed method (Profile Fitting) reduced CER by 
more than 20% from the best results of the conventional beamformers (2-ch Adaptive 
SS). However, in a realistic environment, the extent of the improvement was reduced to 
11%. One of the factors of this degradation could be the reverberation in the room. 

The application of Profile Fitting is not limited to the 2-microphone system. It can be 
easily extended to systems with small numbers of microphones like 3 or 4 microphones 
configured in 2-dimensional or 3-dimensional geometries, where the associated profiles 
should have multiple directional axis, each associated directly or indirectly with the 
spatial dimensions 
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Figure 3.13. Resulting character error rates (in meeting room). 
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Figure 3.14. Resulting signal-to-noise ratios (in meeting room). 
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4. Sound Source Localization by 
Profile Fitting Method 

4.1. Introduction 
Profile Fitting can be used also for sound source localization. The sound source location 
(or direction) is essential information for beamformers so as to focus on the target. 
Therefore conventional beamformers combine some external logic to detect the target 
source location. 

In a two-microphone array system, the interchannel cues (ITD and IID) are often 
referred to for horizontal localization. There have also been several attempts to apply 
ITD and IID for vertical localization outside of the median plane [Mar95]. In the 
median plane, ITD and IID do not contribute to vertical localization [MN82] since they 
are minimized. To achieve vertical localization in the median plane, it was suggested 
that a spectral cue model [ZC93][HO97] be integrated. However, since the spectral cues 
depend on the spectrum of the signal source, they are not robust enough against signal 
variations and environmental noise. Also, it may require special considerations to 
consolidate the interchannel cues (ITD and IID) and the spectral cues in one localization 
system [MII02]. 

In this chapter, we enhance the localization cues for a specific reflection by using 
reflectors correlated with the location of the sound source. We call this a reflection cue. 
It can be detected by CSP analysis directly, or it can be observed as a modification of 
the ITD, IID, or the profile. By using this reflection cue, we believe equi-distant vertical 
localization in the median plane becomes possible without relying on the spectral cues.  

For noise robustness, we introduce Profile Fitting (PF) method for sound source 
localization. It was originally proposed for speech enhancement in Chapter 3, but we 
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show it is also effective for localization in a noisy field because of its noise reduction 
feature. For the conventional method using ITD and IID, several techniques have been 
proposed to improve the performance in noisy fields [Mar95][NH01][NOK02]. One of 
them is to use the onsets to get a locally high signal-to-noise ratio (SNR). Another 
technique is to train the probability density function of the sound location in the actual 
noise field. However those methods do not have a function to subtract noise, so they 
depend on the SNR where ITD and IID are trained. 

4.2. Reflector Design 

4.2.1. Reflector design for vertical localization 

In the HRTF approach, the pinna shape is just a given parameter. In our approach, we 
deliberately designed the shape of a pinna-like reflector so that the following process 
can retrieve the localization cues provided by the reflector. 

Figure 4.1 shows the concept of the design. The ellipses are plotted where the two 
foci for each ellipse are at the microphone location and one of the candidate locations of 
the sound source. The reflector shape is given by the envelope curve for these ellipses. 
At the upper part of the reflector, sound waves from a high elevation are reflected to 
focus on the microphone. At the lower part of the reflector, sound waves from a low 
elevation are reflected so as to focus on it. Sound waves from unmatched elevations 
should be diffused by the reflection. Therefore the microphone receives both a direct 
wave and a reflected wave whose delay time is correlated with the sound source 
elevation. It should be noted that the actual reflector has a 3D-shape designed as an 
envelope of the revolutions of the ellipses (spheroids). 

4.2.2. Verifying prototype reflector using CSP analysis 

For our experiment, the reflector was made of gypsum molded from a handmade clay 
model. We verified the working accuracy by Cross-power Spectrum Phase (CSP) 
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analysis [OS94] to check that the reflector generated the desired main reflected wave 
according to the sound source location.  

Figure 4.2 shows the configuration for this test. Human speech in calls for attention 
(“oh-i”, “moshi-moshi”, etc. in Japanese) of about 5 seconds in length were played back 

Candidate Locations of 
 Sound Source n 

Microphone
Location 

Reflector 
Shape 

 

Figure 4.1. Concept of reflector design. 
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Figure 4.2. Testing configuration for the verification of the prototype reflector. 
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in a soundproof chamber using a loudspeaker located directly in front at a distance of 2 
m with elevation angles of 0°, 15°, 30°, 45°, and 60°. Two microphones with reflectors 
recorded the sound signal at a 48 kHz sampling frequency. 

As shown in Figure 4.3, the output of CSP analysis shows many sub-peaks, so the 
criteria of the intensity for the acceptable sub-peaks are arbitrary. Here we took the top 
3 peaks whose intensities were greater than a tenth of the main peak as valid peaks. 
Table 4.1 shows the result of the analysis. The peak in first place is the main peak 
representing a direct wave. It was observed at position 0. This means the signal source 
was directly in front. In second and third places, two sub-peaks caused by correlations 
between the direct wave and the reflected wave should be detected at the designated 
positions. In these experiments, we observed at least one sub-peak at the designated 

 
0 +9

Sub Peak

Main Peak 

 

Figure 4.3. Output of CSP analysis with reflector for a signal source at an 
elevation angle of 30°. 

Table 4.1. Peak locations detected by CSP analysis 

Elevation angle of 
sound source 

0° 15° 30° 45° 60° 

Peak in 1st place 0000    0000    0000    0000    0000    
Peak in 2nd place N/A 10101010    9999    6666    2222    
Peak in 3rd place N/A N/A N/A ----6666    -10 

Design point ±14 ±12 ±9 ±5.5 ±2.5
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positions except for 0°, where the area of the designed surface for the reflection (at the 
root of the reflector) was zero. The absence of an intense reflection can also be treated 
as a localization cue. 

4.3. Sound Source Localization 
CSP analysis can be used for sound source localization. However, this depends on the 
assumption that the specific reflected wave is distinct. In a noisy environment, it is 
difficult for CSP analysis to detect the specific reflected wave, because the sub-peaks 
associated with the noise sources become dominant. Also, the specific reflected wave 
can be distinct only when a signal source is located exactly on the designated positions 
and the working accuracy of the reflectors is precise. Therefore, the conventional 
method using ITD and IID, and Profile Fitting using a profile are investigated in this 
section. They do not directly utilize the specific reflected wave, but we expect the 
design method discussed in Section 4.2 will work to make the large modification in the 
ITDs, IIDs, and profiles, so that the localization methods can utilize these reinforced 
localization cues. 

4.3.1. Conventional method using ITD and IID 

The probability density function, the likelihood that a source is located at a particular 
position, can be approximated by the product of the marginal distribution of the ITD 
and IID at each sub-band frequency [Mar95][NH01]. We applied the Gaussian 
distribution for the likelihood as Equation (4.1): 
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where nΨ  is the likelihood expected for a signal source at n, ω is the sub-band 

frequency, T is the time frame number, 2
ITD,ωσ  and 2

IID,ωσ  are the variances of the 

interchannel differences under consideration, and K is a normalizing constant.  
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(a) ITD plots without reflectors. 
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(b) ITD plots with reflectors. 

Figure 4.4. ITD plots with and without reflectors for a signal source in the 
median plane at various elevation angles. The plots are smoothed over 8 
sub-bands (=375 Hz). 
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We defined the interchannel differences and the variances in Equations (4.2) to (4.7): 
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where TR ,ω  and TL ,ω  are the short-time Fourier transforms of the observations for 

each of the right and left channels, NT is the total number of frames to be examined, and 
Nn is the total number of candidate locations. IID is measured in dB and ITD is 
measured in units of the sampling count. We selected time frames of 0.2 sec around the 
onset for the each utterance to be examined. 

Before the experiment, n,ωITD , n,ωIID , 2
ITD,ωσ , and 2

IID,ωσ  should be trained 

using a signal from each candidate location n with or without noise at a specific SNR. 

4.3.2. Reflector effect on ITD and IID 

If the left and right reflectors are configured completely symmetrically, ITD and IID 
still take near-zero values. However, as shown in the CSP output of our prototype 
(Figure 4.3), the desired reflected waves generated by the actual left and right reflectors 
are not necessarily at the same level. In that case, the ITD and IID values are 
significantly modified by the reflected waves. Also, it is difficult to predict the actual 
modification before measurement, because there are many reflected waves and their 
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levels are not balanced. The expectation here is that the reflectors should just cause 
large modifications at the characteristic positions. For an example, Figure 4.4 shows the 
ITDs with and without our reflectors. Without reflectors, ITD plots are similar against 
variations of signal source elevation. This implies it is difficult to determine the signal 
source elevation by ITD without reflectors. With reflectors, we can observe the shape of 
ITD plots varies a lot against signal source elevation. As the localization process checks 
the shapes as a whole, it should not be a problem, even if they are partially similar, 
under the assumption that the signal is broadband. 

4.3.3. Profile Fitting 

For robustness against noise, we introduce a Profile Fitting for sound source localization 
utilizing the residual of the approximate decomposition of signal and noise. It is based 
on the concept that the power distribution observed at varying look direction can be 
approximated by the linear combinations of the template distributions, each associated 
with a signal source and a noise source. When the assumed location n is correct, 
Equation (4.8) is justified.  

( ) ( ) ( )θQβθPαθX ωn,ωn,ωn,ωω ⋅+⋅≅ , (4.8) 

where Xω(θ) is the power distribution of the sub-band frequency ω observed at the 
particular look direction θ for a delay and sum beamformer. This is called an “observed 
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Figure 4.5. Template profiles for a signal source at elevation angles of 0° and 30° 
measured with reflector. 
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profile.” Pn,ω(θ) is a “template profile” measured by white noise coming from the 
candidate location n for the signal source. Qω(θ) is a “template profile” measured for the 
noise source. The template profile for the noise source can be measured using a white 
noise originating from the noise source before the experiment if the location of the noise 
source is known a priori. Otherwise it should be measured from the actual noise by 
averaging over noise segments during the experiment. 

Profile Fitting determines each of the weight coefficients αn,ω and βn,ω for the 
template profiles of a signal source and a noise source, so as to minimize the evaluation 
function Φn,ω defined by Equation (4.9): 
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.  (4.9) 

We configure the delay and sum beamformer in the time domain, using Equation (4.10), 
and the observed profile Xω(θ) is derived by using Equations (4.11) and (4.12): 
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where l(t) and r(t) are the time domain observations of the left and right channels at the 
t-th sample, and the look direction θ is measured by the delay in the samples. T is the 
time frame number and NT is the total number of frames. Since the template profile 
should contain only the directivity information, it is normalized by the power at each 
sub-band as Equation (4.13):  
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For speech enhancement, the decomposition using Equation (4.9) should be done in 
each time frame, but for sound source localization, it should be done only once. 
Therefore, Xω(θ) is an averaged observation over a few seconds. As Profile Fitting does 
not rely on onsets, test data can include non-speech frames before and after the 
utterances. 
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The coefficients αn,ω and βn,ω can be determined by variation method with 
non-negative conditions. 

Once the coefficients are determined, then the residual Φn,ω can be determined. With 

Equation (4.14), we calculate the normalized residual nΦ  as a function of n by dividing 
the sub-band power and averaging over the Ω sub-bands. Using Equation (4.15), the 
location of the signal source is estimated as n̂  so as to minimize the normalized 
residual. 
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4.3.4. Reflector effect on profile 

A profile contains ITD information as peak-shifts and IID information as a bias. Also, 
diffusion or reflection of the target signal increases the bias of the profile. Therefore, it 
should be noted that even though the desired reflected waves generated by the left and 
right reflectors are completely identical, the bias of the profile still retains the reflection 
cue, while the peak-shift might be zero in that case. 

Figure 4.5 compares the template profile for an elevation angle of 30° with the one 
for 0°. At the frequency of 3,375 Hz, the peak-shift and bias are observed in the profile 
for 30°. They are caused by the reflected waves arriving with their own delays. 
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4.4. Experiments and Results 

4.4.1. Preliminary experiment 

In order to verify Profile Fitting with the designed reflectors works correctly, we 
performed a preliminary experiment using a limited amount of data for vertical 
localization in a sound proof chamber. 

The recording parameters and the geometry are the same as in Section 4.2.2 for the 
CSP analysis. In a soundproof chamber, four utterances about 5 seconds in length were 
played back from each candidate location for a signal source. As a noise source, white 
noise was played from a loudspeaker at an azimuth angle of 15°, a distance of 1 m, and 
an elevation angle of 0° (Figure 4.6). The recorded noise was manually mixed with the 
recorded signal, so that the SNR could be controlled. 

Before the experiment, the template profiles for the signal sources and the noise 
source were individually measured using white noise coming from each sound source 
location. 
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Figure 4.6. Testing configuration for the preliminary experiment. 
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Using Equations (4.16) and (4.17), a score ρ is introduced to define the relative 
degrees of superiority using the second best (smallest) normalized residual as the base 

value. Here, �n  denotes the correct location. When the correct location has the 
minimum value, it should be selected by Equation (4.15) and the score will have a 
positive value. If the normalized residual is zero, the score becomes 100%. A positive 
large score means it is estimated with high confidence. If the score decreases close to 
zero, it means the chances increase that the second best candidate might be incorrectly 
taken as a result of noise or some other influence. If the correct location does not have 
the minimum value, then Equation (4.15) will fail to select the correct location, and the 
score will have a negative value. 
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On calculating the normalized residual in Equation (4.14), an averaging operation was 
performed over the sub-band frequencies from 938 Hz to 7,453 Hz where the reflector 
effect is most apparent. 
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Figure 4.7. Resulting score for sound source localization by Profile Fitting. (*) 
denotes a reference trial without using the template profile for the noise source. 
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Figure 4.7 shows the experimental results. All elevations maintain large positive 
scores in spite of SNR degradation.  This means the correct signal location was 
selected from the five candidates without being affected by noise, showing the 
superiority of the approximate decomposition by Profile Fitting. On the other hand, the 
reference experiment (marked * in Figure 4.7) without using the template profile for the 
noise source failed in the noisy environment. 

4.4.2. Experiments in a realistic environment 

In order to evaluate the capability in more realistic conditions, we performed an 
experiment using more utterances from more locations in a slightly reverberant meeting 
room with realistic noise. 

As shown in Figure 4.8, 21 locations were defined as a signal source location. They 
are also candidate locations for the localization. They have 5 horizontal steps from -30° 
to +30°, and 5 vertical steps from 0° to 60°. As a noise source, cafeteria noise in stereo 
was played from two loudspeakers at azimuth angles of 30° and -30°, a distance of 2 m, 
and an elevation angle of 0°. The recorded noise was manually mixed with the recorded 
signal, so that the SNR could be controlled. The recording was done in our meeting 
room whose reverberant time is about 0.22 sec.  

Per location, a total of 108 utterances of personal names spoken by 6 male and 6 
female speakers were played back. In order to evaluate the robustness, we projected an 
imaginary grid around each candidate location as shown in Figure 4.9, and played back 
almost same numbers of utterances from each grid point. Here, we categorize the 
utterances by the offset error from the candidate location. Category A is for the 
utterances from the exact candidate location. Category B is for the utterances whose 
azimuth angle and elevation angle are correct but whose distance contains about ±10% 
error. Category C is for the utterances whose azimuth angle is correct but whose 
elevation angle contains about ±4° error or whose distance contains about ±10% error. 
Category D is for all the utterances that contain at least one of the errors in azimuth of 
about ±4°, elevation of about ±4°, or distance of about ±10%. It should be noted 
Category B, Category C and Category D do not include Category A, and therefore the 
Categories other than A involve offset errors in one or multiple dimensions. 
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Figure 4.8. Testing configuration for the experiment in a realistic environment. 

 
 

 

 
Category A 

Category B 

Category D 
+20 cm

-20 cm +4° 

-4° 
+4° 

-4° 

Category C 

 

Figure 4.9. Category by the offset from the location. 
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The sizes of the offset errors should not be too large with reference to the design 
points and the neighboring candidate locations. Here, the offset errors in azimuth and 
elevation are about a quarter of the angles between the candidate locations. The offset 
error in distance is chosen as a simple fraction of the distance between the microphone 
and the candidate locations, so that it will be near to the actual length of the offset errors 
in azimuth and elevation. 

For Profile Fitting, the template profile for the noise source was measured from the 
actual noise for 1 sec just before each utterance. It should be noted that the template 
does not contain any spectral information, but just records the directivity information as 
it is normalized by a power at each sub-band. 

Both for Profile Fitting and the conventional method, the sub-bands to be examined 
were selected from 938 Hz to 7,453 Hz where the reflector effect is most apparent. 

Figure 4.10 shows the success rates for the localization of 5 signal source locations in 
the median plane out of 21 candidate locations. The SNR was 11 dB. Both Profile 
Fitting and the conventional method (trained by the utterances in Category A) showed 
high success rates for the utterances in Category A that have very little offset error from 
the candidate locations. On the other hand, the success rates are significantly decreased 
for the utterances in Category D that have much larger offset errors. Figure 4.10 also 
shows the result of the conventional method trained using the utterances in Category D. 
This improved the success rate for the utterances in Category D. In that case, the 
probability density functions have broad distributions, as they are trained with large 
offset errors associated with Category D. Therefore, that causes a significant loss of 
accuracy for the utterances in Category A. 

In order to evaluate the dependency on SNR, we also tried this localization without 
adding noise. The SNR was 28 dB. Figure 4.11 shows the resulting success rate. It also 
shows the result of the conventional method that was trained in a noisy environment (11 
dB). In that case, the SNR was unmatched between the training and the localization. 
The success rate of this unmatched case was worse than the matched cases shown in 
Figure 4.10 (at 11 dB) and Figure 4.11 (at 28 dB). We conclude the conventional 
method is dependent on the SNR when it is trained. Also, there is concern that the 
conventional method is dependent on the noise color as well as the SNR, because the 
probability density functions are trained for each sub-band. On the other hand, Profile 
Fitting is less dependent on them, because it does not require any training in advance. 
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Figure 4.10. Success rates for the localization of 5 signal source locations in the 
median plane out of 21 candidate locations at the SNR of 11 dB. 
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Figure 4.11. Success rates for the localization of 5 signal source locations in the 
median plane out of 21 candidate locations at the SNR of 28 dB. 
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Figure 4.12. Success rates for the localization of 21 signal source locations out 
of 21 candidate locations at the SNR of 11 dB. 
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Using not only the 5 signal source locations in the median plane, but also using all of 
the 21 signal source locations, Figure 4.12 shows the success rates resulting for the 
localization out of 21 candidate locations. We see Profile Fitting outperformed the 
conventional method in all categories. It should be noted that the conventional method 
checked the utterances only around onsets where the SNR was locally high, both for 
training and localization. Profile Fitting did not use this technique and still had an 
advantage in the experimental results. 

Figure 4.13 shows maps of the signal source locations and the estimated locations for 
the utterances from the 5 signal source locations in the median plane in Categories A, B, 
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 (a) Profile Fitting (SNR 28 dB).   (b) Profile Fitting (SNR 11 dB). 
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 (c) Conventional method (SNR 28 dB).  (d) Conventional method (SNR 11 dB). 
 

Figure 4.13. Maps of the signal source locations and the estimated 
locations for the utterances included in Categories A, B, and C (187 
utterances), localizing 5 signal source locations in the median plane out of 
21 candidate locations at the SNRs of 28 dB and 11 dB. 
The conventional method was trained using the utterances in Category A 
at the matched SNR. The area of the each bubble is proportional to the 
number of estimations. 
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and C. In the error cases, the locations estimated by Profile Fitting were closer to the 
correct locations than the ones using the conventional method. This trend was still 
observed when the SNR was reduced to 11 dB. In both methods, the azimuth estimation 
was very accurate. 

4.5. Concluding Remarks 
We have proposed a framework for sound source localization using Profile Fitting. This 
can reduce the effect of noise by exploiting the approximate decomposition of signal 
and noise. In Profile Fitting combined with reflectors, the process for horizontal 
localization and the process for vertical localization can be consolidated into a single 
process. Experiments showed this method can correctly provide a rough estimate of the 
vertical location in the median plane even in a noisy environment. Profile Fitting 
showed more robustness against SNR variations than the conventional method using 
ITD and IID. 
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5. Echo-Cancellation and Noise 
Reduction by SSEC Method 

5.1. Introduction 
Automatic speech recognition is widely used in cars to input commands for car 
navigation and hands-free telephone dialers. However, the current systems are not 
sufficiently robust against noise. As most of the current systems are based on the 
techniques of multi-conditional training and spectral subtraction [Bol79][BSM79], they 
rely on the assumption that there is only a stationary cruising noise. Therefore, the 
recognition rate is degraded when there are non-stationary noises such as those created 
by road bumps or oncoming cars. The degradation is much more severe when there is 
music or news coming from a radio or a CD player in the car. 

Music and news are actually non-stationary noises. However, if they are coming 
from a radio or a CD player in a car, we may have a chance to use an echo canceller, 
because it is not technically difficult to rout the reference signals from such devices to 
the recognition system.  
Previous research reported that an echo canceller works well in a quiet environment. 
However its performance is poor for low signal to noise ratios [BSN00]. There has been 
a lot of research on ways to improve the performance of echo cancellers along with 
noise reduction [MV96][AFB96][DP97][SNH+03]. However, many of the target uses 
were for teleconference and hands-free telephones, where auditory intelligibility has the 
highest priority. Our objective is to find a solution for automatic speech recognition with 
high performance echo cancellation and noise reduction. Our second objective is to 
retain practical compatibility with the current acoustic model trained with stationary 
cruising noise and spectral subtraction. In this chapter, we assume the cruising noise can 
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be treated as stationary. 

5.2. Conventional Methods 
In order to improve the performance of an echo canceller in a noisy environment, the 
background noise should be reduced before echo cancellation. If many microphones are 
available, a beamformer can be used to reduce the noise before or at the same step as the 
echo cancellation [DCN97][KFK04]. 

Since we assume a single microphone, we need to consider one-channel noise 
reduction instead of using a beamformer approach. A Wiener Filter [LO79], MMSE 
[EM84], and spectral subtraction are candidates for the noise reduction. For automatic 
speech recognition, spectral subtraction is often used because of the computational cost 
and the performance. As the output is not for humans, the annoying side effect known 
as musical noise is acceptable. However, the problem for this application is that we 
cannot place the noise reduction stage before the echo canceller because of the 
nonlinearity in the echo path [BSN00]. Therefore, the conventional combination is echo 
cancellation first and noise reduction second, as shown in Figure 5.1. 

The conventional time-domain echo-cancellers based on LMS rely on phase 
correlation as well as magnitude correlation between the observed signal and the 
reference signal. However the phase information is susceptible to noise. That’s one of 
the reasons why it takes longer time in adaptation in noisy environment. On the other 
hand, the echo canceller based on spectral subtraction does not rely on phase 
information. Therefore, the adaptation will quickly converge with some trade off in 
accuracy due to the lack of phase information. However, it should be noted that the 
remaining echo can be further reduced by introducing an over-subtraction technique 
with the echo canceller based on spectral subtraction. 

If the echo canceller is implemented using spectral subtraction, the noise reduction 
stage can be placed before or at the same step as the echo canceller, and we can expect 
better performance. However, the question is how to estimate the stationary noise power 
for the noise reduction under the influence of the echo. If the application is a telephone, 
we can expect noise-only periods in which no one is speaking [Tak97]. However, we 
cannot expect such a period in our application, because a car-radio or a car-CD 
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produces sound continuously. Therefore, we propose a new method that estimates the 
stationary noise power during the adaptation of the echo canceller using spectral 
subtraction. 

Dreiseitel et al. placed a time-domain echo canceller before the combination of noise 
reduction and echo canceller in spectral subtraction form [DP97]. By preprocessing the 
input using the echo canceller, the stationary noise is estimated more reliably at the 
noise reduction stage. Our proposed method can also work with this type of 
preprocessing for further improvement. 

Since the reverberation in a car is longer than the processing frame, it degrades the 
performance of frame-based echo cancellation using spectral subtraction. In order to 
solve this problem, Sakauchi et al. introduced a second term, a scaled echo component 
estimated in the previous frame [SHN+03]. However, their scaling factor should be 
preset depending on the reverberation in the room. In contrast, our system does not 
require any a priori knowledge about the room reverberation, because we extended the 
echo cancellation to refer to the last several frames, and the factors can be determined 
through the adaptation. The structure is similar to the taps of an adaptive filter in the 
time domain. In this way, our echo canceller can be adapted to cancel the echoes 
including the reverberations from past frames. 
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Figure 5.1. Conventional combination of echo canceller and spectral subtraction. 
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5.3. Proposed Method (SSEC) 
We propose a method named SSEC (Simultaneous adaptation of spectral Subtraction 
and Echo Cancellation). A stationary noise component for spectral subtraction is 
estimated through the adaptation of an echo canceller. Figure 5.2 shows a block diagram 
of our proposed Method 1 (without preprocessing), and Figure 5.3 shows our proposed 
Method 2 (with preprocessing). As the preprocessing stage is a standard N-LMS echo 
canceller in the time domain, we describe our method after the preprocessor. 

The echo canceller stage and the spectral subtraction stage are integrated into the 

same stage. This estimates both the stationary noise power ωN  and the echo power 

Qω(T). They are subtracted from the observed noise power Xω(T) with the subtraction 
weights α1 and α2, respectively. The compensated output Yω(T) is written as Equation 
(5.1). 

( ) ( ) ( ) ωωωω αα NTQTXTY ⋅−⋅−= 12 , (5.1) 

where T is a frame number. The index ω is a bin number of the DFT corresponding to 
the sub-band frequency, and the process described in this section should be performed 
for each ω. 
In general, flooring is an essential technique for spectral subtraction. The floored output 
Zω(T) is given by Equations (5.2a) and (5.2b). 

( ) ( )TYTZ ωω =  if ( ) ωω β NTY ⋅≥  , (5.2a) 

( ) ωω β NTZ ⋅=  if ( ) ωω β NTY ⋅<  , (5.2b) 

where β is a flooring coefficient. α1 and β should be set to the same value with which 
the acoustic model was trained. The value of α2 can be larger than α1 for 
over-subtraction in order to cancel more of the echo component, which has a large 
effect on the performance of automatic speech recognition. We introduce an 
over-subtraction factor γ as Equation (5.3). 

12 αγα ⋅= . (5.3) 
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Figure 5.2. Proposed method 1 (without preprocessor). 
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Figure 5.3. Proposed method 2 (with preprocessor). 
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Next we describe how to estimate ωN and Qω(T). The value of Qω(T) is estimated as 

the weighted sum of the reference signal power Rω(T) for the present and the most 
recent L frames so as to cope with reverberation that lasts longer than the processing 
frame. 

( ) ( ) ( )�
−

=

−⋅=
1

0

L

l
lTRlWTQ ωωω . (5.4) 

For convenience, ωN is formulated as a product of an arbitrary constant C and its 

weight. 

( ) CLWN ⋅= ωω . (5.5) 

Although we only consider the stationary cruising noise of a car, the stationary noise 

power may fluctuate around the average in the frame-wise observation, so ωN  can be 

estimated as an averaged value. Figure 5.4 shows the concept of the estimation. 
Therefore, our goal is to estimate the non-negative adaptive weights Wω(l) where l 
ranges from 0 to L. They should be set so as to minimize Equation (5.6) during 
non-speech periods with the subtraction weights α1 and α2 set to 1. 

( ){ }[ ]2TDE ωω =Φ , (5.6) 

where Dω(T) is the error signal as defined in Equation (5.7). E[ ] denotes the expectation 
operator and we calculate it as the frame-wise average during non-speech periods. 

( ) ( ) ( ) ωωωω NTQTXTD −−=  

( ) ( ) ( )( )[ ]
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The values of Wω(l) can be determined from  ( ) 0=∂Φ∂ lWωω . This can be expressed 

in a matrix and vectors as Equations (5.8) to (5.11). 

ωωω BAC ⋅= . (5.8) 
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 (5.9) 
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The values of Wω(l) can be determined from Equation (5.12). 

ωωω CAB ⋅= −1 .  (5.12) 

Since this off-line form requires the inverse matrix, it has considerable  computational 
cost. By introducing the diagonal approximation for the matrix ωA , we can formulate 

the adaptive weights Wω(l) so as to be successively updated in each non-speech frame 
using Equations (5.13a), (5.13b) and (5.14). The parameter θ is an updating factor and 
ε is a constant for stability. 

( ) ( ) ( )
( ) ( ) ε

θ
ωω

ωω
ω +−⋅−

⋅−
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�
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TDlTR
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( ) ( )
ε

θ ω
ω +⋅

⋅
⋅=∆
�

T
CC

TDC
lW , if  l = L. (5.13b) 

( ) ( ) ( )lWlWlW TT
ωωω ∆+= −1 . (5.14) 

This on-line form has a weak dependency on the constant C. 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( )

⋅

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

⋅⋅−−⋅

−−⋅−−⋅−−−−⋅

⋅⋅−−⋅

=

���

���

���

 

1

1111

1

TTT

TTT

TTT

CCCLTRCTR

LTRCLTRLTRLTRTR

TRCTRLTRTRTR

ωω

ωωωωω

ωωωωω

ω

�

�

����

�

A



- 60 - 

5.4. Preliminary Experiment 
Before evaluating the proposed method in automatic speech recognition, we first 
checked that it can properly estimate the stationary noise power through the adaptation 
of the echo canceller. We selected one male utterance from the test set for this trial. It 
was recorded in an actual car driving on a highway, and manually mixed with the music 

Table 5.1. The signal-to-noise ratio of the data in the experiment. They are the 
averaged values for all 24 subject speakers. Ncruise, Nmusic and Nall denote the 
cruising noise component, the music noise component and the total noise 
respectively 

(dB) Stationary City Drv. Highway

S/Ncruise 10.5 4.5 2.6 

S/Nmusic 10.1 6.5 9.8 

S/Nall 6.4 1.1 1.2 
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Figure 5.4. The concept  how to estimate the averaged stationary noise power 

ωN  through the adaptation of Wω. (L is set to 1 for simplicity.) 
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sound recorded separately. As shown in Figure 5.5, our method was able to estimate the 
stationary noise power in an acceptable way. Here, the actual stationary noise was 
measured as the average of the cruising noise. If we estimated the stationary noise 
power by the simple average of the observation regardless of the existence of the echo, 
it would be very different from the actual values, as plotted with the “by Direct 
Average” line in Figure 5.5. For the proposed methods, we see some deviation in the 
rage of 1,600-2400 Hz, 3,500-4,000 Hz and 4,500-5,000 Hz. Our interpretation is that 
the estimation error increased because the echo component is much larger than the 
stationary noise in those range. In other words, the deviation is relatively small 
compared to the echo power, which is why they are plotted with a logarithmic scale. 

5.5. Experiment in Automatic Speech 

Recognition 
A microphone was installed on the visor in a car. The subject speakers were 12 females 
and 12 males. Each speaker read 13 Japanese sentences for the digit recognition task 
and for the command recognition task in a car at each of three speeds (stationary, city 
driving, or highway speed). The total number of utterances was 936 for each test subject 
over all of the tasks. They were recorded with a sampling frequency of 22 kHz. The 
cruising noise in the recorded data was almost constant. 

The music playing from the in-vehicle loud speakers was recorded separately by a 
microphone, along with a reference signal. The music was up-tempo popular music with 
a female vocalist. The in-vehicle loud speakers are stereo, but the music source was 
monaural in this experiment. The recorded music was mixed with the recorded 
utterances to generate the test data. The averaged SNRs are shown in Table 5.1. The 
noise power and the signal power were measured by the average in the non-speech and 
speech periods respectively in the recorded data. 

The digit recognition task involves connected digits with no grammar constraints on 
the length. Therefore, it is sensitive to insertion errors, mostly occurring in the 
non-speech periods, and this allows measuring the amount of residual echo. 
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The command recognition task is a set of commands used in a car, such as “North 
Up”, “Input Address”, etc. As the grammar only allows 1 command per utterance, we 
do not have to worry about insertion errors. Therefore, this allows measuring the 
amount of distortion of the speech (possibly caused by the echo canceller).  

The acoustic model used for this automatic speech recognition was a speaker 
independent model trained with various cruising noises including idling, city driving 
and highway driving. The acoustic model was trained using spectral subtraction with the 
subtraction weight set to 1.0. Since the training data was sampled at 11 kHz, the test 
data was down-sampled before recognition. In this experiment, we did not use a 
speech-silence detector for the automatic speech recognition and the complete 
utterances were decoded in order to measure the front-end performance accurately. 
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Figure 5.5. Power plots for the actual stationary noise and the estimated 
stationary noise under the influence of the echo. The proposed method 
estimated the stationary noise using the off-line formula. 
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On the other hand, the performance of speech-silence detector is critically important 
for the front-end processing including echo cancellation, spectral subtraction and the 
proposed method. In this experiment, we used the oracle speech-silence information for 
the front-end processing. This was prepared using the data without adding the music. In 
order to get the most reliable speech-silence information, we installed two additional 
microphones to do the speech-silence detection based on the coherence between the 
microphone outputs [AM97]. 
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Figure 5.6. Word error rate using the proposed method 1 for various values of 
the over-subtraction factor γ and the length of the adaptive weights L, for the 
digit recognition task. 
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Figure 5.7. Word error rate using the proposed method 1 for various values of 
the over-subtraction factor γ and the length of the adaptive weights L, for the 
command recognition task. 
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We measure the error rate with WER (Word Error Rate) defined in Equation (5.15), 
because the evaluation involves lots of insertion words and deletion words with the digit 
task. 

( ) ( ) ( )
( ) wordsexpected all ofnumber 

 wordsdeleted ofnumber  wordsinserted ofnumber  wordsdsubstitute ofnumber ++=WER
 ,  (5.15) 
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Figure 5.8. Word error rate using the proposed method 1 for various values of 
the base subtraction weight α1 and the over-subtraction factor γ for the echo 
component, for the digit recognition task. 
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Figure 5.9. Word error rate using the proposed method 1 for various values of 
the base subtraction weight α1 and the over-subtraction factor γ for the echo 
component, for the command recognition task. 
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Figure 5.6 and Figure 5.7 show the resulting WERs depending on the various 
over-subtraction factors γ and the lengths of the adaptive weights L, for the proposed 
Method 1. This used the on-line formula with the parameters Const=103,θ=0.1, 
andε=104. The WERs are averaged values for the three speeds and the 24 subject 
speakers. Based on the results, the over-subtraction of the echo improved the 
recognition accuracy. The optimum factor was around 1.5 to 2.0. Also, introducing a 
sufficient length of adaptive weights improved the recognition accuracy. In the 
following experiment, we select γ=2.0 and L=5 as the default setting. 

Figure 5.8 and Figure 5.9 show the resulting WERs depending on the various 
over-subtraction factors γ and the base subtraction weight α1, for the proposed Method 1. 
Based on the results, the optimum weight was around 1.0 to 1.5, which is close to the 

Table 5.2. Detailed word error rates for the conventional methods and the 
proposed methods 

Digit Task WER (%) 

 Stationary City Drv. Highway Average

Case 1: SS only (reference without music) 0.5 0.6 1.1 0.8 

Case 2: SS only 3.1 14.1 12.1 9.8 

Case 3: Echo Canceller + SS 1.4 2.2 3.6 2.4 

Case 4: Proposed Method 1 (L=5, α1=1.0, α2=2.0) 1.0 2.0 2.6 1.9 

Case 5: Proposed Method 2 with Preprocessor 

(L=5, α1=1.0, α2=2.0) 
1.0 1.2 1.5 1.2 

 
Command Task WER (%) 

 Stationary City Drv. Highway Average

Case 1: SS only (reference without music) 2.6 1.0 3.5 2.4 

Case 2: SS only 3.5 11.9 12.5 9.3 

Case 3: Echo Canceller + SS 4.2 1.9 4.8 3.6 

Case 4: Proposed Method 1 (L=5, α1=1.0, α2=2.0) 3.2 2.6 4.2 3.3 

Case 5: Proposed Method 2 with Preprocessor 

(L=5, α1=1.0, α2=2.0) 
2.9 1.0 3.2 2.4 
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value used for the acoustic model training. In the following experiment, we select 
α1=1.0 as the default setting.  

Table 5.2 shows performance comparisons with the conventional methods. Case 1 is 
for reference. Music was NOT mixed into the test data. It was processed by 
conventional spectral subtraction and decoded. Automatic speech recognition performs 
very well for the stationary cruising noise. Case 2 and the following cases have music 
mixed into the test data. Case 2 processed the test data only with conventional spectral 
subtraction. Since there is no echo cancellation, the recognition performance was 
severely degraded. Case 3 processed the test data by using the conventional 
combination of echo cancellation and spectral subtraction as shown in Figure 5.1. The 
echo canceller was N-LMS in the time domain with a tap length of 2,048. The 
recognition performance was much improved from Case 2 as a result of the echo 
canceller. Case 4 processed the test data using the proposed Method 1 with the 

Table 5.3. Word error rates for component reduction only cases 
Digit Task WER (%) 

 Stationary City Drv. Highway Average

Case 4: Proposed Method 1 (L=5, α1=1.0, α2=2.0) 1.0 2.0 2.6 1.9 

Case 6: Proposed Method 1 --- stationary noise 

reduction only (L=5, α1=1.0, α2=0.0) 
7.6 20.8 19.6 16.0 

Case 7: Proposed Method 1 --- echo reduction 

only (L=5, α1 =0.0 , α2 =2.0) 
1.3 2.5 3.5 2.5 

 
Command Task WER (%) 

 Stationary City Drv. Highway Average

Case 4: Proposed Method 1 (L=5, α1=1.0, α2=2.0) 3.2 2.6 4.2 3.3 

Case 6: Proposed Method 1 --- stationary noise 

reduction only (L=5, α1=1.0, α2=0.0) 
3.5 3.2 6.1 4.3 

Case 7: Proposed Method 1 --- echo reduction 

only (L=5, α1=0.0, α2=2.0) 
4.2 4.5 4.8 4.5 
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parameters γ=2 and L=5. L was selected so to be comparable with the tap length in Case 
3. This shows performance superior to Case 3. Case 5 processed the test data by the 
proposed Method 2 with the parameters γ=2 and L=5. The tap length of the 
preprocessing echo canceller was 512. The performance is improved in favor of the 
preprocessing. 

Table 5.3 shows the performance of the two additional cases in order to measure the 
contributions of the proposed Method 1 to the stationary noise reduction and the echo 
reduction separately. Case 6 reduces only the stationary noise component, and Case 7 
reduces only the echo component, while the adaptation processes were the same as in 
Case 4. Based on the results, the echo component reduction of the proposed method was 
very effective in the digit task. Also, the stationary noise reduction of the proposed 
method was effective in the command task. 

5.6. Concluding Remarks 
In order to reduce both background noise and echo effectively for automatic speech 
recognition in a car, we proposed a new method that adapts echo cancellation and 
spectral subtraction simultaneously. The stationary noise component is estimated 
through the adaptation of an echo canceller. As the echo canceller is also implemented 
using spectral subtraction, the echo component can be further reduced by introducing 
over-subtraction. We can still use the existing acoustic model trained only with the 
background noises and spectral subtraction, since we kept the subtraction weight the 
same as for the stationary noise and introduced over-subtraction only for the echo. The 
performance can be improved even more by introducing a shot-tap echo cancellation as 
a preprocessor. In our experiment, this method showed superior recognition accuracy 
compared to the conventional combination of echo cancellation and spectral subtraction. 
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6. Local Peak Enhancement 

6.1. Introduction 
The performance of automatic speech recognition in automobiles is affected by various 
noises. Beamformer [SSL+03] technology reduces directional noise such as voices from 
passengers and sounds coming from a car radio, TV, or CD player. However, it does not 
have sufficient signal recovery in very low SNR situations with ambient noise (such as 
“Fan high” or “Window open”) unless the size of the beamformer is very large. For 
single channel signal processing, existing noise reduction algorithms such as a Wiener 
Filter [ETS02] or Spectral Subtraction (SS) [Bol79] are known to improve the accuracy, 
but improvements are still needed in those situations. Therefore, different approaches 
beyond reducing noise should be combined with existing noise reduction algorithms. 

One of the candidate approaches involves enhancements of the harmonic structures 
in human voices. Comb filtering [TO98] and its variants [GR01] were proposed and 
showed good performance, especially in mixed speech cases. However, they are rarely 
integrated into commercial ASR products, and especially not for automobiles. This is 
because designing a comb filter relies on the accurate estimation of F0 (the fundamental 
frequency or pitch) and the accurate discrimination between voiced and unvoiced 
speech. It was reported that errors at this stage have detrimental effects on the 
performance [NIZ03]. Szymanski et al. proposed Comb Filter Decomposition [SB05] 
that does not require F0 estimation, but their experiment was limited to white Gaussian 
noise. 

Another candidate would use a matching algorithm to put larger weights on 
frequencies having larger spectral powers as the decoder calculates likelihoods 
[SS80][NSI+04]. This is based on the assumption that frequencies having more spectral 
power are noise robust and most likely to be the formant frequencies in voiced speech 
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frames. Huang et al. enhanced the logic for the MFCC domain [HHS+06], but this 
involved adding autocorrelation into their decoding process. 

In this chapter, we propose a novel approach for the speech enhancement. It uses a 
filter designed to enhance the harmonic structure which is observed as local peaks at 
regular distances in the spectrum domain. It does not depend on F0 or voiced/unvoiced 
detection. Since it works as a front-end for both training and decoding, it does not 
require any changes in existing decoders. This new method will be referred to as LPE 
(Local Peak Enhancement) in the following sections. 

6.2. Proposed Method (LPE) 
Figure 6.1 shows the whole process of LPE and sample outputs at each step for both a 
voiced frame and a noise frame. The process is the same for entire frames, but the 
generated filter looks very different depending on whether or not the frame is voiced 
speech, as shown in the figure. 

In the first step, an observed spectrum ( )jyT  is converted to a log power spectrum 
( )jYT .  

( ) ( )( )jyjY TT log= , (6.1) 

where, the index T is a frame number and j is the bin number of the DFT corresponding 
to the subband frequency. The process described in this section should be performed for 
each T.  

Then the log power spectrum is converted to a cepstrum ( )iCT  by using ( )jiD , , a 

DCT (Discrete Cosine Transformation) matrix. 

( ) ( ) ( )jYjiDiC T
j

T � ⋅= , . (6.2) 

The cepstra represent the curvatures of the log power spectra. The lower cepstra 
correspond to long oscillations, and the upper cepstra correspond to short oscillations. 
We need only the medium oscillations. The range of the cepstra is chosen to cover 
possible harmonic structures in the human voice. Therefore the lower and the upper 
cepstra should be filtered out. 

( ) ( )
( )�

�
� ><⋅

=
                   otherwise
I  or   I   ifˆ upperlower

iC
iiiC

iC
T

T
T

ε
, (6.3) 
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Figure 6.1. Process of LPE. 
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In this experiments, Ilower=40 and Iupper=160 for a 16 kHz sampling frequency with an 
FFT length of 512 samples. This corresponds to an F0 range from 100 Hz to 400 Hz for 

the human voice, with ε being close to zero. We set it to 10-3. 
The filtered cepstrum ( )iCT

ˆ  is converted back to a log power spectrum by using an 
I-DCT. 

( ) ( ) ( )iCijDjW T
i

T
ˆ,1

� ⋅= − . (6.4) 

Then it is converted back to a linear power spectrum, and it is normalized so that the 
average is 1.0. 

( ) ( )( )jWjw TT exp= . (6.5) 

( ) ( )
( )�

⋅=
binN

k
T

bin
TT

kw

Njwjw , (6.6) 

where Nbin is the number of bins used in the FFT. The filter is obtained as ( )jwT . 
Finally, the enhanced output ( )jzT  is obtained as 

( ) ( ) ( )jyjwjz TTT ⋅= . (6.7) 

In order to reduce the amount of computation, the steps of the Equations (6.2), (6.3), and 
(6.4) can be combined into a single step using the pre-calculated matrix A  as follows. 

( )
�
�

�
�

�

><=
≠

=Λ
                                       otherwise1

)I  or    I  (  and  if
                                           if0

, upperlower iiji
ji

ji ε , (6.8) 

DDA Λ= −1 . (6.9) 

TT AYW = . (6.10) 

As shown in Figure 6.1, the filter for LPE is derived directly from the observed 
spectrum. Therefore, F0 estimation is not required. For a noise frame or an unvoiced 
speech frame, it will be designed to be almost flat. This means LPE does almost nothing 
to such frames, and therefore, LPE does not require voiced/unvoiced detection.  

For voiced speech frames, the LPE filter is designed to enhance the harmonic 
structures in the observed spectrum. Unlike a comb filter, the LPE filter is not uniform 
over all frequencies. It is more focused on the frequencies where harmonic structures 
are observed in the input spectrum. Therefore the acoustic model should be retrained 
with LPE for automatic speech recognition. 
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Figure 6.2 shows how a spectrum is degraded by a noise. In Figure 6.2(a), the 
original clean spectrum shows three formants around 600 Hz, 1200 Hz, and 3500 Hz. 
However, in Figure 6.2(b), they are less conspicuous, and the spectrum contour is close 
to flat. In contrast, LPE retains more of the characteristics of the formants, as shown in 
Figure 6.2(c). The combination of SS and LPE retains even more, as shown in Figure 
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(b) Fan noise overlapped at SNR 0 dB. 
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(c) Fan noise overlapped at SNR 0 dB and processed by LPE. 
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(d) Fan noise overlapped at SNR 0 dB and processed by LPE after SS. 

 

Figure 6.2. Spectrums of vowel /u/ recorded in a stationary car with and 
without fan noise overlapping at the specified SNR. The spectrum 
envelope is plotted with Mel-Filtering. 



- 74 - 

6.2(d). An advantage of LPE is that voiced speech immersed in heavy noise should be 
more distinct and distinguishable for decoding. 

Harmonic structures are conspicuous around frequencies having larger spectral 
powers in the voiced speech frames, and they are most likely to be formant frequencies. 
Therefore, this approach inherently involves formant enhancement as well as harmonic 
enhancement, under the assumption that the noise has a broad spectrum and the 
harmonic structure is not locally destroyed by the noise. 

6.3. Experiments 

6.3.1. Testing data 

We used CENSREC-3, an evaluation framework for isolated Japanese word recognition 
in actual moving-automobile environments. This data was collected by IPSJ, and is 
widely used to evaluate noise reduction algorithms [FNT+05]. It has speech data both 
for training and testing for automatic speech recognition using matched acoustic 
models. 

The test data in the database was recorded under 16 environmental conditions using 
combinations of three vehicle speeds and six kinds of in-car environments as shown in 
Table 6.1. A total of 14,216 utterances spoken by 18 speakers (8 males and 10 females) 
were recorded at a 16 kHz sampling frequency. The performance is measured with word 
accuracy as CENSREC-3 defines. 

For training, each driver’s speech saying phonetically balanced sentences was 
recorded under two conditions: while idling and while driving on a city street in a 
normal in-car environment. A total of 14,050 utterances spoken by 293 drivers (202 
males and 91 females) were recorded with a close-talking microphone and a hands-free 
microphone. 

In this experiment, we used only hands-free microphone data for both training and 
testing. The acoustic models were trained with both idling data and driving data for the 
front-end processing being tested. This corresponds to Condition 3 as defined in 
CENSREC-3. The evaluation category is zero, which means no changes at the backend. 
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6.3.2. Conventional methods 

Comb-filtering needs F0 estimation and voiced/unvoiced detection. We used the “Pitch 
command” in SPTK-3.0 [SPTK] to obtain this information. We used a low-end 
frequency of 100 Hz and an upper frequency limit of 400 Hz, so to be compatible with 
LPE experiment. The voiced/unvoiced threshold was empirically set to 7.0, because it 
gave us a better result than the SPTK default value. Figure 6.3 shows an example of F0 

 

Figure 6.3. F0 output by Pitch command in SPTK. For unvoiced frames, SPTK 
outputs zero. The test data was prepared by overlapping noise at different 
SNRs. 
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information by SPTK. We see many outliers in the low SNR conditions. Also, the 
vowels in the last part of the sentence were not recognized as voiced sounds. Based on 
the F0 and voiced/unvoiced information, the comb filter was designed in the spectrum 
domain for each frame as in Equation (6.11), and the comb-filtering output was obtained 
using Equation (6.12). 

( )
�
�

�
�

�

=
                                                       otherwise01.0
bin  harmonic  is    and  frame   voicedis    if0.1
                                   frame  unvoiced is    if0.1

jT
T

jWcombT , (6.11) 

( ) ( ) ( )jWcombjyjz TTT ⋅= . (6.12) 

For the combination of LPE and existing noise reduction algorithms, SS and ETSI 
Advanced Front-End (ES202-050) [ETS02] were introduced in the evaluations. For SS 
processing, the first 0.1 second of each utterance was assumed to be a non-speech 
segment where the noise spectrum ( )jN could be estimated. The SS output was 

obtained as Equation (6.13). 

( ) ( ) ( ) ( ) ( ) ( )
( )�

�
�

⋅
⋅≥⋅−⋅−

=
                                otherwise

 if
jN

jNjNjyjNjy
jz TT

T β
βαα

, (6.13) 

In this experiment, the subtraction weight α  was set to 1.0, and the flooring 
coefficient β  was set to 0.1. 

6.3.3. Results of standalone test 

Table 6.1 shows the resulting word accuracies for various environmental conditions. 
The baseline is the evaluation without using any speech enhancement or noise reduction 
algorithms. Table 6.1 also shows the estimated SNRs of the test data using the VAD 
(Voice Activity Detection) information came from the ETSI ES202-050. Note that the 
accuracy of SNR depends on the VAD information. Table 6.2 shows the estimated SNRs 
of the training data. We see CENSREC-3 trains an acoustic model at relatively better 
SNRs than for the test data. Therefore, speech enhancement and noise reduction are 
expected to help the test performance.  
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LPE enhances the local peaks considered to be harmonic structures. Therefore, a 
drawback is expected with LPE when the background noise contains music or speech 
from audio devices such as a radio, TV, or CD player, because the filter is designed to 
enhance that audio, too. This is a known restriction of LPE. Comb filtering shares this 
problem, and a multi-pitch tracker was proposed to address it [WWB02]. In this chapter, 
we accept this restriction and we focus only on the results of the “Audio off” cases. The 
restriction should not matter with current car navigation systems, because most of them 
are designed to disable audio on pushing a talk button. Also, we can expect an echo 
canceller to eliminate audio components before processing by LPE.  

Table 6.1. Word accuracy and estimated SNRs according to the environmental 
conditions. SNR was calculated for the baseline data after a 250 Hz high-pass 
filtering 

CENSREC-3

(Condition 3) SNR
(dB)

Base
Line

Comb
Filter LPE

Normal 16.2 99.7 98.8 99.7
Hazard on 15.3 98.7 95.3 96.8
Fan low 11.3 94.6 87.7 94.8
Fan high 6.2 53.4 55.0 60.3
Window open 10.5 90.0 85.4 92.7

Audio on 9.9 81.4 73.2 56.4
Normal 10.9 99.3 96.6 98.7
Fan low 9.7 95.1 91.8 94.7
Fan high 6.7 62.7 66.2 69.1
Window open 9.3 66.2 70.6 74.3

Audio on 6.7 79.0 74.7 61.6
Normal 7.5 95.0 94.3 96.2
Fan low 7.1 89.0 86.7 89.7
Fan high 6.1 58.2 62.1 63.6
Window open 7.2 22.2 35.8 40.4

Audio on 3.9 79.3 69.0 66.6
78.9 77.6 78.4
78.8 78.9 82.4
79.9 72.3 61.5
58.1 61.1 64.3
59.5 63.9 69.1

Word Accuracy (%)

Average (Audio on)

High
speed

Audio off

Audio off

Audio off

Idling

Low
speed

Average (Fan high)
Average (Window open)

Average (ALL)
Average (Audio off)
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For the average “Audio off” case, LPE outperformed the baseline by 17.0% in error 
reduction. Most of the improvement was gained in very noisy conditions of “Fan high” 
and “Window open” conditions with error reductions of 14.8% and 23.7%, respectively. 
An advantage of LPE is that voiced speech immersed in heavy noise should be more 
distinct and distinguishable for decoding. Comb-filtering also improved the accuracy in 
these conditions. However, the improvement was smaller than LPE. 

In relatively clean conditions such as “Normal” or “Fan low” at “Idling” or “Low 
speed”, the accuracy of LPE was almost the same or slightly degraded from the baseline. 
However, the degree of loss was small enough for practical use. In contrast, 
comb-filtering shows noticeable degradation in these conditions, possibly caused by 
inaccurate F0 estimation and errors in the voiced/unvoiced detection. 

 

Figure 6.4. Combinations of LPE and noise reduction algorithms. 
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Table 6.2. Estimated SNRs of CENSREC-3 training data. SNR was calculated 
for the baseline data after a 250 Hz high-pass filter 

Training Data SNR (dB)
Idling 21.1
Driving 18.7  

 

Table 6.3. Word accuracy with existing noise reduction methods and the 
combinations of LPE 

CENSREC-3

(Condition 3)
SS

LPE +
SS

SS +
LPE ETSI

LPE +
ETSI

ETSI +
LPE

Normal 99.8 99.6 99.0 100.0 99.8 100.0
Hazard on 96.8 96.9 96.7 98.1 98.1 98.6
Fan low 95.2 95.7 95.3 99.2 99.6 99.7
Fan high 58.1 65.7 67.6 85.3 89.9 88.9
Window open 90.4 94.1 93.8 97.2 98.2 98.0

Audio on 74.8 57.0 61.4 89.5 77.7 82.6
Normal 98.4 97.8 97.5 99.7 98.6 99.7
Fan low 94.6 94.4 94.2 97.8 97.5 98.7
Fan high 66.9 71.1 74.3 87.9 89.5 91.5
Window open 72.4 76.7 78.5 87.0 89.6 88.7

Audio on 79.5 62.1 62.8 90.8 81.3 87.6
Normal 97.8 95.3 95.9 98.1 97.2 98.8
Fan low 91.7 91.9 91.6 96.7 94.8 97.6
Fan high 61.3 68.3 69.6 88.4 89.1 88.1
Window open 40.1 44.2 45.4 65.0 69.4 66.7

Audio on 84.3 67.4 69.1 92.8 84.0 89.7
81.3 79.8 80.7 92.1 90.9 92.1
81.8 84.0 84.6 92.3 93.2 93.5
79.5 62.2 64.4 91.0 81.0 86.6
62.1 68.4 70.5 87.2 89.5 89.5
67.6 71.7 72.6 83.1 85.7 84.5

Word Accuracy (%)

Average (Audio on)

High
speed

Audio off

Audio off

Audio off

Idling

Low
speed

Average (Fan high)
Average (Window open)

Average (ALL)
Average (Audio off)
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6.3.4. Results of combination test 

LPE can be used in combination with existing noise reduction algorithms. In Table 6.3, 
SS and ETSI ES202-050 were introduced in the evaluations. Figure 6.5 shows the 
average word accuracies in combined “Audio off” cases. 

As shown in Figure 6.4, “LPE+SS” means LPE pre-processes the input of SS, and 
“SS+LPE” means LPE post-processes the output of SS. Since ETSI ES202-050 splits 
the 16 kHz input into a less-than-8-kHz part and an upper-8-kHz part, “ETSI+LPE” 
applied LPE only to the less-than-8-kHz part of the ETSI ES202-050 output. 

The “SS+LPE” combination outperformed SS or LPE alone, as well as the baseline. It 
reduced the average error rate for the “Audio off” case by 27.3% from the baseline. 
Likewise, the “ETSI+LPE” combination showed the best performance, reducing the 
error rate by 69.2%. 

6.4. Concluding Remarks 
We are proposing a new approach to speech enhancement to improve automatic speech 
recognition in very noisy conditions. It generates a filter to enhance the harmonic 
structure observed in the input spectrum, without relying on F0 estimation and 
voiced/unvoiced detection. Experiments using automatic speech recognition showed 
this method significantly improved the accuracy in very noisy conditions such as “Fan 
high” or “Window open.” However, it showed some drawbacks in “Audio on” cases. 
This method can be combined with existing noise reduction algorithms such as SS and 
ETSI ES202-050 for further improvements. 
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Figure 6.5. Averaged word accuracy of “Audio off” cases for the combinations of 
noise reduction method and LPE. 
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7. Conclusion 

7.1. Thesis Summary 
To increase the applications of ASR in the real world, improved robustness against 
noise is a key. For better noise reduction, we may need to consider such questions as 
“What is the definition of noise?” Someone may say “Any undesired signal is noise.” 
Yet that begs the question of how can we determine whether a signal is desired or 
undesired? In this dissertation, features such as the direction of a sound, correlations to 
already known reference signals, constancy, or harmonic structure are used as cues to 
determine whether some sound is noise or signal, depending on the assumed noise 
characteristics. Using these traits, three novel approaches are proposed to perform noise 
reduction or speech enhancement. 

In Chapter 3, a new microphone array technology named Profile Fitting (PF) is 
proposed. It focuses on the directivity of arriving sounds. The directivity is measured 
as a distribution profile. PF decomposes an observed profile into certain known 
profiles so as to extract only the target signal. Experiments in a non-reverberant 
environment with a dictation system configured with 2 microphones showed PF 
reduced error rate by more than 20% from the best results of the conventional 
beamformers (2-ch Adaptive SS). In a realistic environment, the extent of the 
improvement was 11%. 

In Chapter 4, PF is further discussed in an application of sound source localization. It 
is shown that PF is noise robust and the concept of profiles allows extended sound 
source localization in combination with sound reflectors. 

In Chapter 5, a new echo canceller named SSEC (Simultaneous adaptation of 
spectral Subtraction and Echo Cancellation) is proposed. In automobiles, sound from 
audio devices may be overlapping with the speech signal. In the echo canceller 
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framework, such sources are treated as echos to be cancelled. However, conventional 
echo cancellers do not perform well in noisy environments such as moving cars. SSEC 
solves this difficulty by simultaneous adaptation of echo cancellation and spectral 
subtraction. This assumes that cruising noise can be treated as stationary. In the 
experiment, SSEC showed superior recognition accuracy compared to the conventional 
combination of echo cancellation and spectral subtraction. 

In Chapter 6, a new speech enhancement method named Local Peak Enhancement 
(LPE) is proposed. The objective of LPE is to retrieve a voiced speech signal immersed 
in broadband noise with a very low SNR, such as occurs in a “window open” or “fan 
high” situation in a moving car. It uses the harmonic structure in the human voice and 
assumes that the noise does not contain the same structure. Unlike a comb filter, LPE 
does not require pitch estimation or voiced/unvoiced detection. In the “Audio off” case, 
LPE outperformed the baseline by 17.0% in error reduction, and it showed further 
improvements in combination with existing noise reduction methods. 

Table 7.1 summarizes the coverage of noise variation in automobiles with the above 
three methods. It also indicates over-all achievement measures at the current technology 

Table 7.1. Coverage of noise variations in automobiles and the current 
achievement levels in subjective views 

 Cruising 
noise 

Fan Radio, 
Navi, 
CD 

Passenger 
voice 

Door 
slam, 
Wiper

Road 
bump

Outside 
events 

Current 
achievement 

levels  
 
PF 

 
√ 

 
√ 

 
√ 

 
√ 

   
(√) 

• Acceptable 
accuracy  

• Need some 
improvement 
to work in 
real-time 

 
SSEC 

 
√ 

 
√ 

 
√ 

    • Satisfactory 
accuracy 

• Can  work 
in real-time   

 
LPE 

 
√ 

 
√ 

     • Acceptable 
accuracy 

• Can  work 
in real-time 

Acoustic 
model 

√ √   (√) (√)   
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levels, from my subjective view. The coverage is almost satisfactory, but they still 
require some improvement in accuracy or speed. As the current PF formulation requires 
intensive computation, it is somewhat heavy to run it in real-time on many of the 
current embedded devices. It may require some improvement in the implementation to 
speed up the whole process, or more powerful processors that possibly appear in the 
near future. LPE improved ASR accuracy in “window open” or “fan high” situation in a 
moving car, but the accuracy needs to be further improved up to around 90% to be 
acceptable for many of the users. 

7.2. Future Research 
This dissertation proposed three novel approaches for noise reduction and speech 
enhancement to improve the accuracy in automatic speech recognition. They are 
designed to work in specific configurations and with specific types of noise. In other 
words, they have their own limitations and they are not universal solutions for every 
situation as shown in Table 7.2. 

PF can reduce both directional and ambient (non-directional) noise. It supports 
non-stationary noise including music and human speech. However, the major 
drawbacks of this method are the requirement for multiple microphones and the 
availability of pre-measured template profiles. Also, the location of noise source must 
be different from the signal source. 

SSEC can reduce any kind of noise whose reference signal is available. That can be 
non-stationary noise including music and human speech. The location of the noise 
source does not matter. However, the availability of reference signals is the critical 
requirement, which is sometimes not satisfied in actual situations. 

LPE can enhance speech signals degraded to very low SNRs. It does not require 
multiple microphones or reference signals. However, LPE does not allow harmonic 
structure in noise and the spectrum of the noise need to be broad. This means the noise 
cannot be music or human speech. 
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Figure 7.1. Possible combinations of the proposed methods. 

Table 7.2. Noise reduction capabilities and requirements of the proposed methods 

Noise reduction capabilities Requirements  
 Work with 

non-stationary noise? 
Work with 
harmonic noise? 

Multiple 
microphones 
required? 

Reference signal 
required? 

PF Yes Yes Yes No 

SSEC Yes 

(No for ambient noise)

Yes No Yes 

LPE Yes No No No 

 

Profile Fitting SSEC LPEProfile Fitting SSEC LPE

Profile Fitting SSECProfile Fitting SSEC
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Therefore, some new methods were desired, which can reduce any kind of noise 
including music and human speech without using multiple microphones or reference 
signals. There are already several research projects with these goals 
[AS01][KH03][FN05]. However, they still more improvements for practical 
applications in computational cost and accuracy. 

Another approach would be a combination of the three proposed methods. Figure 7.1 
shows some possible combinations of the methods. In automobiles, PF is unable to 
reduce guidance messages from the car navigation system, which are broadcasted from 
a loudspeaker on the driver’s side, then SSEC successively processes the output to 
reduce it. LPE may be introduced to enhance the speech output, under the assumption 
that remaining noise does not contain harmonic structure. 

This dissertation only discussed the noise robustness of automatic speech recognition. 
However, from the viewpoint of human interface systems, we may also need to consider 
two major capabilities for the near future, “Always Listening” and “Barge-In.” “Always 
Listening” would allow us to talk to a system without pushing a talk button. A 
“Barge-In” system would allow us to initiate utterances before the completion of system 
messages. Both of these are essential capabilities for natural man-machine interactions, 
especially in robot applications. They require a critical level of noise reduction 
technology, as well as speech command detection technology. I will continue my 
research on noise reduction for automatic speech recognition, focusing on ways to solve 
these problems. 

7.3. Future Applications 
Improved levels of noise reduction will make various advanced ASR applications a 
reality. 

In automobiles, speech will become the main interface to input complicated 
information. Even in a very noisy situation such as an open car cruising at high speed, 
the driver’s natural phrases will be correctly transcribed and interpreted for the desired 
actions. Since the supported vocabulary will be very large, the recognized words can 
even be used for Internet searches as with a personal computer. The system will be able 
to search for music titles and facilities information and the returned information will be 
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sent to the car’s audio and navigation systems. The passengers and car audio do not 
have to be silent when the driver initiates his/her utterance. Of course such systems will 
not need any talk button, so that signal for silence will be gone. The driver can change 
settings of auxiliary machines or retrieve information interactively as the dialog system 
asks for the missing information needed to complete actions. In such interactions, the 
driver will not have to wait for the completion of each of the dialog system’s messages, 
because the system will support a Barge-In mode. 

Robots will have similar capabilities. However, they will need more robustness than 
automobiles. For example, people will be able to talk at robots from any direction from 
up to several meters distance even in very noisy rooms such as convention halls, 
factories, or living rooms with noisy TVs. 

Advances in noise robustness will also support military uses of ASR systems. There 
are already needs for translators supporting local languages. 

Currently, manufacturing industries are threatened by losing the skills of older and 
experienced workers before those skills are transmitted to the next generation. 
Noise-robust ASR will help address this situation by storing the skills within 
manufacturing machines so that new comers can retrieve them via voice. 

There is even an ambitious idea of a personal life recorder, a portable device that will 
record every sound the wearer hears for 24 hours a day. Since people cannot use 24 
hours to check the recorded content of each recorded 24 hours, noise robust ASR will be 
indispensable in the future to analyze and search such voluminous recordings. 
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Appendix 

Abbreviation List 
ABF Adaptive Beam Former 

AL Always Listening 

AM Acoustic Model 

ASR Automatic Speech Recognition 

BSS Blind Signal Separation 

CDCN Codeword Dependent Cepstral Normalization 

CER Character Error Rate 

CMS Cepstrum Mean Subtraction 

CSJ Corpus of Spontaneous Japanese 

CSP Cross-power Spectrum Phase 

DS Delay and Sum 

EM Expectation Maximization  

ETSI European Telecommunications Standards Institute 

GJ Griffiths-Jim 

GMM Gaussian Mixture Model 

HMM Hidden Markov Model 

ICA Independent Component Analysis 

IID Inter-channel sound Intensity Differences 

ITD Inter-channel Time Differences 

LM Language Model 

LMS Least Mean Square 

LPE Local Peak Enhancement 

MFCC Mel Frequency Cepstrum Coefficient 
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MLLR Maximum Likelihood Liner Regression 

MMSE Minimum Mean Square Error 

MUSIC Multiple Signal Classification method 

MV Minimum Variance 

PF Profile Fitting 

PMC Parallel Model Combination 

PTA Push To Activate 

PTT Push To Talk 

RLS Recursive Least Squares 

SAT Speaker Adaptive Training 

SMT Smoothing Method of Time direction 

SNR Signal to Noise Ratio 

SS Spectral Subtraction 

SSA Spatial Subtraction Array  

SSEC Simultaneous adaptation of spectral Subtraction and Echo Cancellation 

VAD Voice Activity Detection 

VTLN Vocal Tract Length Normalization 

WER Word Error Rate 
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