
NAIST-IS-DD0561211Dotoral Dissertation
Studies on Core-Based Testing ofSystem-on-Chips Using Funtional Bus andNetwork-on-Chip Interonnets

Fawnizu Azmadi Hussin

September 18, 2008Department of Information ProessingGraduate Shool of Information SieneNara Institute of Siene and Tehnology

A Dotoral Dissertationsubmitted to Graduate Shool of Information Siene,Nara Institute of Siene and Tehnologyin partial ful�llment of the requirements for the degree ofDotor of ENGINEERINGFawnizu Azmadi HussinThesis Committee:Professor Hideo Fujiwara (Supervisor)Professor Yasuhiko Nakashima (Co-supervisor)Assoiate Professor Mihiko Inoue (Co-supervisor)Assistant Professor Tomokazu Yoneda (Co-supervisor)

Studies on Core-Based Testing ofSystem-on-Chips Using Funtional Bus andNetwork-on-Chip Interonnets�Fawnizu Azmadi HussinAbstratThe tests of a omplex system suh as a miroproessor-based system-on-hip (SoC) or a network-on-hip (NoC) are diÆult and expensive. In this the-sis, we propose three ore-based test methods that reuse the existing funtionalinteronnets{a at bus, hierarhial buses of multiproessor SoC's (MPSoC),and a NoC{in order to avoid the silion area ost of a dediated test aess meh-anism (TAM). However, the use of funtional interonnets as funtional TAM'sintrodues several new problems.During tests, the interonnets{inluding the bus arbitrator, the bus bridges,and the NoC routers{operate in the funtional mode to transport the test stimuliand responses, while the ore under tests (CUT) operate in the test mode. Se-ond, the test data is transported to the CUT through the funtional bus, and notdiretly to the test port. Therefore, speial ore test wrappers that an providethe neessary ontrol signals required by the di�erent funtional interonnet areproposed. We developed two types of wrappers, one bu�er-based wrapper for thebus-based systems and another pair of omplementary wrappers for the NoC-based systems.Using the ore test wrappers, we propose test sheduling shemes for the threefuntionally di�erent types of interonnets. The test sheduling sheme for a atbus is developed based on an eÆient paket sheduling sheme that minimizesboth the bu�er sizes and the test time under a power onstraint. The sheduling� Dotoral Dissertation, Department of Information Proessing, Graduate Shool of Infor-mation Siene, Nara Institute of Siene and Tehnology, NAIST-IS-DD0561211, September18, 2008. i

sheme is then extended to take advantage of the hierarhial bus arhiteture ofthe MPSoC systems. The third test sheduling sheme based on the bandwidthsharing is developed spei�ally for the NoC-based systems. The test shedulingis performed under the objetive of o-optimizing the wrapper area ost and theresulting test appliation time using the two omplementary NoC wrappers.For eah of the proposed methodology for the three types of SoC arhite-ture, we onduted a thorough experimental evaluation in order to verify theire�etiveness ompared to other methods.Keywords:Wrapper design, funtional TAM, SoC test sheduling, NoC-reuse

ii

List of Publiations
Journal Paper1. Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu and Hideo Fuji-wara, \Sheduling power-onstrained tests through the SoC funtional bus,"IEICE Transations on Information and Systems, Vol. E91-D, No. 3, pp.736{746, Mar. 2008.2. Fawnizu Azmadi Hussin, Tomokazu Yoneda and Hideo Fujiwara, \NoC-ompatible wrapper design and optimization under hannel bandwidth andtest time onstraints," IEICE Transations on Information and Systems,Vol. E91-D, No. 7, pp. 2008{2017, July 2008.3. Fawnizu Azmadi Hussin, Tomokazu Yoneda and Hideo Fujiwara, \On NoCbandwidth sharing for the optimization of area ost and test appliationtime," IEICE Transations on Information and Systems, Vol. E91-D, No.7, pp. 1999{2007, July 2008.International Conferenes (Reviewed)1. Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu and Hideo Fu-jiwara, \Power-onstrained SoC test shedules through utilization of fun-tional buses," 24th IEEE International Conferene on Computer Design(ICCD'06), pp. 230{236, Ot. 2006.2. Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu and Hideo Fu-jiwara, \Core-based testing of multiproessor system-on-hips utilizing hier-iii

arhial funtional buses," 12th Asia and South Pai� Design AutomationConferene 2007 (ASP-DAC'07), pp. 720{725, Jan. 2007.3. Fawnizu Azmadi Hussin, Tomokazu Yoneda and Hideo Fujiwara, \Op-timization of NoC wrapper design under bandwidth and test time on-straints," 12th IEEE European Test Symposium (ETS'07), pp. 35{40, May2007.4. Fawnizu Azmadi Hussin, Tomokazu Yoneda and Hideo Fujiwara, \Areaoverhead and test time o-optimization through NoC bandwidth sharing,"IEEE 16th Asian Test Symposium (ATS'07), pp. 459{462, Ot. 2007.Tehnial Reports1. Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu and Hideo Fu-jiwara, \Power-onsious miroproessor-based testing of system-on-hip,"Tehnial Report of IEICE (VLD2006-6), Vol. 106, No. 32, pp. 25{30, May2006.2. Fawnizu Azmadi Hussin, Tomokazu Yoneda and Hideo Fujiwara, \NoCwrapper optimization under hannel bandwidth and test time onstraints,"Tehnial Report of IEICE (DC2006-80), Vol. 106, No. 528, pp. 1{6, Feb.2007.Award1. IEEE Kansai Setion Student Paper Award, Feb. 2008.

iv

For my wife, who o�ered me unonditional love and supportthroughout the ourse of this thesis.Fazleen Mustapha
And to my son, may you be inspired.Faheem Fawnizu

v

\We hoose to go to the moon."\We hoose to go to the moon in this deade and do the otherthings, not beause they are easy, but beause they are hard,beause that goal will serve to organize and measure the best of ourenergies and skills, beause that hallenge is one that we are willingto aept, one we are unwilling to postpone, and one whih weintend to win, and the others, too."{John Fitzgerald Kennedy, September 12, 1962Some things are worth doing not beause they are easy, but beausethey are hard.

vii

Contents

1 Introduction 1

1.1 The Trend Toward a Core-based Test Methodology 1

1.2 System-on-Chip Architecture . 2

1.3 Scan-based Testing of Embedded Cores 7

1.3.1 Core Test Architecture . 9

1.4 Reuse of Functional Interconnects as TAM 16

1.4.1 Impact on the Design Flow 16

1.5 Contributions of This Thesis . 17

1.6 Thesis Organization . 18

2 Wrapper Design and Test Scheduling for System-on-Chips Using

a Functional Bus 21

2.1 Introduction . 21

2.2 Related Work . 24

2.3 Motivation . 27

2.4 Technical Overview . 31

2.5 Test Support Architecture . 33

2.5.1 Wrapper Scan Chain Design 33

2.5.2 Operation of the Buffer-based Test Architecture 35

2.6 Packet Delivery Scheduling Algorithm 39

2.6.1 Terminology . 40

2.6.2 Power and Heat Dissipation Problem 40

2.6.3 Scan Frequency Reductions 41

2.6.4 Forming Non-Overlapping Test Groups 43

2.6.5 Buffer Sizes . 44

ix

2.6.6 PAcket Set Scheduling (PASS) Algorithm 45

2.7 Advantages of the Buffer-based Wrapper 54

2.7.1 Bandwidth Matching with Low Speed Testers 55

2.8 Experimental Results . 55

2.9 Conclusion . 64

3 Test Scheduling for Multiprocessor SoC’s with Hierarchical Buses 67

3.1 Introduction . 67

3.2 Model of Multiprocessor System-on-Chips (MPSoC) 69

3.2.1 Data Transfer Between Cores and Processors 70

3.3 Scope . 71

3.4 Buffer-Based Test Architecture 73

3.5 Test Scheduling Methodology . 76

3.5.1 Resource Graph . 77

3.5.2 Test Configuration Graph (TCG) 79

3.5.3 Equivalent Test Configuration Graphs 81

3.5.4 Eliminating the Obviously Redundant Test Configurations 82

3.5.5 Test Group Formation Under Power-Constrained Test Schedul-

ing . 84

3.5.6 Complexity of Packet Set Scheduling for MPSoC 91

3.6 Optimizing the PASS Algorithm for Hierarchical Bus MPSoC’s

(MPPASS) . 94

3.6.1 Motivation for Incorporating the Hierarchy Information in

the Packet Delivery Sequence 96

3.6.2 Improving PASS Schedule through Random Permutation . 98

3.6.3 Simulation Environment and Procedures for the Test Data

Transportation in Hierarchical Bus MPSoC’s 101

3.7 Experimental Results . 104

3.8 Conclusion . 109

4 Network-on-Chip Interconnect Architecture 111

4.1 Introduction . 111

4.2 NoC Communication Services . 114

4.3 Network Topologies . 116

x

4.3.1 NoC Routing and Forwarding 117

4.4 NoC Architectures . 120

4.4.1 SoCIN Network Architecture 120

4.4.2 Æthereal NoC Architecture 122

4.4.3 IP Core Model for Æthereal NoC 125

5 NoC-compatible Wrapper Design and Optimization 127

5.1 Introduction . 127

5.2 Related Work . 129

5.3 NoC Reference Model . 130

5.4 IEEE Std. 1500 Wrapper Architecture 131

5.5 NoC-compatible Wrapper Architecture 133

5.5.1 Type 1 NoC-compatible Wrapper: Interfacing the PDI/PDO

Ports to the Scan Chains 134

5.5.2 Type 1 NoC-compatible Wrapper: Inefficient NoC Band-

width Utilization . 140

5.5.3 Type 2 NoC-compatible Wrapper: Optimizing the NoC

Bandwidth Utilization . 141

5.6 Optimization of the NoC-compatible Wrappers 144

5.7 Experimental Results . 147

5.8 Conclusion . 154

6 NoC Test Scheduling Through Bandwidth Sharing 157

6.1 Introduction . 157

6.2 Overview of the Proposed Bandwidth Sharing Scheme 160

6.3 Previous Works . 161

6.4 NoC and IP Core Models . 164

6.5 NoC Test Scheduling . 165

6.5.1 Characteristics of NoC-compatible Wrappers 166

6.5.2 Test Scheduling through NoC Bandwidth Sharing 167

6.5.3 Optimum Wrapper under Bandwidth Constraint 171

6.5.4 Cost Function for Wrapper Optimization 171

6.5.5 Lower Bound on Test Time 173

6.5.6 Schedule Optimization through Rectangle Packing 175

xi

6.6 Experimental Results . 180

6.7 Conclusion . 184

7 Conclusion and Future Work 185

7.1 Summary of the Thesis . 185

7.2 Future Work . 187

Acknowledgments . 189

Bibliography . 192

xii

List of Figures

1.1 System design and test flow for dedicated TAM approach. 5

1.2 A microprocessor-based SoC. 6

1.3 Core-based SoC architecture. 8

1.4 Definitions of TAM and wrapper. 9

1.5 Core-based SoC with DfT. 10

1.6 IP core and 1500 wrapper. 11

1.7 Single scan chain configuration. 12

1.8 Alternative representation of a 1500-wrapped core. 13

1.9 Two wrapper scan chains configuration. 14

1.10 Three wrapper scan chains configuration. 15

1.11 System design and test flow for interconnect reuse. 17

2.1 Cost of silicon vs. cost of test. 22

2.2 Packet-based test data transportation. 28

2.3 Buffer-based test architecture. 28

2.4 Effect of repetitive packet delivery sequence 29

2.5 ATE interface through a TIC. 32

2.6 Core test architecture. 34

2.7 Break down of the scan chain architecture. 36

2.8 Test buffer architecture. 37

2.9 Variable frequency scheduling. 43

2.10 Non-overlapping test groups. 44

2.11 Packet size and test time optimization. 46

2.12 Packet set scheduling algorithm. 49

2.13 Normalizing the packet’s loading time. 53

2.14 Packet set delivery sequence. 53

xiii

2.15 Bandwidth matching mechanism. 56

2.16 TAT vs. cost of frequency divider. 58

2.17 TAT vs. bus width. 61

2.18 TAT vs. buffer size. 64

2.19 TAT reduction through bus frequency scaling. 65

3.1 General MPSOC architecture. 70

3.2 General MPSoC architecture. 72

3.3 Example of a round-robin scheduling. 77

3.4 An example hierarchical bus MPSoC. 78

3.5 Components of a resource graph. 80

3.6 Unicast-based test configurations graphs. 81

3.7 Broadcast-based test configurations graphs. 82

3.8 Equivalent test configuration graphs. 83

3.9 Power-constrained test grouping for a bus segment. 85

3.10 TCG selection procedure. 90

3.11 Packet delivery timing (local bus transfer). 91

3.12 Packet delivery timing (through a non-transparent two-port bridge). 93

3.13 Packet delivery timing (bus activities). 94

3.14 PASS packet delivery sequence. 95

3.15 Contention in hierarchical-bus MPSoC. 96

3.16 Increasing the efficiency of bus utilization. 97

3.17 Optimizing the packet delivery sequence (MPPASS). 100

3.18 Event-driven data transfer simulator. 103

3.19 Modified benchmark circuits. 105

4.1 ITRS 2007’s SoC consumer architecture template. 112

4.2 ITRS 2007’s SoC consumer design complexity trend. 113

4.3 Abstract data communication model. 114

4.4 Transparent services of the NoC. 115

4.5 Mesh network topology. 116

4.6 Fat-tree topology. 117

4.7 NoC switch architecture. 118

4.8 XY-routing algorithm. 121

xiv

4.9 TDM-based bandwidth allocation scheme. 123

4.10 SoC model based on the Æthereal NoC. 124

4.11 Transaction-based on-chip communication. 125

4.12 IP core model. 126

5.1 IP core model. 131

5.2 IEEE 1500 wrapper scan chain elements. 133

5.3 Functional data port-based wrapper scan chain. 136

5.4 Type 1 NoC-compatible wrapper 138

5.5 Wrapper boundary cells. 139

5.6 Scan rate and required bandwidth of Type 1 wrapper 141

5.7 Type 1 NoC-compatible wrapper 142

5.8 Control signals for Type 2 wrapper. 143

5.9 Test schedule optimization scheme. 145

5.10 NoC-compatible wrapper optimization. 146

5.11 Area comparison for Type 2 wrapper. 154

5.12 TAT comparison for Type 2 wrapper. 155

6.1 Dedicated path test methodology. 158

6.2 Bandwidth sharing methodology. 159

6.3 Basic-cell groups for router testing. 162

6.4 Wrapper configurations for dedicated path approach. 163

6.5 SoCIN-based NoC architecture for d695 [1]. 163

6.6 SoC model based on the Æthereal NoC. 165

6.7 IP core model interfaced to the NI port. 166

6.8 NoC-based SoC model. 169

6.9 Master-slave communication model. 169

6.10 Representing tests as rectangles. 175

6.11 High and low gain regions. 178

6.12 Test schedule optimization. 180

xv

List of Tables

2.1 Selected benchmark circuits. 57

2.2 Experimental setup. 59

2.3 Test application time of h953. 60

2.4 Test application time of d695. 62

2.5 Performance comparison of several approaches. 63

2.6 Average buffer size vs. TAT. 63

3.1 TAT of IPASS vs. TAM. 107

3.2 IPASS vs. dedicated TAM. 108

3.3 Flat bus p22810h1. 109

3.4 Hierarchical bus MPSoC (p22810h2). 110

3.5 Average input buffer sizes per core. 110

5.1 TAT comparison for Core 6. 149

5.2 TAT comparison for Core 17. 150

5.3 TAT comparison for a small circuit. 151

5.4 TAT comparison for Core 6 of p93791. 151

5.5 TAT comparison for Core 17 of p93791. 152

5.6 Wrapper optimization results. 152

5.7 List of ITC’02 benchmark cores. 153

6.1 Type 1 and Type 2 wrapper characteristics. 167

6.2 Area overhead comparison between Type 1 and Type 2 wrappers. 181

6.3 TAT for several hardware cost (β) and time cost (α) weights. . . . 181

6.4 TAT for several B
i/o
max. [α = 1, β = 0]. 183

6.5 Dedicated path versus shared bandwidth 184

xvi

Chapter 1

Introduction

1.1 The Trend Toward a Core-based Test

Methodology

Tests of an integrated circuit are required in order to weed out the bad chips

from the good ones. Chip test is an expensive process in the manufacturing of

an integrated circuit. From the design perspective, in order to keep up with the

Moore’s Law in terms of design complexity and the transistor counts, chip design-

ers break the designs into independent subsystem blocks (commonly known as

intellectual property (IP) cores). Each subsystem can be a simple combinational

logic or can be as complex as a multi-core microprocessor. Such design style is

called a System-on-a-Chip (SoC).

System designers are adapting to the SoC design methodology because of

its efficiency compared to the traditional system-on-board approach. The main

benefit of the SoC approach is that it can drastically shorten the design cycle

by allowing pre-designed cores and their associated test sets to be reused. The

International Technology Roadmap for Semiconductors (ITRS) 2007 Edition [2]

describes the Increasing Device Integration trends as one of the Key Drivers in

the Test and Test Equipment section.

“... Increased device integration forces a re-integration of test so-

lutions to maintain scaling of test costs and product quality. The op-

1

timized test solutions for stand-alone RAMs, cores, and other blocks

typically do not scale linearly without modification, additional DFT,

or new partitioning to the integrated device test solutions. In par-

ticular, additional DFT in-die or even in-package may be required to

provide access to and testing of embedded blocks and cores...”

—ITRS, 2007 Edition

Most of the industrial practitioners today does not yet embrace the core-

based test approach as mentioned and recommended in the ITRS report. The

preferred solution is still to flatten the core-based hierarchical design and apply

the traditional test scheme—apply ATPG and test of the SoC as a single, flat, and

extremely large and complex design. However, it makes more sense to consider

core-based testing as the design complexity increases. This is particularly true

when some of the embedded IP cores are outsourced from external IP providers.

For that purpose, the IEEE 1500 standard [3, 4] was developed to support this

core-based test reuse methodology.

Before discussing further the test methodology proposed in this dissertation,

we will first look at the target SoC architecture and the test approach for the

individual embedded logic core.

1.2 System-on-Chip Architecture

We can find several slightly different definitions of a system-on-a-chip. It is loosely

defined as an entire system integrated on a single chip. It may include one or

more cores with user-defined logic (UDL) integrated by the core user or system

integrator. The general idea is that a SoC technology includes the design, man-

ufacturing and packaging of all the necessary electronic circuits and parts for

a complete “system” (such as the chips for cell phones or digital cameras) on

a single integrated circuit. In the previous generation system-on-board (SoB),

each functional module is designed, manufactured, packaged, and tested as an

independent component or chip. Each fault-free packaged chip is soldered to the

board during the board assembly stage to make a complete system.

Compared to the SoC, the SoB form factor is much larger. Furthermore, SoB

2

design cannot take advantage of the shorter design cycle and higher cost efficiency

of the SoC. The power dissipation as well as the inter-chip interconnect delay is

much larger, thereby affecting the overall SoB’s system performance. The inter-

chip delay, which goes through the die-to-package wire-bonding and the I/O pad,

is much larger compared to the inter-core delay (through the metal layers) of the

SoC.

Different from that of SoC’s, the tests of the individual chip in the SoB is

performed by the chip manufacturer, and not the system integrator. The system

integrator obtains each packaged chip (either from an external manufacturer or

a separate design department from the same company) after it is tested and

certified fault-free. Therefore, the system integrator does not have to worry about

individual chip tests.

With SoC design technique, the whole SoB design can now be integrated onto

a single chip. Even the passive components (capacitors and resistors) can be

fabricated onto the same die. Instead of using a fabricated and tested chip as

one of the modules, a system integrator uses a pre-fabricated module as part

of the design. The module can either be obtained (purchased or licensed) from

an outside source as an intellectual property (IP) core or designed separately

by the same design group or different design group within the same company.

The important characteristic of the SoC is the fact that the system is built from

multiple smaller subsystems, which can be designed independently.

Each subsystem/module/core can be in various forms. Depending the format,

the test engineer has different levels of freedom when dealing with the tests of

the complete system. The following describes the three most common forms of

an IP core.

• Soft core is a predesigned block of functional logic such as a macro, megacell,

or memory with a register transfer level (RTL) representation. Soft cores

are inherently process technology independent. With soft cores, the system

integrator has the most freedom, both in terms of design integration and

test.

• Firm core is a predesigned block of functional logic such as a macro, mega-

cell, or memory that has a process technology-dependent netlist represen-

tation and may be amenable to some modification. It is typically in the

3

form of a synthesized gate-level netlist.

• Hard core is a predesigned block of functional logic such as a macro, mega-

cell, or memory that has a physical implementation that cannot be modified,

in the form of a completed layout. In this case, the IP provider is responsi-

ble to insert the design-for-testability (DfT) circuits into the core design (as

shown by the three parallel core design flow in Figure 1.1); this includes the

tasks of forming the scan chains and generating the test environment (test

vectors/data and test configurations), and to provide the test environment

for the IP core to the system integrator. In this case, the system integrator

has no choice but to use the test information from the IP provider.

Figure 1.1 shows the design flow for a complete SoC system. The test flow

included into the design flow assumes a dedicated TAM based architecture. After

the system design, verification, and synthesis, the test access mechanism and core

wrappers are added to the synthesized netlist. The system-level core information

is used during this process. Depending on the methodology, the test scheduling

step is performed concurrently with the TAM and wrapper design, or after its

completion.

Figure 1.2 illustrates a complex system-on-a-chip which consists of an embed-

ded ARM processor, memory (SRAM and Flash), and a host of supporting logic

blocks. In addition, all these subsystems are connected together by a system bus

(ASB/AHB) and a peripheral bus (APB). Together, they make up a complete

functional system.

To test this hierarchical system, one way of doing it is by synthesizing the

whole system to get a flat and large gate-level netlist. This is possible when

the cores are either soft or firm formats. A hard core is not flexible and cannot

be flattened with the rest of the system. After synthesis, the netlist is fed to a

scan insertion tool which will convert all flip-flops into scan flip-flops, assuming

a full-scan architecture is desired. The scan flip-flops are connected together into

one or more scan chains. From here, the flip-flops (or scan flip-flops) can be

isolated from the combinational logic circuits. The process continues by applying

an automatic test pattern generation (ATPG) tool to the combinational parts of

the design. These generated test patterns are then applied to the circuit using a

boundary scan mechanism.

4

System Design

Core 1
Design

Verification
Synthesis

Scan DfT
insertion

System Design, Verification, Synthesis

Place & Route � Fabrication

Core 2
Design

Verification
Synthesis

Scan DfT
insertion

Core n
Design

Verification
Synthesis

Scan DfT
insertion

…

Test Pattern
Generation

Test Pattern
Generation

Test Pattern
Generation

TAM & wrapper insertion
Test scheduling

Cores
information

Test application

Figure 1.1: System design and test flow for dedicated TAM approach.

The limitation of this approach can be summarized as follows:

• For such a large gate-level netlist, the ATPG tool will take a long time to

obtain a complete test coverage.

• For a large design, typically one or more subsystems are obtained from an

external source as an intellectual property core. The design normally comes

together with the test data sets. The test data cannot be used when the IP

core is flattened with the rest of the system.

5

JTAG
Scan

ARM
Processor

Voltage
Regulator

M
em

or
y

C
on

tr
ol

le
r

EBI

SRAM

Flash

Peripheral
Bridge

Peripheral
Data Controller

Flash
Programmer

Application-Specific
Logic

CAN

USB Device

PWM Ctrl

Synchro Serial Ctrl

Timer/Counter 0-2

Ethermet MAC

USART0-1

SPI

Two Wire Interface

ADC0-7

PI
O

Advanced Int. Ctrl.

Power Mgt. Ctrl.

PLL

PI
O

A
S

B
/

A
P

B
A

H
B

PI
O Osc

RS Osc

Reset Ctrl.

Brownout Detect

Power On Reset

Prog. Int. Timer

Watchdog Timer

Real Time Timer

Debug Unit

PID Ctrl.

System Controller

Figure 1.2: A microprocessor-based system-on-a-chip based on the ARM bus

architecture.

• The simultaneous test application of the whole circuit might cause an ex-

cessively large test power dissipation. The test power is normally larger

than the power dissipation during the intended normal operations

• It is common for a system to contain multiple instances of an IP core such

6

as memory and peripheral controllers. This test approach cannot take ad-

vantage of the duplicity in terms of

– the potential of reducing the storage requirement in the external au-

tomatic test equipment (ATE) by utilizing identical sets of the test

stimuli and responses.

– the potential of reducing the test generation time because the same

test data can be used for multiple identical IP cores. Some IP cores

do not require this process if the IP providers include the test envi-

ronment as part of the IP cores. Test environment provided by the

IP provider is typically of higher qualify because they have a more

intimate knowledge of the functionalities of the IP cores.

– the potential of shortening the test application time by simultaneously

scanning in the test data in parallel for multiple identical IP cores.

For many years, the academic and industrial research community have been

working on the core-based test application strategy for the SoC. In the following

chapters, we will review some of the existing SoC test strategies and elaborate

our proposed strategies to take advantage of the hierarchical nature of the SoC.

In this chapter, we begin by laying the foundation by looking at the scan based

test strategy for each individual IP core

1.3 Scan-based Testing of Embedded Cores

Figure 1.3 shows a simplified representation of a SoC with twelve cores with-

out the interconnects. Like Figure 1.2, the IP cores are functionally connected

to each other through a system of interconnects such as a flat or hierarchical

bus. However, because the conventional test scheme that will be analyzed sub-

sequently does not use the interconnects as part of its test architecture, we omit

the interconnects from the SoC representation for clarity.

Definition 1.1 A test access mechanism (TAM) is a feature of an SoC design

that enables the delivery of test data to and from cores or core wrappers. It

is a mechanism for moving stimuli to and observing responses from a core or

user-defined logic (UDL) during nonfunctional or test mode. The signals may

7

PROCESSOR

MPEG

DSPI/O

DMA

Network

Interface

I/O

DRAM

SRAM

DRAM

USBUART

Figure 1.3: A simplified representation of the core-based SoC architecture without

the functional bus interfaces.

be propagated to and from a core, from either embedded circuitry or from the

primary inputs and outputs of the system chip [4] (Figure 1.4).

In order to enable core-based testing, a network of these test access mecha-

nisms (TAM) are added to the system (Figure 1.5). A TAM consists of two parts.

One part for the actual test data transportation and one part that control the

test data transportation. The TAM wires provide a direct pathway between an

ATE and the IP core under test (CUT). The test vectors are transported to the

CUT from the ATE input on the left side, applied to the CUT to obtain the test

responses, then the test responses are transported out of the chip through the

TAM wires on the right side back to the ATE for comparison with the expected

test responses. In the example, the memory blocks (SRAM, DRAM) are ignored

since they are normally and more effectively tested using dedicated memory test

techniques such as memory built-in-self-test (memory BIST). Therefore, the tests

of memory blocks are not considered.

8

source

sink

wrapper

core

source

sink
test access
mechanism

test access
mechanism

SoC

Figure 1.4: Test source and sinks interfaced to the core by means of a TAM and

a wrapper. Illustration based on [5], reproduced with permission.

1.3.1 Core Test Architecture

Definition 1.2 A core wrapper is a circuitry added around an embedded core to

facilitate test reuse and to interface between a test access mechanism (TAM) and

the embedded core [4] (Figure 1.4). Test reuse is the ability to apply a predeter-

mined test pattern associated with a core after this core has been integrated into

an SoC. Test reuse is a consequence of design reuse and often requires the adap-

tation of a test protocol to reflect the core’s new environment within an SoC. The

use of core wrappers allow these test patterns to be reused in the environment of

an SoC.

Figure 1.6 illustrates a Core A wrapped in the IEEE 1500 standard wrapper.

The wrapper consists of several components. The wrapper boundary registers

(WBR) act as input and output buffers. In Figure 1.6, five input wrapper bound-

ary registers are located between the wrapper boundary inputs (d[0]-d[4] labels

on the outside) and the Core A’s primary inputs (d[0]-d[4] labels inside Core A).

Similarly, three WBR’s are located at the outputs (q[0]-q[2]).

9

PROCESSOR

MPEG

DSPI/O

DMA

Network

Interface

I/O

DRAM

SRAM

DRAM

USBUART

TAM

WRAPPER
ATE

A
T
E

Figure 1.5: The SoC in Figure 1.3 after the core-based test architecture is inserted.

The test access mechanism (TAM) provides external access to the embedded cores

and the core wrappers provide test control and access to each individual core.

The second component is the wrapper instruction register (WIR), which ac-

cepts several predefined instructions from the WSC input. These instructions are

used to set the wrapper modes. In the normal mode, the WBR selects the func-

tional inputs (d[0]-d[4]) and outputs (q[0]-q[2]), respectively. In the test mode,

the WBR selects the scan inputs (WSI input in Figure 1.6). Figure 1.6 shows the

serial INTEST mode, where the wrapper is configured with one long scan chain to

provide test stimuli (from WSI input) and to capture test responses (from WSO

output) for Core A, hence the name INTEST (or internal test) mode.

Other test modes are parallel test mode (using the WPI and WPO), which

can provide wider TAM access for shorter test application time, and bypass mode

(using the WBY register), which is used when multiple cores are sharing the same

TAM wires as shown in Figure 1.5. By setting bypass mode for all cores except

one, each core can be tested sequentially using the shared TAM wires. This is used

when limited number of TAM wires are available. In addition, the wrapper serial

input (WSI) is typically used to connect serially all the cores in the SoC using

a single wire. The WSI input is used to update the wrapper instruction register

10

Figure 1.6: An IP core wrapper in the 1500 standard wrapper [4]. The wrapper

is configured with the serial INTEST mode.

(WIR) of the target core. In the bypass mode, the bypass register eliminates all

the boundary registers from the serial scan path to shorten the time to update

the WIR.

Using the example in Figure 1.6, we can extract the single wrapper scan chain

structure as shown in Figure 1.7. The wrapper scan chain consists of five WBR

for the primary inputs d[4 : 0], 8 + 6 = 14 scan cells from the two 8- and 6-bit-

long internal scan chains, and three WBR for the primary outputs q[2 : 0]. All

together, the scan chain is 22 bits long. For this wrapper configuration, a pair of

test vector and response of 19-bit and 17-bit long, respectively, are required. In

other words, the scan-in depth (si0) and the scan-out depth (so0) for the wrapper

configuration are 19-bits and 17-bits respectively. This concept is explained next.

The tests of an IP core can be broken down into three stages.

11

d[4]
d[3]

d[2]
d[1]

d[0] q[0]
q[1]

q[2]
Scan chain 1

(8 FF)
Scan chain 0

(6 FF)

Scan shift direction

Figure 1.7: The single scan chain architecture from the serial intest wrapper

configuration of Figure 1.6.

1. Stage 1 [Scan-in stage]: The test stimuli are loaded (or scanned-in) to the

primary input WBR’s (5 bits) and the internal scan chains (14 bits). The

primary output WBR’s do not require test stimuli because they are on

the output side of the circuit under test (CUT), the combinational logic in

Figure 1.8.

2. Stage 2 [Capture stage]: The test stimuli are applied to the CUT by apply-

ing a clock cycle. After this stage, the contents of the internal scan chains

and the primary outputs WBR’s, are updated to reflect the next state of the

CUT, which is also called the test response. The contents of input WBR’s

are unchanged.

3. Stage 3 [Scan-out stage]: The test response, which consists of the contents

of the internal scan chains (14 bits) and the primary output WBR’s (3

bits) are unloaded (or scanned-out) of the scan chain to be compared to the

expected response. If the circuit response and the expected response match

for every test stimuli, the circuit is considered fault-free.

The total test application time for the single test stimuli is 19 + 1 + 17 = 37

clock cycles. If the test set consists of two test stimuli v0 and v1 (where v0 is

applied before v1, and the number of test stimuli is nv = 2) , the scan-in stage

of v1 can be overlapped with the scan-out stage of v0. Since the scan-in depth

is larger than the scan-out depth by two bits in this example, the extra 2-bits

scanned-out (at the output of the scan chain) during the scan-in of v1 are ignored.

On the other hand, if the scan-in depth is shorter than the scan-out depth by n

12

d[4]
d[3]
d[2]
d[1]
d[0]

Scan chain 1 (8 FF) Scan chain 0 (6 FF)

q[2]

q[1]

q[0]

Combinational
Logic

WSI WSOCore A

Wrapper
scan chain

8

6

Figure 1.8: Alternative representation of the 1500-wrapped core in Figure 1.6.

The IP core is divided into scan flip-flops and combinational logic components.

bits, the second test stimuli must be reformatted to accommodate the artificially

elongated scan-in cycle (or simply scan cycle), by padding it with n dummy

bits during the first n scan cycles. When the scan-in and scan-out stages are

overlapped, the number of scan cycles follow the larger of the two. As a result,

the test application time (TAT) for nv test stimuli/response pairs for a single

scan chain architecture in Figure 1.7 can be written as

TAT = (max{si0, so0}+ 1)× nv + min{si0, so0} (1.1)

13

d[2]
d[1]

d[0] q[0]
q[1]

Scan chain 0
(6 FF)

d[4]
d[3]

q[2]
Scan chain 1

(8 FF)

Wrapper scan chain 0

Wrapper scan chain 1

Figure 1.9: The multiple scan chain architecture for Core A in Figure 1.6.

The following description is applicable to the example in Figure 1.7. The

first term, max(...), represents the first scan-in cycle and the overlapped scan

cycle(s), plus a single capture cycle for each test stimuli. The second term,

min(...), represents the final shorter scan-out cycle. Using equation 1.1, the test

application time for the example in Figure 1.7 is 57 clock cycles.

For multiple wrapper scan chains, the scan-in depths and scan-out depths

for each scan chain can be arbitrary. One possible two-scan chain configuration

for the same IP core in Figure 1.6 is shown in Figure 1.9. The scan in-depths

of wrapper scan chains (wsc) 0 and 1 are si0 = 9 and si1 = 10, respectively.

The scan-out depths are so0 = 8 and so1 = 9, respectively. Because the scan-in

operation takes place simultaneously for both wsc 0 and wsc 1, the larger of the

scan-in depths, si1, dominates. Therefore, the overlapped scan-in and scan-out

operations take 10 clock cycles. During the final scan-out operation, the number

of scan-out clocks is determined by the dominant scan-out depth, so0 = 9.

In general, we can define the maximum scan-in depth for all k wrapper

scan chains, si = max{si0, si1, ..., sik}, and the maximum scan-out depth, so =

14

Scan chain 0
(6 FF)

Scan chain 1
(8 FF)

Wrapper scan chain 0

Wrapper scan chain 1

d[4]
d[3]

d[2]
d[1]

d[0] q[0]
q[1]

q[2]

Wrapper scan chain 2

Figure 1.10: Three scan chains architecture for Core A in Figure 1.6. Wrapper

scan chain 1 dominates the test application time, therefore larger number of scan

chains will not reduce the test time any further.

max{so0, so1, ..., sok}. The generalized test application time is given by

TAT = (max{si, so} + 1)× nv + min{si, so} (1.2)

Using equation 1.2, the test application time for the two-scan-chain wrapper

configuration in Figure 1.9 with nv = 2 is 31 clock cycles. For three (Figure 1.10)

or more wrapper scan chain configurations, the test application time would be 26

clock cycles because the fixed 8-bit internal scan chain dominates.

15

1.4 Reuse of Functional Interconnects as TAM

The discussions in Section 1.3.1 (Figures 1.5 and 1.6) relate primarily to the con-

cept of a test access mechanism that are added to the chip purely for the use

during the test application (i.e. it is only used during the nonfunctional or test

mode). There are a lot of research on SoC core-based testing that are relying

on the nonfunctional or dedicated TAM. Only a small number of papers con-

sidered core-based tests without the dedicated TAM. These related research are

highlighted in Chapter 2.

Our work concentrates only on the reuse of functional interconnects as TAM

during the test application. The functional interconnects are sometimes called

existing interconnects or functional TAM. Unfortunately, these functional in-

terconnects come in various flavors. Bus-based interconnects (hierarchical or

non-hierarchical) are the most common. The most recent type of SoC intercon-

nect, the network-on-chip (NoC), has also been considered for high bandwidth

requirements. This work considers these three types of functional interconnects

as TAM’s and develops the necessary support architecture and the corresponding

test scheduling algorithms for each case.

1.4.1 Impact on the Design Flow

In Figure 1.1, the design and test flow for the dedicated TAM based test scheme is

illustrated. During the process of TAM and wrapper insertion and test schedul-

ing, only the information on the embedded cores is required. For core tests,

interconnect information is not required because of the addition of test access

mechanisms. The details on the functional interconnect architecture is required

only for the interconnect testing.

Figure 1.11 shows the revised design and test flow when reusing the func-

tional interconnect for test data transportation instead of the dedicated TAM.

The impact on the design flow is very minimal. The same steps are followed,

except during the system-level DfT insertion and test scheduling. The functional

interconnect information is required for the wrapper design and test scheduling.

16

System Design

Core 1
Design

Verification
Synthesis

Scan DfT
insertion

System Design, Verification, Synthesis

Place & Route � Fabrication

Core 2
Design

Verification
Synthesis

Scan DfT
insertion

Core n
Design

Verification
Synthesis

Scan DfT
insertion

…

Test Pattern
Generation

Test Pattern
Generation

Test Pattern
Generation

Wrapper insertion
Test scheduling

Cores and
interconnect
information

Test application

Figure 1.11: System design and test flow for interconnect reuse.

1.5 Contributions of This Thesis

This thesis makes three main contributions to the problem of core-based testing

of a system-on-chip by reusing the existing SoC interconnect. This thesis focuses

on the wrapper design and insertion, and test scheduling, as shown by the grayed

blocks in the design and test flow in Figure 1.11. The shared characteristic of

all our proposed approaches is that they utilize the existing functional intercon-

17

nects/interfaces for test purposes. The first step of our research targets the most

basic interconnect—the non-hierarchical or flat bus architecture. This is followed

by the more advanced hierarchical buses. Finally, we target the new smart inter-

connect called network-on-chip, which is based on the packet-switched Internet

protocol network architecture.

Our first contribution is that several variations of core test wrappers for func-

tional interconnect reuse are proposed for specific types of SoC interfaces. We

propose an improved version of a core wrapper for bus-based SoC based on the

novel buffer-based wrapper architecture by Larsson, et al. [6]. Another pair of

core test wrappers are designed for a NoC-based SoC, that takes advantage of

the NoC communication services, specifically the bandwidth reservation scheme.

In addition, the bandwidth matching architecture integrated with the wrapper

eliminates the problem present in the wrapper proposed by Amory et al. [7].

Second, the thesis proposes the concept of test configuration graphs (TCG),

which can be used to systematically and effectively schedule the available re-

sources in a hierarchical bus and multiprocessor system. We proposed five basic

types of test configuration graphs, from which any other configuration can be

derived. The TCG’s are used in the test scheduling algorithm as an effective

measure to balance the loads on various bus segments for the test scheduling

problem of hierarchical bus based MPSoC.

Third, we are the first to propose a test data transportation scheme that uti-

lizes the NoC effectively, by means of bandwidth sharing. The proposed method

drastically reduced the test application time compared to the previously proposed

test method for a NoC-based system. Such achievement is made possible by the

use of our enhanced NoC-compatible wrappers.

1.6 Thesis Organization

This thesis is organized as follows. The current chapter (Chapter 1) provides a

description on the fundamental problems of core-based scan testing of system-

on-chips. The problems can be summarized as

• the problem of test access to the deeply embedded cores to provide the test

stimuli and to retrieve the test responses, and

18

• the problem of test time minimization through proper core test scheduling

schemes.

Chapter 1 provides a strong motivation for the test data transportation problem

in the core-based SoC testing to be mitigated by using the functional intercon-

nects, rather than by using dedicated TAM’s. In doing so, the unnecessary area

costs and additional routing congestion of the dedicated TAM can be avoided

completely.

Chapter 2 begins by considering the test access and test scheduling problems

for SoC’s with a flat bus (i.e. non-hierarchical) interconnect architecture. The

single flat bus poses a problem in minimizing the test application time because

of its shared-and-broadcast nature. This shared architecture limits the core test

scheduling to a test-one-at-a-time sequential test scheme. To overcome this prob-

lem, a buffer-based wrapper architecture is proposed. The addition of buffers

allows the shared bus to be used efficiently by means of a packet-based test data

transportation, which utilizes the time domain multiplexing (TDM) scheme. The

benefit of using the buffer-based test wrapper together with the functional bus

on the test application time is evident, as shown by the experimental results

presented in this chapter. The proposed test scheduling scheme using the packet-

based data transmission is called PAcket Set Scheduling (PASS).

Chapter 3 leads off with a discussion on multiprocessor SoC’s (MPSoC) with

hierarchical buses. It continues with some explanation on why the PASS algo-

rithm (which was developed specifically for a non-hierarchical bus) does not work

efficiently for a hierarchical bus system. This chapter proceeds to address the

shortcoming of PASS scheme with an integrated test scheduling methodology

called Multi-Processor PASS (MPPASS) for multiprocessor SoC’s. As part of the

MPPASS scheme, the concept of Test Configuration Graphs (TCG) that repre-

sent the MPSoC test architecture is introduced. In short, this chapter expands

the methodology proposed in Chapter 2 to be applied to the more generalized

MPSoC architecture.

Chapter 4 begins with a brief introduction on the Network-on-Chip (NoC)

interconnect architecture. This chapter gives the basic characteristics of NoC

topologies, NoC routers, and data switching techniques. Two network-on-chip

interconnect architectures—SoCIN and Æthereal—most commonly used in the

19

core wrapper design and core-based test scheduling problems are described.

In Chapter 5, we start by explaining the limitations of the standard IEEE

1500 wrapper, which cannot be used when the NoC interconnect is used as a

test access mechanism. The analysis of these 1500 wrapper limitations provides

us with the necessary information to construct NoC-compatible wrappers. In

order to optimize the bandwidth utilization and minimize the test application

time while also minimizing the area cost, two types of NoC-compatible wrappers

are constructed. The first wrapper incurs minimal area cost, but wastes the NoC

bandwidth under some test configurations. The second wrapper complements the

bandwidth-inefficient characteristic of the first wrapper by using more hardware,

thus higher area cost.

Having the two wrapper options allows the test designers to balance between

area cost minimization and test time minimization in the test scheduling scheme

in Chapter 6. The experimental results presented in this chapter evaluates this

trade-off. Chapter 6 continues the discussion on NoC-reuse-based test scheduling

using a bandwidth sharing scheme—a novel test scheduling technique proposed

in this chapter. Compared to other dedicated path-based test scheduling, the

dedicated path approach is much more efficient in reducing the test application

time, especially with a limited number of I/O ports.

In Chapters 2, 3, 5, and 6, several experimental results are presented and

explained to verify the effectiveness of the proposed techniques. Finally, Chapter 7

summarizes the research results presented in this dissertation and highlights some

of the important results followed by a brief mention of possible future works.

20

Chapter 2

Wrapper Design and Test

Scheduling for System-on-Chips

Using a Functional Bus

2.1 Introduction

System designers are adapting to the system-on-chip (SoC) design methodology

because of its efficiency compared to the traditional system-on-board approach.

The SoC design technique and its characteristics are briefly described in Chap-

ter 1. The main benefit of the SoC approach is that it can drastically shorten

the design cycle by allowing pre-designed cores and their associated test set to be

reused. To enable the plug-and-play reuse of tests together with the cores, the

IEEE 1500 standard [3, 4] was developed and used by many IP core providers

and system designers.

The rapid increase in VLSI design in terms of its functionality as well as

the gate/transistor count helps in reducing the design cost. With every new im-

provement in the manufacturing technology, the cost of fabricating each transistor

decreases in inverse exponential fashion (Figure 2.1). The test costs however has

been kept almost constant throughout the years. Without a revolution in the

way the chips are tested, the costs of a chip will soon be dominated by the test

costs.

Furthermore, the use of SoC design methodology introduces several new prob-

21

Figure 2.1: Comparison between the cost of silicon and the cost of test of VLSI

circuits over a 30-year period.

lems and challenges in testing [8]. First, the cores that are embedded deep inside

the silicon chip require a Test Access Mechanisms (TAM) for test data trans-

portation. Several TAM architectures have been proposed such as TestRail [9],

Virtual TAM [10], and TAM’s based on transparency [11].

Second, the SoC’s core-based design requires a mechanism to isolate the cores

during test. This is achieved by the use of core wrappers [3, 9]. Third, the cores

can either be tested sequentially at the cost of longer test application time, or

in parallel at the cost of larger area overhead and power dissipation. In this

regard, various test scheduling solutions have been proposed [6, 12–50]. The core

test scheduling approaches proposed by [13–21, 27] rely on a dedicated TAM.

This extraneous TAM is consistently added to the SoC for the sole purpose of

delivering the test vectors from external automatic test equipment (ATE) to the

core under test (CUT). In general, the test application times resulting from these

approaches are bounded by the lower bound derived in [21].

Among these approaches, various optimization methods stand out such as

using k-tuples to represent a test schedule [29], 2D-bin packing [17, 19, 51], 3D-

bin packing [13], several types of linear programming [30–32], simulated annealing

22

[33], preemptive scheduling [14, 34], and a schedule based on the TAM-routing

cost [35], a DFT selection algorithm [36], a wrapper/TAM co-optimization [12],

and a multi-frequency TAM [37]. In order to further minimize the test application

time, reconfigurable wrapper [14], virtual/reconfigurable TAM [16, 38, 39], test

vector sharing and broadcasting [27, 52], and defect-probability driven [40, 41]

approaches have also been proposed.

Taking into account the special characteristics and limitations of the SoC chip,

power-constrained scheduling [17, 18, 34, 42–46], layout-constrained scheduling

[47] and test scheduling for multi-clock domain SoC’s [15] and hierarchical SoC’s

[19, 48–50] are also important. Equally important is the work on test planning

and design space exploration [20, 53] which tackle the test problem at an earlier

stage. All these test scheduling and optimization works rely on the introduction

of a dedicated and extraneous TAM for the test data transportation.

Regardless of how efficient the test schedule optimization, wrapper optimiza-

tion, or TAM optimization algorithms are, the idea of adding a dedicated TAM

for test data transportation by itself requires considerable area overhead. In ad-

dition, the long TAM wires increase the routing congestion. With small feature

sizes below 90 nm, the long wires are highly potential spots of production defects.

Defects in TAM’s would prevent any cores from being properly tested, thereby af-

fecting yield. To avoid relying on TAM’s, the existing functional communication

architecture should be used as an alternative to the extraneous TAM for testing

purposes. The test scheduling methods proposed in [13–21, 27] cannot be applied

to this new problem, which has a single shared bus where each bus wire cannot

be individually assigned according to the optimum test schedule. Cores can only

be tested sequentially by using all functional bus bit width.

In order to maximally reuse the existing chip resources for testing, the au-

thors in [22] described a method based on consecutive transparency, where test

access paths are formed by creating transparent paths through existing functional

connections between the SoC cores, thereby reusing most of the existing inter-

connects. However, the drawback of the proposed approach is that it is intrusive;

sometimes, establishing the paths requires modification to the core internals,

which might affect the critical paths of the cores.

Several test strategies which utilize the functional bus [6, 23–26, 28] have

23

been proposed; they are further discussed in Section 2.2. However, these meth-

ods do not consider the test scheduling at the packet level, which is necessary

when reusing the functional buses for test data transportation. In this chap-

ter, we introduce our proposed approach [54, 55], which explicitly schedules the

transportation of data packets through the functional bus that carry the test

vectors and responses. The test application times are obtained through complete

packet-level simulations of the test data transportation. The proposed approach

is unique because of the explicit packet transportation schedule, in addition to

its ability to make use of the functional bus effectively.

We begin with a review of some works related to the bus reuse strategy in

Section 2.2. In Section 2.3, a motivational example is given, followed by a brief

technical overview in Section 2.4. In Section 2.5, the support architecture de-

sign for the efficient utilization of the functional bus during testing is described.

Section 2.6 elaborates the methodology to develop an efficient test schedule us-

ing the functional bus. In Section 2.8, we thoroughly evaluate our methodology

experimentally. Finally, a brief set of conclusions is offered in Section 2.9.

2.2 Related Work

This section describes some works on the utilization of the existing functional

interconnect rather than an added interconnect as TAM. To differentiate the two

types of test data transportation approaches, we define the following terminolo-

gies:

Definition 2.1 Dedicated TAM is a set of dedicated wires that are added to

the SoC for the test data transportation between an ATE and all the SoC cores

during nonfunctional or test mode.

Definition 2.2 Functional TAM refers to the existing SoC’s functional intercon-

nects which are transformed and reused for the test data transportation during

the nonfunctional or test mode.

Among the earliest literature on the use of functional TAM’s for SoC testing

stands out the paper by Papachristou et al. [24], in which, an embedded micro-

24

processor is used as the test controller. The test data from an external tester

are loaded into the embedded memories through a direct memory access con-

troller (DMA) and delivered to the core under test by the embedded processor

through the functional interconnect. The test responses are evaluated by embed-

ded signature analyzers in order to minimize the load on the processor and the

interconnect.

A more comprehensive methodology on the functional TAM approach was

discussed by Harrod [23]. The paper discussed the test application strategy for

various types of test requirements for the embedded Intellectual Property (IP)

cores. Test access to the Core-Under-Test (CUT) is provided by the Test Interface

Controller (TIC), which is part of the AMBA specifications. An external ATE is

used to deliver the test vectors through the TIC interface. At each core, a test

wrapper is required to isolate the core from its surrounding.

Krstic et al. [25] presented a similar methodology, where the embedded pro-

cessor first tests itself by executing a set of instructions using a software-based

self test (SBST) methodology [56]. Subsequently, the processor tests the bus and

the other IP cores. Huang et al. [26] presented a similar core-based test approach

for PCI bus based SoC’s. The test application is performed by the test support

architecture at every CUT. Software-based weighted random patterns [57] are

generated for each CUT. These approaches [23–26], however, do not propose a

test scheduling technique for a complete SoC to show their effectiveness. To en-

hance the software-based test generation, a specialized set of test instructions is

also introduced [58].

Larsson et al. [6] proposed a buffer-based test support architecture to enable

parallel testing of core-based SoC’s. As opposed to the embedded processor-based

approach by [24–26], the test control is performed by an embedded finite state

machine based controller which costs additional hardware, proportional to the

volume of the test data.

All the proposed methods [6, 23–26] target the structural test of the logic

cores. The tester (an embedded processor or an external tester) utilizes the func-

tional buses to transfer the structural test vectors to the respective CUT’s. The

authors in [58] targets the functional tests of embedded processor and logic cores

by implementing an instruction-level design-for-testability (DfT) and specialized

25

test instructions to aid in increasing the fault detection and shortening the test

application time.

The use of packet-switching architecture for core-based testing has been pro-

posed by Aktouf [59] for a multiprocessor system with a homogeneous network-

based architecture. Vermeulen et al. [60] shows that an NoC can be effectively

reused for core testing as well as system verification. Several NoC-reuse based

test strategy have been published in the recent years, among them are from Cota

et al. [61], Amory et al. [62], and Liu et al. [63]. All these approaches, however,

do not propose an explicit transportation schedule for each test packet; instead,

dedicated access paths are allocated assuming that the test data and response

packets can be streamed between the tester to the CUT’s. Applying these ap-

proaches on a shared functional bus results in a sequential testing of the SoC

cores.

Nahvi et al. [64] proposed a Test Access Mechanism (TAM) architecture based

on a packet switching communication network, called NIMA (Novel Indirect and

Modular Architecture). NIMA provides access to the cores for test data delivery

by means of multi-level routers and communication channels similar to bus-based

TAM’s. Packet delivery is achieved by breaking the test data into smaller units

called packets, each of which containing the necessary control information re-

quired to successfully deliver the data through the routers. Typical control infor-

mation includes the synchronization bits, the destination address, and the length

of the address field. Initial analysis of the packet routing architecture shows an

improvement in terms of core access time and the total wire length as compared

to the bus-based TAM’s.

A hybrid TAM architecture which uses the existing functional bus in addition

to extra TAM’s was proposed in [27]. In this approach, the functional bus is

converted into a bundle of TAM’s, by adding some logic to make the bus wires

controllable and observable to external testers. As a result, each functional bus

wire can be individually controlled and assigned to cores for the test data trans-

portation, similar to the added TAM. To further minimize the test application

time by optimizing TAM utilization, shared test vectors are broadcast to multiple

cores.

26

In [26], the authors propose a test interface architecture between PCI buses

and CUT’s. The CUT’s are tested using pseudo-random test vectors, generated

by the embedded processor. In [6], a buffer interface between a functional bus

and a CUT is proposed, while the control of test application is performed by

a Finite State Machine (FSM) based controller. The hardwired controller has

in [6] has two main weaknesses compared to our approach: (1) the area cost is

proportional to the the volume of test data, and (2) the FSM-based test schedule

is fixed, making it impossible to change. This flexibility is especially important

during the hardware debugging stage. The test responses, on the other hand, are

not transported through the bus to the test sink. Instead, they are compressed

by local embedded multiple input signature registers (MISR), which could cause

aliasing. Furthermore, the MISR’s incur hardware overhead.

Due to the use of MISR’s, the test application time of [6] should, in most cases,

be shorter than our approach, which transports the test responses back to the

tester. However, the use of software-based test program in our proposed approach

has the advantage of being flexible, and does not incur hardware overhead other

than the buffers. The role of the FSM-based test controller in [6] can be replaced

by an external tester or an embedded processor. This is further discussed in

Section 2.4

In this chapter, we illustrate our power-constrained SoC testing approach

which utilizes the functional TAM for the test data transportation. In order to

take advantage of the functional TAM, we approach the problem from two angles,

namely, a support architecture design framework and an algorithmic framework.

In the process, we show how our approach greatly simplifies the test program, one

of the primary strengths and differentiators of our proposed methodology. Such

a simplification is attained through the support of an efficient test architecture,

which includes appropriate timing control circuitry.

2.3 Motivation

Let us look at some of the possible scenarios regarding packet based test delivery

utilizing the shared functional TAM. To ease description, let us denote each of

the small test data units as a test packet. Figure 2.2 illustrate a sequence of

27

VBus

Core A
Core B

Stage 1

Stage 2

Time

R RV V R RV V R RV

Test vector data Test response data

Figure 2.2: Test data transportation using packet-based delivery on the functional

TAM. An R packet carrying the test response data is returned to tester after every

V packet, which carries test vector data.

B
uffer A

Functional Bus

Stage 1Stage 2 Stage 1 Stage 2

B
uffer B

B
us

Interface

B
us

Interface

C
ore A

Boundary scan cells

C
ore B

Figure 2.3: Buffer-based test architecture enables parallel test application while

utilizing a shared functional TAM.

events when test packet are transported between a tester and two CUT’s, Core

A and Core B, which are interfaced to the functional TAM through dedicated

local buffers Buffer A and Buffer B, respectively, in Figure 2.3. Bus and Core

A/B represent the activities on the functional TAM and at the CUT, respectively.

Once a packet carrying test vector data, vt, (labeled V) is received by the local

buffer, the test response packet (labeled R) from a previous test vector, vt−1 is

returned in the next time slot.

The Round-robin packet delivery schedule in Figure 2.2 is a reasonable first

attempt at scheduling the test delivery because of its fair allocation of the bus.

28

Bus

m1
m2
m3

Time

m3 is waiting for test data,
while the bus is also unoccupied

Both vector and
response packets

Stage 1

Stage 2

(a) Fixed packet size

Bus

m1
m2
m3

Time

Larger buffer required

Stage 1

Stage 2

(b) Variable packet sizes

Figure 2.4: Effect of repetitive packet delivery sequence for different packet sizes.

Figure 2.4(a) shows a similar delivery pattern for three unidentical CUT’s C1,

C2, and C3. For each CUT ci, each packet will go through two separate stages

of transfer (illustrated by Figure 2.3). First, it is delivered from a tester to

the buffer through the functional TAM (labeled Bus in Figure 2.4, where each

time slot represents both V and R packets). On the second stage, the packet

is transferred from the buffer into the scan chains (labeled ci in Figure 2.4 to

illustrate the concurrent activities of all CUT’s ci in stage 2). A test response

packet is returned to the tester after every successful reception of a test vector

packet by the buffer.

29

Stage 1 of the subsequent test packet for a CUT can only begin, to avoid

buffer overflow, after stage 2 of the previous test packet for that CUT has been

completed. Furthermore, since stage 1 uses a common bus, only one test packet

can be in stage 1 at any given time. Stage 1 and stage 2 are also referred to as

test delivery and test application, respectively, for the test packet.

Figure 2.4(a) shows CUT C3 idle, waiting for test data because the test packet

for C3 cannot be delivered until the test packet for C2 has been delivered. How-

ever, the test packet for C2 cannot be delivered until the test application of the

previous packet of C2 has been completed. Consequently, C3 is starved for test

data and at the same time the bus remains idle while waiting for C2 to complete

test application even though C3 needs test data. An analogous situation holds for

C1. CUT C2, on the other hand, always receives its test data in a timely manner

at the expense of starving C1 and C3.

The problem can be remedied by increasing the packet size for C1 and C3,

as in Figure 2.4(b). However, this quick fix implies that larger buffer spaces are

required for C1 and C3 to store the larger packet sizes. We can reduce packet

sizes for all cores, but the minimum packet size for each core is constrained by the

core with the smallest packet size (i.e. C2). Further reduction in packet sizes for

C1 and C3 would reintroduce the problem illustrated in Figure 2.4(a). The two

scenarios illustrated by Figure 2.4 above are not the only optimization problems

that have to be solved to make core-based testing using the functional TAM

attractive. An additional challenge stems from the fact that packet sizes cannot

be arbitrary, because data delivery is conducted through a discrete number of

bus wires.

Figure 2.3 shows the buffer interface between the bus and the core, which is

considered in this chapter. There are several different variables that can affect test

scheduling—bus frequency, bus width, scan frequencies, number of scan chains,

and volume of test data for each core. All these variables contribute to the

efficiency of the test schedule.

30

2.4 Technical Overview

Even though a functional TAM and a dedicated TAM may be similar in many

ways, the underlying issues that need to be considered are completely different.

We can broadly categorize them into two:

• Support architecture for test data delivery

• Algorithmic framework for efficient test scheduling

A functional TAM differs from a dedicated TAM because every functional

TAM wire is connected to every embedded core; it cannot be committed to mul-

tiple cores simultaneously like a dedicated TAM by assigning subsets of TAM

wires to different cores. Without a buffer-based test support mechanism (Fig-

ure 2.3) similar to the test buffer in [6, 26], only one core can be tested at a time.

Furthermore, in the conventional approach of dedicated TAM-based SoC testing,

test control timing, including scan and capture clock generation, is provided by

the external ATE. Therefore, the synchronization of test vector availability at

the scan input and scan/capture clock generation is trivial since the ATE retains

full control of all the event sequences for every core under test. When utilizing

the functional TAM, this control timing needs to be performed on-chip, posing a

research challenge, which we subsequently address in this chapter.

The test source/sink to a functional TAM can either be an external ATE or

an internal programmable block. Unlike dedicated TAM’s, the ATE cannot be

connected directly to the functional TAM wires, but through a test interface port

shown in Figure 2.5. For example, ARM’s AMBA [65] bus architecture provides

a Test Interface Controller (TIC), which communicates to the ATE and the CUT

using the functional read/write transactions. The TIC acts as an intermediary

by relaying the the vector data packets from the ATE to the CUT and vice versa

for the response packets.

In order to utilize the programmable core as a test source/sink, several issues

need to be resolved, which among others include testing of the programmable core

itself, and loading of the test stimuli to and and offloading of the test responses

from the programmable core. In this chapter, we will utilize an external ATE

(connected through a TIC) as a test source and sink, therefore. these issues

regarding the programmable core are not addressed here.

31

Core Core

Core

Core

System Bus / Functional TAM

TICATE Core

Test
Interface
Controller

…

I/O
Port

Figure 2.5: Interfacing an ATE through a Test Interface Controller (TIC) port

for a functional mode test data transfer through the functional TAM.

Test scheduling that enables the reuse of the functional bus as functional

TAM’s involves three steps. First, breaking the test set into subsets capable of

efficiently utilizing the bus. Second, scheduling all tests for every core with the

objective of test time minimization, and third, generation of a test program which

will execute in real-time by the tester to perform test application for all the SoC

cores. In order for the benefits of utilizing the functional TAM for testing to

outweigh its counterparts in the dedicated TAM approach, the test architecture

needs to support the algorithmic framework, and vice versa. Otherwise, problems

such as bus underutilization arise because of the required arbitration between

different cores, and improper test schedules causing certain cores to starve of

test data while other cores may be hogging the bus, resulting in prolonged test

application time.

Test data overflow/underflow is a particularly serious potential problem, un-

less the necessary timing synchronization or interlock between the tester and the

cores under test is provided. The test support architecture should be designed to

also provide timing synchronization, while minimizing the hardware overhead.

32

2.5 Test Support Architecture

Buffer based test architecture was proposed by [6] in order to enable concurrency

of core-based testing using a shared functional TAM. Our general test architecture

with buffers similar to [6] is shown in Figure 2.3 with the corresponding test

delivery and test application timing diagram similar to Figure 2.4.

Figure 2.6 shows the detailed architecture of the interface between the func-

tional TAM and the core through the functional bus protocol interface. Both the

functional connections (solid lines) and design-for-testability (DFT) connections

(dotted lines) are shown. The components shown in solid black shading are the

proposed buffer-based DFT architecture. Boundary cells (BC) are added to the

core PI/PO’s in order to isolate the core during test. The wrapper scan chains

are formed by chaining the input BC’s, internal scan chains (ISC), and output

BC’s, in that precise order. Bidirectional I/O’s are treated similarly to the ISC’s

since the BC’s scan inputs, and not functional inputs, are used. Bidirectional

I/O’s are not shown in Figure 2.6 to avoid clutter.

The next section (2.5.1) explains one of the most popular methods of forming

the wrapper scan chains that minimize the test application time under given

constraints. The concept of scan chain design is important in order to completely

understand and appreciate the core wrapper design.

2.5.1 Wrapper Scan Chain Design

The authors in [66] provided a detailed analysis on test time for three types of

scan chain architecture, namely multiplexing, daisychain and distribution archi-

tectures. The fundamental concept of test time minimization through scan chains

design can be summarized here.

A scan test consists of three phases: (1) scanning in of the stimuli, (2) normal

execution, or commonly known as the capture cycle, and (3) scanning out of the

captured responses. As briefly described in Section 1.3.1 for the standard wrapper

in Figure 1.6, the components that make up a scan chain are

33

C
or

e
(C

U
T

)

P
I 0

P
I 1

P
I w

b-
1

w
b

P
O

0
P

O
1

P
O

w
b-

1
P

O
w

bP
O

w
b+

1

P
I w

b+
3

P
I w

b+
u-

1

w
b

s m

BUS PROTOCOL
INTERFACE

O
U

T
P

U
T

B
U

F
F

E
R

s m

T
es

t /
 N

or
m

al
 m

od
e

F
IF

O
 B

U
F

F
E

R
C

O
N

T
R

O
L

L
E

R

T
o

ot
he

r
co

re
s/

PO
’s

w
b

w
b

w
b

w
b

IN
P

U
T

B
U

F
F

E
R

SC1

SC0

SCsm-1

FUNCTIONAL BUS

B
ou

nd
ar

y
ce

ll

w
bw
b

P
I w

b+
2

P
O

w
b+

v-
1

B
w

b
B

w
b+

1

Fr
om

/to
 o

th
er

 c
or

es
/P

I’
s

F
ig

u
re

2.
6:

C
or

e
te

st
ar

ch
it

ec
tu

re
w

it
h

in
p
u
t

an
d

ou
tp

u
t

b
u
ff
er

s
to

te
m

p
or

ar
il
y

h
ol

d
th

e
te

st
ve

ct
or

s
an

d
te

st

re
sp

on
se

s,
re

sp
ec

ti
ve

ly
.

34

• input wrapper boundary cells, whose quantity is the same as the number

of the core’s primary inputs, nip

• output wrapper boundary cells, whose quantity is the same as the number

of the core’s primary outputs, nop

• bidirectional wrapper cells, whose quantity is the same as the number of

the core’s primary bidirectional input/outputs, nbi

• k internal scan chains, whose total length is
∑

x∈[1..k] lx, where lx is the

length of each individual internal scan chain x.

The test stimuli must be available at the core’s primary inputs (inputs and

bidirectionals) as well as the internal registers, which are now augmented into scan

cells, before the capture cycle. Therefore, the scan-in operation would take si1

scan cycles (equation (2.1)), assuming a single scan chain architecture. Similarly,

the scan-out depth would be so1 cycles, given in equation (2.2). The scan-in and

scan-out items are illustrated in Figure 2.7.

si1 = nip + nbi +
∑

x∈[1..k]

lx (2.1)

so1 = nop + nbi +
∑

x∈[1..k]

lx (2.2)

Further, after the first capture cycle, the scan-in of new test stimuli can be

done concurrently as the scan-out of the responses associated with the previous

stimuli. Therefore, an equal number of scan-in and scan-out cycles is the most

desirable. For a single wrapper scan chain, the solution is trivial. With multiple

scan chains, the problem of scan chain design becomes a complex scan chain dis-

tribution problem such that the test application time for the core is minimized.

The test application time, T , is given by equation (2.3), si and so are the max-

imum scan-in and scan-out depths, respectively, and nv is the number of test

stimuli or test vectors.

T = (max{si, so}+ 1)× nv + min{si, so} (2.3)

2.5.2 Operation of the Buffer-based Test Architecture

During the test application, the test data are delivered to the input buffer and

then scanned into the scan chains. At the same time, the test responses are

35

… …

Input wrapper cells

ex
te

rn
al

in
te

rn
al

ex
te

rn
al

in
te

rn
al

Output wrapper cells

Internal scan chains

Core boundary

Scan-in items

Scan-out items

In Out
…

Bidirectional
wrapper cells

Figure 2.7: Break down of the scan chain architecture.

scanned out and stored in the output buffer before being retrieved by the tester

for analysis.

The buffer consists of four main components—input register, output regis-

ter, fall-through stack, and FIFO buffer controller—as shown in Figure 2.8(a),

illustrating the input buffer and the corresponding first-in first-out (FIFO) buffer

controller. The output buffer (not illustrated) has identical structure as the input

buffer but with reverse data flow. The input register latches data from the bus.

Upon registering a full status bit for the input register, the top of the stack copies

the data from the input register if its status bit indicates that it is empty. After

copying, the input register status bit is cleared, preparing it for the next cycle

of data from the bus. The stack will subsequently go through the fall-through

stages which will bring the data to the lowest empty slot.

The output register is composed of sc bits, where sc is the number of wrapper

scan chains for core m, possibly differing from the bus width, wb. It is interfaced

directly to the scan chain inputs. The output register is designed to support

this mismatch in bus width and wrapper scan chains. Therefore, it can be easily

adapted to any number of scan chains regardless of the bus width.

The test data is serially shifted out from the bottom of the stack, and shifted

into the output register. The FIFO buffer controller keeps track of the number

36

F
IF

O
 B

uffer
C

ontroller

Fall-through
stack

Input register

Output register

Functional bus

Scan chain inputs

ε1

α

clkin

To core

Bus protocol interface

ε2

ε3

ε4

wb1 2

sm1 2

wb

1
2

(a) The proposed buffer architecture interfaces the functional TAM and the
core scan chains.

Scan clock (ε3)

Capture
Clock (ε4)

Fall-through stack (ε1)

MOD
max(lm,i)

clkin
MOD sm

MOD wb

Buffer
empty (α)

Serial shift clock (ε2)

(b) FIFO buffer controller generates test control signals to the buffer and
the CUT when test data are received.

Figure 2.8: Test buffer architecture.

of bits being serially shifted into the output buffer, nsi, and the number of bits

being serially shifted out of the bottom stack, nso. Serial shifting is clocked by

the tri-stated clock signal (labeled ε2 in Figure 2.8(a) and Figure 2.8(b)). When

37

nsi equals sc, the FIFO controller generates a scan clock ε3 to scan in the contents

of the output buffer into the scan chain, whereupon new data is shifted into the

output buffer. When nso equals wb, the FIFO controller generates a signal ε1 to

fill in the bottom of the stack with new data.

The FIFO controller also keeps track of the number of scan clocks already

generated. When this number is equal to the longest scan chain in the core,

max(lm,i) for all i scan chains in core m, a capture clock ε4 is generated. The

FIFO controller can be implemented using three modulo counters, i.e., MOD sc,

MOD wb and MOD max(lm,i) as illustrated in Figure 2.8(b). The required input

for this circuit is clock clkin, whose frequency value is the product of the number

of wrapper scan chains, sc, and the scan frequency, fc. The same FIFO controller

is used for both input and output buffers because of their inverse operation. This

eases timing synchronization between the input and output buffers.

The proposed buffer architecture offers two distinct advantages. First, the test

application at the core operates asynchronously with respect to the availability

of test data in the buffer. When empty, the buffer disables the control signal

generation by means of status signal α, which is an input to the FIFO controller.

Because of the asynchronous scan and capture clock generation by the FIFO

controller, the buffer can accommodate unpredictable delivery time of the test

vectors, thus handling the synchronization issue. As a result, the scan clock

and the bus clock can be decoupled. Such decoupling enables the proposed test

mechanism to utilize a bus frequency higher than the scan frequency. Such a

capability is lacking in a dedicated TAM-based approach because TAM wires are

connected directly to the scan chains.

The second advantage is that the buffer allows the test data to be delivered in

chunks of any arbitrary multiple of bus width. This flexibility proves to be quite

useful in optimizing the test schedule, in addition to minimizing the buffer area

overhead.

On the other hand, the multiplexer at the output buffer (Figure 2.6) introduces

one additional gate-delay, compared to the standard IEEE 1500 architecture.

However, the impact on functional timing between the functional bus and the

core is minimized because the buffers are added in parallel to the functional

paths. Another drawback is that gated scan clock is used to disable the scan

38

operation when the buffer is empty, which might affect the delay characteristics

of the clock tree.

Due to the DFT architecture, which interfaces the core directly to the func-

tional bus, the proposed methodology is not applicable to embedded cores that

are not directly accessible from the bus. One possible way of mitigating this is

by introducing bypass interconnects between the core and the bus; this issue is

out of the scope of this chapter therefore not discussed.

In Section 2.6, the scheduling of test vectors and responses transportation

for the embedded cores is discussed. It is assumed that the FIFO buffers and

controllers are fault-free, therefore not the target of testing. The test of these

DFT architectures can be either done in an integrated fashion, or independent of

the core tests (i.e. in priory). In this chapter, the latter is assumed.

2.6 Packet Delivery Scheduling Algorithm

In this section, the issues related to packet delivery scheduling discussed in Sec-

tion 2.3 are addressed. The packet delivery schedule that minimizes the test

application time is developed with two objectives:

1. Minimization of the total required buffer size.

2. Maximization of bus utilization.

The above objectives are sought while at the same time ensuring that all cores

receive the test data in a timely manner. In order to satisfy these twin objectives,

the buffer size for each core and the test delivery sequence need to be optimal.

The scheduling algorithm consists of two hierarchical steps. The first step

(described in Section 2.6.3 and 2.6.4) is the grouping of cores which can be tested

simultaneously under a maximum power constraint. In the second step (defined

in Section 2.6.5 and 2.6.6), for each group of cores, the optimum number of

packets (and the corresponding packet size) for every core is determined. Each

of these packets is then scheduled for delivery through the functional TAM.

In this section, the algorithmic framework is discussed in terms of the two

hierarchical steps above. We start by defining a set of nomenclature useful in

describing the methodology.

39

2.6.1 Terminology

Definition 2.3 A test packet is composed of a number of bits of test data deliv-

ered to a core by the tester, in one burst transfer through the bus.

Definition 2.4 Due to the delivery of test packets through the wb-bit wide func-

tional TAM, the number of bits of test data that makes up a test packet is typically

pc × wb, where pc is denoted as the packet size.

Definition 2.5 A test group consists of a subset of cores in an SoC that are

tested simultaneously.

Definition 2.6 A packet set is composed of a series of packets delivered to all

cores ci ∈ MG, where MG is a test group. Several identical packet sets can

be cascaded to form a packet schedule consisting of all packets for all cores ci

to complete the test of MG. Figure 2.2 shows a packet set {Core A, Core B}
repeated three times to form part of a test schedule.

Definition 2.7 A core ci is said to have a split ratio of k, if k packets are sched-

uled for core ci in one packet set. In other words, it means that core ci will have

k times the number of packets of the smallest cores with a split ratio of one. The

core is also called a split-k core.

Definition 2.8 The scan rate (Rc) is the speed at which the test vectors are

loaded into the wrapper scan chains and the test responses are shifted out of the

wrapper scan chains in bits per second (bps). A core with sc wrapper scan chains

and fc scan frequency has a scan rate of Rc = sc × fc.

2.6.2 Power and Heat Dissipation Problem

Designers can easily increase the computation power of today’s SoC to meet

the computational needs of the system. The major problem remains to be the

excessive heat that these individual power-hungry cores generate. A design with

40

several of these cores could easily damage the chip through overheating, if clever

and necessary power management is not utilized.

The cost of test is linearly proportional to the amount of time taken to test

the chip. Therefore, it is imperative that the test application time be as short as

possible. This is almost always the main objective of any test scheduling strategy.

Since shortening the test time requires the concurrent tests of multiple power-

hungry cores, some sort of strategy is required to optimize the test time without

violating any of the design constraints such as the upper bound on power and

temperature. This trade-off demands the application of smart and efficient test

strategies.

Each SoC core dissipates a certain amount of heat. In typical SoC testing,

due to the design characteristics such as heat dissipation and current carrying

capacity of wires, a limit is imposed on power dissipation that a circuit can

tolerate without causing permanent damage to the chip.

In this dissertation, instead of considering the actual amount of heat dissipated

by each core, we limit the power consumption of the whole chip during test. The

total power dissipation at any given time t is the sum of power dissipations of

all cores that are tested (or active) at time t. To optimize the test scheduling

scheme, we utilize a scheme that optimizes the scan frequency for each of the

circuit under test.

2.6.3 Scan Frequency Reductions

In the illustrative example in Figure 2.9, the maximum power dissipation is given

by Qmax. Given that the sum of power dissipations for all three cores C1, C2,

and C3 exceeds Qmax, the three cores cannot be tested simultaneously. This

is illustrated in Figure 2.9(a) where core C3 is tested after the tests of cores C1

and C2 without exceeding the maximum power dissipation, Qmax. Each rectangle

labeled Ci represents the power dissipation (vertical dimension) and test duration

(horizontal dimension) required to test core Ci.

The original test configurations do not allow simultaneous tests of all cores

C1, C2, and C3 without violating the power constraint. However, as shown in

Figure 2.9(b), if the power-time rectangles for C2 and C3 can be reshaped while

keeping the area inside the rectangles constant, all cores can be tested concur-

41

rently, resulting in shorter total test application time, without violating the Qmax

constraint. This power-time rectangle’s shape transformation by means of chang-

ing the scan frequency has been used and discussed by [15] in their dedicated

TAM-based SoC scheduling methodology.

In order to do this shape transformation, we first look at the relationship

between scan power and scan test time, which defines the dimensions of the

power-time rectangles. A dynamic power dissipation—the dominant component

of total power dissipation—due to charging and discharging of output capacitance

of every gate [67] in the chip-under-test is given in equation (2.4).

Qdyn = 0.5× Cload × V 2
DD × fsys ×NG (2.4)

where Cload is the load capacitance, VDD is the supply voltage, fsys is the system

clock frequency, and NG is the total number of gate output transitions. During

a scan test with a scan frequency of fc, the dynamic scan power (Qc) and test

application time (Tc) for a core c are:

Qc = 0.5× Cload × V 2
DD × fc ×NG (2.5)

Tc = (maxk{lc,k}+ 1)× nvc

fc
(2.6)

where lc,k is the individual length of k internal scan chains, and nvc is the number

of test vectors for core c. If the scan frequency is reduced to f ∗
c = fc/2, the new

scan power (Q∗
c) and test time (T ∗

c) becomes:

Q∗
c = 0.5× Cload × V 2

DD ×
fc

2
×NG (2.7)

T ∗
c = (maxk{lc,k}+ 1)× nvc

fc/2
(2.8)

The effects of reducing the scan frequencies are that the TAT increases and the

test power decreases, correspondingly while keeping Qc×Tc = Q∗
c ×T ∗

c . Variable

NG is constant because under different scan frequency, the same test set is still

applied. This reduction in test power (at the cost of prolonging the test time) is

important when trying to schedule concurrently as many cores as possible under

a given power constraint, Qmax.

Changing the test frequency requires either a phase-locked loop (PLL) or a

frequency divider. Nevertheless, the implementation of the frequency divider is

42

C1

C2

C3 C1

C2

C3Pow
er

Pow
er

Time Time

Qmax

(a) (b)

Figure 2.9: Power-constrained scheduling with variable test frequencies allows

better power utilization to minimize the test application time.

out of the scope of this chapter. However, since the use of multi-frequency clocks

in IC design is commonplace, we assume that such frequency divider implemen-

tation is possible, without causing timing violation. In the proposed algorithm

(Section 2.6.4), the choice of frequency values are constrained; these values can be

selected based on the actual clock frequencies that can be made available on-chip.

2.6.4 Forming Non-Overlapping Test Groups

The distinctive characteristic of our test scheduling methodology (Section 2.6.6)

is that it produces a delivery schedule for only a very small subset of test data

packets of every core that can be cycled to produce a complete test data delivery

schedule. The small delivery schedule means that a small and simple test program

is needed to enumerate the start time for the delivery of each packet. The existing

functional TAM approach [6] requires that the delivery time of each data packet

to all CUT’s be individually specified. For large SoC’s, the test program (or the

control circuit as proposed by [6]) can be very large.

Therefore, when grouping the cores, we utilize a method—forming non-overlapping

test groups (Figure 2.10(b))—that supports this novel aspect to ensure that it

can be fully exploited. The grouping in Figure 2.10(b), for an SoC with five

CUT’s, requires two different test packet delivery schedules which start at time

ti, compared to four for Figure 2.10(a).

A test group is formed by scheduling the core with the longest test time first.

43

C1

C2

C4

C3 C5

C1

C2

C4

C3

C5

t0 t1 t2 t3 t0 t1

Pow
er

Time

Qmax

Time

P
ow

er

(a) No group boundary constraint (b) Constrained group boundary

Test Group 1 Test Group 2

Figure 2.10: Forming non-overlapping test groups by reducing the test frequencies

of cores C3 and C5.

When scheduling the next core into the same group, its frequency is reassigned

to one of the discrete frequencies smaller than the maximum scan frequency. The

smallest frequency that will not cause the core test time to exceed the test time of

the first core in the group is selected as it meets the twin goals of not exceeding the

maximum frequency while approaching it maximally within the preset flip-flop

quantity constraint for the clock divider circuit.

When the largest unscheduled core cannot fit the current group within the

power constraint, a core that brings total power dissipation for the group closest

to the power limit is chosen. This is repeated until no core can fit in, upon which,

the same procedure is repeated to create a new group. The process is repeated

until all cores are assigned to one of the test groups.

2.6.5 Buffer Sizes

Assuming that each packet starts to be loaded into the scan chains as soon as it

arrives at the buffer (i.e. zero buffer loading latency), the required buffer size for

a core ci to store the packet can be specified as [(packet size in bits) − (number

of bits loaded into the scan chains during the delivery period of the packet)], or

Bci
= pci

· wb − pci

fb
· Rci

(2.9)

44

where pci
= packet size, wb = bus width, fb = bus frequency, and Rci

= scan

rate.

Equation (2.9) holds under the assumption that the next packet is delivered

only when the previous packet has already been scanned in completely. Therefore,

the total buffer size, Btotal, is given by equation (2.10) for all cores ci ∈M , where

M represents all cores under test in the SoC.

Btotal =
∑
ci∈M

Bci
(2.10)

2.6.6 PAcket Set Scheduling (PASS) Algorithm

The main objective of the PAcket Set Scheduling (PASS) methodology is to find a

repetitive packet delivery sequence on the functional TAM and the corresponding

packet sizes for each core (under a given constraint of a maximum total buffer

size, Bmax, for the SoC) that minimize the total test application time. The

repetitive delivery sequence is good at simplifying and minimizing the size of the

test program because of its looping nature. On the other hand, the limitation of

such a delivery sequence is that the job of all members in the repetitive group

must be completed before the next (identical) job can be started. In this case,

job refers to the task of scanning in the test vectors into the scan chains, which

must be performed at each CUT. In other words, if there is one member of the

group that is late in completing the current job, all other members need to stall

while waiting for the slowest member to complete, prior to initiating a new group

delivery sequence.

In the scan-based testing perspective, the cores with a smaller number of

scan chains (ns) or those tested at a lower scan frequency (fscan) take a longer

time to complete, for the same amount of test data. Therefore, cores with larger

ns × fscan product require a larger test packet (therefore, larger buffer space) in

order for the test application of each packet of each core to have equal scan-in

time (Stage 2) as shown in Figure 2.11(a). Equal scan-in time is necessary to

avoid stalling.

To reduce the total required buffer size, the packet size for core B can be halved

and the delivery sequence changed from A-B-C (Figure 2.11(a)) to B-A-B-C

(Figure 2.11(b)). Both Figures 2.11(a) and 2.11(b) show three repetitions of the

45

Core A
Core B

Stage 1

Stage 2

Time
Core C

Bus

Both vector and response data delivery period

(a) Variable packet sizes for test time minimization.

Core B
Core A

Stage 1

Time
Core C

Bus

Stage 2

Both vector and response data delivery period

(b) Improved delivery sequence for packet size minimization.

Figure 2.11: Packet size and test time optimization through packet splitting.

smallest subset of delivery sequences A-B-C and B-A-B-C, called packet sets,

respectively. In Figure 2.11(b), cores A and C are said to belong to the split-1

group because only one packet is delivered in the packet set (A and C only appears

once in the B-A-B-C sequence). Similarly, core B is said to belong to the split-2

group; packet B is split into two smaller packets from the original packet size

equivalent to the split-1 packet. The packet set scheduling problem, ΨPASS, is

defined as follows:

Problem 2.1 (ΨPASS) Given a test group, G, consisting of n cores {c1, c2, . . . , cn},
the characteristics and test requirements for each core ci, and the selected test

frequency for each core in G, determine the smallest repetitive delivery pattern

46

(i.e. packet set) which can be continuously repeated to form a complete test

data delivery schedule utilizing the functional TAM, for all cores in G with the

following objectives.

1. The total test application time for all the cores in the test group G is

minimized.

2. The variations in the buffer sizes of all cores in G are minimized, to ensure

that the total test buffer cost is minimized.

The basic principle illustrated by the packet splitting example in Figure 2.11

fulfills the two objectives defined by the ΨPASS problem. To minimize the buffer

cost, the most important characteristic is the ratio between the buffer sizes of all

cores in the test group. In the best case, if the ratio is one for all cores, then

the minimum buffer size can be used for each core. By ensuring there is no gap

between the stage 2 operation of each test data packet (Figure 2.11), the TAT is

minimized. This can be achieved by selecting the proper delivery sequence for all

the cores in the test group.

The packet set scheduling algorithm to solve ΨPASS problem consists of three

steps. First, to determine how to split the test packet for each core (i.e. finding

the split ratios) so that the individual packet sizes are equal. If the packet sizes

are not equal, the largest packet will become the constraint when minimizing

the total buffer sizes as illustrated in Section 2.3. In the second step, once the

split ratio has been identified, the packet sizes are determined by solving a set of

linear equations. In the third step, a sequence of packet set delivery schedules is

systematically formed.

Step 1

Let us consider a test group which has n cores to be tested simultaneously. In

the first step of the algorithm, all k < n cores with scan rates smaller than the

average scan rate for all cores are considered to have a split ratio of one—the

smallest split ratio. This is because other larger cores will be assigned split ratios

of larger than or equal to one. Under the PASS scheme, the smallest possible

number of packets is desirable when forming a packet set in order to minimize the

complexity of the resulting test program. Before proceeding, we define a relevant

47

terminology to aid the description of the algorithm.

Definition 2.9 Assuming that the bus delivery rate is sufficiently high, a packet

set is considered to be in perfect-fit if

(i) it does not have cores that are waiting for test data,

(ii) there are no two consecutive packets delivered that belong to the same core,

and

(iii) the number of packets between adjacent split-1 packets are equal.

Furthermore, all three conditions need still hold when two adjacent perfect-fit

packet sets are cascaded, except possibly for the initial or final legs of test appli-

cation.

Figure 2.12 shows a perfect-fit delivery sequence, where the test group consists

of nine cores, C1 to C9. Between the four split-1 cores (C1 − C4), eight packets

belonging to other cores (C5 − C9) are delivered (perfect-fit condition (iii)). In

order to ensure the perfect-fit criteria are not violated when forming a perfect-fit

packet set consisting of split-1 and split-r cores, for any value of r > 1 such that

(k mod r) = 0, the number of split-r cores must equal (d× k/r) for some positive

integer d. This requirement is imposed in order to achieve an even utilization of

bus time, as implied by condition (iii) of Definition 2.9, we need to schedule the

same number of split-r packets in between the delivery of split-1 packets. This

forms d subgroups of (k/r) split-r cores which make up the split-r group.

To determine the split-r cores, we iteratively check for all possible values of r,

starting with the smallest. Let Ravg be the average scan rate of split-1 cores. For

the remaining cores with split ratio value unassigned, if there exist k/r cores ci

that fulfill Rci
< βr ×Ravg for some constant β, then all the k/r cores are assigned

split ratio values of r. The constant β gives a cut-off limit on the largest core to

be assigned to split-r group. It limits the relative buffer sizes of split-r cores and

split-1 cores. The value of β = 1.5 was chosen after thorough experimentation.

48

sp
lit

-1
 c

or
es

k
=

 4

sp
lit

-r
co

re
s

r
=

 4
, d

=
 2

sp
lit

-2
k

co
re

s
C

9

C
8

C
7

C
6

C
5

C
4

C
3

C
2

C
1

B
us

T
im

e

F
ig

u
re

2.
12

:
P
ac

ke
t

se
t

sc
h
ed

u
li
n
g

al
go

ri
th

m
.

A
n

ex
am

p
le

of
a

pe
rf

ec
t-
fi
t
d
el

iv
er

y
se

q
u
en

ce
.

49

The process above is repeated when identifying the next k/r subgroups of

split-r cores. As a result, d subgroups of k/r cores are assigned the split ratio

of r. If no subgroup could be found for the current value of r, this process is

repeated for the next larger value of r until r equals k. Then, the remaining

q = (n− k − d× k/r) cores are assigned a split ratio of 2k to form the split-2k

group.

Instead of assigning split ratio of 2k for the remaining cores, the same pro-

cedure for forming the split-r group can be extended to form other split groups.

However, to minimize the algorithm complexity, we have chosen only three split

ratio values (1, r, and 2k) since they provide sufficiently good results (i.e. overall

test application time) as illustrated in Section 2.8.

The heuristic process described above for solving ΨPASS can be summarized

by the Algorithm 2.1 below, called PAcket Set Scheduling (PASS) algorithm; the

algorithm gives a minimum size schedule of a packet-based test data transporta-

tion. In the algorithm, a constant kf is used (lines 4 and 7) to initially separate

out the cores which require smaller amount of test data compared to the other

cores in the test group. The constant value of kf = 1.5 was chosen through

thorough experimentation on several modified benchmark circuits based on the

ITC’02 benchmark suite [1].

———————————————————————————————————

Algorithm 2.1 PASS (ΨPASS)

1. V OD = Volume of test data in bits;

2. V ODavg = Average V OD of all modules;

3. For every core ci ∈ G{
4. ci ∈ {small modules} if V ODci

/V ODavg ≤ kf ;}
5. V ODsm = Average V OD of {small modules;}
6. For every core ci ∈ G{
7. If V ODci

/V ODsm ≤ kf {
8. ci ∈ {split-1 group}}}
9. k = Number of split-1 group members;

10. Sort the remaining modules in increasing VOD;

11. If (k is a prime number) { /* except k = 2 */

50

12. If next larger V OD > V ODsm × (k + 1)/2{
13. All qualified cores ∈ split-k group;

14. Other q cores ∈ {split-2k group;}
15. Exit procedure;}
16. Else {
17. Remove one split-1 group member whose V OD is farthest from others;

18. Update k = k − 1;}} /* k becomes non-prime */

19. If (k is not a prime number){
20. rt = Smallest rt > 1 such that k mod rt = 0;

21. rt+1 = Next larger rt such that k mod rt+1 = 0;}
22. While (rt < k) {
23. If ci is qualified (i.e. V ODci

/V ODsm ≤ avg(rt, rt+1))

24. If the next k/rt − 1 modules in G also qualified{
25. All k/rt qualified modules ∈ {split-k group;}}
26. Repeat to find the next k/rt subset of qualified modules and assign to

split-k group; /* results in d subsets of k/rt modules */

27. All remaining q cores ∈ {split-2k group;}
28. Exit procedure;}
29. Else{
30. rt = rt+1;

31. rt+1 = Next larger rt such that k mod rt+1 = 0;}
} /* exit While loop if rt = k */

32. For all remaining unscheduled ci{
33. ratio = V ODci

/V ODsm;

34. If ratio is closer to k × V ODsm than 2k × V ODsm{
35. Assign ci ∈ {split-k group;}}
36. Else{
37. Assign ci ∈ {split-2k group;}}}

———————————————————————————————————

Step 2

Once the split ratios are determined, the next step is to determine the packet size

for each core. Equation (2.11) describes the scan in time of a test packet, where

51

wb = bus bit width, pci
= packet size, and fci

= scan frequency, for core ci.

Tci,p =
wb · pci

fci

(2.11)

To preclude introduction of gaps between the test applications of two con-

secutive packets of a core (condition (i) of Definition 2.9) as illustrated by Fig-

ure 2.4(b), the packet loading time (i.e. scan in time of a packet worth of test

data from the input buffer into the scan chains) multiplied by the corresponding

split ratio must be identical as shown by the illustrative example in Figure 2.13.

This is necessary to ensure that there are no gaps between the packets within the

packet set and between adjacent packet sets.

Equation (2.12) describes the general packet loading times as illustrated by

Figure 2.13, where r and 2k are the corresponding split ratios for each core. Equa-

tion (2.12) assumes that the split-1, split-r, and split-2k cores are labeled C1 to

mk, mk+1 to mk+dk/r, and mk+dk/r+1 to mk+dk/r+q, respectively. For example,

given k = 4, r = 4, d = 2, and q = 3 as in Figure 2.12, cores {C1, C2, C3, C4} ∈
split-1 group, {C5, C6} ∈ split-r group, and {C7, C8, C9} ∈ split-2k group, respec-

tively. Packet size, pci
, and buffer size, Bci

, for each core ci can be calculated

by solving equations (2.9), (2.10), and (2.12) simultaneously. For each value of

Btotal, a unique solution can be obtained.

wb ·pc1

fc1

= · · · = wb ·pck

fck

=r·wb ·pck+1

fck+1

= · · · = r·
wb ·pc

k+dk
r

fc
k+ dk

r

= 2k ·
wb ·pc

k+dk
r +1

fc
k+ dk

r +1

= · · · = 2k ·
wb ·pc

k+ dk
r +q

fc
k+ dk

r +q

(2.12)

Step 3

In step one, the cores are assigned to either split-1, split-r, or split-2k groups.

Once the split ratios are determined, the complete packet set schedule that fulfills

conditions (ii) and (iii) of Definition 2.9 can be systematically represented by

Figure 2.14, assuming k and q cores for split-1 and split-2k groups, respectively.

52

1
1,1p
2
1,1p

3
2,1p 3

2,2p
4
4,1p 4

4,2p 4
4,3p 4

4,4p

C1: split-1

C2: split-1

C3: split-2

C4: split-4

tstart tend

Figure 2.13: Equating split ratio × packet loading time for all cores in a test

group.

1 (1) /1 /1 2 1
2 ,1 2 ,1 2 ,1 ,1 ,1 ,1

1 2 1
2 ,2 2 ,2 2 ,2 1,1

2 (1) /2 /1 2 2
2 ,3 2 ,3 2 ,3 ,1 ,1 ,1

1 2 2
2 ,4 2 ,4 2 ,4 1,1

/ / /1 2
2 ,2 1 2 ,2 1 2 ,2 1 , ,

...

...

..

q d k rk r
k k k r r r

q
k k k

q d k rk r
k k k r r r

q
k k k

q k r k r k r
k k k k k k r r r r

p p p p p p

p p p p

p p p p p p

p p p p

p p p p p

+ −+

+ −+

+
− − −

�

�

�

�

� � � �

�
/ (1) /
,

1 2
2 ,2 2 ,2 2 ,2 1,1

.
k r d k r
r r

q k
k k k k k k

p

p p p p

+ −

�

Figure 2.14: Packet set delivery sequence for a test group with three split groups—

split-1, split-r, and split-2k.

Each pc
i,j represents a test packet delivery followed by a response packet retrieval

where,

c = core number from split-i group

i = split ratio for core c

j = packet number for core c, and j ≤ i

In Figure 2.14, the odd rows (horizontal) show the schedule delivery for q

split-2k packets followed by d split-r packets. The even rows show the schedule

53

delivery for the subsequent q split-2k packets followed by a single split-1 packet

from one of the k cores. The packet delivery ordering is from left to right and

top to bottom.

The retrieval of the response packet is scheduled after every test packet deliv-

ery. This can be implemented using the write-read data transfer which requires

a single address cycle. If it is not supported by the functional operation, an ad-

ditional address cycle would be required to initiate the read cycle to fetch the

response packet. Another possible approach is to introduce a special write-read

instruction specifically for the test data transportation—i.e test stimuli write fol-

lowed by test response read. Both these approaches require minimal overhead on

the control algorithm.

2.7 Advantages of the Buffer-based Wrapper

We have added local buffers to each core-under-test in order to enable concurrent

core tests. Furthermore, when doing so the buffer provides clock isolation between

the core and the bus interface. This is an intrinsic property of the buffering

mechanism.

In the case of a dedicated test access mechanism, the external tester port

connects directly to the TAM wire, which in turn connects directly to the wrapper

scan chains. As a result, the scan clock is physically tied to the tester clock. If

the maximum tester frequency is 200 MHz, then the scan frequency, the tester

frequency, and the TAM frequency cannot exceed 200 MHz and must be identical.

Similarly, if the maximum scan frequency is 300 MHz, the tester frequency must

operate at 300 MHz or less, whichever is smaller.

With the buffered wrapper, the scan frequency is independent of the bus

frequency. With the advanced SoC’s, the bus frequency is most likely to be higher

than the scan frequency. Therefore, in the experimental results (Section 2.8), we

also reported the case when the bus frequency is twice the scan frequency. This is

to illustrate the advantage of the proposed approach compared to the dedicated

TAM approach.

54

2.7.1 Bandwidth Matching with Low Speed Testers

In order for the higher functional bus speed advantage by means of clock de-

coupling to translate into real benefits, the larger bandwidth required must be

sustainable from the external tester. Most testers however are not capable of op-

erating at the higher functional bus frequency, with the exception of maybe a few

very advanced and expensive testers. Without the tester support, the advantages

of increasing the bus frequency cannot be immediately realized.

These testers normally comes with a large number of probe ports, some rang-

ing in the thousands. By using a simple bandwidth matching circuitry at the

chip’s I/O port as illustrated in Figure 2.15. I/O port bandwidth and the ATE

bandwidth are given in equations (2.13) and (2.14), where nport, fbus, nprobe, and

fprobe are the I/O port bit width, functional bus frequency, number of ATE probes,

and probe’s operating frequency.

BWport = nport × fbus (2.13)

BWATE = nprobe × fprobe (2.14)

Figure 2.15 illustrates that with nprobe = 4 × nport, the ATE can sustain the

bandwidth required by the functional bus operating at four times its probe’s

frequency. Using this bandwidth matching scheme, we can take advantage of the

buffer-based wrapper.

2.8 Experimental Results

We have conducted experiments on several ITC’02 benchmark [1] circuits in order

to verify the efficiency of the proposed algorithm. Since the power dissipation

information is not available (except for h953 circuit) in the benchmark suite

definition, we obtained power information for p93791 and p22810 from [19] and

d695 from [13]. In order to analyze the efficiency of functional TAM utilization

for test data delivery, a single shared functional bus is assumed to be connected

to every core.

55

B
an

dw
id

th

M
at

ch
in

g
C

ir
cu

it

B
W

A
T

E
=

 n
pr

ob
e
×

f p
ro

be

B
W

po
rt

=
 n

po
rt

×
f b

us

C
or

e
C

or
e

C
or

e

S
ys

te
m

 B
us

 /
Fu

nc
tio

na
l T

A
M

T
IC

T
es

t
In

te
rf

ac
e

C
on

tr
ol

le
r

I/
O

P
or

t

n p
or

t
=

n b
us

F
ig

u
re

2.
15

:
B

an
d
w

id
th

m
at

ch
in

g
m

ec
h
an

is
m

to
in

cr
ea

se
th

e
te

st
er

’s
eff

ec
ti
ve

b
an

d
w

id
th

.

56

Table 2.1: Selected benchmark circuits from the ITC’02 benchmark suite. Power

information for p93791 and p22810 is from [19], and d695 from [13].

Module p93791 p22810 d695 Module p93791 p22810

1 7014 1238 660 17 6674 442

2 74 80 602 18 113 441

3 69 64 823 19 5252 167

4 225 112 275 20 7670 318

5 248 2489 690 21 113 1309

6 6150 144 354 22 76 260

7 41 148 530 23 7844 363

8 41 52 753 24 21 311

9 77 2505 641 25 45 2512

10 395 289 1144 26 76 2921

11 862 739 27 3135 413

12 4634 848 28 159 508

13 9741 487 29 6756

14 9741 115 30 77

15 78 580 31 218

16 201 237 32 396

The effect of the frequency divider resolution on the test application time is

shown in Figure 2.16. In each plot, the bottom curve represents the test appli-

cation time after the test group has been formed under a power constraint. The

higher frequency divider resolution allows us to achieve a shorter test application

time. A significant reduction in test time can be achieved within the first four

bits of clock divider resolution. The packet scheduling test application time (top

curves) are always higher as they incur an additional overhead when splitting the

test data into smaller packets.

In order to evaluate the performance of our test scheme, we need to compare

with dedicated TAM-based test scheduling approaches. No direct comparison can

be offered with previous functional TAM-based test schemes as the experimental

57

d695

0.4

0.5

0.5

0.6

0.6

0.7

1 2 3 4 5 6 7 8 9 10
#FF in frequency divider

T
A

T

p93791

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10

#FF in frequency divider

T
A

T

Figure 2.16: Test application time vs. cost of the frequency divider (in flip-flop

count) before (solid) and after (dotted) splitting the test data into packets.

results in [6] use four benchmark circuits which lack required comparison infor-

mation such as information on test data and scan chain configurations that are

needed. The authors of [6] subsequently proposed a method which uses a com-

58

bination of a functional TAM and a dedicated TAM [27], which is subsequently

analyzed and compared.

Table 2.2 shows the frequency information for dedicated TAM approaches and

two variations of our approaches, PASSa and PASSb, with distinct bus frequen-

cies. The scan frequency, fs, is set to the assumed maximum, Fs = 100 MHz;

therefore all the dedicated TAM-based TAT’s [13, 17–19] are divided by 105 to

convert from the number of clock cycles to time (millisecond). The bus frequency,

fb, for PASSb is double that of dedicated TAM-based and PASSa approaches (but

less than the maximum bus operating frequency, Fb) to illustrate the benefit of

our buffer-based approach.

In Table 2.3, the TAT’s for [13, 17, 18] are all equal at three Qmax values for

h953 circuit. In our approach, relatively similar results were obtained. No no-

ticeable improvement was achieved when increasing the bus frequency (PASSb).

These steady results were due to a single dominant core, C1, that constrains the

TAT minimization for this circuit.

Figure 2.17 shows plots of the TAT for different bus widths. For 64- to 128-bit

bus, the TAT is constrained by the largest core; therefore, increasing bus widths

has no significant effect on test application time. However, for bus widths between

12 and 48 bits, PASSa delivers improvements of 4.8% and 18.2% over [19] for both

maximum power, Qmax, values of 3,000 and 10,000 for p22810. PASSb is improved

by 25.9% to 47.8% when test data delivery time is the limiting factor. Similar

trends can be observed for p93791 in Figure 2.17(c) and Figure 2.17(d). In fact,

our test methodology delivers marked improvements in reducing test application

Table 2.2: Experimental setup. Same frequency settings for dedicated TAM-

based approaches and our PASSa approach, while PASSb uses higher bus fre-

quency.

Scan frequency Bus frequency

Dedicated TAM-based fs = Fs fb = fs ≤ Fb

PASSa fs = Fs fb = fs ≤ Fb

PASSb fs = Fs fb = 2× fs ≤ Fb

59

Table 2.3: Test application time (h953). Btotal ≤ 100× wb.

Test Application Time (ms)

Qmax [13] [17] [19] PASSa PASSb

6× 109 1.22636 1.22636 1.22636 1.21633 1.21942

7× 109 1.19357 1.19357 - 1.21633 1.22314

8× 109 1.19357 - 1.19357 1.23164 1.21376

time for smaller bus widths.

For d695 (Table 2.4), our approach proves to be highly effective, even for the

same bus frequency as [13, 19], at all power levels for bus widths ranging from 32

to 80 bits. For 96-bit and wider buses, our methodology though fails to perform as

well. It is interesting to note, however, that the dedicated TAM-based approach

requires quite elevated levels of TAM overhead in order to outperform our packet

scheduling approach using the functional TAM.

In Table 2.5, some performance comparisons with several scheduling approaches

is given. The second row shows the TAT for the dedicated TAM-based scheduling

without considering power and hierarchy constraints [21]. The TAT is bounded

by the lower bound of TLB = 10.2ms [21]. When the design hierarchy is consid-

ered as a constraint, the resulting TAT [19] is shown on the third row. On rows

4-6, the TAT of a test set sharing and broadcasting approach is given. When

using only the functional TAM (fourth row), the TAT is 27% higher than the

case of using only the dedicated TAM [19].

The author improves the performance by using a hybrid architecture with

twice the previous bit width (rows 5-6) [27], but comparable hardware overhead

due to the same bit width of dedicated TAM as [19]. The last row shows our

proposed approach which uses only the functional TAM, with comparable perfor-

mance when the functional TAM frequency is constrained by the scan frequency.

The real advantage is illustrated when a higher functional TAM frequency (not

exceeding the maximum functional frequency) is used for test data transporta-

tion, which is made possible by the frequency decoupling provided by the buffer

architecture.

60

p22810 @ Qmax = 3000

0

2

4

6

8

10

12

14

12 16 20 24 32 48 64 80 96 112 128
Bus Width

T
A

T

Pouget

PASSa

PASSb

(a)

p22810 @ Qmax = 10000

0

2

4

6

8

10

12

14

12 16 20 24 32 48 64 80 96 112 128
Bus Width

T
A

T

Pouget

PASSa

PASSb

(b)

p93791 @ Qmax = 10,000

0

10

20

30

40

50

60

70

12 16 20 24 32 48 64 80 96 112 128
Bus Width

T
A

T

Pouget

PASSa

PASSb

(c)

p93791 @ Qmax = 20,000

0

10

20

30

40

50

60

70

12 16 20 24 32 48 64 80 96 112 128
Bus Width

T
A

T

Pouget

PASSa

PASSb

(d)

Figure 2.17: Test application time (ms) vs. bus width for selected Qmax.

Btotal ≤ 200× wb. “Pouget” refers to a dedicated TAM approach proposed in

[19].

Figure 2.18 shows the trend in TAT under different buffer size utilization for

the two circuits with the same power constraints as in Figure 2.17. The buffer

size represents the total size, in multiples of bus width, allocated to all cores

in the circuit. It is interesting to note that increasing buffer size only reduces

the TAT marginally. Therefore, buffer size can be reduced with only a small

61

Table 2.4: Test application time (ms) of d695. Btotal ≤ 50× wb.

Qmax [13] [19] PASSa PASSb [13] [19] PASSa PASSb

Bus width, bw = 32 bw = 48

1500 0.456 0.435 0.390 0.342 0.310 0.327 0.393 0.325

1800 0.443 0.425 0.390 0.206 0.299 0.321 0.261 0.190

2000 0.432 0.425 0.402 0.233 0.294 0.291 0.294 0.212

2500 0.432 0.418 0.402 0.206 0.290 0.291 0.276 0.153

bw = 64 bw = 80

1500 0.276 0.270 0.322 0.327 0.209 0.244 0.329 0.327

1800 0.245 0.239 0.207 0.196 0.205 0.188 0.192 0.191

2000 0.242 0.219 0.234 0.213 0.192 0.187 0.224 0.213

2500 0.237 0.219 0.206 0.153 0.192 0.187 0.173 0.153

bw = 96 bw = 112

1500 0.209 0.234 0.324 0.324 0.168 0.194 0.328 0.328

1800 0.181 0.188 0.190 0.189 0.150 0.188 0.192 0.191

2000 0.178 0.175 0.211 0.210 0.141 0.146 0.214 0.214

2500 0.158 0.173 0.153 0.152 0.141 0.140 0.147 0.152

bw = 128

1500 0.168 0.194 0.321 0.321

1800 0.149 0.168 0.197 0.189

2000 0.141 0.145 0.208 0.208

2500 0.130 0.134 0.160 0.160

penalty on TAT. Table 2.6 shows the area cost in terms of average buffer sizes

per core, averaged over wb = 32...128, for the corresponding TAT results reported

in Figure 2.17 and Table 2.4.

With the flexibility of bus frequency selections, unique to our proposed ap-

proach as a dedicated TAM-based approach is unable to utilize such flexibility, we

can further improve the TAT while ensuring that nothing more than minimal bus

widths are utilized. This is illustrated by PASSb in Figure 2.17 and Table 2.4.

Figure 2.19 shows the trend in the test application time for several bus fre-

62

Table 2.5: Performance comparison of several testing approaches (d695)

[*Qmax=2500; maximum hardware overhead constraint = 300† and 400‡ units].

References TAT (ms) Configurations

Unconstrained [68] 11 64-bit TAM

Hierarchy Constraints [19] 21.9* 64-bit TAM

20.5

Test Set Sharing 26.1 64-bit functional bus

and Broadcasting [27] 20.4† 64-bit functional bus and

18.5‡ 64-bit TAM (Total = 128 bits)

Proposed 18.8* 64-bit functional bus, fb = fs

13.5* 64-bit functional bus, fb = 2 ∗ fs

Table 2.6: Average buffer sizes per core for the corresponding TAT of PASSa and

PASSb in Figure 2.17 and Table 2.4.

Circuit p22810 p93791 d695

Qmax 3000 10000 10000 20000 1500 1800 2000 2500

PASSa 6.66 6.39 3.89 4.31 4.45 3.75 4.00 4.06

PASSb 5.95 6.40 5.03 5.23 4.71 3.78 3.87 3.87

quency, fbus, values in the range of 0.5 × fscan and 3 × fscan. In both cases of

Qmax = 2000 and 2500, the TAT for 32-bit functional TAM matches that of the

64-bit functional TAM when the test frequency is about 2.5 times the scan fre-

quency. This is because, at this (or larger) bus frequency, the test application time

is constrained only by the maximum speed of the scan operation. There are two

major advantages of the proposed approach, which utilizes the functional TAM.

First, the TAT can be reduced without increasing the TAM area cost. Second,

the frequency increase is for the functional bus and not for the scan operation,

thus retaining the scan power unaffected. This is a very useful characteristic of

the functional bus reuse test scheme because the increased bus capacity in the

63

0

2

4

6

8

10

12

14

30 40 50 60 70 80 90 100

Total Buffer Size

T
A

T

p93791, Qmax=10000
p93791, Qmax=20000
p22810, Qmax=10000
p22810, Qmax=3000

Figure 2.18: Little reduction in the test application time (ms) as the total buffer

sizes (×wb flip-flops) are increased. Bus width, wb = 32 bits.

advanced SoC’s, which this method can benefit from.

2.9 Conclusion

The functional bus is an essential part of any SoC design. As the performance

of SoC’s increases, the bus speed has also been increased even though not at

the same pace. There are many different bus architectures and protocols that

provide various functionalities and performance. Therefore, this chapter explains

our research effort to take advantage of the existing functional bus for testing

purposes.

The utilization of the functional bus for power-constrained core-based SoC

testing entails a number of challenges. These include frequency and bit-width

mismatch between the bus and the cores under test, allocation of bus time slots

64

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5 3
Bus Frequency (Scan Frequency (f s))

T
A

T
 (

m
s) 32-bit functional TAM

64-bit functional TAM

×

(a) Qmax = 2, 000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5 3
Bus Frequency (Scan Frequency (f s))

T
A

T
 (

m
s)

64-bit functional TAM

32-bit functional TAM

×

(b) Qmax = 2, 500

Figure 2.19: Reducing the test application time of d695h1 benchmark circuit by

using a functional bus frequency larger than the scan frequency (fscan), without

increasing the scan power during test.

65

for an efficient test data delivery schedule that maximizes bus utilization and

that ensures that all cores always have the test data that they need to continue

testing simultaneously without exceeding the power constraint.

We have herein proposed an efficient methodology that overcomes all of these

challenges through a test support architecture design framework and an algo-

rithmic design framework. The proposed methodology offers a solution that also

minimizes the size of the test program. The experimental data clearly showcases

the benefits of the proposed methodology in reducing test application time espe-

cially for smaller bus widths, while also eliminating the need to add extraneous

TAM’s to the SoC solely for testing purposes.

66

Chapter 3

Test Scheduling for

Multiprocessor SoC’s with

Hierarchical Buses

3.1 Introduction

Designs with multiple embedded processors are common in today’s high perfor-

mance systems. This type of system-on-chip (SoC) necessitates the use of high

capacity on-chip interconnects such as hierarchical buses and networks-on-chip

(NoC). From the testing perspective, the best-adopted core-based test approach

for SoC’s is based on the use of test wrappers [3, 9, 69–71] that allow the cores

to be isolated during the test phase, enabling test reuse for the embedded cores.

In tandem, a Test Access Mechanism (TAM) is added to provide delivery and

control paths to each core from an external automatic test equipment (ATE).

The test requirements and challenges of these core-based designs have also been

discussed in [8].

Several variations of TAM’s have been proposed. However, the most com-

monly used TAM is similar to a functional bus, but requires introduction of a

separate bundle of physical wires—a dedicated TAM [9, 72]. With regards to the

dedicated TAM approach, numerous test scheduling methods have been proposed

[6, 12–50] and briefly discussed in Chapter 2. All these test scheduling and opti-

mization works rely on the introduction of a dedicated and extraneous TAM for

67

the test data transportation.

The benefits of a dedicated TAM are dramatically diminishing as the resources

of communication networks in the current and emerging SoC’s become abundant

[73]. Not only does the added TAM cost additional area, but more importantly,

it also adds additional complexity to the already high routing congestion of the

functionally required short and long distance interconnects such as the functional

buses. The TAM wires are especially costly in the chip fabrication process with

feature sizes of 90-nm and smaller. The cost of TAM wires can be minimized

by connecting cores to its adjacently-placed cores. Nevertheless, this wire-length-

optimized TAM architecture could constraint the test scheduling, thus preventing

potential test time reduction. Co-optimization methods as proposed in [43, 47]

could alleviate this problem. However, since the functional interconnects are

readily available on-chip, they could be used in place of dedicated TAM’s—a

functional TAM, thus eliminating the unnecessary TAM area cost. Since func-

tional interconnects are designed and optimized with the functional operation in

mind, their adoption as functional TAM’s is not as straightforward and flexible

as that of dedicated TAM’s.

Several groups propose functional TAM methods discussed in Section 2.2. In

addition, we have proposed a wrapper architecture and a packet-level test schedul-

ing methodology specifically targeting the reuse of a flat bus in Chapter 2. These

methods [6, 23–26], however do not consider explicitly SoC’s with hierarchical

buses and multiple embedded processors. Therefore, we are proposing a test

data transportation methodology which utilizes the existing hierarchical func-

tional buses; in addition, the proposed method leverages on the processing power

of the existing embedded processors for test data generation. Since the buses

provide direct access to the embedded cores, the intrusive methods of making

cores transparent are also avoided.

In our proposed method covered in this chapter [74], we explicitly schedule the

transportation of data packets through hierarchical functional buses that carry

the test vectors and responses between embedded processors and CUT’s. The

test application times are obtained through complete packet-level simulations of

the test data transportation. The proposed approach is unique because of the

explicit packet transportation schedule, in addition to the ability to make use of

68

the hierarchical buses and multiple embedded processors.

We begin in Section 3.3 with a delineation of the research scope undertaken

in this chapter. The buffer-based test architecture is explained in Section 3.4.

In Sections 3.5 and 3.6, the test scheduling methodology based on a hierarchical

functional TAM is elaborated. Section 3.7 reports the experimental results on se-

lected benchmark circuits. Finally, concluding remarks are offered in Section 3.8.

3.2 Model of Multiprocessor System-on-Chips

(MPSoC)

In order to achieve maximum benefit from a multi-processor system, the best pos-

sible communication architecture between the processors, the memories, and the

peripherals needs to be used. The choice of communication architecture for the

system is critical. Under the constricted scope, the hierarchical bus based Multi-

Processor System-on-Chip (MPSoC) model is as illustrated in 3.1. The p93791h1

SoC is based on the p93791 benchmark circuit from the ITC’02 benchmark suite

[1], with the functional interconnects and several processor cores added. The

p93791h1 circuit consists of various functional cores labeled C1 to C14. The cores

are interfaced through hierarchical buses b0, b1 and b2. Buses b1 and b2 are inter-

faced to bus b0 through buffered bridges B1 and B2, respectively.

A buffered bridge is a store-and-forward bridge that is capable of temporarily

buffering an incoming data packet before forwarding it to the other side of the

bridge. Accordingly, the buffered bridge provides an interface between the buses

while at the same time isolating them, letting through only the necessary traffic.

The buffered bridge in reference is also referred to as non-transparent bridge.

The MPSoC cores in Figure 3.1 are grouped into three bus regions—identified

by the buses b0, b1, and b2. The first bus region, b0, consists of eight cores and

a processor P1. All the cores in this bus region—cores C1, C2, C3, C5, C6, C7,

C12, and C14—are said to be local to processor P1 since P1 can communicate

with all these cores directly without relying on other intermediate bus bridges.

The second bus region, b2, consists of three local cores—C4, C9, and C10—and a

cluster of processors P2 to Pn. The interconnection within the processor cluster is

not illustrated in this model. Similarly, cores C4, C9, and C10 are said to be local

69

5

2 3

6 7

10

1 12

 9

p93791h1

4

 8 14

11 13

b0

B2

b1

P1

P2 Pn
B1

A

A

b2

A
Bus Region b2 Bus Region b1

Bus Region b0

Figure 3.1: General MPSOC architecture.

to processor cluster P2 to Pn. Bridge B2 provides an isolation (non-transparent

interface) between the b0 and the b2 bus regions.

The third bus region, b1, consists of three cores—C8, C11, and C13—but no

local processor. For generality, we can consider two possible cases. First, if the

bridge B1 is transparent, then bus region b1 can be merged with bus region b0.

In this case, the local processor to cores C8, C11, and C13 would be P1. The

p93791h1 MPSoC can be said to have only two bus regions, b0 and b2.

If the bridge B1 is non-transparent, then there is no local processor to cores

C8, C11, and C13. Processors from other bus regions can communicate to cores

C8, C11 and C13 by means of the bridge B1.

3.2.1 Data Transfer Between Cores and Processors

In the case of local processor communication, the processor first arbitrates for the

bus ownership. Once the bus ownership is granted, the processor can broadcast

70

the destination address on the address bus, data on the data bus (if it is a write

cycle), and enable the necessary control signals. For a read cycle, the requested

data will be delivered by the local cores after n clock cycles. The variable n

depends on the implementation of the read cycle timing.

In the case of a non-local processor writing to a core (e.g. P1 to C8), the

sequence of events are as follows:

1. P1 arbitrates for bus b0.

2. Once the bus is granted, P1 writes to the buffer of bridge B1.

3. Once a complete data packet is received, B1 acknowledges to P1 that it will

now proceed to deliver the data to the destination (split transfer mecha-

nism)

4. B1 arbitrates for bus b1.

5. Once the bus is granted, B1 writes to C8.

After step (3), bus b0 can be released by P1 and P1 subsequently becomes free

to perform other tasks.

3.3 Scope

In Chapter 2, a buffer-based test architecture similar to [6] for core-based test ap-

plication utilizing the embedded processor and the shared functional bus has been

proposed. The test application time is minimized by optimizing the bus sharing

between multiple CUT’s using a novel scheduling methodology called PAcket Set

Scheduling (PASS); concurrent core tests are effectively implemented by time-

multiplexing the transmission of each data packet carrying the test vectors and

responses. The proposed method explicitly schedules the transmission for each

data packet that transfers all the test vectors and responses between an embedded

test processor and the CUT’s. The applicability of the proposed methodology is,

however, limited to flat bus and single processor SoC architectures.

In this chapter, we will describe our Integrated PAcket Set Scheduling (IPASS)

methodology targeting the hierarchical bus based multiprocessor SoC’s. Schedul-

ing core tests for a hierarchical bus and multiprocessor SoC involves the tasks of

distributing the core tests to multiple processors, and allocating the time slots on

the shared functional buses for the delivery of the test data to each CUT. The pro-

71

P0

B

B

C2 C3 C4C1

C6 C7 C8C5
C10

C9

P1

C11

C12 C28

…

…

C27

A

A

A

b1 b0

b2

Figure 3.2: General architecture of the MPSoC’s considered in this chapter. This

example circuit is based on the p22810 SoC circuit from the ITC’02 benchmark

suite [1].

posed power-constrained and MultiProcessor PAcket Set Scheduling (MPPASS)

methodologies address the above issues in order to produce an efficient test data

delivery schedule.

The design of a multiprocessor SoC (MPSoC) can be implemented using a wide

range of architectures depending on the exact design specifications. In addition,

various test strategies can be adopted for each embedded IP core. In order to

develop an effective SoC test scheduling methodology, a constricted scope of SoC

architecture and test requirements are considered in this chapter. The proposed

test methodology can be used for core-based test scheduling of multiprocessor

SoC’s with hierarchical bus architecture. An example MPSoC is given in Fig-

ure 3.2 consisting of two embedded processors P0 and P1, three hierarchical buses

b0, b1, and b2 (interfaced by bus bridges B), and twenty-eight logic cores. Access

to the buses is regulated by the arbiters Ai.

The embedded processors, which are existing functional blocks, are reused

during testing as test pattern generators and as test controllers. In this chap-

ter, a test scheduling problem which utilizes the hierarchical functional buses

as functional TAM’s is formulated and a solution is offered under the following

assumptions:

• Processors and memories are assumed to be fault-free and therefore not the

target of testing.

72

• All CUT’s are enhanced with scan-based DfT’s.

• The test uses a combination of pseudo-random test vectors and a small

number of deterministic test vectors. The pseudo-random test patterns are

generated on-chip by the test processors by running a program, which is

loaded into the local memory before the test application. The computation

overhead is assumed negligible. The small number of deterministic test vec-

tors, which detect random-resistant faults, are loaded from an ATE into the

corresponding processor’s local memory location before core-testing begins.

The compressed pseudo-random test responses and the deterministic test

responses are unloaded to the ATE after the test application is completed.

• Each processor has a fault-free local memory with sufficient capacity to store

the test programs and the small number of deterministic test patterns.

Each pseudo-random test vector is transported on the functional buses to the

CUT and the corresponding test response is returned to the processor, which

then compresses the test response into a signature. The transportation time for

each test vector and response depends on the bit width of the functional bus.

For example, a 5000-bit test vector with a 5000-bit response requires at least 313

clock cycles (excluding address cycles and buffering delays) on a 32-bit data bus.

During this period, only a single pseudo-random test vector is to be generated by

the processor. Simple pseudo-random vector generation algorithm requires only

a few clock cycles to compute.

The deterministic test vectors are required to detect random-resistant faults,

in order to increase the fault coverage of the pseudo-random test vectors. In this

chapter, the time to load the test program and the deterministic test vectors, and

to unload the pseudo-random test signature and the deterministic test responses

is assumed negligible.

3.4 Buffer-Based Test Architecture

In [6], the differences between three types of test access architecture are explained—

dedicated TAM, functional bus, and functional bus with buffers. The introduc-

tion of buffers allows the core tests to be scheduled concurrently utilizing the

functional bus. Our proposed buffer-based DFT, similar to [6] is explained in

73

Chapter 2 and illustrated in Figure 2.6. The proposed DFT works for an n-bit

functional bus and a CUT with m scan chains, where n and m can be arbitrary

positive integers. The bit-width conversion is achieved by parallel-serial shifting

within the buffer, controlled by the test controller. The first n bits of the core’s

primary inputs (PI’s) and primary outputs (PO’s) are connected to the data bus.

The remaining u PI’s and v PO’s are connected to other parts of the SoC.

To isolate the cores during testing, each PI/PO is connected to the bus through

a boundary cell, similar to the IEEE 1500’s [3], which selects either the scan

input (dotted line) or the functional input (solid line). The same control signal

(T/N) is used for the boundary cells, the buffers, and the multiplexer to switch

between test mode and normal mode. Equal length scan chains are formed by

cascading PI’s and PO’s to the internal scan chains (Figure 2.6) such that both

the maximum scan-in depth and the maximum scan-out depth are minimized

[21, 66]. Compared to a dedicated TAM-based architecture which utilizes the

IEEE 1500 wrapper, the proposed buffer architecture incurs an additional single

multiplexer delay on the functional output path.

In the testing scheme for MPSoC proposed in this chapter, the test data are

generated by the test processor during the test application or preloaded into local

memories. The test processor breaks the test vector data into smaller packets and

writes the vector packet to the address corresponding to the target CUT. The test

vector data are then delivered through the functional bus to the input buffer as a

packet (Figure 2.3), utilizing the necessary transmission protocol supported by the

functional bus. Regardless of the data format on the bus, after passing through

the functional bus protocol interface, decoded bit-level data are transferred to

the input buffer (see Figure 2.8(a)). As a result, the data transfer between a

test source and the CUT can be performed through transparent read and write

transactions. At the core, the test data decoding is handled by the existing

functional interface, after which the raw test data are forwarded to the buffer.

The buffer consists of four main components—input register, output regis-

ter, fall-through stack, and FIFO buffer controller—as shown in Figure 2.8(a),

illustrating the input buffer and the corresponding first-in first-out (FIFO) buffer

controller. The architecture of the buffer controller has been explained in detail

in Section 2.5.2. Here, we will briefly revisit the operation of the buffer-based

74

core wrapper and its controller and the concurrent test operation utilizing the

test buffer and the shared functional bus. The understanding of this concept

is critical before discussing the test scheduling methodology for multiprocessor

SoC’s.

The output buffer (not illustrated) has identical structure as the input buffer

but with reverse data flow. The input register latches data from the bus, which

then brings the data to the lowest empty slot in the fall-through stack, next to

the output register. Upon receiving new data, the status signal α enables the

FIFO buffer controller to generate the control signals to shift and load the test

data into the wrapper scan chains. When the buffer is empty, control signals are

disabled, thereby freezing the scan chains. In the test mode, the multiplexed scan

clocks allow the scan chains to hold the test data while waiting for the subsequent

data packets from the processor to fill the input buffer. This mechanism makes

the proposed buffer-based wrapper flexible in terms of timing; it does not require

a streaming and jitter-free transmission of test data to ensure test integrity.

The dotted line (Figure 2.6) shows the path taken by the test vector data

from the input buffer into the scan chains. At the same time the test data are

being scanned in, the test responses are scanned out of the scan chains into the

output buffer. The test responses are then returned to the processor through

the same functional path and communication protocol the test vector packet was

delivered. To simplify the delivery schedule, the response packets are returned

after every successful transmission of a test vector packet (labeled R and V ,

respectively, in Figure 2.2), except for several initial vector packets prior to the

first capture cycle. The response packet empties the local buffer, preparing it for

the subsequent vector packet. In order to avoid buffer overflow, the subsequent

vector packet is only scheduled for delivery to the core after the successful receipt

of the previous response packet by the test processor. This design does not require

the buffer size to match the size of every test vector, since the test data can be

loaded in batches as they are delivered. The capture signal is generated only after

a complete test vector is received and loaded into the scan chains. Therefore, the

area cost due to the buffer can be minimized.

The introduction of buffers enables the test application to be scheduled con-

currently [6, 54]. Figure 2.3 shows the simplified representation of the buffer

75

architecture for two CUT’s excluding the buffer controller. The test data are

delivered by an embedded processor to buffers A and B alternately in stage 1

(data delivery stage), resulting in a round-robin delivery schedule. In stage 2, the

test data in the respective buffers are loaded into the scan chains (test applica-

tion stage) of cores A and B simultaneously. Each vector packet is followed by

a confirmation packet in the form of test response data. Figure 2.2 shows the

timing diagram of the delivery on the functional TAM (labeled Bus) and the test

application at each core (labeled Core A and Core B) assuming the number of

scan chains is smaller than the bus width.

The problems with the round-robin schedule arise when the two CUT’s are

unequal. In the following illustrative example, three CUT’s c1, c2 and c3 with the

same number of wrapper scan chains but c1 has twice the volume of test vector

data over the others. The example assumes the bus bandwidth is twice the scan

rate. Breaking the data into equal number of packets (Figure 3.3(a)) results in

c2 and c3 always waiting for test data; test completion times for c2 and c3 are

delayed. Further optimization is not possible since the bus is always occupied. If

the buffer sizes are fixed (Figure 3.3(b)), c1 requires twice the number of packets

over the others. After c2 and c3 completes testing, c1 continues utilizing the

bus. Scheduling the test of another core at this time requires a more complex

packet delivery schedule. In this chapter, an enhanced version of the round-

robin schedule called packet-set-schedule (PASS) is explained in Section 2.6.6,

and extended to hierarchical buses architecture in Section 3.6.

3.5 Test Scheduling Methodology

In this section, a test scheduling methodology for the MPSoC cores by reusing

the existing flat or hierarchical bus as functional TAM’s for the transportation of

the test vectors and responses is described. The scheduling methodology consists

of two steps. The first step is to decide (i) which processors can be best used

as test processors, and (ii) which cores are to be tested by which test proces-

sor. These steps are explained by using the resource graph manipulations (Sec-

tions 3.5.1 through 3.5.5) and the test group formation under power constraint

(Section 3.5.5) steps. This is followed by the algorithm to determine the optimum

76

Bus

c1
c2

Stage 1

Stage 2
c3

Time

(a) Case 1: Same number of packets

Bus

c1
c2

Time

c3

(b) Case 2: Same buffer sizes

Figure 3.3: Illustrative examples of round-robin schedules. For clarity, only vector

packets are illustrated. Response packets are excluded from the diagram.

packet delivery schedule for an MPSoC with hierarchical bus (Section 3.6).

3.5.1 Resource Graph

Figure 3.4(a) shows the equivalent resource graph for the example MPSoC in Fig-

ure 3.4(b) consisting of two processors P0 and P1, two buses b0 and b1 (interfaced

by a bridge B), and (j + k) logic cores. Access to the buses is regulated by the

arbiters Ai. The resource graph provides information about processor-core con-

nectivity. The resource graph captures all the information related to the MPSoC

architecture. There is a one-to-one correspondence between the resource graph

and the MPSoC interconnection architecture. The node at the beginning of the

directed arc represents a bus master-in this case, one of the embedded processors.

77

P0

C1 C2

b0

b1 ∧ b0

Cj

P1

Cj+1 Cj+2 Cj+k

b1

b0 ∧ b1

b0
b0 b1b1

(a) Resource graph representation.

P0 C1 C2

b0

Cj P1

b1

Cj+1 Cj+2 Cj+k

BA0 A1

(b) Architecture representation.

Figure 3.4: An example hierarchical bus MPSoC.

On the other end of the arc are the cores (bus slaves) which are accessible by the

processor.

Functionally, the cores only respond to the processors’ read or write requests

and do not initiate a bus transaction. The only indirect mechanism for the

cores to start a bus transaction is to generate an interrupt signal (in the case

of an interrupt-driven design). Based on the priority of the interrupt signal,

the processor responds by performing the requested operation at the appropriate

time. A typical example is when the cores have data to be delivered to the

processor following an earlier read request. The processor’s response would be to

initiate a read transaction from the core generating the interrupt signal.

In other words, the arcs represent all the physical interconnections between

processors and cores. The type of connection shown by each arc is described

precisely by the label associated with each arc. A single label (i.e. b0, and b1)

78

indicates a direct connection or a local processor-core interface. A compound

label (i.e. b1 ∧ b0) indicates the presence of non-transparent bridges between the

processor and the core. More detailed explanation of each graph can be found in

Section 3.5.2.

For example, cores C1 to Cj are connected to bus b0 and can be reached by

P0 directly. This is indicated by the b0 label on the corresponding vertices. The

cores can also be reached by P1 through a bus hierarchy (b1 ∧ b0). The AND

operator (∧) indicates that data delivery passes through a bus bridge.

3.5.2 Test Configuration Graph (TCG)

Definition 3.1 A test configuration graph (TCG) is a representation of the phys-

ical connectivity between an embedded processor [test source] and one or more

logic cores [test sinks] in an MPSoC. It specifies the test data delivery path be-

tween the test source and the test sink(s) on the MPSoC’s functional TAM’s.

One such test configuration is illustrated by Figure 3.5. In the test configura-

tion graph components diagram, the required on-chip resources are the commu-

nication channel (the bus bu) and the test source (the embedded processor pq).

The test configuration indicates that the processor pq is required to perform the

tests on the core Ci by delivering the necessary test data and retrieving the test

responses for analysis.

All possible test configurations can be represented by one of the five test con-

figurations in Figure 3.6 and Figure 3.7. From the resource graph (Figure 3.4(a))

and the test requirements of each CUT, all the test configurations can be ex-

tracted and specified using these five basic test configurations or the combinations

of multiple of these basic test configurations.

Figure 3.6 illustrates three test configurations (top figures) with their equiv-

alent bus architecture (bottom figures). For each TCG, Pq is the test source,

and Ci and Cj are the CUT’s. Type I TCG is a test configuration using a local

processor. Type II TCG is a hierarchical test delivery architecture, where test

data is delivered in two stages as described in Section 3.2.1. Type III TCG is a

test configuration for a multi-port processor where both ports are connected to a

CUT in parallel by two isolated buses.

79

pq

Ci

bu

Test
source

Test
sink

Test
resource

Interconnection

Figure 3.5: Components of a resource graph.

Figure 3.7 shows two possible broadcast-based test configurations. Type IV

TCG is a test configuration when the identical CUT’s are located within the

same bus region, therefore the distance (number of required bus transactions to

deliver test data from the processor to the CUT) from the processor to either of

the CUT’s are identical. Type V TCG is a test configuration when the identical

CUT’s are on different bus regions. These configurations are also called balanced

broadcast test configurations. The broadcast-based test configuration of Type V

is possible under the assumption that the processor is capable of delivering the

same data on multiple ports within the same clock cycle.

Other more complex test configurations can be constructed by combining and

merging these five basic test configurations. For example, the resource graph in

Figure 3.4(a) can be decomposed into 2× (j + k) TCG’s of Type I and Type II,

where each core has two TCG’s.

Any broadcast test configurations can be considered can be classified as either

balanced or unbalanced broadcast depending on the relative distances between

the processor and each of the CUT’s in terms of the number of bus transactions.

In Section 3.5.5 we explain how these TCG’s are used in the power-constrained

scheduling.

80

pq

Ci

pq

Ci

bu

bu

pq

Ci

pq

Ci

bu ∧ bv

bu

bv

pq

Ci

bu ∨ bv

p1 C1

bv

bu

Type IIIType I Type II

TCG:

Architecture:

Figure 3.6: Unicast-based test configurations graphs.

3.5.3 Equivalent Test Configuration Graphs

Equivalent test configuration graphs are those that have the same number of bus

transactions (data delivery costs) in order to deliver test data from each of the

different test sources (processors). Each bus transaction is assumed to have the

same cost. For example, Figure 3.8(a) shows two equivalent broadcast-based test

configurations. Test configuration belonging to pr is identical to that of pq if b0

and b1 in pq are swapped and Ci and Cj in the same TCG are also swapped. In

the case of unicast test configurations as illustrated by Figure 3.8(b), the cost

is identical since each test configuration requires two bus accesses, (b0 ∧ b1) and

(b2 ∧ b1) respectively, where b0 and b1 are local buses for pq and pr respectively.

For the purpose of test scheduling, equivalent TCG’s are considered to have

the same cost and therefore have equal chance of being selected. In the next sec-

81

pq

Ci

pq

Ci

Cj

Cj

bu bu

bu

Tests, T = TCi = TCj

Broadcast T to
both Ci & Cj on
bus bu

pq

Ci

pq

Cj

Cj

bu bv

bv

Ci

bu

Tests, T = Tmi = Tmj

Broadcast T to
both Ci & Cj on both
buses bu & bv on
two processor
ports

Type IV Type V

Figure 3.7: Broadcast-based test configurations graphs.

tion, the heuristics for power constrained test scheduling is described, in which the

equivalent test configurations are evaluated and selected. The selection criteria

are formed with the objective of optimizing the bus utilizations.

3.5.4 Eliminating the Obviously Redundant Test Config-

urations

For MPSoC’s with n embedded processors, there exist n sets of test configura-

tions. So, the first step in the scheduling heuristic, we can eliminate some of the

obviously redundant test configurations.

Definition 3.2 A test configuration is said to be obviously redundant if one of

the following conditions is TRUE regarding the required communication channel.

82

pq

b0

Ci

b0 ∧ b1

Cj

pr

b1

Ci

b1 ∧ b0

Cj

pq

b0

Ci

b0 ∧ b1

Cj

pr

b1

Ci

b1 ∧ b0

Cj

pq

Ci

b
0 ∧

b
1

pq

Ci

b
0 ∧

b
1

pr

Ci

b
2 ∧

b
1

pr

Ci

b
2 ∧

b
1

(a) Equivalent broadcast TCGs (b) Equivalent unicast TCGs

Figure 3.8: Equivalent test configuration graphs.

(i) If there exists a processor cluster, test configurations belonging to all but one

of the processors in the processor cluster are said to be obviously redundant.

(ii) The required communication channels of the TCG is a complete superset

of another test configuration’s required communication channels.

Condition (i) is TRUE under the current assumption that the processor’s job

is only to delivery test data during the test application. This condition will need

to be re-evaluated if the processor is responsible for the real-time generation of

the test vectors during the test application (such as the case of processor-based

LFSR). Under the current approach, the workload of each processor is assumed

to be negligible. Condition (ii) ensures that the local or the closest processor to

the CUT, with respect to the number of bus accesses required to deliver the test

data, is selected as the test source.

After eliminating the obviously redundant test configurations, the remaining

test configurations can be used to classify the CUT’s in the MPSoC as either of

the following:

1. Cores with unique test configuration.

2. Cores with multiple equivalent test configurations.

For the cores with a unique test configuration, the specified test configuration

will be used during the test scheduling process as well as during the test applica-

83

tion. For the other cores with multiple remaining equivalent test configurations

after the initial elimination, one of the test configurations will be selected during

the next process of forming test groups, discussed in Section 3.5.5.

3.5.5 Test Group Formation Under Power-Constrained Test

Scheduling

The main objective is to assign a test processor to each of the embedded cores

such that the test application time is minimized under a given power constraint,

Qmax. Since the functional TAM bandwidth is limited, it is important that the

data transmission load is also evenly distributed to all the functional buses. Oth-

erwise, one functional bus might be overloaded while other buses remain under-

utilized; the overloaded bus could unnecessarily delay the test time completion.

The test configuration graphs provide an isolated view of the bandwidth require-

ments on each functional bus for each core. In this section, by utilizing the test

configuration graph, the assignment of test processors is performed while simul-

taneously making sure that the resulting test power never exceeds Qmax. We

formally define the problem of test processor assignment under power constraint,

ΨPP , as follows:

Problem 3.1 [ΨPP] Given an MPSoC with p embedded processors, n logic cores,

and for each core c, given a TAT, Tc, and a power dissipation, Qc, at the maximum

test frequency, fmax, and the set of all test configuration graphs, select the best

TCG and test frequency for each core, and assign the core to a test group such

that

1. the total test application time is minimized, and

2. the maximum bus utilization for every test group is minimized.

Definition 3.3 A test group is defined as a set of cores which are scheduled to be

tested concurrently where the start times are identical as shown by “Test Group

1” and “Test Group 2” in Figure 3.9(b).

For hierarchical MPSoC, the test group formation requires a different opti-

mization scheme compared to the flat-bus SoC discussed in Section 2.6.4. With

84

C1

C2

C4

C3 C5

C1

C2

C4

C3

C5

t0 t1 t2 t3 t0 t1

Pow
er

Time

Qmax

(a) No group boundary constraint (b) Constrained group boundary

Time

Pow
er

Test Group 1 Test Group 2

Figure 3.9: Power-constrained test grouping for a bus segment.

hierarchical buses, we can take advantage of the fact that the buses are electri-

cally isolated by the bus bridges. Therefore, test group formation has to take

into consideration the congestion in all the bus segments. Otherwise, some bus

segments might be congested while other segments remain idle.

Power constrained scheduling for core tests has been performed using various

methods, which include bin-packing [19] and preemptive [34] algorithms. The

resulting test schedule is typically similar to Figure 3.9(a), where the starting and

ending times of a core test are optimally assigned without any constraint. The

test application of a new core is started right after another core test is completed,

as long as the required resources (i.e. dedicated TAM wires) are available. This

unconstrained schedule translates into a complex packet delivery schedule when

the functional TAM is considered. This is because we do not consider breaking

the functional TAM into independent bus wires which can be dedicated to any

specific core. For the example in Figure 3.9(a), five distinct delivery patterns

are required. At time t0, C1 and C2 are scheduled in the first packet delivery

schedule. At t1, the test application of C2 is completed and C3 is started. This

change will be reflected by the packet delivery schedule change. The schedule

changes also take place at t2 and t3.

The more frequent the schedule changes, the higher the complexity of the

overall packet delivery sequences. If the test source is a processor, then the

delivery sequences, which include all the timing information for every unique

delivery pattern, must be enumerated by the test program. Due to this, in the

85

proposed algorithm the cores are grouped into non-overlapping test groups as

shown in Figure 3.9(b), which requires a delivery schedule with only two different

delivery patterns, which change at time t1.

Flexibility in the choice of the test frequency values (fc ≤ fmax) for a core c

could be exploited in order to minimize the impact (on TAT) of the constraint

in the test group formation. In order to do this, we revisit the discussion on the

relationship between scan power and scan test time, which has been explained in

Section 2.6.3. Test power of a core c is directly proportional to the scan frequency.

Test time of the same core c, on the other hand, is inversely proportional to the

scan frequency. These relationships can be represented by equations (3.1) and

(3.2).

Qc ∝ fc (3.1)

Tc ∝ 1

fc
(3.2)

Therefore, for any non-zero values of fc, the product Qc × Tc always remains

constant. Here, the Q × T product also represents the area of power-time rect-

angles illustrated in Figure 3.9. Therefore, the rectangle can be reshaped while

keeping the area constant. Such reshaping process reflects the change of the test

frequency.

For example, in Figure 3.9(b), the test frequencies of C3 and C5 are halved,

in order to match the TAT of core C1, so that all C1, C3, and C5 can be sched-

uled concurrently without exceeding Qmax. For a given core, its test power can

be reduced (by assigning the test frequency with one of the choices of smaller

frequency values) as long as its TAT does not exceed the longest TAT within the

test group.

The FormTestGroups procedure in Algorithm 3.1 explains the algorithm for

the power constrained scheduling, in which the test groups (Figure 3.9(b)) are

formed. The objective is to minimize the test application time, while balancing

the bus utilization for all the MPSoC’s hierarchical buses within each test group.

The procedure begins with forming wbus wrapper scan chains for all cores, where

wbus is the bit width of the functional bus. The number of wrapper scan chains

that matches the bus bit width is preferred in order to simplify the buffer con-

troller. In such configuration, data can be loaded from the buffer to the scan

86

chains directly, without requiring the serial shifting between the stack and the

output register (Figure 2.8(a)). Scan chains are formed such as to minimize the

maximum scan-in or scan-out depth using the procedure proposed by [21, 66].

The step is followed by elimination of all redundant TCG’s. The following is the

definition of a “redundant TCG”.

Definition 3.4 A test configuration graph TCGi of a core Ci is said to be a

redundant TCG if the set of buses that are traversed by TCGi is a complete

superset of the set of buses that are traversed by another TCG of Ci.

For example, in Figure 3.6, the Type II TCG is a redundant TCG (relative

to Type I) for Ci because the set of buses traversed by the Type 2 TCG, {bu,

bv}, is a complete superset of those traversed by the Type I TCG, {bu}. The

redundant TCG’s are eliminated because their delivery costs (i.e. the total band-

width utilization) are always larger and could unnecessarily cause inefficiency in

the overall bus bandwidth utilization.

——————————————————————————————————

Algorithm 3.1 FormTestGroups (ΨPP)

1. For each core c ∈ SoC, form nsc wrapper scan chains,

s.t., nsc = wbus and eliminate all redundant TCG’s;

2. Start a new test group G = ∅;
3. Set the total power for G, QG,total = 0;

4. Among unscheduled cores, select a core c with maximum TAT and not yet

attempted for scheduling in the group G;

5. If c (and broadcast pairs, if any) has multiple TCG’s {
6. Select the TCG which results in

min{max{bus utilization of each bus in the TCG}};}
7. If ((QG,total < Qmax after scheduling c) AND

(at least one of the TCG’s buses has min. current utilization)) {
8. If G = ∅ {
9. assign the scan frequency of core c, fc = fmax;

10. assign group test time, TG = Tc;

87

11. update G = {c};}
12. Else {
13. reassign maximum fc ≤ fmax such that Tc ≤ TG;

14. update G = G + {c}; }
15. update QG,total and the group’s current bus utilization;

16. go to line 4;}
17. Else {
18. If (all cores have been attempted in the current group)

19. Go to line 2;

20. Else

21. go to line 4;}
——————————————————————————————————

When forming the test groups, the core with the largest TAT among the

unscheduled cores is first scheduled to the group and assigned the maximum

scan frequency, fmax. Using the assumption given in Section 3.3, a core’s test

frequency, fm, can only be reduced from the maximum test frequency, fmax, such

that fm ≤ fmax. Therefore, the core test time can only be lengthened, resulting

in reduced test power. After scheduling the core with the longest TAT first, the

TAT (at fmax) of the remaining unscheduled cores should be less than or equal

to the first core already scheduled in the test group. Since the boundary (on

the TAT axis) between adjacent test groups are defined by the first core with

the longest TAT (i.e. the group’s TAT), the other cores to be scheduled into

the test group must match as close as possible (without exceeding) the group’s

TAT. This process ensures an efficient use of the power dissipation. Therefore,

when scheduling the subsequent cores into the group, the core scan frequencies

are reassigned (line 14) to the highest frequency less than fmax such that the TAT

of the new group member is less than the group’s TAT. The choices of frequency

values are constrained by the maximum scan frequency, fmax, and the resolution

of the frequency divider circuit.

Before deciding whether a core Ci can be assigned to the current test group,

line 5 of the FormTestGroups algorithm is evaluated in order to determine the

optimum TCG for Ci. With a unique TCG chosen, Ci is scheduled in the current

88

group if it fulfills the following two conditions (line 7). First, the total power

dissipation after scheduling Ci (i.e. with the reassigned scan frequency) should

not exceed Qmax. For the second condition, based on the current required bus

bandwidth by the cores already scheduled in the test group, there exists one or

more of MPSoC’s hierarchical buses, {bmin}, whose bandwidth utilizations are

zero or minimum. Core Ci is scheduled in the current test group if at least one of

these buses in {bmin}, is traversed by the selected TCG of core Ci. The current

bus utilizations are updated, and the same procedures are repeated for the next

unscheduled core with the longest TAT.

If a core Ci is not scheduled to the current group, it will remain out of the

candidate list until either a new test group is created or another core Cj is sched-

uled to the same test group in which Ci was unable to be scheduled. This is

done because of two reasons. First, because the state of current bus utilization

changes after Cj is scheduled. Second, because it is better to schedule cores with

longer test application times together in the same test group; this is achieved by

attempting to schedule the failed cores again once the schedule state changes.

This is to preclude the occurrence of large reductions in the test frequency for

some smaller cores in order to match the long TAT of the largest core in the

current test group.

For the case of cores having multiple TCG’s (line 5 of FormTestGroups), for

each TCGi the maximum bus utilization among all the buses after adding the

bandwidth requirements of all buses traversed by TCGi is determined. The se-

lected TCG is one which minimizes the maximum bus utilization. Bus utilization

of a core refers to the total data rate required on a bus to transport the test data

from a test source to the core so that the test data is valid at the core’s scan

input at every scan clock cycle. The bus utilization of a core c is equal to its

scan rate, SRc = nsc × fc in bits-per-second, where nsc and fc are the number of

wrapper’s scan chains and the scan frequency, respectively.

Figure. 3.10 illustrates this TCG selection step for a core Ci which has two

TCG’s, TCGP0 and TCGP1. The shaded area in Figure 3.10(b) indicates the cur-

rent bus utilization due to other cores already assigned to the current test group.

By selecting TCGP0 for core Ci (Figure 3.10(a)), the resulting bus utilization is

more balanced (illustrated by the dotted lines in Figure 3.10(b)) compared to the

89

P0

Ci

b0 ∧ b1

P1

Ci

b2 ∧ b1

TCGP0 TCGP1

(a) Two candidate TCG’s for
Ci.

Bus: b0 b1 b2

Current bus utilization
(Mbps)

SRCi
SRCi

(b) Current bus utilization (shaded)
and after selecting TCGP0 for Ci (dot-
ted lines).

Figure 3.10: TCG selection procedure for a optimum load balancing on the func-

tional TAM.

case if TCGP1 were selected, which results in a high utilization in the bus b2 and a

low utilization in the bus b0. This prevents some particular buses from being over-

loaded while leaving others underused. The overloaded buses could potentially

become a communication bottleneck. This is not an effective load distribution as

long as there exists another bus that could share the communication load. This

step of dynamically selecting the best TCG for each core during the scheduling

process, based on the current bus utilization by other cores, spreads the commu-

nication load to all MPSoC’s buses. As a result, the maximum utilization of each

bus is minimized—the second objective of Problem 3.1 (ΨPP). After a unique

TCG if selected, line 7 is evaluated in order to determine if the core qualifies

to be scheduled in the current group. This process of selecting the best TCG is

repeated the next time this core is considered for scheduling, if the core is not

scheduled in the current iteration.

For the MPSoC cores which share the same test set (called broadcast pairs),

the test data can be broadcast on the bus in order to further reduce the test

application time. The broadcast delivery can be represented by the Type IV

and Type V TCG’s (Figure 3.7). In this case, the broadcast pairs are treated

90

pq

Ci

bu

pq

Ci

bu
sendingPq

Ci

Bus arbitration period

Packet delivery period

Test application period (scan and capture)

receiving sending receiving

Response delivery period (of previous vector)

Pq Pq
bu Bx or Py

stimuli

responses

arbitration

TCG

Legend:

Time

Figure 3.11: Packet delivery timing (local bus transfer).

as a single entity during scheduling. Therefore, when evaluating lines 5-15 of

FormTestGroups, the broadcast pairs must be scheduled together in the same

test group in order to take advantage of the broadcast capability to reduce the

test application time.

Once all cores have been assigned to a test group, each test group goes through

the packet set scheduling steps in order to determine the packet delivery schedule

which minimizes the test application time of the test group as well as the whole

MPSoC.

3.5.6 Complexity of Packet Set Scheduling for MPSoC

Figure 3.11 illustrates the activities on the processor (pq), bus (bu) and CUT (ci)

when a test packet is delivered under a Type I TCG. Every packet delivery begins

with an arbitration cycle. Upon owning the bus, the processor starts sending the

test packet containing a number of bits of the test vectors. During this period,

the processor and the bus are occupied. Upon receiving the first bit of the new

test vector, CUT starts to scan in the new test vector into the scan chains.

Since the CUT is local to the processor, we will assume that a write followed

by a read (write-read) transfer sequence for every test packet delivery is used.

91

Under the write-read operation, the processor (or bus master) starts by putting

the write address on the address bus, followed by the data on the data bus and a

write-enable control signal. If the packet size is larger than a single data cycle, the

processor utilizes a burst write transfer, where several data cycles can be used

continuously. Upon finishing the write transfer, a read cycle follows when the

read-enable signal is asserted. This bus delivery sequence is under the assumption

that the functional operation supports such a write-read operation.

During the read operation (receiving the test response), processors and bus

remain occupied. The CUT continues scanning in the new test vector which is

currently stored in the test buffer. This is under the assumption that scan in

operation is slower than bus delivery rate. Note that no arbitration and address

cycle is required since we can assume that the same address is used for both test

data buffer (write mode) and test response buffer (read mode). The bus continues

to be owned by the processor using only a single arbitration.

In Figure 3.12, the timing diagram and the activities on the processor (pq),

the buses (bu and bv), the CUT (ci), the bridge ports (Bpu and Bpv), as well as

the core’s buffer interface (Bci), are shown for a Type II TCG. This is the case

of a non-transparent bridge performing a store-and-forward operation during the

delivery of a test packet from the processor pq to the CUT ci since the processor

is not local to CUT. Note that the processor is only active during the delivery

period of the test vector and after a period of inactivity, receiving the test response

back from the bridge. During this period (assuming split transfer operation), the

processor is free to perform other tasks. Assuming that the two-port bridge can

operate both ports simultaneously, we can see that one of the bridge ports remain

idle at any given time.

Figure 3.13 illustrates the simplified representation of the packet delivery

timing showing only the bus activities for various TCG configurations. Fig-

ure 3.13(a)-(d) illustrate the resulting bus activities when delivering a test vector

packet and retrieving a response packet for different test configurations as ex-

plained below:

1. Transfer to a local CUT

2. Transfer through an intermediate bridge to a CUT

3. Unbalanced broadcast transfer to multiple CUT’s

92

pq

Ci

bu ∧ bv

pq

Ci

bu ∧ bv

sendingPq

Ci

Bpu

Pq owns bus

Bridge owns bus sending

Bridge owns bus

bu Pq

bv Bpv

Bpv sending receiving

Bpu

receiving

receiving

pq

Ci

bu

bv

pq

Ci

bu

bv

stimuli
responses

arbitration

TCG Architecture

Legend:

Activities on processors, bridges, cores, and buses

Time

Figure 3.12: Packet delivery timing (through a non-transparent two-port bridge).

4. Transfer through multiple (different) bridges

The packet delivery sequence illustrated by Figure 2.14 is optimized for single-

processor SoC’s, where packet delivery only utilizes a single processor bus. In

those cases, each scheduled packet delivery (and response retrieval) is completed

before the next packet in the schedule is delivered. Therefore, the bus is fully

utilized from the time packet delivery begins until the time the corresponding

response packet is completely received. However, under the hierarchical-bus

MPSoC scheme, this is true only for the test configurations which utilize a sin-

gle local bus as in Figure 3.13(a). As illustrated by Figure 3.13(b), (c), and (d)

for packet delivery through hierarchical buses, the packet delivery and response

retrieval for a single test packet cannot be completed without forming idle slots

on the processor local bus as well as all other intermediate buses.

These idle slots exist between the time a vector packet delivery is completed

and the time the corresponding response packet retrieval begins on the same bus.

For example, the bus b0 in Figure 3.13(b) and (c) and both buses b0 and b1 in

Figure 3.13(d). In other words, the idle slots represent the time duration during

which the bus is unused by this test packet. As a result, the bus hierarchy causes

93

i Rib0

p1

b0

Ci

i Rib0

p1

b0

Ci

m

m, Rm

Rm

m Rm

b0

b1

b2

p1

Cm

b0 ∧ b1 ∧ b2

p1

Cj

b0 ∧ b1

j

j, Rj

Rjb0

b1

l, Rl

Rlb0

b1

Rk
p1

b0

Ck

b0 ∧ b1

Cl

k, l

l, Rl

Rlb0

b1

Rk
p1

b0

Ck

b0 ∧ b1

Cl

k, l

(a)

(b)

(c)

(d)

Time

Figure 3.13: Packet delivery timing (bus activities).

a longer round trip delay for every packet. Consequently, the optimized delivery

sequence for single bus SoC’s (Figure 2.14) is not optimum for hierarchical-bus

SoC’s. Section 3.6 starts off with this observation to further optimize the test

schedule for a hierarchical bus MPSoC.

3.6 Optimizing the PASS Algorithm for Hierar-

chical Bus MPSoC’s (MPPASS)

The delivery sequence generated by the PASS algorithm in Figure 2.14 is revisited

in Figure 3.14(a). Each pc
i,j represents a time slot on the bus allocated for the

transportation of a stimuli and a response packet, where

c = core number (1 to ni) from split-i group,

94

1 (1) /1 /1 2 1
2 ,1 2 ,1 2 ,1 ,1 ,1 ,1

1 2 1
2 ,2 2 ,2 2 ,2 1,1

2 (1) /2 /1 2 2
2 ,3 2 ,3 2 ,3 ,1 ,1 ,1

1 2 2
2 ,4 2 ,4 2 ,4 1,1

/ / /1 2
2 ,2 1 2 ,2 1 2 ,2 1 , ,

...

...

..

q d k rk r
k k k r r r

q
k k k

q d k rk r
k k k r r r

q
k k k

q k r k r k r
k k k k k k r r r r

p p p p p p

p p p p

p p p p p p

p p p p

p p p p p

+ −+

+ −+

+
− − −

�

�

�

�

� � � �

�
/ (1) /
,

1 2
2 ,2 2 ,2 2 ,2 1,1

.
k r d k r
r r

q k
k k k k k k

p

p p p p

+ −

�

(a) Optimized packet delivery sequence for a non-hierarchical bus.
This delivery sequence is also known as a PASS schedule.

Split-2k

Split-2k

Split-2k

Split-2k

Split-2k

Split-2k

Split-r

Split-r

Split-r

Split-1

Split-1

Split-1

(b) The delivery sequence in (a) according to the split group.

Figure 3.14: Packet delivery sequence produced by the PASS algorithm.

where
∑

ni = n

i = split group to which core c belongs

j = packet sequence number for core c,

where j ≤ i

The sequence has been optimized for a flat-bus architecture, without consid-

ering the delay in bus arbitration and contention with other activities on the bus.

In addition, the algorithm assumes that all the activities on the bus are originat-

95

b0

b1

b2
Time

Arbitration delay
ResponseVector

ResponseVector
B

us
es

Figure 3.15: Bus contention in a hierarchical bus MPSoC resulting in a delayed

data transfer.

ing from a single test processor, thus precluding any bus contention; the timing of

vector and response packets is always predictable. For a hierarchical bus MPSoC,

the delivery of some packets may not be completed within the allocated time slot

indicated by each pc
i,j in Figure 3.14(a). Instead, due to the bus contention and

the store-and-forward operation on each packet by the bridges, the completion

time of a packet delivery cannot be independently calculated without considering

the activities of other processors (and bridges) on the hierarchical buses. Fig-

ure 3.15 shows a possible contention scenario on bus b1 between data packets

originating from processors on buses b0 and b2. As a result, the data packet com-

ing from bus b0 is delayed, resulting in a delayed response packet returned to the

test processor.

3.6.1 Motivation for Incorporating the Hierarchy Infor-

mation in the Packet Delivery Sequence

In Figure 3.16, di and ri represent the delivery of data packets and response pack-

ets, respectively, belonging to core ci. Bus b1 and bus b2 are the first level and

second level buses respectively. Core c1, which is connected to bus b2, requires

both bus b1 and bus b2. Cores c2 and c3 require only bus b1 for test data delivery

because they are connected directly to bus b1. This scenario is under the assump-

tion that the common test source (the embedded processor) for cores c1, c2 and

c3 is connected to bus b1.

In Figure 3.16(a), the delivery sequence is d1d2d1d3, following the schedule

96

 d1 r2 Bus b1

mi

d2

d1 r1

r1 d1

d1 r1

r3 d3 r1

Bus b2

Time

d1 r2 Bus b1

mi

d2

d1 r1

r1 r3 d3

Bus b2

Time
(a) (b)

Figure 3.16: Increasing the efficiency of bus utilization.

in Figure 2.14, which is optimized for flat bus SoC’s. When determining the

delivery sequence, one of the optimization objectives was to minimize the total

buffer utilization by increasing the frequency of data delivery for cores which have

more test data to be delivered. As a result, two packets for c1 is scheduled, while

only one packet each for cores c2 and c3. Under this schedule, packet d1 needs

to be forwarded to the second-level bus through a bridge twice—once for every

packet delivered. Each time, the same amount of arbitration time is assumed.

In Figure 3.16(b), after incorporating the bus hierarchy information, the de-

livery sequence is changed to d1d2d3. During the optimization, the split ratio for

a core is averaged by the number of buses required for the delivery of a packet

belonging to the core. As a result, the split ratio for core c1 is halved because it

requires two bus transfers, while the split ratios of other cores with a single bus

transfer remain unchanged. Consequently, the size, the delivery time, and the

scan in time of each packet of c1 are twice those of c2 and c3. However, reducing

the number of packets reduces the number of bus arbitrations required for the

packet delivery.

Under a heavy load on bus b2, the arbitration time could potentially be the

bottleneck on limiting the efficiency of packet delivery schedule by the processor

located on the bus b1. Therefore, reducing the frequency of packet delivery to

cores which are far from the processor (in number of bus delivery) reduces the

effect of the round-trip delay. In the methodology that we have proposed, the

frequency of packet delivery is reduced linearly to the number of different buses

97

that the packet needs to travel in order to get from the processor to the core

under test. This is achieved by dividing the split ratio (which was calculated and

optimized for flat-bus architecture, explained in Section 2.6.6) by the number of

buses in the selected test configuration of each core.

3.6.2 Improving PASS Schedule through Random Permu-

tation

The PASS delivery sequence of Figure 3.14(a) only requires that, for each time slot

pc
i,j, the packet must belong to a core c ∈ {split-i group}, shown in Figure 3.14(b).

For the case of split groups consisting of multiple cores c1, c2, . . . , cni
, the order

(or method) of assigning the delivery slots to each core within the split group is

not constrained by the algorithm. For example, the delivery sequence of B-A-B-C

(Figure 2.11(b)) can as well be changed to B-C-B-A without affecting the scan

in operation at each core. Since the delivery sequence by each test processor is

repetitive, some sequences are better for the hierarchical buses at minimizing the

TAT than others.

In general, the number of unique delivery sequences for any test group consist-

ing of nx, ny, and nz modules in the split-x, split-y, and split-z groups respectively

is nx!× ny! × nz!. In other words, there are nx!× ny!× nz! ways of forming the

packet set schedule (PASS). Each of the unique delivery schedule could result in

a different test application time. This is because the contentions between the

packet forwarding activities between all modules within the same subgroup as

well as between subgroups could delay the delivery of some packets.

The number of possible delivery sequences grow at a rate greater than expo-

nential, exp(n), where n is the number of cores in a split group. Nevertheless,

typical values of n are bounded by several factors. For a MPSoC containing Nc

cores under test and Np embedded processors, the average number of cores in

a split group is Nc/(Np ×NTG ×NSG). NTG and NSG are the number of test

groups and the number of split groups respectively. In the proposed methodol-

ogy, NSG = 3. NTG depends on the maximum power dissipation. Lower power

dissipation means that smaller number of cores forming a test group. For most

circuits, the number of possible test configurations is significantly bounded.

98

Even so, in the worst case, the computation time could still be large. In order

to reduce the computation time during the optimization of the packet delivery

sequence (or packet set schedule, PASS) a heuristic is explained here. Figure 3.17

shows the flowchart of the packet set optimization methodology. The optimization

starts with choosing one of all the possible packet set schedule (PASS) based on

the delivery ordering specified in Figure 2.14. Next, the test application based on

the current PASS is simulated (refer Section 3.6.3). The resulting test application

time is recorded as newTps. For every iteration, if the new newTps is smaller

than the current smallest bestTps, the smallest test time is updated and the

corresponding PASS is stored. This process is repeated until one of the stopping

conditions described below become true. In every iteration, a new non-repeating

(or not-yet-simulated) PASS is randomly generated. After one of the stopping

conditions becomes true, the best PASS is returned. The best PASS is finally

used as the test configuration for the complete simulation of the test application

for the current circuit under test.

Stopping Conditions:

1. All possible permutations of PASS have been evaluated

2. The total number of PASS simulated since the previous PASS which pro-

duces a smaller test application time is greater than the maximum preset

value, np,max.

In order to minimize the simulation time, each unique PASS is simulated for

a small number, w, of packet sets (i.e. w repetitions of B-A-B-C, instead of a

complete test application for all the test data of cores A, B and C). The value of

w is chosen by experiment under the assumption that the interaction between the

data packets is cyclic after several repetitions of the packet set delivery from each

test processor. Furthermore, if np,max consecutive PASSes have been attempted

without getting any improvement in the TAT, the simulation is stopped. The

current best PASS is returned as the delivery sequence for the test group. The

np,max limit is imposed in order to avoid simulating all permutations of delivery

patterns, which could be considerably large for test groups consisting of large

number of cores.

The flowchart in Figure 3.17 shows the process of determining the best PASS

(e.g. B-A-B-C or B-C-B-A) for each test processor, taking into consideration the

99

START

Return bestPASS

FINISH

Y

N

np = 0
bestTps = ∞

More PASS? or
np < np,max

Generate a newPASS not
yet simulated

If (newTps < bestTps) ,
bestTps = newTps

bestPASS = newPASS
Else

np++

Simulate test for newPASS.
(arbitration, transportation, &

scan-capture)
newTps = total TAT for w
consecutive packet sets

Figure 3.17: Optimizing the packet delivery sequence (MPPASS).

hierarchical nature of the vector and response data packet delivery. A packet

delivery simulation is performed for all the delivery sequences that do not violate

the group delivery sequence requirements in Figure 3.14(a)—the valid PASSes.

The valid PASSes can be formed by randomly permuting the delivery ordering

within each split group of each test processor. For every permutation of PASS, the

test application is simulated for all test processors simultaneously. The simulation

environment and procedure are explained in Section 3.6.3. In every iteration, if

the new valid PASS returns a smaller TAT, it is recorded as the current best

PASS.

The variable w > 1 is used because under the MPSoC delivery timing diagram

as illustrated by Figure 3.13, packet delivery sequence from different test config-

urations overlap with each other due to the bus contention and arbitration. This

is because any bus master can arbitrate for the bus ownership. Furthermore, a

bus master can hold the bus for a maximum duration of BUS HOLDING TIME.

100

In addition, the simulation is assumed to follow the functional bus arbitration

scheme, which is designed and optimized for the functional operation. The first-

come-first-serve arbitration scheme is used for the simulation result reported in

this dissertation.

In addition to the overlapping bus activities between packet deliveries within

a packet set, there are also overlaps between packet deliveries between adjacent

packet sets. Assuming that the overlapping repeats after w consecutive packet

sets, we can fairly analyze the actual test application time of the complete test op-

eration without actually simulating the complete test application for each PASS.

If w is much smaller than the actual number of repetitions required for the com-

plete test application, we can efficiently speed up the optimization algorithm

without sacrificing the accuracy.

Based on the discussion above, the multiprocessor packet scheduling problem,

ΨMPPASS, is formally defined as follows:

Problem 3.2 (ΨMPPASS) Given a test group, G, consisting of p subgroups, Gj ,

where j = 1, 2, . . . , p and p is the number of selected test processors on a hierar-

chical bus MPSoC. For each subgroup, there are nj cores {c1, c2, . . . , cnj
} to be

tested by the jth test processor. For each core ci, the optimum test configuration

graph TCGci
, the test frequency, fci

, and the buffer size are given. Determine

the optimum packet delivery sequence for each test processor, utilizing the hier-

archical functional TAM of the MPSoC, such that the total test application time

for the test group G is minimized.

3.6.3 Simulation Environment and Procedures for the Test

Data Transportation in Hierarchical Bus MPSoC’s

A Multiprocessor Simulator (MPSim) is implemented to simulate the transmis-

sion of each vector or response packet through the MPSoC’s hierarchical buses,

considering autonomous processor actions and multiple data packets being trans-

mitted and in transit. The sequence of packet delivery is constrained by the given

packet delivery schedule (i.e. PASS) for each test processor in the MPSoC envi-

ronment. In order to closely mimic the operational environment of the MPSoC

101

during the test application, an event-driven simulation engine (Figure 3.18) has

been implemented under the following constraints:

• The delivery sequence by each processor follows the given PASS repeatedly

until all test data for all CUT’s have been delivered. A new test packet

for core Ci is delivered by the processor only when the test response of the

previous packet of Ci is successfully received.

• The MPSoC’s functional arbitration scheme is used during the test applica-

tion. For the experimental results presented in this chapter, the first-come-

first-serve arbitration scheme is assumed.

• Every event requires a separate bus arbitration; a bus request is immediately

generated once the data is available at the bus master. For a bridge, the bus

request is generated once a complete packet is received or once a queued

packet goes to the head of the queue.

In the MPSim flowchart (Figure 3.18), the middle (shaded) blocks are the main

simulation engine, which keeps track of the simulation time step and processes

the events based on their time stamp. The left and right sections show the

steps for handling the processor-initiated events and the bridge-initiated events

respectively. For both types of events, the packets are forwarded to either the

next bridge (vector or response packets), directly to the core (vector packets), or

back to the processor (response packet). The next destination of each packet is

determined by the TCG chosen for the packet owner (the core/CUT). In most

cases, the completion of an event spawns one or more new events, which are

pushed into the events queue.

102

ST
A

R
T

In
it.

 P
ro

ce
ss

or
 &

B

ri
dg

e
St

at
es

G
et

N
ex

tE
ve

nt

(N
ex

t e
ar

lie
st

 e
ve

nt
)

B
ri

dg
e/

Pr
oc

es
so

r
E

ve
nt

?

D
el

iv
er

 to
 c

or
e

an
d

re
tr

ie
ve

 r
es

po
ns

e

C
or

e
on

lo

ca
l b

us
?

Fo
rw

ar
d

to

ne
xt

 b
ri

dg
e

Y

N

Sc
he

du
le

 n
ex

t
pr

oc
es

so
r

ev
en

t

Pr
oc

es
so

r
D

es
t.

on
lo

ca
l b

us
?

D
el

iv
er

 to
 d

es
ti

na
ti

on

(r
et

ri
ev

e
re

sp
on

se
)

Fo
rw

ar
d

to

ne
xt

 b
ri

dg
e

Y

Sc
he

du
le

 n
ex

t
br

id
ge

 e
ve

nt

B
ri

dg
e

M
or

e
ev

en
ts

?

Y
E

N
DN

N

Pr
oc

es
so

r
E

ve
nt

s
B

ri
dg

e
E

ve
nt

s
M

ai
n

Si
m

ul
at

io
n

E
ng

in
e

F
ig

u
re

3.
18

:
E

ve
n
t-

d
ri

ve
n

d
at

a
tr

an
sf

er
si

m
u
la

ti
on

fl
ow

ch
ar

t
of

a
M

u
lt

ip
ro

ce
ss

or
S
im

u
la

to
r

(M
P
S
im

).

103

3.7 Experimental Results

In order to evaluate the effectiveness of the proposed methodology, we have con-

ducted experiments on several modified ITC’02 benchmark circuits [1]. The power

dissipation information for the selected circuit is obtained from [1, 19]1. We have

additionally added the functional bus information to the selected circuits as fol-

lows:

• A single shared bus b0 is added to connect all the cores, assuming a flat

design. A processor core is assumed connected to the bus b0. This modified

circuit is named NXh1, where NX is the original circuit name. The same

test requirements specified in [1] are used.

• For those circuits which have level-2 hierarchy, a single shared bus b0 is

added to connect all the level-1 (hierarchy) cores. The definition for level

follows the definition in the benchmark suite [1]. Additionally, a local bus

bi is added within each hierarchical level-1 core to connect all the level-2

cores. The bus bi is interfaced to the bus b0 through a bridge. This new

modified circuit with hierarchical buses is named NXh2, where NX is the

original circuit name. Figure 3.19 shows one of the modified benchmark

circuits, p93791h2, containing three processor cores, P0, P1, and P2, each

connected to separate and isolated bus regions.

In the modified benchmark circuits, we have added a number of processor

cores in order to illustrate the ability of the proposed approach to take into con-

sideration the locations of the processors; these processors are not added because

of any test requirements but are solely there to illustrate experimentally the supe-

riority and flexibility of the approach we propose. Existing functional processor

cores will be used for the actual test application. In the benchmark circuits, the

existing cores are not treated as processors in order to provide a fair compari-

son with previously proposed dedicated TAM based approaches. For the MPSim

simulator, the values of w = 5 and np,max = 10 are used for the results presented

in this section.

1The unit for power and maximum power, Qmax, for is based on an estimate given by [19].
We utilized the same power values in order to offer a comparison with dedicated TAM-based
scheduling approaches.

104

C4

C5C19

C17 C18
C6 C7 C8

C9 C10

C14 C15 C16
C29 C30 C31 C32

C20 C21 C22

b0
b1

P0

A

B

C1 C2 C3

B

C23 C24 C25

B

C26

B

B B

B

C27 C28

B

b2

b5 b6

b7

b8

b3

b4

C11 C12 C13

P1

P2

A

A

A

A

A

A

A

A

Figure 3.19: Modified benchmark circuit, p93791h2, based on the ITC’02 bench-

mark circuit [1], p93791.

Among the numerous dedicated TAM-based test scheduling approaches [19,

21, 34, 42, 43, 45, 47–50] available in the literature, the results presented in

[19, 37] are used for comparison. Results in [19] are selected because the test

scheduling methodology considers both the SoC hierarchy and the test power

dissipation as scheduling constraints. Results in [37] ignore the SoC hierarchy,

but they are useful when comparing the effectiveness when the functional TAM

frequency is larger than the scan frequency; In [37], the virtual TAM frequency

is allowed to be as large as twice the scan frequency.

When comparing the test application time with the dedicated TAM-based

approach, the processor cores are assumed fault free and tested separately from

other embedded cores—the target of testing in this chapter. The TAT’s for the

processor cores are assumed to be equal for both the dedicated TAM-based and

our Integrated Packet Set Scheduling (IPASS) approach, which is based on the

functional TAM. The TAT for the processors is therefore not included in the

results presented in this section. IPASS dynamically chooses the PASS algorithm

105

for scheduling, when the target system is a single processor SoC with a flat bus

architecture. Alternatively, it will use MPPASS algorithm for multiprocessor

SoC’s with hierarchical buses.

In the following tables, the TAT’s are given in milliseconds assuming that

the maximum scan frequency, fmax, for all cores is 100 MHz. The dedicated

TAM-based approaches make use of the maximum scan frequency for all cores.

They also disregard the functional buses and rely purely on the added test access

architecture; their total TAT’s are the same for an SoC with either a flat bus or

a hierarchical bus implementation.

Table 3.1 shows the TAT for a single processor SoC with a flat functional

bus and bus widths (BW) of 32 and 64 bits. The test applications are simulated

for several values of Qmax. In the table, “fbus = fscan” represents the circuit

configurations when the maximum scan frequency (fscan) and the bus frequency

(fbus) are both set to the same value of 100 MHz. The columns labeled [19]

and [37] show the TAT’s for dedicated TAM-based approaches [19] and [37],

respectively. Only a single TAT is reported for [37], because the approach does not

impose power constraint. It is also much smaller than [19] because it ignores the

design hierarchy constraint. The fourth and ninth columns show the results of our

functional TAM-based IPASS approach (for 32-bit and 64-bit bus respectively)

when the maximum scan frequency and the bus frequency match that of the

dedicated TAM approach. The TAT’s of our approach and [19] are comparable

when the bus frequency is the same as the scan frequency (fbus = fscan columns).

They are almost twice those of [37] because the packet transportation on the

functional bus cannot overlap; they overlap in the case of dedicated TAM because

vector data and response data stream on independent TAM wires.

However, much shorter TAT’s are achieved when we allow the bus frequency

to be higher than the scan frequency, which cannot be effectively implemented

using the dedicated TAM-based approach. To do so, similar buffers must be

added, or the TAM frequency can only be increased by also increasing the scan

frequency; this would also increase the test power, which may impact the level

of test concurrency. Unlike our approach, this hidden cost limits the benefits of

increasing the dedicated TAM frequency, as shown by the marginal improvement

in the TAT’s (columns five and ten, compared to columns three and eight, re-

106

Table 3.1: The TAT’s of the proposed IPASS and dedicated TAM approaches

[19, 37], on a flat bus SoC (p93791h1). [37] does not constraint the test power.

p93791h1 fbus = fscan fbus = 2 ∗ fscan

flat-bus [19] [37] IPASS [32] IPASS

Qmax BW = 32

10,000 18.28 9.41 18.44 8.96 9.04

15,000 18.28 9.41 17.34 8.96 8.85

20,000 18.28 9.41 17.35 8.96 8.89

25,000 18.28 9.41 17.63 8.96 9.07

30,000 18.28 9.41 17.78 8.96 9.08

Qmax BW = 64

10,000 11.17 4.61 8.94 4.53 5.34

15,000 10.15 4.61 8.85 4.53 4.70

20,000 9.58 4.61 8.93 4.53 4.59

25,000 9.65 4.61 9.05 4.53 4.75

30,000 9.45 4.61 9.07 4.53 4.67

spectively). This approach can be efficiently exploited in our functional TAM

approach because of the frequency decoupling provided by the buffer-based test

architecture. The columns labeled ”fbus = 2 ∗ fscan” illustrate this advantage; the

bus frequency is doubled, while leaving the scan frequency fixed. Since the TAT

reduction is constrained by the bus bandwidth limitation, doubling the bus fre-

quency is similar to doubling the dedicated TAM bandwidth, minus the cost of

area. The test application time can be reduced, without affecting the test power.

In Table 3.2, P@b0 represents a the single-processor hierarchical bus circuit

where the processor is connected to the level-0 bus, b0 (Figure 3.19). The TAT’s

are slightly larger than [19] due to the hierarchy overhead in the delivery time of

each test packet. Therefore, the effect of hierarchical buses can be clearly seen

when comparing p93791h1 and p93791h2 since in both cases, there is a single test

processor on the level-0 bus (b0). In order to show the benefit of using multiple

processors, we analyzed the extreme case scenario, where there is a processor

107

Table 3.2: IPASS and a dedicated TAM approach [19], on a hierarchical bus

MPSoC (p93791h2).

fbus = fscan fbus = 2 ∗ fscan

p22810h2 IPASS IPASS

hierarchy [19] P@b0 P@All P@b0 P@All

Qmax BW = 32

10,000 18.28 26.97 15.51 13.47 7.83

15,000 18.28 20.15 9.51 10.07 4.83

20,000 18.28 20.39 7.37 10.20 4.27

25,000 18.28 18.95 5.31 9.47 3.24

30,000 18.28 18.89 5.31 9.44 3.24

Qmax BW = 64

10,000 11.17 13.47 7.83 7.13 5.69

15,000 10.15 10.07 4.83 5.05 3.79

20,000 9.58 10.21 4.23 5.11 3.51

25,000 9.65 9.50 3.20 4.72 2.82

30,000 9.45 9.44 3.20 4.78 2.82

in every isolated bus region (P@All). The bus hierarchy allows simultaneous

delivery of the test data and reduces contention on the bus access. For typical

MPSoC configurations, the TAT is expected to be between the two extreme cases

(P@b0 and P@All). Simulation results for some randomly assigned number and

locations of processors demonstrate this expected trend.

Table 3.3 and Table 3.4 show the TAT’s for flat-bus p22810h1 and hierar-

chical bus p22810h2 SoC’s, respectively. Similar trends are observed for this

circuit. However, smaller differences are observed between P@b0 and P@All be-

cause p22810h2 has only three bus regions, as compared to eight bus regions

for p93791h2. Correspondingly small variations are also observed between the

flat-bus and hierarchical bus SoC’s due to the same reason.

The area cost of the proposed buffer-based test architecture can be estimated

in terms of the number of flip-flops for the buffers. For all the circuits in Table 3.1

108

Table 3.3: Flat bus SoC (p22810h1). No power constraint in [37].

p22810h1 fbus = fscan fbus = 2 ∗ fscan

flat-bus [19] [37] IPASS [32] IPASS

Qmax BW = 32

3,000 4.83 2.23 4.34 2.19 3.06

4,000 4.80 2.23 4.34 2.19 2.93

5,000 4.72 2.23 4.53 2.19 2.74

6,000 4.76 2.23 4.67 2.19 2.46

10,000 4.73 2.23 4.32 2.19 2.21

Qmax BW = 64

3,000 3.09 1.33 3.06 1.12 2.93

4,000 3.24 1.33 2.94 1.12 2.65

5,000 3.22 1.33 2.74 1.12 2.33

6,000 2.50 1.33 2.49 1.12 1.88

10,000 2.36 1.33 2.20 1.12 1.36

to Table 3.4, the buffer sizes per core (for BW=32), averaged over all Qmax, are

shown in Table 3.5. The area cost on the controller and the boundary scan

cells are comparable to the IEEE 1500 wrapper architecture; therefore, it is not

included.

3.8 Conclusion

We have proposed a test scheduling methodology for core-based testing of SoC’s

based on the utilization of the functional buses as functional TAM’s. The pro-

posed method can handle both flat bus single processor architectures and hi-

erarchical bus multiprocessor architectures. The bus hierarchy information is

efficiently incorporated into the methodology by representing the resource graph

with the test configuration graphs—a concept introduced in this chapter.

It was shown that the hierarchical bus architecture introduces additional delay

in the delivery of a test packet, which prolongs the overall test application time.

109

Table 3.4: Hierarchical bus MPSoC (p22810h2).

fbus = fscan fbus = 2 ∗ fscan

p22810h2 IPASS IPASS

hierarchy [19] P@b0 P@All P@b0 P@All

Qmax BW = 32

3,000 4.83 4.89 4.23 3.79 3.66

4,000 4.80 4.61 3.06 2.65 2.67

5,000 4.72 4.81 2.88 2.47 1.87

6,000 4.76 4.65 2.96 2.35 1.87

10,000 4.73 4.69 2.70 2.30 1.37

Qmax BW = 64

3,000 3.09 3.59 3.72 3.54 3.72

4,000 3.24 3.16 2.67 3.05 2.67

5,000 3.22 2.48 1.87 1.93 1.87

6,000 2.50 2.35 1.87 1.68 1.82

10,000 2.36 2.37 1.37 1.30 1.33

Table 3.5: Average input buffer sizes per core.

Circuit p93791h1 p93791h2 p22810h1 p22810h2

Min. 99.20 89.79 106.06 107.65

Max. 99.39 98.00 112.00 113.15

Subsequently, the use of multiple processors embedded within the bus hierarchy

annuls the negative effects of the hierarchical bus architecture on the overall test

application time.

110

Chapter 4

Network-on-Chip Interconnect

Architecture

4.1 Introduction

System-on-a-Chip (SoC) architecture has been the de facto design style used

by most electronic device manufacturers for many years. Ever since Gordon

Moore predicted in 1965 that the circuit density would double roughly every

eighteen months, chip developers have been relentlessly tracking this trend. The

International Technology Roadmap for Semiconductors (ITRS) 2007 [2] provides

a technically sound projection of the future of SoC’s for consumer products.

Figure 4.1 (from ITRS 2007 System Drivers) gives a generic template for the SoC

consumer product. The design template consists of a main processor, multiple

processing engines (PE), main memory, and peripherals. A PE is a processor

customized for a specific function; large-scale and highly complicated functions

such as MPEG, encryption/decryption, et cetera are suitable for implementation

as a PE.

The projected quantified design complexity trends for the SoC architecture in

Figure 4.1 is shown in Figure 4.2, using the following model assumptions.

1. There will be one main processor with approximately constant complexity.

2. Peripherals will also maintain constant complexity.

3. PE complexity remains constant, while the number of PE’s continue to grow

subject to a die size of 64 mm2.

111

Figure 4.1: ITRS 2007’s SoC consumer architecture template.

4. The amount of memory is assumed to increase proportionally with the num-

ber of PE’s.

A single most obvious conclusion from the ITRS projection is that the number

of SoC’s IP cores are to grow in a Moore’s Law-like exponential growth. What’s

not shown in the SoC template in Figure 4.1 is the interconnect architecture. It

is because the functions of the SoC blocks are (or should be) independent of the

interconnect architecture. Obviously, as the number of cores increase, so will the

interconnect bandwidth requirement. Interconnect bandwidth is one of the major

challenges of multi-core design.

Success of a design relies partly on the use of appropriate design and process

technology. In a complex many-core design, the ability to efficiently interconnect

all the components becomes a major factor in the design’s success. As design

complexity has increased, the interconnects have evolved from a single bus to

multiple hierarchical buses, and recently to Networks-on-Chip (NoC) [73]. The

effectiveness of the Internet Protocol networks inspired the birth of the NoC,

since it can provide large on-chip bandwidth for inter-core communications; its

modular infrastructure eases the transition effort from the traditional bus-based

architecture. In [73], the authors highlighted several pioneer NoC architectures as

well as the test-related challenges that must be overcome to promote the adoption

of NoC as an SoC interconnect.

112

Figure 4.2: ITRS 2007’s SoC consumer design complexity trend.

Many NoC architectures have been proposed such as SPIN [75], OCTAGON

[76], PROTEO [77], CLICHÉ [78], Æthereal [79, 80], SoCIN [81], SoCBUS [82],

xPIPES [83], NOSTRUM [84], QNoC [85], and HERMES [86]; all are based on

synchronous communication between nodes. Several other types of NoC’s such as

CHAIN [87], NEXUS [88], ANoC [89], and MANGO [90] are based on Globally

Asynchronous Locally Synchronous (GALS) communication. The copious NoC

architectures highlight the growing interest in NoC as a next generation SoC

interconnect. Section 4.4 explains briefly some selected NoC architectures.

Before discussing the specific network architecture, we will briefly explain the

NoC communication services and the NoC network topologies.

113

SlaveMaster NoC

• Core-specific protocol
• Steady stream of data

• Protocol independent
• Guaranteed QoS

k k

Figure 4.3: The abstract representation of a master-slave data communication

model.

4.2 NoC Communication Services

In the traditional bus-based communication infrastructure, data transfer occurs

between a master (data source, such as a processor) and a slave (a data sink such

as a memory or an I/O controller) when a read or write instruction is executed.

When a write transaction is executed, the data is made available on the data bus.

This data is instantaneously available at the slave’s data bus, ready to be copied.

When replacing the bus with the packet-switching-based NoC, the same level of

transparency is required. This is illustrated in Figure 4.3. What goes on within

the NoC itself must be hidden from the master and the slave. In other words,

the master and the slave should not care whether the interface between them is

a bus or any other types of interconnects, including the NoC.

Figure 4.4 illustrates one of the services (packetization) provided by the NoC,

transparently. Packetization is the process of breaking up large transaction mes-

sages into smaller packets, which can be handled more efficiently inside the NoC.

The smaller packet sizes is more efficient because of the following.

• Smaller packets require smaller buffers at the routers.

114

Transaction Message

Packet 1 Packet 2 Packet n…

Packetize

Recombine

Transaction Message

Master

NI

NI

Slave

Router
Network

kernel
shell

kernel

shell

Figure 4.4: Transparent packet-switching services provided by the NoC between

a master and a slave.

• Smaller packets occupy less time on the path. Therefore, the resources

can be fairly allocated to all that require its resources since it reduces the

possibility of resource hogging.

• In case of an erroneous transmission, only a small packet requires retrans-

mission.

There are many other critical and important services provided by the NoC

include. Among others, they include

• Error-free transmission, through error checking and retransmission.

• Timing guarantee, such as latency.

• Bandwidth guarantee by means of a virtual connection.

115

Core

Core Core Core

CoreCore Core

Core Core

(a) Regular mesh topology

CoreCore

Core Core Core

Core Core

(b) Irregular-custom mesh topology.

(c) Folded torus topology

Figure 4.5: Mesh network topology.

4.3 Network Topologies

Like the Internet Protocol network counterpart, NoC network consists of a net-

work of routers with multiple I/O ports. Through these I/O ports, the routers are
116

CCC CCCCCC CCCCCC CCCCCC CCC

Figure 4.6: Fat-tree topology.

interconnected to each other to forming a topological network map. Some of the

most popular topologies are regular mesh, folded torus, irregular mesh-custom

topology, and fat-tree. These network topologies are illustrated in Figs. 4.5 and

4.6. Other network topologies are also used such as star network and octagonal-

shaped network [76], among others.

Each topology has its own advantages and disadvantages. For example, the

folded torus topology requires slightly more routing overhead compared to the

regular mesh topology. For a sixteen-router network (4× 4), the maximum dis-

tance between any two routers in the folded torus network is four hops. In the

regular mesh network, the maximum distance for the same network size is six

hops. For the two-stage fat-tree network, the maximum distance between any

pair of routers is two hops.

These are only a few among many variations of NoC topology being considered

and/or used by the different NoC architectures developed by the academic and

industrial researchers.

4.3.1 NoC Routing and Forwarding

NoC Networks are composed of routers or switches, which transport data from

one place to another. The switches are composed of a switching mechanism and

several buffered ports. Figure 4.7 shows a five-port switch architecture of the

CLICHÉ NoC [78]. Most other NoC architectures are also using the same router

configuration. The four horizontal and vertical facing ports are usually connected

117

Figure 4.7: Block diagram of a switch architecture for CLICHÉ NoC [78].

to the neighboring switches, while the slanted port connects to an IP core.

Communication between the IP core and other cores in the system goes

through one of the ports. At each switch port, the data is buffered and forwarded

to the next switch until it reaches the destination according to the routing al-

gorithm defined. Unlike the Internet protocol network that uses adaptive and

intelligent routing protocol, the NoC switch (or router) typically implements a

fixed routing algorithm. This is because of the following.

1. A fixed routing algorithm requires less hardware resources. Since the router

is on-chip, the area occupied by the router is an important factor when

deciding the routing algorithm.

118

2. The NoC network topology is fixed. Therefore it is possible to find an ef-

ficient routing algorithm for the rigid network topology. The amount of

traffic generated by each node is, however, unknown at design time; never-

theless, a statistical estimation based on the high-level circuit information

can be made to help enhance the routing algorithm.

To be precise, we can define routing as the task of determining the path (i.e. a

series of routers) that a data packet will take from a source node to a destination

node. Switching is a flow-control technique or the process of transferring the

data bits from an input port to the next output port. There are several types of

switching methods.

1. Store-and-forward switching technique buffers a complete data packet in the

intermediate station to be forwarded at a later time to the final destination

or to another intermediate station. Later time could be as soon as the whole

message is received or until the next channel is available for use. At the

intermediate station, or node, the integrity of the message is verified before

forwarding it. The weakness of this method is that there is large latency

because of the buffering time before forwarding to the next destination. It

also requires a considerably large buffer to store all the incoming data.

2. In a virtual cut-through switching method, instead of buffering the whole

data packet (or frame), the data is forwarded before the whole frame has

been received, normally as soon as the destination address is processed.

However, when forwarding to the next router, the packet is only forwarded

when there is buffer space for the whole packet. Therefore, in the worst

case, it requires a buffer size of equivalent to the store-and-forward scheme,

or one packet size. The advantage of this technique is that it reduces latency

through the switch, therefore higher throughput can be achieved. The dis-

advantage is that it decreases the reliability because the message integrity

is not verified before forwarding. A higher level integrity check such as an

end-to-end mechanism will be required.

3. In a wormhole switching, a packet is divided into smaller flits (or flow control

unit). When a header flit, which contains the information about the next

destination, of the packet arrives at the input channel, it is forwarded to

an output channel as soon as the output channel is available, and at least

119

one flit-size buffer is available at the next hop (even if the payload (data)

flits are still flowing through the network). Most of the NoC architectures

utilize the wormhole switching because of the low latency and small buffer

requirements.

4.4 NoC Architectures

This section explains briefly two NoC architectures—SoCIN and Æthereal—that

are commonly used by academia and industry researchers for test wrapper design

and test scheduling. In Chapter 6, we compare our flexible scheduling algorithm

based on the flexibility of the Æthereal architecture and several other research

works that are based on the less flexible SoCIN architecture.

4.4.1 SoCIN Network Architecture

A network-on-chip can be described by its topology and by the switching and rout-

ing strategies. Other packet-switched related services, such as flow control and

arbitration, also define the NoC architecture. The (System-on-Chip Interconnec-

tion Network) SoCIN architecture can be built on a 2-dimensional direct topolo-

gies such as regular mesh and folded torus (Figure 4.5). In a SoCIN [81] based

system, cores communicate by sending and receiving request and responses mes-

sages, i.e. read and write transactions. At the core-SoCIN interface, OCP/SoCIN

and VCI/SoCIN wrappers are implemented to allow integration with cores that

are compliant with these standard SoC interfaces. At the SoCIN side, the wrap-

per includes a static routing table which is used when constructing the message

headers.

The SoCIN specification defined in [81] uses a deterministic and source-based

routing. Each packet sender must determine the path to be used by a packet and

include the corresponding routing information in the packet header. The SoCIN

uses XY-routing in order to minimize complexity. Further, such choice constraints

the topology to only two-dimensional grid or mesh. In the XY-routing, a packet

going from a source to a destination must first travel in the X direction. When it

reaches the destination’s column in the mesh, the packet follows the Y direction

until it reaches the destination.

120

Figure 4.8: Four possible routing directions for XY-routing algorithm. The lim-

ited choice of routing paths could easily cause congestion at certain locations

while leaving other locations remain unused.

The simple and cheap routing algorithm ensures a deadlock-free routing be-

cause no forwarding loop is possible. Figure 4.8 illustrates the XY-routing scheme

for a 4× 4 network. The figure shows the four possible horizontal direction first

(X), then vertical direction (Y) routing paths. For the example shown, some

segments of the network are congested. For the given condition, the NoC has no

other option but to route the packets through the paths shown. The XY-routing

algorithm, while effective in terms of area cost, is inflexible and sometimes inef-

ficient.

SoCIN uses wormhole switching. A message is broken into packets, and pack-

ets are broken into flits. Wormhole switching minimizes both buffer requirements

and switching latency. In addition, SoCIN uses the handshake flow control pro-

tocol and distributed arbitration scheme at each RASoC (Router Architecture

for System-on-Chip) network router. Similar to the generic switch architecture

in Figure 4.7, RASoC router has five bidirectional ports, with a crossbar switch

matrix interconnecting all the bidirectional ports. The routing decision is based

on the source-routing path defined in each packet’s header by means of a source

121

routing.

A more flexible NoC in terms of network topology and routing algorithm is

implemented by the Æthereal NoC, discussed in the next section.

4.4.2 Æthereal NoC Architecture

The Æthereal NoC utilizes a combination of a guaranteed throughput (GT)

routers and best effort (BE) routers [79] with wormhole switching, and defines a

modular network interface [80]. Such combination of GT and BE routers enables

the Æthereal NoC to provide both guaranteed and best-effort services. Guaran-

teed services are typically used for streaming and critical traffic such as video

processing IP, which typically requires lossless, in-order video stream with guar-

anteed throughput. Best effort services can be used for non-critical traffic.

The GT router guarantees uncorrupted, lossless, and ordered data transfer,

and both guaranteed latency and throughput over a finite time interval. The

GT router uses a slot table to avoid contention on a link, to divide bandwidth

per link between connections, and to switch data to the correct outputs. There

is a logical notion of synchronicity; all routers on the network are in the same

fixed-duration slot. Therefore, in order to guarantee throughput, the connections

(i.e. virtual circuits or virtual channels) are allocated time slots; more allocated

time slots means more guaranteed bandwidth.

This thesis assumes that the NoC in consideration is functionally equipped

with such bandwidth allocation scheme. The Æthereal NoC employs a time-slot-

based time domain multiplexing (TDM) scheme, where a central arbitrator takes

charge of the bandwidth allocation for the whole NoC. Figure 4.9 shows the con-

ceptual view of the token-ring-based TDM time slots. Each globally synchronous

router port has an identical set of time slots. As virtual channels (VC) are estab-

lished, sequential slots are reserved on the adjacent routers along the VC path.

When connections terminate, slots are freed. The number of slots reserved rep-

resents the amount of guaranteed bandwidth reserved. Fig 4.9 shows five VC’s,

V C1, V C2, V C3, V C4, and V C5, with 1 Gbps, 1 Gbps, 2 Gbps, 3 Gbps, and 3

Gbps bandwidths respectively, assuming that the aggregate channel bandwidth

is 10 Gbps.

Figure 4.10 shows a System-on-Chip model that implements an Æthereal NoC

122

VC1

VC
2

V
C

3
VC

3

VC4VC4

VC
4

V
C

5
V

C
5

VC5 VC1

VC
2

V
C

3
VC

3

VC4VC4

VC
4

V
C

5
V

C
5

VC5

Slot 1

Slot 6

Slot 2
Sl

ot
 7

S
lot 3S

lo
t 8

Slot 4

Slot 5

Sl
ot

 9

Slot 10

Time

Figure 4.9: Bandwidth sharing is supported by the time slot-based Time Domain

Multiplexing (TDM) scheme implemented by Æthereal NoC.

consisting of four routers R0 − R3 and network interfaces (NI) [79, 80] as its

communication architecture. Among others, the task of the NI is to translate the

data format that is passing through. Two of the external ports are labeled I/O

port 1 and I/O port 2, which are used in the proposed approach to interface the

external ATE ports to the NoC.

Access to the IP cores through the NoC network of routers are possible by

means of shared-memory abstraction. What this means is that the communication

port of the IP cores (connected to the NI) are assigned a unique physical address.

The communication port is accessed by means of the standard read and write

transactions. The services provided by the NoC are completely transparent. This

property makes the transition from bus-based architecture to NoC interconnect

architecture seamless. No special changes need to be made to the design.

A transaction-based protocol is implemented in order to provide backward

compatibility to existing on-chip communication protocols such as Advanced eX-

tensible Interface (AXI) [91] and Open Core Protocol (OCP) [92]; this also allow

for an efficient implementation of future NoC protocols. The network interface

123

R2

R0 R1

R3

Port 1

Port 2

NoCI/O
I/O

SoC

NI

NI

NI

NI

Core
5

Core
6

Core
1

Core
2

Core
3

Core
4

Figure 4.10: SoC model based on the Æthereal NoC.

is split into two components in order to optimize its implementation. The NI

kernel (NIk) implements generic communication services such as establishing the

communication channel by means of virtual connections, breaking messages into

smaller packets and scheduling the packets to the routers, implementing the end-

to-end flow control and clock domain crossings. These are the high-level services

defined by the OCP communication model.

The lower level services are implemented as a separate entity, the NI shells

(NIs). NI shells implement the specific functions of various on-chip protocols,

the transaction ordering for connections, and other issues specific to the protocol

offered to the IP. The NI supports multiple communication protocols required by

the IP cores. Different communication protocols can be implemented for different

IP cores as NI shells.

Figure 4.11 shows a simplified timing diagram of an AXI burst write transac-

tion [91]. In order to reuse the NoC during test, the ATE needs to communicate

with the CUT using the read/write transactions. The write transaction vari-

ables and the IP core model considered in this dissertation are explained in the

subsequent chapters.

124

D(A0) D(A1) D(A3)

OK

A

T0 T1 T2 T3 T4 T5 T6
CLK

ADDR[31:0]

AVALID

AREADY

WDATA[31:0]

DLAST

DVALID

DREADY

BRESP[1:0]

BVALID

BREADY

Control
Signals D(A2)

T7

Figure 4.11: Transaction-based on-chip communication (Simplified AXI burst-

write transaction).

4.4.3 IP Core Model for Æthereal NoC

The I/O ports of an IP core under test consist of primary inputs (PI), primary

outputs (PO), scan chain inputs (SI) and scan chain outputs (SO). The PI’s can

be categorized into primary data input (PDI) and primary control input (PCI).

Assuming that the CUT communicates with the NoC by means of the AXI pro-

tocol [91] described in Figure 4.11, the PDI consists of WDATA[31:0] signals,

while PCI consists of ADDR[31:0], AVALID, DLAST, DVALID, and BREADY

signals. The PO’s can also be categorized into primary data output (PDO) and

primary control output (PCO). PDO is made up of RDATA[31:0] signals (not

included in the write transaction diagram in Figure 4.11), while PCO is made up

of AREADY, DREADY, BRESP[1:0], and BVALID signals.

With the new classifications, core I/O’s can be categorized as PDI, PDO, PCI,

PCO, and other PI/PO’s (PI’/PO’), which are not connected to the communica-

tion port of the NoC as shown in Figure 4.12. The PDI port is used to carry the

test stimuli from the ATE to the CUT, and the PDO port is used to transport

the test responses from the CUT to the ATE. The PCI and PCO control signals

125

Network Interface 1
(input side)

PCIPDI

Network Interface 1
(output side)

PCOPDO PO’

IP Core

PI’

To other cores, POs, etc

From other cores, PIs, etc

Internal
scan chains

… … …

… … …

1 2 d

1 2 d

…

Test stimuli

Test responses

Control signals

Control signals

Signals must
be isolated
during test

Figure 4.12: IP core model with an interface to the NoC’s network interface and

to other SoC cores and interconnects.

are needed to operate in the functional mode during the test application to en-

sure that the read/write transactions, by which the test data and responses are

transmitted, execute properly.

During the test application, the NoC operates normally while the CUT is in

test mode. Therefore, all the IP core inputs and outputs need to be isolated

from external sources. This is one of the functions provided by the core wrapper.

Since the CUT is not operating in the normal mode, the PCO signals must

be generated by a wrapper controller and fed to the output side of the control

signals. These special requirements during test are some of the issues that must

be handled by the test wrapper. This is further discussed in Chapter 5, especially

in Section 5.5.1.

126

Chapter 5

NoC-compatible Wrapper Design

and Optimization

5.1 Introduction

As discussed in Chapter 1, the use of System-on-Chip (SoC) design methodology

is prevalent in the electronics industry because of its many advantages. SoC

enables previously-designed mega blocks to be reused in new designs with ease.

With the aid of the efficient SoC design methodology, the time it takes to design

all the way to ship a complex the product such as today’s multifunction mobile

devices can be as short as only six months. In such complex designs, most mega

blocks such as processors, memories, memory controllers, I/O controllers, and

typically reused from previous designs or licensed from external sources. The

plug-and-play design style can even allow an individual chip designer to complete

a relatively large design in a relatively short time.

While the progress in designs has been rather extraordinary, the same cannot

be said for tests. The rapid increase in design complexity of SoC devices makes the

manufacturing tests of such complex chips increasingly complex and expensive.

A similar plug-and-play capable core-test methodology is needed in order for the

VLSI tests cost to keep up with the design cost. The best-adopted core-based

test technology for SoC’s is based on the use of a Test Access Mechanism (TAM)

[12, 21, 93] to connect all the embedded Cores-Under-Test (CUT) to the external

Automatic Test Equipment (ATE).

127

Core-based tests require that the CUT’s be isolated; this is typically achieved

by wrapping the cores with IEEE 1500 [4] compatible wrappers. Various core

test scheduling methodologies based on the dedicated TAM have been proposed

[6, 12–28].

Chapters 2 and 3 explain some of the research related to this topic, including

our works on test wrapper design and scheduling for SoC’s that are based on a flat

bus architecture and a hierarchical bus architecture. In this chapter, we look at

the test challenges for the SoC which utilizes the Network-on-Chip interconnect

in place of the bus-based interconnects. In [73], the authors discussed the test-

related challenges that must be overcome when dealing with the NoC as an SoC

interconnect.

This chapter focuses on the NoC-reuse-based wrapper architecture [94, 95].

We analyze two types of NoC-compatible wrappers, based on the guaranteed

bandwidth and latency of the NoC. The first wrapper, Type 1, is based on the

NoC-compatible wrapper proposed in [7, 96]. Depending on the number of wrap-

per scan chains, the test application time (TAT) of the Type 1 wrapper could be

shorter or longer than that of the IEEE Std. 1500 wrapper; however, for most

cases some NoC bandwidth is wasted. We then propose a second NoC-compatible

wrapper, Type 2, that is 100% bandwidth efficient—i.e. no wasted bandwidth;

Type 2’s TAT is the same as that of the 1500 wrapper. For a given bandwidth

or test application time constraint, the proposed wrapper optimization algorithm

finds the best configuration using a fast binary search algorithm. Compared to

[7, 96], our proposed test wrapper with the optimization scheme is more efficient

in terms of both reducing the test application time and NoC bandwidth utiliza-

tion; this is demonstrated by the experimental results reported in this chapter.

We begin with a review of some related work in Section 5.2. The NoC model

and the IP core model are described in Section 5.3. Section 5.4 explains briefly the

characteristics of the standard IEEE 1500 wrapper. Based on the 1500 wrapper

limitations, Section 5.5 elaborates the proposed NoC-compatible wrapper archi-

tecture, which overcomes the weaknesses of the standard wrapper. Subsequently,

the wrapper optimization methodology is explained in Section 5.6. Some exper-

imental results on selected benchmark circuits are given in Section 5.7. Finally,

concluding remarks are offered in Section 5.8.

128

5.2 Related Work

In this chapter, we will consider the Æthereal [79, 80] NoC, as an example, which

provides abundant communication resources. Therefore, the use of a dedicated

TAM for testing of an NoC-based chip is expensive. As a result, the reuse of func-

tional on-chip resources for test purposes is becoming more practical and more

economical. Several research groups have published work on NoC test schedul-

ing [62, 63, 97] utilizing the NoC as the delivery path for the transport of the

test data from external tester to the CUT’s. Test scheduling for the NoC router

[63, 98] and crosstalk test of the interconnects [99] have also been discussed. In

these approaches, each CUT is wrapped by an IEEE 1500 compatible wrapper in

order to provide isolation and access during the test application. With regard to

the NoC’s Design-for-Testability (DFT), the authors in [100] presented an archi-

tecture called ANoC-TEST, which targets the Asynchronous Networks-on-Chip

(ANoC) [89].

IEEE 1500 standard wrapper relies on the use of a dedicated TAM, which

merely provides an electrical connection between the wrapper and an external

tester. When reusing the Networks-on-Chip (NoC) as TAM, the 1500 wrapper

cannot be used as is because of three main reasons.

(i) The packet-based data transfer through the NoC cannot guarantee the pre-

cise timing required by the IEEE 1500 standard wrapper. At every scan

clock, the 1500 wrapper requires that a new data is available at its scan

input.

(ii) The wrapper does not provide the necessary control signals for both protocol

inputs and outputs for successful packet transfer through the NoC. The 1500

wrapper was designed with the dedicated TAM in mind, while the control

signals are provided through dedicated control lines parallel with the TAM.

(iii) The test data are transferred through a fixed-width data channel, which

may result in wasted bandwidth and increased test application time. The

1500 wrapper assumes that the TAM width follows the number of wrapper

scan chains.

In order to overcome these limitations, Amory et al. [7, 96] propose an NoC-

compatible wrapper and controller that takes advantage of the guaranteed band-

width and latency provided by the NoC to ensure test data integrity; this is

129

achieved by using an input interface architecture that interfaces the NoC with

the core. Their experimental results showed that in terms of core test time, the

proposed NoC-compatible wrapper is comparable to the dedicated TAM-based

IEEE 1500 wrapper, while having the advantage of being NoC-reuse [62, 63, 97–

99] capable. However, due to the constraint of the parallel-serial conversion at the

input port, the proposed wrapper requires much higher guaranteed bandwidth on

the NoC than the actual rate of the test data loaded into the wrapper scan chains.

This is further explained in Section 5.5.2.

5.3 NoC Reference Model

The proposed wrapper does not require a specific NoC architecture. Rather, the

wrapper requires and utilizes the following characteristics of the NoC communi-

cation channels.

• The packet-switched communication channel can be divided into sub-channels,

each with its own bandwidth capacity, which in a sense is equivalent to the

TAM width. The wrapper uses a subset of the link bandwidth between

the external I/O port and the embedded IP core by means of a bandwidth

reservation scheme explained in Section 4.4.2.

• The wrapper uses the IP core’s data ports for the transportation of the

test stimuli and responses. Since the NoC operates in the functional mode

during the test application, the wrapper needs to take into account the NoC

capacity and functional control sequences.

The wrapper utilizes the functional communication channel between a tester

and a CUT as a functional test access mechanism (TAM). The delivery channel

can be a dedicated path or a transparent virtual channel. The quality-of-service

guarantee through the bandwidth reservation scheme ensures that the test data

are available at the CUT at the right time. To ease description, the Æthereal

[79, 80] NoC described in Section 4.4.2 is used as a model to describe the char-

acteristics and functionality of the proposed wrapper design and optimization.

The I/O ports of an IP core under test consist of primary inputs (PI), primary

outputs (PO), scan chain inputs (SI) and scan chain outputs (SO). The PI’s can be

categorized into primary data input (PDI) and primary control input (PCI). With

130

Network Interface (input)

PCIPDI

Network Interface (output)

PCOPDO PO’

IP Core

PI’

To other cores, POs, etc

From other cores, PIs, etc

Internal
scan chains

… … …

… … …

1 2 d

1 2 d

…

Figure 5.1: IP core model with an interface to the NoC’s network interface and

to other SoC cores and interconnects.

the new nomenclature described in Section 4.4.3, core I/Os can be categorized as

PDI, PDO, PCI, PCO, and other PI/PO’s (PI’/PO’) which are not connected to

the communication port of the NoC as shown. This is illustrated in Figure 5.1.

The PDI’s and PDO’s are used to carry the test vectors from the ATE to the CUT,

and the test responses from the CUT to the ATE, respectively. The PCI’s and

PCO’s are needed to operate in the functional mode during the test application

to ensure that the read/write transactions, by which the test data and responses

are transmitted, execute properly.

Since the CUT is not operating in the normal mode, the PCO signals must

be generated by a wrapper controller. Special wrapper cells proposed in [96] are

used for PCO’s to make the NoC operate in the normal mode to transfer the test

responses. This is further discussed in Section 5.5.1. For all other PI/PO’s, the

standard IEEE 1500 wrapper boundary register cells are used.

5.4 IEEE Std. 1500 Wrapper Architecture

Core wrapper design for a dedicated TAM-based test architecture has been ex-

plained in [12, 21, 93]. For a CUT, given k internal scan chains (ISC) of length,

131

l1, l2, ..., lk, i primary inputs, o primary outputs, b bidirectionals, and nsc wrap-

per scan chains (WSC), the WSC’s are formed while minimizing the maximum

scan-in and scan-out depths. Scan-in elements consist of zero or more inputs,

bidirectionals, and ISC’s. Scan-out elements consist of zero or more outputs,

bidirectionals, and ISC’s.

Figure 5.2 shows nsc = 3 for a CUT with lk ∈ [7, 5, 5, 3, 2] flip-flops, i = 11

(npdi = 8, npci = 2, npi′ = 1), o = 10 (npdo = 8, npco = 2), and b = 0; in this

chapter, nx denotes the number of “x” elements. The scan elements are parti-

tioned to form scan chains with maximum scan-in depth, si = 11, and maximum

scan-out depth, so = 11, respectively. The wrapper scan chain formation treats

the wrapper cells, regardless whether they are data or control I/Os, as identical.

The scan chains are formed by cascading input cells, internal scan chains, and

output cells together, in the specified order. As a result, the total test application

time (TAT) can be calculated by Equation (5.1) [93], where nv is the number of

test vectors. For Figure 5.2, the TAT is, TTAM = 12nv + 11 clock cycles.

TTAM = (max{si, so}+ 1)× nv + min{si, so} (5.1)

When using dedicated TAM’s as the delivery channel, the wrapper scan chain

inputs—either parallel inputs (WPI) and outputs (WPO), or serial inputs and

outputs—are connected directly to the ATE input and output channels by means

of the dedicated TAM wires. The functional I/O connections (dotted lines in

Figure 5.2) are not used during testing. These functional I/O’s are isolated from

the CUT when the wrapper boundary register cells are configured in the test

mode. The wrapper instruction register is used to enable test mode (solid lines)

or the normal functional mode (dotted lines).

The current architecture of the standard IEEE 1500 wrapper has no capability

to accept test stimuli from the functional input pins (i.e. pi’[0], pci[..], and pdi[..]

pins). Neither does it have the ability to deliver test response data through the

functional outputs (i.e. pco[..] and pdo[..] pins). Therefore, in this chapter, we

explain how the propose wrappers address these issues when using the functional

inputs and outputs during the core-based test application.

132

7

5

5pdi[4]

pdi[3]

pdi[2]

pdi[1]

pdi[0]

pdi[5]

pdi[6]

pdi[7]

WPI[0]

WPI[1]

WPI[2]

pdo[4]

pdo[3]

pdo[2]

pdo[1]

pdo[0]

pdo[5]

pdo[6]

pdo[7]

WPO[0]

WPO[1]

WPO[2]

2

3

IP Core

Wrapper Instruction Register

WC[0:5]

pi’[0]

pci[0]

pci[1]
pco[1]

pco[0]

Test/Normal

IEEE 1500

Figure 5.2: IEEE 1500 based wrapper with scan chains made up of PI/PO wrap-

per cells (squares) and internal scan chains (rectangles).

5.5 NoC-compatible Wrapper Architecture

In order to reuse the NoC as the delivery channel, the wrapper scan chains receive

the test stimuli from the functional data inputs that are connected to the existing

functional interconnects such as NoC interconnect. Without the dedicated TAM,

the test data can no longer be transfered through the wrapper’s test inputs. This

requires the wrapper to capture the n-bit test data from the n-bit data port.

Since the bit width of the wrapper scan chains, nsc, are configured to optimize

the test application time, nsc does not always equal n. This bit width mismatch

necessitates the use of a bandwidth matching mechanism at the core wrapper

inputs as well as outputs. This mismatch is one of the major problems that the

133

NoC-compatible wrapper need to be able to accommodate.

Another problem arises because the mismatch in the modes of operations

at different parts of the chip. The NoC interconnect, including the interfaces

operates in the functional mode. It provides the functional data transfer services

to the circuit under test (CUT), while the CUT’s are tested—hence in the test

mode. The handshake data transfer protocol such as OSI and OCP rely on

the interactions between the master and the slave devices. The NoC requires

some acknowledging signals from the CUT, which will not be able to provide the

necessary signals in the test mode. Therefore, the NoC-compatible wrapper must

be able to perform this task on behalf of the CUT during test.

Unlike the dedicated TAM wires, NoC’s router-to-router interfaces operate

based on the packet-switching scheme. There is no direct control from an external

port to the CUT. Therefore, the test control and synchronization are no longer

at the hand of the external automatic test equipment (ATE), rendering the IEEE

1500 wrapper inadequate. This is partly due to the inherent delay in packet-based

data transfer used by the NoC. Sections 5.5.1–5.5.3 explain these problems and

how they are addressed in the proposed NoC-compatible wrappers.

5.5.1 Type 1 NoC-compatible Wrapper: Interfacing the

PDI/PDO Ports to the Scan Chains

The proposed Type 1 wrapper is the same as the wrapper in [96] in terms of

wrapper boundary cells and scan chain structure. However, their operations are

slightly different when loading the test stimuli into the wrapper scan chains. As

a result the wrapper controllers are slightly different. We will discuss the effect

of this characteristic on the test application time at the end of this section. The

Type 1 wrapper uses the same approach as in [12, 21] when forming the wrapper

scan chains which minimizes max{si, so}, except that most of the PDI and PDO

cells are excluded from the scan chain formation.

Figure 5.3 shows two variations of the wrapper scan chain architectures. The

wrapper scan chains consist of two input and output wrapper cells each, and an

8-bit internal scan chain. In Figure 5.3(b) the test stimuli enters the scan chain

through the shift input of the input wrapper cell (black squares). At every shift

134

clock, one bit of test stimuli is shifted into the scan chain. As a result, it takes

ten clock cycles to shift in the test stimuli and another ten cycles to shift out the

test response.

Figure 5.3(a) illustrates how the 1500 stimuli is first shifted into the WBR0

in the first clock cycle. In the second shift clock, the first bit moves from WBR0

to WBR1 through the scan out of WBR0 to scan in of the WBR1. At the same

time, WBR0 takes the second data bit. In the subsequent clock cycle, the first bit

moves from WBR1 to the first bit of the internal scan chain. This scan-in process

continues for ten clock cycles to fill in the test data into the WBR0, WBR1, and

the internal scan chain.

The NoC-compatible wrapper scan chain shown in Figure 5.3(c), on the other

hand, takes the test stimuli from the functional data input (func in) of the input

wrapper boundary register cells instead of the scan input (scan in). First the

“shift/load” input toggles to load and “normal” input enabled. When clock is

asserted, the 2-bit NoC-compatible stimuli (Bit 0 and Bit 1) are captured into

WBR0 and WBR1, respectively. In the second stage, “shift/load” input toggles

to shift mode. When clock is asserted, Bit 1 moves to the first bit of the internal

scan chain and Bit 0 moves from WBR0 to WBR1. After two clock cycles, Bit

0 and Bit 1 are scanned into the internal scan chains. This process repeats four

more times to shift the stimuli into the 8-bit internal scan chains.

During this process, the internal scan chains remain in the shift mode (i.e.

test mode). Only the WBR cells are required to switch between shift and load

modes to enable the bandwidth matching process between the 2-bit data input

and 1-bit wide wrapper scan chain. Based on this scan-in procedure, the effective

scan-in depth of the NoC-compatible wrapper scan chain is eight, which excludes

the wrapper boundary register cells. Next we formulate the general conditions for

an arbitrary bit widths between the NoC data port and the wrapper scan chains.

For a given number of wrapper scan chains, nsc, and the PDI bit-width, npdi,

the number of PDI bits that can be used to carry the test data for each wrapper

scan chain, nidwc, is given by Equation (5.2), assuming that npdi ≥ nsc. To

differentiate these PDI bits, those that can carry the test data are called input

data wrapper cells, IDWC (shaded black in Figure 5.4). If n̂idwc 	= 0 (Equation

(5.3)), some PDI bits cannot be used to carry the test data; these will become

135

func_in

scan_in

clock

func_out

scan_out

shift/load normal

func_in

scan_in

clock

func_out

scan_out

shift/load normal

1500
stimuli

WBR0 WBR1

NoC-compatible stimuli

Bit 0

NoC-compatible stimuli

Bit 1

To internal
scan chains

(a) Wrapper boundary register architecture.

shift

8

Scan chain 0

si = 10 so = 10

1500 stimuli response
shift

Internal scan chain

(b) IEEE 1500 scan chain architecture.

shift

8

Scan chain 0

si = 8 so = 8

load

NoC-compatible
stimuli

response
Bit 1

Bit 0

(c) NoC-compatible scan chain architecture.

Figure 5.3: Components of a wrapper scan chain which takes test stimuli from

the functional data port. One 8-bit internal scan chains, 2-bit data input, and

2-bit data output ports.

136

part of the wrapper scan chains, and not the IDWC. A similar analysis can be

done for the output data wrapper cells (ODWC), resulting in equations (5.4) and

(5.5).

nidwc =
npdi/nsc� (5.2)

n̂idwc = npdi mod nsc (5.3)

nodwc =
npdo/nsc� (5.4)

n̂odwc = npdo mod nsc (5.5)

The Type 1 NoC-compatible wrapper is illustrated in Figure 5.4 for the CUT

with 8-bit PDI/PDO’s, 2-bit PCI/PCO’s, 1-bit PI’, and three wrapper scan chains

(refer to the notation in Figure 5.1). From Equation (5.2), nidwc = nodwc =

8/3� = 2 means that each wrapper scan chain is interfaced to two IDWC/ODWC

cells. In addition, n̂idwc = n̂odwc = (8 mod 3) = 2 means that the remaining

two PDI/PDO bits cannot be used to carry the test data (illustrated by the

dotted lines for pdi[0]* and pdi[5]*); these unused PDI/PDO bits become part of

the wrapper scan chain, with no extra functionality. In the figure, dotted lines

represent the functional paths which are not used during the scan operation.

Solid lines represent the test data (stimuli and responses) transportation paths

during the scan-in/out operations.

The 2-bit input control signals (PCI) coming from the NoC are used by the

controller to synchronize the load and shift control signals required in order to

capture the test data from the PDI inputs into the corresponding IDWC cells and

scan chain elements. Since the wrapper cells for PCI inputs are always in scan

mode during the test application, the incoming signals are ignored by the CUT.

Similarly, the control signals coming from the CUT (PCO) are ignored by the

wrapper cells because the generated signals are invalid during the test operation.

Instead, similar to the scheme proposed in [96], the controller must generate

the necessary control signals (Figure 4.11) and feed them to the NoC through

the special wrapper cell at each PCO output, which is illustrated in Figure 5.5.

These functional control signals are necessary to ensure successful data transfer

through the NoC in the functional mode.

Since npdi equals npdo for a typical NoC core, the following discussion on the

PDI on the input port also applies to the PDO on the output port. During the

137

7

5

5

pdi[4]

pdi[3]

pdi[2]

pdi[1]

pdi[6]

pdi[7]

pdo[4]

pdo[3]

pdo[2]

pdo[1]

pdo[6]

pdo[7]

śi,0 = 9

2

3

IP Core

From
PDI
port

To
PDO
port

Load/shift register

Shift-only register

Legends:

śi,1 = 9

śi,2 = 9

śo,0 = 9

śo,1 = 9

śo,2 = 8

pi’[0]

pci[0]

pci[1] pco[1]

pco[0]
From
PCI
port

To
PCO
port

pdi[0]*

pdi[5]* pdo[5]*

pdo[0]*

2
Controller

C

C

C Special control register

Figure 5.4: Type 1 NoC-compatible wrapper architecture with scan chains made

up of internal scan chains and normal (shift-only) wrapper cells in Figure 5.5.

test application, IDWC cells are loaded with the test data in one clock cycle, in

the normal operation mode (refer to Figure 5.4). The IDWC cells change into

the test mode, during which the test data are serially shifted for two clock cycles

to empty the contents into the scan chains. After completion, the IDWC cells

change again into the normal mode to capture the next incoming data from the

PDI port. This operation is controlled by a test controller which keeps track of

the number of loads and shifts using counters (Figure 2.8(b)).

For the NoC-compatible wrapper with a scan-in depth of nine (Figure 5.4),

after four repetitions of loads and shifts, the first eight bits of each scan chains

138

prot_in
func_in

scan_in

clock

func_out

scan_out

func_in

scan_in

clock

func_out

scan_out

shift/load normal
shift/load protocol

normal

C

Normal boundary cell

Special protocol boundary cell
Shift-only (during test)

Shift and load (during test)

Figure 5.5: Two types of wrapper cells used in [96]. The same normal wrapper

cell is used under different control sequences for data-capturing from the NoC

(black), and as part of the wrapper scan chains (white). The special wrapper

cell has an extra prot in input signal that bypasses the memory cell to supply

the functional (i.e. bus protocol) control signals to return the test response data

through the NoC.

are loaded with the test data. To load the last bit, the IDWC cells are loaded

with new test data and a single shift clock is applied. However, before applying

the capture cycle, the IDWC must also be loaded with valid test data. After the

last single shift, only part of the IDWC cells contains valid test data. Reloading

the IDWC data from the PDI port can corrupt the valid data currently in the

IDWC cells. The wrapper control scheme in [7, 96] does not take into account

this possible data corruption during the scan operation.

To overcome this problem, the first (si mod nidwc) shift cycles of every test

pattern must shift in dummy bits into the scan chains followed by the load-shift

cycles until all scan chain elements are filled with test vector data. After the scan

chains are completely loaded, another clock cycle is required to load the IDWC

cells with valid test data before applying the capture cycle. Since the IDWC

and ODWC wrapper cells are not considered part of the wrapper scan chains,

the effective scan-in elements for the proposed wrapper scan chain design can be

formally defined as follows.

139

Definition 5.1 The scan-in elements of the Type 1 NoC-compatible wrapper con-

sist of the unused IDWC cells, bidirectional cells, and internal scan chains (i.e.

excluding all the other IDWC cells). The maximum scan-in depth is denoted by

śi (Figure 5.4).

Definition 5.2 The scan-out elements of the Type 1 NoC-compatible wrapper

consist of the unused ODWC cells, bidirectional cells, and internal scan chains

(i.e. excluding all the other ODWC cells). The maximum scan-out depth is

denoted by śo (Figure 5.4).

As a result of the new test scheme, the number of shift-in and shift-out cycles

required for the Type 1 NoC-compatible wrapper is summarized by equations

(5.6) and (5.7), respectively. Equation (5.8) gives the total TAT, where the

additional “+1” represents the final load of the IDWC data prior to the capture

cycle. For the NoC-compatible wrapper in Figure 5.4, TType1 = 11nv + 9 clock

cycles, which is smaller than TTAM based on Equation (5.1). The reduction in

TAT is due to the IDWC and ODWC cells that are not part of the wrapper scan

chains. The IDWC cells are loaded in parallel instead of through serial shifting.

ŝi = śi + (śi mod nidwc) (5.6)

ŝo = śo + (śo mod nodwc) (5.7)

TType1 = (max{ŝi, ŝo}+ 1 + 1)× nv + min{ŝi, ŝo} (5.8)

5.5.2 Type 1 NoC-compatible Wrapper: Inefficient NoC

Bandwidth Utilization

For a CUT with nsc wrapper scan chains and fm scan frequency, its scan rate

(or scan bandwidth) is given by Bscan
Type1 = nsc × fm. As shown in the previous

example (Figure 5.4), some PDI bits cannot be used to carry the test data due to

the Type 1 wrapper’s input architecture constraint. In order to supply the test

data to the CUT at Bscan
Type1 rate, the required channel bandwidth on the NoC is

given in Equation (5.9). For the NoC-compatible wrapper in Figure 5.4, the scan

and required bandwidths are 3fm bits-per-second (bps) and 4fm bps, respectively.

Breq
Type1 = Bscan

Type1 ×
npdi

npdi − n̂idwc

(5.9)

140

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Number of wrapper scan chains

B
an

d
w

id
th

 (
M

b
p

s)

Scan bandwidth

Required NoC bandwidth

Test frequency = 100 MHz

Figure 5.6: Scan rate and required bandwidth of a Type 1 NoC-compatible wrap-

per for p93791’s Core 6 [1] with npdi = 64.

Figure 5.6 shows the required bandwidth of the proposed Type 1 NoC-compatible

wrapper (Figure 5.4) compared to the actual scan bandwidth for an ITC’02 bench-

mark circuit for nsc = 2 to 64 and npdi = 64. For some number of wrapper scan

chains, the required bandwidth is almost twice that of the scan bandwidth. For

these cases (i.e. n̂idwc 	= 0), the Type 1 NoC-compatible wrapper is inefficient

in terms of NoC bandwidth utilization, similar to the NoC-compatible wrapper

in [96]. For other cases, it is as efficient as the dedicated TAM-based wrapper

while having the advantage of NoC reuse support capability with minimal area

overhead. In the next section, an alternate wrapper architecture is proposed to

overcome this limitation.

5.5.3 Type 2 NoC-compatible Wrapper: Optimizing the

NoC Bandwidth Utilization

Section 5.5.2 has shown that the Type 1 wrapper is inefficient in terms of band-

width utilization because of the restricted input/output wrapper cells architec-

ture. The Type 2 NoC-compatible wrapper in Figure 5.7 is designed to comple-

141

7

5

5pdi[4]

pdi[3]

pdi[2]

pdi[1]

pdi[0]

pdi[5]

pdi[6]

pdi[7]

pdo[4]

pdo[3]

pdo[2]

pdo[1]

pdo[0]

pdo[5]

pdo[6]

pdo[7]

si,0 = 11

si,1 = 11

si,2 = 11

so,0 = 10

so,1 = 11

so,2 = 11

3

IP Core

pi’[0]

pci[0]

pci[1]
pco[1]

pco[0]

load

shift C

C

Load/shift register

Shift-only register

Legends: C Special control register

shift
shift/load

2

Controller

Figure 5.7: Type 2 NoC-compatible wrapper with an I/O interface which per-

forms parallel-serial shifting to match the NI bit width with the number of wrap-

per scan chains. The same wrapper cells in Figure 5.5 are used.

ment the Type 1 wrapper in this aspect. Extra load/shift registers and shift-only

registers are added to the PDI/PDO ports, similar to the bandwidth matching

output register architecture in Figure 2.8(a) for the reuse of the SoC’s functional

bus; the concept of bandwidth matching architecture is first proposed in [101].

On the input side, the load/shift registers translate the PDI bit-width into the

number of wrapper scan chains using parallel-serial shift registers.

In this chapter, we distinguish the terms load, shift and scan as follows.

Definition 5.3 Load operation captures data into the wrapper boundary register

142

scan

shift

load

Two bits are temporarily stored in the register
while the next 8-bit data is loaded.

1 2 3 4 5 6 7 8 1 2 3

Figure 5.8: Control signals sequence of the Type 2 wrapper to perform the bit

width translation. Bits 7 and 8 from the first load are temporarily stored in the

shift-only buffer while waiting for the first bit of the next load.

(WBR) from its data input while shift and scan operation takes data from the shift

input. Furthermore, shift operation takes place along the bandwidth-matching

WBR chain consisting of the load/shift registers and the additional shift-only

registers that are not part of the wrapper scan chains. Scan operation takes place

along the wrapper scan chains as in Figure 5.2.

Control signals on pci[0:1] indicate new data availability at the pdi[0:7] port,

which triggers the Controller to assert a load signal to capture the data into the

load/shift registers. Subsequently, the Controller asserts a shift signal on the

load/shift registers and the 3-bit shift-only registers for nsc = 3 cycles. This is

followed by a scan signal on the wrapper scan chain (Figure 5.8). This process is

repeated until all the data in the pdi[0:7] register is shifted out. As explained in

Figure 5.8, bits 7 and 8 need to be scanned together with bit 1 of the next load

cycle. The 3-bit shift-only register is necessary to store bits 7 and 8 while new

data is loaded. Therefore, no NoC bandwidth is wasted. When the capture clock

is asserted, the 3-bit shift-only registers contain the data for the first scan cycle

of the next test pattern. Therefore, they are not considered part of the wrapper

scan chains.

As a result, all the PDI wires can be used to carry the test data; therefore,

the required NoC bandwidth matches the scan bandwidth for any wrapper con-

figuration. The TAT for the Type 2 NoC-compatible wrapper is also the same as

143

the dedicated TAM-based wrappers, given in Equation (5.10). This is achieved

at the cost of area overhead of load/shift registers and a more complex control

scheme to realize the bit-width conversion. Therefore, it is important that the

Type 2 wrapper is used only when necessary. Section 5.6 looks at two proposed

optimization schemes for both of these NoC-compatible wrappers.

TType2 = (max{si, so}+ 1)× n + min{si, so} (5.10)

5.6 Optimization of the NoC-compatible Wrap-

pers

Parallel core tests are performed according to a test schedule under given con-

straints. Figure 5.9 shows an example test scheduling scheme based on the bin-

packing optimization [12, 21], where a rectangle represents the required NoC

bandwidth (vertical axis) and the TAT (horizontal axis) of a CUT under a spe-

cific wrapper configuration. The figure illustrates the state of the test schedule

after four cores are scheduled (i.e. the starting test times and the amount of allo-

cated bandwidths are assigned). When scheduling the subsequent core, there are

several possible starting times and amount of bandwidths that can be assigned

to the core. B1 and B2 are the maximum amount of bandwidths that can be al-

located if the test were to begin after the test of Core 2 and Core 3, respectively,

complete. Using B1 and B2 as inputs to the wrapper optimization algorithm

ΨB (Problem 5.1 defined in the next paragraph), we can determine the length

of the test application by maximizing the bandwidth utilization. Based on these

information, we can decide how to schedule the subsequent core test. Similarly,

we could also consider the available test time instead of bandwidth during the

test scheduling. Nonetheless, we leave the problem of test scheduling based on

the bandwidth allocation scheme as a subject of the next chapter.

Based on the above scheduling objectives, the problems of optimizing the

number of wrapper scan chains (nsc) for a core, under a given bandwidth (ΨB)

or a given test application time (ΨT), respectively, can be formally defined as

follows.

144

Core 1

Core 2

Core 3

Core 4

Bandwidth

Test Application Time

T1

T2

B1

B2
ΨB

ΨT

Bmax

Figure 5.9: A typical test schedule optimization scheme based on 2D-bin packing

algorithm.

Problem 5.1 [ΨB] Given a core with i functional inputs, o functional outputs, b

bidirectionals, k internal scan chains of length l1, l2, ..., lk, scan frequency, fm, and

a maximum bandwidth for the virtual channel between the core and the ATE,

Bmax, find the number of wrapper scan chains, nsc, such that

(i) the TAT is minimized,

(ii) the required bandwidth, Breq ≤ Bmax, and

(iii) nsc is minimum subject to priority (i).

Problem 5.2 [ΨT] Given a core as in ΨB, and a maximum TAT, Tmax, find the

number of wrapper scan chains, nsc, such that

(i) the required bandwidth, Breq, is minimized,

(ii) TAT ≤ Tmax, and

(iii) nsc is minimum subject to priority (i).

145

T
es

t A
p

p
lic

at
io

n
 T

im
e

1.
E

+
04

1.
E

+
05

1.
E

+
06

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
2

8
29

30
31

32
33

34
35

36
3

7
38

39
40

41
42

43
44

45
46

47
4

8
49

50
51

5
2

53
54

55
56

5
7

58
59

60
61

62
63

64

TAT (clock cycles)

Ty
pe

 2

Ty
pe

 1

R
eq

u
ir

ed
 B

an
d

w
id

th

0
.E

+0
0

2
.E

+0
9

4
.E

+0
9

6
.E

+0
9

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

N
u

m
b

er
 o

f w
ra

p
p

er
 s

ca
n

 c
h

ai
n

s

Required Bandwidth
(bps)

B
m

ax
 =

 5
.6

E
+0

9
T

yp
e

 1
: S

te
p

 1

T
yp

e
 1

: S
te

p
 2

T
yp

e
 2

: S
te

p
 1

T
yp

e
 2

: S
te

p
 2

F
ig

u
re

5.
10

:
O

p
ti

m
iz

at
io

n
of

N
oC

-c
om

p
at

ib
le

w
ra

p
p
er

d
es

ig
n

fo
r

a
gi

ve
n

B
m

a
x
.

In
S
te

p
2

(T
y
p
e

1)
,

th
e

d
ot

te
d

li
n
es

re
p
re

se
n
t

th
e

se
ar

ch
sp

ac
e

w
h
ic

h
h
al

ve
s

in
ev

er
y

p
ro

gr
es

si
on

of
th

e
b
in

ar
y

se
ar

ch
.

146

A similar problem for a dedicated TAM-based wrapper design has been proved

NP-hard in [12]. Therefore, heuristic algorithms are proposed to solve both

ΨB and ΨT . Figure 5.10 illustrates graphically the search steps for ΨB (when

Bmax = 5600 Mbps) for Core 17 of the p93791 [1] benchmark circuit. Since the

TAT and the required bandwidth are monotonic decreasing and increasing with

respect to nsc, respectively, binary search algorithms can be used to find the solu-

tion for nsc. At each search step, wrapper scan chains which minimize max{si, so}
are formed using the algorithm proposed in [12], described in Section 5.5. For the

Type 1 wrapper, binary search takes place in steps 1 and 2 (refer to Figure 5.10).

In Step 1, the maximum number of scan chains, nmax
sc , such that Breq

Type1 ≤ Bmax is

located (objective (ii) of ΨB). In Step 2, the search is restricted to nsc = [1, nmax
sc]

to find the solution(s) for nsc that minimizes the TAT (objective (i) of ΨB). Be-

cause of the staircase decreasing TAT vs. nsc (top half of Figure 5.10), multiple

solutions to nsc may exist. The smallest value is chosen as the solution (objective

(iii) of ΨB) without affecting objective (i). Progression of the binary search is

graphically illustrated in Figure 5.10. As a result, nsc = 22 (Type 1) with a TAT

of 65,098 clock cycles.

For the Type 2 wrapper, nmax
sc is directly calculated since Breq

Type2 is a linear

function of nsc. Binary search in Step 2 (similar to the Type 1 wrapper) results

in nsc = 45 with a TAT of 32,766 clock cycles. Clearly a better result for the

Type 2 wrapper when Bmax = 5600 Mbps. In this case, the Type 1 wrapper is

unable to utilize efficiently the allocated bandwidth because of the constraint in

its I/O architecture. A similar heuristic is implemented for ΨT and some selected

cases for both algorithms are presented in Section 5.7.

5.7 Experimental Results

In order to evaluate the effectiveness of the proposed methodology, we have con-

ducted experiments on several benchmark IP cores. Core 17 and Core 6 (the

largest of p93791 circuit) from the ITC’02 benchmark [1] are selected in order

to offer comparisons with the IEEE 1500-based approaches reported in [12, 93].

Another IP core—an example core from [7]—allows some comparison with an

NoC-compatible wrapper to be offered. Finally, we offer an extensive comparison

147

with [96] using 42 different cores from ITC’02 circuits. The scan frequency is

fixed to fm = 100 MHz; the TAT reported in this chapter is in number of scan

clock cycles, where each cycle is equivalent to 1/fm or 0.01μs.

A test application time (TAT) comparisons between the proposed Type 1

NoC-compatible wrapper (third column) and dedicated TAM-based IEEE 1500

wrapper (second column) are given in Table 5.1, for Core 6 with npdi = 64 bits.

The percent (%) increase shown in the fourth column is calculated as ((column

3) - (column 2)) / (column 2) × 100%. In all cases, the differences are always

less than 0.2%; the proposed Type 1 NoC-compatible wrapper does not incur

noticeable penalty on the TAT. In fact, some reductions are achieved for nsc = 1

and 2 scan chains.

For the Type 2 NoC-compatible wrapper, the TAT is the same as the dedi-

cated TAM-based approach because the added interface between the CUT and

the NoC port does not constrain the scan chain design. The Type 2 wrapper’s

required bandwidth matches the scan bandwidth—an improvement due to the

extra load/shift registers. Table 5.2 reports similar experimental results for Core

17 of the same benchmark circuit. The % increase is calculated in the same way

as that of Table 5.1. The TAT of the proposed NoC reuse wrapper is at most

0.66% larger than the standard wrapper.

For the circuit from [7], the TAT is given in Table 5.3. Compared to the

dedicated TAM-based wrapper, the proposed Type 1 NoC-compatible wrapper

is better for smaller number of wrapper scan chains. For wider scan chains, the

TAT’s are about 3% longer. However, compared to the NoC-compatible wrapper

design in [7]1, the Type 1 wrapper is always superior, with about 4% shorter test

application time. The % increase in columns labeled [Type 1 / 1500] and [Type

1 / Amory] are calculated as ([Type 1] - [1500]) / [1500] × 100% and ([Type 1] -

[Amory]) / [Amory] × 100%, respectively.

Table 5.4 and Table 5.5 gives further comparison for Core 6 and Core 17,

respectively, of the p93791 benchmark circuit. The TAT (column 2) and the

required bandwidth, Breq
Amory, (column 3) are obtained for selected nsc (column

1). Using Bmax = Breq
Amory (column 4) as input to ΨB, the corresponding nsc,

1Based on the corrected results obtained from the paper author because of reporting error
in the original published literature.

148

Table 5.1: Test time comparison between standard 1500 wrapper and the pro-

posed Type 1 wrapper for Core 6 of p93791 [1] with 64-bit PDI/PDO’s.

TAT (clock cycles)

nsc [12, 93] Type 1 NoC % increase

1 5,317,007 5,312,372 -0.09

2 2,658,613 2,656,404 -0.08

3 1,809,815 1,812,442 0.15

4 1,358,456 1,359,988 0.11

5 1,126,316 1,127,848 0.14

6 907,097 909,286 0.24

7 793,217 794,749 0.19

8 679,337 680,212 0.13

9 674,957 676,489 0.23

10 565,457 566,770 0.23

11 561,077 562,171 0.19

12 455,738 455,956 0.05

13 451,577 452,452 0.19

14 451,358 451,576 0.05

15 447,197 448,070 0.20

16-19 341,858 342,076 0.06

20-21 337,478 338,134 0.19

22 333,317 333,754 0.13

23 231,478 231,258 -0.10

24-38 227,978 228,196 0.10

39-42 223,598 223,816 0.10

43-45 219,218 219,436 0.10

46 115,848 115,847 0.00

47-64 114,317 114,535 0.19

Breq
Type2, and TAT for the proposed Type 2 wrapper are obtained. Using at most

the bandwidth required by [7], the proposed wrapper gives shorter TAT’s. %

149

Table 5.2: Test time comparison between standard 1500 wrapper and the pro-

posed Type 1 wrapper for Core 17 of p93791 [1] with 64-bit PDI/PDO’s.

TAT (clock cycles)
nsc [12, 93] Type 1 NoC % increase
1 1,433,858 1,430,832 -0.21
2 717,148 715,648 -0.21
3 483,258 484,342 0.22
4 358,682 358,040 -0.18
5 290,128 290,778 0.22
6 257,361 257,577 0.08
7 225,028 225,244 0.10
8 192,912 193,128 0.11
9 161,664 161,880 0.13
10 160,579 161,229 0.40
11 130,628 130,196 -0.33
12 129,331 129,764 0.33
13 128,680 128,896 0.17
14 128,029 128,462 0.34

15-16 97,215 97,648 0.45
17 97,215 97,431 0.22
18 96,998 97,214 0.22
19 96,347 96,563 0.22
20 95,913 96,129 0.23
21 95,696 95,912 0.23
22 65,530 65,314 -0.33

23-34 64,882 65,098 0.33
35 64,665 64,881 0.33
36 64,448 64,664 0.34

37-38 64,014 64,230 0.34
39 63,797 64,013 0.34
40 63,363 63,579 0.34

41-42 63,146 63,362 0.34
43 33,632 33,632 0.00
44 32,982 32,982 0.00

45-64 32,766 32,982 0.66

150

Table 5.3: TAT comparison for the circuit defined in [7].

1500 Amory Proposed % increase

nsc [12, 93] [7] Type 1 Type 2 Type 1 / 1500 Type 1 / Amory

1 5,532 5,532 5,300 5,532 -4.19 -4.19

2 2,771 2,771 2,660 2,771 -4.01 -4.01

3 1,858 1,858 1,780 1,858 -4.20 -4.20

4 1,396 1,451 1,428 1,396 2.29 -1.59

5 1,363 1,429 1,406 1,363 3.15 -1.61

6 1,363 1,418 1,395 1,363 2.35 -1.62

Table 5.4: TAT comparison with [7] for Core 6 of p93791, with 64-bit PDI/PDO

port.

Proposed (Type 2)

[7] % increase

nsc TAT Breq Bmax nsc Breq TAT Breq TAT

11 562,172 1,280 1,280 12 1,200 455,738 -6.3 -18.9

15 448,073 1,600 1,600 16 1,600 341,858 0.0 -23.7

22 333,755 3,200 3,200 24 2,400 227,978 -25.0 -31.7

24 228,416 3,200 3,200 24 2,400 227,978 -25.0 -0.2

increase Breq in column 8 is calculated as ((column 6) - (column 3)) / (column

3) × 100%. % increase TAT in column 9 is calculated as ((column 7) - (column

2)) / (column 2) × 100%.

In Table 5.4, for nsc = 11 scan chains (first row), the proposed wrapper re-

quires 6.3% less bandwidth to obtain 18.9% smaller TAT, than the given wrapper

configuration by the method in [7]. For the selected cases in the tables, the pro-

posed approach either requires less bandwidth to achieve comparable TAT, or

achieves smaller TAT while requiring similar amount of bandwidth.

Table 5.6 compares the Type 1 and Type 2 wrappers when ΨB and ΨT are

151

Table 5.5: TAT comparison with [7] for Core 17 of p93791, with 64-bit PDI/PDO

port.

Proposed (Type 2)

[7] % increase

nsc TAT Breq Bmax nsc Breq TAT Breq TAT

6 259,531 640 640 6 600 257,361 -6.3 -0.8

13 129,548 1,600 1,600 15 1,500 97,215 -6.3 -25.0

23 65,316 3,200 3,200 23 2,300 64,882 -28.1 -0.7

33 65,099 6,400 6,400 45 4,500 32,766 -29.7 -49.7

Table 5.6: Optimization results for selected values of Bmax and Tmax (Core 17 of

p93791).

Given: Type 1 Type 2

Bmax nsc Breq TAT nsc Breq TAT

ΨB 1,700 15 1,600 97,648 15 1,500 97,215

3,000 21 2,133 96,129 23 2,300 64,882

Tmax nsc Breq (Mbps) TAT nsc Breq (Mbps) TAT

ΨT 70,000 22 3,200 65,098 22 2,200 65,530

200,000 8 800 193,128 8 800 192,912

applied. For Bmax = 1700 Mbps, both wrappers result in similar performance—a

slight advantage for Type 1 in terms of area overhead. At Bmax = 3000 Mbps,

Type 2 is clearly the winner, with only 0.8% bandwidth overhead to achieve 32.5%

TAT reduction. For Tmax = 70000, Type 2 requires 31% smaller bandwidth with

less than 0.7% TAT overhead. On the other hand, at Tmax = 200000, Type 1

wrapper is superior due to its minimal wrapper hardware overhead. The results

illustrate the tradeoffs between the two types of NoC-compatible wrappers for a

given constraint, which can be explored during the test schedule optimization.

152

Table 5.7: List of ITC’02 benchmark cores included in the experiments reported

in Figures 5.11 and 5.12.

SoC Cores considered

a586710 2, 3, 4, 7

d281 7

d695 2

f2126 1, 2

g1023 1, 2, 3, 4, 10, 11, 12, 14

h953 1

p22810 27

p34392 2, 10, 18

p93791 10, 32

q12710 1, 2, 3, 4

t512505 1, 2, 4, 8, 9, 14, 15, 16, 17, 23, 24, 25, 26, 29, 31

An extensive comparison on area overhead and test application time between

the proposed Type 2 wrapper and the wrapper in [96] is offered using 42 selected

cores from the ITC’02 benchmark circuits shown in Table 5.7. Sixteen unique

channel bandwidth values, Bmax ∈ [1× fm, 2× fm, ..., 16× fm], in bits-per-second

are considered. For every Bmax, the wrapper configurations for both the Type 2

wrapper and the wrapper proposed in [96] are determined. The corresponding

TAT and area costs in terms of wrapper boundary cells are given in Figs. 5.11

and 5.12. Figure 5.11 shows the area increase of the Type 2 wrapper, relative

to that of the wrapper in [96]. The horizontal axis is the core ID number in the

order listed in Table 5.7. The average relative area increase for the 672 wrapper

configurations is 19.3%. Figure 5.12 gives the corresponding test time comparison,

for the 16 different Bmax values for each core. The proposed wrapper achieved

up to 48.6% reduction and an average of 7.8% shorter test application time. For

any given maximum channel bandwidth, Bmax, Type 2’s TAT is always shorter

than that of [96].

153

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45
Core ID Number

A
ve

ra
ge

 T
yp

e
2

ar
ea

 in
cr

ea
se

 (%
)

re
la

tiv
e

to
 A

m
or

y
(2

00
7)

Figure 5.11: Area comparison between the Type 2 wrapper and the wrapper in

[96]. The wrapper configurations are determined for 16 unique values of maximum

bandwidth, Bmax ∈ [1× fm, 2× fm, ..., 16× fm] bps and npdi = npdo = 32 for the

42 selected cores in Table 5.7.

5.8 Conclusion

We have proposed two versions of a NoC-compatible wrapper that requires min-

imal overhead on the test application time and area overhead. The previously

proposed wrapper design did not handle the problem of inefficient bandwidth

utilization. In this chapter, we have proposed two heuristics that find the best

wrapper design for a given maximum bandwidth or maximum test application

time, which is important for test schedule optimization.

The proposed wrapper does not incur large test time overhead (against the

IEEE 1500 standard) for the same number of wrapper scan chains (about 3% for

a very small circuit, and less than 0.25% for larger circuits). The wrappers scale

well for large circuits. The advantage of the proposed wrapper is that NoC reuse

is possible with only small test time overhead. With additional allowances on

the area overhead, the proposed wrapper (Type 2) can efficiently utilize the NoC

bandwidth with zero overhead on the test application time.

154

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 5 10 15 20 25 30 35 40 45

Core ID Number

T
yp

e
2

T
A

T
 in

cr
ea

se
 (%

) r
el

at
iv

e
to

 A
m

or
y

(2
00

7)

Figure 5.12: Test application time comparison comparison between the Type 2

wrapper and the wrapper in [96]. The wrapper configurations are determined for

16 unique values of maximum bandwidth, Bmax ∈ [1×fm, 2×fm, ..., 16×fm] bps

and npdi = npdo = 32 for the 42 selected cores in Table 5.7.

Compared to the NoC-compatible wrapper in [96], the enhanced Type 2 wrap-

per gives an average of 7.8% test time reduction for 42 selected SoC benchmark

cores under various NoC bandwidth constraints.

155

Chapter 6

NoC Test Scheduling Through

Bandwidth Sharing

6.1 Introduction

The NoC provides abundant plug-and-play capable communication resources,

which makes the extraneous TAM overkill. As a result, the reuse of functional

on-chip resources for test purposes is becoming more practical and more eco-

nomical. Several research groups have published works on NoC test scheduling

[61–63, 97, 102–105] utilizing the NoC as the delivery path for the transport of the

test data from external testers to the CUT’s. Test scheduling for the NoC router

[63, 98] and crosstalk test of the interconnects [99] have also been discussed. In

these approaches, each CUT is wrapped by an IEEE 1500 compatible wrapper in

order to provide isolation and access during the test application.

The test scheduling methodologies proposed in [61–63, 97, 102–105] utilizes

the NoC as test data transportation paths from external testers to the CUT’s.

In all these approaches, a dedicated path is established from the NoC input port

to the CUT to transport the test vectors; another path is dedicated from the

CUT to an output port for test response transportation. This is illustrated in

Figure 6.1. One data-transfer path from Port 1 to Port 3 is used to test core

A. Under the dedicated path approach, the whole bandwidth available along the

selected data-transfer path is used. Therefore, another data-transfer path to test

core B cannot be established between Port 2 and Port 3 because this new path

157

X-Y routing on SoCIN

A

conflict

Port 1

Port 2

Port 3

B

Figure 6.1: Dedicated path test methodology.

requires the resources currently being used by the first path to test core A.

Dedicating a physical path to one core means that the path cannot be shared,

thus preventing potential test concurrency—a useful tool for test schedule opti-

mization. In addition, the dedicated path approach wastes the NoC bandwidth

when the core test uses only a subset of the total physical channel bandwidth. A

more efficient utilization of the large NoC bandwidth is to allow the large physical

NoC channel bandwidth to be shared. This can be easily implemented because of

the packet-switched network utilized by the NoC. Without making any changes

to the NoC, the existing functional services provided by the NoC can be utilized

during the test application time. In this chapter, our test scheduling method

based on this concept is explained. To the best of our knowledge, we are the first

to propose such method based on the bandwidth sharing scheme.

In addition, the methods proposed in [61–63, 97, 102–105] assumes that the

test data will be delivered in a timely manner. This is difficult to justify because

there is no guarantee provided by the packet-switching-based NoC, which uses

multi-hop store-and-forward routers. Hence, the use of standard IEEE 1500 [3, 4]

compatible wrapper cannot guarantee uncorrupted data loaded into the scan

chains in every scan cycle.

To overcome this shortcoming, the authors in [7] propose a NoC wrapper

which takes advantage of the guaranteed bandwidth and latency provided by the

158

I/O port

A

B

Virtual communication
channels use a subset
of the physical channel
bandwidth.

(a) Bandwidth sharing through the network of routers.

VC1

VC2
Physical Channel

(b) Two virtual channels inside a physical channel.

Figure 6.2: Conceptual representation of the bandwidth sharing scheme used in

the proposed test scheduling methodology.

NoC to ensure test data integrity. While using the NoC as a TAM, the test data

loading time of the NoC wrapper is comparable to the IEEE 1500 wrapper, which

requires a more flexible but costly dedicated TAM, as implemented in [12, 21,

106]. However, the NoC wrapper requires much higher guaranteed bandwidth

on the NoC than the actual rate of the test data loaded into the wrapper scan

chains. This is further explained in Chapter 5 in which two complementary

wrapper architectures are proposed in order to overcome the limitations of the

NoC wrapper in [7].

159

In this chapter, we propose a test scheduling mechanism for NoC-based SoC,

which utilizes the two types of complementary NoC wrappers for area cost and

test application time (TAT) co-optimization [107, 108]. The proposed approach

takes advantage of the NoC’s ability to allocate a specific amount of sustained

bandwidth for any particular packet-based connection called a virtual channel,

making it possible to divide a physical connection for concurrent tests of multiple

CUT’s. The proposed bandwidth sharing achieves considerable reduction in test

time, compared to the dedicated path approaches in [61–63, 97, 104, 105].

The rest of the chapter is organized as follows: Section 6.2 gives a brief

overview of the proposed test scheduling scheme based on NoC bandwidth shar-

ing. The NoC and IP core models are briefly described in Section 6.4. The

test schedule and wrapper optimization methodology through bandwidth sharing

is explained in Section 6.5. Some experimental results on selected benchmark

circuits are given in Section 6.6. Finally, concluding remarks are offered in Sec-

tion 6.7

6.2 Overview of the Proposed Bandwidth Shar-

ing Scheme

The proposed test architecture utilizes the functional communication channel be-

tween a test source/sink and a circuit-under-test (CUT). Unlike the test strategies

adopted in [62, 63, 97], the proposed approach does not restrict to any NoC net-

work topology; it can be applied as long as minimum sustainable bandwidth

and latency can be established and guaranteed during the test application of the

target CUT, regardless of the NoC topology.

The test methodology in [62, 63, 97] treats the NoC interconnects similarly to

a passive and unintelligent dedicated TAM. Test stimuli are transported to the

CUT through an I/O port along a defined physical path through the NoC routers.

The test responses are again transfered from the CUT back to the external tester

through another path to a different I/O port, as illustrated by Figure 6.1. These

I/O ports are artificially created by inserting multiplexers or bypasses between

the chip’s I/O pins and the NoC interfaces, or by establishing thru-paths (by

means of thru-functions) through the embedded cores.

160

The proposed test strategy covered in this chapter uses the functional NoC

interfaces and services as they are designed and meant to be functionally used.

NoC interconnect provides various high-level and low-level services to enhance

its efficiency as an advanced interconnect. Stimuli and responses are transported

through existing functional I/O port(s), and uses a subset or all available NoC

channel bandwidths to maximize efficiency. The proposed test methodology is

primarily based on the utilization of bandwidth sharing. Bandwidths are reserved

when virtual communication channels are established. A bandwidth-reserved vir-

tual channel is similar to a fixed-width TAM, capable of transporting the specified

amount of test stimuli and responses within the specified timing constraint.

The quality-of-service guarantees (i.e. bandwidth and latency guarantees) en-

sure that the test data are available at the CUT at the time it is required.

Thus, a bandwidth-guaranteed virtual channel can be treated as a conventional

TAM during the test scheduling process. In this chapter, the Æthereal [80] NoC,

which implements data transfer through normal read/write transactions using the

shared-memory abstraction, is used as an example in order to ease explanation.

6.3 Previous Works

This section explains some of the previous works on the test scheduling of core-

based test through the NoC reuse.

For the NoC interconnect (i.e. router and network interface) testing, Aktouf

[59] proposed a boundary-scan technique using the IEEE 1149.1 boundary-scan

standard as the first phase of the integrated test strategy. The boundary-scan

technique treats router test as a test of regular structures, by taking advantage

of the regularity of the router design. A set of routers are groups into basic cell

groups (GC’s) as illustrated in Figure 6.3. External tester access is provided by

the test access port (TAP) through a serial interface.

For the core test, Cota et al. [61, 97] and Liu et al. [104, 105] proposed dedi-

cated path based approaches for a complete rectangular mesh network topology.

All these works are based on the SoCIN network architecture that implements

the XY-routing strategy. A short discussion of the SoCIN architecture is given

in Section 4.4.1.

161

Cell Cell

Cell Cell

Test-access port
(TAP) controller

Boundary-scan
register parts

Cell Cell

Cell Cell

TAP controller

Figure 6.3: Basic-cell groups for router testing, accessible through the test-access

port (TAP).

To enable network reuse, the test stimuli and responses are expressed as a

set of packets to be transmitted through-out the network. In order to keep the

wrapper as close as possible to the original design, the packets are defined so that

each flit (a flow control unit) can be unpacked in one clock cycle. This requirement

somewhat restricts the wrapper design. Each bit of each flit of a packet is to fill

exactly one bit of the core scan chains. This is illustrated in Figure 6.4(b). The

wrapper scan chains are designed in such a way to make sure that the flit size

is enough to transport one bit of each scan chain. Therefore, the number of

scan chains must not exceed the flit size. Similarly, if the number of wrapper

scan chains is less than the flit size, some data bits carried by the flit (hence the

packet) are ignored. The wasted bandwidth cannot be used for any other purpose

because the path is dedicated to the test of the current core-under-test.

In terms of I/O utilization, Cota et al. and Liu et al. both require a pair of

I/O port for the test of one core. One for the stimuli transportation, another

for the responses transportation. Separate I/O ports are used for the stimuli

and responses. Since the functional I/O ports are typically limited to only a

few, depending on the functional requirements, artificial I/O ports are created.

These artificial I/O’s are illustrated in Figure 6.5, through cores 3, 4, 7, and 9.

162

Figure 6.4: Wrapper configurations for dedicated path approach.

Figure 6.5: SoCIN-based NoC architecture for d695 [1]. The 2× 2 artificial I/O

ports are created by adding bypass multiplexers through cores 3, 4, 7, and 9.

The artificial I/O is created by inserting multiplexers into the IP cores to create

bypasses. These bypasses provide direct interfaces from the primary I/O pins to

the internal NoC routers.

163

The test scheduling process involves the tasks of efficiently allocating the free

I/O ports and the router paths to the corresponding CUT’s. All conflicts are

resolved statically during the scheduling, therefore no network arbitration is re-

quired. The limitations of these approaches can be summarized as follows.

1. The scheduling methodology is applicable only to a square or rectangular

mesh topology.

2. The allocation of a physical path to a particular CUT is wasteful and inef-

ficient. This is because in some cases, the bandwidth required by the CUT

is much less than the physical bandwidth available at each physical chan-

nel. For a wrapper scan chain that is narrower than the NoC channel, the

remaining NoC data bits are ignored. This creates unnecessary underuti-

lization of the NoC bandwidth, hence preventing the potential reduction in

the test application time.

3. The creation of the artificial I/O port is intrusive and the addition of the

multiplexers along a potentially-critical path could create a timing problem.

6.4 NoC and IP Core Models

Figure 6.6 shows the same SoC model described in Section 4.4.2 (Figure 4.10),

but with the interface to the automatic test equipment (ATE) shown. Two vir-

tual channels (VC) are shown connecting the ATE channel on port 1 to Core 1

and Core 2, respectively. Another VC connects the ATE channel on port 2 to

Core 4. Each VC vck is guaranteed a minimum sustained bandwidth Bvck
, where∑

k Bi,j
vck
≤ Bi,j

max. The term Bi,j
vck

and Bi,j
max represent the reserved bandwidth for

vck and the maximum link bandwidth, respectively, between each pair of routers

Ri and Rj along the vck path. If Bi,j
vc < Bi,j

max for some link Ri → Rj , the unre-

served bandwidth can be allocated to other VC’s in order to allow simultaneous

test applications of multiple CUT’s.

Intellectual property (IP) core inputs and outputs (I/Os) shown in Figure 6.7

consist of primary inputs (PI), primary outputs (PO), scan inputs (SI) and scan

outputs (SO). A subset of the PI’s can be categorized into primary data inputs

(PDI) and primary control inputs (PCI), which are connected to the NoC input

port. Correspondingly, on the output side, there are primary data outputs (PDO)

164

ATE
Channel 2

ATE
Channel 1

Automatic
Test Equipment

Virtual channel

Virtual channel

R2

R0 R1

R3

I/O Port 1

I/O Port 2

NoCI/O
I/O

SoC

NI

NI

NI

NI

Core
5

Core
6

Core
1

Core
2

Core
3

Core
4

Figure 6.6: SoC model based on the Æthereal NoC.

and primary control outputs (PCO). The PDI’s and PDO’s are used to carry the

test vectors from the ATE to the CUT, and the test responses from the CUT to

the ATE, respectively. The remaining PI/PO’s (PI’ and PO’) are connected to

other parts of the SoC, which includes other cores, and the SoC’s primary I/O’s.

The test scheduling described in this chapter refers to these NoC and IP

core models. The NoC architecture and the guaranteed services are the basis

of the proposed strategy. In addition, the IP core interfaces and design-for-

testability (DfT) infrastructure are used by the proposed NoC-compatible wrap-

pers described in Chapter 5.

6.5 NoC Test Scheduling

Unlike the test scheduling scheme based on the dedicated path approach proposed

by all the previously published literature, we utilize a more efficient method of

sharing the available interconnect bandwidth. This method proves to be much

more efficient. In addition, it is more compatible with the NoC’s intended func-

tionality, which provides as a service the means of allocating the interconnect

bandwidth.

165

Network Interface
(input side)

PCIPDI

Network Interface
(output side)

PCOPDO PO’

IP Core

PI’

To other cores, SoC’s POs, etc

From other cores, SoC’s PIs, etc

Internal
scan chains

… …
…

… … …

1 2 d

1 2 d

…

SI

SO

NoC interface

IP Core’s primary inputs (PI)

IP Core’s primary outputs (PO)

Figure 6.7: IP core model interfaced to the NI port.

6.5.1 Characteristics of NoC-compatible Wrappers

The test scheduling described in this section uses the Type 1 (Figure 5.4) and type

2 (Figure 5.7) wrappers proposed in Chapter 5. As explained in Chapter 5, the

two proposed NoC-compatible wrappers are complementary to each other. The

wrapper characteristics are summarized in Table 6.5.1. Type 1 wrapper requires

one wrapper boundary register (WBR) cell for each I/O pin. The Type 2 wrapper

uses two WBR cells for each data-carrying input and output pins in addition to

two additional WBR cells for each wrapper scan chain. All these additional WBR

cells are used to provide a flexible bandwidth matching architecture. As a result,

Type 2 wrapper is always efficient in terms of NoC bandwidth utilization.

The Type 1 wrapper is a direct extension of the standard IEEE 1500 wrapper,

but with the added capability to accept the test data from the data input and to

match the fixed bit width data to any arbitrary number of wrapper scan chains.

In addition to being able to take the functional data, the Type 1 wrapper also

provides bit width matching between the data port and the scan port. The only

166

Table 6.1: Complementary characteristics of Type 1 and Type 2 NoC-compatible

wrappers proposed in Chapter 5

.

NoC-compatible wrappers

Characteristics Type 1 Type 2

Area cost Low High

Bandwidth utilization Inefficient Efficient

limitation of the Type 1 wrapper is when the data bit width and the number of

wrapper scan chains are not compatible, as explained in Section 5.5.1.

Under such unsuitable configuration, the Type 1 wrapper sacrifices bandwidth

efficiency in order to interface the NoC with the wrapper scan chains. This is

achieved by ignoring one or more data-carrying bits so that the remaining number

of data bits is compatible with the number of wrapper scan chains.

The Type 2 NoC wrapper in Figure 5.7 is designed to complement the Type 1

wrapper in this aspect. The load/shift registers translate the PDI bit-width, npdi,

into the number of wrapper scan chains, nsc, using parallel-serial shift registers

shown in Figures 2.8(a) and 5.3(a). As a result, the required NoC bandwidth

matches the scan bandwidth. The TAT for the Type 2 NoC wrapper is also the

same as the IEEE 1500 wrapper. This is achieved at the cost of a larger area

overhead and a more complex control scheme to realize the bit-width conversion.

The two types of wrappers, with rather opposite characteristics, can be used

effectively to prevent unnecessary increase in the test application time of an in-

dividual core while also optimizing the area overhead.

6.5.2 Test Scheduling through NoC Bandwidth Sharing

NoC is designed as an advanced SoC interconnect [75–90] to provide a high band-

width and modular infrastructure for on-chip communications. As such, in a typ-

ical SoC implementation the internal NoC bandwidth is typically larger than the

external I/O bandwidth.

167

Definition 6.1 Internal NoC bandwidth is the router-to-router and router-to-

embedded cores link bandwidth or capacity (in bits-per-second) inside the NoC

architecture as shown in Figure 6.8.

Definition 6.2 External I/O bandwidth is defined as the link bandwidth or ca-

pacity from an I/O interface unit to the external devices.

In Figure 6.8, router-to-router bidirectional links are rated at 16 Gbps (i.e.

32-bit wires at 500 MHz for each direction). The external interface through the

I/O port is rated half the internal bandwidth at 8 Gbps. Each core is labeled

with the corresponding scan rate. For example, core C1 has 16 wrapper scan

chains. When tested at the scan frequency of 100 MHz, it requires the test data

at the rate of 16 bits × 100 MHz, or 1.6 Gbps (Giga bits per second).

The test of core C1 utilizes only a subset of the bandwidth on the I/O port,

and between routers R1 and R2. With the bandwidth sharing approach, we can

allow multiple cores to be tested concurrently. For example, simultaneous testing

of C1, C3, and C6 requires 8 Gbps on the I/O port, 3.2 Gbps on R1−R3 link, 4.8

Gbps on R1−R2 link, and 3.2 Gbps on R2−R4 link. The shared I/O bandwidth

limits further test concurrency. Nevertheless, bandwidth sharing approach allows

more efficient use of NoC bandwidth compared to the dedicated path approaches.

The proposed approach is applicable to any NoC architecture that imple-

ments the bandwidth reservation scheme, such as the time-domain multiplexing

(TDM) scheme implemented by Æthereal. The NoC routers are interfaced to

the cores through a buffer-based network interface (NI) architecture, as shown in

Figure 6.9. Test application can be implemented between the Master (Automatic

Test Equipment) and the Slave (Core Under Test).

Because of the guaranteed bandwidth, the incoming data buffer at the core

is always non-empty. At the core wrapper (Figure 5.4 and 5.7), new data avail-

ability is signaled by the pci[0] and pci[1] control signals; depending on the write

transaction protocol, the signals could be DATA STROBE, DATA VALID, etc.

as used by the corresponding handshake protocol. These handshake signals are

detected by the wrapper Controller (Figures 5.4 and 5.7), which then gener-

ates the necessary sequence of control signals for parallel-serial conversion at the

wrapper’s inputs and outputs. After the data from the PDI port is shifted into

168

ATE C1

R4

R2R1

R3

C2

C3

C4

C5

C6

I/O 1.6 Gbps

3.2 Gbps

3.2 Gbps

4.8 Gbps3.2 Gbps

1.6 Gbps

16 Gbps

16 Gbps

16
 G

bp
s

16
 G

bp
s

NoC
SoC

Internal NoC bandwidthExternal I/O bandwidth

8 Gbps

Network interface

Figure 6.8: Illustrative example of the NoC-based SoC model used by the pro-

posed bandwidth sharing approach.

Master Slave

Request Channel

Response Channel

remote
buffer space

(space)

NoC remote
buffer space

(space)

credits
to report
(space)

credits
to report
(space)

NI NI

REQ

RESP

REQ

RESP

Figure 6.9: Buffer-based virtual channels (request and response) between a master

and a slave. Illustration by Radulescu et al. 2005 [80].

the wrapper scan chains, an acknowledgment signal is generated to enable the

network interface (NI in Figure 6.9) to deliver the subsequent data.

169

This buffer-based architecture with credit-based flow control transforms the

bursty packet-switched data in the NoC into a steady stream of data between

the Master and the Slave. The buffer architecture also separates the NoC’s clock

from the Core’s clock; therefore, the cores’ clocks can be independent from each

other. For that reason, the proposed approach can also be applied to multi-clock

SoC’s.

In this chapter, we consider the test application of such SoC’s utilizing the

external tester as the test source and sink. The ATE ports are connected to the

SoC through these low bandwidth I/O ports, as illustrated in Figure 6.6 and Fig-

ure 6.8. The test data are transferred into the chip through the functional write

transactions. We will assume that a virtual channel can always be established

from the I/O port to the target CUT as long as
∑ {virtual channel bandwidth} ≤

{I/O bandwidth} ≤ {internal NoC bandwidth}. Under this assumption, the

wrapper area and test time co-optimization problem addressed in this chapter

can be formulated as an I/O bandwidth distribution and core test scheduling

problem as follows:

Problem 6.1 [ΨS] Given an SoC C with M cores, a maximum I/O bandwidth,

B
i/o
max bps, and a scan frequency for all cores, fm, where each core consists of nip

functional inputs, nop functional outputs, nbi bidirectionals, k internal scan chains

of length l1, l2, ..., lk, for each core ci ∈ C determine

(1) the wrapper type and the allocated I/O bandwidth, Bscheduled[ci], for the

test data transportation, and

(2) the starting time, tstart[ci], and end time, tend[ci], of the test application

such that the total test application time and the area overhead are optimized

under given priority weights α and β, respectively, where {α, β} ∈ [0, 1] and

α + β = 1.

Before explaining the schedule optimization algorithm (Section 6.5.6), we first

clarify two required components of the algorithm in sections 6.5.3 and 6.5.5.

170

6.5.3 Optimum Wrapper under Bandwidth Constraint

In order to achieve the objective (1) of Problem 6.1 (ΨS), we defined in Section 5.6

the problems of optimizing the number of wrapper scan chains (nsc) for both the

Type 1 and the Type 2 wrappers under given constraints. Problem 5.1 (ΨB)

on page 144 was defined as a wrapper design and optimization problem under

a given maximum bandwidth constraint, Bmax. A similar problem (Problem 5.2

(ΨT) on page 145) was defined but instead of NoC bandwidth, a given maximum

test time, Tmax, is considered as constraint.

It was shown in [12], and illustrated in Figure 5.10 (top diagram), that the

TAT of a core is a monotonic decreasing function with respect to increasing num-

ber of wrapper scan chains. Therefore, the optimum solution to ΨB can be found

in polynomial time, even when an exhaustive search is used. In Section 5.6 we

implemented a binary search function to find the optimum wrapper configura-

tion. The wrapper configuration is said to be optimum under the given maximum

bandwidth when all objectives of Problem 5.1 (ΨB) are met.

The optimum wrapper ensures minimum test application time (objective (i)),

without exceeding the allocated maximum bandwidth (objective (ii)). The third

objective is only effective when there are multiple solutions that meet the first

two objectives. Such scenarios are possible because of the staircase properties of

wrapper’s test time with respect to the number of wrapper scan chains, as shown

in Figure 5.10 (top diagram). The third objective aims to select the wrapper

with the smallest number of scan chains, without violating the first objective.

Such point is called a Pareto-optimal point (the concept of Pareto-optimal was

discussed in [106]). A similar search algorithm was also implemented for problem

ΨT , for a given maximum test application time.

6.5.4 Cost Function for Wrapper Optimization

The process of wrapper optimization involves choosing the wrapper type and

the corresponding number of wrapper scan chains under certain constraints. As

discussed in Section 5.6 and illustrated by Figure 5.9, the decision on the wrapper

type and configuration is made during the scheduling process. The decision is

made based on the “available” time period or bandwidth. The available values are

171

illustrated by T1, T2, B1, and B2 in Figure 5.9. Based on the available information

(test time or bandwidth), we can determine the following three variables for

the Type 1 and Type 2 wrappers. These three variables are used to make the

cost function in the proposed heuristic algorithm when choosing the wrapper

type.

• the area cost (overhead) of the wrapper,

• the NoC bandwidth required by the wrapper, and

• the core test time effected by the wrapper.

The area cost/overhead of the wrappers is contributed mainly by the quan-

tity of the boundary cells. We will assume that the area overhead due to the

wrapper controller is comparable for both wrappers, therefore will not be used

when deciding the wrapper type. The area overhead for Type 1 and Type 2

wrappers can be estimated by equations (6.1) and (6.2), respectively. The extra

(+npdi + npdo + 2 · nsc) in equation (6.2) are due to the additional input/output

buffers in the Type 2 wrapper (Figures 5.4 and 5.7) that perform bit-width match-

ing. Equation (6.3) gives the total extra cost of using a Type 2 instead of the

Type 1 wrapper. Equation (6.4) gives the opposite cost.

Ht1 = nip + nbi + nop (6.1)

Ht2 = nip + nbi + nop + npdi + npdo + 2 · nsc (6.2)

Cost(t1→t2) = α ·
(

Tt2 − Tt1

Tt1

+
Bt2 − Bt1

Bt1

)
+ β · Ht2 −Ht1

Ht1

(6.3)

Cost(t2→t1) = α ·
(

Tt1 − Tt2

Tt2
+

Bt1 − Bt2

Bt2

)
+ β · Ht1 −Ht2

Ht2
(6.4)

For a given maximum available bandwidth, Bmax, the optimum configuration

of a core ci is determined by solving ΨB(ci, Bmax) to obtain the respective core

test time effected by the wrapper (Tt1 and Tt2) and required bandwidth (Bt1 and

Bt2) for the Type 1 and the Type 2 wrappers, respectively. Similarly, given a

maximum available test time, Tmax, all four variables can be calculated using

ΨT (ci, Tmax).

If Cost(t1→t2) < Cost(t2→t1), then the Type 2 wrapper is selected as a better

wrapper configuration for the given Bmax or Tmax. Otherwise, the Type 1 wrapper

172

is chosen. This cost function will be the basis for wrapper selection under given

cost weights α and β, as defined in ΨS. The weighting variables give us the option

of whether to prioritize the area cost or the test time during the optimization.

The weight α is defined for the test application time in equations (6.3) and

(6.4). However, α is shared by the test application time and the required band-

width because of their inverse relationship. Test application time can be mini-

mized by giving the maximum possible bandwidth, or it can be maximized by

giving minimum bandwidth to the NoC-compatible wrappers. All this can be

done without any effect on the area overhead. In order to prevent favoring either

test time over area overhead or vice-versa (i.e. by varying the bandwidth), we

consider the normalized sum of test time and bandwidth in the equations (6.3)

and (6.4) because of their inverse relationship.

6.5.5 Lower Bound on Test Time

The authors in [21] proposed an architecture independent tight lower bound for

dedicated TAM based test application, considering both fixed and flexible length

internal scan chains. In this section, a similar lower bound based on bandwidth

utilization is explained for use in the optimization algorithm in Section 6.5.6.

The first lower bound is based on the dominant core effect. For each core ci ∈ C,

assuming that it is given the maximum available bandwidth, B
i/o
max, its test time

can be determined by T (ΨB(ci, B
i/o
max)), which represents the TAT returned by the

ΨB search algorithm for Core ci when the given maximum bandwidth is B
i/o
max.

Even with unlimited bandwidth, the TAT of an SoC C cannot be shorter than

the TAT of the dominant core ci ∈ C. Therefore the first lower bound can be

summarized as

T 1
LB = maxi∈C{T (ΨB(ci, B

i/o
max))} (6.5)

For a bounded I/O bandwidth B
i/o
max, T 1

LB does not represent a meaningful

lower bound. Therefore, a tighter lower bound based on the I/O capacity to

transfer test vectors into the SoC is formulated as follows. This limited bandwidth

assumption means that the overall test time is at least equal to or greater than

the dominant core. Assuming that the wrapper for a core ci forms one scan

chain, its TAT can be represented by equation (6.6) where scan-in depth, si =

173

nip+nbi+
∑

k lk, scan-out depth, so = nop+nbi+
∑

k lk, and vc is the number of test

vectors. The second lower bound can be calculated as in equation (6.7), where

fc is the scan frequency for all cores. The overall lower bound is the maximum

of T 1
LB and T 2

LB (equation (6.8)).

T (ci) = (max(si, so) + 1)× vc + min(si, so) (6.6)

T 2
LB =

∑
ci∈C t(ci)

B
i/o
max/fc

(6.7)

TLB = max(T 1
LB, T 2

LB) (6.8)

Equation (6.7) is effective for the case when the test application time is con-

strained by the maximum I/O bandwidth of the NoC, B
i/o
max. In this case, in-

creasing the scan frequency, fc, will not increase the test application time as

might be indirectly suggested by equation (6.7). Increasing the test frequency

will not by itself decrease the test application time because the test data cannot

be transported quickly enough. In order to ensure that the test data is available

at the scan inputs at every scan clock, when the scan frequency is increased we

need to compensate by reducing the number of wrapper scan chains so that the

required bandwidth is constant. This is shown in the following equation, where

B = bandwidth, nsc = number of wrapper scan chains, and fc = scan frequency.

B = nsc × fc (6.9)

In equation (6.6), T (ci) represents the test application time in terms of the

number of scan and capture cycles for a given number of wrapper of scan chains

(one scan chain in this case). Equation (6.7) gives the overall test application

time (in number of scan and capture cycles) for the SoC under a given maximum

bandwidth, B
i/o
max. If the scan frequency is increased, equation (6.7) indicates that

the number of scan and capture cycles increase (because of the required reduction

in the number of wrapper scan chains), but does not necessarily increase the time

(in seconds) because of the increase of scan frequency.

If we rewrite equation (6.7) in terms of time (seconds) instead of the number

of scan clock cycles, the term fc would cancel, resulting in an equation that is

independent of the scan frequency. This is true for the condition under which

the equation is formulated, i.e. the test time is constrained by the maximum I/O

bandwidth.

174

Bmax= 2000

Bmax = 800Bmax = 800

Bmax= 2000

679337

342076

2000

1600

680212 800

800

(b) Type 2(a) Type 1

Testing time

Required
Bandwidth

337478

Figure 6.10: Rectangles represent tests of Core 6 of p93791 [1] benchmark circuit.

6.5.6 Schedule Optimization through Rectangle Packing

We now introduce the concept of rectangles to represent core tests, then explain

a flexible scheduling methodology based on NoC bandwidth sharing, which is in-

spired by the scheduling algorithm in [106]. The use of rectangles have previously

been proposed in [42, 106] for dedicated TAM based scheduling approach. In this

chapter, the height of a rectangle represents the required NoC bandwidth to ob-

tain the test application time represented by the horizontal length. Figure 6.10

illustrates two pairs of rectangles, each representing the test of Core 6 of p93791

circuit (ITC’02 benchmark [1]) when Bmax = 2000 Mbps and 800 Mbps, respec-

tively. For this example, the NoC port’s PDI/PDO bit-width is npdi = npdo = 64

bits.

The top left rectangle is obtained using the wrapper optimization algorithm

ΨB described in Section 6.5.3, when given as input the maximum allocated band-

width, Bvc
max = 2, 000 Mbps. The algorithm iteratively searches for the wrapper

configuration that produces the smallest test application time, which fulfills the

Pareto-optimal criteria, under the bandwidth constraint. Since the Type 1 wrap-

per cannot effectively utilize all the allocated bandwidth, the algorithm finds the

next Pareto-optimal point with a TAT of 342, 076 clock cycles which requires

1, 600-Mbps NoC bandwidth. The same procedure is repeated for the Type 2

wrapper. With a more efficient bandwidth matching architecture, the Pareto-

175

optimal wrapper is found with a TAT of 337, 478 clock cycles and a required

bandwidth of 2, 000 Mbps (top right rectangle). For Bvc
max = 2, 000 Mbps, these

two wrapper configurations are candidates for scheduling.

The complete scheduling algorithm is given in Algorithm 6.1. It starts by

obtaining the preferred bandwidth for each core in the SoC C. As illustrated in

Figure 6.11, the preferred bandwidth results after configuring the core wrapper

with the number of scan chains in the “high gain” region. Gain represents the

potential reduction in TAT of a core per additional unit of bandwidth allocated

to that core. Therefore, rather than allocating more bandwidth to a core when

it is already in the low gain region, it would be wiser to assign that bandwidth

to a different core that is still in the high gain region.

———————————————————————————————————

Algorithm 6.1 OptimizeSchedule (C, B
i/o
max, vgain, vbottleneck)

Data Structure: Schedule

tstart[ci]; /*start time of Core ci*/

tend[ci]; /*end time of Core ci*/

Bscheduled[ci]; /*allocated bandwidth for Core ci*/

———————————————————————————————————

1. PreferredBandwidth (C, B
i/o
max, vgain, vbottleneck)

2. Bfree ← B
i/o
max; tcurrent ← 0;

3. While C 	= ∅{
4. If Bfree > 0{
5. If Core ci ∈ C can be found such that

Bpref [ci] ≤ Bfree AND Tpref [ci] is maximum {
6. If (C − {ci} = ∅)
7. ScheduleLastCore (ci);

8. Else

9. UpdateSchedule (ci, Bpref [ci]);}
10. Else {
11. Find tnext ← tend[ci] such that tend[ci] > tcurrent AND tend[ci] is mini-

mum;

176

12. If Core ci can be found such that (tcurrent + T (ΨB(ci, Bfree)) ≤ tnext

AND B(ΨB(ci, Bfree)) is maximum) {
13. UpdateSchedule (ci, Bfree);}
14. Else {
15. DistributeFreeBandwidth ();

16. Bidle ← Bfree;

17. Bfree ← 0;}}}
18. Else {
19. Find tnext as in Line 11;

20. tcurrent ← tnext;

21. Bfree ← Bidle;

22. For every Core ci such that tend[ci] = tcurrent {
23. Bfree ← Bfree + Bscheduled[ci];}}}
24. OptimizeMaxEndTime (Schedule);

25. Return Schedule;

———————————————————————————————————

Algorithm 6.2 describes the algorithm to determine the preferred bandwidth

for all cores. In line 28, a proper value of input percent vgain shifts the target

TAT from Tmax−pareto to the high gain region. Figure 6.11 illustrates some of the

variables, and show how Ttarget1 is calculated using the variable vgain. Lines 26-29

are evaluated for both Type 1 and Type 2 wrapper configurations. For every core

ci ∈ C, equations (6.1)-(6.4) are evaluated to determine the best wrapper type,

for which the value of Tpref [ci] is returned. The same wrapper selection procedure

is performed at line 12 when evaluating T (ΨB(ci, Bfree)).

In some cases where the test application time is dominated by a large core such

as Core 6 of p93791, selecting the high gain region for Core 6 could potentially

make it a bottleneck core, thus preventing further reduction of TAT. In order to

handle this kind of special cases, we need to be able to allocate as much bandwidth

as possible to these potential bottleneck cores. In line 33, the variable vbottleneck

together with the lower bound, TLB (equation (6.8)), ensures that bottleneck

cores are allocated larger preferred bandwidth, even if it is in the low gain region.

177

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

TAT (x 10
6
 cycles)

High gain region

Low gain region

Core 6 of p93791 circuit

T max-pareto

(1) ()

(1) ()
sc sc

sc sc

T n i T n i
gain

B n i B n i

= + − ==
= + − =

B req (x f m bps)

T target1

)),(()),((/
max

oi
BT BiTiTtemp ψψ −∞=

100
gainv

temp×

T pref

)),((∞iT Tψ

Figure 6.11: High (preferred) and low gain regions. Tpref = ΨT (ci, Ttarget1); line

29 of Algorithm 6.2.

———————————————————————————————————

Algorithm 6.2 PreferredBandwidth (C, B
i/o
max, vgain, vbottleneck)

26. For each Core ci ∈ C{
27. temp← T (ΨT (ci,∞))− T (ΨB(ci, B

i/o
max));

28. Ttarget1 ← T (ΨB(ci, B
i/o
max)) + (temp× vgain/100);

29. Tpref [ci]← T (ΨT (ci, Ttarget1));}
30. avgTpref ← Average Tpref [ci] for all ci ∈ C;

31. TLB ← max(T 1
LB , T 2

LB); /*lower bound, equation (6.8)*/

32. For each Core ci ∈ C{
33. Ttarget2 ← min{vbottleneck × avgTpref , TLB, Tpref [ci]};
34. Bpref [ci]← B(ΨT (ci, Ttarget2));

35. Tpref [ci]← T (ΨT (ci, Ttarget2));}

178

———————————————————————————————————

The process begins with setting the current time, tcurrent = 0. During the

scheduling process, a core is assigned its preferred bandwidth, Bpref , if the cur-

rently unused bandwidth, Bfree, at the current time, tcurrent, is more than or equal

to Bpref (Line 9). Otherwise, the core ci ∈ C that leaves minimum Bfree after it

is scheduled, is assigned bandwidth of Breq = B(ΨB(ci, Bfree)) ≤ Bfree, that can

be effectively utilized by the core ci (Lines 12-13). T (ΨB(ci, Bfree)) on the other

hand, returns the corresponding TAT. Scheduling a new core ci involves assigning

several variables—tstart[ci], tend[ci], and Bscheduled[ci]—and updating Bfree and the

list of unscheduled cores, C (Algorithm 6.3).

———————————————————————————————————

Algorithm 6.3 UpdateSchedule (ci, Bgiven)

36. tstart[ci]← tcurrent;

37. tend[ci]← tcurrent + T (ΨB(ci, Bgiven));

38. Bscheduled[ci]← B(ΨB(ci, Bgiven));

39. Bfree ← Bfree − Bscheduled[ci];

40. C ← C − {ci};
———————————————————————————————————

When no more cores can be scheduled at tcurrent while Bfree > 0 (Lines 14-

17), the core ci, whose tstart[ci] = tcurrent and tend[ci] is maximum, is allocated

the remaining unused bandwidth. This is repeated until either no more tend[ci]

reduction of such cores is possible or Bfree = 0. At lines 18-23, the current time

and available bandwidth are updated before the while loop is reevaluated.

When scheduling the last core (Line 7), the core start time and assigned band-

width is chosen such that tend is minimum. This is illustrated in Figure 6.12(a)

where three possible options are shown by the dotted rectangles. After all the

cores are scheduled, in the final step (line 24), the current schedule of core ci whose

tend[ci] is maximum, is reconsidered for further optimization. Without modifying

the schedule for other cores, core ci is rescheduled such that the new tend[ci] is

179

Bpref

Bpref

Bpref

tcurrent

Bmax-pareto

Bpref

Bmax-pareto
Bmax

Bpref

Bpref

Bpref

Bmax-pareto

i

tend

new tend

(a) ScheduleLastCore (b) OptimizeMaxEndTime

TATTAT

Bandwidth

Figure 6.12: Further optimizing the schedule. Dotted rectangles represent possi-

ble schedule/wrapper configurations.

minimum (Figure 6.12(b)). This process is repeated until no more reductions can

be made to tend.

6.6 Experimental Results

In this section, we present experimental results for several modified ITC’02 bench-

mark [1] circuits (d695noc, p93791noc, p22810noc). The wrappers in Figures 5.4

and 5.7 utilize the PDI/PDO interface between the core and the NI in its opera-

tion. From the design perspective, the cores whose nip + nbi < npdi or nop + nbi <

npdo cannot be functionally interfaced to the NoC. As a result, two, four, and five

small cores are excluded from each of the benchmark circuits when npdi = npdo =

32. In addition, the optimum values (determined iteratively) of vgain ∈ [0..9] and

vbottleneck ∈ [1..5] are used, with the scan frequency, fm = 100 MHz. The TAT

reported in this chapter is in number of scan clock cycles, where each cycle is

equivalent to 1/fm or 0.01μs. The computation time is less than 10 seconds for

the largest circuit.

180

T
ab

le
6.

2:
A

re
a

ov
er

h
ea

d
co

m
p
ar

is
on

b
et

w
ee

n
T

y
p
e

1
an

d
T

y
p
e

2
w

ra
p
p
er

s.

D
F
T

(N
oC

-c
om

p
at

ib
le

w
ra

p
p
er

s)

B
en

ch
m

ar
k

C
ir

cu
it

C
h
ar

ac
te

ri
st

ic
s

T
y
p
e

1
T

y
p
e

2
(3

2-
b
it

P
D

I)
T

y
p
e

2
(6

4-
b
it

P
D

I)

#
N

O
T

#
N

O
T

H
ar

d
w

ar
e

#
N

O
T

T
y
p
e

2/
#

N
O

T
T

y
p
e

2/

N
am

e
#

C
or

es
#

I/
O

s
#

S
F
F

ga
te

s
ga

te
s

ov
er

h
ea

d
ga

te
s

T
y
p
e

1
ga

te
s

T
y
p
e

1

d
69

5n
o
c

10
1,

84
5

6,
38

4
15

3,
21

6
57

,1
95

37
.3

%
67

,1
35

6.
5%

77
,0

55
13

.0
%

p
22

81
0n

o
c

2
8

4,
28

3
24

,7
23

59
3,

35
2

13
2,

77
3

22
.4

%
16

0,
60

5
4.

7%
18

8,
38

1
9.

4%

p
93

79
1n

o
c

3
2

6,
94

3
89

,9
73

2,
15

9,
35

2
21

5,
23

3
10

.0
%

24
7,

04
1

1.
5%

27
8,

78
5

2.
9%

T
ab

le
6.

3:
T
A

T
fo

r
se

ve
ra

l
h
ar

d
w

ar
e

co
st

(β
)

an
d

ti
m

e
co

st
(α

)
w

ei
gh

ts
.

p
93

79
1n

o
c

p
22

81
0n

o
c

d
69

5n
o
c

C
os

t
B

i/
o

m
a
x

=
64

00
M

b
p
s

B
i/

o
m

a
x

=
64

00
M

b
p
s

B
i/

o
m

a
x

=
32

00
M

b
p
s

w
ei

gh
ts

(T
L

B
=

43
5,

03
9)

(T
L

B
=

10
2,

96
5)

(T
L

B
=

16
,7

01
)

β
α

A
O

H
T
A

T
%

/T
L

B
A

O
H

T
A

T
%

/T
L

B
A

O
H

T
A

T
%

/T
L

B

0.
00

1.
00

9,
30

3
46

4,
25

2
6.

7
5,

76
8

12
2,

09
1

18
.6

2,
39

6
17

,8
27

6.
7

0.
25

0.
75

8,
65

3
46

4,
25

2
6.

7
5,

68
0

12
2,

28
0

18
.8

2,
30

0
17

,8
27

6.
7

0.
50

0.
50

7,
67

3
47

1,
17

5
8.

3
5,

69
8

12
2,

28
0

18
.8

2,
30

0
17

,8
27

6.
7

0.
75

0.
25

7,
67

3
47

1,
17

5
8.

3
5,

41
2

13
0,

59
1

26
.8

2,
11

0
18

,1
84

8.
9

1.
00

0.
00

6,
55

7
48

3,
41

1
11

.1
3,

81
0

13
4,

46
6

30
.6

1,
67

6
18

,4
94

10
.7

181

Table 6.2 tabulates the comparison of Design-For-Testability (DFT) costs be-

tween Type 1 and Type 2 wrappers and the SoC benchmark circuits. The circuit

size for the ITC’02 benchmark circuits are not given, therefore we estimate the

circuit size in terms of the equivalent number of NOT gates for the given num-

ber of scan flip-flops (SFF). Each scan cell and wrapper cell is estimated to be

equivalent to 24 NOT gates and 31 NOT gates, respectively.

Column labeled Type 1 gives the percent overhead of the Type 1 NoC wrapper

(calculated using equation (6.1)) over the SoC circuit. For the largest circuit in

the ITC’02 benchmark, the overhead is 10%. For the smaller circuit (d695), the

overhead is as high as 37.3%. The Type 1 wrapper cell overhead is the same as

the standard IEEE 1500 wrapper overhead.

When we consider the additional area overhead of a Type 2 wrapper (on top

of the overhead of Type 1 wrapper), the value ranges between 1.5% to 6.5% (for

32-bit PDI/PDO) and between 2.9% and 13% (for 64-bit PDI/PDO), for the

selected circuits. The additional hardware overhead of the Type 2 wrapper is

not insignificant; therefore the proposed optimization method is necessary. The

calculation is based on a single wrapper scan chain (i.e. nsc = 1). The Type

2 hardware overhead would increase slightly for larger number of wrapper scan

chains as indicated by equation (6.2).

In Table 6.3, the weights of area overhead cost (β) and TAT cost (α) are

varied according to the constraints defined in ΨS. In Table 6.3 and Table 6.4 area

overhead (AOH) is represented by the total number of wrapper boundary cells

required for the SoC. Other components of the wrappers such as the controller

and the wiring costs are not included because they are similar for both Type 1

and Type 2 wrappers; the boundary cell structures make them unique.

As the cost weight of hardware is increased (increasing β), the total hardware

area overhead (columns labeled AOH) decreases while the test application time

(columns labeled TAT) increases accordingly. This indicates that as we allow

more hardware to be used, more bandwidth-efficient Type 2 wrappers can be used,

allowing for a more efficient utilization of bandwidth, hence smaller “rectangles”

to pack. Compared to the lower bound defined in Section 6.5.5, the TAT’s are

on average 13% larger. The area overhead can be reduced considerably without

affecting the TAT (β = 0.0 to 0.5) for all benchmark circuits. This happens when

182

Table 6.4: TAT for several B
i/o
max. [α = 1, β = 0].

B
i/o
max AOH TAT TLB %/TLB

(Mbps) p93791noc

3,200 8,849 923,842 870,079 6.2

6,400 9,303 464,252 435,039 6.7

9,600 9,009 347,378 290,026 19.8

12,800 8,885 235,285 227,978 3.2

B
i/o
max p22810noc

3,200 5,584 232,816 203,015 14.7

6,400 5,768 122,091 102,965 18.6

9,600 5,798 102,965 102,965 0.0

12,800 5,798 102,965 102,965 0.0

the Type 1 wrapper is used instead of the Type 2 wrapper for those cores that

do not affect the overall TAT.

Table 6.4 shows the resulting AOH and TAT when B
i/o
max varies from 3.2 Gbps

to 12.8 Gbps, with the objective of minimizing the TAT (i.e. α = 1, β = 0).

This illustrates that without increasing the area overhead, the TAT can be re-

duced given larger I/O bandwidth, B
i/o
max. This is typically the case because the

functional I/O frequency is typically higher than the scan frequency. For the

dedicated TAM based approach, TAT reduction can only be achieved by adding

TAM wires. %/TLB in column 5 is calculated as ([column 3] - [column 4]) /

[column 4] × 100%.

Table 6.5 compares our bandwidth sharing approach with the dedicated path

(DP) approaches [61, 97, 104, 105]. In the DP approaches, a pair of NoC input and

output ports can be used to test only one core at a time. To enable parallel testing,

more I/O port pairs are required. Assuming that there is only one I/O port pair,

the TAT for DP approach is the sum of each individual core test (sequential

testing). Our approach enables parallelism through bandwidth sharing, which

proves to be more efficient, with at least 43.1% (when α = 1, β = 0) smaller

TAT. The percentage reduction (%red) is calculated as (DP - SB) / DP × 100%.

183

Table 6.5: Test application time of dedicated path (DP) and shared bandwidth

(SB) approaches. For SB, α = 1, β = 0

Channel Dedicated Path Shared Bandwidth %red.

bitwidth, bw d695noc

16 49,135 21,768 55.7

32 31,317 17,827 43.1

bitwidth, bw p93791noc

16 1,861,439 907,419 51.3

32 1,211,254 464,252 61.7

bitwidth, bw p22810noc

16 655,253 229,598 65.0

32 510,954 125,591 75.4

6.7 Conclusion

We have presented a new approach to NoC testing through bandwidth sharing.

The test schedule is optimized using a rectangle packing algorithm by optimally

assigning to each core a “high gain” bandwidth—the amount of bandwidth that

gives a high reduction in TAT. The utilization of two complementary NoC wrap-

pers allow for co-optimization of two most important properties—test application

time and area overhead.

It was shown experimentally that it is not always necessary to use the expen-

sive Type 2 wrappers in order to obtain a minimum TAT; the low-cost Type 1

wrappers can be used effectively without compromising the overall TAT. We also

evaluated the efficiency of the scheduling algorithm; on average the TAT is less

than 13% longer than the theoretical lower bound. Compared to the previously

published NoC test scheduling based on dedicated path approach, the proposed

bandwidth sharing approach reduces the TAT by an average of 58.7% for the

selected case studies.

184

Chapter 7

Conclusion and Future Work

This chapter first summarizes the work completed in this thesis and then mentions

some selected topics that can further enhance the contents of this thesis, as part

of the future work.

7.1 Summary of the Thesis

To ensure the performance and correct functionality of a chip, it must be throughly

tested for any manufacturing defects and faults caused by statistical manufactur-

ing variations. This thesis presents several methods for the tests of a System-

on-Chip, specifically related to the core-based tests. As we consider the test of

SoC from the higher perspective, we assume that the design-for-testability (DfT)

insertion and the corresponding test generation at the core level can be performed

using standard industrial tools. The unique property of the proposed test method

is that we try as much as possible to reuse the existing functional components

and interconnect for the test purposes. Specifically, we do not add any test ac-

cess mechanism for the transportation of the test stimuli and responses to the

embedded cores.

Chapter 2 explains a test scheduling methodology based on a packet delivery

scheduling scheme for core-based testing of System-on-Chips by utilizing the flat

functional bus as a test access mechanism. The functional bus is used as a

transportation channel for the test stimuli and responses from a tester to the

cores under test (CUT). To enable test concurrency, local test buffers are added

185

to all CUT’s. In order to limit the buffer area overhead while minimizing the test

application time, we propose a packet-based scheduling algorithm called PAcket

Set Scheduling (PASS), which finds the complete packet delivery schedule under

a given power constraint. The utilization of test packets, consisting of a small

number of bits of test data, for test data delivery allow an efficient sharing of

bus bandwidth with the help of an effective buffer-based test architecture. The

experimental results show that the methodology is highly effective, especially

for smaller bus widths, compared to previous approaches that do not use the

functional bus.

In Chapter 3, the PASS scheduling scheme for the flat bus is extended for

the hierarchical buses of a multiprocessor System-on-Chips (MPSoC). At each

core-under-test (CUT), a similar buffer-based test wrapper is used to allow the

shared buses to be used for parallel core testing to shorten the test application

time, which is the main objective. We then propose a heuristic which uses test

configuration graphs to distribute the data transfer load to the system buses in

order to maximize efficiency. Parallel core tests are achieved by utilizing packet-

based data delivery for the test data transportation to the local buffers, without

dedicating communication resources to CUT’s. The optimum delivery schedule

is achieved by using a packet set-based scheduling methodology. Runs on several

modified benchmark circuits provide experimental evidence of the advantages of

the proposed methodology. It is applied to both flat bus single processor System-

on-Chips (SoC) and hierarchical bus MPSoC’s.

Chapter 4 gives a brief description and the characteristics of the SoC which as

based on the Network-on-Chip (NoC) interconnect architecture. Based on these

characteristics, we then proposed the test wrappers which are suitable for the

NoC interconnect architecture, and then followed by a test scheduling algorithm.

Chapter 5 describes the limitation of the IEEE 1500 standard wrapper, which

cannot be used for a NoC-based interconnect. This is because of the packet-

based transfer mechanism and other functional requirements by the NoC. We

describe two NoC-compatible wrappers, which overcome these limitations of the

1500 wrapper. The wrappers (Type 1 and Type 2) complement each other to opti-

mize NoC bandwidth utilization while minimizing the area overhead. The Type 2

wrapper uses larger area overhead to increase bandwidth efficiency, while Type 1

186

takes advantage of some special configurations which may not require a complex

and high-cost wrapper. Two wrapper optimization algorithms are applied to both

wrapper designs under channel-bandwidth and test-time constraints, resulting in

very little or no increase in the test application time compared to conventional

dedicated TAM approaches.

Chapter 6 begins by explaining the limitations of the dedicated path approach,

which are used by many previous research on NoC testing. In this approach, a

physical path through the NoC routers and interconnects are allocated for the

transportation of test data from an external tester to a single core during the

whole duration of the core test. This approach unnecessarily limits test concur-

rency of the embedded cores because a physical channel bandwidth is typically

larger than the scan rate of any core-under-test. In this chapter, we propose a

bandwidth sharing approach that divides the physical channel bandwidth into

multiple smaller virtual channel bandwidths. The test scheduling is performed

under the objective of co-optimizing the wrapper area cost and the resulting test

application time using two complementary NoC wrappers. Experimental results

showed that the area overhead can be optimized (to an extent) without compro-

mising the test application time. Compared to other NoC scheduling approaches

based on dedicated paths, our bandwidth sharing approach can reduce the test

application time by up to 75.4%.

In this thesis, we have covered the test wrapper designs and test scheduling

for a wide range of SoC architectures. By reusing the functional interconnects,

our method is already at an advantage compared to others that rely on the use

of dedicated TAM’s. Furthermore, the proposed test scheduling schemes are also

effective in minimizing the test costs—test application time and area cost.

7.2 Future Work

This thesis presented systematic approaches to the test scheduling of various types

of SoC’s. The first future step should be to implement the proposed test wrappers

(both buffer-based wrappers for bus-based SoC’s and the Type 1 and Type 2

wrappers for the NoC) at RTL or layout level. The wrapper implementation

would serve two purposes. First, to evaluate the actual area costs of the wrappers.

187

Second, to be used in the case study with an actual SoC test system, which include

the test program generation described below.

The PAcket Scheduling Scheme (PASS) and MultiProcessor PASS (MPPASS)

presented in Chapters 2 and 3 are evaluated by simulating the test application

using a model. The next step toward fully automating the test program genera-

tion is to provide a case study where the actual test program can be developed

and tested using an actual SoC test system. The test program should use only

a few CPU instructions required to transfer the test data between an external

device and the CUT, after the CUT is configured in the test mode.

The test scheduling scheme for the MPSoC assumes that the embedded pro-

cessors designated as testers can access the required test data either from an

internal memory or from an external source through memory controllers. We

realize that the embedded memory capacity is much too small to be able to ac-

commodate all the test data. An extension to this work would be to remove

this assumption during the test scheduling. Since multiprocessor systems with

complex buses are rather common in the new SoC systems, it is important to be

able to reuse the embedded processors as test resources.

Being able to reuse the embedded processors as test sources means that the

I/O bandwidth constraint assumed in Chapter 6 is no longer the critical con-

straint. In this condition where the test stimuli are generated on-chip, we can

consider the problem of scheduling the large internal NoC bandwidth rather than

the limited I/O bandwidth.

188

Acknowledgments

This dissertation is the result of three years of work during which I have had the

company and support of many people. I would like to take this opportunity to

express my gratitude to all of them. Without their help and advice, this work

would not have been possible.

First and foremost, I would like to thank my supervisor, Professor Hideo

Fujiwara, for his guidance and support during my graduate studies, and for the

invaluable training I received as his student. When I first stepped foot at Nara

Institute of Science and Technology, Professor Hideo Fujiwara ensured that my

transition as a new member of the Fujiwara Laboratory is a smooth one. During

the initial few months as a PhD student, his guidance was most valuable as I work

to establish a foundation for my research. During the years, Professor Hideo

Fujiwara always provided a motivational, enthusiastic, and critical atmosphere

during the many discussions we had. Without exception, he was always there to

relate back to the bigger picture whenever I get lost in the jungle of technical

details. It was a great pleasure for me to have had the opportunity to complete

my research and dissertation under his supervision.

I would like to especially thank Assistant Professor Tomokazu Yoneda for

his close guidance and advice during every discussion. I was fortunate to have

had the opportunity to work very closely with Assistant Professor Tomokazu

Yoneda. I would like to thank him for his patience in meticulously proofreading

and commenting every draft of every conference and journal papers resulting from

my research. Not forgetting his contribution in improving the earlier drafts of

this dissertation. Thank you for your supervision and friendship.

I am grateful to Professor Alex Orailoglu of the University of California San

Diego, U.S.A. for his valuable comments during our research collaboration and on

189

the drafts of the conference and journal papers. He has given extremely insightful

advice aimed at making me target higher and higher in doing research.

I would like to extend my gratitude to Professor Krishnendu Chakrabarty of

Duke University, U.S.A. for his advice and motivational support of my research.

Contributions from Professor Chakrabarty, who is one of the leading researchers

in the field of system-on-chip testing, was of great value and influence in steering

my research in the right direction.

I would like to thank the members of the thesis committee, Professor Ya-

suhiko Nakashima and Associate Professor Michiko Inoue, who monitored my

work and took great effort in reading and providing me with valuable comments

on earlier versions of this dissertation. A special appreciation goes to Associate

Professor Michiko Inoue for her constructive criticisms during the presentations

and progress report sessions in the laboratory.

I am indebted to Assistant Professor Satoshi Ohtake for his friendly discus-

sions, comments, and continuous efforts in providing the necessary networking

and computing infrastructure in the laboratory. These hardware and software

resources were absolutely essential in the success of all the experimental works.

I would also like to thank Dr. Ilia Polian of Albert-Ludwigs-University of

Freiburg, Germany and Associate Professor Erik Larsson of Linköpings Univer-

sitet, Sweden for their comments and contributions.

I would also like to extend my gratitude to Ms. Saeko Ono and Ms. Aiko Sato

for helping me with various tasks and official correspondence in the laboratory.

The members of Fujiwara Laboratory gave me the feeling of being at home

at work. Their support and companion makes the everyday work at the labo-

ratory more pleasant and enjoyable. Dr. Kazuko Kambe, Dr. Virendra Singh,

Dr. Zhiqiang You, Dr. Hiroyuki Iwata, Mr. Vorayos Thongtan, Mr. Thomas Edi-

son Yu, Ms. Elena Davydova Dikkanen, Mr. Chi-Che Hsieh, thank you for being

my friends and colleagues. Special thanks to Dr. Chia Yee Ooi and Dr. Masato

Nakazato for their help with settling my life down when I first arrived in Japan.

Special thanks also to Dr. Thomas Clouqueur and Dr. Yuuki Yoshikawa for being

my tennis partners, best friends and colleagues. Thanks also to all other past and

present members of Fujiwara Laboratory for making my stay, within the confines

of the laboratory, pleasurable. Thank you for your friendship.

190

This work was supported in part by 21st Century Center of Excellence (COE)

Program (Ubiquitous Networked Media Computing) and in part by Japan Society

for the Promotion of Science (JSPS) under Grants-in-Aid for Scientific Research

and Young Scientists under the grant for activity, education and research. I

express my gratitude to all these sponsoring organizations.

I am grateful to the Ministry of Education, Culture, Sports, Science and

Technology (MEXT), Government of Japan for supporting me with a Japanese

government scholarship throughout my course of study. I am also grateful to

the Universiti Teknologi Petronas for providing me a chance to pursue doctoral

degree at NAIST, Japan.

I am also grateful to my family members for their love and moral support

during these challenging three years. I am especially grateful to my beautiful

wife who has made great many sacrifices for the success of my PhD. She was

always there to cheer me up when I needed a boost of moral support. Your

support is most valued and appreciated.

And to my son for being a motivation.

I profusely thank you all.

191

Bibliography

[1] Erik Jan Marinissen, Vikram Iyengar, and Krishnendu Chakrabarty. A set

of benchmarks fo modular testing of SOCs. ITC’02: Proc. International

Test Conference, 00:519–528, 2002.

[2] International technology roadmap for semiconductors (ITRS 2007).

http://www.itrs.net/Links/2007ITRS/Home2007.htm, Access date: June

2008.

[3] Erik Jan Marinissen, Rohit Kapur, Maurice Lousberg, Teresa McLaurin,

Mike Ricchetti, and Yervant Zorian. On IEEE P1500’s standard for em-

bedded core test. J. Electron. Test., 18(4-5):365–383, 2002.

[4] 1500 IEEE standard testability method for embedded core-based integrated

circuits. http://grouper.ieee.org/groups/1500/index.html.

[5] Erik Larsson. Chapter 8, Introduction to Advanced System-on-Chip Test

Design and Optimization. Frontiers in Electronic Testing, Vol. 29. Springer

Publishing, 2005.

[6] Anders Larsson, Erik Larsson, Petru Eles, and Zebo Peng. Optimization of

a bus-based test data transportation mechanism in system-on-chip. In DSD

’05: Proceedings of the 8th Euromicro Conference on Digital System Design,

pages 403–411, Washington, DC, USA, 2005. IEEE Computer Society.

[7] Alexandre M. Amory, Kees Goossens, Erik Jan Marinissen, Marcelo

Lubaszewski, and Fernando Moraes. Wrapper design for the reuse of

networks-on-chip as test access mechanism. In ETS ’06: Proceedings of

the Eleventh IEEE European Test Symposium, pages 213–218, Washington,

DC, USA, 2006. IEEE Computer Society.

[8] Yervant Zorian, Erik Jan Marinissen, and Sujit Dey. Testing embedded-core

based system chips. In ITC ’98: Proceedings of the 1998 IEEE International

192

Test Conference, page 130, Washington, DC, USA, 1998. IEEE Computer

Society.

[9] Erik Jan Marinissen, Robert G. J. Arendsen, Gerard Bos, Hans Dinge-

manse, Maurice Lousberg, and Clemens Wouters. A structured and scalable

mechanism for test access to embedded reusable cores. In ITC ’98: Pro-

ceedings of the 1998 IEEE International Test Conference, pages 284–293,

Washington, DC, USA, 1998. IEEE Computer Society.

[10] Anuja Sehgal, Vikram Iyengar, Mark D. Krasniewski, and Krishnendu

Chakrabarty. Test cost reduction for SOCs using virtual TAMs and la-

grange multipliers. In DAC ’03: Proceedings of the 40th conference on

Design automation, pages 738–743, New York, NY, USA, 2003. ACM.

[11] Tomokazu Yoneda and Hideo Fujiwara. A DFT method for core-based

systems-on-a-chip based on consecutive testability. In ATS ’01: Proceedings

of the 10th Asian Test Symposium, pages 193–198, Washington, DC, USA,

2001. IEEE Computer Society.

[12] Vikram Iyengar, Krishnendu Chakrabarty, and Erik Jan Marinissen. Test

wrapper and test access mechanism co-optimization for system-on-chip. J.

Electron. Test., 18(2):213–230, 2002.

[13] Yu Huang, Sudhakar M. Reddy, Wu-Tung Cheng, Paul Reuter, Nilanjan

Mukherjee, Chien-Chung Tsai, Omer Samman, and Yahya Zaidan. Opti-

mal core wrapper width selection and SoC test scheduling based on 3-D

bin packing algorithm. In ITC ’02: Proceedings of the 2002 IEEE Interna-

tional Test Conference, pages 74–83, Washington, DC, USA, 2002. IEEE

Computer Society.

[14] Erik Larsson and Hideo Fujiwara. System-on-chip test scheduling with

reconfigurable core wrappers. IEEE Trans. Very Large Scale Integr. Syst.,

14(3):305–309, 2006.

[15] Tomokazu Yoneda, Kimihiko Masuda, and Hideo Fujiwara. Power-

constrained test scheduling for multi-clock domain SoCs. In DATE ’06:

Proceedings of the conference on Design, automation and test in Europe,

pages 297–302, 3001 Leuven, Belgium, Belgium, 2006. European Design

and Automation Association.

[16] Anuja Sehgal, Vikram Iyengar, and Krish Chakrabarty. SOC test planning

193

using virtual test access architectures. IEEE Trans. Very Large Scale Integr.

Syst., 12(12):1263–1276, 2004.

[17] Yu Xia, Malgorzata Chrzanowska-Jeske, Benyi Wang, and Marcin Jeske.

Using a distributed rectangle bin-packing approach for core-based SoC test

scheduling with power constraints. In ICCAD ’03: Proceedings of the 2003

IEEE/ACM international conference on Computer-aided design, pages 100–

105, Washington, DC, USA, 2003. IEEE Computer Society.

[18] Chih-Pin Su and Cheng-Wen Wu. A graph-based approach to power-

constrained SoC test scheduling. J. Electron. Test., 20(1):45–60, 2004.

[19] Julien Pouget, Erik Larsson, and Zebo Peng. Multiple-constraint driven

system-on-chip test time optimization. J. Electron. Test., 21(6):599–611,

2005.

[20] Krish Chakrabarty, Vikram Iyengar, and M. D. Krasniewski. Test planning

for modular testing of hierarchical SOCs. IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, 24(3):435–448, 2005.

[21] Sandeep Kumar Goel and Erik Jan Marinissen. SOC test architecture de-

sign for efficient utilization of test bandwidth. ACM Trans. Des. Autom.

Electron. Syst., 8(4):399–429, 2003.

[22] Tomokazu Yoneda and Hideo Fujiwara. Design for consecutive testability

of system-on-a-chip with built-in self testable cores. J. Electron. Test.,

18(4-5):487–501, 2002.

[23] Peter Harrod. Testing reusable IP - a case study. In ITC ’99: Proceedings of

the 1999 IEEE International Test Conference, pages 493–498, Washington,

DC, USA, 1999. IEEE Computer Society.

[24] C. A. Papachristou, F. Martin, and M. Nourani. Microprocessor based

testing for core-based system on chip. In DAC ’99: Proceedings of the 36th

ACM/IEEE conference on Design automation, pages 586–591, New York,

NY, USA, 1999. ACM.

[25] Angela Krstic, Wei-Cheng Lai, Kwang-Ting Cheng, Li Chen, and Sujit Dey.

Embedded software-based self-test for programmable core-based designs.

IEEE Des. Test, 19(4):18–27, 2002.

[26] Jing-Reng Huang, Madhu K. Iyer, and Kwang-Ting Cheng. A self-test

methodology for IP cores in bus-based programmable SoCs. In VTS ’01:

194

Proceedings of the 19th IEEE VLSI Test Symposium, pages 198–203, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[27] Anders Larsson, Erik Larsson, Petru Eles, and Zebo Peng. SOC test

scheduling with test set sharing and broadcasting. In ATS ’05: Proceedings

of the 14th Asian Test Symposium, pages 162–169, Washington, DC, USA,

2005. IEEE Computer Society.

[28] Sungbae Hwang and J. A. Abraham. Microprocessor based testing for

core-based system on chip. In Proceedings of the 14th IEEE International

ASIC/SOC Conference, pages 215–219, New York, NY, USA, 2001. IEEE.

[29] Sandeep Koranne and Vikram Iyengar. On the use of k-tuples for SoC

test schedule representation. In ITC ’02: Proceedings of the 2002 IEEE

International Test Conference, pages 539–548, Washington, DC, USA, 2002.

IEEE Computer Society.

[30] Krishnendu Chakrabarty. Design of system-on-a-chip test access architec-

tures using integer linear programming. In VTS ’00: Proceedings of the

18th IEEE VLSI Test Symposium (VTS’00), page 127, Washington, DC,

USA, 2000. IEEE Computer Society.

[31] Krishnendu Chakrabarty. Test scheduling for core-based systems using

mixed-integer linear programming. IEEE Transactions on Computer-Aided

Design, 19(10):1163–1174, 2000.

[32] Vikram Iyengar and Krishnendu Chakrabarty. Test bus sizing for system-

on-a-chip. IEEE Trans. Comput., 51(5):449–459, 2002.

[33] Wei Zou, Sudhakar M. Reddy, Irith Pomeranz, and Yu Huang. SOC test

scheduling using simulated annealing. In VTS ’03: Proceedings of the 21st

IEEE VLSI Test Symposium, pages 325–330, Washington, DC, USA, 2003.

IEEE Computer Society.

[34] Vikram Iyengar and Krish Chakrabarty. Software-based self-testing

methodology for processor cores. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, 21(9):1088–1094, 2002.

[35] Erik Larsson, K. Arvidsson, Hideo Fujiwara, and Zebo Peng. Efficient test

solutions for core-based designs. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, 23(5):758–775, 2004.

[36] Masahide Miyazaki, Toshinori Hosokawa, Hiroshi Date, Michiaki Muraoka,

195

and Hideo Fujiwara. A DFT selection method for reducing test application

time of system-on-chips. In ATS ’00: Proceedings of Asian Test Symposium,

volume 0, pages 412–417, Los Alamitos, CA, USA, 2003. IEEE Computer

Society.

[37] Qiang Xu and Nicola Nicolici. Multi-frequency test access mechanism de-

sign for modular SoC testing. In ATS ’04: Proceedings of the 13th Asian

Test Symposium, pages 2–7, Washington, DC, USA, 2004. IEEE Computer

Society.

[38] Dan Zhao and Shambhu Upadhyaya. Power constrained test scheduling

with dynamically varied TAM. In VTS ’03: Proceedings of the 21st IEEE

VLSI Test Symposium, pages 273–280, Washington, DC, USA, 2003. IEEE

Computer Society.

[39] Anuja Sehgal and Krishnendu Chakrabarty. Efficient modular testing of

SOCs using dual-speed TAM architectures. In DATE ’04: Proceedings of

the conference on Design, automation and test in Europe, pages 422–427,

Washington, DC, USA, 2004. IEEE Computer Society.

[40] Erik Larsson, Julien Pouget, and Zebo Peng. Defect-aware SoC test schedul-

ing. In VTS ’04: Proceedings of the 22nd IEEE VLSI Test Symposium,

pages 361–366, Washington, DC, USA, 2004. IEEE Computer Society.

[41] Zhiyuan He, Zebo Peng, and Petru Eles. Power constrained and defect-

probability driven SoC test scheduling with test set partitioning. In DATE

’06: Proceedings of the conference on Design, automation and test in Eu-

rope, pages 291–296, 3001 Leuven, Belgium, Belgium, 2006. European De-

sign and Automation Association.

[42] Richard M. Chou, Kewal K. Saluja, and Vishwani D. Agrawal. Scheduling

tests for VLSI systems under power constraints. IEEE Trans. Very Large

Scale Integr. Syst., 5(2):175–185, 1997.

[43] Krishnendu Chakrabarty. Design of system-on-a-chip test access architec-

tures under place-and-route and power constraints. In DAC ’00: Proceed-

ings of the 37th conference on Design automation, pages 432–437, New

York, NY, USA, 2000. ACM.

[44] Vikram Iyengar and Krishnendu Chakrabarty. Precedence-based, preemp-

tive, and power-constrained test scheduling for system-on-a-chip. In VTS

196

’01: Proceedings of the 19th IEEE VLSI Test Symposium, pages 368–373,

Washington, DC, USA, 2001. IEEE Computer Society.

[45] E. Larsson and Z. Peng. An integrated system-on-chip test framework. In

DATE ’01: Proceedings of the conference on Design, automation and test

in Europe, pages 138–144, Piscataway, NJ, USA, 2001. IEEE Press.

[46] Mehrdad Nourani and James Chin. Power-time tradeoff in test scheduling

for SoCs. In ICCD ’03: Proceedings of the 21st International Conference

on Computer Design, pages 548–553, Washington, DC, USA, 2003. IEEE

Computer Society.

[47] Sandeep Kumar Goel and Erik Jan Marinissen. Layout-driven SoC test ar-

chitecture design for test time and wire length minimization. In DATE ’03:

Proceedings of the conference on Design, Automation and Test in Europe,

pages 738–743, Washington, DC, USA, 2003. IEEE Computer Society.

[48] Anuja Sehgal, Sandeep Kumar Goel, Erik Jan Marinissen, and Krishnendu

Chakrabarty. Hierarchy-aware and area-efficient test infrastructure design

for core-based system chips. In DATE ’06: Proceedings of the conference

on Design, automation and test in Europe, pages 285–290, 3001 Leuven,

Belgium, Belgium, 2006. European Design and Automation Association.

[49] J. Li, H. Huang, J. Chen, C. Su, C. Wu, C. Cheng, S. Chen, C. Hwang,

and H. Lin. A hierarchical test scheme for system-on-chip designs. In

DATE ’02: Proceedings of the conference on Design, automation and test

in Europe, pages 486–490, Washington, DC, USA, 2002. IEEE Computer

Society.

[50] Vikram Iyengar, Krishnendu Chakrabarty, Mark D. Krasniewski, and

Gopind N. Kumar. Design and optimization of multi-level TAM archi-

tectures for hierarchical SOCs. In VTS ’03: Proceedings of the 21st IEEE

VLSI Test Symposium, pages 299–312, Washington, DC, USA, 2003. IEEE

Computer Society.

[51] Yu Huang, Wu-Tung Cheng, Chien-Chung Tsai, Nilanjan Mukherjee, Omer

Samman, Yahya Zaidan, and Sudhakar M. Reddy. Resource allocation and

test scheduling for concurrent test of core-based SoC design. In ATS ’01:

Proceedings of the 10th Anniversary Compendium of Papers from Asian

Test Symposium 1992-2001, pages 361–366, Washington, DC, USA, 2001.

197

IEEE Computer Society.

[52] Tsuyoshi Shinogi, Yuki Yamada, Terumine Hayashi, Tomohiro Yoshikawa,

and Shinji Tsuruoka. Between-core vector overlapping for test cost re-

duction in core testing. ATS ’03: Proceedings of Asian Test Symposium,

0:268–273, 2003.

[53] Erika Cota, Luigi Carro, Marcelo Lubaszewski, and Alex Orailoglu. Test

planning and design space exploration in a core-based environment. In

DATE ’02: Proceedings of the conference on Design, automation and test

in Europe, pages 478–443, Washington, DC, USA, 2002. IEEE Computer

Society.

[54] Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu, and Hideo Fu-

jiwara. Power-constrained SoC test schedules through utilization of func-

tional buses. In 24th IEEE International Conference on Computer Design

(ICCD’06), 2006.

[55] Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu, and Hideo

Fujiwara. Scheduling power-constrained tests through the SoC functional

bus. IEICE Transactions on Information and Systems, E91-D(3):736–746,

Mar. 2008.

[56] Li Chen and Sujit Dey. Software-based self-testing methodology for proces-

sor cores. IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, 20(3):369–380, 2001.

[57] Madhu K. Iyer and Kwang-Ting Cheng. Software-based weighted random

testing for IP cores in bus-based programmable SoCs. In Proceedings of the

VLSI Test Symposium, pages 139–144, 2002.

[58] Wei-Cheng Lai and Kwang-Ting Cheng. Instruction-level DFT for testing

processor and IP cores in system-on-a-chip. In DAC ’01: Proceedings of the

38th conference on Design automation, pages 59–64, New York, NY, USA,

2001. ACM.

[59] Chouki Aktouf. A complete strategy for testing an on-chip multiprocessor

architecture. IEEE Des. Test, 19(1):18–28, 2002.

[60] B. Vermeulen, J. Dielissen, K. Goossens, and K. Ciordas. Bringing com-

munication networks on chip: Test and verification implications. IEEE

Communications Magazine, 41(9):74–81, 2003.

198

[61] E. Cota, M. Kreutz, C. A. Zeferino, L. Carro, M. Lubaszewski, and A. Susin.

The impact of NoC reuse on the testing of core-based systems. In VTS ’03:

Proceedings of the 21st IEEE VLSI Test Symposium, page 128, Washington,

DC, USA, 2003. IEEE Computer Society.

[62] Alexandre M. Amory, Érika Cota, Marcelo Lubaszewski, and Fernando G.

Moraes. Reducing test time with processor reuse in network-on-chip based

systems. In SBCCI ’04: Proceedings of the 17th symposium on Integrated

circuits and system design, pages 111–116, New York, NY, USA, 2004.

ACM.

[63] Chunsheng Liu, Zach Link, and D. K. Pradhan. Reuse-based test access and

integrated test scheduling for network-on-chip. In DATE ’06: Proceedings

of the conference on Design, automation and test in Europe, pages 303–308,

3001 Leuven, Belgium, Belgium, 2006. European Design and Automation

Association.

[64] M. Nahvi and A. Ivanov. Indirect test architecture for SoC testing.

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,

23(7):1128–1142, 2004.

[65] David Flynn. AMBA: Enabling reusable on-chip designs. IEEE Micro,

17(4):20–27, 1997.

[66] Joep Aerts and Erik Jan Marinissen. Scan chain design for test time reduc-

tion in core-based ICs. In ITC ’98: Proceedings of the 1998 IEEE Interna-

tional Test Conference, pages 448–457, Washington, DC, USA, 1998. IEEE

Computer Society.

[67] Nicola Nicolici and Bashir M. Al-Hashimi. Chapter 2, Power-Constrained

Testing of VLSI Circuits. Kluwer Academic Publishers, 2003.

[68] Sandeep Kumar Goel and Erik Jan Marinissen. Effective and efficient test

architecture design for SOCs. In ITC ’02: Proceedings of the 2002 IEEE In-

ternational Test Conference, page 529, Washington, DC, USA, 2002. IEEE

Computer Society.

[69] Yervant Zorian. Test requirements for embedded core-based systems and

IEEE P1500. In Proceedings of the IEEE International Test Conference,

pages 191–199, Washington, DC, USA, 1997. IEEE Computer Society.

[70] Anuja Sehgal, Sandeep Kumar Goel, Erik Jan Marinissen, and Krishnendu

199

Chakrabarty. IEEE P1500-compliant test wrapper design for hierarchical

cores. In ITC ’04: Proceedings of the International Test Conference on

International Test Conference, pages 1203–1212, Washington, DC, USA,

2004. IEEE Computer Society.

[71] Qiang Xu and Nicola Nicolici. Wrapper design for testing IP cores with

multiple clock domains. In DATE ’04: Proceedings of the conference on

Design, automation and test in Europe, pages 416–421, Washington, DC,

USA, 2004. IEEE Computer Society.

[72] Sandeep Kumar Goel and Erik Jan Marinissen. Cluster-based test architec-

ture design for system-on-chip. In VTS ’02: Proceedings of the 20th IEEE

VLSI Test Symposium, pages 259–264, Washington, DC, USA, 2002. IEEE

Computer Society.

[73] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC

paradigm. Computer, 35(1):70–78, 2002.

[74] Fawnizu Azmadi Hussin, Tomokazu Yoneda, Alex Orailoglu, and Hideo

Fujiwara. Core-based testing of multiprocessor system-on-chips utilizing

hierarchical functional buses. In ASP-DAC ’07: Proceedings of the 2007

conference on Asia South Pacific design automation, pages 720–725, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[75] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip

packet-switched interconnections. In DATE ’00: Proceedings of the con-

ference on Design, automation and test in Europe, pages 250–256, New

York, NY, USA, 2000. ACM.

[76] Faraydon Karim, Anh Nguyen, Sujit Dey, and Ramesh Rao. On-chip com-

munication architecture for OC-768 network processors. In DAC ’01: Pro-

ceedings of the 38th conference on Design automation, pages 678–683, New

York, NY, USA, 2001. ACM.

[77] I. Saastamoinen, D. Sigüenza-Tortosa, and J. Nurmi. Interconnect IP node

for future system-on-chip designs. In DELTA ’02: Proceedings of the The

First IEEE International Workshop on Electronic Design, Test and Appli-

cations (DELTA ’02), pages 116–122, Washington, DC, USA, 2002. IEEE

Computer Society.

[78] Sashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael

200

Millberg, Johny Oberg, Kari Tiensyrja, , and Ahmed Hemani. A network

on chip architecture and design methodology. In ISVLSI ’02: Proceedings

of the IEEE Computer Society Annual Symposium on VLSI, pages 105–112,

Washington, DC, USA, 2002. IEEE Computer Society.

[79] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van Meer-

bergen, P. Wielage, and E. Waterlander. Trade offs in the design of a

router with both guaranteed and best-effort services for networks on chip.

In DATE ’03: Proceedings of the conference on Design, Automation and

Test in Europe, pages 350—355, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[80] Andrei Radulescu, John Dielissen, Santiago Gonzalez Pestana, Om Prakash

Gangwal, Edwin Rijpkema, Paul Wielage, , and Kees Goossens. An efficient

on-chip NI offering guaranteed services, shared-memory abstraction, and

flexible network configuration. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, 24(1):4–17, 2005.

[81] Cesar Albenes Zeferino and Altamiro Amadeu Susin. SoCIN: A paramet-

ric and scalable network-on-chip. In SBCCI ’03: Proceedings of the 16th

symposium on Integrated circuits and systems design, pages 169–174, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[82] Daniel Wiklund and Dake Liu. SoCBUS: Switched network on chip for

hard real time embedded systems. In IPDPS ’03: Proceedings of the 17th

International Symposium on Parallel and Distributed Processing, page 78.1,

Washington, DC, USA, 2003. IEEE Computer Society.

[83] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and

Luca Benini. xpipes: a latency insensitive parameterized network-on-chip

architecture for multi-processor SoCs. In ICCD ’03: Proceedings of the 21st

International Conference on Computer Design, pages 536–539, Washington,

DC, USA, 2003. IEEE Computer Society.

[84] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guar-

anteed bandwidth using looped containers in temporally disjoint networks

within the nostrum network on chip. In DATE ’04: Proceedings of the con-

ference on Design, automation and test in Europe, pages 890–895, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

201

[85] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. QNoC:

QoS architecture and design process for network on chip. J. Syst. Archit.:

The EUROMICRO Journal, 50(2-3):105–128, 2004.

[86] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano

Ost. HERMES: an infrastructure for low area overhead packet-switching

networks on chip. Integr. VLSI J., 38(1):69–93, 2004.

[87] John Bainbridge and Steve Furber. Chain: A delay-insensitive chip area

interconnect. IEEE Micro, 22(5):16–23, 2002.

[88] Andrew Lines. Asynchronous interconnect for synchronous SoC design.

IEEE Micro, 24(1):32–41, 2004.

[89] Edith Beigne, Fabien Clermidy, Pascal Vivet, Alain Clouard, and Marc Re-

naudin. An asynchronous NoC architecture providing low latency service

and its multi-level design framework. In ASYNC ’05: Proceedings of the

11th IEEE International Symposium on Asynchronous Circuits and Sys-

tems, pages 54–63, Washington, DC, USA, 2005. IEEE Computer Society.

[90] Tobias Bjerregaard and Jens Sparso. A router architecture for connection-

oriented service guarantees in the MANGO clockless network-on-chip. In

DATE ’05: Proceedings of the conference on Design, Automation and Test

in Europe, pages 1226–1231, Washington, DC, USA, 2005. IEEE Computer

Society.

[91] AMBA AXI protocol specification, 2004.

[92] Open core protocol specification, release 2.1a, 2005.

[93] Erik Jan Marinissen, Sandeep Kumar Goel, and Maurice Lousberg. Wrap-

per design for embedded core test. In ITC ’00: Proceedings of the 2000

IEEE International Test Conference, pages 911–920, Washington, DC,

USA, 2000. IEEE Computer Society.

[94] Fawnizu Azmadi Hussin, Tomokazu Yoneda, and Hideo Fujiwara. Opti-

mization of NoC wrapper design under bandwidth and test time constraints.

In ETS ’07: Proceedings of the 12th IEEE European Test Symposium, pages

35–42, Washington, DC, USA, 2007. IEEE Computer Society.

[95] Fawnizu Azmadi Hussin, Tomokazu Yoneda, and Hideo Fujiwara. NoC-

compatible wrapper design and optimization under channel bandwidth and

test time constraints. IEICE Transactions on Information and Systems,

202

E91-D(7):2008–2017, July 2008.

[96] Alexandre M. Amory, Kees Goossens, Erik J. Marinissen, M. Lubaszewski,

and F. Moraes. Wrapper design for the reuse of a bus, network-on-chip, or

other functional interconnect as test access mechanism. IET Computers &

Digital Techniques, 1(3):197–206, 2007.

[97] Érika Cota, Luigi Carro, and Marcelo Lubaszewski. Reusing an on-chip net-

work for the test of core-based systems. ACM Trans. Des. Autom. Electron.

Syst., 9(4):471–499, 2004.

[98] Alexandre M. Amory Eduardo Briao Erika Cota Marcelo Lubaszewski and

Fernando G. Moraes. Wrapper design for embedded core test. In ITC

’05: Proceedings of the 2005 IEEE International Test Conference, pages

591–599, Washington, DC, USA, 2005. IEEE Computer Society.

[99] Cristian Grecu, Partha Pande, Andre Ivanov, and Res Saleh. BIST for

network-on-chip interconnect infrastructures. In VTS ’06: Proceedings of

the 24th IEEE VLSI Test Symposium, pages 30–35, Washington, DC, USA,

2006. IEEE Computer Society.

[100] Xuan-Tu Tran, Jean Durupt, Francois BERTRAND Bertrand, Vincent

Beroulle, and Chantal Robach. A DFT architecture for asynchronous

networks-on-chip. In ETS ’06: Proceedings of the Eleventh IEEE Euro-

pean Test Symposium, pages 219–224, Washington, DC, USA, 2006. IEEE

Computer Society.

[101] A. Khoche. Test resource partitioning for scan architectures using band-

width matching. In Digest of Workshop on Test Resource Partitioning,

pages 1.4.1–1.4.8, Washington, DC, USA, 2002. IEEE Computer Society.

[102] Chunsheng Liu and Vikram Iyengar. Test scheduling with thermal opti-

mization for network-on-chip systems using variable-rate on-chip clocking.

In DATE ’06: Proceedings of the conference on Design, automation and test

in Europe, pages 652–657, 3001 Leuven, Belgium, Belgium, 2006. European

Design and Automation Association.

[103] Chunsheng Liu, Vikram Iyengar, and D. K. Pradhan. Thermal-aware test-

ing of network-on-chip using multiple-frequency clocking. In VTS ’06: Pro-

ceedings of the 24th IEEE VLSI Test Symposium, pages 46–51, Washington,

DC, USA, 2006. IEEE Computer Society.

203

[104] Chunsheng Liu, Hamid Sharif, Erika Cota, and D. K. Pradhan. Test

scheduling for network-on-chip with bist and precedence constraints. In

ITC ’04: Proceedings of the International Test Conference, pages 1369–

1378, Washington, DC, USA, 2004. IEEE Computer Society.

[105] Chunsheng Liu, Zach Link, and D. K. Pradhan. Reuse-based test access and

integrated test scheduling for network-on-chip. In DATE ’06: Proceedings

of the conference on Design, automation and test in Europe, pages 303–308,

3001 Leuven, Belgium, Belgium, 2006. European Design and Automation

Association.

[106] Vikram Iyengar, Krishnendu Chakrabarty, and Erik Jan Marinissen. On

using rectangle packing for SoC wrapper/TAM co-optimization. In VTS

’02: Proceedings of the 20th IEEE VLSI Test Symposium, pages 253–258,

Washington, DC, USA, 2002. IEEE Computer Society.

[107] Fawnizu Azmadi Hussin, Tomokazu Yoneda, and Hideo Fujiwara. Area

overhead and test time co-optimization through NoC bandwidth sharing.

In ATS ’07: Proceedings of the 16th Asian Test Symposium, pages 459–462,

Washington, DC, USA, 2007. IEEE Computer Society.

[108] Fawnizu Azmadi Hussin, Tomokazu Yoneda, and Hideo Fujiwara. On NoC

bandwidth sharing for the optimization of area cost and test application

time. IEICE Transactions on Information and Systems, E91-D(7):1999–

2007, July 2008.

204

