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On the Minimum Weight of Simple Full-length
Array LDPC Codes*

Kenji Sugiyama

Abstract

Low-density parity check (LDPC) codes is a class of linear block codes in-
troduced by Gallager in 1962 for error correction over communication channels.
LDPC codes show excellent performance by using an iterative message-passing
decoding algorithm, and are regarded as one of the most promising codes. In-
deed LDPC codes have been adopted as one of the standard error-control coding
techniques in some communication systems such as DVB-S2, IEEE802.16e, and
10Gbps Ethernet, but the substantial performance of LDPC codes is not fully
clarified yet. The minimum weight of a linear code has strong relationship to the
performance of the code. Much efforts have been devoted to analyze the mini-
mum weights of LDPC codes, but it is difficult to compute the exact minimum
weight of long and randomly constructed LDPC codes. To the author’s knowl-
edge, no efficient algorithm has ever been found which can compute the exact
minimum weight of arbitrary LDPC codes. On the other hand, the computation
of the minimum weight becomes easier if the LDPC code under investigation has
certain mathematical structures. For some classes of algebraically constructed
LDPC codes, the minimum weight of the code has been studied eagerly, by mak-
ing use of the mathematical structure of the code. This dissertation investigates
the minimum weight of Simple Full-length Array LDPC(SFA-LDPC) codes which
are algebraically constructed from a family of array codes. Moderate lengths and
high rates SFA-LDPC codes are recognized to achieve similar performance as ran-

domly constructed LDPC codes on the additive white Gaussian noise channel.

*Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561020, September
2, 2008.



The first part of this dissertation is to develop a procedure to check if there is
a codeword with specified weight in a SFA-LDPC code. Obviously the problem is
solvable by testing all the binary vectors with a specified codelength and a speci-
fied weight, but such an approach will suffer from huge computational complexity
caused by a large number of vectors. On the other hand, a purely algebraic ap-
proach will be too complicated if the code parameters are not small. To tackle the
problem, the author combined these two approaches; the mathematical structure
of the code is used to narrow the search space of the succeeding computer search.
Thus the investigated approach can be regarded as a hybrid of the algebraic and
the computer-oriented approaches. For example, the SFA-LDPC codes are invari-
ant under a doubly transitive group of affine permutations, which gives significant
constraint on the positions of nonzero components in a codeword. By making use
of this kind of properties, possible position patterns of nonzero components in a
codeword of a specified weight are classified into small number of subsets. Com-
puter search is then employed to test if each subset of patterns really contains
a codeword with the specified weight. The proposed procedure revealed exact
minimum weights of some SFA-LDPC codes, which were not known previously.

The second part of this dissertation gives analytical upper-bound limits of
the minimum weights of some classes of SFA-LDPC codes. An SFA-LDPC code
is defined according to two integer parameters, but the experimental results ob-
tained in the former half of the dissertation suggest that the minimum weight
is independent of one of the parameters. From the results, a strong conjecture
arises that the minimum weights of SFA-LDPC codes with column weight four
and five are upper bounded by 10 and 12, respectively. This conjecture is pos-
itively proved in the second part of the dissertation. By combining the results
with previously known lower-bound limits, we can conclude that the minimum
weights of the SFA-LDPC codes with column weight four is exactly 10 and those

of column weight five is 10 or 12.
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Chapter 1

Introduction

1.1. Error Control and Low-density Parity Check
Codes

In the modern information society, people communicate each other over com-
puter networks such as the Internet. Media that are used to convey information
are called communication channels, or simply channels. A computer network
is a network of channels that connect computers and convey digital data. The
“communication” discussed in this dissertation is defined as a transmission of dig-
ital data over a channel. There are many different communication channels but
the channels are usually noisy; transmitted data may be changed and/or lost by
noise which occurs on the channel. Thus, to realize high-quality network commu-
nication, it is necessary to provide error-free communication systems. An error
correcting code is one of the most essential technologies for implementing reliable
communication system. Modern error correcting codes can increase reliability of
communications with less drawback than simple and naive techniques such as the
increasment of transmission energy and re-transmission of damaged data.

In 1948, Shannon published a historical paper[12] which discusses the signif-
icance and the limit of error correcting codes. Figure 1.1 shows the model of
digital communication system considered by Shannon. Certain information is
generated at an information source and the information is provided to an encoder

as a sequence of symbols. The encoder transforms, or encodes, the sequence into



codeword

Source
E— E— E— —> U
message Encoder Decoder ser

Noise

Figure 1.1. The digital communication system

a codeword, and transmits the codeword over a channel. The channel is noisy
in general, and the transmitted codeword can be modified by the noise. At the
recipient end, the decoder tries to detect and correct errors to estimate the trans-
mitted codeword. A code which is the set of codewords must be designed so
that the degradation caused by the noise is as small as possible. A number of
researchers devoted their efforts for this sake, and the studies now constitute a
significant portion of the Information Theory.

The importance of linear codes was found in the very beginning of the study
of the Information Theory. A code is said to be linear if its codewords constitute
a linear space. A number of fine mathematical properties of linear spaces make
linear codes useful. For example, a linear space has a basis, and an arbitrary
element in the space is represented as a linear sum of elements in the basis.
This property contributes to realize an efficient encoder using a generator matriz.
Parity check equations are derived from the generator matrix, and the matrix
representation of the equations defines a parity check matriz. The product of the
parity check matrix and a received vector is a syndrome, and the syndrome can
be regarded as a fingerprint of the error which might be involved in the received
vector. In summary, linear codes are considered as efficient, practical and useful
from engineering viewpoints.

The minimum distance is one of the most important parameters which are
to measure the ability of error correcting codes. The minimum distance is the
smallest Hamming distance between two different codewords in the code, where
Hamming distance is the number of symbol positions in which given codewords
(vectors) differ. If the minimum distance of a code is d, then the code can correct
up to |(d — 1)/2] bit errors occurred in one transmitted codeword. Hence the

minimum distance directly affects the ability of the code, and a number of efforts



have been made to construct codes with large minimum distance. In the case
of linear codes, the minimum distance equals to the minimum weight which is
defined as the smallest Hamming weight of non-zero codewords of the code. This
property simplifies the discussion of minimum distance of linear codes.

For long years, the minimum distance has been a focal point in the design of
good error correcting codes. A number of codes have been proposed in 1960’s and
70’s, and they were often evaluated by the minimum distance. In other words, a
code was considered to be good if it has large minimum distance (and additionally,
if it has a reasonably efficient decoding algorithm). The most successful approach
in this direction was to make use of algebraic properties to design linear codes.
Algebraic codes such as the BCH and Reed-Solomon codes were proposed in those
era, survived for several decades and are still widely used in many information
and communication systems today. Those algebraic codes have fine mathematical
structures, though, their performance is far less than the theoretical limit shown
in the Shannon’s noisy channel theorem. It is believed that the performance will
be improved if we consider algebraic codes with large parameters, but such large
algebraic codes will suffer from massive decoding complexity, and not be practical
at all.

The low-density parity check codes(LDPC codes) were introduced by Gallager
in 1962, but have been forgotten for long years. An LDPC code is a linear block
code whose parity check matrix is very sparse, meaning that most components of
the matrix is zero. Gallager considered an iterative message passing algorithm on
a bipartite graph which is defined from the parity check matrix, and showed that
the algorithm works effectively when the graph is sparse. He also showed that
the performance of the code, combined with the iterative decoding algorithm,
improves as the code length increases. However, with the technology of that
time, it was difficult to realize practical encoders and decoders for such a long
LDPC code. With moderated size, the performance of LDPC codes is not as
good as other algebraic codes, and actually, the minimum distance of LDPC
codes is smaller than that of algebraic codes with almost the same parameters.
Consequently many people considered LDPC codes impractical, and the study
of LDPC codes has been suspended for long years. In late 1990’s, stimulated

by the study of Shannon-limit approaching Turbo codes and iterative decoding



algorithms, some coding theorists re-discovered the LDPC codes. The technology
have developed significantly, and now we will be able to realize practical encoders
and decoders for relatively large LDPC codes, and the codes achieve performance
which is very close to the Shannon-limit.

After its re-discovery, a number of people have worked on the LDPC codes. For
a certain time, no criteria were known for constructing good LDPC codes; people
constructed a parity check matrix randomly, and verified if the obtained code
shows good performance or not. Later, some coding theorists brought algebraic
methods, which were once used to construct algebraic codes in 1960’s, and tried
to use the methods for constructing good LDPC codes. The most remarkable
outcome of the study is the discovery of Quasi-Cyclic LDPC codes. Compared to
the randomly constructed LDPC codes, we can have more control on the design
of Quasi-Cyclic LDPC codes, which means that we are able to obtain powerful

and manageable LDPC codes.

1.2. Code Parameter and the Minimum Weight

This dissertation discusses the minimum weights of a certain subclass of LDPC
codes. An error correcting code is characterized by a number of parameters
which have strong relation to the performance of the code. Roughly speaking,
such parameters can be classified into two types; parameters which are oriented
to the representation of the code, and parameters which are oriented to the code
itself. An example of the first type of parameters is the girth of the code. The
girth of an LDPC code is the size (length) of the shortest cycle in the Tanner
graph of the code, where the Tanner graph is a bipartite graph whose incident
matrix is the parity check matrix of the code. Note that a single code can be
represented by many different parity check matrices, and the girth depends on
the representation of the code. In the discussion of LDPC codes, the girth is
considered to be a significant parameter because it affects the performance of the
code under a message-passing decoding algorithm. If the girth is small, then the
performance of the message-passing algorithm is far beyond that of the optimum
(maximum likelihood) decoding algorithm. A typical parameter which is oriented
to the code itself is the weight distribution of the code. The weight distribution



is the distribution of the number of codewords grouped by Hamming weight.
Theoretically saying, the optimal performance of the code is fully determined
by the weight distribution, but it is quite difficult in general to reveal the weight
distribution in many cases. When the weight distribution is not available, we may
approximate the performance by using the number of minimum weight codewords
only. To determine the number of minimum weight codewords is much easier than
to determine the weight distribution completely, and to compute the minimum
weight is the first step to determine the number of minimum weight codewords.

However, it is difficult in general to analyze the exact minimum weight of long
practical LDPC codes. It is known that the problem of computing the minimum
weight of a binary linear code is NP-hard in general, and the corresponding deci-
sion problem is NP-complete[17]. The complexity can be reduced for structured
codes, but the author could not find research results in that direction. Tanner
discussed in [16] certain bounds on the minimum weights of LDPC codes by uti-
lizing the Tanner graph. Hu and Fossorier proposed a probabilistic procedure to
compute the minimum weight of LDPC codes by using a decoding algorithm for
LDPC codes[7], and Hirotomo et al. proposed another probabilistic procedure|[6]
which utilizes the Stern’s algorithm. To the author’s knowledge, though, no effi-
cient algorithm is known for computing the exact minimum weight of arbitrary
LDPC codes. On the other hand, there are some results on the minimum weight
of LDPC codes which have certain mathematical structures. MacKay showed that
the minimum weight of regular-Quasi-Cyclic LDPC codes with column weight j
is less than or equal to (j+1)![9], and Fossorier discusses the minimum distance of
Quasi-Cyclic LDPC codes from circulant permutation matrices[4]. Mittelholzer
has derived in [11] some upper-bound limits of the minimum weights of certain
array LDPC codes[2]. Array LDPC codes is a class of Quasi-Cyclic LDPC codes
which are algebraically constructed from a family of array codes[l, 3]. Mittel-
holzer assumes some more additional conditions on the array LDPC codes, and
thus it will be better to distinguish the investigated class from the class of gen-
eral array LDPC codes. In this dissertation, let us name simple full-length array
LDPC codes (SFA-LDPC codes) for the class of LDPC codes.

Mittelholzer showed that the minimum weight of the SFA-LDPC code with

column weight 4 is 12 or less[11], which significantly improves the upper-bound



limit (44 1)! = 120 given by MacKay [9] for the general regular case. Mittelholzer
also showed that the minimum weights of SFA-LDPC codes with column weight
5 and 6 are upper-bounded by 20 and 32, respectively[11]. The study of Mittel-
holzer is followed by Yang in [18]. Mittelholzer discussed the upper-bound of the
minimum weight of SFA-LDPC codes, but Yang discusses its lower-bound. With
very careful analysis, Yang showed that the minimum weight of the code is 10 or
more if the column weight is 4 and the code length is 49 or more. Together with
the Mittelholzer’s upper-bound, this result implies that the minimum weight of
SFA-LDPC codes with column weight 4 is either 10 or 12, because the code does
not have odd-weight codewords. For the cases of column weight 5 and 6, we know
that the lower-bounds of the minimum weights are 10 since the minimum weight
of those codes are greater than or equal to that of corresponding SFA-LDPC codes
with column weight 4. Together with the upper-bounds given by Mittelholzer,
we have that the minimum weight of an SFA-LDPC code with column weight 5 is
greater than or equal to 10 and less than or equal to 20. Similarly, the minimum
weight of an SFA-LDPC code with column weight 6 is greater than or equal to
10 and less than or equal to 32.

1.3. SFA-LDPC codes and the Contribution of

this Dissertation

An SFA-LDPC code is defined according to two integer parameters p and j. Let
C4(p, j) denote the SFA-LDPC code defined by given p and j. Roughly speaking,
taking p larger makes the code length longer and code rate higher, while taking
j larger makes the code rate lower. Consequently it is naturally expected that
taking p large, with j fixed, degrades the performance of the code in general. It
is also known that the Tanner graph of an SFA-LDPC code does not contain a
cycle of length four, but the graph contains many cycles of length six. Hence it
is conjectured that the iterative message-passing algorithm will not pull out the
full performance of the SFA-LDPC codes.

In spite of these negative conjectures, SFA-LDPC codes with large p show very
good performance. Figures 1.2 and 1.3 show the block and bit error performances

of C4(p, 4) for several p (The figures are on pp.9-10). The horizontal axis of each



Table 1.1. Code parameters of Figures 1.2, 1.3

p | code length | information bits | rate
13 169 120 0.710
17 289 224 0.775
19 361 288 0.798
23 529 440 0.832
29 841 728 0.866
31 961 840 0.874

graph indicates Ep /Ny, the signal energy per bit to noise power spectral density
ratio (SNR), and the vertical axis shows the block error rate (bit error rate, in the
Figure 1.3) in the logarithmic scale. Table 1.1 shows the code length, the number
of information bits and the code rate for each value of p. Note that the code
rate increases as the value of p increases. The decoding algorithm is the standard
sum-product decoding algorithm with twenty iterations at maximum. For low
SNR, shorter codes, which have smaller code rate, show better performance than
longer codes. This seems obvious if we consider the code rate and the performance
of the code. On the other hand, for SNR more than 4.0dB, the curves cross
and longer codes show better performance than shorter codes. It is difficult to
explain this phenomenon in terms of the rate and the girth of the code. To reveal
the mechanism behind this strange behavior of SFA-LDPC codes, the weight
distribution of SFA-LDPC codes will be a great help. However, as we have seen
in the previous section, even the minimum distance has not yet been determined
for SFA-LDPC codes. The main objective of this dissertation is to clarify the
minimum weight of SFA-LDPC codes, and try to reveal the mechanism behind
the results shown in Figures 1.2 and 1.3.

The basic approach considered in this study is to make use of computer search
combined with the mathematical analysis taken by Mittelholzer and Yang. The
approach given by Yang is powerful, but the analysis becomes too complicated
if the code parameters are not small. To tackle the problem, the author first
combined Yang’s algebraic analysis together with computer search. Starting from
Yang’s work, the author developed some notions related to the minimum weight

codewords of C'4(p, 7). The notion can be used to restrict possible support sets of



the code, and contributes to prune hopeless computation in the computer search.
The author implemented the idea as a computer program, and computed the
exact minimum weights of C'4(p, j) with moderate parameters. The results will
be presented in Chapter 3 in detail. From the results, the minimum weight of
C(p,4) was discovered as 10, and that of C's(p,5) was 12 as far as the program
examined.

The semi-experimental results in the former half of the dissertation suggest
the conjecture described below, and the latter half of the dissertation is devoted
to proving the conjecture positively. The exact minimum weights were revealed
for several SFA-LDPC codes, and the author found that C4(p,4) is 10 for all
prime numbers between 11 and 79. The minimum weight of C4(p,4) was not
known for p > 79, but according to the semi-experimental results, it seems that
Cu(p,4) is 10 for all p > 13. To show this conjecture analytically, minimum
weight codewords are collected by modifying the computer program developed in
the former half of the dissertation, and classified according to a certain criteria.
As the result of the classification, it can be shown that each of C4(p,4) with
p > 11 contains a special codeword, and the special codewords share a structure
which is independent of p. By carefully analyzing the structure, it can be shown
that C'4(p,4) always contains a codeword with weight 10 for any p > 7. Similarly,
it is shown that C4(p,5) always contains a codeword with weight 12. Detailed
discussion for the above proof will be given in Chapter 4 of the dissertation. By
combining the results with previously known lower-bound limits, we can conclude
that the minimum weights of the SFA-LDPC codes with column weight four is
exactly 10 and those of column weight five is 10 or 12.
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Chapter 2

Preliminaries and Basic

Observations

In this chapter, the definition of the considered class of LDPC codes and some
properties of the code are reviewed. These properties are required to discuss the
minimum weight test procedure that will be dealt in Chapter 3 and to give the
proof of the minimum weights of some classes of LDPC codes that will be dealt
in Chapter 4.

2.1. Simple Full-length Array LDPC Codes

Let p be a prime number, and k£ and j be integers satisfying k£, j < p. The binary
array LDPC code C(p, j, k) is a null space of the pj x pk binary matrix

I I I e I

1 P P2 e pk-1
Huy(p,j.k)=|1 P? 2 co. p2k-1)

I pi-t pG-v2 ... pG-1k-1)
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where [ is the p x p identity matrix and P is a cyclic shift matrix defined by

0 0
10 -+ 00
P=|01-- 00
00 -~ 10

Every row and column of P" contains a single 1 with Os everywhere else. If we
write P" = [a;;] (1 < 1,7 < p),

a; =1 (l=i4+n (mod p)),
ap; =0 (otherwise).

The matrix H4(p, j, k) is the parity check matrix of the code Cs(p, j, k).

Now let us consider a special case such that £ = p, and call this special array
LDPC code a simple full-length array LDPC code (SFA-LDPC' code for short).
The “array LDPC codes” discussed in [11] and [18] are indeed this SFA-LDPC
code. For simplicity, C4(p, j, p) and Ha(p, j, p) are respectively written as C4(p, j)
and H4(p, j). Let d(p,j) denote the minimum distance of C'(p, j). The rate of

Ca(p,j)is1— %, because the rank of Ha(p,j) is pj — j + 1. (The rate
p

of a code is the ratio of the number of information bits to the total code length.
Besides, the rank of the parity check matrix determins the number of rows of the
matrix that are linearly independent and this number equals to the number of
parity check bits in a codeword. The total code length is the sum of the number
of information bits and the number of parity bits.)

It can be easily shown that column vectors in H4(p, j) are all different. It is
also obvious from the definition that a column vector of H,4(p, j) can be decom-
posed into j subsequences each of which has length p and weight one. That is,
if we write Ha(p,j) = [hy] (1 <i < p*? and 1 <1 < pj), then the weight of the
subsequence

Pp(r—1)41,3

BT — hp(r—1)+2,z'

hp(r_l)'i'p:i

12



is exactly one for any 1 < i < p? and 1 < r < j. Because each subsequence of
any column vector of H4(p, j) has exactly weight one, every codeword in C4(p, j)
has an even weight (since the sum of odd column vectors can not be zero in the
modulus of 2).

For a vector v with weight one, let ¢(v) denote the position of the nonzero
component in v where the position of the first component of v is regarded as zero.
For example, ¢((0,1,0,0)") = 1 and ¢((0,0,0,1)7) = 3. The value of ¢ is not

defined for a vector whose weight is not one. Extend this notation ¢ to a column

vector
hy
hz1 hp,i
b R || Pt
h! hop.i
hpj.i
of Ha(p,7) in such a way that
¢(h;)
o(h;) = :
¢(h;)

and also extend ¢ to the matrix H(p, ) as

O(Ha(p,5)) = [9(h1), ..., (hy2)].

For example, the parity check matrix of C4(3,2)

(100 100 10 0]
010010010
H(3.2) = 0010071001
100001010
010100001
(001010100 ]|

13



is written by the ¢-representation as

01201201 2

PHAB2) =10 1 5 190201

(2.1)
Note that H4(p, j) and ¢(H4(p, j)) are freely interchangeable. In other words, ¢
is just to represent H4(p, j) in a compact manner.

Lemma 2.1 For an integer i with 1 < i < p?, let k and k' be integers satisfying
i=pk+k and 1 < k' <p. The i-th column vector of ¢(Ha(p,j)) can be written
as

(K =1,k —1+4+k,....,K =14+ (j — k)T (mod p).

Proof.  H4(p,j) has j x p blocks and each block has size p x p. Now let h] be
the r-th component of i-th column vector of ¢(Ha(p,j)), where 1 < r < j and
1 < i < p?. Two parameters k and k' are obtained by

kzti;ﬂ,

k' =i — pk.

Thus, from the construction of H,(p,j), ¢(h;) is k' — 1, since h; is the k'-th
column of I, where I is the p X p identity matrix. The i-th column vector of the
parity check matrix is in the (k+2)-th column-block (because 0 < k < p). Hence,
o(hl) is (k' — 1) + (r — 1)k, since A} is the k’-th column vector of PU—1D(¢+1)
Lemma 2.1 means that components in a column vector in ¢(H4(p, j)) constitute
an arithmetic sequence. The next lemma implies that two different column vec-
tors in ¢(Ha(p,j)) cannot have two or more common components in common

positions.

Lemma 2.2 Consider two different columns ¢(h;,) and ¢(hi,) in ¢(Ha(p,J))
(thus i1 # 19 and 1 < 41,1y < p?). The vectors ¢(h;,) and ¢(h;,) have no two
components in common, that is, if the ji-th components of ¢(h;,) and ¢(h;,) are
the same, then, for any other jo with j; # jo and 1 < jo < j, the jo-th components
of ¢(h;,) and ¢(h;,) cannot be the same.

14



Proof.  Let ky, k7, ko and K, be integers satisfying iy = pk; +k} and iy = pko+ k.
If there is an integer j; in the proposition of the lemma, then

Ki—1+ (1 — 1k =k — 14 (j1 — 1)k mod p,
ki — 14 (o — Dk =ky— 1+ (j2 — 1)k2 mod p,
from Lemma 2.1. The equations reduce to (ky — k2)(j1 — j2) = 0 mod p, but this

cannot happen because both of (k; — ko) and (j; — jo) are relatively prime to p,
a contradiction. I

Definition 2.3 A collection of integers q1,qa, . . ., q, s said to satisfy the cancel-

out condition if no integer appears odd times in q,qa, . .., Q.

Lemma 2.4 Let vq,...,v, be binary vectors with length p and weight one. We
have that vy + -+ - 4+ v, = 0 mod 2 if and only if the collection ¢(vy),...,d(vy,)

satisfies the cancel-out condition.

Proof. 1t is obvious from the fact that the sum is taken in the modulus of two
and from Definition 2.3. 1

2.2. Support Matrices

Let v = (v1,...,vp2) be a binary vector of length p?. The vector v is a codeword
of Ca(p,j) if and only if Ha(p,j)v" = Y h; = 0. Thus, v € Cu(p, j) if and
1<i<p?

v;=1

only if the sum of all column vectors in
{hill <i<p? v =1}
equals to zero in the modulus of two. Now define
supp(v) = {¢(hy)|1 < i < p* 0 =1},

and call it the support' of v. The support contains the column vectors of ¢(H(p, 7))

which correspond to nonzero components of v. If the weight of v is w, then

IThe word “support” is often used to denote the set of positions of nonzero components in
a vector, but the word is used in slightly different manner in this dissertation.
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supp(v) contains exactly w column vectors because all column vectors in H4(p, j)
are different. Order these w column vectors in an arbitrary way, and construct a
matrix Sy = [$1,. .., Sy]. This matrix is called a support matriz of v. By applying

Lemma 2.4 to each row of Sy, we have the following corollary.

Corollary 2.5 The vector v is a codeword of Ca(p,j) if and only if the cancel-
out condition holds for any row of Sy. In this case let us say that Sy satisfies the

cancel-out condition.

For example, v; = 100101001 is a correct codeword of C4(3,2) but vy =
100101000 is not. Their support matrices are

00 2 2 00 2
Sy = ., Sy, =
o [0101] ”[010]

from ¢(HA(3,2)) (given in (2.1)). The matrix Sy, satisfies the cancel-out condi-
tion, but Sy, does not. (2 occurs only once in the first row, and 1 occurs only
once in the second row).

It is easily understood that C4(p, j) contains a codeword of weight w if and
only if ¢(H 4(p, j)) has a sub-matrix which has w columns and satisfies the cancel-

out condition.

2.3. Known Results

In this section, known results on the minimum weights of SFA-LDPC codes are

summarized.

For the case j =2 We can easily show that d(p,2) = 4 for any prime number
p=>3.

For the case j =3 Yang et al. has shown that d(p, 3) = 6[18]

For the case j = 4 Mittelholzer showed that d(p,4) is 12 or less[11]. Yang
showed that d(p,4) = 8 for p = 5 and p = 7, and that d(p,4) is 10 or
more if p > 7[18]. Therefore d(p,4) with p > 7 is either 10 or 12.
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For the case j =5 Mittelholzer showed that d(p, 5) is 20 or less[11]. The lower-
bound of d(p,5) with p > 7 is 10 or more, which is obtained from Yang’s
result for j = 4, and a simple observation that d(p, j;) > d(p, j2) if j1 > jo.

For the case j = 6 Mittelholzer showed that d(p, 6) is 32 or less[11]. The lower-
bound of d(p, 6) with p > 7 is 10 or more, as in the case j = 5.

2.4. Additional Remarks

This chapter gave the definition of SFA-LDPC codes and some properties of
SFA-LDPC codes. The construction of array LDPC codes has an algebraic struc-
ture analogous to Reed-Solomon codes. SFA-LDPC code has maximum code-
length among all array LDPC codes with same p and j. Thanks to this prop-
erty, SFA-LDPC codes are invariant under a doubly transitive group of affine
permutations[18, Lem2]. On the other hand, general array LDPC codes are not
invariant under this group of permutations in general. For example, suppose that
p=25,7=3and k =4 (Figure 2.1). The parity check matrix of this (general)
array LDPC code has 3 x 4 blocks while that of SFA-LDPC codes has 3 x 5 blocks.
If the 7th column vector of the parity check matrices (the left boxed vector in fig-
ure 2.1) is mapped by an affine permutation of the form ¢(v7) — 2¢(v7) + ¢(v11),
the image is not included by the parity check matrix of the (general) array LDPC
code, but included by the parity check matrix of the SFA-LDPC code. Because

2 0 2
2¢(’U7) + (ﬁ(’UH) = 4 —+ 2 == 1 = (ﬁ(’l)gg)
6 4 0

in the modulus of 5 (This image (2,1, 0)” is the right boxed vector in figure 2.1).
The parity check matrix of the SFA-LDPC codes has no lack columns and thus
closed by double transitive group of affine column permutation. This property
gives significant constraint on the positions of nonzero components in a codeword

that if C4(p, j) contains a codeword with weight w, then there exists a codeword
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SFA-LDPC:k=p=5
AN

— —
array L.LDPC

(100001(00001000010000[10/0/00"
010000/2000010000100001000
001000/0100001000010000100
000100/00100001000010000110
00001000010000100001000012
100000/00010001000100/01/0/00
010001/0000000010001000100
H.5,3)= | 001000{1/0001000000001/00/0]10
000100/0100010001000000001
000010/00100010001000/10000
1000000/0100100000001/002/00
01000000010010010000/000120
001001/00000001001000000012
000100/10000000100100j20000
. 0000200100100000001001000 |

Figure 2.1. C4(p, j) is closed by doubly transitive group of affine permutations

whose weight is w and its first symbol is nonzero (i.e. one). This is because if
there exists a codeword v whose weight is w, then we can always make a mapping
® such that the first symbol of ®(v) is nonzero[18, Lem2]. Thus, one can show
that the upper-bound limit of C'4(p,j) is w by the above property that there
exists a codeword with weight w and its first symbol is nonzero. This property

will be often used in the following chapters.
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Chapter 3

Procedure for the Weight Test

In this section, the weight test procedure is presented. First, certain classes of
support matrices are considered, and then, the classes are checked if they have a

support matrix which fulfills the cancel-out condition or not.

3.1. Constraints on Positions of Zeros

Let us consider conditions and properties of the check and support matrices of
SFA-LDPC codes.

Yang has shown that Ca(p,j) is closed by doubly transitive group of affine
permutations[18, Lem2]. Using this property, one can show that if C'4(p, j) con-
tains a codeword with weight w, then there exists a codeword whose weight is
w and its first symbol is nonzero. Let v be such a codeword, Sy = [s,;] be the
support matrix of v, and s; denote the i-th column vector of Sy. From the above
property and the definition of H4(p, j), the first column of Sy is an all-zero col-
umn vector, that is, s;; = -+ = s;; = 0. (To make the following discussion
simpler, let the indices of s, ; start from 1.)

From Lemma 2.2 and the fact that s; = 0, a column vector s; with 2 < <
w contains at most one zero (refer this property as P1). On the other hand,
Corollary 2.5 assures that Sy must satisfy the cancel-out condition and therefore
it is necessary that each row of Sy must contain even number of zeros. Because
the first column s; has zeros on every row, each row must contain at least one

zero between the second to the w-th column positions to “cancel” the zero on the
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first column (refer this property as P2). Note that satisfying the both properties
P1 and P2 is a necessary condition for v to be a correct codeword.
Now, suppose that s; ; = 5141 for any odd k& with 1 <k < w. Then, 5,9 =0

and s, 9 = (r—1)sq9 for 2 <r < j from Lemma 2.1. Therefore Sy can be written

as;
0 0 €1 €1 tee 6%,1 6%,1
0 52,2 52,3 S24 | | S2w—-1  S2w
0 2899 S$33 S34 |7 | S3w-1 S3w |, (3.1)
L0 (G —D)sa2 | Si3 Sja| | Sjw-1 Sjw |

where ¢; with 1 < 7 < % — 1 satisfies 0 < ¢; < p — 1. In the following, let
us consider collocations of zeros (distribution of positions of zeros) in support
matrices which satisfy the properties P1 and P2. Recall that Sy is a set of
column-vectors. If we restrict several positions in a support matrix to have zero,
then we can define a class of support matrices which satisfy the given restriction

on the positions of zeros.

3.2. Collocation of Zeros in a Support Matrix

To deal with a class of support matrices, the notion of a zero locater is introduced.
A zero locater for a weight w vector is a w-tuple z = (z1, ..., z,) satisfying the

following conditions.

o z;e{l,...,j}U{o,0} for 1 < i < w where o and [J are special symbols,

and
e no integer appears more than once in z.

Intuitively, a zero locater is to give constraints on the positions of zeros in
a support matrix. If z; with 1 < ¢ < w is an integer, say k, then it says that
the i-th column vector of a support matrix must have zero at the k-th row (No
constraints are given for other row positions of the vector). If z; = o, then the
i-th column vector of a support matrix must be a zero vector, and if z; = [,

then there is no constraint (on the positions of zeros) concerning the i-th column
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vector. In this chapter, support matrices are considered to be in the form (3.1),
thus the first two components are always assumed that z; = o and z, = 1.

Let us say that a support matrix Sy = [s,;] of a vector v (with weight w)
fulfills the zero locater z if Sy is of the form (3.1) and the (z;,47) component of
Sy is zero for all z; with z; # o,[. Let us also say that a vector v fulfills the zero
locater z if at least one of the support matrices of v fulfills z (remind that the
order of column vectors in a support matrix can be changed). Let V(z) denote
the set of vectors (of weight w) which fulfill the zero locater z. An example of
these notions will be given in Section 3.4.

The following lemmas can be shown easily because we can change the order

of column vectors in a support matrix.

Lemma 3.1 If

z = ( <oy R2%k41y Z2k42 - - -);

ZI = ( sy R2k42y R2k+1y - - .),

(the (2k + 1)-th component and the (2k + 2)-th component are exchanged), then
V(z) = V().

Lemma 3.2 If

z = ( <oy R2kA41y R2k42y + vy R2KI 415 A2k 425 - - ')7

!
z = ( co s R2KI 41y A2k 42y - v vy B2k 15 A2k42y - - ')7

(two couples of column vectors are exchanged), then V(z) =V (2').
The following lemma associates zero locaters and the properties P1 and P2.

Lemma 3.3 If the support matriz of a vector v satisfies the properties P1 and
P2, then there is a zero locater which v fulfills. That is, for a certain zero locater
z=(21,...,20), v € V(2).

Remind that the properties P1 and P2 are necessary conditions for a vector

to be a codeword. Thus we have the following corollary.

Corollary 3.4 For a codeword v, there is a zero locater z = (0,1, 23, 24, - . -, Zu)
satisfying v € V(z).
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3.3. Procedure for the Weight Test

Summarizing the above discussion, we can consider the following procedure to

determine if there is a codeword of weight w.
1. Enumerate all of zero locaters of the form z = (0,1, 23, 24, . . ., Zw)-

2. Find support matrices (choices of column vectors of ¢(Ha(p,j))) which

fulfill the zero locater.
3. Verify if the support matrix satisfies the cancel-out condition.

If the above procedure can find a support matrix which satisfies the cancel-out
condition, then there exists a codeword of weight w. If it cannot find such a

matrix, then the code does not contain codewords of weight w.

3.3.1 Enumerate all of zero locaters

To realize the procedure shown above, all of zero locaters must be enumerated.
This can be done by the following recursive procedure. To simplify the descrip-
tion, we consider that obtained zero locaters are included in the set 7', which is
used as a “global variable” in the procedure. At the beginning, 7" is initialized
as an empty set. Zero locaters which are newly found during the execution of
the procedure are added to 7. When the procedure complete the computation,

T contains all zero locaters.

procedure zero-loc(z, R, i): z is a zero locater, R C {1,...,j} is a set of row

positions which are not used in z, and ¢ is a column position.
1. Let r be the smallest integer in R, and let R <— R\ {r}.

2. Let 2’ be the zero locater which is obtained from z by replacing the i-th

component in z with r.
3. If R =0, then include 2’ in T and return (to the upper recursion level)
4. If 1 4+ 2 > w, then return with 7" unchanged.

5. Execute zero-loc(2', R, i + 2).
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6. For each ' € R do the following (a) and (b)

(a) Define 2!, as the zero locater which is obtained from 2’ by replacing

the (i + 1)-th component in 2z’ with r'.

(b) If R\ {r'} = 0, then include 2!, in 7" and return. Otherwise execute
zero-loc(z,,, R\ {r'}, i+ 2).

7. return

end procedure

Let zg = (0,1,0,...,0). By executing zero-loc(zg, {2,...,7}, 3), all of

zero locaters of the form z = (0, 1,2, 24, ..., 2,) are included in 7.

3.3.2 Constructing Support Matrices

For a obtained zero locater z = (0, 1, z3, . .., 2,,), support matrices which fulfill z
can be computed by the following procedure. The collocation of zeros in a class of
support matrices is uniquely determined by fixing a zero locater. Let Sy = [s, 4]
be the support matrix which is going to be constructed by the procedure, where
1<r<jand 1<k < w. Recall that s; = 0 and the first row was composed so
that the row fulfills the cancel-out condition.

From the construction of the parity check matrix of SFA-LDPC code, there
are p column vectors in ¢(H(p, j)) such that its r-th element is zero. Let Aq(r)
be the set of column of ¢p(H (p, j)) such that

Ag(r) ={k|1 < k < p* h,y, = 0}

and A(r) be the set such that A(r) = Ag(r) \ {1}. For instance, if p = 3,j = 2,
then the set the set Ay(2) is {1,6,8} and the set A(2) is {6,8} since the matrix
#(Ha(3,2)) is given by

012012012
012120201/
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procedure weight test

forr=2,3,...,7

1. compute an integer i € [3,w] such that z; = r. From the construction of

the zero locater, there exists such an integer uniquely.

2. The set of candidate column vectors for s;, the i-th column of Sy, is A(r). If
the first row of s; is already restricted, then the candidate of s; is determined

uniquely.

Enumerate all candidates in the back-track manner and perform the follow-

ing operations for each assignment.

3. For the rest of column positions of Sy, perform an exhaustive search for
column vectors.
During the exhaustive search, it is possible to use some criteria to abandon
hopeless computation. For example, assume that w = 6 and the proce-
dure has determined four column vectors si,...,s4 of Sy. If, for example,
s91 = 0, 5290 = 1, 593 = 2 and sy4 = 3, then the procedure can abandon
the current search trial because it is impossible to choose two column vec-
tors and make the second row of Sy satisfy the cancel-out condition since
at least four more vectors are needed to make the second row satisfy the
cancel-out condition. By making use of this kind of criteria, we can skip
hopeless computation and make the procedure much more efficient than

straightforward search algorithms.

4. For each of constructed support matrix, check if the cancel-out condition
holds or not. If the condition holds, then the code Cy4(p,j) contains a

codeword of weight w.

end for

end procedure

3.4. Example

Consider C4(5,3) code whose parity check matrix (¢-represented) is given in

Figure. 3.1. First, consider if C4(5,3) contains a codeword of weight four. If
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01234012340123401 2
G(HA(5,3)=|01 2341234023401 340
01234234014012312 3
34012 34
1240123
4034012

Figure 3.1. ¢ representation of the parity check matrix H4(5, 3)

there exists such a codeword, then the support matrix of the minimum weight

codeword must be written as

0 0 €1 €1
S = 0 522 0 524 . (32)

0 532 53,3 0

Vectors whose support matrices are in this form belong to V' (z) where z is a zero
locater defined as z = (0,1,2,3). If e; in (3.2) is chosen to be 1, then the third

and the fourth columns of S are determined uniquely and S must be written as

0 0 11
S = 0 52,2 0 3
0 53,2 4 0

To make this matrix satisfy the cancel-out condition, the second column must
be (0,3,4)T, but such a column is not in H4(5,3). Thus the choice of e; = 1
is faulty. We can see easily that even if we choose e; different from 1, it is not
possible to make S satisfy the cancel-out condition. Therefore, C4(5,3) does not
contain codewords of weight four.

Next, consider if C'4(5,3) contains a codeword of weight six. In this case, we
need to consider two zero locaters z; = (0, 1,2,3,00,0) and 29 = (0,1,2,0,3,0)

which intuitively correspond to

0 0 €1 e ey e
Si= 10 s92 0 s24 So5 So6 | (3.3)

0 832 533 0 535 536
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and
0 0 €1 €1 €9 €9

So= 10 s92 0 s34 S25 So26 | (3.4)
0 s32 s33 s34 0 s36
respectively.
Choosing e; = 1 in S results in

0 0 1 1 ey €2
S1=10 520 0 3 525 526 |

0 53,2 4 0 S35 53,6

we have four choices for the second column vector because H,4(5,3) have four
unused column vectors whose first component is zero. If we choose e = 0 or
es = 1, then four out of six components in the second row of S; must have
different values, and S; cannot satisfy the cancel-out condition. Thus e; must be
either of 2 or 3 or 4. For each choice of e;, we have 5C5 choices for the third and
the fourth columns in S;. Thus, there are 4 x 3 x5 Cy = 120 patterns for the
choice of column vectors for S; above. Computer search showed that none of the
120 patterns satisfy the cancel-out condition, and therefore the choice of ey =1
is faulty. In a similar way, we can verify that there is no support matrix which is
in the pattern of (3.3) and satisfy the cancel-out condition.

For support matrices in the pattern of (3.4), choose e; = 1 and e; = 3 for
example. This uniquely determines the third and the fifth columns of S, and
allows 4 choices each for the fourth and the sixth columns. Now consider to

choose the two columns so that

0 0 11
SZ — 0 S22 0 4
0 53,2 4 2

S = W

3
1
4

If we can choose so that s;9 = 1 and s3» = 2, then Sy satisfies the cancel-out
condition. Indeed, the sixth column in ¢(H4(5,3)) is exactly (0,1,2)”. Thus we
found a support matrix which satisfies the cancel-out condition. The codeword

which corresponds to the support matrix

113 3
0 4 4 1
4 2 0 4
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Table 3.1. Minimum weights of C4(p, j)
plj=4]J=5]j=6|j=T7
d 8*
7 8* 12 12 -
11 10 10 16 > 16
13 10 12 14 N/A
17| 10 | 12 | N/A | N/A
19 10 | 12 | N/A | N/A

23| 10 | N/A | N/A | N/A

79| 10 | N/A | N/A | N/A
“N/A” denotes that the results are not

available due to large computational

time.

1s 10000 10010 00000 01010 01000.

3.5. Minimum Weights Found by the Procedure

Table 3.1 shows the minimum weights of C'4(p, j) computed by the proposed pro-
cedure. The values marked with * indicate the previously known exact minimum
weight. Yang has shown that the minimum weight of Cs(p,4) is 10 or more if
p > 7[18], and the proposed procedure could verify that the minimum weight of
Ca(p,4) is exactly 10 for all prime numbers between 11 and 79. From this result,
we can naturally conjecture that C4(p,4) with p > 7 contains a codeword with
weight 10, independently of the parameter p. Similarly, we can conjecture that
C4(p,5) with p > 11 contains a codeword with weight 12. These conjectures are
the subjects of Chapter 4.

3.6. Amount of Calculation

In this section, the complexity of the proposed procedure is considered. For sim-

plicity’s sake, let us fix a zero locater z who has no pairs of elements z9;,; and
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Z2i+2 without O, where 0 <4 < 3. For example, if j = 3, there are two zero lo-
caters z; = (0,1,2,3,00,0) and z9 = (0,1,2,0,3,0). Since z; = (0,1,2,3,0,0)
has a pair of elements z3 = 2 and z4; = 3 which have no [, we choose z5 in the
following discussion.

First, the column vectors of the matrix Sy are reordered so that s;2 = 0,523 =
0,...,55+1 = 0. Note that the first column of Sy is determined uniquely. Con-
sider, for example, how many vectors in ¢(Ha(p,j)) can come to the second
column position of Sy. The second column of Sy must have 0 at the first row.
From the definition of H4(p,j), we can easily understand that ¢(H4(p,j)) con-
tains p column vectors which have 0 at the first row. Among the p column vectors,
the all-zero vector has been used as the first column of Sy, and thus we have p—1
vectors which can be used as the second column of Sy. With similar discussions,

one can show that there are (p—1)7 possible patterns for the leftmost j+1 column
2

vectors of Sy. Note that (p—1)7 is much smaller than P”) which is the number
of patterns obtained by naive choices of j column vectors. Each elements in the
first row of s3,..., s, must be canceled out. Thus we need to take j —1 column
vectors from ¢(H(p, 7)) so that the first elements of the taken j — 1 column
vectors cancel out the first row of s3,...,s;41 (note that the first elements of
s1 and sg cancel each other). The number of cases to take these j — 1 column
vectors is (p — 1)7~!. Thus the number of cases taking the leftmost 25 columns
is (p — 1)%~1. Next, we need to fill in the rest of w — 2j columns. The proposed
procedure execute exhaustive search for these columns. Since the support matrix
is of the form (3.1), the first elements of these columns are pairwise equal. Thus
w—2j

2
(Note that w — 2j is an even value because SFA-LDPC codes are even-weighted

2 2 - )
the number of cases of the exhaustive search is given by <p ]> (p—1)w=20)/2,

225 , 22
codes, and that <p j‘]> (p — 1)=20)/2 is much smaller than <p j) which

is the number of patterns obtained by naive choices).

Summarizing above discussion, the size of the search space of the proposed
2 .
pT—2)

approach is given by (p — 1)j+“’/21< w2 ) This is the worst amount of

2
calculation since the proposed procedure abandon hopeless computation. On the

other hand, the size of the search space of checking all combination of weight
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Table 3.2. Comparison of the calculation amount of searching a codeword with

weight w
Parameters Size of the search space (Number of cases) Advantage
p |j | w | Proposed approach (A) | Brute force approach (B) | Rate (A/B)
13 4|10 | 6.92270 x 10'° 3.99240 x 10% 1.73397 x 10°
794 |10 | 8.53992 x 10'® 2.45271 x 10* 3.48183 x 107 1?
13 (5|12 | 9.84486 x 10" 7.59826 x 107 1.29567 x 107°
136 |14 || 1.39983 x 101 1.02251 x 10%° 1.36901 x 10°

2
w out of all vector length p? is <p > Table 3.2 shows the comparison of the
w

calculation amount between the proposed approach and brute force approach for
searching a codeword with weight w in C4(p, j). The size of the search space of
the proposed approach is much less than that of brute force approach.

Let us consider the case such that some of the first elements of s3,..., ;41
cancel out each other. In other words, the chosen zero locater has pairs of elements
Zi+1 and 29 without [, where 0 < i < 7. Since the support matrix is of the
form (3.1), the 2i + 1-th and the 2i 4+ 2-th column vector of Sy have the same
first element e;. An example of this case is the zero locater z; in the above
instance. z; = (0,1,2,3,,00) has a pair of elements z3 = 2 and z; = 3, which
have no [J. In this case, the number of cases to take the leftmost 7 + 1 column
vectors is (p — 1)’ %, where k is the number of pairs of column vectors with same
first element. For example, if we have chosen the 2i 4+ 1-th column vector, then
the 2¢ + 2-th column vector has a zero at the z9;,o-th row and the value of its
first row is e;, which is determined uniquely. Each elements in the first row of
83,...,8j+1 must be canceled out. Since there exists & pairs of columns such that
the first elements of them are equal, we need to take 7 — 1 — 2k column vectors
from @¢(Ha(p, 7)) so that the first row of the leftmost 2j — 2k columns satisfies
the cancel-out condition. Thus the number of cases taking the leftmost 25 — 2k

columns is (p — 1)27173%_ Therefore the size of the search space of the proposed

2 .
L , — 2742k D
approach is given by (p—1)/+w/2-1-2 <p w_z‘j]Jr% > , which is the worst amount

2
of calculation.

If Sy has multiple zero locaters, then the size of the search space is the sum
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of each search spaces. For instance, if j = 3, the number of the zero locater is 2.
Thus if the testing weight is 6, then the size of the search space is obtained by

the following calculation;

(p—1)5<p20_6> +(p—1)3<p21_4>

which gives us 2.17 x 10° as the size of the search space in the case of p = 11.
The number of zero locaters increases as j increases. For example, if j = 4, the
number of zero locaters is 4, if 7 = 5, the number of those is 13, and if j = 6, the
number of those is 41 (The instances of these are shown in Appendix A). Hence
the amount of calculation is increased as j increases. Besides, the advantage of the
SFA-LDPC code is its high rate property, thus we can assume that SFA-LDPC

codes are rarely employed with rather large j.

3.7. Concluding Remarks

In this chapter, a procedure to test if a SFA-LDPC code contains codewords
of specified weight was proposed. The problem might be solvable by a naive
procedure which tests all the combinations of column vectors in a parity check
matrix, but such an approach will suffer from huge computational complexity
caused by the number of combinations of column vectors. On the other hand, it
is also possible to take a purely algebraic approach as in [18]. The problem of
this approach is that the theoretical analysis becomes too complicated if the code
parameter is not small.

Actually, when the case of p = 79 and j = 4, the code length of Cy4(p, )

6241
10

procedure (tests all the combinations of column vectors). But, (

is 6241; and the number of cases that must be test is ( ) if one takes naive

6241
10

of order 103!, hence, it is obviously impractical to test all the combination by a

) is a number

computer. Though, as shown in table 3.1, the procedure given in this chapter
obtained a codeword with weight 10 of the code C4(79,4).

The procedure considered in this dissertation can be regarded as a hybrid
approach of the algebraic and the computer-oriented approaches. Some algebraic
analysis in [18] is replaced by a computer search in the proposed study, which

allows us to use the basic idea of [18] for codes with bigger parameters. For
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example, by using the proposed technique together with the help by computer
search, we obtained some exact minimum weights of C4(p, ), which were not

shown in previous works.
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Chapter 4

New Upper-bound Limits on the
Minimum Weights of SFA-LDPC
Codes

The results given in the previous chapter suggest a natural conjecture; the mini-
mum weights of C4(p,4) and C4(p,5) are upper-bounded by 10 and 12, respec-
tively. In this chapter, it is shown that this conjecture really holds. Together
with the previously known results, now it is clarified that the minimum weight
of Cy(p,4) is exactly 10 for p > 7, and that the minimum weight of C4(p,5) is
either 10 or 12.

4.1. Support Matrices in Normal Form

To discuss the minimum weights of SFA-LDPC codes, the author investigates
supports that are in a special form. Assume that an SFA-LDPC code C4(p, j)
has a codeword v which has a nonzero (i.e. one) component at the first symbol
position. Since the first column vector ¢(hy) of ¢(Ha(p,j)) is an all-zero vector
of length j, supp(v) must contain an all-zero vector of length j since v = (1,...).
On the other hand, Corollary 2.5 implies that j zeros in the all-zero vector ¢(hy)
must be canceled-out by other column vectors in the support. Since a non-zero
vector cancels at most one zero in the all-zero vector (due to Lemma 2.2), supp(v)

must contain another j column vectors each of which cancels one of zeros in the
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[ 0 0 —S33 2554 - == D)sjo1gm1 S 0 Siw
0 529 0 —s1a o == 2801 sage2 o S2w
0 2592 3,3 0 o == 3)sjm11 Ssgt2  Ssw
L0 (= Ds22 (G—2)s33 (J—3)saa - 0 Sjj+2 Tt Sjw ]

Figure 4.1. A normal form support matrix of a codeword with weight w

all-zero vector. Let Sy = [s, ;] be supp(v) and s,,; denote the r-th component of
the 7-th column vector of Sy. Since the order of the column vectors is not essential
for the discussion of the cancel-out condition, we can reorder the column vectors
of the matrix so that s15 = 0,503 = 0,...,5;41 = 0 (see the entries of zeros
in Figure 4.1). By using the property that the components in a column vector
of ¢(Ha(p,j)) constitute arithmetic sequences (Lemma 2.1), the second to the
(7 + 1)-th column vectors of Sy are fully specified as

Sro = (1 —1)s92,

Sr3 = (1 —2)833,

Sr,j = (’I" - j + 1)81',]',

Srjt1 = (1 = J)sj—1541,

where 1 < r < j and the equations are under the modulus of p. In the last

equation, a “virtual”! component s,_; .11 was introduced to make the condition
7 ] 7]+

clearer.
Figure 4.1 depicts the support matrix Sy which satisfies these conditions. Let

us call this form of support matrix a normal form support matrix.

!The (j — 1)-th component of the (j + 1)-th column of normal form support matrix Sy is
not s;_i ;j4+1 itself but —s;_; j11. In this sense, this component is expressed as “virtual.” If we

introduced a virtual component s;41 41, then s;_q j41 = =841 j+1-
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4.2. The Upper Bound of d(p,4)

In this section, the results in the previous chapter are extended to general SFA-
LDPC codes C4(p,4), and it is shown that d(p,4) is 10 or less for any p > 7.

4.2.1 Overview of the discussion

The discussion in this section is developed according to the following scenario:
By investigating the experimental results analytically, we can discover a universal
structure that can be found independent of the prime number p. The structure
is further studied, and we can derive conditions for H4(p,4) to have a support
matrix that has 10 columns and satisfies the cancel-out condition. The discussion
completes by showing that the derived conditions always hold for H,(p,4) with
an arbitrary p > 7.

4.2.2 Support matrices and their common structure

By using a computer program, the author has generated minimum weight code-
words of C4(p,4) for prime numbers p between 11 and 79. Among minimum
weight codewords, the author restricts himself to those that have nonzero sym-
bols at the first positions, compute their support matrices, and reorder the column
vectors of the matrices so that the matrices become the normal form. Since the
minimum weights of C'4(p, 4) is ten for all primes between 11 and 79, the support

matrices in the normal form are thus written as

0 S13 S14 S15 S16 S1,7 S18 S1,9 51,10
S2.1 0 S24 S25 S26 S27 S2,8 S29 S210

53,1 53,2 0 53,5 53,6 53,7 538 53,9 95310

o O O O

S4,1  S4,2 S4,3 0 S4,6 S4,7 S48 S49 S4,10

As discussed in the end of Chapter 2, every code Cy4(p,4) contains several
minimum weight codewords with nonzero symbols at the first positions, and hence
we have several support matrices in the normal form for each C4(p, 4). The author
classified the support matrices according to the cancel-out patterns of components

in the matrices, and found that an identical cancel-out pattern appears in different
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choices of the prime number p. For example, ¢(Ha(11,4)), ¢(H4(13,4)) and
d(H 4(17,4)) respectively have the following support matrices;

0010 9 5 5 9 10 3 3
03 0 10 7 9 7 9 10
06 1 0 9 9 4 4 6 |’
09 2 1 010 9 1 10 2
0 0 12 11 6 6 11 12 4 4
010 0 12 4 10 0 4 0 12
o7 1 021 2 99 7|’
04 2 1 05 4 1 5 2

0 0 16 15 8 &8 15 16 6
0 13 0 16 11 13 6 11 6 16
0 9 1 0 14 1 14 6 6
05 2 1 0 6 5 1 6 2

The components in the matrices vary in the above three examples, but we can

see that the matrices satisfy the cancel-out pattern depicted in

0 513 S14 S15 S15 S14 S13 S1,9 S19
52,1 0 S2,4 S2,5 S21 S27 S25 S2,7 S24

(4.1)

sg1 1 0 s35 1 s35 S38 S38 S31

o O o O

S4.1 2 1 0 S46  S4,1 1 S4.6 2

Remind the property that the components in a column vector of ¢(H4(p, j))
constitute arithmetic sequences (Lemma 2.1), and we can easily understand that
the common differences (parameter k£ in Lemma 2.1) of the second, third, fourth
and fifth columns of the matrix (4.1) are so 1, 1, 1 and —s3 5 (mod p), respectively.

By using this property, the matrix (4.1) can be expressed as

0 0 -1 -2 38375 38375 —2 —1 S19  S1,9

0 52,1 0 -1 283,5 S2,1 So7 283,5 S2,7 -1 7 (4.2)
0 2507 1 0 s35 1 S35  S38 S38 2821

0

38271 2 1 0 54,6 382,1 1 54,6 2

where the components are under the modulus of p.
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4.2.3 Conditions on the matrix components

Let d;, with £ = 6,...,10 be common differences of the sequences in the k-th
column vector of the matrix (4.2). From the relation among components in the
rightmost (the tenth) column of the matrix, we have 2 = —1 4 2d;o mod p. This

implies that d;y must satisfy
2d19 = 3 mod p. (4.3)

The values of s;9 and 2s; are also represented by using dig as si9 = —1 — dyo

and 2sp1 = —1 + djp. Multiply both sides of the equations by two and we have

2519 = —2—2djp = —5mod p, (4.4)
482’1 = -2+ 2d10 =1 mod p. (45)

Now let us turn our attention to the sixth column of the matrix. Because 1 —dg =

S9.1, we have 4 — 4ds = 4591 = 1 and hence

4dg =4 —1 =3 mod p. (4.6)
As for the eighth column, 1 = —1 + 3dg and thus

3ds =141 =2mod p. (4.7)

We also have the relation 2s3 5 = —1+dg from the sequence in the eighth column.
Multiply both sides of the relation by three,

6s35 = —3 + 3dg = —1 mod p. (4.8)
In the seventh column, we have s35 = —2 + 2d;. Multiply the relation by six,
and

12d7 =12+ 68375 =11 mod p. (49)
Finally, consider the relation sp7 = 519 + dg in the ninth column, sy7 = -2 + dy

in the seventh column and the conditions (4.4) and (4.9), and we can show that
12dg = 17 mod p. (4.10)

Other unknown variables s, 7, s3 5 and s, ¢ are uniquely determined once the above
variables are determined, and hence relations (4.3) through (4.10) completely

state the condition with which the matrix (4.2) satisfies the cancel-out condition.
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Note that, if p is a prime number greater than seven, then each of the above
relation has a unique solution, since every coefficient of the variable in the relation
is relatively prime to p. Consequently, we can determine a unique matrix that is
shown in the form of matrix (4.2), and satisfies the cancel-out condition. If we

may use multiplicative inverses, then the matrix (4.2) is written as

0 0 -1 -2 -27t 27! -2 -1 -5.27t —5.27¢
0 471 0 -1 -3t 47t —13.127% 37t —13.127! -1

0 21 1 0 —61 1 —61 371 371 2t

0 3-471 2 1 0 7.4 3-471 1 7471 2

under the above conditions. For the sake of readability, some components in the
matrix are written in a reduced form; for example 14 3-47! is written as 74!
instead of 1 4+ 3 -4~ ! itself. Finally, remind the property that the parity check
matrix H4(p, j) has p? different column vectors, and hence an arbitrary column
vector which is represented as an arithmetic sequence belongs to H4(p,j) as a
column vector. Consequently, H(p,j) with p > 7 contains the above described
unique matrix.

Summarizing the above discussion, we have the following theorem. The proof
is almost a rephrase of the above discussion, but given here for the sake of read-
ability.

Theorem 4.1 d(p,4) < 10 for any prime p with p > 7.

Proof.  In this proof, all calculations are taken under the modulus of p. Since
p is a prime number greater than three, ax = b has a unique solution if a is a
composite number of 2 and 3. This property will be used later.

Consider a support matrix

S :[Sr,i
0 0 —=b —2¢ —-3d -—-3d —2c —b e e
. 0 a 0 —c¢ —2d —3d+l€1 —2C+l€2 —b+ k'g €+ k'4 €+l€5
020 b 0 —d —3d+2k; —2c+2ky —b+2k; e+2ky e+ 2ks
0 3¢ 2b ¢ 0 —-3d+3k; —2¢+3ky —b+3ks e+ 3ks e+ 3k

where all elements are under the modulus of p. This matrix is an instance of

the matrix given as Figure 4.1, with 7 = 4 and right five column vectors are
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represented by using Lemma 2.1. The first components of the sixth, seventh and

eighth columns are chosen so that they cancel the first components of the fifth,

fourth and third columns, respectively.

For this matrix S, choose parameters to satisfy

da =1, (4.11)
b=1, (4.12)
c=1, (4.13)
6d =1, (4.14)
% = —5, (4.15)
4ky = 3, (4.16)
12k, = 11, (4.17)
3ky = 2, (4.18)
12k = 17, (4.19)
%5 = 3. (4.20)

Remark that the coefficients of the parameters are composites of 2 and 3, and all

the parameters are determined uniquely. We now see that S satisfies the cancel-

out condition under this choice of parameters. It is obvious that the first row of

S fulfills the cancel-out condition and thus we consider the second row:

59,1 = 0 is obviously canceled by s;3 = 0.

S99 = a is canceled by sy = —3d + ki because 4s99 = 4a = 1 = —12d +
Aky = 4s96 (we used equations (4.11), (4.14) and (4.16)).

sp4 = —c is canceled by sy19 = e + ks because 2s94 = —2¢ = -2 =
2e + 2k5 = 25919 (equations (4.13), (4.15) and (4.20)).

So5 = —2d is canceled by sgg = —b + k3 because —3sy5 = 6d = 1 =
3b — 3k; = —3s25 (equations (4.12), (4.14) and (4.18)).

So7 = —2c+ kg is canceled by sg9 = e+ k4 because 1259 7 = —24c + 12ky =
—13 = 12e+ 12ky = 12559 (equations (4.13), (4.15), (4.17) and (4.19)).
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We have seen that the second row also fulfills the cancel-out condition. For the

third row:
e s31 = 0 is obviously canceled by s34 = 0.

® 539 = 2a is canceled by s3 19 = e+ 2ks because 2539 = 4a = 1 = 2e + 4k; =
25310 (equations (4.11), (4.15) and (4.20)).

e s33 = b is canceled by s34 = —3d + 2k; because 6s33 = 60 = 6 = —18d +
12k = 6536 (equations (4.12), (4.14) and (4.16)).

® 535 = —d is canceled by s37; = —2¢ + 2ky because 6535 = —6d = —1 =
—12¢ + 12ky = 6537 (equations (4.13), (4.14) and (4.17)).

® 533 = —b+ 2k3 is canceled by s39 = e + 2k4 because 6535 = —60 + 12k3 =
2 = 6e + 12ky = 6539 (equations (4.12), (4.15), (4.18) and (4.19)).

For the fourth row:
e 541 = 0 is obviously canceled by s45 = 0.

® 549 = 3a is canceled by s,7 = —2c¢ + 3k because 45,0 = 120 = 3 =
—8¢ + 12ky = 4547 (equations (4.11), (4.13) and (4.17)).

e 5,3 = 2b is canceled by 5410 = € + 3ks because 25,3 = 40 = 4 = 2e + 6k5 =
25410 (equations (4.12), (4.15) and (4.20)).

® 544 = cis canceled by sy g = —b+3k; because s;4 = c=1= —b+3ks = s43
(equations (4.12), (4.13) and (4.18)).

® 546 = —3d+3k; is canceled by s, 9 = e+ 3k, because 45,6 = —12d+12k; =
7 =4e + 12ky = 4549 (equations (4.14), (4.15), (4.16) and (4.19)).

We have seen that the cancel-out condition is fulfilled in every row of S. It is also
verified that all column vectors of S are valid column vectors of H4(p,4). If the
ten column vectors in S are all different, then S is a support matrix of a codeword
with weight ten. If different columns in S coincide by the above instantiation,

then .S corresponds to a codeword whose weight is less than ten. In either case, S
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corresponds to a codeword whose weight is ten or less. This implies that C4(p, 4)

contains a codeword whose weight is less than or equal to 10.

Combine this theorem with Yang’s lower-bound limit d(p,4) > 10 for p > 7, and

we can fully clarify the minimum weights of SFA-LDPC codes with j = 4. The

results, together with already known results, are summarized in the following

corollary.

Corollary 4.2 d(p,4) = 8 for p = 5 and 7, and d(p,4) = 10 for any prime

p>T.

4.3. The Upper Bound of d(p,5)

Mittelholzer showed that the upper-bound of d(p,5) is 20[11]. The author im-

proves this upper-bound as follows.
Theorem 4.3 d(p,5) < 12 for any prime p with p > 7.

Proof.  Let us consider a support matrix

S =[sp4]

)

0 0 —b —2¢ —3d —4e —4e —3d —2c

0 0 a 0 —c¢ —2d -3¢ —4de+k —3d+ky —2c+k;
=10 2a b 0 —d —2e —4de+2k; —3d+2ky —2c+ 2k;

0

0

3a 2b ¢ 0 —e —4de+3k; —3d+ 3ky —2cH+ 3k3
| 0 4a 3b  2c d 0 —4de+ 4k, —3d-+3ky —2c+ 3k
f f ]
f+ks f+ke

f+2ks f+ 2k
f+3ks f+ 3k
f+3ks f+ 3k
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This matrix is an instance of the matrix given as Figure 4.1, with j = 5. Choose

parameters to satisfy

6a =1,
b=1,
6c = 11,
d=1,
6e =1,
3f = -8,
6k; = 9,
3ky =5,
3ks =9,
2ky =1,
6ks = 5,
3k = 4.

It is obvious that the first row of .S fulfills the cancel-out condition.

For the second row of the support matrix S:
® s, is obviously canceled by sg 3.

L] 682’2 =6a=1=-4-145= —4(66) + 61{]1 = 6(—46 + k‘l) = 682’7.

632,4 — _60 = _1]- = 2(_8) + 5 - 2 . 3f —+ 6k5 = 6(f - k5) = 682,11.

382,5 = —6d =—6=—-11 —+ 5= —6c¢ —+ 3]{}3 = 3(—20 + kg) = 382,9.

282,6 =—-6e=—-1=-24+1=-2b+ 2]{]4 = 2(—b + k4) = 282’10.

382,8 = —9d+3k2 = —9+5 =—4= —8+4 = 3f+3k6 = 3(f+k6) = 382712.
For the third row:
e 53 is obviously canceled by s3 4.

L4 383,2:6a:1:—9+25:—9d+23k2:3(—3d+2]{]2):383,8
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383,3 =30=3=-2+4+5=-2:-6e+ 6k1 = 3(—46 + 2k2) = 38377.
383,5 — _3d - _3 == _8 + 5 = 3f + 61{]5 = 3(f + 2k5) = 383711.
383,6 =—6e=—-1=—-114+2-5=—6¢c+2- 3k3 = 3(—26 + 2]{]3) = 383,9.

383,12.

For the fourth row:

54,1 1s obviously canceled by sy 5.

6542 =06-3a=3-6a=3=—6+9-1=—6b+9-2ky = 6(—b+3ky) = 65410.
543 =2b=2=—-3+5=—3d+ 3ky = s4.

6544 =6c=11=—4+15=—4-6e+ 36k, = 6(—4e+ 3k;) = 6547

6545 = —6e = —1 = —16+15 = 2(—8) +3-5 = 2-3f +3-6ks = 6(f +3ks) =

684,11.

3549 = 3(—2c + 3ks) = —6c+3-3ks = —11+3-5=4=—84+3-4=
3f+33k6:3(f+3k6) :384,12.

For the fifth row:

55,1 1s obviously canceled by s5g.
6ss0=4-6a=4=—-16+20=2-3f +4-6k; = 6(f + 3ks) = 655,11-
3553 =90 =9=—11420= —6¢c+4-3k; = 3(—2c + 4k3) = 3s5.0.
3554 =6c=11=—-9420= —9d + 4 - 3ky = 3(—3d + 4ks) = 3s55.
Ss5 =d=1=—-1+2-1=—b+4ks = 5510.

385,12.
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Thus, this matrix S satisfies the cancel-out condition. This implies that
C4(p,5) contains a codeword whose weight is less than or equal to 12. 1

Together with Yang’s lower bound, we obtain the following corollary.
Corollary 4.4 10 < d(p,5) < 12 forp > 7.

Proof. Tt follows from Yang’s lower-bound that d(p,5) > 10 for p > 7, because
d(pajl) Z d(p7j2) for any jl Z j2- 1
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Chapter 5
Conclusion

The minimum weights of SFA-LDPC codes C4(p, j) have been studied in this
dissertation. The problem has been investigated by Mittelholzer[11] and Yang et
al.[18], and this dissertation gives an answer to the problem for the case j = 4,
namely the minimum weight of Cy4(p,4) is exactly 10 for p > 7. For j = 5
case, now we know that the minimum weight of Cy4(p,5) is 12 or less, which
significantly improves the upper-bound limit of 20 shown by Mittelholzer. To
obtain these results, the author took the following approach: First, for certain
j and w, the author systematically searched codewords in C4(p,j) with weight
w by a computer program (Chapter 3). The results of the computer search
suggested a common mathematical structure shared by the codewords, which
were independent of the choice of the parameter p. Finally, the author was
successful in showing that C4(p,j) always contains a codeword with weight w
or less when j = 4,5 (Chapter 4). This approach is applicable to the case with
j = 6 or more, but one may face difficulty in generating sufficient number of
support matrices from which one can find a useful structure. The author is not
sure if the proposed approach is effective for C4(p,j) with j > 7, though, it is
remarked that SFA-LDPC codes with large j are less important than those with
small j. In a practical viewpoint, SFA-LDPC codes are useful especially at high
code rate. Therefore it is expected that people who use the SFA-LDPC codes will
choose parameters so that the code has sufficiently high code rate. Increasing the
value of j decreases the code rate, and such parameter choice will be unlikely in

practical applications.
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Now we come back to the performance of SFA-LDPC codes. The basic mo-
tivation of this study was to clarify the reason why high rate SFA-LDPC codes
show good performance. It was shown by this study that, for the cases 7 = 4
and j = 5, the parameter p does not affect the minimum weight of the code. If
we fix the parameter j and increase the value of the prime number p, then the
code length of C4(p,j) increases while the minimum weight of the code stays
unchanged. This result suggests the minimum distance itself is not the key factor
which affects the performance of the code. Instead, the following observation and

discussion are obtained from the result.

e The iterative decoding algorithm is so powerful that it often corrects er-
rors even if the distance between the transmitted codeword x and the re-
ceived vector y, denoted d(z,y), is beyond the correctable distance ¢ =
| (dmin — 1) /2], where dp;y, is the minimum distance of the code. Note that,
if d(z,y) < ¢, then y is “guaranteed” to be decoded correctly. If d(z,y) > ¢,
then there is no such guarantee, but a decoder tries to estimate x as precisely
as possible. A powerful decoder recovers several errors which are beyond
the correctable distance, regardless of the minimum distance. In this case
the performance is strongly affected by the total structure of the code. The
minimum distance is a parameter which symbolizes a local structure around
a codeword, and gives little affect on the performance of powerful decoding

algorithm.

e The minimum distance does not change even if we increase p, but the frac-
tion of the number of minimum weight codewords in the total number of
codewords is expected to become smaller as we increase p. This conjec-
ture well matches with the expected weight distributions of random code
ensemble. If we choose a parity check matrix by random sampling and the
obtained code has length N and rate R, then the number of codewords with

weight w is expected to be

b

A(w) = 2N H2(w/N)~(1=R)

where Hy(z) is a binary entropy function Hy(z) = —zlog 1 —(1—z) log = [10].

-z

The total number of codewords is 2V% and
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The fraction of A(w) in 2V%, the total number of codewords, is thus

gN(Ha(w/N)=1)

If we let w a constant value and make N large, then the fraction goes to
2N 0.

At writing this dissertation, the second discussion above is just a conjecture.
More detailed analysis of the weight distribution of SFA-LDPC codes is expected
as the next step of this study. We can evaluate the codes more precisely by using
various bounds such as union bounds if we know the weight distributions. The
union bound gives the upper bound of the performance of maximum likelihood
decoding. This dissertation gives some upper bounds of the minimum weight of
SFA-LDPC codes, and this is regarded as the first step of research of the weight

distribution of the codes.
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Appendix

A. Instances of Zero Locaters

All the instances of the zero locaters for j = 4,5, 6 are shown in this appendix. In
the following instances, the special symbols o and [J are represented by numerals

0 and —1, respectively.
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