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The Ability of Quantum Information Processing Under
the Resource-restricted Circumstances

Yumiko Murakami

Abstract

This dissertation provides the studies on quantum information processing, espe-
cially under the circumstances that the computational resources are restricted. Quan-
tum computing is a new computational paradigm based on the quantum mechanics. It
has excellent potential abilities of information processing compared to traditional com-
puting called classical computing. However, ideal quantum computers would not be
implemented under the current technology and the various computational restrictions
are considered to be imposed on the actual quantum computers. Thus, itis quite impor-
tant to clarify the ability of quantum computing under such restricted circumstances.
The main results of this dissertation are as follows.

First, the recognition ability of the quantum computational model with the mem-
ory restricted to a stack, quantum pushdown automata, is compared with that of the
classical pushdown automata in a deterministic scene. In the computational model
theory, the relationship between the recognition abilities of the quantum and classical
automata is still an open problem and some negative results which show that the abil-
ity of the quantum computational model is weaker than tha classical counterpart are
provided. Thus, it is not obvious that the recognition ability of quantum automata is
superior. The dissertation shows that quantum pushdown automata can solve a certain
problem with no error which cannot be solved by classical deterministic pushdown
automata. The modified generalized Ogderlemma is utilized to show that classical
deterministic automata cannot solve the problem. This implies that quantum pushdown
automata can be more powerful than classical counterparts.

* Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0461039, August 21, 2008.



Second, a new quantum secure direct communication protocol is proposed. Most
of the current quantum secure direct communication schemes use the brilliant resource
unique to the quantum information processing, quantum entanglement, which requires
the extremely delicate handling. In contrast, the proposed protocol employs no entan-
glement resource at all. Thus it can be said that the feasibility of implementation of this
protocol is higher than the other proposals under the current technology. The proposed
protocol can send quantum information as well as classical information. Thus, in order
to discuss the security of the proposed protocol, a new criterion is needed which can
measure the amount of quantum information. This dissertation introduces a new crite-
rion that is based on the fidelity of quantum states, and it is shown that the proposed
protocol satisfies the criterion against the man-in-the-middle attack.

Keywords:

guantum computing, quantum pushdown automata, quantum secret communication,
guantum key distribution, unconditional security
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Chapter 1
Introduction

Today the innovations of computers see the end coming. Scaling of transistors has
physical limitations. It is very obvious that the size of elemental devices can never
exceed the limit of atom. Moreover, at such level it can no longer be expected to
make architecture designs within classical mechanics — so it is a world dominated by
guantum mechanics. To get around this issue, many down-to-earth solutions have been
attempted. “Quantum computing” is a bit different solution, which is essentially based
on quantum mechanics, not like traditional computing (catilessicalcomputing)
based on Newtonian mechanics.

The history of guantum computing started with an allusion by Bennett in 1973 that
there exists a reversible computational process [3]. Feynman indicated in 1982 that
it might take only a linear time to simulate quantum physics by quantum computers
although it would take an exponentially time by classical computers [13]. Deutsch
formulated the model of quantum computing, quantum Turing machines, in 1985 [11].
This triggered speculation that computing could be done more efficiently, if they made
use of quantum effects. But constructing quantum computers proved to be tricky and
the field developed slowly since no one knows the specific method to use the quan-
tum effects to speed up computation. It was not until 1994, when a polynomial-time
guantum algorithm for prime factorization was announced by Shor [21], that quan-
tum computing captured the widespread attention in the world. It was a significant
milestone since this discovery destroyed the popular belief that we will probably never
acquire a polynomial-time algorithm for enormous number’s factorization on which
the safety of today’s cipher communications is based. This discovery attracted both of



theoreticians and experimentalists and encouraged the research and development ac-
tivities of other drastic quantum algorithms and construction of quantum computers.
In addition, some other quantum algorithms were proposed, such as Grover’s search
algorithm [16] and quantum key distribution [4], which had a very strong processing
power compared to the classical solutions. They solved the problems which had been
believed to be impossible to solve in the practical time in classical computing. These
remarkable quantum algorithms built up the expectations that the ability of quantum
computers extremely exceeds that of classical computers, however, quantum comput-
ing has some practical problems such as it can handle only a limited number of quan-
tum bits at a time. Most of the proposed sophisticated quantum algorithms suppose
the ideal quantum computers and processing. But, in practice, we have only the sub-
set in the current technology. Thus, it is important to clarify the quantum processing
ability with the limited processing power such that the poor computational resources
are available. The aim of this dissertation is to show that quantum computing would
exploit its ability even under such realistic circumstances, that is, a limited number of
guantum bits, the limited access to quantum bits, the low-precision devices, the short
coherent time, no entanglement available, and so on.

The first result of this dissertation shows that the quantum computation with the
stack memory, the quantum pushdown automata (QPAs), which is a quantum compu-
tational model, is stronger than the classical counterpardieterministicscene. The
result that the 1-way quantum finite automata is weaker than the 1-way classical finite
automata is already known. So, it is nontrivial to show that the quantum is stronger
than the classical in the computational theory.

QPAs is the quantum computational model defined by Golovkins in 2000 [15] and
it is shown that the class of languages recognized by QPAs contains the class of lan-
guages recognized by classical finite automata. However, no one knows the relation-
ships between the recognitive ability of QPAs and the classical counterparts. This
dissertation gives a proposition that the QPAs can deterministically solve a certain
problem, which cannot be solved by any deterministic pushdown automata. Golovkins
showed in [15] that QPAS can recognize

e every regular language with probability

e anon-regular languagk,—, = {w € (a,b)*| |w|, = |w|s} with probability1;
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e anon-context-free languade_,—. = {w € (a,b, ¢)*| |w|, = |w|p = |w|.} With
probability2/3; and

e anon-context-free languade,, = {w € (a,b, ¢)*| |w|, = |w|p XOr |w|s = |w]|.}
with probability4 /7,

where|w|, denotes the number of occurrences:oh w. Golovkins showed that the
class of languages recognized by finite automata is properly contained in the class
of languages recognized by QPAs, and that QPAs might be more powerful than the
classical counterpart inlaounded error scenarioThis dissertation shows that QPAs

can be more powerful even indeterministiccase. That is, there exists a problem
which can be solved by QPAs deterministically, but cannot be solved by deterministic
pushdown automata. This result suggests that quantum computing could be superior
to classical computing even if the use of the quantum memory is restricted.

The second result refers to the case that the computational resources are restricted.
The elegant quantum information processing often exploits the computational resource
called the “quantum entanglement.” This is greatly useful, but, it is very difficult to
keep such a useful state during the computation in the current technology. This dis-
sertation presents a new quantum secret direct communication protocol (QSDC), that
does not need such expensive resources, and shows that it achieves the good security
against the man-in-the-middle attack.

The protocol has the following advantages over the current QSDC protocols. First,
it can carry an unknown quantum state. This implies that the protocol can be used
as a quantum communication scheme between two hubs of a quantum network. Sec-
ond, no entanglement resource is employed in the protocol. This is an advantage in
feasibility. In addition, an eavesdropper on a channel can be detected efficiently. In
general, many decoy qubits are required to increase the detection rate, however, in our
protocol, themessage shuttlecreases the detection rate and decreases the informa-
tion an eavesdropper has at her hand as well. Besides, our protocol tolerates against
Photon-Number-Splitting attacks, because the encoding operations applied to the se-
cret quantum state never be announced at any step of the protocol. So, even if an
eavesdropper could obtain a perfect “copy” of the coded secret qubit, it is insufficient
for unveiling the secret perfectly. Thus, an ideal photon generator is not required in the
protocol.



Since the proposed protocol can send quantum information as well as classical
information, in order to discuss the security of the proposed protocol, a new criterion
is needed which can measure the amounfuantuminformation. This dissertation
introduces a new criterion based fiatelity of quantum states, which is a mathematical
measure of the similarity between the two arbitrary quantum states, and shows that
the proposed protocol satisfies it against the man-in-the-middle attack. The fidelity
between the original secret state and the copy created by the eavesdropper gets really
worse if the eavesdropper wants to decrease the detection probability. Conversely, if
she wants to get the secret information with good fidelity, she will be detected with
extremely high probability.

This dissertation is organized as follows. The next chapter, Chapter 2, gives basics
of quantum computing necessary to understand various quantum algorithms. Chapter
3 first introduces the definition of quantum pushdown automata and its configuration
and then gives a proposition that the QPAs can deterministically solve a certain prob-
lem, which cannot be solved by any deterministic pushdown automata. Chapter 4 first
considers how well the depolarized channel keeps the fidelity of quantum states. Then
a new QSDC protocol is presented. A new security criterion based on the fidelity of
guantum states discussed above is introduced and it is shown that the presented pro-
tocol satisfies the criterion against the man-in-the-middle attack. Chapter 5 concludes
this dissertation.



Chapter 2
Basics of Quantum Computing

This chapter gives the basics of quantum computation, quantum systems, evolution,
measurement, entanglement, density matrix, and fidelity.

2.1. Quantum state

A quantum bit,qubit, is like a probabilistic bit which is ‘0" with probability, and ‘1’

with probability b, wherea + b = 1. The significant difference between a qubit and

a traditional bit (classical bit) is that, while a classical bit denotes either ‘0’ or ‘1’ at

a certain moment, a qubit can be in the both state at the same time. The two possible
states for a qubit are described [y and|1) using the Dirac notation, corresponding

to traditional ‘0’ and ‘1’ respectively. A quantum state of a qubit can be in the state:

[¥) = a|0) + 5 1),

wherea andg are complex numbers which are calf@dbability amplitudesind|a|*+

|8]> = 1. Thus, a quantum state can be regarded as a unit-length vector in a two
dimensional complex vector space with inner product, that is, a Hilbert space, and
an arbitrary quantum state is described by the linear combination of the orthonormal
basis states of the state space, cafleplerposition The basig[|0) ,|1)} is called the
computational basis and described as vecf@yrs= (1 0)',|1) = (0 1)’.. Note that

the computational basis is just one of many possible bases, and an arbitrary quantum
state can be re expressed in terms of another basis, for example, consider the following



basis:|+) = (|0) + |1))/v2 and|-) = (|0) — |1))/+/2: then,

) = «al0)+3[1) (2.1)
= 7{\+>+!—>}+\/—{\+> =)} (2.2)
o a+p
- \/— L*) \/5 >‘ (2'3)

The superposition yields the remarkable quantum computation power, especially
when it is a composite system of plenty of qubits. The notation of a composite system
is represented by a tensor product of each qubit,|likex |0). It would be described
like simply |10) or |2) decimally.

Consider the: qubit system, that is, th#* dimensional Hilbert space. Let the basis
states be

0)=(100---0),[1) =(010---0)t,--,[2"— 1) = (00---0 1)}

and then the quantum state) = (ag a;---azn_1)" can be described as a linear
combination of the basis states with complex coefficients:
2" —1
V) = ap|0) +ar[1) + -+ a1 2" = 1) = Eo o 1),
27L
where Z \al\Q = 1. In quantum systems, the state space increases exponentially with
the size of the system. This enormous potential computational power would provide
us various advantages of quantum computation.

2.2. Evolution

The classical systems are governed by the Newtonian equation, whereas the quantum
systems by the Schrodinger equation. The evolution of a closed quantum system is de-
scribed by aunitary transformatiori/, thatisUUT = UTU = I, whereU" is conjugate

of U, and it can be regarded as a rotation of a complex vector sgasean identity

matrix. A 2 x 2 unitary matrix describes an operation to a qubit. An operation to
n-qubit system is specified a2&-dimensional unitary matrix. It would be described

as a tensor product of some sub-dimensional unitary matrices, e.g.,

Uo @ Ur{J5(10) + [1))o @ [1), },
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wherel, andU; are the unitary operators for the first qubit and the second qubit of the
two-qubit system, respectively. Because of the linearity, applying the unitary operator
U to a superposition state is represented as follows.

2" -1
Uly) = UEO a; 1)
2" -1

=0

This means that the unitary operator can be applied to each computationd})state
individually. This parallelism could be advantages of quantum computation.

The often-used unitary operators, Hadamard transform and Pauli operators are de-
fined as follows.

2.2.1 Hadamard transform

The Hadamard transforn#{ is defined as follows.

H: |0)— %OO) 1)

1
) — E(I@ — D).

Applied to basis vectdn), H creates the superposed st%eﬂO) +11)). Furthermore,

applied ton qubits individually, H creates the superposition of alt possible states.
Then-bit Hadamard transforni/,,, is defined as follows.

H, |~T0$1 o 'Zl?n71>
:(H®H®...®H)|x0x1...xn_1>

1 o J— r1 “ e — Tn—1
Z\/—N{(IOH(—U 1))@ (|0) + (=)™ 1)) @ -+ @ (|0) + (=1)"" 1))}

1 N-1
— N (_1>:voyo+x1y1+---+zn71yn71 !yoy1 . Z/n—l) ’

VN v=0

wherey = 2"ty + 22y, + - - + 2%,_; andN = 2". For example,

1 1
E(I@ +))e E(I@ +1)

1
= —2\/5(|000> +]001) +[010) + |011) + [100) + [101) + [110) + [111))

On the other hand,

Hy000) = —=(0) +]1) @



H(10) + 1)) = H[0) + H 1) = o),

It is called a quantunnterferencethat a unitary operation increase or decrease each
amplitude.

2.2.2 Pauli group

The Pauli group G consists of the following four operators extremely usefut 2

matrices.
10| 0 1]
g O-LE:
0 1 10
, 0 —i| 1 0 |
Oy = 10,0, = | | 0z =
7 0 0 —1

2.2.3 No-cloning

One of the peculiar features of quantum state is “no-cloning.” The reason why anyone
can make a perfect copy of an electronic information is that the information lives in
classical dynamics. In contrast, in quantum dynamics, anyone cannot make a perfect
copy of an unknown quantum state. The proof is a simple application of the linearity
of unitary transformations. Assume thdtis a unitary transformation that clones a
qubit, such that/ |a0) = |aa) andU |b0) = |bb). Considetic) = \/%(|a) +1b)). By

the linearity,

Ulc0) — %{U 1a0) + U [b0)}
1
Eﬂaa) + |bb) }. (2.4)
But, if U is a genuine cloning transformation, then
U |c0) = |cc) = 1/2(|aa) + |ab) + |ba) + |bb)),

which is not equal to (2.4). Thus, there is no unitary operation that can correctly clone
an unknown quantum state.



2.3. Measurement

We cannot examine a qubit to determine its quantum state definitely, that is, to specify
the value oty and/. When the qubit statey |0)+3|1), is measured, th@) is obtained
with probability |«|? or the|1) with probability |32, and the information ofr and 3
is lost. That is, measurement of a quantum state transforms the state into one of the
measuring device’s associated basis states, the computational basis in this case. We
define the measurement formally as follows.

Let|y) = ap|0) + a1 |1) + -+ + a,—1 |n — 1). Given theobservablghat corre-
sponds to the orthogonal decomposition of the state spaceFy ® E1 & --- D E,,_q
which devides the state space into orthogonal subspéces Consider grojection
of |¢) to each ofE;. The squared magnitude of the projection is the probability with
which the associated outcome is obtained. The outcome i§0, - - - m — 1} and the
state after measurement is in the subspace. For example, consider a four-dimensional
complex vector space whose basis states(arel), |2) and|3). Let the state:)) be a
vector that lives in the space apg) = 1 [0) — £ |1) + 5 [2) — 5 |3). Let the observable
correspond to the orthogonal decomposition- E, & E, & E,., whereFE, is a space
spanned by0) and|1), £, is a space spanned i), andFE. is a space spanned I8).
That is, the outcome of measurementiswith probability 1/2 or ‘0’ with probability
1/4 or ‘¢’ with probability 1/4. It should be noted that the original quantum state is
destructed unless the appropriate observable is used.

2.4. Entanglement

Entanglemenis an essential resource for the sophisticated quantum computation, which
is a strong correlation among qubits even if separated physically, and can never be im-
plemented in the classical dynamics. Consider a composite quantum system in the
state

1
V2
When the first qubit is measured, the outcome is eithesith probability 1/2 or 1

with probability1/2 and the state of the whole system collapsgé@por |11) respec-
tively. Thus, the other qubit is determined |[@$ or |1) with certainty. This unique

W) ap = (100) + [11)). (2.5)



correlation such that the measurement of one has an impact to the other isecalled
tanglement Also from the mathematical view, the entangled statge, ; cannot be
considered as the tensor product of the two separate individual systems. When the de-
gree of entanglement is maximum like (2.5), it is said to be maximally entangled

state, especially, in the case of two-qubit system it is called an EPR pair, and in the
case of three-qubit system a GHZ state. Entanglement is a fairly useful resource, but,
with the current technology it is not easy to keep up the entangled state.

2.5. Density matrix

Thedensity matrixs another way to describe a quantum state. It provides a convenient
means particularly for describing a quantum system whose state is a classical mixture
of several states. When a quantum system is in orjé;®% with probability p;, the
density matrix for the system is defined as

p= %Pz‘ |3) (s

For example, when a quantum system is in the gtatevith probability 1/2 and in

the stat%{|0) + |1) } with probability 1/2, the density matrix of the system js=

1/20) (0 + 1/2{5(10) + [1))}H{75((0] + (1])}. In general, it is not clear for us

how the exact state of a quantum system is because of the influence of environment
or something else. The following case provides a good example. Suppose each of the
two parties, Alice and Bob, has one qubit of an EPR p\%’t(,|00> + |11)). If Alice
measures her qubit and she does not inform Bob of the outcome, Bob cannot specify
his qubit state exactly. The state of Bob’s qubit is half-and-half mixtur@find

1), that is, 1 [0) (0] + 5 |1) (1]. Like this, the ambiguous state of a quantum system
can be described by a density matrix. A quantum state is simply classified into two
groups, gure stateand amixed stateA pure state satisfigs(p?) = 1, while a mixed

state satisfiesr(p?) < 1. In particular, wherp = 1/2, p is said to be in a maximally
mixed state and the state has a maximum entropy. The evolution of the density matrix
is described by the equation

p=Epi[s) (Wil = Sl i) (il U

Let the composite system of A and B whose density matrix he The reduced
density operator for system A is defined by

10



pa=Trp(pas),

which is used when subsystem A is focused on in the whole system, Wheres a
map of operators known as the partial trace over system B. The partial trace is defined

by
Trp(lar) (az| @ |b1) (ba|) = |a1) (az| (b1]b2)

where|a;) and|az) are any two vectors in the state space of/A) and|b,) are any
two vectors in the state space of B.

2.6. Fidelity

The fidelity is a measure that quantities the similarity between quantum states. It pro-
vides a quantitative criterion of the reliability of a quantum channel, i.e., how well a
guantum channel preserves information.

The fidelity of the two stateg ando is defined as

F(p,o) £ tr(p'Pop'/?).
Whenp ando are commutative:
p=%rili) (il; o =%s[i) (il
where{]i) } is a set of the orthonormal basis states, we see

F(p,o) = tr(Zrs; i) (i])

= Z’I“Z‘Si.
In particular, wherp is a pure state,

F([y),0) = tr((@]o|¥)[¥) (¥])
= (Yloly) (2.6)

The fidelity is invariant under unitary transformation.

F(UpUT, UaU") = F(p,0).

11



Chapter 3

Recognition Ability of Quantum
Pushdown Automata

3.1. Introduction

In quantum computational theory, some quantum counterparts of classical computa-
tional models were introduced. In particular, the results of quantum finite automata
(QFAS) [1, 17] and quantum counter automata (QCAS) [5, 18, 24, 25] are remarkable.
Fig. 3.1 illustrates the relationships between the recognition abilities of classical au-
tomata and their counterparts. The number at the head, 1 or 2, denotes one-way or
two-way, respectively, which mean the direction that the input tape head can move.
The number before “CA’ denotes the numbers of counters. Thus, “1Q2CA’ means
a one-way quantum automaton with two counters. In this figure, the lower model is
resource-restricted more strongly than the upper models. This figure, for example,
shows that the recognition ability of the one-way quantum finite automata is properly
contained in that of the one-way classical finite automata, while the recognition ail-
ities of the two-way quantum finite automata and the two-way quantum one-counter
automata properly contains their classical counterparts. In other words, quantum com-
putation is not always stronger than classical computation under the resource-restricted
circumstances.

This chapter focuses on a quantum pushdown automaton (QPA), which is a gener-
alization of a counter automaton. QPAs is the quantum computational model defined
by Golovkins in 2000 [15] and it is shown that the class of languages recognized by
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2Q2CA=2D2CA
O Quantum

Q Deterministic

Figure 3.1. The relationships between the recognition abilities of classical automata
and their counterparts

QPAs contains the class of languages recognized by classical finite automata. How-
ever, no one has known the relationships between the recognitive ability of QPAs and
the classical counterparts. This dissertation shows that QPAs can solve a certain prob-
lem with no error, which cannot be solved by any classical deterministic pushdown
automata.

QPAs was first introduced by Moore and Crutchfield [20], but there the authors
actually deal with the so-called generalized quantum pushdown automata, whose evo-
lution does not have to be unitary. Thus, Golovkins reintroduced the model QPAs by
giving a definition that would confirm unitarity requirement [15] on which | advance a
discussion based.

Golovkins showed in [15] that QPAS can recognize

e every regular language with probability

e anon-regular language,_, = {w € (a,b)*| |w|, = |w|s} with probability1;

L In the classical deterministic automaton model, transitions are occured deterministically, that is, an
exact computation

13



e anon-context-free languade_,—. = {w € (a,b, ¢)*| |w|, = |w|p = |w|.} With
probability2/3; and

e anon-context-free languade,,. = {w € (a,b, ¢)*| |w|s = |w|p XOr |w|s = |w]c}
with probability4 /7,

where|w|, denotes the number of occurrencesioh w. Golovkins showed that the
class of languages recognized by finite automata is properly contained in the class
of languages recognized by QPAs, and that QPAs might be more powerful than the
classical counterpart inlaounded error scenarioThis dissertation shows that QPAs

can be more powerful even in a deterministic case. That is, there exists a problem
which can be solved by QPAs deterministically, but cannot be solved by DPAs.

This chapter is organized as follows. Section 3.2, following this introduction, first
defines the model of QPAs, its configuration, and so on, and then introduces the lemma
called generalized Ogden’s lemma and the quantum algorithm called Deutsch-Jozsa
algorithm, which are useful in the following section. Section 3.3 defines the problem
and shows that QPAs can solve it with no error. Section 3.4 shows that no deterministic
pushdown automata (DPAS) solve the problem. Section 3.5 concludes this chapter.

3.2. Preliminaries

3.2.1 Definitions

This section cites the definition of QPAS, their configuration and evolution from [15].

Definition 3.1. (Quantum Pushdown Automatonh Quantum Pushdown Automaton,
QPA, is defined as the following 8-tuplé= (Q, X, 7", qo, Qucc, @rej» D, 0) is specified

by a finite set of stateQ, a finite input alphabek, a finite stack alphabet T, an initial
stategy € @, setsQ),.. C @, Q,.; C Q of accepting and rejecting states, respectively,
With Qe N Qrej = ¢, a functionD : Q — {|,—}, where{], —} is the set of
directions of input tape head, remaining at the current position or moving one cell
forward, and a transition functiofi : QxI'x AxQxA* — C, wherel' = YU{#, $}

is the input tape alphabet of and#, $ are end markers not ik, A = T"U {z} is the
working stack alphabet o, andz ¢ T is the stack bottom symbol. O

14



The transition function is restricted to the following requirement:
If (¢, 0, 8,¢',7) # 0, then

1. |7] < 2,and

2. 7€ BT if |7] £ 0.

Definition 3.2. (Configuration) A configuration of a QPA is denoted g3 =

\viqjvi, Ti), where the automaton is in a staje € @, v, € #X* is a finite word on

the input tapey; € z7T* is a finite word on the stack tape, the input tape head is above
the first alphabet of the word,, and the stack head is above the last alphabet of the
word 7;. Note that the rightmost symbol gfis the stack top symbol. O

Let C be the set of all configurations of a QPA. $ets countably infinite. Since
every configurationc) denotes a basis vector in Hilbert spaée = /»(C'), a global

state ofA in spaceH 4 has a form¢)) = > a.|c), wherea, € C denotes the proba-
ceC
bility amplitude of a configuratiofr), and >_ |a.|? = 1.
ceC

Definition 3.3. (linear operator)Let |c) = |v;qjov, 7iT). A linear operatorlU, is
defined as follows:

UA |C> = Z 5(Qj707 TaQ77-/) |f(|C> ,Q),Tﬂ'/>, Wheref(|VinUVkaTlT> 7q)
(a,7)€Qx{e,A,A%}

_ [ vaov, if D(g)="1"
vioque, if Dig)=*—".
O

For QPAA = (Q, %, T, qo, Qaces Qrejs D, 9), Cace = {|Viqjvi, 1) € Clg; € Quee}
Crej = {lvigivi, 1) € C| ¢ € Qrej}, aNdCho = C\ (Coce U Crej). Eocer Erej,
and £,,,, are subspaces df 4 spanned byCj.., C..;, andC,,,, respectively. The
observable) that corresponds to the orthogonal decomposition= E... ® E,.; ®
E,.. 1s used. The outcome of each measurement is either “accept” or “reject” or “non-
halting.”

The computation of QPA4 proceeds as follows. For an inpute >*, assume
that computation starts with configuration#w$, z). Each computation step consists
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of two parts. First, linear operatdr, is applied to the current state, and then the
resulting superposition is measured with respect to the obser¢alefined above.

Let the state before the measurementYex. |c), and then the probability that the
ceC
resulting superposition is projected into subspBge € {acc, rej,non},is > |a.|?.
ceC;
Computation continues until the result of a measurement is “accept” or “reject.”

A QPA is considered valid in terms of quantum theory if its evolution operator is
unitary.

Well-formedness conditions.

In the following expressions,” represents a complex conjugateyof

1. V(ql,al,ﬁ) € Q x ' x A,

E ‘6(q17017717qaw)‘2 =1
(qw)EQxA*

2. For all triples(qi, 01, 71) # (g2, 01, 72) INQ X ' X A,

> 0 (qr,01,71,4,w)0(q2, 01, T2, q,w) = 0.
(qw)EQxA*

3. V(ql,O'l,Tl,7'2> € Q x ' % AQ,
z |5(q7 01, T, q17w)|2 =L

(Q7va)eQ XAX {877-2 »T1 7—2}

4. Y(q1,01,71), (g2, 01, T2) €EQXT XA, V3 €A,

€)) Yo 0(q1,01,71,¢,7)0(q2,01,T2,q, T3T) +

(g,7)EQXA
Z 5*((]1a 01,7,4, 5)5(6127 01,72,4, 7_3) = 07
q€Q
(b) Z 0" (q17 01,71,4, 5)5(6127 01,72,(, 7_27_3) = 0.
q€Q

Theorem 3.1. The evolution of a QPA is unitary if and only if Well-formedness condi-
tions are satisfied.

Proof. See the proof of Theorem 2 in [15]. O
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Throughout this dissertation, only unitary QPAs that satisfy Well-formedness con-
ditions is considered.

3.2.2 Extension of generalized Ogden’s lemma

Let N be the set of natural numbers.

Lemma 3.1. (generalized Ogden’s lemmdjor any context-free language Bp € N
such thatvz € L, if p positions inz are "distinguished” andq positions are “ex-
cluded; withp > n*!, then3u, v, w, z, y such that: = vvwzy and

1. vz contains at least one distinguished positions and no excluded positions,

2. if p’ is the number of distinguished positions ajids the number of excluded
positions invwz, thenp’ < n?+1,

3. Vi € N, wv'wz'y € L.
Proof. See [2]. O]

It is straightforward to see that the proof of lemma 3.1 can be applied to not only
for strings of terminal symbols, but also for strings including non-terminal symbols or
stringw such thatuXy = wwXzy = wowzy. Thus, it is obvious that the following
corollary holds.

Corollary 3.1. For any context-free grammar Gp € N such thatv'z € (TUV)* de-
rived by G, wherd” andV are sets of terminal and non-terminal symbols, respectively,
if p positions inz are “distinguished” andgq positions are “excluded”, withp > n4+!,
then3u, v, w, z, y such that: = uvwzxy and

1. vz contains at least one distinguished positions and no excluded positions,

2. if p’ is the number of distinguished positions ajids the number of excluded
positions invwz, thenp’ < n?+1,

3. Vi € N, uwv'wz'y is derived by G.

17



3.2.3 Deutsch-Jozsa algorithm

Deutsch-Jozsa algorithm is the algorithm that solves the following problem determin-
istically.

Deutsch’s XOR problem
Given a functionf : {0,1} — {0, 1}, as a black box, the question is whether
f(0)e® f(1) = 0orl (i.e. whetherf is constant of balanced).

This is a very simple problem of guessing whether a given coin is genuine (with
head on one side and tail on the other) or fake (with both sides the same). In the
classical world, we need to look at the coin twice (both sides) to find out which case
it is. In other words, in classical computing, we need obviously two applications of
f, to 0 and tol, to solve the problem. Surprisingly, there is a quantum solution to
the problem, which uses only one applicationfadnd provides in all cases the exact
answer.

Deutsch-Jozsa algorithm

Let U; be the unitary mapping dk) |y) — |z) |y & f(x)). Apply first the two-
dimensional Hadamard transform to two registers in the initial $taté) and theri/;
to get

0)11) 22210} + [1)10) 1)),
= 2410)(0) — 1)) +11) (0} — 1)},

&%{@ ([0@® FO)) =1 £(0))) + 1) (J0 f(1)) = [1@® F(N},
1

= 5(=DO(0) + (=1)/ @D [1))([0) — 1)).

()P O|(£(0) @ F(1))) 1),
_ { (=1)/@10) 1) if fis constant,
)«

3.1
—1)7O 1) 1) if f is balanced. (3-1)

By measuring the first qubit in (3.1), we can immediately see whetleconstant
of balanced.
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3.3. QPAs that solve a certain problem deterministically

This section shows that QPAs can solve the following problem deterministically.
Problem |
[Input] Astringw = x%y%2%y'%=', where % is a separator symbok= z,z, 1 - - - x1,
Y =192 Ym, &Ndz = 2125 - - - z; @re sequences of m, and! letters in{a, b, c}, re-
spectively, and’, 2’ € {a, b, c}*. Leti be anindexsuchthatxzs - - -z, 1 =vy1y2-- - yi1
andz; # y;. Letj be anindex suchthatxy - - - z,_1 = 2122 - - - zj_; andz; #z;. Itis
promised thay;,z; #a andw is either of the following two:

€l) V| = |Yit1Yit2 - Ym| = m — 14,

12| = |2j412j42 - - 2| = 1 — 7, andi=;

(c2) |y| #m —iand|z| #1—j.
[Output] Decide whether the input satisfies (c1) ane z;. In that case the automaton
acceptghe input. If (c1) and); # z;, or (c2) is satisfied, the automataejectsit.

Problem | is a promise problem such that the set of input strings is decomposed

into “acceptable,” “rejectable,” and “don’t care” inputs, and only the “acceptable” and
“rejectable” inputs are identified correctly.

Theorem 3.2. There exists a QPA that solves Problem | deterministically.

Proof. AQPA M = (Q, %, T, qo, Qace, @rej» D, 0) that solves Problem | deterministi-
cally is constructed as follows) = Q,UQ_., whereQ| = {qo, ¢, ¢}, } andQ_ = {q}}
(1<i<4,1<5<6),X= {aa b, ¢, %}’T = {a7 b, c, U}’ Qace = {Q2}! Qrej = {Q4a Qiej}.

D(q) ='—"if ¢ € Q_, otherwise |’. Transition functions is defined as Figure 3.3.

The main idea utilizes the Deutsch-Jozsa algorithm [12] whose transition goes along
as follows:
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0V 1) 225 2{1Mo) (10) — 1)) +134) (10) ~ 1)) (3.2

Y M) (0% £(0) ~ 1@ FO)) +

20 (0@ £(1) ~ 1@ 7))}, (33)
= SN0 + (OO ) @ (0) - ). (3.4
G I GOEFNIE (3.5)

_ { (—1)7©10) |1) if fis constant, (3.6)

(—=1)/©11) 1) if fis balanced.

Let M, and M, represent) and 1, respectively, and/; : |z)|y) — |z) |y® f(2)),
wheref(0) =g(v;), f(1) =g(2;), g(b) =0, andg(c) =1.

QPA M consists of two independent sub-QPA% and M, (cf. Figure 3.2), which
have analogous behaviors. After reading the left end makegoes to the super-
posed state of,¢7, ¢}, andq! with amplitudes+31, —1,+1, and —3, respectively.
Expression (3.2) is considered to be this transition, e/, 0) represents state
(to be exact, the configuration a} containing the stack information and the posi-
tion of the input tape head)), is a sub automaton that starts in the superposition
of q{ andq?, searches for such thaty; first discords fromz;, and examines whether
|Yit1---ym| = |¥/|. M, is also a sub automaton that starts in the superposition of
¢} andq{, searches foy such thatz; first discords fromz;, and examines whether
|2j41 -+ - 2| = |#'|. Mo andM; run simultaneously. As will hereinafter be described in
detail, M, and M, go to stateg, . .., ¢ atthe same time iff = j, |yir1 - - ym| = V'],
and|z;11 - - - z| = |2/|. Note that ify;(z;) is b, the amplitudes of; andq¢? (¢i andg;g)
are+1 and—3, while if ;(z;) is ¢, then—3 and+3. These transitions correspond to
Exp. (3.3), that is, the application 6f; denotes the simultaneous runningidf and
M, . For example, suppose that j, v; =0b, andz; =c, the configuration ofi/

S ((0ad) — [a)) + (= [a) + la),
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Figure 3.2. QPA that solves Problem | deterministically.

corresponds to Exp. (3.3)

5 {1Mo) (10) — [13) + M) (1) — [0))). 3.7)

By applying the Hadamard transform to Exp. (3.7),|1) is obtained, corresponding
to ¢4, namely, a rejecting state.

Note that this algorithm successfully functions iff condition (cl) is satisfied, since
the two sub-QPAs must be in the superposed state offgsilat the same time and
with the same stack configuration so that the interference of the second Hadamard
transform is performed well. Thusy/ can properly handle inputs that satisfy (cl).
Before considering case (c2), | illustrate the sub-QPAs (cf. Figure 3.3).

Since they have analogous behaviors as previously described, only one of them,
M, is explained here. Sub-QPW,

1. readsr and puts it into the stack, remaining@tandq?;
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%
Y1--Yi—1
Yi
Yit1--Ym
%

Figure 3.3. The behaviors of the sub-QPAg, 7/7’) represents the transition that

when the input symbol is with the stack top-, 7 is retrieved and” is pushed into the
stack, wherer € ¥ andr € T.
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2. reads % and goes to the superposed stajg afidq?;

3. keeps retrieving a stack top symbol one by one at the superposed state until
discordance between the stack top symbol and the input letter occurs, ngmely,
is read,

4. readgy; and pushes into the stack, and goes to

(@) ¢i from g3 andg? from ¢3 if y; = b,

(b) ¢ from g2 andg? from ¢} if y; = ¢;
5. continues pushinginto the stack at the states while reading; - - - ¥,
6. reads %, goes to the superposed statg ahdq?, and skips: at the state;

7. reads %, goes to the superposed statg ahdq2, and keeps retrieving a stack
top one by one while reading;

8. reads %, goes tg andq?, and skips the remainder of the input.

Note that if the input satisfies (c1)/, andM; go tog}'s at the same time. Consider
(c2). Ify;41 - - -y is shorter thany/, at step (7) symbal must show up at the stack top
before reading througlf and M, goes t0qi£, namely, rejecting states. 4,1 -y,
is longer, the stack top symbol will never havhen reading the right end marker, and
then the automaton goes ¢ fj. Remember that/; has a similar behavior, it is easy
to show that the input that satisfies (c2), leads bdthand M, to the rejecting states;
disagreement of arrival timings have no need to be discussed. Ther&éfomecepts
input (c1) and rejects input (c2) with certainty.

Finally, the unitarity of the evolution of\/ is discussed. Obviously, the transi-
tion of M is reversible deterministic except for two Hadamard transforms. Thus, itis
straightforward that the undefined transitionsiafan be defined properly to satisfy

Well-formedness conditions. O

Further, it should be emphasize that this theorem also holdsvi@y QPAs. This
QPA can be seen aslavay QPA since the tape head always goes right except when it
reads $, or the finite state control comes to the accepting or rejecting state.
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3.4. No DPAs can solve Problem |

This section shows that no DPAs can solve the problem defined in Section 3.3. Since
DPAs are special cases of nhon-deterministic pushdown automata, NPAs, the following
theorem indicates that there are no DPAs that solve Problem I.

Theorem 3.3. There exist no NPAs that solve Problem I.

Proof. (Outline)lf there were NPAs that solved Problem I, there would exist a context-
free grammaiGG that derives every acceptable input string of the problem and some
“don’t care” strings, and does not derive any rejectable inputs. Thus, by Ogden’s
lemma, for any string derived byG, there exists a decompositien= uvwzy such

that for alli > 0, uwviwz'y is also derived byG. (cf. Figure 3.4) Such a decom-
position is calleda good decompositionThe author shows that there exist no good
decompositions, that i€; is not context-free.

However, Lemma 3.1 is insufficient for our purpose. Since Problem | is a promise
problem, an awkward problem emerges that there can be a decomposition such that
for somei, wvlwaly is a “don’t care” input derived by7. The modified Ogden’s
lemma, Corollary 3.1, can be applied to the string to which the lemma or the corollary
is already applied, so that such an awkward problem can be resolved as follows. If
such an awkward decomposition is a good decomposition, there exists a non-terminal
symbol X such thatuXy = uv Xy = wwzry = z, where ‘A = B’ represents
that A is derived fromB by one or more applications of the production rulecbfFor
such az, consider:’ = uXy or 2z’ = w. By Corollary 3.1, similarly, there exists a
decompositiony’ = «v'w’z'y’ such that for all; > 0, v/v”w'z"y is also derived

Ogden’s lemma

[\

Figure 3.4. Syntax trees of= wvwzy anduviwaz’y generated by,
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Z/

Figure 3.6. Syntax trees of = w andu/v"” (..v'wz*..)x"'y' generated by.

by G. (cf. Figs. 3.5 and 3.6) In this way, by implementing the independent multi
parameter of iterations, sayand; such that(uv'wz?..)v”w'z"y’ in Figure 3.5, The
author shows the contradiction that for a certain string derived Jihere are no good
decompositions.

(Details) Let L, be the set of YES instances of Problem | aiidbe the set of
NO instances, withl; N Ly = ¢. The author shows that no NPAs can recognize any
language that contains alle L, but does not contain anyye L,. Assume that there
exists a context-free gramméat by which alls € L; and nos € L, are derived. By
Lemma 3.1,s € L, can be decomposed, whergé > n andn is the constant of the
lemma, as = uvwzy such that for all, uvlwz'y is derived byG.

Consider a string; = acNoN %bY Y bbY % b N bl %bY %cl € Ly, whereb; and
b represent the letter$*and ¢; does . Hereafter, throughout this proof, Let b,

%, and the leftmost and rightmost letters of the substridg$l > i > 5) andc”
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ac..cb...b %b..bc..cbb...b%b...bc...cbc...c%b..b%c...c

casef H—H o excluded

|| || ® distinguished
case?2 ! n

case3

Figure 3.7. Decompositions of Cases 1, 2, and 3.

(1 >4 > 5) be excluded. Let the number of the excludegbe 27) andN = n? + 2.

Let each letter ob;’s be distinguished except the leftmost and rightmost letters (which
are excluded). By Lemma 3.Huq, vy, wy, z1,y; such thats; = w;vywix1y; and

Vi > 0, uyviw,zty; is derived byG. Consider the following three cases as candidates
of good decompositions and show that none of them are good decompositions, leading
to a contradiction.

Case l:v; = b,z = b, and|vy| = |z4];

Case 2: vy = bf, z; = b, and|v,| = |z1;

Case 3: others.

Figure 3.7 illustrates intuitively how each case decompeseSonsider Case 1:

s1=acYby.. ... .by%by.. ... .back ..cY.

u1 v1 w1 Z1 Y1
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ac...cb...b%b...bc..cbb..b%b...bc...cbc...c%b...b%c...c

VWX,
o excluded
v X
! 12 Wo 1 ;2 ® (distinguished
case1-1 i : H
H—" 0
| ||
| [
| ||
| [
casel-2 % % %
|
[

Figure 3.8. Decompositions of Cases 1-1 and 1-2.

Note that for alli, uyviw, iy, & L. Consider the string, X;y,, whereX, is a non-
terminal symbol such that; X, & w11 X121 % uviwiT1Yr. Letsy = u Xy

and let each letter af;’s except both end letters be distinguished. By Corollary 3.1,
Jug, v, wa, Ta, Yo SUCh thatsy = usvewszay, andVvj > 0, uzvngxgyg is derived by

G. Consider the following two cases as candidates of good decompositions. (Figure
3.8)

Case 1-1:vy = ¢, w3 = ¢, and|vy| = |25];
Case 1-2:other.
Afterward, in this way, the layered decomposition as shown in Figure 3.9 is employed.

If none of the lower layers are good decompositions, it is assured that the upper layer
is not a good decomposition. Consider Case 1-2 ((i) in Figure 3.8).

S9 = acy.. ... ..Clbl.. ..bQCQ.. X1 ...C5.
ug V2 wo T2 v1wix1
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S1

decomposition
casel casel-1 casel-1-1 casel-1-1-1
\\ casel-2 \\ casel-1-2 — casel-1-1-2
case2 case2-1 4 casel-1-1-3
— case2-2 — casel-1-1-4
— case2-3
case3 L case2-4

Figure 3.9. Layered decomposition.

Fori = 1 andj = 0, (uyviw ziy, ) vjwsady, = acV=1o2l pN+ll GpN+l (NppN o7
bNeNoeN %N %N € Ly. Thus, this is not a good decomposition. Similarly, all of the
others in Case 1-2 are not good decompositions. Next, consider Case 1-1. Note that
for all i andj, upv] (..viw at. )aly, & Ls. Let X, be a non-terminal symbol such that

U Xao & UV X2 Tl = UgUaWaToYs. Let s3 = us Xy, and let each letter difs’s

except both end letters be distinguished. By Corollary 3.3, v, ws, x3, y3 such that

s3 = ugvswsrsys andVk > 0, uzvbwsakys is derived byG. Consider the following

two cases as candidates of good decompositions. (Figure 3.10)

Case 1-1-1:v3 = bf, 23 = b3, and|vs| = |x3

Case 1-1-2:others.

In Case 1-1-2, it can be shown that there exist semieandk such that respective
decompositions are not good decompositions, for example, theicasé:. Next,
consider Case 1-1-1. Note that foralj andk, (uyv)(..wiw zt.)ah. Y vbwszkys & L.

Let X5 be a non-terminal symbol such tha.X;ys3 = u3v3 X3T3Y3 = U3V3W3T3Y3-
Let s, = w3 and let each letter of;’s except both end letters be distinguished. By
Corollary 3.1,3uy, vy, wy, T4, y4 SUCh thats, = ugvswazays andVi > 0, ugv'wazly,
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ac..cb..b%b..bc...cbb..b%b..bc...cbc..c%b... b%c...C

VWX,

X
VWX, L] Ws ! !3
i ] casel-1-1

|
N
[ % casel-1-2
|
N

Ll Ll
M n

o excluded

® distinguished

Figure 3.10. Decompositions of Cases 1-1-1 and 1-1-2.

is derived fromX3 by G. Consider the following four cases as candidates of good
decompositions. (Figure 3.11)

Case 1-1-1-1:vyxy = 5 ;
Case 1-1-1-2:v4 = b}, 14 = c3;
Case 1-1-1-3:vy = ¢ , 24 = ¢J;

Case 1-1-1-4:others.

Consider Case 1-1-1-1. Note that foralf, £ andl,

(ugv} (ubw . ). Yok (L ubwaa.)zkys & L. Let X5 be a non-terminal symbol such
thatus Xsys = UsV5 X555 % usvsWwsTsys. Letss = uz X3ys and let each letter af’s
except both end letters be distinguished. By Corollary 3u}, vs, ws, x5, y5 such that
85 = UsUsWsTsYs andvm > 0, usvitwszl'ys is derived byG. Consider the following
five cases. (Figure 3.12)
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ac..cb..b%b..bc..cbb..b%b..bc... cbc...c%b..b%ec...c

VW, X,

X
| VaWoXo | W3 3
? Y } N

V4W4X4H casel-1-1-1
}——J casel-1-1-2

H—H case141-1-3
o excluded Hiﬂ

® distinguished | [
{ 1

casel-1-1-4

Figure 3.11. Decompositions of Cases 1-1-1-1, 1-1-1-2, 1-1-1-3, and 1-1-1-4.

Vsds = ch, (3.8)
vs = b and x5 = ¢, (3.9)
vs = by and x5 = ¢, (3.10)
vs = cy and x5 = ¢, and (3.11)
vs = ¢ and x5 = ¢ . (3.12)

As shown below, for each of the above there exigtk, [, andm such that the iterated
string is in Ls.

Incase (3.8),fori = j = k = 1, (I — 1)|vazy| = (m — 1)|vsxs|, acVb¥ %bN N bb™
%N M bN%bN % N2 € Ly, where Ny = N + (I — 1)|vgry| and Ny = N+
(m — 1)|vszs].

Incase (3.9),fori = j =k =1,1 =m = 0, ac¥b¥ %™ VN bbYN %b™ M beN %ob™N2 %ocNs €
LQ, WhereN1 =N — ‘U4$4’, NQ =N — ‘/Ug,‘ andN3 =N — ‘xg,’

In case (3.10),fori = j =k = 1,1 = m = 0, acV b %b™ N bb™M %b™ N2beN %bN %o cNe €
Lo, WhereN1 =N — |U5 , Ng = N — |’U4$4| andN3 =N — |ZL’5|

In case (3.11),fori = j = k =1 = 1, andm = 2, ac¥ b %b™ M bb™ %bN N beN %bN %ocN2 €
Lo, WhereN1 =N+ |U5| anng =N+ |U4l’4|.
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Figure 3.12. Decompositions of Cases (3.8),...,(3.12).

In case (3.12),fori = j = k =1 = 1, andm = 0, ac¥ b %b™ M bb™ %bN N b %bN %ocN2 €
Lo, WhereN1 =N — |’U5| andN2 =N — ’U4I4|.

These cases similarly go for the other cases, Cases 1-1-1-2, 1-1-1-3, and 1-1-1-4.
Thus, Case 1 is not a good decomposition.
Cases 2 and 3 are also similar to Case 1. Therefore, there exist no good decompositions
ons; € L.
O

3.5. Conclusion

This chapter showed that QPAs can solve a certain problem deterministically. The
inputs of the problem are strings in form ¥y %2 %y’ %2’. To construct such QPAs,

two sub-QPAs are utilized, where one examines some relationships amaimdy
andy’, and the other examines some relationships amosgd 2z andz’. The two sub-
QPAs ran in parallel and utilized Deutsch-Jozsa algorithm, which is a deterministic
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guantum algorithm for Deutsch’s XOR problem. Furthermore, it is shown that no
DPAs can solve the problem by using extended generalized Ogden’s lemma in the
fourth section. These results lead to the conclusion that the quantum computational
model would have the stronger power than the classical counterpart, even under the
restricted circumstance such as the stack memory.
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Chapter 4

Quantum Secure Direct
Communication Protocol

4.1. Introduction

Although finding a perfectly secure secret communication protocol has been one of the
most considerable issues in human history, we do not have any absolute solution yet.
The dilemma that a secure key distribution is needed for a secure data transmission
seems to be resolved by the appearance of public key cryptosystems (PKCs). How-
ever, they have several non negligible problems, e.g., the heavy workload and the se-
curity based on the computational assumption. Furthermore, most of the current PKCs
are considered to be defeated by quantum computers. The quantum key distribution
(QKD) protocol [4] realized a key distribution with unconditional security, which is not
based on any computational assumption. This is a protocol by which distant two par-
ties can have the same random private classical key by using quantum devices. This
so-called BB84 triggered the growth of constructions of secure quantum cryptosys-
tems. These days, there are so many QKD algorithms and the unconditional security
of each protocol is discussed from various angles. QKD stands on the position that,
for safe data transmission, it is enough to agree on the same key by communicators
securely.

These days, different approaches of quantum secret communication protocols have
been taken, and especially | focus on one of them, which is called quantum secure
direct communication (QSDC) protocol [6, 7, 10, 14, 19, 22, 23, 26]. A QSDC protocol
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basically enables a direct secret transmission without key agreement in the process.
Compared to QKD, QSDC has a big difference that a sender can transfesined
data, not random. This dissertation proposes a new QSDC protocol, which has some
advantages over the other QSDCs and some QKDs. Every current QSDC has any of
the following undesirable features: the secret information is restricted to be classical
and many EPR pairs or GHZ states are required. In particular, the latter is not a good
feature because of the technical difficulty. As for the security, they have not disscussed
it information theoretically.

It is the first time to propose a QSDC protocol which solves these problems at the
same time and provide a sophisticated security criterion.
ADVANTAGES: First, it can carry an unknown quantum state. This implies that the
protocol can be used as a quantum communication scheme between two hubs of a
quantum network. Second, no entanglement resource is employed in the protocol.
This is an advantage in feasibility. In addition, an eavesdropper on a channel can be
detected efficiently. In general, many decoy qubits are required to increase the de-
tection rate, however, in our protocol, theessage shutti@creases the detection rate
and decreases the information an eavesdropper has at her hand as well. Besides, our
protocol tolerates against Photon-Number-Splitting (PNS) attacks, because the encod-
ing operations applied to the secret quantum state never be announced at any step of
the protocol. So, even if an eavesdropper could obtain a perfect copy of the coded
secret qubit, it is insufficient for unveiling the secret perfectly. Thus, an ideal photon
generator is not required in our protocol.
SECURITY: Obviously the PNS attack is not the only eavesdropping. This disser-
tation shows that our protocol is secure againstrttaa-in-the-middle attackhat an
eavesdropper pretends to be a legitimate receiver. The probability that the attack goes
well is extremely small, or the quality of the copy of the secret gets really worse if
the eavesdropper wants to decrease the detection probability. It should be noted that
the quality of the copy, that is the information quantity the eavesdropper obtains, is
discussed in terms of tHalelity, which is introduced as a new security criterion.

This chapter is organized as follows. In the next section, Sec@ti@everal ba-
sics required to understand the security proof are explained. Sé&gti@sents a new
QSDC protocol. Sectiod introduces a new security criterion and shows that the pro-
tocol is secure against the man-in-the-middle attack. Se&temmcludes this chapter.
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4.2. Asymmetric Universal Cloning Machine and the De-
polarizing Probability

Consider an asymmetric universal cloning machine whose two copies emerge from
depolarizing channels. Through the channel, a quantum siatdepolarized as it is
replaced by the maximally mixed stafe’,2, with probabilityp and it is left untouched

with probability 1 — p. The consequent quantum staffg(p), is described as

E(p) = (1 —p)p+pl/2. (4.1)

The fidelity of£,(p) is described as

F(p, &(p))
= Tryp{(L =p)p+pl/2}\/p
p
1—=. 4.2
5 (42)
Because, for arbitrary, I/2 = (p+ 0,pol + 0,po} + 0.pol) /4, whereo,, o, and
o are the Pauli operators, (4.1) can be rewritten as follows.
3p
)

&p) = (1——

p
Pt = (oupol + oypol + o.pol)

4

/

= (1=p)o+ %(%ml +oypoy + o-pal),

wherep’ = 3p/4. The depolarizing channel can regarded as the noise such that the
operatorss,, o, and o, are applied to the quantum statewith the isotropic error
probability p’ /3.

Now, consider that the two copies pfemerge from the depolarizing channels
of probabilitiesp andg. Let their isotropic error probabilities b€ /3(= p/4) and
¢ /3(= q/4), respectively, and then the relationship betwgesndq’ must satisfy the
no-cloning inequality8],

P +VPd +q > 3/4.

Therefore,

p++pg+q > 1 (4.3)
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Treasure

Figure 4.1. Physical implementation.

4.3. The Model and Protocol

First, the key idea of our direct communication protocol is illustrated in Figure 4.1.
Consider the situation that a sender, Alice, wants to send a secret message to a receiver,
Bob, securely, but they have no encoding-key agreement in advance.

Physically, they achieve the purpose as in Figure 4.1. Alice has a treasure box and
wants to send it to Bob. First, Alice locks the box. She holds the key in her hands and
sends the box to Bob by post or something. Bob can never open it unless he has Alice’s
key. He puts a new lock on the box, and holds his key and sends the box back to Alice.
Alice opens her lock and sends the box to Bob. Finally, Bob gets the treasure just by
his key. At every transmission, the box is locked by either key. An outsider who does
not have the keys cannot open the box.

This method has both of advantage and disadvantage. The advantage is that this
method needs no key agreement. A sender and a receiver simply have their private keys
in their keeping. This means the tolerance of some attacks like PNS attack. The dis-
advantage is that the classical (digital) implementation of this method cannot achieve
good security against the man-in-the-middle attack.
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Figure 4.2. Digital implementation.

4.3.1 Classical implementation and the problem

Figure 4.2 illustrates a digital implementation. Alice has a secrekpgay0 in the
figure for simplicity. She encodes it by operatibh="Don't flip” for example and
sendst = F4(s) = 0 to Bob. Bob similarly encodes the data by operatig=“Flip”
(independent fron¥’4) and sendy = Fp(z) = 1 back to Alice. Alice decodes the bit
by F;' =“Don't flip” and sendsz = F;'(y) = 1 to Bob. Bob decodes the bit by
F;' =“Flip” and gets the secret dat@,
An eavesdropper, Eve, keeps watching the transmission channel. She makes a copy
of every transmitted data, y andz and gets the secret sinee®y®z = s. The reasons
why she needs no special efforts to get the secret data are as follows:

¢ the data encoding is whether flip or not;
e anybody can see the transmitted data without destruction; and

e anybody can make a perfect copy of the transmitted data.

Consider the following naive quantum implementation.
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Figure 4.3. The naive quantum implementation.

4.3.2 Quantum implementation

Figure 4.3 illustrates the framework of our quantum implementation. Alice has a secret
of a single-qubit state to be sent which is described as a unit-length vector of Bloch
sphere|¢). Let .S be Pauli group, i.e$ = {I,0,,0,,0.}. Alice chooses an operator

V' € S randomly, applies it td¢), and sends it to Bob through a quantum channel.
(Needless to say, the transmitted quantum state appears as a maximally mixed state for
others.) Bob also independently chooses an operdfog, S, applies it toV |¢), and

sends it back to Alice. Alice appligg’ to WV |¢) and sends it to Bob. Last of all,

Bob appliedVT to VIWWV |¢) and gets the secréty).

In this implementation, the eavesdropping as in the classical implementation does
not work well, because

e nobody can “see” the state of the qubit and calculate the difference between
arbitrary two quantum states without destruction; and

e nobody can make a perfect copy of an unknown quantum state.

38



(Alice) (Bob)
9 Ve 9

(d

secret

(Eve)

Figure 4.4. Eve’s man-in-the-middle attack.

However, Eve can make an active attack as in Figure 4.4, the man-in-the-middle
attack. Eve intercepts the transmitted qubit from Alice to Bob and gets it back to Alice
directly, pretending she is Bob. Alice opens her lock and sendsgtates) to Bob.

Eve has only to steel the qubit.

This weak and naive implementation is improved as the following QSDC protocol.

4.3.3 The model of our protocol

The model of the proposed protocol is defined as follows. There are two noiseless
channels between Alice and Bob, an unauthenticated quantum channel and an authen-
ticated classical public channel. This dissertation does not consider the loss of qubits
and assumes that the quantum communication devices, e.g., a photon generator and
a detector, are ideal instruments which don’t make any mistakes. Alice and Bob, in
advance, agree on a set of unitary operatgysuch that for any two distinct elements
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VandW in S, WIVIWV |¢) = e“I|¢) and 3, cq 15V 0) (6] VT is a maximally
mixed state, Pauli group for example.

4.3.4 The procedure

The numberg andr are determined in advance based on the security parameter, where
k is the number of decoy qubits ands the total number of rounds.

(P1) (Setup)Alice has a secret of a single-qubit state. Set1.

(P2) (Alice’s encoding phase)f i = r, jump to phase (P5). Alice chooses an opera-
tion, V;, from S randomly and applies it to the secret qubit. Alice newly prepares
k qubits (decoys), where each is in a random initial state ir2tdanensional
Hilbert space. Alice randomly picks out one position frém- 1 positions and
puts the encoded secret there and the decoys in the other positions at random.
Alice sends the sequence of the qubits (the secret and the decoys) to Bob.

(P3) (Bob’s encoding phaseBob randomly choosek + 1 operators fromS and
applies them to the received sequence. He permutes the order of the sequence
and sends it back to Alice. At this moment, he does not know which operation
is applied to the secret, but, let the operatioriefor convenience.

(P4) (Detection phase)Alice informs Bob of the reception and the positions of de-
coys in phase (P2). Bob announces his permutation and the operators applied to
decoys through the classical channel. By using these information, Alice cancels
Bob’s operations for decoys and runs a detection test, which is the measurement
of every decoy with respect to the initial state and its orthonormal state. When
the answer is not “being in the initial state,” Alice and Bob abort this protocol.
Otherwise, set = ¢ 4+ 1. Return to phase (P2).

(P5) (Alice’s decoding phase)Alice appliesV; = (V;_1V;_»--- Vi)' to the secret
qubit. Alice prepares decoys in random states and randomly picks out one
position fromk + 1 positions and puts the secret qubit there and the decoys in
the other positions at random. Alice sends the sequence to Bob.
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(P6) (Detection phase)Bob informs Alice of the reception. Alice announces the
position of decoys and their states. Bob runs the detection test similarly to phase
(P4). If any of the decoys has changed, they abort this protocol.

(P7) (Bob’s decoding phaseBob appliesWW; = (W;_,W;_,---W1)' to the secret
gubit and gets the original secret.

In the protocol, resending the secret is restricted, because it is impossible to make
a perfect copy of an unknown quantum state. The issue is left out of consideration in
this dissertation.

4.4. The security analysis of the proposed protocol

Eve cannot directly know the secret even if she keeps watch on the channel because
every quantum state on the channel is maximally mixed. In our protocol, a sender and
a receiver do not have an encoding-key agreement in advance nor in the process nor
afterward, but instead they individually encode the secret by their private keys, and
shuttleit any number of times. Their encodings are the sequences of all the quantum
operations that they choose randomly at all rounds but the last, and so the subsequence
is of no help in decoding. Thus, if once Bob applies an operation to the secret, there
is no chance intuitively for Eve to remove the operation, because the quantum state
to which his operation is applied goes into a maximally mixed state and she cannot
recover the information.

4.4.1 The model of Eve’s man-in-the-middle attack

An eavesdropper, Eve, wants to steal the secret information without being detected.
As in Figure 4.4, she attempts to intercept the transmission and keep the secret qubit
from Bob. Figure 4.5 illustrates her attack generally at a round-trip. Eve intercepts
both the transmitted ways, the way from Alice to Bob and the way to return to Alice.
Eve’s attack can be generalized as follows. Eve can intercept the transmitted quantum
system,S, which is a composite system of both the secret qubit and decoys. Then, she
prepares an ancillary systerhand applies a unitary operatidn on » ® w, Wherep

41



(Eve) (Bob)

@)
)

time (Alice

~—

\ |

T
W

o

ONENO

!

Detection test

(&)

v

Figure 4.5. Eve’s attackS and A are the quantum systenis some sort of operation.

andw are the quantum states §fand A, respectively. Let be this Eve’s attack, and
the outcoming state’ is

¢ =E(p) = Tra{E(p @ w)E}.

Eve sends’ to Bob/Alice.

This dissertation considers the specific attack model suited for her purpose as fol-
lows. Figure 4.6 illustrates the flow of a single-qubit state in our protocol with Eve,
especially the secret qubit for simplicity, but, the following Eve’s attack is for every
qubit. |¢) is the secret state. Alice and Bob haveound-trips. p; and p; are the
mixed states Alice sends and Bob receives in the first-half of-theround, respec-
tively. n; andr are the mixed states Bob sends and Alice receives in the last-half of the
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Figure 4.6. The flow under the influence of Eve’s attack. The classical auxiliary infor-
mation is omitted.
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i-th round, respectively; andV; are Alice’s and Bob’s operations i} respectively.

Note thatV,.---V; = [ andW,.---W; = I. Eve clones the whole quantum system
on the way from Alice to Bob.£,, ,, means such a cloning channeldepolarizing
channe] wherep; andg; relates the accuracy of the clongsandp;, respectively. She
keeps one of the clones in her hands and sends the other one to Bob. Then, in order
to gain the secret information, Eve would replagevith 1; on the way back to Al-

ice. The accuracy of the eavesdropping rests on the fidelity between the,shaie

the actual returning statg. But, the lower the fidelity between the appropriate state
Wipin andn; is, the higher the detection probability at the subsequent test is. Thus,
Eve should make an attack such that both the fidelities are high concurrently, that is,
she returns a mixture @f; andn; asn;:

n = aup; + (1 — o),

whereq; is a classical probability. Eve has to repeats this attack at every round, for the
reason mentioned above. At the lagh round, a clone op, Eve makes is the clone
of the secretyy) in this attack. Let the clone hes.

4.4.2 The security analysis

Let us start with the preparations for the security analysisndp; are the two copies
of p; which emerge from depolarizing chani&)| ,, as seen in Section 4.2. Then, by
(4.1), they can be rewritten as
pi = (L—pi)pi+pil/2
pi = (I—a)pi+ql/2
Thus,
pi = Vmé_lvf
= Vi{aimapion + (1= i) )2}V
= Vi{ai{(1 = pic1)pic1 +picad )2} + (1 — Oéz'—l)]/z}viT
= a;i(1—- pifl)vipifl‘/; + (1 = a1 (1 —pi1))1/2

i—1 i—1
= I an(l=pa)Vi- Vilto) (ol Vil - Vi + {1 =TT a(1 = p)}1/2.
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Here, letjy;) = V;--- Vi 1) and rewritep; simply as follows:

pi = ;1_1110""(1 = P [93) (] + {1 — ;1_111%(1 —pn)H/2. (4.4)

By (4.4), u; can be rewritten withw);) as follows.

pi = (L—=pi)pi+pil/2

— o (1 p) ) 0]+ {1 TLa 1 (1= p)}I/2. (45)

m=1

Now we are ready to go to the security analysis. First, a new security criterion is
defined.

Definition 4.1. A protocol is secure if and only if an eavesdropper can obtain the
information about the secret message with the fidelityivo) (V0| , pr) — 1/2] <
O(27*), where|yy) is the state of the original secrety, is the clone state di/,) Eve
reconstructs; and is the security parameter the sender decides.

Theorem 4.1. When Alice and Bob use a constant number of decoysd(sagoys)
and repeat the rallyts times, our protocol is secure against the man-in-the-middle
attack defined above.

Before the proof of this theorem, several lemmas are introduced.
Lemma 4.1.If F(p;, p}) > 1 — O(6), thenF (p;, 1;) < 1/2 + O(V/9).

Proof. Let F'(p;, p}) = Fp andF(p;, j1;) = Fr. By (4.2),Fp =1 —¢;/2>1—0(0)
and Fz = 1 — p;/2. By no-cloning inequality (4.3)y/(1 — F)(1 — Fg) > 1/2 —
(1 — Fg) — (1 — Fg). Therefore,

O@) > 1-Fp
L OWS) > V1-Fg
> /(1—Fp)(1— Fg)
> 1/2—(1- Fg) — (1 - Fp)
> 1/2— (1 - Fg) — O(6)
Fp < 1/2+0(V56)
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Lemma 4.2. Lete and ¢ be positive real numbers less thanSuppose that for some
i |F(pi; |thi) (Wi]) — 1/2] < e, whereyy;) = Vi - Vi), If Fpi, p) = 1 —0(9),
|F(|vi) (Wil ) — 1/2] < O(Voe).

Proof. By three equations (4.1), (4.2) and (4.4), the fidelity betwgeand |¢;) is
given as

Flon ) (W) = 1/2{1+ TLay,(1 - p,)}.

i—1
qlam(l—pm)/Q < e. (4.6)

By Lemma 4.1F (p;, ;) — 1/2 = 1/2(1 — p;) < O(\/6). Therefore,

F(l) (il ) = 1/2 = 1/2 1T T (1= )

= 1/2;1_111(17”(1 - pm) ) (1 o pi)
O(Vée).

IN

]

Lemma 4.3. Suppose thak'(p;,, o}, ), - - , F(piy,, pi,, ) = 1—0(5), whereiy, - - - iy,
are mutually distinct, thehZ (|vo) (o, pe) — 1/2| < O(5™).

Proof. Without loss of generalityy; < iy < -+ < i,,. SUPPOSEF (p;,,|Vi,) (Vi ]) —
1/2| = ¢, then|F(|v,) (¥, ], a,) — 1/2] < O(V/6¢) by Lemma 4.2, and thus

i1—1 i1
1/2 11 a1 (1= ppn) < O(Voe).

m=1

P i ) )~ 172 = 1/2( T ain(1 — po)}

1/2( T (1~ p))

IAIA

12 T 0a(1 ~ p)
O(Vde).

IN

IN
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By substitutionO(v/d¢) with ¢ in Lemma 4.2,|F(|15,) (Wi, |, ptiy) — 1/2] < O(d¢).
By repeated this,F'(|1):,, ) (Viy, | 5 1y, ) — 1/2] < O(6™). Therefore,

F(lgo) ol o) =1/2 = 1/2TL (1= )

tgp—1 21

§ 1/2 lllam 1Il(l_pm)
< O@™).

]

Lemma 4.4.1f F(p;, p;) < 1—(9), the probability that Eve passes the detection test
by Alice in thei-th transmission i$1 — (6))* at most, wheré is the number of decoy
qubits.

Proof. It should be noted that, in our protocol, the qubit carrying the secret message is
not an object of the detection test, but every decoy qubit is. First, let us consider the
average probability that Eve passes the detection test inttheansmission per decoy
qubit. Eve returns), = a;u; + (1 — «y)n; to Alice and Alice performs the detection
test onWW,'n/W;. The fidelity betweerV,'n/IW; and p; corresponds to the likelihood
that Eve passes the detection test.

Wingwi = aW!pWi+ (1 — a))WinW;
= aiWiT,uiWi + (1 — ay)p;
= W1 =pi)pi + pil /2}WV,

(1 = ai){(1 = @)pi +qil /2} (4.7)
SinceW/ (I/2)W; = I/2,
(4.7) = ay(1— pi)WiTp,-Wi +(1—a)(1—q)pi +{oi + (1 —a;)g } /2
= {oi(L = p)WipiWi + (1 — i1 — pi))1/2} +
{T=a)X—g)pi+ (1 — (1 —a)(L —q))I/2} = 1/2.

(1—(1—oy)(1—g))I/2. By the linearity,
F(WiuWi,p)) = Flpi,\)+ F(p.€) — F(p;, 1/2). (4.8)
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ConsideringV; € S,

N = S A= oo, + (1 aill - p)I/2)
— 1/2.

F(p,§) = 1/2+1/2(1 — ;) (1 — ).
Therefore,

(48) = 1/241/2(1 — o)1 —q;) —1/2
(1 —ai)(1 —/2) = (1 — a;)/2

< (I-a)(l-a/2)
< 1-¢q)/2
= Flpipi)

By the assumption of this lemma,
FWipWi p) < 1-9Q(9).

Therefore, the probability that all thedecoys pass the detection testis— Q(5))".
[]

The next corollary follows this lemma.
Corollary 4.1. Iffor i = iy,--- ,i,, F(pi, p;) < 1 —Q(5), the probability that Alice
detects Eve through this protocol is at ledst (1 — Q(§))*".

Now, we are ready to prove Theorem 4.1.

(Proof of Theorem 4.1)First, consider the case that an eavesdropper, Eve, makes a
‘strong’ attack at more than half the rounds such that Bob gets the poor information.
In other words, fori = iy,--- ,is,--- (all mutually distinct), F'(p;, p}) < 1 — 0,
whered is a constant(( < § < 1/2). Alice detects Eve by the end with probability
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1 — (1 —§)%*< atleast, by Corollary 4.1, and the protocol aborts in the middle. In this
case, it is obvious thak'(|ug) (V0| , pr) = 1/2 and she cannot get any information
about the secret. With the extremely low probabilfty;- §)2"<, Eve can obtain the full
information about the secret, and thus the average fidelity is at most

Fuug(to) (ol pp) = (1=0)" -1+ {1—(1-48)"} 1/2
= 1/2+1/2(1—8)*.

Next, consider the case that Eve makes a ‘weak’ attack at more than half the rounds
such that Bob gets the good information. In other wordsjferiy, .- iy, -+ (all
mutually distinct),F'(p;, p;) > 1 — . By Lemma 4.3,

[E'(|10) (ol , pr) — 1/2] 0(6°)

<
< 0(27).

4.5. Conclusion

This chapter presented a new QSDC protocol in which the legitimate communicators
can have a direct message of quantum states securely; no entanglement resource is em-
ployed; and an eavesdropper is detected efficiently. The protocol exploits the features
unique to the quantum information processing, such as uncertainty, the no-cloning
property, and indistinguishability. The two legitimate communicators have the mes-
sage shuttle between them and transmit the secret without key-agreement in advance
nor in the process nor afterward. Moreover, the protocol does not require a perfect
photon emitter which emits just one particle each time. An imperfect photon generator
which emits some patrticles at a time would cause the factual vulnerability in QKD. So,

it could be said that the feasibility of the proposed protocol is higher than some other
QSDCs or QKDs which rely on the entanglement or ideal devices.

And a new security criterion for the method of sending quantum information using
the mathematical metrics, “fidelity’, is introduced. The fidelity uniquely determines
the distance between the two quantum states and gives a means to determine how alike
the states are. It is shown that the proposed protocol satisfies the criterion against
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the attack. The fidelity between the original secret state and the copy the eavesdrop-
per creates gets extremely worse if she wants to decrease the detection probability.
Conversely, if she wants to get the secret information with good fidelity, she will be
detected with extremely high probability.

In conclusion, | have proposed the new quantum secure direct communication pro-
tocol under the restricted circumstance such that no entanglement resource and no
perfect photon generator are available.
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Chapter 5
Conclusion

This thesis found some evidences such that the quantum algorithms would be stronger
than the classical counterparts even under the restricted circumstances. Many sophis-
ticated quantum algorithms were proposed and it is generally thought the quantum
computation must be more excellent than the classical computation in every scene.
However, in fact, the quantum computation requires the particular undesirable restric-
tions such as the reversibility, the expensive computational resources (e.g., qubits), the
severe operational environment, and so on. Thus, in order to take advantage of the
guantum information processing technology to do a fine job within the current or the
near future technology, it is extremely important to clarify the ability of the quantum
computation under the various restricted circumstances. In this thesis, some restricted
circumstances are considered and it was shown the quantum algorithms would be ex-
cellent even under the circumstances.

The first result is about the quantum computational model with the stack memory,
QPAs. It has been already known that QPAs might be more powerful than the classi-
cal counterpart ilbounded error scenarioln other words, the class of the languages
recognized by classical finite automata is properly contained in the class of languages
recognized by QPAs, and some languagesrecognized by classical pushdown au-
tomata can be probabilistically recognized by QPAs. But no one knews the relationship
between QPAs and the classical counterpartdetgrministiccase. Chapter 3 showed
that a QPA can solve a certain problem with certainty which cannot be solved by DPAs.
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The second result is about a quantum secret direct communication (QSDC) pro-
tocol with a limited number of computational resources. Chapter 4 proposed a new
QSDC protocol. The quantum information processing often uses the useful quan-
tum features (e.g., quantum entanglement, no-cloning theorem) to accomplish some
miracles such as quantum teleportation, the unconditionally secure key distribution
schemes and so on. However, quantum entanglement is very expensive to keep the
useful state during the computation. The proposed protocol employs no entanglement.
Furthermore, a new security criterion for sending quantum states using the mathemati-
cal metrics, fidelity, is introduced. So, it is the first time to introduce the strict criterion
in terms of the fidelity of quantum states and give the proof of the security against the
man-in-the-middle attack.

It seems that the computational ability of the realistic quantum computer is differ-
ent from the ideal one. We need to keep pursuing the studies in the future.
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