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The Ability of Quantum Information Processing Under

the Resource-restricted Circumstances∗

Yumiko Murakami

Abstract

This dissertation provides the studies on quantum information processing, espe-

cially under the circumstances that the computational resources are restricted. Quan-

tum computing is a new computational paradigm based on the quantum mechanics. It

has excellent potential abilities of information processing compared to traditional com-

puting called classical computing. However, ideal quantum computers would not be

implemented under the current technology and the various computational restrictions

are considered to be imposed on the actual quantum computers. Thus, it is quite impor-

tant to clarify the ability of quantum computing under such restricted circumstances.

The main results of this dissertation are as follows.

First, the recognition ability of the quantum computational model with the mem-

ory restricted to a stack, quantum pushdown automata, is compared with that of the

classical pushdown automata in a deterministic scene. In the computational model

theory, the relationship between the recognition abilities of the quantum and classical

automata is still an open problem and some negative results which show that the abil-

ity of the quantum computational model is weaker than tha classical counterpart are

provided. Thus, it is not obvious that the recognition ability of quantum automata is

superior. The dissertation shows that quantum pushdown automata can solve a certain

problem with no error which cannot be solved by classical deterministic pushdown

automata. The modified generalized Ogden’s lemma is utilized to show that classical

deterministic automata cannot solve the problem. This implies that quantum pushdown

automata can be more powerful than classical counterparts.

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0461039, August 21, 2008.
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Second, a new quantum secure direct communication protocol is proposed. Most

of the current quantum secure direct communication schemes use the brilliant resource

unique to the quantum information processing, quantum entanglement, which requires

the extremely delicate handling. In contrast, the proposed protocol employs no entan-

glement resource at all. Thus it can be said that the feasibility of implementation of this

protocol is higher than the other proposals under the current technology. The proposed

protocol can send quantum information as well as classical information. Thus, in order

to discuss the security of the proposed protocol, a new criterion is needed which can

measure the amount of quantum information. This dissertation introduces a new crite-

rion that is based on the fidelity of quantum states, and it is shown that the proposed

protocol satisfies the criterion against the man-in-the-middle attack.

Keywords:

quantum computing, quantum pushdown automata, quantum secret communication,

quantum key distribution, unconditional security
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資源を限定した状況下における量子計算の能力に関す

る研究∗

村上　ユミコ

内容梗概

本論文は，量子情報処理分野のうち，特に計算資源が限定された状況下での

量子計算に関する研究により得られた成果をまとめたものである．量子計算は，

量子力学に基づく新しい計算パラダイムであり，従来の計算（古典計算と呼ばれ

る）に比べ潜在的に強力な情報処理が可能である．しかし現代の技術では理想的

な量子計算機を構築することはできず，実際に実現される量子計算機にはその操

作について様々な制約が課されることが予想される．よって，様々な制約状況下

での計算能力を考える必要がある．本研究の主要な成果は以下の通りである．

第一に，メモリがスタックに限定された量子計算モデルである量子プッシュダ

ウンオートマトンについて，従来の決定性プッシュダウンオートマトンと認識能

力を比較する．計算理論においては，量子オートマトンと古典オートマトンの認

識能力の関係はまだ未解決の問題である．量子オートマトンの方が古典のものよ

りも能力的に劣っているとの否定的な結果もすでにいくつか報告されており，量

子計算の優位性は自明のものではないことがわかっている．本論文では，古典の

決定性プッシュダウンオートマトンが解くことのできないある種の問題を，量子

プッシュダウンオートマトンが決定的に解けることを示す．古典プッシュダウン

オートマトンがその問題を解けないことについては，一般化されたOgdenの補題

を修正したものを用いて証明を行った．この結果は，量子プッシュダウンオート

マトンが古典のものよりも強い能力を持っていることを示唆するものである．

第二に，新しい量子直接秘密通信プロトコルを提案する．従来の量子直接秘

密通信プロトコルは，量子エンタングルメントと呼ばれる状態維持の非常に難し

い量子計算特有の資源を利用するものが多い．しかし提案手法は，この資源を一

∗ 奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻 博士論文, NAIST-IS-

DD0461039, 2008年 8月 21日.
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切使用しないため，他の提案手法に比べ，現在の技術でも実装がしやすいと考え

られる．また提案手法は，古典情報に加え量子情報を送信することができるため，

安全性の評価として，量子情報に関する何らかの定量的な基準が必要になる．本

論文では，量子状態の忠実度に基づく新たな安全基準を提案し，提案手法がなり

すまし攻撃に対してその安全基準を満たしていることを証明する．

キーワード

量子計算,量子プッシュダウンオートマトン,量子直接秘匿通信,量子鍵配布,無条

件安全
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Chapter 1

Introduction

Today the innovations of computers see the end coming. Scaling of transistors has

physical limitations. It is very obvious that the size of elemental devices can never

exceed the limit of atom. Moreover, at such level it can no longer be expected to

make architecture designs within classical mechanics – so it is a world dominated by

quantum mechanics. To get around this issue, many down-to-earth solutions have been

attempted. “Quantum computing” is a bit different solution, which is essentially based

on quantum mechanics, not like traditional computing (calledclassicalcomputing)

based on Newtonian mechanics.

The history of quantum computing started with an allusion by Bennett in 1973 that

there exists a reversible computational process [3]. Feynman indicated in 1982 that

it might take only a linear time to simulate quantum physics by quantum computers

although it would take an exponentially time by classical computers [13]. Deutsch

formulated the model of quantum computing, quantum Turing machines, in 1985 [11].

This triggered speculation that computing could be done more efficiently, if they made

use of quantum effects. But constructing quantum computers proved to be tricky and

the field developed slowly since no one knows the specific method to use the quan-

tum effects to speed up computation. It was not until 1994, when a polynomial-time

quantum algorithm for prime factorization was announced by Shor [21], that quan-

tum computing captured the widespread attention in the world. It was a significant

milestone since this discovery destroyed the popular belief that we will probably never

acquire a polynomial-time algorithm for enormous number’s factorization on which

the safety of today’s cipher communications is based. This discovery attracted both of

1



theoreticians and experimentalists and encouraged the research and development ac-

tivities of other drastic quantum algorithms and construction of quantum computers.

In addition, some other quantum algorithms were proposed, such as Grover’s search

algorithm [16] and quantum key distribution [4], which had a very strong processing

power compared to the classical solutions. They solved the problems which had been

believed to be impossible to solve in the practical time in classical computing. These

remarkable quantum algorithms built up the expectations that the ability of quantum

computers extremely exceeds that of classical computers, however, quantum comput-

ing has some practical problems such as it can handle only a limited number of quan-

tum bits at a time. Most of the proposed sophisticated quantum algorithms suppose

the ideal quantum computers and processing. But, in practice, we have only the sub-

set in the current technology. Thus, it is important to clarify the quantum processing

ability with the limited processing power such that the poor computational resources

are available. The aim of this dissertation is to show that quantum computing would

exploit its ability even under such realistic circumstances, that is, a limited number of

quantum bits, the limited access to quantum bits, the low-precision devices, the short

coherent time, no entanglement available, and so on.

The first result of this dissertation shows that the quantum computation with the

stack memory, the quantum pushdown automata (QPAs), which is a quantum compu-

tational model, is stronger than the classical counterpart in adeterministicscene. The

result that the 1-way quantum finite automata is weaker than the 1-way classical finite

automata is already known. So, it is nontrivial to show that the quantum is stronger

than the classical in the computational theory.

QPAs is the quantum computational model defined by Golovkins in 2000 [15] and

it is shown that the class of languages recognized by QPAs contains the class of lan-

guages recognized by classical finite automata. However, no one knows the relation-

ships between the recognitive ability of QPAs and the classical counterparts. This

dissertation gives a proposition that the QPAs can deterministically solve a certain

problem, which cannot be solved by any deterministic pushdown automata. Golovkins

showed in [15] that QPAs can recognize

• every regular language with probability1;

• a non-regular languageLa=b = {ω ∈ (a, b)∗| |ω|a = |ω|b} with probability1;

2



• a non-context-free languageLa=b=c = {ω ∈ (a, b, c)∗| |ω|a = |ω|b = |ω|c} with

probability2/3; and

• a non-context-free languageLxor = {ω ∈ (a, b, c)∗| |ω|a = |ω|b xor |ω|a = |ω|c}
with probability4/7,

where|ω|a denotes the number of occurrences ofa in ω. Golovkins showed that the

class of languages recognized by finite automata is properly contained in the class

of languages recognized by QPAs, and that QPAs might be more powerful than the

classical counterpart in abounded error scenario. This dissertation shows that QPAs

can be more powerful even in adeterministiccase. That is, there exists a problem

which can be solved by QPAs deterministically, but cannot be solved by deterministic

pushdown automata. This result suggests that quantum computing could be superior

to classical computing even if the use of the quantum memory is restricted.

The second result refers to the case that the computational resources are restricted.

The elegant quantum information processing often exploits the computational resource

called the “quantum entanglement.” This is greatly useful, but, it is very difficult to

keep such a useful state during the computation in the current technology. This dis-

sertation presents a new quantum secret direct communication protocol (QSDC), that

does not need such expensive resources, and shows that it achieves the good security

against the man-in-the-middle attack.

The protocol has the following advantages over the current QSDC protocols. First,

it can carry an unknown quantum state. This implies that the protocol can be used

as a quantum communication scheme between two hubs of a quantum network. Sec-

ond, no entanglement resource is employed in the protocol. This is an advantage in

feasibility. In addition, an eavesdropper on a channel can be detected efficiently. In

general, many decoy qubits are required to increase the detection rate, however, in our

protocol, themessage shuttleincreases the detection rate and decreases the informa-

tion an eavesdropper has at her hand as well. Besides, our protocol tolerates against

Photon-Number-Splitting attacks, because the encoding operations applied to the se-

cret quantum state never be announced at any step of the protocol. So, even if an

eavesdropper could obtain a perfect “copy” of the coded secret qubit, it is insufficient

for unveiling the secret perfectly. Thus, an ideal photon generator is not required in the

protocol.

3



Since the proposed protocol can send quantum information as well as classical

information, in order to discuss the security of the proposed protocol, a new criterion

is needed which can measure the amount ofquantuminformation. This dissertation

introduces a new criterion based onfidelityof quantum states, which is a mathematical

measure of the similarity between the two arbitrary quantum states, and shows that

the proposed protocol satisfies it against the man-in-the-middle attack. The fidelity

between the original secret state and the copy created by the eavesdropper gets really

worse if the eavesdropper wants to decrease the detection probability. Conversely, if

she wants to get the secret information with good fidelity, she will be detected with

extremely high probability.

This dissertation is organized as follows. The next chapter, Chapter 2, gives basics

of quantum computing necessary to understand various quantum algorithms. Chapter

3 first introduces the definition of quantum pushdown automata and its configuration

and then gives a proposition that the QPAs can deterministically solve a certain prob-

lem, which cannot be solved by any deterministic pushdown automata. Chapter 4 first

considers how well the depolarized channel keeps the fidelity of quantum states. Then

a new QSDC protocol is presented. A new security criterion based on the fidelity of

quantum states discussed above is introduced and it is shown that the presented pro-

tocol satisfies the criterion against the man-in-the-middle attack. Chapter 5 concludes

this dissertation.
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Chapter 2

Basics of Quantum Computing

This chapter gives the basics of quantum computation, quantum systems, evolution,

measurement, entanglement, density matrix, and fidelity.

2.1. Quantum state

A quantum bit,qubit, is like a probabilistic bit which is ‘0’ with probabilitya and ‘1’

with probability b, wherea + b = 1. The significant difference between a qubit and

a traditional bit (classical bit) is that, while a classical bit denotes either ‘0’ or ‘1’ at

a certain moment, a qubit can be in the both state at the same time. The two possible

states for a qubit are described by|0〉 and|1〉 using the Dirac notation, corresponding

to traditional ‘0’ and ‘1’ respectively. A quantum state of a qubit can be in the state:

|ψ〉 = α |0〉+ β |1〉,

whereα andβ are complex numbers which are calledprobability amplitudesand|α|2+
|β|2 = 1. Thus, a quantum state can be regarded as a unit-length vector in a two

dimensional complex vector space with inner product, that is, a Hilbert space, and

an arbitrary quantum state is described by the linear combination of the orthonormal

basis states of the state space, calledsuperposition. The basis{|0〉 , |1〉} is called the

computational basis and described as vectors|0〉 = (1 0)t, |1〉 = (0 1)t. Note that

the computational basis is just one of many possible bases, and an arbitrary quantum

state can be re expressed in terms of another basis, for example, consider the following
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basis:|+〉 ≡ (|0〉+ |1〉)/√2 and|−〉 ≡ (|0〉 − |1〉)/√2: then,

|ψ〉 = α |0〉+ β |1〉 (2.1)

=
α√
2
{|+〉+ |−〉}+

β√
2
{|+〉 − |−〉} (2.2)

=
α + β√

2
|+〉+

α− β√
2
|−〉 . (2.3)

The superposition yields the remarkable quantum computation power, especially

when it is a composite system of plenty of qubits. The notation of a composite system

is represented by a tensor product of each qubit, like|1〉 ⊗ |0〉. It would be described

like simply |10〉 or |2〉 decimally.

Consider then qubit system, that is, the2n dimensional Hilbert space. Let the basis

states be

|0〉 = (1 0 0 · · · 0)t, |1〉 = (0 1 0 · · · 0)t, · · · , |2n − 1〉 = (0 0 · · · 0 1)t

and then the quantum state|ψ〉 = (α0 α1 · · ·α2n−1)
t can be described as a linear

combination of the basis states with complex coefficients:

|ψ〉 = α0 |0〉+ α1 |1〉+ · · ·+ α2n−1 |2n − 1〉 =
2n−1

Σ
i=0

αi |i〉,

where
2n−1

Σ
i=0

|αi|2 = 1. In quantum systems, the state space increases exponentially with

the size of the system. This enormous potential computational power would provide

us various advantages of quantum computation.

2.2. Evolution

The classical systems are governed by the Newtonian equation, whereas the quantum

systems by the Schrödinger equation. The evolution of a closed quantum system is de-

scribed by aunitary transformationU , that isUU † = U †U = I, whereU † is conjugate

of U , and it can be regarded as a rotation of a complex vector space.I is an identity

matrix. A 2 × 2 unitary matrix describes an operation to a qubit. An operation to

n-qubit system is specified as a2n-dimensional unitary matrix. It would be described

as a tensor product of some sub-dimensional unitary matrices, e.g.,

U0 ⊗ U1{ 1√
2
(|0〉+ |1〉)0 ⊗ |1〉1},

6



whereU0 andU1 are the unitary operators for the first qubit and the second qubit of the

two-qubit system, respectively. Because of the linearity, applying the unitary operator

U to a superposition state is represented as follows.

U |ψ〉 = U
2n−1

Σ
i=0

αi |i〉

=
2n−1

Σ
i=0

Uαi |i〉 .

This means that the unitary operator can be applied to each computational state|i〉
individually. This parallelism could be advantages of quantum computation.

The often-used unitary operators, Hadamard transform and Pauli operators are de-

fined as follows.

2.2.1 Hadamard transform

The Hadamard transform,H is defined as follows.

H : |0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

Applied to basis vector|0〉, H creates the superposed state1√
2
(|0〉+ |1〉). Furthermore,

applied ton qubits individually,H creates the superposition of all2n possible states.

Then-bit Hadamard transform,Hn, is defined as follows.

Hn |x0x1 · · ·xn−1〉
= (H ⊗H ⊗ · · · ⊗H) |x0x1 · · ·xn−1〉
=

1√
N
{(|0〉+ (−1)x0 |1〉)⊗ (|0〉+ (−1)x1 |1〉)⊗ · · · ⊗ (|0〉+ (−1)xn−1 |1〉)}

=
1√
N

N−1

Σ
y=0

(−1)x0y0+x1y1+···+xn−1yn−1 |y0y1 · · · yn−1〉 ,

wherey = 2n−1y0 + 2n−2y1 + · · ·+ 20yn−1 andN = 2n. For example,

H3 |000〉 =
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)

On the other hand,
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H 1√
2
(|0〉+ |1〉) = H 1√

2
|0〉+ H 1√

2
|1〉 = |0〉.

It is called a quantuminterferencethat a unitary operation increase or decrease each

amplitude.

2.2.2 Pauli group

The Pauli groupG consists of the following four operators extremely useful2 × 2

matrices.

I =

[
1 0

0 1

]

σy = iσxσz =

[
0 −i

i 0

]

σx =

[
0 1

1 0

]

σz =

[
1 0

0 −1

]

2.2.3 No-cloning

One of the peculiar features of quantum state is “no-cloning.” The reason why anyone

can make a perfect copy of an electronic information is that the information lives in

classical dynamics. In contrast, in quantum dynamics, anyone cannot make a perfect

copy of an unknown quantum state. The proof is a simple application of the linearity

of unitary transformations. Assume thatU is a unitary transformation that clones a

qubit, such thatU |a0〉 = |aa〉 andU |b0〉 = |bb〉. Consider|c〉 = 1√
2
(|a〉 + |b〉). By

the linearity,

U |c0〉 =
1√
2
{U |a0〉+ U |b0〉}

=
1√
2
{|aa〉+ |bb〉}. (2.4)

But, if U is a genuine cloning transformation, then

U |c0〉 = |cc〉 = 1/2(|aa〉+ |ab〉+ |ba〉+ |bb〉),

which is not equal to (2.4). Thus, there is no unitary operation that can correctly clone

an unknown quantum state.
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2.3. Measurement

We cannot examine a qubit to determine its quantum state definitely, that is, to specify

the value ofα andβ. When the qubit state,α |0〉+β |1〉, is measured, the|0〉 is obtained

with probability |α|2 or the|1〉 with probability |β|2, and the information ofα andβ

is lost. That is, measurement of a quantum state transforms the state into one of the

measuring device’s associated basis states, the computational basis in this case. We

define the measurement formally as follows.

Let |ψ〉 = α0 |0〉 + α1 |1〉 + · · · + αn−1 |n− 1〉. Given theobservablethat corre-

sponds to the orthogonal decomposition of the state spaceE = E0⊕E1⊕ · · · ⊕Em−1

which devides the state space into orthogonal subspacesEi’s. Consider aprojection

of |ψ〉 to each ofEi. The squared magnitude of the projection is the probability with

which the associated outcome is obtained. The outcome isi ∈ {0, · · ·m − 1} and the

state after measurement is in the subspace. For example, consider a four-dimensional

complex vector space whose basis states are|0〉, |1〉, |2〉 and|3〉. Let the state|ψ〉 be a

vector that lives in the space and|ψ〉 = 1
2
|0〉− 1

2
|1〉+ 1

2
|2〉− 1

2
|3〉. Let the observable

correspond to the orthogonal decompositionE = Ea ⊕ Eb ⊕ Ec, whereEa is a space

spanned by|0〉 and|1〉, Eb is a space spanned by|2〉, andEc is a space spanned by|3〉.
That is, the outcome of measurement is ‘a’ with probability 1/2 or ‘b’ with probability

1/4 or ‘c’ with probability 1/4. It should be noted that the original quantum state is

destructed unless the appropriate observable is used.

2.4. Entanglement

Entanglementis an essential resource for the sophisticated quantum computation, which

is a strong correlation among qubits even if separated physically, and can never be im-

plemented in the classical dynamics. Consider a composite quantum system in the

state

|ψ〉AB =
1√
2
(|00〉+ |11〉). (2.5)

When the first qubit is measured, the outcome is either0 with probability 1/2 or 1

with probability1/2 and the state of the whole system collapses to|00〉 or |11〉 respec-

tively. Thus, the other qubit is determined as|0〉 or |1〉 with certainty. This unique
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correlation such that the measurement of one has an impact to the other is calleden-

tanglement. Also from the mathematical view, the entangled state|ψ〉AB cannot be

considered as the tensor product of the two separate individual systems. When the de-

gree of entanglement is maximum like (2.5), it is said to be in amaximally entangled

state, especially, in the case of two-qubit system it is called an EPR pair, and in the

case of three-qubit system a GHZ state. Entanglement is a fairly useful resource, but,

with the current technology it is not easy to keep up the entangled state.

2.5. Density matrix

Thedensity matrixis another way to describe a quantum state. It provides a convenient

means particularly for describing a quantum system whose state is a classical mixture

of several states. When a quantum system is in one of|ψi〉’s with probabilitypi, the

density matrix for the system is defined as

ρ = Σ
i
pi |ψi〉 〈ψi|.

For example, when a quantum system is in the state|0〉 with probability 1/2 and in

the state 1√
2
{|0〉 + |1〉} with probability1/2, the density matrix of the system isρ =

1/2 |0〉 〈0| + 1/2{ 1√
2
(|0〉 + |1〉)}{ 1√

2
(〈0| + 〈1|)}. In general, it is not clear for us

how the exact state of a quantum system is because of the influence of environment

or something else. The following case provides a good example. Suppose each of the

two parties, Alice and Bob, has one qubit of an EPR pair,1√
2
(|00〉 + |11〉). If Alice

measures her qubit and she does not inform Bob of the outcome, Bob cannot specify

his qubit state exactly. The state of Bob’s qubit is half-and-half mixture of|0〉 and

|1〉, that is, 1
2
|0〉 〈0| + 1

2
|1〉 〈1|. Like this, the ambiguous state of a quantum system

can be described by a density matrix. A quantum state is simply classified into two

groups, apure stateand amixed state. A pure state satisfiestr(ρ2) = 1, while a mixed

state satisfiestr(ρ2) < 1. In particular, whenρ = I/2, ρ is said to be in a maximally

mixed state and the state has a maximum entropy. The evolution of the density matrix

is described by the equation

ρ = Σ
i
pi |ψi〉 〈ψi| U→ Σ

i
piU |ψi〉 〈ψi|U †.

Let the composite system of A and B whose density matrix beρAB. The reduced

density operator for system A is defined by
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ρA = TrB(ρAB),

which is used when subsystem A is focused on in the whole system, whereTrB is a

map of operators known as the partial trace over system B. The partial trace is defined

by

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2| 〈b1|b2〉 ,

where|a1〉 and|a2〉 are any two vectors in the state space of A,|b1〉 and|b2〉 are any

two vectors in the state space of B.

2.6. Fidelity

The fidelity is a measure that quantities the similarity between quantum states. It pro-

vides a quantitative criterion of the reliability of a quantum channel, i.e., how well a

quantum channel preserves information.

The fidelity of the two statesρ andσ is defined as

F (ρ, σ) , tr(ρ1/2σρ1/2).

Whenρ andσ are commutative:

ρ = Σ
i
ri |i〉 〈i| ; σ = Σ

i
si |i〉 〈i|,

where{|i〉} is a set of the orthonormal basis states, we see

F (ρ, σ) = tr(Σrisi |i〉 〈i|)
= Σrisi.

In particular, whenρ is a pure state,

F (|ψ〉 , σ) = tr(〈ψ|σ |ψ〉 |ψ〉 〈ψ|)
= 〈ψ|σ |ψ〉 (2.6)

The fidelity is invariant under unitary transformation.

F (UρU †, UσU †) = F (ρ, σ).
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Chapter 3

Recognition Ability of Quantum

Pushdown Automata

3.1. Introduction

In quantum computational theory, some quantum counterparts of classical computa-

tional models were introduced. In particular, the results of quantum finite automata

(QFAs) [1, 17] and quantum counter automata (QCAs) [5, 18, 24, 25] are remarkable.

Fig. 3.1 illustrates the relationships between the recognition abilities of classical au-

tomata and their counterparts. The number at the head, 1 or 2, denotes one-way or

two-way, respectively, which mean the direction that the input tape head can move.

The number before “CA” denotes the numbers of counters. Thus, “1Q2CA” means

a one-way quantum automaton with two counters. In this figure, the lower model is

resource-restricted more strongly than the upper models. This figure, for example,

shows that the recognition ability of the one-way quantum finite automata is properly

contained in that of the one-way classical finite automata, while the recognition ail-

ities of the two-way quantum finite automata and the two-way quantum one-counter

automata properly contains their classical counterparts. In other words, quantum com-

putation is not always stronger than classical computation under the resource-restricted

circumstances.

This chapter focuses on a quantum pushdown automaton (QPA), which is a gener-

alization of a counter automaton. QPAs is the quantum computational model defined

by Golovkins in 2000 [15] and it is shown that the class of languages recognized by
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Figure 3.1. The relationships between the recognition abilities of classical automata

and their counterparts

QPAs contains the class of languages recognized by classical finite automata. How-

ever, no one has known the relationships between the recognitive ability of QPAs and

the classical counterparts. This dissertation shows that QPAs can solve a certain prob-

lem with no error, which cannot be solved by any classical deterministic pushdown

automata1 .

QPAs was first introduced by Moore and Crutchfield [20], but there the authors

actually deal with the so-called generalized quantum pushdown automata, whose evo-

lution does not have to be unitary. Thus, Golovkins reintroduced the model QPAs by

giving a definition that would confirm unitarity requirement [15] on which I advance a

discussion based.

Golovkins showed in [15] that QPAs can recognize

• every regular language with probability1;

• a non-regular languageLa=b = {ω ∈ (a, b)∗| |ω|a = |ω|b} with probability1;

1 In the classical deterministic automaton model, transitions are occured deterministically, that is, an

exact computation
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• a non-context-free languageLa=b=c = {ω ∈ (a, b, c)∗| |ω|a = |ω|b = |ω|c} with

probability2/3; and

• a non-context-free languageLxor = {ω ∈ (a, b, c)∗| |ω|a = |ω|b xor |ω|a = |ω|c}
with probability4/7,

where|ω|a denotes the number of occurrences ofa in ω. Golovkins showed that the

class of languages recognized by finite automata is properly contained in the class

of languages recognized by QPAs, and that QPAs might be more powerful than the

classical counterpart in abounded error scenario. This dissertation shows that QPAs

can be more powerful even in a deterministic case. That is, there exists a problem

which can be solved by QPAs deterministically, but cannot be solved by DPAs.

This chapter is organized as follows. Section 3.2, following this introduction, first

defines the model of QPAs, its configuration, and so on, and then introduces the lemma

called generalized Ogden’s lemma and the quantum algorithm called Deutsch-Jozsa

algorithm, which are useful in the following section. Section 3.3 defines the problem

and shows that QPAs can solve it with no error. Section 3.4 shows that no deterministic

pushdown automata (DPAs) solve the problem. Section 3.5 concludes this chapter.

3.2. Preliminaries

3.2.1 Definitions

This section cites the definition of QPAs, their configuration and evolution from [15].

Definition 3.1. (Quantum Pushdown Automaton)A Quantum Pushdown Automaton,

QPA, is defined as the following 8-tuple.A= (Q, Σ, T, q0, Qacc, Qrej, D, δ) is specified

by a finite set of statesQ, a finite input alphabetΣ, a finite stack alphabet T, an initial

stateq0 ∈ Q, setsQacc ⊂ Q, Qrej ⊂ Q of accepting and rejecting states, respectively,

with Qacc ∩ Qrej = φ, a functionD : Q −→ {↓,→}, where{↓,→} is the set of

directions of input tape head, remaining at the current position or moving one cell

forward, and a transition functionδ : Q×Γ×∆×Q×∆∗ −→ C, whereΓ = Σ∪{#, $}
is the input tape alphabet ofA and#, $ are end markers not inΣ, ∆ = T ∪ {z} is the

working stack alphabet ofA, andz 6∈ T is the stack bottom symbol. 2
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The transition function is restricted to the following requirement:

If δ(q, α, β, q′, τ) 6= 0, then

1. |τ | ≤ 2, and

2. τ ∈ βT ∗ if |τ | 6= 0.

Definition 3.2. (Configuration)A configuration of a QPA is denoted as|c〉 =

|νiqjνk, τl〉, where the automaton is in a stateqj ∈ Q, νiνk ∈ #Σ∗ is a finite word on

the input tape,τl ∈ zT ∗ is a finite word on the stack tape, the input tape head is above

the first alphabet of the wordνk, and the stack head is above the last alphabet of the

word τl. Note that the rightmost symbol ofτl is the stack top symbol. 2

Let C be the set of all configurations of a QPA. SetC is countably infinite. Since

every configuration|c〉 denotes a basis vector in Hilbert spaceHA = l2(C), a global

state ofA in spaceHA has a form|ψ〉 =
∑
c∈C

αc |c〉, whereαc ∈ C denotes the proba-

bility amplitude of a configuration|c〉, and
∑
c∈C

|αc|2 = 1.

Definition 3.3. (linear operator)Let |c〉 = |νiqjσνk, τlτ〉. A linear operatorUA is

defined as follows:

UA |c〉 =
∑

(q,τ ′)∈Q×{ε,∆,∆2}
δ(qj, σ, τ, q, τ ′) |f(|c〉 , q), τlτ

′〉, wheref(|νiqjσνk, τlτ〉 , q)

=

{
νiqσνk, if D(q) = ‘ ↓ ’

νiσqνk, if D(q) = ‘ → ’ .
2

For QPAA = (Q, Σ, T, q0, Qacc, Qrej, D, δ), Cacc = {|νiqjνk, τl〉 ∈C|qj ∈Qacc},
Crej = {|νiqjνk, τl〉 ∈ C | qj ∈ Qrej}, andCnon = C \ (Cacc ∪ Crej). Eacc, Erej,

and Enon are subspaces ofHA spanned byCacc, Crej, andCnon, respectively. The

observableO that corresponds to the orthogonal decompositionHA = Eacc ⊕ Erej ⊕
Enon is used. The outcome of each measurement is either “accept” or “reject” or “non-

halting.”

The computation of QPAA proceeds as follows. For an inputω ∈ Σ∗, assume

that computation starts with configuration|q0#ω$, z〉. Each computation step consists
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of two parts. First, linear operatorUA is applied to the current state, and then the

resulting superposition is measured with respect to the observableO defined above.

Let the state before the measurement be
∑
c∈C

αc |c〉, and then the probability that the

resulting superposition is projected into subspaceEi, i ∈ {acc, rej, non}, is
∑

c∈Ci

|αc|2.
Computation continues until the result of a measurement is “accept” or “reject.”

A QPA is considered valid in terms of quantum theory if its evolution operator is

unitary.

Well-formedness conditions.

In the following expressions,δ∗ represents a complex conjugate ofδ.

1. ∀(q1, σ1, τ1) ∈ Q× Γ×∆,∑
(q,ω)∈Q×∆∗

|δ(q1, σ1, τ1, q, ω)|2 = 1.

2. For all triples(q1, σ1, τ1) 6= (q2, σ1, τ2) in Q× Γ×∆,∑
(q,ω)∈Q×∆∗

δ∗(q1, σ1, τ1, q, ω)δ(q2, σ1, τ2, q, ω) = 0.

3. ∀(q1, σ1, τ1, τ2) ∈ Q× Γ×∆2,∑
(q,τ,ω)∈Q×∆×{ε,τ2,τ1τ2}

|δ(q, σ1, τ, q1, ω)|2 = 1.

4. ∀(q1, σ1, τ1), (q2, σ1, τ2) ∈Q×Γ×∆,∀τ3 ∈∆,

(a)
∑

(q,τ)∈Q×∆

δ∗(q1, σ1, τ1, q, τ)δ(q2, σ1, τ2, q, τ3τ) +

∑
q∈Q

δ∗(q1, σ1, τ1, q, ε)δ(q2, σ1, τ2, q, τ3) = 0,

(b)
∑
q∈Q

δ∗(q1, σ1, τ1, q, ε)δ(q2, σ1, τ2, q, τ2τ3) = 0.

Theorem 3.1.The evolution of a QPA is unitary if and only if Well-formedness condi-

tions are satisfied.

Proof. See the proof of Theorem 2 in [15].
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Throughout this dissertation, only unitary QPAs that satisfy Well-formedness con-

ditions is considered.

3.2.2 Extension of generalized Ogden’s lemma

Let N be the set of natural numbers.

Lemma 3.1. (generalized Ogden’s lemma)For any context-free language L,∃n ∈ N

such that∀z ∈ L, if p positions inz are ”distinguished” andq positions are “ex-

cluded,” withp > nq+1, then∃u, v, w, x, y such thatz = uvwxy and

1. vx contains at least one distinguished positions and no excluded positions,

2. if p′ is the number of distinguished positions andq′ is the number of excluded

positions invwx, thenp′ ≤ nq′+1,

3. ∀i ∈ N, uviwxiy ∈ L.

Proof. See [2].

It is straightforward to see that the proof of lemma 3.1 can be applied to not only

for strings of terminal symbols, but also for strings including non-terminal symbols or

stringw such thatuXy
+⇒ uvXxy

+⇒ uvwxy. Thus, it is obvious that the following

corollary holds.

Corollary 3.1. For any context-free grammar G,∃n ∈ N such that∀z ∈ (T ∪V )∗ de-

rived by G, whereT andV are sets of terminal and non-terminal symbols, respectively,

if p positions inz are “distinguished” andq positions are “excluded”, withp > nq+1,

then∃u, v, w, x, y such thatz = uvwxy and

1. vx contains at least one distinguished positions and no excluded positions,

2. if p′ is the number of distinguished positions andq′ is the number of excluded

positions invwx, thenp′ ≤ nq′+1,

3. ∀i ∈ N, uviwxiy is derived by G.
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3.2.3 Deutsch-Jozsa algorithm

Deutsch-Jozsa algorithm is the algorithm that solves the following problem determin-

istically.

Deutsch’s XOR problem

Given a functionf : {0, 1} −→ {0, 1}, as a black box, the question is whether

f(0)⊕ f(1) = 0 or 1 (i.e. whetherf is constant of balanced).

This is a very simple problem of guessing whether a given coin is genuine (with

head on one side and tail on the other) or fake (with both sides the same). In the

classical world, we need to look at the coin twice (both sides) to find out which case

it is. In other words, in classical computing, we need obviously two applications of

f , to 0 and to1, to solve the problem. Surprisingly, there is a quantum solution to

the problem, which uses only one application off and provides in all cases the exact

answer.

Deutsch-Jozsa algorithm

Let Uf be the unitary mapping of|x〉 |y〉 −→ |x〉 |y ⊕ f(x)〉. Apply first the two-

dimensional Hadamard transform to two registers in the initial state|0〉 |1〉 and thenUf

to get

|0〉 |1〉 H2−→1

2
(|0〉+ |1〉)(|0〉 − |1〉)),

=
1

2
{|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉)},

Uf−→1

2
{|0〉 (|0⊕ f(0)〉 − |1⊕ f(0)〉) + |1〉 (|0⊕ f(1)〉 − |1⊕ f(1)〉)},

=
1

2
(−1)f(0)(|0〉+ (−1)f(0)⊕f(1) |1〉)(|0〉 − |1〉).

H2−→(−1)f(0) |(f(0)⊕ f(1))〉 |1〉 ,

=

{
(−1)f(0) |0〉 |1〉 if f is constant,

(−1)f(0) |1〉 |1〉 if f is balanced.
(3.1)

By measuring the first qubit in (3.1), we can immediately see whetherf is constant

of balanced.
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3.3. QPAs that solve a certain problem deterministically

This section shows that QPAs can solve the following problem deterministically.

Problem I

[Input] A stringω = x%y%z%y′%z′, where % is a separator symbol,x = xnxn−1 · · ·x1,

y = y1y2 · · · ym, andz = z1z2 · · · zl are sequences ofn,m, andl letters in{a, b, c}, re-

spectively, andy′, z′ ∈{a, b, c}∗. Let i be an index such thatx1x2 · · ·xi−1 = y1y2 · · · yi−1

andxi 6= yi. Let j be an index such thatx1x2 · · ·xj−1 = z1z2 · · · zj−1 andxj 6=zj. It is

promised thatyi,zj 6=a andω is either of the following two:
(c1) |y′| = |yi+1yi+2 · · · ym| = m− i,

|z′| = |zj+1zj+2 · · · zl| = l− j, andi=j;

(c2) |y′| 6=m− i and|z′| 6= l − j.

[Output] Decide whether the input satisfies (c1) andyi =zj. In that case the automaton

acceptsthe input. If (c1) andyi 6= zj, or (c2) is satisfied, the automatonrejectsit.

Problem I is a promise problem such that the set of input strings is decomposed

into “acceptable,” “rejectable,” and “don’t care” inputs, and only the “acceptable” and

“rejectable” inputs are identified correctly.

Theorem 3.2.There exists a QPA that solves Problem I deterministically.

Proof. A QPA M = (Q, Σ, T, q0, Qacc, Qrej, D, δ) that solves Problem I deterministi-

cally is constructed as follows.Q=Q↓∪Q→, whereQ↓ = {q0, qi, q
i
rej} andQ→ = {qi

j}
(1≤ i ≤4, 1≤j≤6), Σ= {a, b, c, %},T = {a, b, c, u}, Qacc = {q2}, Qrej = {q4, q

i
rej},

D(q) =‘→’ if q ∈ Q→, otherwise ‘↓’. Transition functionδ is defined as Figure 3.3.

The main idea utilizes the Deutsch-Jozsa algorithm [12] whose transition goes along

as follows:
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|0〉 |1〉 H⊗2−→ 1

2
{|M0〉 (|0〉 − |1〉) + |M1〉 (|0〉 − |1〉)} (3.2)

Uf−→ 1

2
{|M0〉 (|0⊕ f(0)〉 − |1⊕ f(0)〉) +

|M1〉 (|0⊕ f(1)〉 − |1⊕ f(1)〉)}, (3.3)

=
1

2
(−1)f(0)(|0〉+ (−1)f(0)⊕f(1) |1〉)⊗ (|0〉 − |1〉). (3.4)

H⊗2−→ (−1)f(0) |(f(0)⊕ f(1))〉 |1〉 , (3.5)

=

{
(−1)f(0) |0〉 |1〉 if f is constant,

(−1)f(0) |1〉 |1〉 if f is balanced.
(3.6)

Let M0 andM1 represent0 and1, respectively, andUf : |x〉 |y〉 −→ |x〉 |y⊕f(x)〉,
wheref(0) =g(yi), f(1) =g(zj), g(b) =0, andg(c) =1.

QPAM consists of two independent sub-QPAs,M0 andM1 (cf.Figure 3.2), which

have analogous behaviors. After reading the left end marker,M goes to the super-

posed state ofq1
1, q

2
1, q

3
1, andq4

1 with amplitudes+1
2
,−1

2
, +1

2
, and−1

2
, respectively.

Expression (3.2) is considered to be this transition, e.g.,|M0, 0〉 represents stateq1
1

(to be exact, the configuration atq1
1 containing the stack information and the posi-

tion of the input tape head).M0 is a sub automaton that starts in the superposition

of q1
1 andq2

1, searches fori such thatyi first discords fromxi, and examines whether

|yi+1 · · · ym| = |y′|. M1 is also a sub automaton that starts in the superposition of

q3
1 andq4

1, searches forj such thatzj first discords fromxj, and examines whether

|zj+1 · · · zl| = |z′|. M0 andM1 run simultaneously. As will hereinafter be described in

detail,M0 andM1 go to statesq1
6, . . . , q

4
6 at the same time iffi = j, |yi+1 · · · ym| = |y′|,

and|zi+1 · · · zl| = |z′|. Note that ifyi(zj) is b, the amplitudes ofq1
6 andq2

6 (q3
6 andq4

6)

are+1
2

and−1
2
, while if yi(zj) is c, then−1

2
and+1

2
. These transitions correspond to

Exp. (3.3), that is, the application ofUf denotes the simultaneous running ofM0 and

M1. For example, suppose thati = j, yi =b, andzj =c, the configuration ofM

1

2
{(

∣∣q1
6

〉−
∣∣q2

6

〉
) + (−

∣∣q3
6

〉
+

∣∣q4
6

〉
)},
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Figure 3.2. QPA that solves Problem I deterministically.

corresponds to Exp. (3.3)

1

2
{|M0〉 (|0〉 − |1〉) + |M1〉 (|1〉 − |0〉)}. (3.7)

By applying the Hadamard transform to Exp. (3.7),|1〉 |1〉 is obtained, corresponding

to q4, namely, a rejecting state.

Note that this algorithm successfully functions iff condition (c1) is satisfied, since

the two sub-QPAs must be in the superposed state of fourqi
6’s at the same time and

with the same stack configuration so that the interference of the second Hadamard

transform is performed well. Thus,M can properly handle inputs that satisfy (c1).

Before considering case (c2), I illustrate the sub-QPAs (cf. Figure 3.3).

Since they have analogous behaviors as previously described, only one of them,

M0 is explained here. Sub-QPAM0

1. readsx and puts it into the stack, remaining atq1
1 andq2

1;
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Figure 3.3. The behaviors of the sub-QPAs.(σ, τ/τ ′) represents the transition that

when the input symbol isσ with the stack topτ , τ is retrieved andτ ′ is pushed into the

stack, whereσ ∈ Σ andτ ∈ T .

22



2. reads % and goes to the superposed state ofq1
2 andq2

2;

3. keeps retrieving a stack top symbol one by one at the superposed state until

discordance between the stack top symbol and the input letter occurs, namely,yi

is read;

4. readsyi and pushesu into the stack, and goes to

(a) q1
3 from q1

2 andq2
3 from q2

2 if yi = b,

(b) q1
3 from q2

2 andq2
3 from q1

2 if yi = c;

5. continues pushinga into the stack at the states while readingyi+1 · · · ym,

6. reads %, goes to the superposed state ofq1
4 andq2

4, and skipsz at the state;

7. reads %, goes to the superposed state ofq1
5 andq2

5, and keeps retrieving a stack

top one by one while readingy′;

8. reads %, goes toq1
6 andq2

6, and skips the remainder of the input.

Note that if the input satisfies (c1),M0 andM1 go toqi
6’s at the same time. Consider

(c2). If yi+1 · · · ym is shorter thany′, at step (7) symbolu must show up at the stack top

before reading throughy′ andM0 goes toq1,2
rej, namely, rejecting states. Ifyi+1 · · · ym

is longer, the stack top symbol will never beu when reading the right end marker, and

then the automaton goes toq1,2
rej. Remember thatM1 has a similar behavior, it is easy

to show that the input that satisfies (c2), leads bothM0 andM1 to the rejecting states;

disagreement of arrival timings have no need to be discussed. Therefore,M accepts

input (c1) and rejects input (c2) with certainty.

Finally, the unitarity of the evolution ofM is discussed. Obviously, the transi-

tion of M is reversible deterministic except for two Hadamard transforms. Thus, it is

straightforward that the undefined transitions ofδ can be defined properly to satisfy

Well-formedness conditions.

Further, it should be emphasize that this theorem also holds for1-way QPAs. This

QPA can be seen as a1-way QPA since the tape head always goes right except when it

reads $, or the finite state control comes to the accepting or rejecting state.
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3.4. No DPAs can solve Problem I

This section shows that no DPAs can solve the problem defined in Section 3.3. Since

DPAs are special cases of non-deterministic pushdown automata, NPAs, the following

theorem indicates that there are no DPAs that solve Problem I.

Theorem 3.3.There exist no NPAs that solve Problem I.

Proof. (Outline)If there were NPAs that solved Problem I, there would exist a context-

free grammarG that derives every acceptable input string of the problem and some

“don’t care” strings, and does not derive any rejectable inputs. Thus, by Ogden’s

lemma, for any stringz derived byG, there exists a decompositionz = uvwxy such

that for all i ≥ 0, uviwxiy is also derived byG. (cf. Figure 3.4) Such a decom-

position is calleda good decomposition. The author shows that there exist no good

decompositions, that is,G is not context-free.

However, Lemma 3.1 is insufficient for our purpose. Since Problem I is a promise

problem, an awkward problem emerges that there can be a decomposition such that

for somei, uviwxiy is a “don’t care” input derived byG. The modified Ogden’s

lemma, Corollary 3.1, can be applied to the string to which the lemma or the corollary

is already applied, so that such an awkward problem can be resolved as follows. If

such an awkward decomposition is a good decomposition, there exists a non-terminal

symbolX such thatuXy
+⇒ uvXxy

+⇒ uvwxy = z, where ‘A
+⇒ B’ represents

thatA is derived fromB by one or more applications of the production rule ofG. For

such az, considerz′ = uXy or z′ = w. By Corollary 3.1, similarly, there exists a

decompositionz′ = u′v′w′x′y′ such that for allj ≥ 0, u′v′jw′x′jy′ is also derived

z = uv w x y

Ogden’s lemma

u
v
vv
v w x

xx
x

y

S

X

X

S

X

X

X

X

X

Figure 3.4. Syntax trees ofz = uvwxy anduviwxiy generated byG.
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Y

Y

S

X

X

X

X

Y

Y

S

Y

Y

Figure 3.5. Syntax trees ofz′ = uXy and(uviwxi..)v′jw′x′jy′ generated byG.

z′ = u y

Ogden’s lemma

u
v

v w x
xv′

v′
v′w′x′

x′
x′ y′

X


X


S


Y


Y


X


S


X


Y


Y


Y


X


Figure 3.6. Syntax trees ofz′ = w andu′v′j(..viwxi..)x′jy′ generated byG.

z′ = w

Ogden’s lemma

by G. (cf. Figs. 3.5 and 3.6) In this way, by implementing the independent multi

parameter of iterations, sayi andj such that(uviwxi..)v′jw′x′jy′ in Figure 3.5, The

author shows the contradiction that for a certain string derived byG, there are no good

decompositions.

(Details) Let L1 be the set of YES instances of Problem I andL2 be the set of

NO instances, withL1 ∩ L2 = φ. The author shows that no NPAs can recognize any

language that contains alls ∈ L1 but does not contain anys ∈ L2. Assume that there

exists a context-free grammarG by which alls ∈ L1 and nos ∈ L2 are derived. By

Lemma 3.1,s ∈ L1 can be decomposed, where|s| > n andn is the constant of the

lemma, ass = uvwxy such that for alli, uviwxiy is derived byG.

Consider a strings1 = acN
1 bN

1 %bN
2 cN

2 b̂bN
3 % bN

4 cN
3 b̂cN

4 %bN
5 %cN

5 ∈ L1, wherebi and

b̂ represent the letters ‘b’ and ci does ‘c’. Hereafter, throughout this proof, Leta, b̂,

%, and the leftmost and rightmost letters of the substringsbN
i (1 ≥ i ≥ 5) andcN

i
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a c…c  b . . .  b  % b…b c…c b b…b % b…b c…c b c…c % b…b % c…c

v1 w1 x1

case1

case2

case3

excluded

distinguished

Figure 3.7. Decompositions of Cases 1, 2, and 3.

(1 ≥ i ≥ 5) be excluded. Let the number of the excluded bep(= 27) andN = np + 2.

Let each letter ofb1’s be distinguished except the leftmost and rightmost letters (which

are excluded). By Lemma 3.1,∃u1, v1, w1, x1, y1 such thats1 = u1v1w1x1y1 and

∀i ≥ 0, u1v
i
1w1x

i
1y1 is derived byG. Consider the following three cases as candidates

of good decompositions and show that none of them are good decompositions, leading

to a contradiction.

Case 1: v1 = b+
1 , x1 = b+

2 , and|v1| = |x1|;

Case 2: v1 = b+
1 , x1 = b+

4 , and|v1| = |x1|;

Case 3: others.

Figure 3.7 illustrates intuitively how each case decomposess1. Consider Case 1:

s1 = acN
1 b1..
u1

...
v1

..b1%b2..
w1

...
x1

..b2c
N
2 ..cN

5
y1

.
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a c  . . .  c b … b % b…b c…c b b…b % b…b c…c b c…c % b…b % c…c
v1w1x1

case1-1

case1-2

excluded

distinguished
v2 w2

x2

(i)

Figure 3.8. Decompositions of Cases 1-1 and 1-2.

Note that for alli, u1v
i
1w1x

i
1y1 6∈ L2. Consider the stringu1X1y1, whereX1 is a non-

terminal symbol such thatu1X1y1
+⇒ u1v1X1x1y1

+⇒ u1v1w1x1y1. Let s2 = u1X1y1

and let each letter ofc1’s except both end letters be distinguished. By Corollary 3.1,

∃u2, v2, w2, x2, y2 such thats2 = u2v2w2x2y2 and∀j ≥ 0, u2v
j
2w2x

j
2y2 is derived by

G. Consider the following two cases as candidates of good decompositions. (Figure

3.8)

Case 1-1: v2 = c+
1 , x2 = c+

2 , and|v2| = |x2|;

Case 1-2: other.

Afterward, in this way, the layered decomposition as shown in Figure 3.9 is employed.

If none of the lower layers are good decompositions, it is assured that the upper layer

is not a good decomposition. Consider Case 1-2 ((i) in Figure 3.8).

s2 = ac1..
u2

...
v2

..c1b1..
w2

...
x2

..b2c2.. X1
v1w1x1

...c5.
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case1

case2

case3

case1-1

case1-2

case1-1-1

case1-1-2

case1-1-1-1

case1-1-1-2

case1-1-1-3

case1-1-1-4

case2-1

case2-2

case2-3

case2-4

s1

decomposition

Figure 3.9. Layered decomposition.

For i = 1 andj = 0, (u1v
i
1w1x

i
1y
′
1)v

j
2w2x

j
2y2 = acN−|v2| bN+|v1| %bN+|v1| cNbbN %

bNcNbcN %bN%cN ∈ L2. Thus, this is not a good decomposition. Similarly, all of the

others in Case 1-2 are not good decompositions. Next, consider Case 1-1. Note that

for all i andj, u2v
j
2(..v

i
1w1x

i
1..)x

j
2y2 6∈ L2. Let X2 be a non-terminal symbol such that

u2X2y2
+⇒ u2v2X2x2y2

+⇒ u2v2w2x2y2. Let s3 = u2X2y2 and let each letter ofb5’s

except both end letters be distinguished. By Corollary 3.1,∃u3, v3, w3, x3, y3 such that

s3 = u3v3w3x3y4 and∀k ≥ 0, u3v
k
3w3x

k
3y3 is derived byG. Consider the following

two cases as candidates of good decompositions. (Figure 3.10)

Case 1-1-1:v3 = b+
3 , x3 = b+

5 , and|v3| = |x3|;

Case 1-1-2:others.

In Case 1-1-2, it can be shown that there exist somei, j, andk such that respective

decompositions are not good decompositions, for example, the casei 6= k. Next,

consider Case 1-1-1. Note that for alli, j andk, (u2v
j
2(..u

i
1w1x

i
1..)x

j
2..)v

k
3w3x

k
3y3 6∈ L2.

Let X3 be a non-terminal symbol such thatu3X3y3
+⇒ u3v3X3x3y3

+⇒ u3v3w3x3y3.

Let s4 = w3 and let each letter ofc3’s except both end letters be distinguished. By

Corollary 3.1,∃u4, v4, w4, x4, y4 such thats4 = u4v4w4x4y4 and∀l ≥ 0, u4v
l
4w4x

l
4y4
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a c...c b…b % b…b c…c b b…b % b…b c…c b c…c % b . . .  b % c…c
v1w1x1

case1-1-1

case1-1-2

excluded

distinguished

v2w2x2
x3w3

v3

Figure 3.10. Decompositions of Cases 1-1-1 and 1-1-2.

is derived fromX3 by G. Consider the following four cases as candidates of good

decompositions. (Figure 3.11)

Case 1-1-1-1:v4x4 = c+
3 ;

Case 1-1-1-2:v4 = b+
4 , x4 = c+

3 ;

Case 1-1-1-3:v4 = c+
3 , x4 = c+

4 ;

Case 1-1-1-4:others.

Consider Case 1-1-1-1. Note that for alli, j, k andl,

(u2v
j
2(..u

i
1w1x

i
1..)x

j
2..)v

k
3(..u

l
4w4x

l
4..)x

k
3y3 6∈ L2. LetX5 be a non-terminal symbol such

thatu5X5y5
+⇒ u5v5X5x5y5

+⇒ u5v5w5x5y5. Lets5 = u3X3y3 and let each letter ofc5’s

except both end letters be distinguished. By Corollary 3.1,∃u5, v5, w5, x5, y5 such that

s5 = u5v5w5x5y5 and∀m ≥ 0, u5v
m
5 w5x

m
5 y5 is derived byG. Consider the following

five cases. (Figure 3.12)
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a c...c b…b % b…b c…c b b…b % b…b c . . .  c b c…c % b…b % c…c
v1w1x1

case1-1-1-1

case1-1-1-4
excluded

distinguished

v2w2x2
x3w3

v3

case1-1-1-2

case1-1-1-3

v4w4x4

Figure 3.11. Decompositions of Cases 1-1-1-1, 1-1-1-2, 1-1-1-3, and 1-1-1-4.

v5x5 = c+
5 , (3.8)

v5 = b+
5 and x5 = c+

5 , (3.9)

v5 = b+
3 and x5 = c+

5 , (3.10)

v5 = c+
2 and x5 = c+

5 , and (3.11)

v5 = c+
1 and x5 = c+

5 . (3.12)

As shown below, for each of the above there existi, j, k, l, andm such that the iterated

string is inL2.

In case (3.8), for i = j = k = 1, (l − 1)|v4x4| = (m − 1)|v5x5|, acNbN%bNcNbbN

%bNcN1bcN%bN%cN2 ∈ L2, whereN1 = N + (l − 1)|v4x4| andN2 = N+

(m− 1)|v5x5|.

In case (3.9), for i = j = k = 1, l = m = 0, acNbN%bNcNbbN%bNcN1bcN%bN2%cN3 ∈
L2, whereN1 = N − |v4x4|, N2 = N − |v5| andN3 = N − |x5|.

In case (3.10),for i = j = k = 1, l = m = 0, acNbN%bNcNbbN1%bNcN2bcN%bN%cN3 ∈
L2, whereN1 = N − |v5|, N2 = N − |v4x4| andN3 = N − |x5|.

In case (3.11),for i = j = k = l = 1, andm = 2, acNbN%bNcN1bbN%bNcNbcN%bN%cN2 ∈
L2, whereN1 = N + |v5| andN2 = N + |v4x4|.
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a c...c b…b % b…b c…c b b…b % b…b c…c b c…c % b…b % c . . .  c
v1w1x1

(3.8)

(3.11)

excluded

distinguished

v2w2x2
x3w3

v3

(3.9)

(3.10)

v4w4x4

(3.12)

v5w5x5

Figure 3.12. Decompositions of Cases (3.8),...,(3.12).

In case (3.12),for i = j = k = l = 1, andm = 0, acNbN%bNcN1bbN%bNcNbcN%bN%cN2 ∈
L2, whereN1 = N − |v5| andN2 = N − |v4x4|.

These cases similarly go for the other cases, Cases 1-1-1-2, 1-1-1-3, and 1-1-1-4.

Thus, Case 1 is not a good decomposition.

Cases 2 and 3 are also similar to Case 1. Therefore, there exist no good decompositions

ons1 ∈ L1.

3.5. Conclusion

This chapter showed that QPAs can solve a certain problem deterministically. The

inputs of the problem are strings in form ofx%y%z%y′%z′. To construct such QPAs,

two sub-QPAs are utilized, where one examines some relationships amongx andy

andy′, and the other examines some relationships amongx andz andz′. The two sub-

QPAs ran in parallel and utilized Deutsch-Jozsa algorithm, which is a deterministic
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quantum algorithm for Deutsch’s XOR problem. Furthermore, it is shown that no

DPAs can solve the problem by using extended generalized Ogden’s lemma in the

fourth section. These results lead to the conclusion that the quantum computational

model would have the stronger power than the classical counterpart, even under the

restricted circumstance such as the stack memory.
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Chapter 4

Quantum Secure Direct

Communication Protocol

4.1. Introduction

Although finding a perfectly secure secret communication protocol has been one of the

most considerable issues in human history, we do not have any absolute solution yet.

The dilemma that a secure key distribution is needed for a secure data transmission

seems to be resolved by the appearance of public key cryptosystems (PKCs). How-

ever, they have several non negligible problems, e.g., the heavy workload and the se-

curity based on the computational assumption. Furthermore, most of the current PKCs

are considered to be defeated by quantum computers. The quantum key distribution

(QKD) protocol [4] realized a key distribution with unconditional security, which is not

based on any computational assumption. This is a protocol by which distant two par-

ties can have the same random private classical key by using quantum devices. This

so-called BB84 triggered the growth of constructions of secure quantum cryptosys-

tems. These days, there are so many QKD algorithms and the unconditional security

of each protocol is discussed from various angles. QKD stands on the position that,

for safe data transmission, it is enough to agree on the same key by communicators

securely.

These days, different approaches of quantum secret communication protocols have

been taken, and especially I focus on one of them, which is called quantum secure

direct communication (QSDC) protocol [6, 7, 10, 14, 19, 22, 23, 26]. A QSDC protocol
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basically enables a direct secret transmission without key agreement in the process.

Compared to QKD, QSDC has a big difference that a sender can transfer thedesired

data, not random. This dissertation proposes a new QSDC protocol, which has some

advantages over the other QSDCs and some QKDs. Every current QSDC has any of

the following undesirable features: the secret information is restricted to be classical

and many EPR pairs or GHZ states are required. In particular, the latter is not a good

feature because of the technical difficulty. As for the security, they have not disscussed

it information theoretically.

It is the first time to propose a QSDC protocol which solves these problems at the

same time and provide a sophisticated security criterion.

ADVANTAGES: First, it can carry an unknown quantum state. This implies that the

protocol can be used as a quantum communication scheme between two hubs of a

quantum network. Second, no entanglement resource is employed in the protocol.

This is an advantage in feasibility. In addition, an eavesdropper on a channel can be

detected efficiently. In general, many decoy qubits are required to increase the de-

tection rate, however, in our protocol, themessage shuttleincreases the detection rate

and decreases the information an eavesdropper has at her hand as well. Besides, our

protocol tolerates against Photon-Number-Splitting (PNS) attacks, because the encod-

ing operations applied to the secret quantum state never be announced at any step of

the protocol. So, even if an eavesdropper could obtain a perfect copy of the coded

secret qubit, it is insufficient for unveiling the secret perfectly. Thus, an ideal photon

generator is not required in our protocol.

SECURITY: Obviously the PNS attack is not the only eavesdropping. This disser-

tation shows that our protocol is secure against theman-in-the-middle attackthat an

eavesdropper pretends to be a legitimate receiver. The probability that the attack goes

well is extremely small, or the quality of the copy of the secret gets really worse if

the eavesdropper wants to decrease the detection probability. It should be noted that

the quality of the copy, that is the information quantity the eavesdropper obtains, is

discussed in terms of thefidelity, which is introduced as a new security criterion.

This chapter is organized as follows. In the next section, Section2, several ba-

sics required to understand the security proof are explained. Section3 presents a new

QSDC protocol. Section4 introduces a new security criterion and shows that the pro-

tocol is secure against the man-in-the-middle attack. Section5 concludes this chapter.
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4.2. Asymmetric Universal Cloning Machine and the De-

polarizing Probability

Consider an asymmetric universal cloning machine whose two copies emerge from

depolarizing channels. Through the channel, a quantum stateρ is depolarized as it is

replaced by the maximally mixed state,I/2, with probabilityp and it is left untouched

with probability1− p. The consequent quantum state,Ep(ρ), is described as

Ep(ρ) = (1− p)ρ + pI/2. (4.1)

The fidelity ofEp(ρ) is described as

F (ρ, Ep(ρ))

= Tr
√

ρ{(1− p)ρ + pI/2}√ρ

= 1− p

2
. (4.2)

Because, for arbitraryρ, I/2 = (ρ + σxρσ†x + σyρσ†y + σzρσ†z)/4, whereσx, σy and

σz are the Pauli operators, (4.1) can be rewritten as follows.

Ep(ρ) = (1− 3p

4
)ρ +

p

4
(σxρσ†x + σyρσ†y + σzρσ†z)

= (1− p′)ρ +
p′

3
(σxρσ†x + σyρσ†y + σzρσ†z),

wherep′ = 3p/4. The depolarizing channel can regarded as the noise such that the

operatorsσx, σy and σz are applied to the quantum stateρ with the isotropic error

probabilityp′/3.

Now, consider that the two copies ofρ emerge from the depolarizing channels

of probabilitiesp and q. Let their isotropic error probabilities bep′/3(= p/4) and

q′/3(= q/4), respectively, and then the relationship betweenp′ andq′ must satisfy the

no-cloning inequality[8],

p′ +
√

p′q′ + q′ ≥ 3/4.

Therefore,

p +
√

pq + q ≥ 1. (4.3)
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Alice Bob

Treasure

Figure 4.1. Physical implementation.

4.3. The Model and Protocol

First, the key idea of our direct communication protocol is illustrated in Figure 4.1.

Consider the situation that a sender, Alice, wants to send a secret message to a receiver,

Bob, securely, but they have no encoding-key agreement in advance.

Physically, they achieve the purpose as in Figure 4.1. Alice has a treasure box and

wants to send it to Bob. First, Alice locks the box. She holds the key in her hands and

sends the box to Bob by post or something. Bob can never open it unless he has Alice’s

key. He puts a new lock on the box, and holds his key and sends the box back to Alice.

Alice opens her lock and sends the box to Bob. Finally, Bob gets the treasure just by

his key. At every transmission, the box is locked by either key. An outsider who does

not have the keys cannot open the box.

This method has both of advantage and disadvantage. The advantage is that this

method needs no key agreement. A sender and a receiver simply have their private keys

in their keeping. This means the tolerance of some attacks like PNS attack. The dis-

advantage is that the classical (digital) implementation of this method cannot achieve

good security against the man-in-the-middle attack.

36



0
Don’t flip=AF

0

Flip=BF
1

Don’t flip=−1
AF

1

0

flip=−1
BF

( )x

( )y
( )z

(Alice) (Bob)

secret

Figure 4.2. Digital implementation.

4.3.1 Classical implementation and the problem

Figure 4.2 illustrates a digital implementation. Alice has a secret bit,s, say0 in the

figure for simplicity. She encodes it by operationFA=“Don’t flip” for example and

sendsx = FA(s) = 0 to Bob. Bob similarly encodes the data by operationFB=“Flip”

(independent fromFA) and sendsy = FB(x) = 1 back to Alice. Alice decodes the bit

by F−1
A =“Don’t flip” and sendsz = F−1

A (y) = 1 to Bob. Bob decodesz the bit by

F−1
B =“Flip” and gets the secret data,0.

An eavesdropper, Eve, keeps watching the transmission channel. She makes a copy

of every transmitted data,x, y andz and gets the secret sincex⊕y⊕z = s. The reasons

why she needs no special efforts to get the secret data are as follows:

• the data encoding is whether flip or not;

• anybody can see the transmitted data without destruction; and

• anybody can make a perfect copy of the transmitted data.

Consider the following naive quantum implementation.
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(Alice) (Bob)

secret

φ φV

φWV W

1−V

φWVV 1−

1−W

φ

Figure 4.3. The naive quantum implementation.

4.3.2 Quantum implementation

Figure 4.3 illustrates the framework of our quantum implementation. Alice has a secret

of a single-qubit state to be sent which is described as a unit-length vector of Bloch

sphere,|φ〉. Let S be Pauli group, i.e.,S = {I, σx, σy, σz}. Alice chooses an operator

V ∈ S randomly, applies it to|φ〉, and sends it to Bob through a quantum channel.

(Needless to say, the transmitted quantum state appears as a maximally mixed state for

others.) Bob also independently chooses an operator,W ∈ S, applies it toV |φ〉, and

sends it back to Alice. Alice appliesV † to WV |φ〉 and sends it to Bob. Last of all,

Bob appliesW † to V †WV |φ〉 and gets the secret,|φ〉.

In this implementation, the eavesdropping as in the classical implementation does

not work well, because

• nobody can “see” the state of the qubit and calculate the difference between

arbitrary two quantum states without destruction; and

• nobody can make a perfect copy of an unknown quantum state.
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Figure 4.4. Eve’s man-in-the-middle attack.

However, Eve can make an active attack as in Figure 4.4, the man-in-the-middle

attack. Eve intercepts the transmitted qubit from Alice to Bob and gets it back to Alice

directly, pretending she is Bob. Alice opens her lock and sends stateV †V |φ〉 to Bob.

Eve has only to steel the qubit.

This weak and naive implementation is improved as the following QSDC protocol.

4.3.3 The model of our protocol

The model of the proposed protocol is defined as follows. There are two noiseless

channels between Alice and Bob, an unauthenticated quantum channel and an authen-

ticated classical public channel. This dissertation does not consider the loss of qubits

and assumes that the quantum communication devices, e.g., a photon generator and

a detector, are ideal instruments which don’t make any mistakes. Alice and Bob, in

advance, agree on a set of unitary operators,S, such that for any two distinct elements
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V andW in S, W †V †WV |φ〉 = eiθI |φ〉 and
∑

V ∈S
1
|S|V |φ〉 〈φ|V † is a maximally

mixed state, Pauli group for example.

4.3.4 The procedure

The numbersk andr are determined in advance based on the security parameter, where

k is the number of decoy qubits andr is the total number of rounds.

(P1) (Setup)Alice has a secret of a single-qubit state. Seti = 1.

(P2) (Alice’s encoding phase)If i = r, jump to phase (P5). Alice chooses an opera-

tion,Vi, fromS randomly and applies it to the secret qubit. Alice newly prepares

k qubits (decoys), where each is in a random initial state in the2-dimensional

Hilbert space. Alice randomly picks out one position fromk + 1 positions and

puts the encoded secret there and the decoys in the other positions at random.

Alice sends the sequence of the qubits (the secret and the decoys) to Bob.

(P3) (Bob’s encoding phase)Bob randomly choosesk + 1 operators fromS and

applies them to the received sequence. He permutes the order of the sequence

and sends it back to Alice. At this moment, he does not know which operation

is applied to the secret, but, let the operation beWi for convenience.

(P4) (Detection phase)Alice informs Bob of the reception and the positions of de-

coys in phase (P2). Bob announces his permutation and the operators applied to

decoys through the classical channel. By using these information, Alice cancels

Bob’s operations for decoys and runs a detection test, which is the measurement

of every decoy with respect to the initial state and its orthonormal state. When

the answer is not “being in the initial state,” Alice and Bob abort this protocol.

Otherwise, seti = i + 1. Return to phase (P2).

(P5) (Alice’s decoding phase)Alice appliesVi = (Vi−1Vi−2 · · ·V1)
† to the secret

qubit. Alice preparesk decoys in random states and randomly picks out one

position fromk + 1 positions and puts the secret qubit there and the decoys in

the other positions at random. Alice sends the sequence to Bob.
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(P6) (Detection phase)Bob informs Alice of the reception. Alice announces the

position of decoys and their states. Bob runs the detection test similarly to phase

(P4). If any of the decoys has changed, they abort this protocol.

(P7) (Bob’s decoding phase)Bob appliesWi = (Wi−1Wi−2 · · ·W1)
† to the secret

qubit and gets the original secret.

In the protocol, resending the secret is restricted, because it is impossible to make

a perfect copy of an unknown quantum state. The issue is left out of consideration in

this dissertation.

4.4. The security analysis of the proposed protocol

Eve cannot directly know the secret even if she keeps watch on the channel because

every quantum state on the channel is maximally mixed. In our protocol, a sender and

a receiver do not have an encoding-key agreement in advance nor in the process nor

afterward, but instead they individually encode the secret by their private keys, and

shuttleit any number of times. Their encodings are the sequences of all the quantum

operations that they choose randomly at all rounds but the last, and so the subsequence

is of no help in decoding. Thus, if once Bob applies an operation to the secret, there

is no chance intuitively for Eve to remove the operation, because the quantum state

to which his operation is applied goes into a maximally mixed state and she cannot

recover the information.

4.4.1 The model of Eve’s man-in-the-middle attack

An eavesdropper, Eve, wants to steal the secret information without being detected.

As in Figure 4.4, she attempts to intercept the transmission and keep the secret qubit

from Bob. Figure 4.5 illustrates her attack generally at a round-trip. Eve intercepts

both the transmitted ways, the way from Alice to Bob and the way to return to Alice.

Eve’s attack can be generalized as follows. Eve can intercept the transmitted quantum

system,S, which is a composite system of both the secret qubit and decoys. Then, she

prepares an ancillary systemA and applies a unitary operation̂E on ϕ ⊗ ω, whereϕ
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Figure 4.5. Eve’s attack.S andA are the quantum systems.E is some sort of operation.

andω are the quantum states ofS andA, respectively. LetE be this Eve’s attack, and

the outcoming stateϕ′ is

ϕ′ = E(ϕ) = TrA{Ê(ϕ⊗ ω)Ê†}.
Eve sendsϕ′ to Bob/Alice.

This dissertation considers the specific attack model suited for her purpose as fol-

lows. Figure 4.6 illustrates the flow of a single-qubit state in our protocol with Eve,

especially the secret qubit for simplicity, but, the following Eve’s attack is for every

qubit. |ψ0〉 is the secret state. Alice and Bob haver round-trips. ρi andρ′i are the

mixed states Alice sends and Bob receives in the first-half of thei-th round, respec-

tively. ηi andη′i are the mixed states Bob sends and Alice receives in the last-half of the
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mation is omitted.
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i-th round, respectively.Vi andWi are Alice’s and Bob’s operations inS, respectively.

Note thatVr · · ·V1 = I andWr · · ·W1 = I. Eve clones the whole quantum system

on the way from Alice to Bob.Epi,qi
means such a cloning channel, adepolarizing

channel, wherepi andqi relates the accuracy of the clonesµi andρ′i, respectively. She

keeps one of the clones in her hands and sends the other one to Bob. Then, in order

to gain the secret information, Eve would replaceηi with µi on the way back to Al-

ice. The accuracy of the eavesdropping rests on the fidelity between the stateρi and

the actual returning stateη′i. But, the lower the fidelity between the appropriate state

WiρiW
†
i andη′i is, the higher the detection probability at the subsequent test is. Thus,

Eve should make an attack such that both the fidelities are high concurrently, that is,

she returns a mixture ofµi andηi asη′i:

η′i = αiµi + (1− αi)ηi,

whereαi is a classical probability. Eve has to repeats this attack at every round, for the

reason mentioned above. At the lastr-th round, a clone ofρr Eve makes is the clone

of the secret|ψ0〉 in this attack. Let the clone beρE.

4.4.2 The security analysis

Let us start with the preparations for the security analysis.µi andρ′i are the two copies

of ρi which emerge from depolarizing channelEpi,qi
as seen in Section 4.2. Then, by

(4.1), they can be rewritten as

µi = (1− pi)ρi + piI/2

ρ′i = (1− qi)ρi + qiI/2.

Thus,

ρi = Viη
′
i−1V

†
i

= Vi{αi−1µi−1 + (1− αi−1)I/2}V †
i

= Vi{αi−1{(1− pi−1)ρi−1 + pi−1I/2}+ (1− αi−1)I/2}V †
i

= αi−1(1− pi−1)Viρi−1V
†
i + (1− αi−1(1− pi−1))I/2

· · ·
=

i−1

Π
m=1

αm(1− pm)Vi · · ·V1 |ψ0〉 〈ψ0|V †
1 · · ·V †

i + {1−
i−1

Π
m=1

αm(1− pm)}I/2.
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Here, let|ψi〉 = Vi · · ·V1 |ψ0〉 and rewriteρi simply as follows:

ρi =
i−1

Π
m=1

αm(1− pm) |ψi〉 〈ψi|+ {1−
i−1

Π
m=1

αm(1− pm)}I/2. (4.4)

By (4.4), µi can be rewritten with|ψi〉 as follows.

µi = (1− pi)ρi + piI/2

=
i−1

Π
m=1

αm

i

Π
m=1

(1− pm) |ψi〉 〈ψi|+ {1−
i−1

Π
m=1

αm

i

Π
m=1

(1− pm)}I/2. (4.5)

Now we are ready to go to the security analysis. First, a new security criterion is

defined.

Definition 4.1. A protocol is secure if and only if an eavesdropper can obtain the

information about the secret message with the fidelity|F (|ψ0〉 〈ψ0| , ρE) − 1/2| ≤
O(2−s), where|ψ0〉 is the state of the original secret;ρE is the clone state of|ψ0〉 Eve

reconstructs; ands is the security parameter the sender decides.

Theorem 4.1. When Alice and Bob use a constant number of decoys (sayc decoys)

and repeat the rally4s times, our protocol is secure against the man-in-the-middle

attack defined above.

Before the proof of this theorem, several lemmas are introduced.

Lemma 4.1. If F (ρi, ρ
′
i) ≥ 1−O(δ), thenF (ρi, µi) ≤ 1/2 + O(

√
δ).

Proof. Let F (ρi, ρ
′
i) = FB andF (ρi, µi) = FE. By (4.2),FB = 1− qi/2 ≥ 1− O(δ)

andFE = 1 − pi/2. By no-cloning inequality (4.3),
√

(1− FB)(1− FE) ≥ 1/2 −
(1− FB)− (1− FE). Therefore,

O(δ) ≥ 1− FB

∴ O(
√

δ) ≥
√

1− FB

≥
√

(1− FB)(1− FE)

≥ 1/2− (1− FB)− (1− FE)

≥ 1/2− (1− FE)−O(δ)

∴ FE ≤ 1/2 + O(
√

δ)
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Lemma 4.2. Let ε andδ be positive real numbers less than1. Suppose that for some

i, |F (ρi, |ψi〉 〈ψi|) − 1/2| ≤ ε, where|ψi〉 = Vi · · ·V1 |ψ0〉. If F (ρi, ρ
′
i) ≥ 1 − O(δ),

|F (|ψi〉 〈ψi| , µi)− 1/2| ≤ O(
√

δε).

Proof. By three equations (4.1), (4.2) and (4.4), the fidelity betweenρi and |ψi〉 is

given as

F (ρi, |ψi〉 〈ψi|) = 1/2{1 +
i−1

Π
m=1

αm(1− pm)}.

∴
i−1

Π
m=1

αm(1− pm)/2 ≤ ε. (4.6)

By Lemma 4.1,F (ρi, µi)− 1/2 = 1/2(1− pi) ≤ O(
√

δ). Therefore,

F (|ψi〉 〈ψi| , µi)− 1/2 = 1/2
i−1

Π
m=1

αm

i

Π
m=1

(1− pm)

= 1/2
i−1

Π
m=1

αm(1− pm) · (1− pi)

≤ O(
√

δε).

Lemma 4.3. Suppose thatF (ρi1 , ρ
′
i1
), · · · , F (ρi2n , ρ′i2n

)≥ 1−O(δ), wherei1, · · · , i2n

are mutually distinct, then|F (|ψ0〉 〈ψ0| , ρE)− 1/2| ≤ O(δn).

Proof. Without loss of generality,i1 < i2 < · · · < in. Suppose|F (ρi1 , |ψi1〉 〈ψi1|) −
1/2| = ε, then|F (|ψi1〉 〈ψi1| , µi1)− 1/2| ≤ O(

√
δε) by Lemma 4.2, and thus

1/2
i1−1

Π
m=1

αm

i1
Π

m=1
(1− pm) ≤ O(

√
δε).

∴ |F (ρi2 , |ψi2〉 〈ψi2 |)− 1/2| = 1/2{
i2−1

Π
m=1

αm(1− pm)}

≤ 1/2{
i2−2

Π
m=1

αm(1− pm)}
≤ · · ·
≤ 1/2{

i1−1

Π
m=1

αm(1− pm)}
≤ O(

√
δε).
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By substitutionO(
√

δε) with ε in Lemma 4.2,|F (|ψi2〉 〈ψi2| , µi2) − 1/2| ≤ O(δε).

By repeated this,|F (|ψi2n〉 〈ψi2n| , µi2n)− 1/2| ≤ O(δn). Therefore,

F (|ψ0〉 〈ψ0| , ρE)− 1/2 = 1/2
r−1

Π
m=1

αm(1− pm)

≤ 1/2
i2n−1

Π
m=1

αm

i2n

Π
m=1

(1− pm)

≤ O(δn).

Lemma 4.4. If F (ρi, ρ
′
i) < 1−Ω(δ), the probability that Eve passes the detection test

by Alice in thei-th transmission is(1−Ω(δ))k at most, wherek is the number of decoy

qubits.

Proof. It should be noted that, in our protocol, the qubit carrying the secret message is

not an object of the detection test, but every decoy qubit is. First, let us consider the

average probability that Eve passes the detection test in thei-th transmission per decoy

qubit. Eve returnsη′i = αiµi + (1 − αi)ηi to Alice and Alice performs the detection

test onW †
i η′iWi. The fidelity betweenW †

i η′iWi andρi corresponds to the likelihood

that Eve passes the detection test.

W †
i η′iWi = αiW

†
i µiWi + (1− αi)W

†
i ηiWi

= αiW
†
i µiWi + (1− αi)ρ

′
i

= αiW
†
i {(1− pi)ρi + piI/2}Wi

+(1− αi){(1− qi)ρi + qiI/2} (4.7)

SinceW †
i (I/2)Wi = I/2,

(4.7) = αi(1− pi)W
†
i ρiWi + (1− αi)(1− qi)ρi + {αi + (1− αi)qi}I/2

= {αi(1− pi)W
†
i ρiWi + (1− αi(1− pi))I/2}+

{(1− αi)(1− qi)ρi + (1− (1− αi)(1− qi))I/2} − I/2.

Let λ = αi(1 − pi)W
†
i ρiWi + (1 − αi(1 − pi))I/2 andξ = (1 − αi)(1 − qi)ρi +

(1− (1− αi)(1− qi))I/2. By the linearity,

F (W †
i µiWi, ρi) = F (ρi, λ) + F (ρi, ξ)− F (ρi, I/2). (4.8)
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ConsideringWi ∈ S,

λ =
1

4
Σ

σj∈G
{αi(1− pi)σ

†
jρiσj + (1− αi(1− pi))I/2}

= I/2.

∴ F (ρi, λ) = 1/2.

F (ρi, ξ) = 1/2 + 1/2(1− αi)(1− qi).

Therefore,

(4.8) = 1/2 + 1/2(1− αi)(1− qi)− 1/2

= (1− αi)(1− qi/2)− (1− αi)/2

≤ (1− αi)(1− qi/2)

≤ 1− qi/2

= F (ρi, ρ
′
i)

By the assumption of this lemma,

F (W †
i µiWi, ρi) ≤ 1− Ω(δ).

Therefore, the probability that all thek decoys pass the detection test is(1 − Ω(δ))k.

The next corollary follows this lemma.

Corollary 4.1. If for i = i1, · · · , in, F (ρi, ρ
′
i) < 1 − Ω(δ), the probability that Alice

detects Eve through this protocol is at least1− (1− Ω(δ))kn.

Now, we are ready to prove Theorem 4.1.

(Proof of Theorem 4.1)First, consider the case that an eavesdropper, Eve, makes a

‘strong’ attack at more than half the rounds such that Bob gets the poor information.

In other words, fori = i1, · · · , i2s, · · · (all mutually distinct),F (ρi, ρ
′
i) ≤ 1 − δ,

whereδ is a constant (0 < δ < 1/2). Alice detects Eve by the end with probability
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1− (1− δ)2s·c at least, by Corollary 4.1, and the protocol aborts in the middle. In this

case, it is obvious thatF (|ψ0〉 〈ψ0| , ρE) = 1/2 and she cannot get any information

about the secret. With the extremely low probability,(1−δ)2nc, Eve can obtain the full

information about the secret, and thus the average fidelity is at most

Favg(|ψ0〉 〈ψ0| , ρE) = (1− δ)2nc · 1 + {1− (1− δ)2nc} · 1/2
= 1/2 + 1/2(1− δ)2sc.

Next, consider the case that Eve makes a ‘weak’ attack at more than half the rounds

such that Bob gets the good information. In other words, fori = i1, · · · , i2s, · · · (all

mutually distinct),F (ρi, ρ
′
i) ≥ 1− δ. By Lemma 4.3,

|F (|ψ0〉 〈ψ0| , ρE)− 1/2| ≤ O(δs)

≤ O(2−s).

2

4.5. Conclusion

This chapter presented a new QSDC protocol in which the legitimate communicators

can have a direct message of quantum states securely; no entanglement resource is em-

ployed; and an eavesdropper is detected efficiently. The protocol exploits the features

unique to the quantum information processing, such as uncertainty, the no-cloning

property, and indistinguishability. The two legitimate communicators have the mes-

sage shuttle between them and transmit the secret without key-agreement in advance

nor in the process nor afterward. Moreover, the protocol does not require a perfect

photon emitter which emits just one particle each time. An imperfect photon generator

which emits some particles at a time would cause the factual vulnerability in QKD. So,

it could be said that the feasibility of the proposed protocol is higher than some other

QSDCs or QKDs which rely on the entanglement or ideal devices.

And a new security criterion for the method of sending quantum information using

the mathematical metrics, “fidelity’, is introduced. The fidelity uniquely determines

the distance between the two quantum states and gives a means to determine how alike

the states are. It is shown that the proposed protocol satisfies the criterion against
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the attack. The fidelity between the original secret state and the copy the eavesdrop-

per creates gets extremely worse if she wants to decrease the detection probability.

Conversely, if she wants to get the secret information with good fidelity, she will be

detected with extremely high probability.

In conclusion, I have proposed the new quantum secure direct communication pro-

tocol under the restricted circumstance such that no entanglement resource and no

perfect photon generator are available.
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Chapter 5

Conclusion

This thesis found some evidences such that the quantum algorithms would be stronger

than the classical counterparts even under the restricted circumstances. Many sophis-

ticated quantum algorithms were proposed and it is generally thought the quantum

computation must be more excellent than the classical computation in every scene.

However, in fact, the quantum computation requires the particular undesirable restric-

tions such as the reversibility, the expensive computational resources (e.g., qubits), the

severe operational environment, and so on. Thus, in order to take advantage of the

quantum information processing technology to do a fine job within the current or the

near future technology, it is extremely important to clarify the ability of the quantum

computation under the various restricted circumstances. In this thesis, some restricted

circumstances are considered and it was shown the quantum algorithms would be ex-

cellent even under the circumstances.

The first result is about the quantum computational model with the stack memory,

QPAs. It has been already known that QPAs might be more powerful than the classi-

cal counterpart inbounded error scenario. In other words, the class of the languages

recognized by classical finite automata is properly contained in the class of languages

recognized by QPAs, and some languagesnot recognized by classical pushdown au-

tomata can be probabilistically recognized by QPAs. But no one knews the relationship

between QPAs and the classical counterpart in adeterministiccase. Chapter 3 showed

that a QPA can solve a certain problem with certainty which cannot be solved by DPAs.
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The second result is about a quantum secret direct communication (QSDC) pro-

tocol with a limited number of computational resources. Chapter 4 proposed a new

QSDC protocol. The quantum information processing often uses the useful quan-

tum features (e.g., quantum entanglement, no-cloning theorem) to accomplish some

miracles such as quantum teleportation, the unconditionally secure key distribution

schemes and so on. However, quantum entanglement is very expensive to keep the

useful state during the computation. The proposed protocol employs no entanglement.

Furthermore, a new security criterion for sending quantum states using the mathemati-

cal metrics, fidelity, is introduced. So, it is the first time to introduce the strict criterion

in terms of the fidelity of quantum states and give the proof of the security against the

man-in-the-middle attack.

It seems that the computational ability of the realistic quantum computer is differ-

ent from the ideal one. We need to keep pursuing the studies in the future.
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