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Real-time constraints to learning and control of

voluntary movement∗

Fredrik Bissmarck

Abstract

The plasticity and computational capacity of the human cerebral cortex offer

great potential for planning, learning and execution of movements. Indeed, a

large part of the cortex is recruited for motor control and learning. However,

a limitation is the long latencies of feedback from sensors and actuators of the

peripheral nervous system - up to 100’s of milliseconds. This constraint imposes

a challenge to utilize the cerebral cortex for real-time motor control.

This thesis seeks to elucidate the real-time constraints of cortical feedback

loops for motor control. A broader aim of our study is the understanding of long-

term learning of sequential, manual movement. We investigate how a series of

planned movements are gradually integrated into a fast, skillful, single movement,

and how the recruitment of sensory feedback may be altered through stages of

learning. We present two different studies on this theme. In the first, we take

a computational approach. Proposing a framework with analogies of the basal

ganglia-thalamocortical system, we address the problem of combining multiple

feedback modalities of different latencies to learn joint torque controlled arm

movements. In the second, we take an experimental approach, and study the

long-term alteration of gaze strategies in a manual task.

We first review related work and important concepts: theories of optimal

motor control, including reinforcement learning (Chapter 2), and then empirical
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psychology and neurophysiology of visuomotor coordination and learning of goal-

directed, sequential movements (Chapter 3). Then, we present the computational

study (Chapter 4). We propose a general framework for combining and learning

modalities with different latencies, based on the actor-critic algorithm. In a first

simple implementation of a somatosensory reaching task, we assert our hypotheses

that, given identical modules of different feedback latencies, 1) performance is

limited by the latency of the faster module alone, and 2) that the faster module

becomes dominant over control. In a second implementation, we examined an

example of visuomotor sequence learning, where a plastic, faster somatosensory

module interacts with a preacquired, slower visual module. Here we find that

the somatosensory module acquires an independent control policy with better

performance than the visual module. The visual module displays differential

roles; in the early learning stage, it acts as a guide for the somatosensory module,

and in the late learning stage, it acts as a safeguard against perturbations.

In the following chapter (Chapter 5), we present the experimental study. We

first introduce our paradigm to investigate the long term behavioural change in

a stereotype, sequential button pressing task. We present a Bayesian model of

dynamic updating of spatial representation, with the potential to explain gaze

behaviour for manual tasks. We then report our findings of changes of gaze: in

early learning, subjects fixate each target button, but as the manual execution

speeds up, subjects fixate strategic points, inclined towards center-of-mass of

clusters of targets. We also provide evidence that the Bayesian model can explain

gaze-dependence of manual accuracy.

Overall, our findings contribute to the understanding of the real-time lim-

itations of cortical feedback systems, and what consequences it may have for

visuomotor feedback control and learning, in particular for 1) reward-based basal

ganglia learning functions, and 2) gaze strategies for manual skills.

Keywords:
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Chapter 1

Introduction

The human motor system that we all take for granted is remarkable in its gen-

erality and robustness for the wide range of tasks we perform every day. It is

general in the sense that we can reuse experience from a slightly different task;

e.g. we have use for experience in squash when we learn to play badminton. It is

robust - we can for example grasp and manipulate objects successfully of different

sizes, weights and shapes. Furthermore, we have the ability to learn and improve

on a wide range of specialized skills over long time.

Despite these abilities, humans and animals face a more difficult control prob-

lem than most machines do. Muscles cannot develop force as quickly as electrical

motors. Further, biological sensors and relay neurons are often noisy. More im-

portantly, in contrast to the nanosecond time scale of microprocessors, sensory

feedback is delayed up to hundreds of milliseconds because of the nature of ax-

onal and synaptic transmission. Because real-time motor behaviour like reaching

occurs over fractions of a second, the outcome cannot be confirmed instantly -

the brain has to rely on predictions, i.e. assumptions based on prior experience.

Despite the long feedback delays, sensory feedback loops to the central nervous

system are ubiquitous and of several modalities (vision, audition, somatosensa-

tion, etc), sending information about the state of the external world, and the

state of the 600+ skeletal muscles in the human body. These feedbacks must be

efficiently used to deliver motor commands in the correct order, at the right time

and with the right amplitude. Several movements often have to be coordinated,

e.g. for bimanual tasks, or between eye and hand.

1
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In this thesis, we investigate the real-time nature of learning and coordinating

multi-modal feedback for complex motor behaviours. Recently, a body of theo-

retical and experimental evidence has been established, showing that the basal

ganglia play a key role of reward prediction, with the potential of optimizing be-

haviour in this regard. Indeed, the basal ganglia are also multimodal and known

to be vital for motor behaviour, including motor procedures. But yet it is un-

clear to what extent the basal ganglia can optimize real-time motor performance,

since latencies are long for the projecting cortical feedback loops. We study the

potential of reinforcement (reward) learning of delayed feedback motor control.

Further, we study gaze behaviour in a motor sequence learning experiment, to get

a better understanding of how visual feedback changes over long time for motor

skills, and how feedback is constrained by the physiology of the eye.

1.1. A word on methodology

System’s computational neuroscience is a field that tries to formulate sound the-

oretical bases for learning and control mechanisms of the brain. Theories help to

organize and efficiently represent the large body of experimental results. The com-

putational neuroscientist may take two approaches. In the top-down approach,

she tries to find evidence for a theoretically plausible brain function from avail-

able data. In the bottom-up approach, she tries to make sense of an experimental

finding by a plausible theoretical argument. Both strategies are important means

to understand the brain and its disorders. We shall pursue both approaches in

different studies in this work (see below).

1.2. Motivation, purpose and scope

The broader aim of this thesis is to understand the long term learning of motor

procedures. This class of motor learning often occurs in human ecology; learning

to operate a washing machine, typing on a keyboard, or playing the violin. Such

tasks are often associated with a speedup of performance [5, 64], which make

them a particularly convenient setting to study real-time issues. The difference

in performance speed between the novice and the expert may imply a different
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recruitment of sensory feedback (besides the expert’s ability to exploit predic-

tion for control, see below). The sequential nature of motor procedures is also

convenient, since the uniqueness of each sequence makes it possible to study the

learning process over and over in different examples.

We explore two different topics in this thesis:

I) A computational study: In this first part, we extend on a conceptual

[62, 63] and computational [123] model, based on experimental work [64]

of the basal ganglia-thalamocortical (BG-TC) system [2] and its role in

visuomotor sequence learning. In this body of work, it has been estab-

lished that the prefrontal BG-TC loop and the motor BG-TC loops play

differential roles in a cooperative process to achieve robust motor sequence

acquisition. Here, we seek to clarify the real-time implications of this sys-

tem: how feedback delay constrains the performance, and how modalities

may be combined. We hypothesize that the BG implement an actor-critic

architecture [10, 67, 37]. Our study is further motivated by the fact that in

contrast to most other models, we evaluate a 1) real-time and 2) multi-modal

learning and control system, which have, as will be shown here, important

implications.

For reasons of limitation, we do not consider the contribution of model-

based feedforward control [175] to motor behaviour. Rather, the systems we

are considering should be seen as a compliment to feedforward controllers.

Consequently, we do not consider the function of the cerebellum, a much

important but well investigated real-time control system. Neither should

the work be considered an attack on state estimation [163, 97] models; our

work is primarily motivated to evaluate the BG-TC system as a real-time

motor controller.

II) An experimental study: In this second part, we investigate the long-

term change in gaze behaviour in sequential hand movements, a topic which

has not been explored previously (with the exception of a minor study on

macaques [118]). In general, there is a lack of theories of eye-hand coordi-

nation [27] . The change of gaze may give important clues on how visual
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feedback is recruited in later stages of learning, if at all. Also, it has po-

tential to elucidate the utility of peripheral versus foveal vision in motor

control, and how gaze-dependent, visual feedback affects accuracy of hand

movements.

The subject of eye-hand coordination involves complex computation mech-

anisms relating the postural geometry of eye, head and arm. We do not

consider these computations here - we focus on the spatiotemporal trajecto-

ries of gaze relative to manual targets, eccentricity of targets, and the effects

of faster execution.

1.3. Outline of the thesis

This thesis is organized as follows: first, important concepts and related fields

of research are reviewed. Chapter 2 explains fundamental aspects of theoreti-

cal motor control. Proposed control architectures for human motor behaviour

are reviewed. Reinforcement learning, an important learning class for achieving

goal-driven, optimal motor behaviour is explained. Chapter 3 reviews impor-

tant experimental findings relevant to the studies of this thesis. The anatomy

and function of the basal ganglia are explained in terms of evidence from phys-

iology, focusing on the actor-critic hypothesis. Further, the field of motor se-

quence learning is reviewed. Here, we particularly look at a series of experiments

by Okihide Hikosaka and colleagues, investigating the role of the basal ganglia-

thalamocortical system in learning of motor procedures. In the last section, we

review previous work in eye hand coordination and gaze strategies of procedural

motor tasks. Here we also include early work on the acuity of the eye, and neural

mechanisms for spatial representation.

Secondly, in Chapter 4 we present our computational study of real-time, mul-

timodal integration. Related work on feedback control models and modular com-

bination is reviewed. We then propose our alternative model. We demonstrate

with two simulation experiments, and report on the results.

Thirdly, in Chapter 5 we present our behavioural study of gaze in sequential

hand movements. We review related work on gaze-dependent vision models,

representation of neural space, and eye-hand coordination. We present our task
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paradigm and analysis, and propose a Bayesian model of gaze integration of visual

feedback. We report on the learning performance and gaze behaviour of subjects.

Finally, in Chapter 6 we point to potential future directions of our work, and

provide a summary of the contribution of this thesis.

1.4. Mathematical notation

Standard linear algebra notation is used throughout the thesis, i.e. vectors are in

bold type lower case letters, and matrices in bold type upper case letters. Tilde

is regularly used to note an estimated variable of a true variable noted by the

same symbol. Superscript T denotes transpose.





Chapter 2

Theories of optimal motor control

One of the most important principles of theoretical motor control is the optimality

constraint. Optimization in biology is dictated by survival of the fittest, and

works at different time scales by processes of evolution, development, learning

and adaptation. Optimization of motor ability is decisive to an organism’s fitness;

it has direct consequences for foraging, hunting for prey or avoidance of being

predated, or searching for a mate.

Accordingly, we can expect that evolution has resulted in 1) control archi-

tectures that are optimal for survival and real-time behaviour, and 2) learning

mechanisms, i.e. on-line optimization algorithms, effective for constantly readapt-

ing to a changing environment. In this chapter, we explain the two important

classes of motor control theories, for which almost all biological architectures

proposed fit in: closed loop systems, which emphasize optimization of feedback

[163], and open loop systems, which emphasize optimization of desired trajecto-

ries [175, 88]. We discuss their pros and cons. Then we explain reinforcement

learning (RL). While other learning algorithms like unsupervised learning and su-

pervised learning are also important for motor behaviour, it is beyond the scope

of this thesis. RL is the learning framework which address the questions how to

associate states and actions with respect to reward and task goals for maximal

exploitation. Having roots in psychology, it has developed into a formal compu-

tational theory with algorithms convenient for on-line optimization. We explain

the fundamentals, and focus on the actor-critic algorithm, which is most relevant

to biology.

7
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2.1. Control systems

Control theory is a mathematically rigorous field linked to dynamical system’s

theory, that describes the quality of any control system, in terms of stability,

robustness, optimality, observability and detectability. Human motor control is

understood by control theory, given the constraints of the brain (the controller),

the body (the motor plant) and the environment. There are many constraints

much different to those that apply to artificial controllers. For example, sensory

feedback loops of the brain are delayed up to several hundreds of milliseconds. The

neurons that make up the sensors, inter-neurons and actuators of these loops are

noisy and stochastic. Muscles work with a very different dynamic than artificial

motors. The environment that humans are exposed to require performance to be

robust in a very general sense: for example, objects of different size and shape

are manipulated. All these characteristics limit the nature of plausible control

mechanisms. By measuring behaviour and brain signals of humans and other

primates, a more delicate understanding of human motor control can be acquired.

A very old question is whether humans use feedback or closed loop feedforward

control. This question is still relevant [78]. Most neuroscientists would agree that

both are important for humans; on one extreme, feedback is certainly used for

example when pursuing a slowly, randomly moving object with one’s eyes, on

the other extreme, we have reflexes responding much faster than feedback can

be conveyed. However, as we shall discuss below, the relative weight of either

would suggest different control architectures. Theorists dispute whether control

is subject to closed loop optimization (corresponding to feedback control) or open

loop optimization (corresponding to feedforward control). We shall refer to these

as “closed loop control” and “open loop control”, although it is not open loop in

the strict sense, see below.

In this section, we first introduce the fundamental control problem, and the

role of models for prediction. Then, we explain the theory of closed loop and open

loop control, and discuss their strengths and weaknesses in terms of theoretical

and empirical evidence.
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2.1.1 The generic control problem

The fundamental problem we are considering is shown in figure 2.1. A bio-

logical agent is interacting with its environment, characterized by some state

vector x(t). The environment may include both extrinsic (the ground, trees,

other biological agents, walls, etc) and intrinsic (states of muscles, motivational

states) components. In order to move effectively, the agent needs a control

Figure 2.1. The generic control prob-

lem.

law to select the proper motor command

u(t) for any motor task at any given

time t. The sensory feedback signal

y(t − τ), delayed by τ , is the window

through which the agent gets informa-

tion about the world. The distinction

between state x(t) and feedback y(t) is

motivated, since the agent most often

cannot observe the complete state of the

environment. Motor control and learn-

ing is the science of understanding what

internal mechanisms the agent possess

to effectively and robustly control and

improve performance in this system.

2.1.2 Models

Prediction is an important concept of control. Predictions based on prior expe-

rience can be used for three purposes: 1) to compensate for noisy (unreliable)

feedback, 2) to speed up motion when feedback is slow, and 3) to generalize

between different motor tasks. Overall, one may say that by letting the brain

making predictions (assumptions), information processing becomes probabilistic,

and hence more efficient.

For predictions, the brain may utilize internal models, which anticipate the

outcome of motor tasks given sequences of responses. Models are used for both

open and closed loop control as defined below. There are two classes of internal
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models: inverse models and forward models. An inverse model maps the motor

command u given a sensory reading y:

u = F (y). (2.1)

The advantage with inverse models are that they can be applied directly; for a

specified desired output (sensory reading) yd the motor command is given. In

practice, acquiring an inverse model is not trivial, since the mapping is rarely

unique (sensory feedback space has higher degrees of freedom than motor com-

mand space).

A forward model predicts a sensory reading y from the motor command u,

given the state (mediated by y) of the system:

y = G(y,u) (2.2)

The forward relation implies a task-specific mapping based on prior experience,

where each value of y typically relates to a unique u. An accurate forward model

is memory efficient, and since the next state can be predicted, control is possible

without waiting for external feedback, allowing for faster execution.

2.1.3 Closed loop control

In the optimal feedback control paradigm, closed loop control is emphasized. To

deal with the long feedback delays and sensor noise, the controller is preceded by

a state estimator (or observer, see Figure 2.2). The role of the state estimator

is to predict the state of the environment x(t) by an estimate x̃(t), which is ob-

tained by optimally combining model prediction and sensor feedback by Bayesian

inference. The estimate x̃(t) is used by a system model (which also may take the

motor command as input) to predict the next state, and an observation model

to predict the next sensor reading y(t). The discrepancy between the predicted

and observed sensor reading is used to correct the state estimate. For an optimal

estimation the gain K should be adjusted so that it increases when uncertainty

of the system model is high and the sensor noise is low, and vice versa. For prac-

tical implementations, linearity is usually assumed [162, 34], or the computation

becomes too expensive in real-time. The model then becomes a Kalman filter

[85, 107].



2.1. Control systems 11

Figure 2.2. A feedback control architec-

ture preceded by state estimation (see

text).

Körding et al. [96] demonstrated

that Bayesian inference predicts hu-

man behaviour in a partially occluded

pointing task, where subjects relied on

prior knowledge more when position of

hand uncertainty was high. Otherwise

evidence for optimal feedback control

comes from predicting the minimum in-

tervention principle, which states that

movements should only be constrained

by optimization in task-related direc-

tions. Thus it should be allowed to be

variable in redundant dimensions. Such

variability was demonstrated for some

behaviours including hitting, throwing

and hand manipulation [163], and ob-

stacle avoidance [103].

2.1.4 Open loop control

Open loop control architectures rely on

a planned, desired trajectory yd(t) for

execution (See Figure 2.3). The desired

trajectory is used to compute a motor command uff (t) in a feedforward manner.

Sensory feedback y(t) is used as a reference to yd(t), to correct any deviation

from the desired trajectory by an additional motor command ufb(t).

In early studies of arm movements, measured trajectories were found to be

predicted by explicit cost functions based on arm kinematics, like minimum jerk

[49] or minimum torque change [168], which supports the idea of a desired trajec-

tory. Physiological evidence for an open loop architecture [175, 88] much similar

to that shown in Figure 2.3 has been identified in neural networks controlling

the vestibulo-ocular response (VOR) and the ocular following response (OFR)

[53, 95]. These responses are used to keep gaze stabilized with respect to an

external scene (VOR) or moving object (OFR), despite body or head rotation.
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Figure 2.3. An open loop control archi-

tecture.

In this case, the desired outcome is ex-

plicit - eye rotation should remain in-

variant relative to the fixated object,

so eyes must be rotated counter to the

head or body. Cell recording from the

cerebellum showed that neural firing of

Purkinje cells could be well predicted by

a linear combination of eye movement

kinematics, i.e. the Purkinje cells rep-

resented the output of an inverse kine-

matics model.

2.1.5 The dispute between

open loop and closed loop op-

timization

The optimal feedback control paradigm

has recently challenged desired trajectory based control hypotheses [161]. The

major advantage of the optimal feedback control hypothesis is that it makes

no assumptions that constrain the motor behaviour, other than optimality with

respect to task performance. The evidence for that, as discussed above, is motor

behaviour is more variable in task-irrelevant directions. Reasons for trajectory

based cost functions are harder to find a natural explanation for.

On the other hand, it is a big challenge to explain how efficient learning can

be possible under optimal feedback control, given the high dimensionality of real

time, dynamic behaviour. Linear control systems are not likely to work well for

control in unstable force fields [21]. The long delays of sensory feedback amplify

the problem of robust (stable) control of non-linear systems behaviour of walking,

for example.
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2.2. Online optimization by reinforcement

learning

Reinforcement learning (RL) is a theory that comes from experimental psychol-

ogy, which have origins in the famous classical conditioning experiments by Pavlov

[132]. In classical conditioning, animals were proven to associate contingent stim-

uli - preceding states - with reward (or punishment). Reinforcement learning was

extended with operant conditioning by Thorndike [160]. In experiments of operant

conditioning (or instrumental conditioning), the animal subject can manipulate

the casual chain of stimuli events - states - by different responses - actions. In-

deed, animals can also learn to associate sequences of states and actions with

expectation of reward. These ideas were formulated in more detailed by Skinner

[44]. Later, a mathematical formalism of RL has been developed [94, 16, 153],

importing concepts from optimization theory and computer science. From this

perspective, reinforcement learning can be viewed as a general, on-line optimiza-

tion method for complex problems. In the next chapter, we will also see that

there are evidence for algorithms of reinforcement learning implemented in the

basal ganglia, which is a vital cluster of neural nuclei of the vertebrate brain, also

implicated in motor learning and control.

In this section, we review the theory of reinforcement learning. The most im-

portant concepts are explained, with an emphasis on the actor-critic algorithm,

relevant for neuroscience. Here, we describe a continuous formulation of rein-

forcement in space and time, which is also used for the framework in Chapter 4.

See [38] for a more thorough treatment. For a broader perspective on RL, in the

more commonly applied, discrete form, I recommend Reinforcement Learning -

An Introduction [153].

2.2.1 The reinforcement learning problem

Consider the system outlined in Figure 2.4. It is no different than the fun-

damental control problem described in figure 2.1, except that the agent re-

ceives reinforcement (reward) r = r(x(t)); a scalar, explicit feedback on what

was good or bad for the agent. The function r(x(t)) can have any form, but

often have a discontinuous nature in both time and space. In classical RL
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Figure 2.4. The reinforcement

learning problem.

problems, r(x(t)) is 0 in every state until

some goal state is achieved, e.g. winning a

backgammon game [159], or getting to the

exit of a maze [153]. In motor control prob-

lems [38, 120, 134, 105], r(x(t)) is often aug-

mented by cost terms (negative reward - pun-

ishment), or continuous feedback on success.

For example, in the former case the square of

the joint torque amplitude may be a cost, or

in the latter, the agent may be continuously

rewarded for not falling [120].

The policy π(x(t)) is the function of which

the agent selects actions u(t) given y(t − τ)

and possibly also some internal state variable, like the output of a model. We seek

the policy π(x(t)) that maximizes the integral of expected future reward r(t). The

expected future reward is refered to as the value function V π = V π(x(t)), where

π indicates the policy the value function corresponds to. The value function is

defined as

V π(x(t)) = E
[

∫

∞

0
e−

s

τTD r(t + s)ds
]

(2.3)

where τTD specifies how far into the future returns should be considered. In

optimization theory, a Bellman equation [12] states the necessary condition for

optimality. In the continuous formulation, the Hamilton-Jacobi-Bellman (HJB)

equation [12], a form of Bellman equation, is convenient for theoretical reasons

[15]. At time t, the optimal value function V ∗ is

1

τTD
V ∗(x(t)) = max

u(t)∈U

[

r(x(t),u(t)) +
δV ∗(x)

δx
f(x(t),u(t))

]

(2.4)

The optimal policy π∗ is given by the action that maximizes the the right-hand

side of the equation:

u(t) = π∗(x(t)) = arg max
u(t)∈U

[

r(x(t),u) +
δV ∗(x)

δx
f(x(t),u)

]

(2.5)



2.2. Online optimization by reinforcement learning 15

The traditional method to find the optimal policy is by dynamic programming

(DP). In DP, these equations are solved iteratively. First, the value function is

evaluated for the current policy (policy evaluation). Then, the policy is changed

by making π greedier (policy improvement), for which a new policy evaluation

must be made. These two steps are repeated until convergence.

DP algorithms are important for theoretical reasons, but become unpractical

for real world problems. For DP to work, the environment must be perfectly mod-

eled as a Markov decision process (i.e. all state transition probabilities must only

depend on the current state, and chance). Another important classical method is

the Monte Carlo method (MC). In MC methods, the value function is estimated

by accumulated experience from simulated or online experience. A model of the

environment’s dynamics is not needed. A crucial factor is at what rate the policy

should be made greedier, a trade-off of exploration and exploitation. A setback

with MC methods is that convergence is generally slow, and hard to verify. Ex-

perience updating is episodic, as the return is known in the end of the episode.

In contrast, many modern RL methods are suitable for learning on-line.

2.2.2 Temporal difference (TD) for reward prediction

Central to RL methods is that the estimation of the value function is updated by

the temporal difference (TD) error. For the perfect estimation V π, equation 2.3

holds. Differentiating with respect to t, we get

V̇ π(x(t)) =
1

τTD
V π(x(t)) − r(t). (2.6)

As long as the estimation is not perfect, the equality does not hold. The error

δTD(t) = r(t) −
1

τTD
V (t) + V̇ (t). (2.7)

is called the TD error. Figuratively speaking, it is the positive or negative surprise

at any given time and situation. For prediction, the value function estimation is

corrected in the direction of the TD error until convergence to 0.
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2.2.3 The actor-critic for control

To improve the policy with TD learning, a number of algorithms have been devel-

oped and well investigated, e.g. SARSA and Q-learning [153]. In many of these,

action selection is inferred from the value function directly. In actor-critic algo-

rithms, the policy is represented explicitly. Such a differentiation can be efficient

when action space is high-dimensional. Also, it seems like a feasible biological

implementation (see Section 3.1.3).

A simple actor-critic implementation is outlined in Figure 2.5. The role of the

critic is to compute the TD error, which is used to 1) improve the value function

estimation V (t) = V (y(t− τ)), and 2) criticize the preceding action of the actor.

The role of the actor is to maintain the policy π(t) and adjust actions in the

direction of decreasing TD errors.

As an example, assume the policy π is computed by a softmax function

πj(t) =
exp

(

β(aj(t) + nj(t))
)

∑J
j=1 exp

(

β(aj(t) + nj(t))
) (2.8)

where πj(t) is the probability to take action j = 1, 2, .., J . The softmax serves

to normalize between actions, and to regulate the competition between actions,

depending on the inverse temperature β. The term aj(t) corresponds to the

estimated greedy action, while nj(t) is an exploration term. For efficient learning,

we want to reinforce, or penalize the action deviation Ej(t) from the greedy action:

Ej(t) =
(πj(t) − π̂j(t))

2

2
(2.9)

where the circumflex in π̂j(t) denotes the greedy action (i.e. with noise term

nj = 0).

2.2.4 Eligibility traces for efficient actor-critic learning

using function approximators

A problem in reinforcement learning is that of credit assignment - how to know

which actions caused the observed reward. If no bias can be applied before-

hand, which is typically the case, the proper actions will be found statistically by
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Figure 2.5. The actor-critic architecture. The critic computes the TD error

δTD(t), the discrepancy between actual and expected reward. This signal is used

both to improve reward prediction of the critic, and to criticize the preceding

action u(t) by updating the policy π(t) (see text).

experiencing many trials. Eligibility traces are memory traces of applied actions

and states that help temporal credit assignment. While eligibility traces may have

an arbitrary form, they typically decay exponentially from the time the state was

visited or the action was taken. Assume that we are using function approximators

V = V (wc) for the critic, and π = π(wa) for the actor, as we shall in Chapter

4. Function approximators are typically trained by stochastic gradient descent

[154].Then, the traces reflect the recent history of function gradients with respect

to parameters w, rather than states and actions explicitly. For the critic, the

exponential eligibility trace ec
k for parameter wk becomes

ėc
k(t) = −

1

τET
ec

k +
∂V

∂wc
k

(2.10)

and for the actor eligibility trace ea
k
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ėa
k(t) = −

1

τET
ea

k +
∂Ej(t)

∂wa
k

(2.11)

where parameters wa
k reflecting the action deviation are stored for reinforcement,

and the time constant τET determines how far back in time states should be

included. The trace for the actor is given from

∂Ej(t)

∂wa
kj

= (πj(t) − π̂j(t))
∂πj(t)

∂wa
kj

. (2.12)

The update learning equations for the parameters with gradient descent become

ẇc
k = αδTD(t)ec

k(t) ẇa
kj = αδTD(t)ea

kj(t) (2.13)

where α denotes the learning rate.

2.2.5 Policy gradient methods - an alternative

Actor-critic algorithms may run into problems in complex learning tasks. If the

value function is represented by a function approximation, convergence cannot be

guaranteed. Also, if a large part of the state is hidden, actor-critic methods are

known not to behave well. Recently, a different class of reinforcement learning

has regained interest, called policy gradient algorithms [174, 154, 81]. Here, the

policy π(w) is updated directly by estimating the policy gradient with respect to

the parameters w, in the direction of increasing average reward. Such policy im-

provement is guaranteed to converge [154]. However, with conventional gradient

descent, convergence is typically very slow for real world applications. Using the

natural gradient [3] was shown to make learning more efficient [81, 134, 105, 133].

Learning is typically episodic like MC, since the average return must be computed.

The high variance between samples often observed is a problem with policy gra-

dient methods. Peters et al. proposed “the natural actor-critic” [134, 133], where

the critic is used to for computing the natural gradient, and reducing variance.

2.3. Conclusion

For optimal and robust motor behaviour, the brain needs the benefits of two

extremes. On one hand, there are fast, reflex-like, feedforward driven control
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mechanisms which can deliver the motor commands well in real time, but with

little capacity to learn and utilize from extrinsic modalities like vision or audition.

On the other hand, there are high level, plastic, multi-modal feedback loops which

can learn to optimize goal-driven behaviour, but are challenged by their long

feedback delays for effective motor control. While both open loop and closed loop

control architectures have been successful for explaining particular behaviours, it

remains to be seen whether both mechanisms are present in the brain, or if an

integrated control mechanism exists.

Further, for optimization of motor behaviour the RL framework is a promising

framework that may successfully explain biological learning. However, for RL to

be feasible, satisfactory solutions to at least two problems have to be explained.

First, learning algorithms must be efficient enough to overcome the inherent slow-

ness of trial-and-error learning. This includes the problem to set the appropriate

meta parameters; learning rate, exploration-exploitation trade-off, and temporal

discounting of reward. Second, the reward signaling systems of the basal ganglia

are far from the motor plant, and can only influence behaviour by feedback loops

with considerable delay. These problems are yet poorly understood and remain

a challenge for theorists.





Chapter 3

Neural learning and coordination

of visuomotor procedures:

experimental evidence

In the previous chapter, we looked at general theories for human motor control

and learning. In this chapter, we review experimental work of psychology and

neurophysiology about multi-modal learning and control of motor behaviour. We

focus on psychological and physiological work particularly important for the stud-

ies of this thesis. First, we review the anatomy and function of the basal ganglia,

including evidence for reward prediction mechanisms. Then, we look at the phys-

iology of goal-driven motor sequence learning, where we particularly review the

work of Hikosaka and colleagues [62, 65], which is important for understanding

the motivation of the study in Chapter 4. In the following section we look at

eye-hand coordination and gaze strategies. We first explain physiological factors

that we believe influence gaze strategies, i.e. neural mechanisms of spatial rep-

resentations and properties of acuity of the retina. Then we review the little

work that has been done on gaze behaviour for procedural movements and skill

learning, which is important background for Chapter 5.

21
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3.1. Goal-driven learning of motor sequences

Many brain areas contribute to procedural motor learning. Here, we focus on the

role of the basal ganglia-thalamocortical system. The basal ganglia are particu-

larly interesting, because they seem to perform some integrating function from

vast cortical input, and also signal reward information. We first review basic

anatomy of the basal ganglia loop circuit, and then experimental findings and

models of the role of BG in reward prediction and action selection. We then

review work on motor sequence learning in BG-TC loops, with a more thorough

explanation of the parallel loop hypothesis [62] and its underlying body of work.

3.1.1 Basal ganglia: a paradigm shift

The basal ganglia are a subcortical structure of deep nuclei, linking the cere-

bral cortex to the thalamus. It is a phylogenetically old system, relatively well

conserved among vertebrates, both structurally and pharmacologically. Tradi-

tionally, the function of the basal ganglia has been attributed to motor control,

as its associated neural disorders like Parkinson’s disease causes motor deficits.

Recently, this view has been challenged, as there is evidence for implications of

the basal ganglia in mood, cognition, and non-motor behaviour [86, 37]. From

a computational viewpoint, the actor-critic model has been advocated by many

[10, 119, 36, 31] to capture the function of the basal ganglia-thalamocortical (BG-

TC) system as a framework for reinforcement learning and action selection.

In Chapter 4, we shall evaluate a real-time actor-critic framework for multi-

modal control and learning of motor skills. To put the actor-critic model in a

neurobiological perspective, we review the neuroscience of the basal ganglia in

this chapter.

3.1.2 Basal ganglia: anatomy

The basal ganglia are usually defined to include the following nuclei: the striatum

(Str, including the putamen, caudate nucleus and nucleus accumbens), the globus

pallidus (GP), the subthalamic nucleus (STN), and the substantia nigra (SN) (see

Figure 3.1). Sometimes the ventral tegmental area (VTA) is included.
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Figure 3.1. Anatomy of the Basal ganglia-thalamocortical loop. The main loop

(highlighted in dark gray) consists of cortical glutamate (Glu, excitatory) pro-

jections to the Striatum (Str), inhibitory convergent Str neurons to the Globus

Pallidus (GP), inhibitory GP neurons to the thalamus, which relays back (ex-

citatory) to the cortex, and also receives input from the cerebellum. The loop

is branched into direct and indirect pathways through the GP (see text); the

direct goes through the internal segment (GPi) only, while the indirect is re-

layed through the external segment (GPe). Dopaminergic (DA) neurons project

to the Str from the substantia nigra (SN) pars compacta (c) (r - reticulata, the

other compartment of SN). Reciprocal connections exist between the GP and the

subthalamic nucleus (STN, gamma-aminobutyric acid (GABA) is an inhibitory

neurotransmitter). The ventral tegmental area (VTA) also has efferent dopamine

neurons. Adapted from Graybiel [57].
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The striatum is the input stage of the basal ganglia. The main cell type of

the striatum is the spiny neuron. It receives input from glutamatergic neurons of

the cerebral cortex. The spiny neurons are organized into striosomal and matrix

modules. They differ in their chemical makeup, but also in their efferent pro-

jections. The matrix neurons target the internal segment of the globus pallidus,

while the striosomal neurons target dopaminergic (DA) neurons in the SN and

VTA. The striatum also has interneurons called tonically active neurons (TANs).

The globus pallidus consists of two segments, the external (GPe) and internal

(GPi) segments. Both receive input from the striatum. The GPe targets GPi,

which in turn target the thalamus. There are thus two possible pathways through

GP: the direct pathway, through GPi only, and the indirect pathway, through the

GPi via GPe. The substantia nigra has two compartments: substantia nigra pars

reticulata (SNr) and substantia nigra pars compacta (SNc). The SNr is similar

to the GPi, though it is closely innervated with the SNc. The afferent input to

the SNc is complex, but the major sources are the striatum and the amygdala.

The SNc sends dopaminergic input to the striatum. The VTA is a dopamine-rich

nuclei close to the substantia nigra, targeting the nucleus accumbens. The STN

has recurrent connections with the GP.

To summarize the functional connectivity, the cerebral cortex, Str, GP and

the thalamus form a recurrent loop, which is highly convergent: the ratio of

cortical afferent and pallidal efferent neurons of the striatum is about 80:1 in the

monkey and 30:1 in the rat [56]. The GP has a high, spontaneous firing rate (50

Hz), which is inhibited by striatal input. The GP in turn inhibits the thalamus

excitatory input to the cerebral cortex. The possible advantages of this double

negative signaling over a single positive are not well understood.

The SNc, VTA and STN are considered to subserve this BG-TC loop rather

than being a part of it. How the entire system may function is discussed below.

Further, the cortical input to the striatum is modular in its topography: The

projections have been identified to four distinct BG-TC loops, originating in dis-

tinct cortical areas: the limbic, prefrontal, oculomotor and motor loops [2, 114].

These parallel circuits do not seem to converge with one another, but rather

project back to their origin [2]. Each loop is also topographic. For example, the

motor loop is somatotopic throughout its cortical, striatal, pallidal and thalam-
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ical parts. This modularity is suggested to reflect parallel processing, of reward

prediction [155] and motor procedures [62] (see Section 3.1.4).

3.1.3 Basal ganglia: function

Until the 1980’s, most knowledge about basal ganglia function was from clini-

cal observations of Parkinsonian and Huntingtonian patients. The obvious be-

havioural change caused from these neurodegenerative disorders was impairment

of voluntary movements. The basal ganglia was believed to be directly involved

in the production of movement. It was referred to as the “extrapyramidal” in

contrast to the “pyramidal” motor system, as it was not directly connected to

the spinal cord.

However, recently it has also been recognized that cognition and mood are

affected by these disorders [86, 37]. Also, many other areas, such as the premotor

cortex, motor cortex and cerebellum contribute to movement, and lesions in these

areas consequently also lead to motor impairment.

The actor-critic hypothesis

For the last 15 years, theorists have been trying to find a feasible computational

function of the BG-TC system [68, 37, 57, 89]. Although the four BG-TC loops

project cortical areas with very different functions, the structure of the basal

ganglia is highly conserved across the loops, and is likely to perform the same

operation on each loop. This suggests an abstract function plausible for cognitive,

emotive, motor and oculomotor circuits throughout.

The most common class of computational models of the basal ganglia is the

actor-critic model, a class of reinforcement learning algorithms (see Section 2.2).

Recent experimental discoveries have led to this paradigm shift in basal gan-

glia function. Particularly important observations are, 1) the response of the

SNc seems to be related to expected reward, like a temporal difference signal

(see below), and 2) the high convergence in the BG loops suggest a state (high

dimensional) to action (low dimensional) mapping.

In ground-breaking experiments, Schultz and colleagues [147, 148] recorded

the response of SNc neurons of monkeys behaving in a simple, classical condi-
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Figure 3.2. Reward prediction by dopaminergic neurons of the substantia nigra.

The recorded neuron fires when reward cannot be predicted (top) just after de-

livery (R). In presence of a contingent stimulus (CS), there is no response to the

reward itself, but instead to the associated CS (center). When reward is neglected

for the CS associated with reward, the baseline activity is depressed shortly after

expected reward delivery (bottom). From Schultz et al. [148].

tioning task (see Figure 3.2). For unexpected reward, SNc neurons would respond

at the time of reward delivery (a positive surprise). For anticipated reward, the

response would come at the preceding cue indicating reward. Also along with

the hypothesis, activity was depressed at the time of reward when reward was

omitted (a negative surprise).

The signal observed is very much like the temporal difference error in rein-

forcement learning, signaling the deviation from reward expectation (see Section

2.2). A controversial topic is whether there exists a temporal difference-like signal

for negative reward, i.e. punishment. Daw et al. [32] suggested serotonin as a
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plausible agent for negative temporal difference error.

Wolfram Schultz’ discovery of a temporal difference-like neural response paved

the way for proposing that the basal ganglia implements the actor-critic. The

nominal neural model was introduced by Houk et al. 1995 [67] (see Figure 3.3).

They proposed that striosomal modules served as critic (striosomes in Str, STN,

and DA neurons) and the matrix modules as actor. The TD error in the model is

computed from three sources corresponding to the three terms of the TD error.

Primary reward is assumed as input from the lateral hypothalamus. The instan-

taneous value of the value function is provided by direct, tonic inhibition of the

SNc from striosomes, while a phasic excitatory, delayed input corresponding to

the value function at the previous time step is relayed via the STN. The model

could account for reward prediction in Schultz’ experiment ([147] see above), but

not to reward cancellation. The model did not provide any details or arguments

for the actor, other than the observation that matrix modules target the output

stage of the basal ganglia, the GP neurons.

Later models did account for a more timing-sensitive mechanism of the critic,

accounting for reward cancellation ([119, 152, 37]. However, these models make

assumptions that are not supported by neurophysiological evidence. Recently,

Kawato & Samejima [89] proposed that the pedunculopontine tegmental nucleus,

a nucleus (PPTN) in the brainstem, takes part in the computation of the value

function. The PPTN is not considered to be part of the basal ganglia, but

projects excitatory neurons to the substantia nigra [54], and its lesion causes

Parkinsonian-like tremors [110].

Much less work has been done to explain the actor in terms of known neuro-

physiology [74], although some broadstroke attempts have been made [67, 14, 9,

123, 18]. Little is known how the outputs of the basal ganglia are affecting the

cortical network, how outputs are integrated and what they represent [57].

3.1.4 Motor sequence learning systems

In the early 1960’s, Paul Fitts proposed that procedural skills are learned in

three stages [47, 5]. In the first cognitive stage the subject must learn the nature

of the task by declarative instructions or examples, and be attentive to sensory
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Figure 3.3. The actor-critic model of Houk et al. The striosomal module im-

plements the critic. Cortical neurons (C) project the state to the striatal spiny

neurons (SP) needed to compute the value function. The temporal difference

error is computed by dopaminergic (DA) neurons by referencing primary rein-

forcement and the value function at the previous time step, a signal relayed from

the striosomal spiny neurons (SPs) through subthalamic nuclei (ST), with the

tonic inhibiting signal projecting directly from the striatum. Matrix spiny neu-

rons (SPm) learn by the critic to mediate the action by double inhibition through

pallidal (P) and thalamic (T) neurons, for prefrontal (F) neurons. From Houk et

al. [67].
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feedback. In the second associative stage she learns to proceduralize the skill, so

that movements are recalled by association of the previous. Here, performance

becomes more fluid and accurate. In a third autonomous stage the subject can

perform the skill more and more accurately and rapidly. The cognitive involve-

ment gradually diminishes, and she may attend to other simultaneous tasks [5].

The dichotomy between the nature of the early cognitive stage and the late

autonomous stage suggests that there are different neural mechanisms involved in

respective phases of learning. The cognitive stage is characterized by slow execu-

tion, attention, declarative knowledge, extrinsic feedback and closed loop control.

The autonomous stage is in contrast characterized by fast execution, unconscious

recall, procedural skill, effector-specific (e.g. right hand) specialization, intrinsic

feedback and open-loop control. There must not be only mechanisms support-

ing learning for different stages, but also for coordination and transfer between

systems.

In the 1990’s, Okihide Hikosaka designed an experimental paradigm for the

purpose of studying the psychology and the physiology of motor sequence learn-

ing, called “the 2 x 5 task”, which resulted in many novel findings [64] (see Figure

3.4). In this experiment, subjects execute a sequence of reaching movements to

press 10 (2 x 5) keys on a panel, where they improve both in terms of accuracy

and speed, over a long time (several days of practice). The design of the 2 x 5

task was motivated by 1) the fact that it was simple enough for a monkey to

perform, but yet not too simple, and 2) the possibility for single subjects to learn

many sequences, as some 1010 combinations are possible, and the learning of each

sequence is unique. The hierarchical structure of the sequence was also motivated

by the reminiscence of real-world procedures.

Behaviourally, subjects of the 2 x 5 task improved on accuracy (errors) across

a single day, while improvement in performance time (time to complete the trial)

improved across several days [64, 63]. There was also some task learning (im-

provement of initial performance for every new sequence). Learned sequences

were also found to have a retention time of at least 6 months, as monkey sub-

jects performed better for sequences learned 6 months in advance than for new

sequences [64, 65].
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Figure 3.4. The 2 x 5 task. (A) Subjects press a home key below the key panel (4

x 4 grid) to start the trial. 2 keys, called a set, is presented (black background)

with a hidden order (shown on white background). If the wrong second key is

pressed, the subject must start the trial over again, otherwise she may press the

second key to proceed to the next set. A trial is completed by five sets, which

also completes a hyperset. The exact same hyperset is presented over and over

until the subject has completed 10 successful, consecutive trials. For monkeys,

reward (juice) is given by each completed set, with increasing amount across the

hyperset. The human version of the task is performed by 10 sets in the hyperset.

(B) Typical accuracy performance (completed sets) of a new hyperset (left) and

a learned hyperset (right). From Hikosaka et al. [62].
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Medial motor cortex

While experimental studies have shown that many brain areas are involved in

procedural learning [55, 66, 87, 164, 121], the medial motor areas, including the

supplementary area (SMA), seem to play an intricate part [157, 136]. While the

primary and premotor cortices respond to single limb movements [84], those of

the medial motor areas are sensitive to an embedded motor context [86, 157].

Pioneering work by Jun Tanji first distinguished the pre-supplementary motor

area (pre-SMA) from the SMA proper [106]. While the two areas are reciprocally

connected, the pre-SMA projects to the prefrontal cortex [156, 106] and the rostral

cingulate motor area (rCMA) [11]. Tanji’s group also demonstrated functional

differences between the areas recording monkeys performing overtrained motor

sequences. pre-SMA neurons responded specifically to initiations and rank order

specific movements, while SMA neurons were context specific, but active during

ongoing movements [157]. In this regard, the cingulate motor areas (dorsal and

ventral) have also been shown to have response properties much similar to the

SMA [141].

In a recent trans-cranial magnetic stimulation (TMS) study, Kennerley et al.

showed that in a chunked sequence, lesion of the pre-SMA by TMS caused a

longer reaction time, while TMS pulses within the chunk had no effect [91].

In the 2 x 5 task, the pre-SMA was shown to respond preferentially to novel

sequences compared to learned sequences [126]. With impairment of the pre-

SMA by muscimol injection, learning of novel sequences was impaired, but no

disruption of learned sequences was observed.

Cerebellum and basal ganglia

Both the cerebellum and the basal ganglia are involved in motor sequence learn-

ing. The cerebellum is important for real-time control of motor sequences. Le-

sions of the cerebellum impair motor sequence learning [115], but not conditional

visuomotor learning [128]. In particular, the cerebellum may be involved in learn-

ing and storing internal models of complex motor skills [69], used for feedforward

execution. In the 2 x 5 task, lesion of the output stage (dentate nucleus) of the
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Figure 3.5. The parallel loop hypothesis. The visual (prefrontal) loop learns the

sequence in visual coordinates in the dorsolateral prefrontal (DLPFC) cortex, in

parallel with the motor loop, learning the sequence in motor coordinates in the

SMA. The basal ganglia implement reward-driven learning and action selection

by an actor-critic implementation. The loops are coordinated by the pre-SMA.

See text for further details. From Nakahara et al. [123].

cerebellum disrupted performance of learned sequences, but not the learning of

novel sequences [104].

Many studies have shown implications of the basal ganglia in procedural learn-

ing [80, 165, 62, 75, 121]. In the 2 x 5 task, the neurons in the anterior stria-

tum were preferentially responsive to new sequences. In the posterior putamen,

neurons responded preferentially to learned sequences [116]. Analogously, inac-

tivation of the striatum affected mostly new sequences in the anterior striatum,

while it only affected learned sequences in the putamen [117].

The parallel loop hypothesis

Basal ganglia-thalamocortical loop circuits are organized in a modular fashion,

including the prefrontal and motor loop [2, 114] (see Section 3.1.2). Given the

observations reviewed above of the pre-SMA and anterior striatum (part of the
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prefrontal loop) preferentially involved in learning of new sequences, and the

posterior putamen (part of the motor loop), preferentially involved in learned

sequences, led to the parallel loop hypothesis [62, 65], which states that the

prefrontal loop learns new sequences, and the motor loop stores and executes

well practiced sequences.

In a model by Nakahara et al. (Figure 3.5), computational mechanisms of

the parallel loop hypothesis and their possible advantages were analyzed [123].

It was proposed that the prefrontal loop, now called “the visual loop”, repre-

sented sequences in lower-dimensional, visual (external world) coordinates, while

the motor loop stored sequences in high dimensional motor (e.g. joint angle)

coordinates. The two loops contribute differentially to the output: the visual

loop by learning speed, enabled by the lower dimensionality, and the motor loop

by accuracy, enabled by the higher dimensionality. The basal ganglia learn the

sequences by the actor-critic algorithm (see Sections 2.2 & 3.1.3 ). The pre-SMA

was hypothesized to work as a coordinator between the loops, and the (ventral)

premotor cortex worked as a translator of motor commands output by the visual

loop to realize motor commands in the motor loop.

With the model, Nakahara et al. could show that learning with both loops in

parallel was more efficient than any of the loops alone. Simulation results analo-

gous to experimental results [117, 116, 127] of the 2 x 5 task could also be shown.

It was shown that blockade of the visual loop affected new hypersets more than

learned, while the difference was less for blockade of the motor loop. Blockade of

the coordinator (corresponding to pre-SMA) affected learned sequences but not

new.

The model implementation by Nakahara et al. was step-wise movement-by-

movement, and two dimensional in both visual and motor coordinates. Other

interesting problems would arise with a more realistic model. A high degree of

freedom arm would give rise to the inverse problem in the visual loop, i.e. each

visual coordinate would map to a space of possible motor coordinates. Visual

and somatosensory feedback are known to have different latencies, which makes

it challenging to coordinate the two loops (see Chapter 4). Another issue that

may be more difficult in a high dimensional system is how to integrate the loop

outputs. The model successfully evaluated and learned actions locally in the two
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loops, as the anatomy suggests [114]. That implies a multi-agent system, where

the loops must be informed efficiently about the state and outputs of the other

loops, or a correct integrated output may not be coordinated. It remains unclear

how output of BG-TC loops are integrated [60].

3.2. Eye-hand coordination of motor procedures

An important aspect of understanding gaze strategies for manual skills, is the

fact that eye and hand movements are coordinated. This implies more than the

intuitive notion that the eye refixates to provide visual feedback for hand move-

ments. First, in reaching and pointing, hand and eye movements are triggered by

the same neural systems. This is expressed behaviourally by a fixed latency of

60-100 ms, depending on the task, between initiation of hand and eye movements

[138, 46]. For effective coordination, eye and hand share neural representations of

space [24, 27]. This implies a complex system of coordinate transformations, from

the low-level muscle states and angular coordinates of the arm, to head-centered,

body-centered, world-centered and retinal coordinates. The brain seems to main-

tain these representations in parallel [24] . This requires extensive complex

computations, as the relationships must be updated with any rotation of body,

head and eye.

In this section, we look at aspects of vision related to eye hand coordination

and gaze strategies for manual procedural skills. First, we review what is known

about neural mechanisms of spatial representations, which are presumably impor-

tant for computing pointing movements, for example. Then, the acuity of the eye

with respect to eccentricity is explained, a factor that may be important for gaze

strategies, as argued in Chapter 5. Finally, we review the few studies that have

been made of gaze strategies for manual sequences in controlled experiments.

3.2.1 Neural representations of space

Monkey neurophysiology has provided important insights how neural systems are

maintaining spatial representations. In this system, the parietal area is playing a

key role in maintaining spatial representations for potential action (an extensive
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Figure 3.6. Visual acuity depends on retinal eccentricity. (A) Density of cones and

rods in the retina. Cones are almost exclusive to the fovea around zero degrees.

Rods are sparse in the fovea, but also decrease in concentration in the off-foveal

range. (B) The minimum angle resolution (MAR, in arc minutes, corresponding

to the Landholt C test) is linearly increasing with retinal eccentricity. From

Weymouth [173].

review is given by [24]). For eye-hand coordination, the lateral intraparietal area

(LIP) is of particular interest, as it is believed to represent the space explored by

eye movements, in retinal coordinates. The LIP, together with the frontal eye field

(FEF) [20], the prefrontal cortex [52], the superior colliculus [171] and extrastriate

areas [124, 125] takes part in remapping of stimuli [41, 13]. A stimulus flashed

before a saccade is remapped after the saccade to bring it to the new retinal

location. Such a memory trace of the location of a previous stimuli can last up to

minutes [167]. These spatial memory updates may be important to understand

gaze behaviour.
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3.2.2 Acuity and eccentricity

The need for a gaze strategy arise from the property of the retina: the acuity of the

fovea is far better than that of the periphery. This is reflected in the physiology

of the eye. The fovea has a higher density of photoreceptors than the periphery

[173] (see Figure 3.6A). The density of cones in the fovea is approximately 40

times that of the periphery [29, 28]. The foveal input is further magnified in each

projection layer of the early afferent visual pathway: compare to the peripheral

projection, there are 4 times more ganglion cells per cone, 4 times more lateral

geniculate nucleus (LGN) cells per ganglion cell, and 10 times more striate cells

per LGN cell [25]. In the primary visual cortex (V1), the cortical magnification

factor (CMF) is defined as the ratio of projected retinal angle to mm of visual

cortex [30]. CMF is significant because it has been shown to scale with properties

of the eye, most importantly several measures of acuity [26, 35, 102, 150, 43, 42].

Visual acuity is dependent on retinal eccentricity. A linear positive correla-

tion to retinal eccentricity has been found for acuity measures such as minimal

angle of resolution (MAR, corresponding to Landholt C, see Figure 3.6B) [173],

Vernier, and grating acuity [42]. To demonstrate this property, Anstis showed

that letters and images can be made “equally readable” [8] and “equally blurry”

[7], respectively, by scaling font size and image blur by radial distance from the

center of a fixation point.

The linear dependence of eccentricity is also reflected in accuracy measures of

pointing [138, 17, 158]. Rossetti et al. found a quadratic dependence of pointing

surface error (end point variance) in an eccentricity range of 0-40 degrees [140].

In pointing, accuracy is also dependent on eye and head rotations (see [27] for

review), for which eccentricity-dependent accuracy has been found independent

[140].

3.2.3 Gaze strategies of manual skills

In various human behaviours in sports and daily activities, gaze strategies have

been shown to be highly specialized for the task at hand, for example in typing

[70], driving [99, 100] and batting [101]. Often, it can also be observed that

professionals, for example in golf putting [169] or basketball throwing [170] have a
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more effective, specialized gaze strategy than novice players. However, in general,

apart from the fact that targets are fixated pro-actively [138, 46, 76], there is a

lack of general theories of gaze strategies and eye-hand coordination for manual

tasks.

Recently, however, a series of experimental studies of Johansson and colleagues

in controlled environments have led to important insights of gaze strategies for

manual tasks [76, 158, 142]. Johansson et al. first studied gaze in a simple,

sequential manipulation task [76] (see Figure 3.7). Subjects had to grasp a rect-

angular bar, avoid an obstacle during an aimed reaching movement, put the bar

down at a target site, and then reverse the procedure. It was shown that subjects

fixated important landmarks - primarily grasp sites, secondarily obstacles. Never

did subjects fixate the hand or moving bar. Also, it was shown that when subjects

observed others performing the same task, they displayed a gaze behaviour much

similar to that of the active subject, gazing predictively at hand targets [48]. This

finding supports the idea that action understanding results from predicting the

observed action from one’s own motor representation.

In another study, subjects were instructed to point to four targets on a screen

with a pen after visual presentation [158]. The visual presentation was either

four targets only, targets and distractor targets, or four targets with a sequential

instruction (arrows between the targets). Presentation time was variable (0.5-8 s),

after which the screen went blank, and subjects could start pointing. The study

showed that with targets only, subjects could effectively remember the position

of targets in parallel by peripheral vision. The sequential instruction further

enhanced performance. With distractors, however, targets had to be foveated,

making the performance error dependent on presentation time and number of

fixations.

Also a study of gaze behaviour for a visuomotor learning task was done by

the same group [142]. Subjects had to learn to control a cursor on a screen

rotating a manipulator in two dimensions, requiring a non-trivial visuomotor

transformation. Learning occurred in three stages. In a first exploratory stage,

the performance was erroneous, and gaze was responding reactively to the cursor.

In the second, gaze was directed targets, and the (manual) success of directing

the cursor to the target improved. In a third refinement stage, gaze was shifted
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Figure 3.7. A study of gaze strategies for a simple procedural manipulation. (A-

B) Experimental procedure. Subjects were asked to grasp the bar, put it on the

top surface, avoiding the protruding obstacle (A, “up-phase”), and then reverse

the procedure (B, “down-phase”). (C,D) Distributions of gaze fixations in the

up-phase (C) and in the down-phase (D). Fixation dots are scaled for duration.

(E) Distributions of fixations (solid circles, center indicate mean) with respect to

landmark zones (dotted circles, center indicate mean). (F) Correlation between

fixation location and grasp location on the bar (top). Below fixations (dots)

and grasp sites (circles) are displayed with respect to the bar. Adapted from

Johansson et al. [76].
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directly toward the target, while manual performance gradually improved. The

experiment well demonstrated how subjects must learn a predictive mapping

between manual actions and eye movements.

Gaze behaviour was also briefly investigated in the 2 x 5 task [118] (see above).

It was found that saccades gradually became predictive, fixating the first correct

target prior to illumination (presentation) of two targets. the likelihood of such

saccade increased over 20-30 days. Use of the opposite hand disrupted the antic-

ipatory saccades.

3.3. Conclusion

The basal ganglia are projecting to prefrontal areas, motor areas, oculomotor

areas, and the limbic system. They are also involved in reward prediction. Lesions

of the basal ganglia cause motor disorders. Thus, the hypothesis that the basal

ganglia are involved in multimodal integration of goal-driven motor behaviour is

well justified. However, a lot of experiments have yet to be done before a more

clear idea about the basal ganglia function can be obtained. It is known that

dopamine neurons signals reward expectancy, but we have no clear evidence for

how the value function (the reward prediction) is computed. It is still a mystery

how the BG-TC modular loops are coordinated and integrated, and how their

outputs are mediated to actual muscle actuation.

From a computational viewpoint, we believe it is time to consider the real-

time nature of signals in the BG-TC system. There may be several temporal

constraints that determine if the actor-critic hypothesis, for example, is feasible.

The long delays of extrinsic (visual, auditory, or somatosensory) feedback impose

a challenge for the brain to coordinate modalities and use feedback efficiently for

controlling motor behaviour.

In this context, we find it important to understand what the eye and hand do

in fine spatiotemporal detail. For example, as we shall see in Chapter 5, vision

seems to play a part for guiding also for very well rehearsed hand movements,

even though the extrinsic environment is static and certain. How could vision con-

tribute to accurate performance, when control based on predictive components or

intrinsic feedback, including proprioception, is well trained? To understand that
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we must know the precise nature of visual feedback, which depends on the acuity

of photoreception, as well as the timing and location of gaze shifts. Remapping

mechanisms of spatial coordinates of stimuli, as have been demonstrated in the

monkey brain, is also showing how the information of fixations are used to main-

tain memories from past gaze locations. To reinforce and maintain these spatial

maps by gaze shifts could be important to provide visual accuracy for manual

actions.

Overall, we believe that understanding the precise nature of the multi-modal

information processed for motor skills, and how that processing changes with

learning, could provide very important guidelines for experimental physiology

and anatomy of the BG-TC system.



Chapter 4

Combining modalities of different

latencies for optimal motor

control: a computational study

Existing computational system models of the basal ganglia are focused on reward

prediction [67, 119, 152], action selection [14, 9], or sometimes both [37, 123,

145]. However, almost all of them are uni-modal (see however [123, 155, 60]).

The fact that many modalities project to the basal ganglia [2, 114] has, so far,

been less considered by modelers. The modular organization of basal ganglia-

thalamocortical (BG-TC) loops and the consistent projections across the striatum

suggest that the basal ganglia perform generic computations in parallel of multiple

modalities [62], and seems to be the most feasible site for multi-modal sensory

integration, although the integration mechanism is not well understood [89].

Further, most actor-critic computational models of the basal ganglia have been

event-by-event and discrete, neglecting the requirements of real-time control of

motor responses (an exception of note is [98]). For the actor-critic model to

be a feasible biological model, it must work for continuous streams of inputs

and outputs, and deal with signals with different delays. In particular, the long

latencies associated with visuomotor feedback [90, 23, 112] may cause problems

for controlling real time movements and for coordinating multiple feedbacks.

In this chapter, we propose a real-time actor-critic model of the basal gan-

glia, for learning and controlling visuomotor skills. Our framework consists of

41
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a critic and of multiple actors, where each actor corresponds to a modality or

submodality. We propose that the feedback latency constrains the utility of each

actor. Further, we propose that the reinforcement learning algorithm plays a crit-

ical role in gating between inputs - only the better feedback signals, presumably

those with shorter latency, would be reinforced. Thus, modular inputs are, once

learned, gated implicitly by their latency. In our framework, the gating is realized

by combination of population coded outputs, sharpened by a softmax function

in favour of the module with highest confidence. This mechanism is different

from explicit gating [73, 61], where explicit signals are computed to weight the

influence of modules on the combined output.

To test our hypotheses and study multimodal interactions, we implemented

two motor tasks with different agents - “Experiment I” and “Experiment II”.

In both experiments, many combinations of hypothetical latencies of modules

are trained until convergence. We then look at the performance and compare

the outputs of modalities. In Experiment I, we studied a very simple system

to clearly understand the effect of feedback delays. Two modules, which are

identical except for their feedback delays, were trained until convergence for a

simple arm reaching task. In Experiment II, we studied the interaction between

vision and somatosensation in a sequential reaching task. Here, we assumed that

a “somatosensory module”, corresponding to a motor skill, is learned under the

assistance of a “visual module”, a pre-acquired, general but suboptimal controller

guided by visual feedback.

We begin with a brief review on findings of visuomotor delays in humans

and primates, before we present the general architecture and learning algorithm

(for details on the actor-critic algorithm, see Section 2.2). Then the tasks of

the experiments are described, followed by the results of Experiment I & II. We

conclude with a discussion in context to other work in theoretical motor control

and experimental findings.
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4.1. Related work: feedback delays in visomotor

control

In contrast to many control systems of machines, where feedback may be in-

stantaneous, delays in biological, visuomotor feedback loops are significant, up

to 100-200 ms [90, 23]. In monkeys, the response latencies of visual areas of the

brain have been measured relative to the onset of a visual stimuli [146] (see Figure

4.1A). As one might expect, the serial nature of the visual pathways are reflected

by the mean response latencies. Similarly, the response latencies of motor, cor-

tical areas with respect to initiation of a reaching movement and its associated

visual cue onset time were measured [84] (see Figure 4.1B). Note that the primary

motor cortex (M1) responds earlier than parietal area 5 (PA5), although PA5 is a

part of the somatosensory motor cortex [83, 82], representing planned, potential

movements [4].

The Smith predictor [151] is a control system tailored to overcome the prob-

lem of feedback delay in applied engineering. Chris Miall and colleagues asked

the question if the Smith predictor may play a role in human motor control, and

hypothesized that the cerebellum may implement two instances of Smith predic-

tors [113]. However, a recent experiment from the same group did not support

Smith prediction as a plausible control scheme for manual tracking [111]. Also,

it has been shown that unstable plant dynamics will also destablize the Smith

Predictor controller [109].

Mehta & Schaal [109] compared the performance of several control architec-

tures for a delayed, linear pole-balancing model. Behavioural experiments ruled

out most architectures, since the observed control gains were too high for these to

be stable. The study favoured a forward model in the pre-processing stage of the

control loop, as subjects could cope with a long blank-out (no visual feedback)

period.

In general, the issue of sensory feedback delay in biological motor control

has been relatively little investigated [111]. Several behavioural studies report

degraded performance for artificial delays 50 ms and greater [92, 93, 51, 129], but

results on delays in motor control beyond accuracy dependence in the literature

are scarce.
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A

B

Figure 4.1. Cumulative distributions of population latencies measured in

macaques. (A) Response latencies to a visual onset across the visual system,

in anesthetized monkeys. M, magnocellular, P, parvocellular, LGN, lateral genic-

ulate nucleus, V1-4, visual areas 1-4, MT, middle temporal area, MST, medial

superior temporal area, FEF, Frontal eye field. From Schmolesky et al. [146].

(B) Response latencies of neural populations in the motor system relative to onset

of a visual cue (0 ms) and initiation time (mean) of an associated reaching move-

ment (arrow at ∼280 ms). Area 6, dorsal premotor cortex (PMd), area 4, primary

motor cortex (M1), area 5, parietal area 5, area 2, primary somatosensory cortex.

From Kalaska & Crammond [84]
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4.2. A general framework

As a simple model of learning control using multiple delayed feedback channels,

we consider a modular architecture as shown in Figure 4.2. The state x(t) of the

physical environment evolves depending on the motor command u(t). The state

is monitored through different sensory channels ym(t) with different delays τm

(m = 1, ..., M). Each module outputs a population-coded motor command am(t),

and through their combination π(t), the final motor command u(t) is sent out

to the physical environment. The goal of control is to maximize the cumulative

reward r(t), as in the standard reinforcement learning paradigm [10, 38] .

Below we outline the operation of the feedback control modules, combination

of their outputs, and the learning algorithm. The architecture presented here is

a modification of a previous report [18] .

Feedback control modules

Each module m has a characteristic feedback signal

ym(t) = fm(x(t − τm)) (4.1)

where fm() is an observation function and τm is a characteristic latency for the

particular module. Each module gives as output a population code

am(t) = g(ym(t);wm) (4.2)

where g(t) is a function approximator, with a set of trainable parameters wm.

Each element am
j (j = 1, 2, ..J) corresponds to a prefered motor output ūj.

Combination of modular outputs

The motor command u ∈ RD is represented by a combination of the population

coded outputs of all modules with a softmax function:

πj(t) =
exp

(

β
∑M

m=1 am
j (t) + nj(t)

)

∑J
j=1 exp

(

β
∑M

m=1 am
j (t) + nj(t)

) (4.3)
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Figure 4.2. The modular network architecture for learning control with multiple

feedback pathways (see text).

where β is a constant that regulated the overlap of population codes. The noise

term nj(t) makes the policy stochastic, i.e. it controls the exploration of the

agent. The actual motor command u(t) is given by the weighted sum of the

preferred motor commands ūj corresponding to each population code:

u(t) =
J

∑

j=1

πj(t)ū
j. (4.4)

The modular outputs am
j can be interpreted as the log-probability of selecting

the output ūj,

am
j (t) = log(P (ūj(t)|y

m(t − τm),wm)). (4.5)
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Summing over all modules, adding noise and exponentiating gives the full prob-

ability P (ūj(t)) = πj(t). This simple but straightforward interpretation gives

a direct relationship between the activities of single neurons and distributional

population codes [137, 172] .

Actor-critic learning

Our model implements a form of the continuous actor-critic [38] . The learning

algorithm is described in Section 2.2. In the present implementation, the critic

learns to estimate the value function from available feedback:

V (y1(t),y2(t), ..,yM(t);wc) (4.6)

where wc is a set of trainable parameters.

4.3. Implementations of visuomotor reaching tasks

We test the effects of different sensory feedback delays in two simulated exper-

iments of arm reaching. In Experiment I, we used two somatosensory feedback

control modules with different delays for a simple reaching task. The aim is to see

how the minimal delay affects the control performance and how relative feedback

delay affects the selection of the modules by learning. In Experiment II, we used

both visual and somatosensory feedback modules for a sequential reaching task.

The aim is to see whether and how transition from slow, task independent visual

control to fast, task dependent somatosensory control happens under different

feedback delays.

Figures 4.3 and 4.6 show the implementation of Experiments 1 and 2, respec-

tively.

Reaching tasks

We use a 2DOF arm, where each link is 0.3 m long, 0.1 m in diameter, and 1 kg

(see Figure 4.3). The state is defined by its shoulder and elbow joint angles θ1 and

θ2 and angular velocities θ̇1 and θ̇2. The Cartesian hand position is ξhand(θ1, θ2)
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. The arm moves according to the motor command u(t) = (u1(t), u2(t)). In

Experiment I, we assume the system noise proportional to the motor command

so that each joint torque is given by:

uactual
d (t) = (1 + nd(t))ud(t) (d = 1, 2) (4.7)

where nd(t) is white noise with unit variance and mean zero. In Experiment II,

we assumed the system noise to be zero.

In Experiment I, the goal is to move the hand as quickly and accurately as

possible to the target position T given the start position S. The reward signal is

given by an exponential function of the distance of the hand to the target

r(t) = a exp(−b||ξhand(t) − ξtarget||) + c (4.8)

where a = 6, b = 20 and c = −0.3. Each trial lasts for 1.0 second.

In Experiment II, the task is to press three targets in consecutive order, which

always appear one at the time at the same positions, marked 1, 2 and 3 in

Figure 4.6. A target is pressed when the hand reaches a proximity of the target

||ξhand(t)−ξtarget|| < ξprox at a low speed ||ξ̇hand(t)|| < vprox) (ξprox = 0.02 m and

vprox = 0.5 m/s). After each successful target reaching, the agent is rewarded with

an increasing amount (50, 100, and 150) and the next target appears immediately.

Each trial ends after successful completion of the sequence, or after 5 seconds.

Feedback control modules

In Experiment I, we use two somatosensory feedback controllers, while in Exper-

iment II, we use somatosensory and visual feedback controllers.

The somatosensory module The somatosensory control module uses a pop-

ulation code representing joint angles θ and angular velocities θ̇ of the arm as

the input:

ym
k (t) =

1

Z
exp

(

−
1

2

{

∑

d

(
θd(t − τm) − θ̄kd

σkd

)2 +
∑

d

(
θ̇d(t − τm) − ω̄id

σ′

kd

)2
})

(4.9)
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where k = 1, 2, ..K is the index of the input units, θ̄kd and ω̄kd are their preferred

joint angles and velocities, σ and σ′ are their width parameters, and Z is a nor-

malization term. In Experiment II, we introduced additional units representing

the time since the target onset.

The output of module m is given by another population code

am(t) = Wmym(t − τm) (4.10)

where Wm are trainable weight matrices. Initially all weights are zero. See

appendix C for more details.

The visual module The input for the visual feedback controller is the Carte-

sian positions of the hand and the target

yv(t) = {ξ̃hand(t), ξtarget(t − τ v))}. (4.11)

While the target position is subject to feedback delay τ v, we assume that an

estimate of the present hand position ξ̃hand is available, e.g., by simple linear

prediction. The output is expressed as a population code av.

We assume that the feedback control of the visual module (indexed by v) is pre-

acquired and use a linear feedback controller with inverse dynamics compensation

and output smoothing (see appendix D). The controller produces bell-shaped

velocity profile similar to natural hand movement.

Actor-critic learning

To promote effective exploration, we use a low-pass filtered noise n in the action

output (Equation 4.3)

τnṅ(t) = −n(t) + νN(t) (4.12)

where the time constant τn = 50 ms and N(t) is Gaussian noise with zero mean

and unit variance. The amplitude ν is fixed at 0.1 in Experiment I, and reduced

as 1/(1 + 0.0001T ) at trial T in Experiment II.

The critic takes the population coded somatosensory feedback as its input and

use a linear weighting to produce the value estimate

V (t) = wcy(t), (4.13)
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where y(t) = (y1(t),y2(t)) in Experiment I and y(t) = ys(t) in Experiment II.

(We verified that inclusion of visual input yv in Experiment II did not affect the

results in this example).

Performance measures

In order to compare the control performance under different settings of feedback

delays, we use a number of performance measures, namely, the hand trajectory,

the hand velocity profile, the cumulative reward, and the performance time.

The cumulative reward is given by

R =
∫ T

0
r(t)dt, (4.14)

where T is the length of a trial (T=1 sec in Experiment I, T=5 sec in Experiment

II).

To compare the relative contribution of different modules, we define the actor

weight ratio, the output deviation, and the relative output proximity. The actor

weight ratio (AWR) we define as the ratio of the absolute sum of actor weights

of respective trained module:

AWR =

∑

k

∑

j |w
1
jk|

∑

k

∑

j |w
2
jk|

, (4.15)

i.e. a value AWR > 1 indicates a relatively more influential actor of module 1.

We also define the output deviation

dm(x(t)) = u(x(t)) − um(x(t)) (m = v, s) (4.16)

which shows how much module m’s output differ from the agent’s at time t. Its

time average over trajectories is given by

< dm >=
1

T

∫ T

0
|dm(t)|dt. (4.17)

for a trial terminating at T . From the output deviation, we define the relative

output proximity

pv(t) = 1 −
dv(t)

dv(t) + ds(t)
(4.18)

ps(t) = 1 − pv(t) (4.19)
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which is a measure of the relative influence of visual and somatosensory modules

over agent output, respectively. Both pv(t) and ps(t) are bounded between 0

and 1 and their relation is pv(t) + ps(t) = 1 by definition. Thus, the value of

one module larger than that of the other module indicates that the former is a

dominant module.

Simulation

In both experiments the same learning parameters were used: inverse temperature

β = 10, time constants τTD = 200 ms, τET = 200 ms, and learning rate α = 0.1

s−1.

All differential equations were approximated with the Euler forward method

with a time step small enough not to affect the results (10 ms).

4.4. Simulation results

4.4.1 Experiment I: Simple reaching with somatosensory

feedback modules with different delays

In Experiment I (Figure 4.3), we investigate how feedback latencies affect learning

and control in the proposed framework. We use a simple implementation with two

modules which are identical, except for their feedback latencies. The task is to

learn a simple reaching movement with a 2DOF arm. We train the networks with

different pairs of feedback latencies and compare their performance and relative

contribution of modules after learning has converged.

Reaching trajectories

Figure 4.4 shows examples of hand trajectories generated by the architecture

with four different settings of feedback latencies. The 10 trajectories in the top

row (Figure 4.4A) are generated with both modules after 100,000 training trials.

Effective reaching movement is achieved by all four latency pairs in a robust

manner. In the case of (τ1, τ2) = (0, 50), the variability is higher than in the other
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δTD(t)

ξhand

(m
)

(m)

Figure 4.3. The implementation of (τ1, τ2) = Experiment I. The agent controls

a 2DOF arm by applying joint torques to shoulder and elbow joints, with angles

θ1 and θ2 respectively (ξ1 and ξ2 define the Cartesian coordinates). The task is

to reach from the start hand position S to the target position T, as quickly and

accurately as possible (according to the reward signal r). The feedback signals

y1 and y2 are identical, a population code of joint angles and velocities. See text

for further details.
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Figure 4.4. Trajectory samples generated by four different settings of latencies

(τ1, τ2) = (0,0), (0,50), (50,50), and (50-100) milliseconds (ms) after 100,000 tri-

als of training. S - start, T - target. (A) 10 trajectory samples generated by

both modules under system noise. (B) System noise free trajectory generated

by module 1 only. (C) System noise free trajectory generated by module 2 only.

(D) Velocities of both modules (solid line, mean of 10 samples), module 1 only

(dashed line) and module 2 (dotted line).

examples. Since the reward function (see Section 4.3) does not explicitly penalize

variability, this is still a performance optimally close to other well-performing

agents (see below). However, in the cases of (τ1, τ2) = (0, 0), and (0, 50) ms the

movement is much faster than (50, 50), and (50, 100) ms, as can be seen in the

hand velocity plots in the bottom row (Figure 4.4D, solid lines (mean velocity

of the samples in Figure 4.4A)). This shows that the shortest feedback delay is

critical for the performance. This is not a trivial finding as the output of the

module with the longer feedback delay can interfere with the feedback command

generated by the module with shorter delay.

In order to see the relative contribution of the two modules, we compared

the trajectories generated by either one of the modules (Figure 4.4B-C), with
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Figure 4.5. Latency-dependent performance measures, displayed as surface plots

constrained by 24 latency pairs (black dots) over latency space (τmin, ∆τ). (A)

Cumulative reward R, indicating behavioural performance of agent. (B) Actor

weigth ratio (AWR), indicating relative contribution of modules. A value below

the x-y plane (AWR = 1) indicates relatively larger contribution of slower module

2, above plane larger contribution of faster module 1.

the other module’s output set as am(t) = 0. With the identical delays (τ1, τ2)

= (0, 0) and (50, 50) ms, both module can realize comparable trajectories. On

the other hand, with different delays (τ1, τ2) = (0, 50) and (50, 100) ms, while

the module 1 with shorter delay can realize nice trajectories, the module 2 with

longer delays generates very poor trajectories. This shows that the less desired

outputs of the module with longer feedback delay is effectively shut down by

reinforcement learning.

Effects of minimum and relative delays

To verify the critical role of the minimum feedback delay in control performance

and the role of relative feedback delay for module selection, we measured the

cumulative reward R and the actor weight ratio of trained agents, for 24 different

pairs of feedback delays. Under the condition of τ1 ≤ τ2, we plot those measures

in the parameter space of τmin = τ1 and ∆τ = τ2 − τ1.

Figure 4.5A shows how the cumulative reward depends on τmin and ∆τ . Each

black dot corresponds to a trained agent with the specific latency pair. It is

clearly seen that the longer τmin results in reduced cumulative reward, while the

relative delay ∆τ has almost no effect on the performance. Figure 4.5B shows
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the actor weight ratio, which increases markedly with the increase of the relative

delay ∆τ (for τmin = 0, per definition AWR ≡ 1. Never was AWR < 1.).

These results confirm that the performance of the modular learning control

architecture is mostly determined by the module with shortest latency. This

is achieved by the softmax combination of population coded outputs of modules

(4.2) and tuning of modular outputs by actor-critic learning. It is noteworthy that

potential problem of slower feedback module contaminating the good output of

the faster module has been avoided by this scheme.

4.4.2 Experiment II: Sequential reaching with visual and

somatosensory feedbacks

In Experiment II (Figure 4.6), we introduce a more realistic, complex imple-

mentation of a visuomotor sequence task. In motor skill acquisition, there is

substantial evidence for a shift in cortical activity with experience, from pre-

frontal areas to motor areas [135, 79, 40, 63, 50]. Analogously, there should be

a shift in modalities of feedback subserving these cortical areas; from extrinsic

(visual) feedback needed for anticipation and proceduralization of task dynamics

to intrinsic (somatosensory) feedback needed for optimization of motor control

[123].

Here, we study the transfer between these two systems, a “visual module”

and a “somatosensory module”, in a task of reaching a stereotyped sequence of

three targets. The visual module relies on a general purpose controller which

regulates a single reach to a given visual target. We assume that the module

is preacquired and is not be optimized for any particular target sequence. The

somatosensory module relies on somatosensory feedback and become optimized

for repeated motor sequences. Architectures with different latency pairs τ v and

τ s were trained for 100,000 trials, after which learning had converged in all cases.

We investigate the relative contribution of the somatosensory module for different

latency pairs and also compare the robustness against external perturbations of

the composite system versus single module control.



56 Chapter 4. Combining modalities of different latencies

Figure 4.6. The implementation of Experiment II. Here, with the arm as in

Experiment I, the goal is to press targets 1, 2 and 3, presented in consequent order,

starting from S. Reward is given only at the time when a key is pressed. The agent

consists of two modules called “visual module” and “somatosensory module”. The

visual module is a fixed controller, receiving feedback about the current target

position ξtarget and hand position ξhand to control a reaching movement. The

somatosensory module is similar to the modules in Experiment I. See text for

further details.
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Figure 4.7. Performance before and after learning. (A) 5 sample trajectories

before learning. (B) 5 sample trajectories after learning. (C) Performance times

of 12 latency pairs before learning (black bars) and after learning (white bars),

compared with equal levels of exploratory noise (ν = 0.01). Note that the initial

performance is the same for agents with equal τ v, since the somatosensory module

is inactive before learning.

Learning performance

Figure 4.7A-B compare the reaching trajectories before and after learning ((τ v, τ s) =

(100, 0) ms). Before learning, movements are variable and step-by-step - they are

directed towards one target at the time. After learning, movements are stereo-

typed, and also coarticulated, as they are redirected towards targets 2 and 3

before preceding targets are concluded.

Figure 4.7C compares the performance time (the time it takes to complete one

trial) before (black bars) and after (white bars) 100,000 trials of learning for 12

different latency pairs. Clearly, sequence-specific learning by the somatosensory

module contributes to reduction of the performance time. Its potential to do so

is primarily constrained by τ s, which has a decreasing trend of performance time
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Figure 4.8. A comparison of contribution to joint torque outputs between the

visual and somatosensory modules. (A-B) Example trajectories of shoulder (top)

and elbow (bottom) torques over time for the latency pairs (τ v, τm)=(100, 0)

(A) and (0, 100) ms (B). The green, blue and black lines correspond to the

outputs of the visual module, somatosensory module and agent, respectively. (C)

A comparison of mean output deviation (100 trials, noise amplitude ν = 0.02) of

visual and somatosensory modules, for 7 latency pairs.

for 100, 50 and 0 ms with any latency τ v of the visual module. In turn, τ v is also

a constraint for performance, as the performance times of learned modules are

shorter with lower τ v.

Contribution of the somatosensory module

To elucidate the contribution of the somatosensory module, we compared the

joint torque outputs of single modules (computed as in Experiment I) with the

joint torque output of the agent. Figure 4.8A-B shows trajectories of generated

joint torques over time (one trial), for the two extremes of relative latency in
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our study, ((τ v, τ s) = (100, 0) ms (A), ∆τ = 100 ms) and ((τ v, τ s) = (0, 100)

ms, ∆τ = −100 ms) (B). In the first latency pair, the somatosensory module

generates an output different from the visual module, but is evidently dominant

as it is close to the agent output. In the second latency pair, the outputs of

the two modules are close to each other, indicating that both modules equally

contribute to the agent output. Figure 4.8C shows the quantitative picture,

expressed as mean output deviation for 7 latency pairs. In cases of τ v < τm,

the visual module has the smaller output deviation ((50, 100) and (0, 100)),

indicating larger contribution. In the case of mutual, long latency (100, 100),

contribution is equal. Otherwise, the somatosensory module has lower output

deviation. This result indicates that for the somatosensory module to learn an

independent policy, it needs to have a shorter or equal latency τ s relative to τ v,

i.e. τ s ≤ τ v.

We then investigated how the learned behaviour is driven by the somatosen-

sory module. We compared the normal behaviour of the learned agent with a

condition with the visual module inactive. Figure 4.9A shows examples of hand

trajectories for four latency pairs in the two conditions. With both modules, all

agents are always successful. When the visual module is inactive, the ability to

control the movement depends on the relative latency ∆τ = τ v − τ s. The success

rate of the somatosensory module to complete a trial (given 100 trials) is shown

in Figure 4.9B. We observe that the successful rate is high in the case of τ s < τ v,

whereas none (or single trials in the case of (50, 50)) was successful in the case

of τ s ≥ τ v. These results further confirm our observation above (Figure 4.8) that

the somatosensory module can become dominant as far as τ s ≤ τ v.

Figure 4.9C compares the mean performance time of the two conditions. On

average, two of the agents ((50, 0) and (100, 50)) can on average perform almost

as well in the somatosensory only condition, but note the smaller variance of the

normal condition. The visual module provides robustness also late in learning.

Robustness to perturbation

To further evaluate the robustness of the composite system, we perturbed a be-

having agent ((τ v, τ s) = (100, 0) ms) by applying a force on the end effector
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Figure 4.9. (A) Learned behaviour of the agent in normal execution (“both

modules”, top row, solid lines) and in execution with the visual module inac-

tive (“somatosensory module only”, middle row, dashed lines) for four different

latency pairs (noise-free). The bottom row shows corresponding, absolute hand

velocities (first 1.5 seconds) over time. (B) Success rates of the “somatosensory

module only” condition for 7 different latency pairs (ν = 0.02). For the agents

of τ s = 100, there were no successful trials in this condition. (C) Comparison of

performance times between normal (white bars) and somatosensory module only

(gray bars) conditions, for successful trials.
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Figure 4.10. External force perturbation imposed on the end effector (hand), for a

trained agent (τ v, τ s) = (100, 0) ms. (A-B) Example trajectory when an impulse

(400 N, 50 ms) perturbs the composite system. (A) Spatial movement trajectory.

The two arrows indicate the direction of the force perturbation, drawn from the

position of start and stop of the impulse. The green/blue colour indicate rela-

tive proximity to visual/somatosensory modules’ output, respectively, i.e. green

indicates pv(t) > ps(t) and blue pv(t) < ps(t). (B) Temporal trajectories (corre-

sponding to (A)) of impulse (top), and output deviations of visual (green) and

somatosensory (blue) modules. Note that output deviation is inverse proportional

to proximity in (A). (C) Mean PT for perturbed trials with an impulse (400 N,

50 ms) of random direction and random onset (0.3-0.6 s from trial start), for the

agent (τ v, τ s) = (100, 0) ms, comparing control with both versus single module.

.

(hand). An impulse with constant force (400 N) was applied for 50 ms in a ran-

dom direction (in the plane of the arm), for 50 ms, 0.3-0.6 s after trial start.

Figure 4.10A-B shows an example trajectory, where the impulse (400 N up left,

onset at 0.3 s) throws the agent off track to miss target 2 to the left. The

green/blue colours of the trajectory indicate the relative proximity (see Section

4.3) in Figure 4.10A of visual/somatosensory modules’ output to the agent’s,

respectively. Note how the visual module predominates after the perturbation,

to put back the trained movement on track (towards target 2), after which the

somatosensory module regains influence anew. Figure 4.10C shows a comparison
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of the impact on performance time (mean of 1000 trials) for the random impulse,

when operating with both or single modules active. The visual module functions

as a safeguard against perturbations, since the somatosensory module alone (blue

bar) cannot effectively recover, resulting in the significantly higher performance

time (for which 56 % of the trials were timed out at 5.0 s). The somatosensory

module contributes to speedup before and after perturbation recovery, which is

why both modules (black bar) are performing faster than the visual only (green

bar).

In summary, these results indicate that in this visuomotor sequence task, as

learning progresses, the somatosensory module with the presumably shorter la-

tency becomes dominant in motor control. After learning, the visual module

provides stability when the effector ends up outside the well-trained regime. The

memory transfer, or the degree of control by different modalities, critically de-

pends on the difference in latencies between the visual and somatosensory mod-

ules.

4.5. Discussion

In this chapter, we have examined how feedback latency affects the relative im-

portance of modules for the learning and control of real-time motor skills. With

softmax combination of population-coded output of multiple control modules, we

demonstrated in simulations how the modules with shorter latency attain dom-

inance in motor control. Although the result may sound straightforward, there

are potential problems with conflicts of multiple modules, e.g., the longer latency

output pulling back movement by the shorter latency module. It is noteworthy

that appropriate module selection was achieved without any explicit gating and

simply by reinforcement of the output of the module that best contributed the per-

formance. The last experiment showed that module weighting is highly flexible;

the general-purpose visual module takes over the job when the trajectory-specific

somatosensory module does not perform well.
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4.5.1 State estimation models

In dealing with delayed or noisy sensory signal, a recently popular paradigm is

to use recursive Bayesian filters to estimate the hidden state [163, 161, 97] (see

Section 2.1.3). Such a model may also explain more weight on the faster module

that is more informative about the current state. However, Bayesian inference

requires the models of the physical dynamics and sensory delay and noise and

also takes heavy on-line computation, except for linear Gaussian systems where

Kalman filtering is possible. Instead, here we pursued much simpler, model-free

approach of training feedback controllers specialized for given delays. Analysis of

pros and cons of these approaches and their possible integration is the subject of

our future study.

4.5.2 Motor skill learning

The mechanism of transfer from declarative to procedural memories is poorly

understood [39, 65] . In our framework, modules with shorter latency become

dominant with learning. As demonstrated in experiment II, this allows special-

ized motor skills based on fast, intrinsic feedback loops to emerge under general

purpose controllers based on slow, extrinsic feedback like vision or audition. If

the difference in feedback latency is long enough, the faster modality will even-

tually become independent of the slower modality, which can then be used for

other purposes.

There are two analogies between our framework and the BG-TC system: 1) its

organization into modular circuits [2], and 2) the actor-critic architecture [67]. In

previous experimental [62, 65] and computational [123] work, we have proposed

that prefrontal and motor BG-TC loops cooperate in motor sequence learning,

encoding sequences in visual and motor coordinates, respectively.

In experiment II, faster movements were learned even though reward was given

only for key presses, regardless of time expenditure. Rewards received faster are

valued higher because of temporal discounting of rewards (Equations 2.2.2 &

2.2.2. This property may naturally explain why performance of numerous skill

learning tasks (e.g. [5]) speeds up, although speed is not an explicit performance
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criterion. Brain mechanisms of reward discounting is an active research topic

[108, 149, 155, 33].

4.5.3 Multimodal integration

In our framework, the critic was used for evaluation of the combined output. This

implies that each loop knows the combined output, for learning to be possible.

In the simpler model by Nakahara et al. [123], each loop evaluated its action sep-

arately, with coordination at the perceptual (input) level. Such implementation

is consistent with the fact that BG-TC loops do not converge anatomically. It

is not understood how BG-TC loops are coordinated, whether actions are evalu-

ated locally like a multi-agent system, or globally, which is a much simpler credit

assignment problem. Integration may be possible by recurrent cortical networks,

or by spiral connections between the striatum and substantia nigra [58, 60].

4.6. Conclusion

The success of this rather simple modular learning control framework motivates

future studies with agents comprising of more complex, heterogeneous features,

such as different sensor noise levels, learning speeds, or inclusion of feedforward

components. For example, given a slow, low-noise module and a fast, noisy

module, the former would be used for precision tasks and the latter for speed

tasks. To further test the generality of this prediction, delayed auditory feedback

could be added as a third modality, and modality dependence could be tested

under different pairs of feedback delays.

A challenge for this model to be interpreted as a basal ganglia-thalamocortical

model is that there is no evidence for integration of loop outputs. For our model

to be plausible, recurrent cortical connections must mediate a global signal con-

veying information about the collective action. Further anatomical, electrophys-

iological and imaging studies need to be done to understand how information is

conveyed between loops.

The brain receives possibly thousands of sensory signals, from which it has

to make a sensible response. Biological reinforcement learning may not just be
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about selecting actions, but also about selecting sensory input. In this context,

feedback latencies may be a critical factor for which input and output connections

are formed.

Appendix

4.A. Population codes

In both experiments the population codes were equal. In the somatosensory

modules, the preferred joint angles θ̄kd and angular velocities ω̄kd were distributed

uniformly in a 7 x 7 x 3 x 3 grid (K0 = 441 nodes) for k = 1, 2, ..K0 nodes , in the

ranges (-0.2:1.2,1,2:1.6) rad and (-1:1,-1:1) rad/s. The corresponding variances

σkd and σ′

kd were half the distance to the closest node in each direction.

The preferred joint torques ūj corresponding to action j were distributed

symmetrically over the origin in a 5 x 5 grid, in the range (-100:100,-100:100) Nm

with the middle (0,0) unit removed. The corresponding variances σ ′′

jd were half

the distance to the closest node in each direction.

The somatosensory module in experiment II also included “context units”.

The context units consists of 3 tapped delay lines, each corresponding to a key

in the sequence task. Each delay line had 8 units, i.e. 24 context units in all. For

the k-th unit in the n-th delay line (k > K0, k 6= K0 + 8(n − 1) + 1):

ẏm
k (t) = −

1

τC
ym

k (t) + yk−1(t) (4.20)

where τC = 30 ms. Each delay line is initiated by the input at (k = K0 + 8(n −

1) + 1):

ym
k (t) = δ(t − τ keypress

n ) (4.21)

where δ is the Dirac delta function, and τ keypress
n is the instant the n-th key was

pressed.
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4.B. The visual controller in Experiment II

The feedback signal yv to the visual module consists of the hand kinematics

ξhand, ξ̇hand and the target position ξtarget. Since the computed torque control

law itself does require at least a good estimation of the current motor kinematics,

the delayed feedback signals will not produce satisfactory control: the delays

will cause oscillations, and become unstable at some 50-100 ms. To overcome

this problem, we assumed that the agent has a good model of its own internal

dynamics, and can cancel out the delay of ξhand with a prediction ξ̃hand(t) =

ξhand(t). The target position ξtarget is assumed not to be predictable. Thus, with

the onset of a new target, it takes τ v ms before the visual module reacts towards

that target. The control is further perturbed by a decoding error, by modification

of the somatosensory module and by the stochasticity of action selec tion.

The joint torques are first computed by

u̇visual(t) = −
1

τCT
uvisual(t) + λuvisual′(

¨̃
ξ

hand

,
˙̃
ξ

hand

, e) (4.22)

where τCT and λ are constants, e = ξtarget(t− τ v)− ξ̃hand(t) and the input to the

filter is the inverse dynamics equation

uvisual′(t) = JT (M( ˙̃
ξ

hand

+ K1
˙̃
ξ

hand

− K2e) + C ˙̃
ξ

hand

) (4.23)

in Cartesian coordinates, where J is the Jacobian (∂θ/∂ξ̃hand), M the moment

of inertia matrix and C the Coriolis matrix. Using a filter by Equation 4.22,

more bell-shaped velocity profiles of the hand, similar to biological motion are

generated, in contrast to using Equation 4.23 directly.

The module output is an expansion of the joint torque uvisual on a population

vector

av
j (t) =

1

Z
exp(−

1

2
{
∑

d

(
uvisual

d (t) − ūjd

σ′′

jd

)2}) (4.24)

where Z is the normalization term, ūjd is a preferable joint torque for Cartesian

dimension d for vector element j, σ′′

jd the corresponding variance.

The parameters of equations of 4.22 and 4.23 were τCT = 50 ms, λ = 100,

K1 = [10 0;0 10], K2 = [50 0;0 50].



Chapter 5

Learning gaze strategies for

control of sequential hand

movement: an experimental

study

Like most animals with advanced vision, human eyes are mobile. This is advan-

tageous for several reasons. First of all, it makes us able to stabilize the field of

view, as a response to self-induced perturbations: head rotations or locomotion.

Secondly, the higher acuity of the fovea makes it favourable to refixate towards

objects of particular interest. Thirdly, it allows us to track moving targets in

the environment. In most human behaviours, we see how gaze is refixating (or

sometimes pursuing) actively. Seen as a constraint, a natural question to ask is

which location of gaze fixation is better or worse at any given time. By studying

gaze behaviour we can gain important insights for how visual feedback is used for

motor control.

In this chapter, we focus on the role of gaze in manual skills. Our aim is to

study the change of gaze as subjects improve on a motor task over a long time.

We design a task, “the 1 x 20 task” (an adoption of “the m x n task” [64, 62] , see

Section 3.1.4), where subjects learn to press a stereotype sequence of key presses

on a touch screen. With extensive training over five days, subjects gradually learn

to execute automatically with virtually no reaction time. We then analyze the

67
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spatiotemporal properties of gaze trajectories in early and late training. Gaze

strategies are likely to change with learning for three reasons. First, changes

in trajectories of the hand and manipulated objects require an updated gaze

strategy. Second, there may be a limit on how fast gaze can be shifted for

efficient feedback, which forces economizing of gaze shifts if task events occur at

high frequencies. Third, accurate prediction of task variables allows subjects to

optimize gaze for visual feedback. Alternatively, learning of proprioceptive and

tactile feedback and feedforward control would make execution independent of

vision, and gaze does not need to respond to the task.

This chapter is organized as follows. First, we describe the experimental

paradigm of the sequential reaching task, including setup, measurements and

analysis. Then we propose a Bayesian model of gaze-dependent updating of

spatial representation is presented. Then we present the results of the experiment.

Finally, we discuss what significance our results have for visuomotor research, and

ask questions we find important for future studies.

5.1. Methods

5.1.1 Experimental design

Eight healthy, right-handed subjects (7 male and 1 female; ages 22-35) with nor-

mal (or corrected to normal by contact lenses) vision were used in this study.

Subjects gave informed consent and the experiments were approved by the insti-

tutional ethics committee.

Setup

Subjects were seated in a dentist chair with their shoulders restrained in a harness

(Figure 5.1A). The subjects were able to freely move their right arm, but the setup

restricted movement of their torso. Located directly in front of the subject within

easy reach of their right arm was a touch screen (Elo 1925L, Elo touchsystems;

19 in., 1280 x 1024 pixels, 60 Hz) on which the subject’s task was presented. The

timing and location of the subject’s finger presses were recorded for later analysis

(response time of the touch screen: 10-15 ms).
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Figure 5.1. Experimental setup. (A) The subject was seated in a dentist chair

in front of a touch screen. A racing harness was used to limit movement of the

torso. Gaze from both eyes, motion capture (OPTOTRAK), and EMG (first

and last day of training only) from the right arm were recorded. (B) Screenshot.

Target buttons were arranged in a 4 x 4 target matrix at the top of the screen,

below which was the home button. At any one time there was a single active

target, displayed in white. (C) The two sequences used in the study, displayed

in rank orders (numbers) five at a time (segmentation is irrelevant and only for

visualization here; in the task, targets are presented one at a time, as in Figure

B).
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Eye gaze data was recorded using the EyeLink II system (SR Research Ot-

tawa). The gaze location for each eye onto the touch screen was recorded at 250

Hz.

Motion capture of six locations on the right arm was recorded simultaneously.

On the first and last day of the experiment, electromyography from seven mus-

cles was also recorded. The results from these measurements will be reported

elsewhere.

Task paradigm

To study long term behavioural changes in motor sequence/skill learning, subjects

were asked to perform a motor sequence task, adopted from the m x n task [64, 62]

. For a given trial, subjects were to press a stereotype sequence of 20 targets.

Targets were displayed as circular buttons (24 mm diam.) in a 4 x 4 target

matrix (indexed by i = 1, 2, .., 16 ), 39 mm between button centers in vertical

and horizontal direction (Figure 5.1B). A single home button (34 mm diam.) was

presented 67 mm below this matrix. All buttons were drawn in a gray colour

on a black background, except for the current, active target button, which was

displayed in white. Subjects controlled the start of a trial by pressing the home

button, after which the first target was presented. There were no explicit errors

or timing constraints in the task; a target was presented until the subject pressed

it, invoking the next target. All targets were onset with a 100 ms delay after

the preceding press. Subjects were instructed to complete the sequence as fast as

possible, with voluntary pauses between trials.

Subjects experienced two sequences of 20 targets on 5 consecutive days. On

a single training day, “sequence I” (see below) were presented 100 times (equiv-

alently 100 trials), and then “sequence II” 100 times. Thus, each sequence was

performed 500 times by each subject during the experiment. The analysis is

mainly focused on the it success trials (error-free trials) as they could be com-

pared across subjects and days (see below).

Sequences

We refer to the ordinal positions of a target in the sequences as its rank order

or rank order target, which are indexed by j = 1, 2, .., 20. In analysis, we also
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sort contexts by rank movement time and rank movement length (see below).

Sequences I & II were generated randomly (see Figure 5.1C), with one constraint:

the hand would never occlude the consequent target.

5.1.2 Analysis

Sequence geometry

For each rank order j , there is an associated target i at position xi(j) =
{

xi(j), yi(j)

}

,

where elements are horizontal and vertical Cartesian screen coordinates, respec-

tively. There is also an associated preceding movement j, by which we mean the

displacement (of the index finger) from the previous target center xi(j−1) to the

present target center xi(j). Movements are characterized by length (Euclidean

distance) and direction (angle from the x axis). We also define two geometrical

concepts including more than two targets: the relative angle is the angle between

two consequent movements, and the center of mass (COM) is the mean position

of n consequent targets [j, j + 1, .., j + n − 1] with respect to the current rank

order j:

xCOM (j, n) =
1

n

j+n−1
∑

m=j

xm (5.1)

where n is the number of targets included. Targets are always equally weighted.

Performance measures

By performance time we mean the time it takes to complete one trial, which is

the primary performance measure, what the subject is asked to minimize. By

movement time we mean the time it takes to execute a single movement, i.e. the

time elapsed between two button presses.

We are also interested in accuracy. We label touches on the screen outside

the active target as errors. A trial with no errors is referred to as a success trial

or an error-free trial. We distinguish one particular kind of error which we call

misses, while other is used for other errors. Misses are defined as touches in the

near vicinity of the target (< 15 mm from the key perimeter, where the subject
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clearly intended to press the illuminated target. Other includes for example miss-

directed reaches and next-key-in-sequence-hits (when a correct button press was

not recognized by the touch screen).

To investigate how sequential context influence accuracy, we define the relative

miss frequency (RMF) to be the relative frequency of misses of a particular rank

order. For rank orderj,

RMF(j ) = (number of misses at j )/ (number of misses in sequence)

given a set of trials. This measure allows for direct comparison between subjects

with varying levels of accuracy to determine the difficulty of success of a particular

rank order. If not stated otherwise, the RMF is averaged across all subjects and

training days.

Representation of time

Since a trial consists of many events that are not controlled in time, it is not always

convenient to compare entire trials in absolute time. For easy comparison, we

introduce a normalized event time, defined as

T (t, j) = j +
t − tj

tj+1 − tj
tj ≤ t ≤ tj+1. (5.2)

That is, time is indexed by the last pressed key with rank order j, and to that

the fraction of time elapsed to the next key press is added.

Measurement of gaze

Gaze was recorded from both eyes. The data from the left eye was used ex-

clusively as a measure of gaze; the right eye was used for verification. While

the Eyelink system compensates for head movement, subjects were instructed to

avoid it as much as possible. In the results, we generally report on gaze shifts,

and their associated timings and locations are reported by the start time and the

screen coordinate of the left eye fixation following the saccade. Saccade and blink

detection was defined the same as for the default psychophysical configuration
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of the Eyelink II system (thresholds for saccade detection (velocity and acceler-

ation): 22 deg/s, 4000 deg/s2). Fixations lasting less than 100 ms were omitted

from the event data in the results reported.

A calibration procedure was conducted between every 10 trials, where subjects

fixated 9 consecutive targets for 1.5 seconds each, appearing on random locations.

The standard deviations of the residuals over (8 subjects) x (5 days) x (9 points)

x (9 calibrations) were 11 mm (horizontal) and 17 mm (vertical) (a 1.0 degree eye

rotation corresponded to 8.8 mm on the screen). Furthermore, it was necessary

to perform an additional drift correction between each trial. This was done using

the assumption that the mean position of gaze and hand would be equal, allowing

a correction for the deviation of the gaze from the hand. The standard deviations

were 16 mm (horizontal) and 24 mm (vertical).

Subjects S7 and S8 had considerable noise in the gaze measurement due to

oscillation of the cameras. However, the signals were recovered using a zero phase,

digital Butterworth notch filter (8 Hz to 24 Hz, 12th order). (The spatial data of

subject S8, day 5 was too poor to be included in the analyses.)

To synchronize the Eyelink system with the task computer and other measure-

ments, we exploited behavioural data in two steps. At the start of each training

session and sequence, subjects tracked a target oscillating horizontally on the

screen (at 0.1 Hz, 7 cm amplitude) with both gaze and index finger, for 3 cycles.

We then used this temporal “fingerprint” on each data set to synchronize them.

To further improve accuracy, we took advantage of the 9 x 9 fixations in the cus-

tom calibrations, where targets were unpredictable. We assumed that the average

latencies from target onset to saccade initiation were constant between training

sessions for a single subject, and that the median of the estimated latencies of

all sessions per subject was close to the true latency. We estimated the standard

error to 12-40 ms, depending on the subject.

Analysis of gaze

In single trials in the present task, timing of the several movements and key

presses are not controlled by the task, but by the subject. There may be several

candidate targets for gaze fixation at any given time. Therefore, rather than by

timing, gaze must be interpreted with respect to the context that they occur,
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and by the duration of fixations. For this reason, we categorized fixations by the

number Nkpf (number of key presses per fixation).

Shorter fixations may be associated with a single target. For fixations (Nkpf =

0, 1), we associated each fixation to a candidate target, to study timing and

location. For each fixation initiated when target j as active (tj−1 < t ≤ tj) , we

classified the fixation to belong to the nearest neighbour in the space of candidate

targets (j−1) (“postdictive”), j (“reactive”) and (j+1) (“predictive”). If targets

(j − 1) and (j + 1) had the same positions, target (j + 1) was assigned. The

fixation initiation time was compared to onset and press of the associated target

button. All fixation locations were compared in a relative coordinate system

{u, v}, where u and v are the lateral and axial deviations from the associated

target, with respect to the preceding movement.

As for gaze fixations (Nkpf ≥ 2) , the association with a single target may

be less relevant. For a gaze fixation initiated when target j was active, the

spatial location of the fixation was assigned to the nearest of xCOM(j − 1, Nkpf)

(“postdictive”), xCOM(j, Nkpf) (“reactive”) and xCOM(j+1, Nkpf) (“predictive”).

Then, the spatial location of the gaze fixation was compared to the associated

COM, and two other candidate hypotheses: “closest target” (distance to the

closest of targets included in COM) and “first target” (distance to first target

included in COM).

Statistical sampling

Most of the analysis is limited to success (error-free) trials. To compare “early”

and “late” learning, we use the data of day 1 and day 5, respectively. Since

subjects have different number of success trials, we sometimes use only the last

9 success trials of day 1 and 5, to weigh subjects equally.

5.1.3 A model of dynamic updating of spatial

representation

In this section, we propose a model that addresses how spatial accuracy is con-

strained by gaze. We assume that the brain maintains a representation of tar-
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get positions xi(i = 1, 2, .., 16) in Cartesian (screen) coordinates, independent of

body, head, and eye movement. We do not consider depth.

The general idea is simple: the spatial representation is continuously updated

by integration of visual feedback, improving the certainty of target position where

the subject is currently fixating, while it is deteriorating elsewhere. The integra-

tion is done within a simple Bayesian framework.

Assume that each key position xi is represented in the brain by a probability

distribution p(x = xi) , which we denote as p(xi) . Drift causes its variance

σ2
i (t) to diffuse by a constant velocity ν (we assume that the distribution is

radially symmetric, and can thus be described by a scalar variance). With visual

input s(t − τ delay) (delayed in the neural pathways by τ delay ), the estimate is

sharpened by multiplication of the likelihood p (s (t − τ delay) |xi (t)) and the prior

p (xi (t) |xi (t − ∆t)) , which is the distribution of the previous time step (t−∆t)

, subject to diffusion. Then, the update of the posterior is

p(xi(t)) ∝ p(s(t−τdelay)|xi(t))
∫

p(xi(t)|xi(t−∆t))p(xi(t−∆t))dxi(t−∆t). (5.3)

The initial prior p(xi (t = 0)) is the non-visual estimate of the position. If we

assume that the distributions are all Gaussian, centered at the true position xi ,

the update of the variance σ2
i becomes

1

σ2
i (t)

=
1

σ2
s(t − τ delay)

+
1

σ2
i (t) + ν∆t

(5.4)

where σ−2
i (t) is the inverse variance or the certainty about target i. The variance

σ2
s(t) of the likelihood p (s|xi) depends on the eccentricity of the target. Its inverse

is also assumed to be a Gaussian:

1

σ2
s(t)

=







0 during saccades,

A0 exp
(

−1
2

{

(xi−xgaze(t)
σgaze )2 + (yi−ygaze(t)

σgaze )2
})

otherwise
(5.5)

where xgaze is the gaze location, and A0 is the acuity for targets with no eccen-

tricity. The parameter σgaze determines the relative scale of the eccentric acuity

for foveal and peripheral vision.
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The quantity σ−2
i is a measure of the certainty of the estimate of the position

xi of the i-th target. The value of σ−2
i approaches 0 when the target is not in

view. Fixation in the vicinity of the target gradually increases the certainty,

which saturates for a fixation durable enough.

The certainty σ−2
i about a target position may be relevant when the movement

was planned, continuously during execution or by the end of the movement. In

this study, we assume that the end of the movement is the most relevant (see

5.3). For each rank order j , we refer to the value of σ−2
i(j)(t = tj) as σ−2

j , where

tj is the time the key was pressed. We use σ−2
j to predict the measured accuracy

of movements, in terms of misses.

When not mentioned otherwise, we used a standard assumption of parameter

values for calculations: diffusion rate ν 5.0 mm2/s, feedback delay τ delay 200 ms,

acuity 0.01 mm−2, eccentric acuity parameter σgaze 6.0 deg. (53 mm), and saccade

duration D 50 ms.

Model prediction

In the Results section, we evaluate the model by testing the correlation of cer-

tainties σ−2
j with relative miss frequencies (RMF). As we expect misses to be a

low-probability event, we also expect miss frequencies to correlate with average

behaviour, rather than being sensitive to the gaze trajectories of single success

trials. To compute σ−2
j , we utilized three different assumptions for gaze trajec-

tory:

1) “target” : a trajectory that has a gaze shift towards the center of each key j,

initiated 100 ms before each key press.

2) “mode”: a trajectory based on mode over all success trials. We compute the

mode of gaze locations at each press time tj. For consequent locations where

difference in mode is less than 3 deg., we merge into a single longer fixation.

Otherwise, we assume a gaze shift of 50 ms duration, initiated 100 ms before

the first key press observed.

3) “random”: a trajectory where 20 gaze shifts, each initiated 100 ms before each

key press, have random gaze locations over the key panel. This assumption is

for control.
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To check the robustness of correlation, we perturbed the assumed gaze trajec-

tories 100 times, where each gaze location in “target” and “mode” were perturbed

randomly in horizontal and vertical directions (standard deviation: ± 10 mm in

each direction). In case of “random”, new random locations were generated each

time.

We also assume a sequence of key press times tj , by mean movement times

over all success trials.

5.2. Results

The results are composed of four subsections. In the first, we report on the change

of performance, in terms of speed and accuracy, with training. In the second, we

report on the change in gaze frequency with training. In the third, we investigate

the spatiotemporal properties of gaze and its change with training, and look for

regularities in timing and location of gaze fixations. Finally, in the fourth, we

look for possible relations between performance and gaze.

Performance

Figure 5.2 shows two performance measures over the 5 days of training: perfor-

mance time (Figure 5.2A) and errors per trial (Figure 5.2B). To determine the

significance of trends across trials, we performed an ANCOVA on the perfor-

mance measures, with a random effects variable of subjects, and a covariate of

trial number. Performance times had a significant covariant effect for sequence I

(F1,1716 = 4166, p < 0.001) and sequence II (F1,1409 = 3336, p < 0.001), decreas-

ing over trials. For errors per trials, there was a significant increase for sequence

I (F1,3991 = 852, p < 0.001) and sequence II (F1,3991 = 181, p < 0.001).

We then investigated performance associated with single movements. Move-

ment times were correlated with movement length, (R2 = 0.36, p < 0.0001, for

all success trials and all subjects), and weakly correlated with relative angle (R2

= 0.059, p < 0.0001). There was no significant correlation to movement direction

(p = 0.55). We did not observe any chunking pattern in the behavioural data

(compare study by [143] ).
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Figure 5.2. Performance time decreases while errors per trial increase over the five

days. (A) Performance time for success trials, sequence I (left) and sequence II

(right). Each separate day of the experiment is indicated with the dotted vertical

line. Each colour corresponds to an individual subject. (B) Number of errors per

trial, displayed as a moving average over 25 trials.

The accuracy of hand movements was not uniform across the 20 targets in

either of the two sequences. We investigated if the relative miss frequency (RMF)

of the population was specific to geometry or rank order. In terms of geometry,

the accuracy was weakly correlated (R2 = 0.05, p < 0.0001) with movement

length, but not to directions of preceding (p = 0.13) or succeeding movements (p

= 0.18), nor to relative angle (p = 0.08).

Moreover, we found the RMF to be rank order-specific. Figure 5.3A shows

the RMF for each rank order for single subjects and the population mean. We

used the student t-test to determine if there was a significant difference between

rank order-specific, population mean RMFs, for all possible rank order pairs. For

p < 0.05, 10 % (79/760 unique pairs) was statistically significant, for p < 0.005,
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Figure 5.3. Similar patterns of misses are seen across all subjects. (A) Relative

Miss Frequencies (RMF) sorted by rank order for single subjects, and for the pop-

ulation mean(bottom panels; sequence I & II in light and dark gray, respectively).

Particular key presses tend to be missed more often by all of the subjects. These

keys can be seen clearly in the population mean data. (B) The population mean

RMFs displayed at their corresponding target positions in the 4 x 4 target matrix.

Rank order is given below each bar. The error frequency is not related to the

pressing of particular keys. Instead the RMF exhibit clear differences depending

on the order in which the key is pressed.
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5 % (37/760) (corrected for multiple comparisons (Bonferroni correction)). For

correlation between subject RMFs, 85 % of all subject pairs were significant (p <

0.05, R2 = 0.12 (min), 0.59 (max), 0.32 (mean). In Figure 5.3B, the population

RMFs are sorted by their associated target position in the target matrix.

The RMFs shown in Figure 5.3 were calculated across all 500 trials. The RMFs

were consistent between training days. For example, comparing population mean

RMFs for day 5 with days 1-4 gave correlation coefficients 0.35, 0.47, 0.57, and

0.78, respectively.

In summary, all subjects learned to improve the performance over the train-

ing period, to execute the sequences 2-3 times faster than on initial trials, with

a modest decline in accuracy. The relative accuracy of movements was rank

order-specific (context-specific), and not sensitive to general geometrical features,

training day or subject.

5.2.1 Frequency of gaze shifts

With experience and faster execution, we observed a reduction of gaze shifts

per trial. Figure 5.4 shows how the quantity and timing of gaze shifts (fixation

initiation times) changes across training days for one example subject. On day

1, most key presses were preceded by 2 gaze shifts. Then, gradually the number

of gaze shifts reduced to 1 or 0 per key press.

Figure 5.5 shows the quantitative change of gaze shifts with experience, for

individual subjects: gaze shifts per trial (Figure 5.5A) and gaze shifts per sec-

ond (Figure 5.5B). We performed an ANCOVA to determine significant trends,

analogous to the data in Figure 5.1. For gaze shifts per trial, there was a signifi-

cant decreasing trend for sequence I (F1,1682 = 3400, p < 0.001) and sequence II

(F1,1370 = 2298, p < 0.001). For gaze shift frequency, there was a significant, but

weak increase for sequence I (F1,3885 = 991, p < 0.001, R2 = 0.11) and sequence II

(F1,3838 = 1831, p < 0.001, R2 = 0.02). On day 5, the average number of fixations

per trial was 17.1
�

2.4 for sequence I and 18.0 ± 2.6 for sequence II.

In summary, we found only a limited increase in gaze shift frequency across

the training period, while the frequency of hand movements increased 2-3 times,

eventually resulting in fewer fixations than there were targets.
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Figure 5.4. The temporal pattern of gaze fixation changes with learning. Tempo-

ral pattern of fixation initiation times for subject S3, sequence I are shown for all

success trials in chronological order (top to bottom, divided into training days by

horizontal lines). Key press times are indicated by vertical black lines, by which

time is normalized. Each dot corresponds to a fixation initiation time.

5.2.2 Spatiotemporal properties of gaze

Figure 5.6 shows representative examples of one early (blue lines) and one late (red

lines) gaze trajectory. The spatial segments in Figure 5.6A highlight the contexts

where early and late behaviour are considerably different. In the early trial,

gaze is relocated in response to each new target. In the late trial, single fixations

sometimes span several key presses. In this section, we analyze the general timing

and location of gaze fixations, categorizing them by the number Nkpf of key

presses that occurred during the fixation (see Section 5.1). After determining

relative occurrence of different Nkpf , we first analyze fixations associated with a
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Figure 5.5. The number of gaze shifts per trial is reduced as learning progresses

while the frequency of gaze shifts remains steady. (A) Number of gaze shifts

per error-free trial. Below the horizontal line at 20 targets, subjects are using

fewer fixations than there are targets in a trial. (B) Frequency of gaze shifts

for individual subjects. Gaze shift frequencies for all 500 trials (displayed as a

moving average of 5 trials), of sequence I (left) and II (right).

single target (Nkpf = 0, 1 ), then those that are associated with multiple targets

(Nkpf ≥ 2 ).

Figure 5.7 shows how the distribution of Nkpf changed from early (day 1) to

late (day 5) training. A single ANOVA (random effect subject, main effects day

and Nkpf ) resulted in a significant interaction effect between N and day (p <

0.001), indicating that there was a shift towards higher Nkpf e on day 5 relative

to day 1. As shown in the figure, paired t-tests of separate Nkpf between days

indicated significant decrease of Nkpf = 0 , and significant increases of Nkpf = 1

and Nkpf = 2 .
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Figure 5.6. The spatial pattern of gaze fixation changes with learning. An exam-

ple of gaze behaviour for one early (trial 108 (day 2), blue lines) and for one late

trial (trial 467 (day 5), red lines) of subject S1, sequence I. (A) spatial 2D plots

of temporal segments of trial trajectories, highlighting contexts where early and

late behaviour are different. Start and end of segment in normalized event time

are shown above. Blue and red dots indicate end of trajectories in respective

segment. Target buttons active during the segment are highlighted with bold

circles and rank order. (B) temporal profiles of trial trajectories in horizontal

and vertical screen coordinates (mm, right ordinates and gaze angle, deg., left

ordinates), compared to active target location (black lines). Segments shown in

A are shaded. In the early trial (performance time: 8.54 s), the subject � s gaze

responds to each target, in the late trial (performance time: 5.30 s), it often

responds to clusters of targets.
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Figure 5.7. The number of key presses per fixation shifts over the learning. The

relative frequencies of fixations with Nkpf = 0 , Nkpf = 1 , Nkpf = 2 , Nkpf = 3

and Nkpf ≥ 4 , on day 1 (white bars) and day 5 (black bars) across subjects.

The error bars indicate standard deviation. Significant differences between the

number of key presses per fixation were tested between days 1 and 5. There was

a significant reduction in Nkpf = 0 and a significant increase in Nkpf = 1 and

Nkpf = 2 on day 5.

Due to the fast frequency of hand movements (up to 5 Hz), fixations were

not always located in vicinity of the active target, but sometimes close to the

preceding or following target. To analyze timing and locations of (Nkpf = 0, 1 ),

we associated each fixation with the closest of preceding (“postdictive”), current

(“reactive”, and following (“predictive”) targets (see Section 5.1).

Figure 5.8 shows the timing of fixation initiations for (Nkpf = 0, 1) on day

1 and day 5, with respect to key onset (Figure 5.8A/C) and key press (Figure

5.8B/D). The most frequent timing (0.40 s) in Figure 5.8A, we presume is a

characteristic reaction time for targets that subjects have not yet learned to

predict. In general, the variability of peaks are constrained by (hand) movement

times. Consequently, peaks are broader on day 1, and narrower on day 5. A

majority of fixations were initiated just before ( 0.10 s) key presses, both on

day 1 and day 5. This short interval from gaze initiation to key press gives the

subject little use of foveal feedback - an indication that peripheral vision is used

for estimation of target location.
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Figure 5.8. Subjects fixate targets prior to key press. Histograms of timing of

fixation initiation for fixations (Nkpf = 0, 1, all success trials; 18,418 fixations on

day 1, 5,412 fixations on day 5; bin size: 25 ms). (A) Timing on day 1 , with

respect to key onset. The two higher peaks are at 0.050 s and 0.40 s. (B) Timing

on day 1, with respect to key press. The peak is at -0.075 s. (C) Timing on day 5,

with respect to onset. The peak is at 0.125 s. (D) Timing on day 5, with respect

to key press. The peak is at -0.050 s. The reduction in variance of timing on day

5 is associated with the reduction in the movement times on day 5 compared to

day 1. While the mean timing of the fixation initiation with respect to the key

onset changed between days 1 and 5, the peak timing compared to the key press

was maintained between days 1 and 5.
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Figure 5.9. The spatial location of gaze fixation for fixations associated with

a single target (N = 0, 1). (A) Generalized coordinate system {u, v} for the

histograms. Gaze location is referenced in comparison with the location of its

associated target j. The coordinate system is then rotated so that v ( � axial

deviation
�
) is aligned with movement j. The other, perpendicular axis u ( � lateral

deviation
�
) is positive in the direction of the next target (j + 1). (B-E) 2D

histograms of target deviations in the generalized coordinate system (all success

trials; 18,418 fixations on day 1, 5,412 fixations on day 5, bin size: 2.5 x 2.5 mm).

Deviations are given in screen distances (mm, left ordinate, bottom abscissa) and

corresponding gaze angle (deg., right ordinate, top abscissa). (B) Histogram for

day 1, N = 0 (8,731 fixations): mean (u =5.8 mm, v=-16 mm), variance (σ2
u=

730 mm2, σ2
v= 700 mm2, σ2

uv= -14.6 mm2 ) . (C) Histogram for day 1, Nkpf = 1

(1,291 fixations): mean (5.9 mm, -16 mm), variance (297 mm2, 356 mm2, -11.4

mm2 ) . (D) Histogram for day 5, Nkpf = 0 (9,445 fixations): mean (3.8 mm,

-11 mm), variance (461 mm2, 421 mm2, -20.6 mm2 ) . (E) Histogram for day

5, Nkpf = 1 (4121 fixations): mean (5.8 mm, -13 mm), variance (201 mm2, 285

mm2, -13 mm2 ). Fixations tended to be located slightly short of the current

target to be pressed (-v ) and slightly towards the following target (+u).
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Figure 5.9 shows histograms of the deviation of the gaze from the target for

fixations (Nkpf = 0, 1), in a relative coordinate system of lateral (u) and axial

(v ) deviations with respect to the corresponding movement. On both days, the

peaks of the distributions are centered on the edge of the target short of the target

center (mean(v) < 0, p < 0.0001, all 4 distributions), inclined laterally towards

the next target (mean(u) > 0, p < 0.0001, all 4 distributions). Compared to

Nkpf = 0 , the distributions are sharper for Nkpf = 1 , which, because of their

longer durations, may be more significant for visual feedback. The distributions

were also sharper on day 5, suggesting that subjects learn to fixate this position.

For fixations Nkpf ≥ 2 , we tested three hypotheses for possible fixation tar-

gets: 1) center of (target) mass (COM), 2) closest target (closest target center

to the fixation location) and 3) first target (of the target keys spanned by the

fixation), see Section 5.1. Figures 5.10A-C show three examples for Nkpf = 2 ,

Nkpf = 3 and Nkpf ≥ 4 , respectively. In Figure 5.10A and Figure 5.10B, fixations

are close to COM. It becomes clearer in Figure 5.10C, where targets and COM

are spatially separated, and fixations are closer to COM. These examples also

reflect the statistics. Figure 5.10D shows the radial deviation from the candidate

hypotheses. In order to test whether the differences were significant, an ANOVA

with a fixed effect of fixation target and random effect of subjects was performed.

If a significant main effect of fixation target was found, then a Tukey’s HSD

post-hoc test was performed to examine significant differences between the three

fixation hypotheses. For all fixations Nkpf ≥ 2 , COM is as good candidate as

closest target. The main fixed effect was significant (F2,14 = 14.8, p < 0.001).

The post hoc test indicated that COM and closest target were significantly dif-

ferent from first target (p < 0.001) and (p < 0.01) respectively. There was no

significant difference between COM and closest target (p=0.61). In Figure 5.10E,

we only consider the subset of fixations Nkpf > 2 and where COM is separated

from targets by at least 39 mm. The main fixed effect was significant (F2,14 = 7.2,

p < 0.01). Here, COM is a better predictor than closest target (p < 0.05) and

first target (p < 0.01). There was no significant difference between first target

and closest target (p =0.62).

In summary, subjects mostly fixated single targets just before they were

pressed. Such gaze was not fixated at target centers, but on the target edge,



88 Chapter 5. Learning gaze strategies for manual skills

Figure 5.10. Fixations for multiple target presses are located at the center of mass

(COM) of all of the pressed targets. Location of fixations Nkpf > 1 compared to

target center-of-mass (COM(j, n), where j is the first rank order target, and n the

total number of targets in the mass). (A) Example for Nkpf = 2 , all subjects,

last 9 trials of day 5. Dots indicate fixation locations (by subject colour) and the

x marks COM(17, 2), sequence I (Targets included in COM are highlighted by

bold circles). The stacked bars shows the number of fixations between subjects,

divided between “reactive” (fixated during key presses 17-18) and “predictive”

(fixated during key presses 16-17). (B) An example with Nkpf = 3 , COM(10, 3),

sequence I, where “reactive” was fixated during 10-12, and “predictive” during

9-11. (C) Examples of fixations with Nkpf > 4 , all subjects, all success trials on

all days, sequence II. Fixations were initiated when targets 13 or 14 was active.

Locations of COM(14, 5), COM(14, 6) and COM(14, 7) are marked. (D) Average

bias (radial deviation) from three candidate fixation targets: COM, closest target

and first target, for all fixations Nkpf > 1 . (E) The same as (D), but for the

subset Nkpf > 2 and where the distance between COM and the closest target

(dCOM) was larger than the shortest movement (39 mm). In (D-E), significant

differences between the fixation location hypotheses were determined using a

Tukey’s post-hoc test after a significant main effect with an ANOVA.
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Figure 5.11. Speed accuracy trade-off. The mean performance times of the 25

fastest movements (when subjects are presumably most motivated) on day 4 and

5 (when subjects are most proficient) are plotted versus the total number of misses

on day 4 and 5. Each data point is for a single subject and sequence (labeled

SX-I and SX-II). The number in parentheses indicates the mean number of gaze

shifts of the 25 trials. The fitted line (dotted lines: 95% confidence interval) is

based on all subjects (marked as dots) with the exception of one, classified as an

outlier (marked by x). This outlier had the lowest mean number of gaze shifts

for both sequence I and II.

with an inclination towards the next target. This effect was more pronounced in

late training. In late training, it was also more common that fixations spanned

several key presses. The fixation location was towards the center-of-mass of the

pressed target keys rather than to one of the keys to be pressed.

5.2.3 Gaze and performance

Figure 5.11 indicates the existence of a speed-accuracy trade-off. Average per-

formance time (of the 25 fastest success trials on day 4 and 5) versus number of

errors is shown for the last two days of training for each sequence. The correla-
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tion coefficient R2 was 0.83 (p < 0.0001). Two subjects (S2 and S7) performed

significantly faster than the others at the cost of a much higher error rate. An-

other subject (S3), classified as an outlier (marked by x), violated the trade-off

by being both accurate and fast. This subject was also using significantly less

gaze shifts on average than others; 10.8 (S3) versus (17.4 ± 1.1 SD) (others) for

sequence I, and 10.9 (S3) versus (18.5 ± 1.2 SD) others for sequence II.

As reported in the section on task performance, accuracy is context dependent.

We tested if the population RMFs could be predicted by our Bayesian model of

gaze-dependent certainty (dynamic updating of spatial representation, see Section

5.1). The model assumes that the estimate of target locations is subject to

diffusion, caused by drift. The estimate at the previous time step is taken as

the prior, which is multiplied with the likelihood of the visual input to obtain

the posterior. The certainty of this likelihood depends on the eccentricity of

the target. We predict that the measured accuracy of hand movements (RMF)

should roughly correlate with the computed certainties of target estimates, at

the time of target press. For our predictions, we tested three assumptions of

gaze trajectories: 1) “target”, assuming gaze fixations of each target, 2) “mode”,

assuming the mode location of measured fixations, and 3) “random”, a control

assumption using random locations.

Figure 5.12A shows the dependence of RMF on σ−2
j (the certainty of a target

location i, with rank order j at key press time t = tj) computed by our standard

assumption (“mode”). The correlation (R2 = 0.37, p < 0.0001) was done for 37/40

data points (excluded points were σ−2
1 for both sequences, as they are sensitive

to initial conditions of both hand movement and gaze, and σ−2
11 of sequence II, as

the corresponding RMF has a variance significantly larger than any other data

point (see Figure 5.3). Figure 5.12B shows that this prediction is robust for

both our assumptions “target” and “mode”, also when assumed trajectories are

perturbed, but does better than the control assumption, any arbitrary trajectory.

That means that our model can roughly predict the accuracy of a target given

a general gaze trajectory, but fails to be sensitive for variations in gaze and

RMF (for more accurate estimation of p(miss | gaze trajectory), gaze needs to be

controlled).

In summary, we found a trade-off between speed and accuracy. Notably, a
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Figure 5.12. The Bayesian model of dynamic updating of spatial location is able to

predict the relative miss frequency of targets. (A) Scatter plot of model prediction

(certainties σ−2
j ), using the standard parameters of the model (see text) versus

relative miss frequencies (RMF). Light and dark gray indicates sequence I and

II respectively, numbers are rank orders j . Data points marked with x have

been removed from the data fit (see text). (B) Robustness of model prediction in

terms of R2, for different assumptions of gaze trajectory: � target
�

(fixating each

target center), � mode
�

(mode of measured gaze, standard assumption) and a

control assumption of � random
�
(a sequence of 20 fixations with random locations

within panel). The bullets indicate results for the assumed gaze trajectories, while

the bars with standard deviations show results for the perturbed assumptions,

(randomly by an SD of 10 mm in both horizontal and vertical (100 times)).
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single subject using significantly less number of gaze shifts could perform signifi-

cantly more accurately at higher speeds than other subjects. Also, we found that

our Bayesian model of dynamic updating of spatial representation could predict

the general pattern of relative miss frequencies of subjects.

5.3. Discussion

All subjects improved their performance in line with what was asked of them -

to move as fast as possible. Even less well-performing (i.e. slower) subjects sped

up performance considerably. As they were subject to a repetitive task, procedu-

ralization made it possible to execute without much hesitation or cognitive effort

on later days of training. The cost of poor accuracy was low in the present task.

The only cost was the indirect consequence of missing a target - the time lost

from the miss until the subject reacted and could resume. Accordingly, we did

not observe a decrease in errors with experience. On the contrary, the error rate

increased slightly. Accuracy acquired from experience was presumably traded for

speed.

5.3.1 Gaze shifts

Earlier studies have shown that targets are fixated in preparation of manipulation

[6, 138, 76] . Our task confirms these results with some modification. When

execution was slow enough, gaze responded to each target. However, as the

number of key presses per time increased, the change in gaze frequency was

only modest, implying some constraints for gaze shifts. Subjects modified gaze

location rather than frequency and timing. It seems that subjects have to make

a trade-off between loss of accuracy due to omission of visual input during gaze

shifts on one hand, and loss of accuracy due to target eccentricity on the other.

Peripheral vision enables subjects to update locations of multiple targets. This is

consistent with our observations that 1) fixations associated with a single target

were also inclined towards the next target, and 2) there were a significant fraction

of fixations where several manipulated targets were observed from their center-of-

mass. It is known earlier that subjects fixate center-of-mass when several target
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stimuli appear simultaneously on a screen [45, 131]. In our experiment, however,

the fixation of center-of-mass requires a real-time, context-sensitive decision. It

has be to predicted for a subsequence of targets presented one-by-one, and is thus

a more complex decision than for presentation of multiple, simultaneous targets.

The cost of gaze shifts is presumably functional, rather than metabolic, since

energy loss is much smaller compared to that of the hand movements. The loss

of visual feedback during saccades may be one factor: for example, if a subject

fixates 20 targets in 4 seconds, 1 second is lost by saccades of 50 ms duration.

Saccades are also inherently inaccurate due to noise in ocular motor commands,

multiplying with amplitude [59] , introducing uncertainty in the short term.

It is also of note that subjects, even after 5 days of training, make responsive

gaze shifts at all, instead of total reliance on somatosensation and procedural

memory. In this task, there is no alternative use of vision. (A piano player,

for instance, needs vision for secondary tasks like reading notes). It is possible

that the response of gaze is habitual. However, the adaptive change of gaze

with increasing speed implies a function of gaze also in late learning; to enhance

accuracy, which can be traded for speed.

5.3.2 Dynamic updating of spatial representation

We have proposed a Bayesian model of dynamic updating of spatial representa-

tion [24] , which could predict context dependent accuracy of hand movements.

The model is based on two main assumptions: 1) that the maintained spatial

map degrades over time by drift, and 2) that the spatial map is reinforced by

gaze, depending on eccentricity. We speculate whether or not the impact of gaze

on manual performance could be understood by this model. It is known from

neurophysiology that target locations are held in memory by several brain areas,

also after new gaze shifts [166, 24, 167, 158] . The questions are 1) at what

speed this short term memory degrades, and 2) how the remapping mechanisms

following gaze shifts would affect this memory. Future experiments explicitly

controlling timing and fixations could determine the exact relationship between

gaze trajectory and manual accuracy. It is likely that several feedback modalities

are utilized for spatial estimations [24], and not vision exclusively. Our model
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is passive in the sense that predictive components play no part in computing

the estimates. However, our model may be more reflective on the fine tuning of

accuracy, for which visual feedback is particularly useful. This fine-tuning would

also account for the fact that vision respond also in late learning: the maximum

accuracy of the learned non-visual, proprioceptive and feedforward-driven of the

arm is likely to be bounded lower than for vision.

Referencing between locations of the index finger and target may also impor-

tant, rather than just only the absolute positions of targets.

5.3.3 Gaze strategies

The Bayesian model of dynamic updating of spatial representation points to an

optimal gaze strategy to maximize accuracy. Recently, similar models have suc-

cessfully predicted optimal behaviour in visual search tasks [122, 139] . The

tendency of fixating center-of-mass of targets appearing rapidly is predicted by

our model, then the cost for refixation is greater than that of eccentricity of tar-

gets. Seen as an objective function for maximizing manual accuracy, it remains

to be seen whether subjects learn a globally optimal strategy, or gets stuck in a

global optimum. Since performance is dependent on gaze history, the objective

function has many local optima, so finding a global optimum may be hard. It

is also possible that several local optima are approximately equal in value. A

subject of future study is to study manual accuracy in experiments where gaze is

controlled, for example for a stationary gaze.

An alternative possibility is that optimality is driven on a more global level,

learning decisions and coordination of eye and arm movements simultaneously.

5.4. Conclusion

We have in this study for the first time demonstrated that with extensive mo-

tor learning humans do not simply change arm kinematics, but also change gaze

strategy. As motor performance sped up, the number of gaze shifts became fewer,

reducing to below the number of targets to which the hand moved. The location
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of gaze fixations also shifted, tending towards the center-of-mass of multiple tar-

gets. This observation suggest that subjects need to make a trade-off between

loss of vision due to gaze shifts on one hand, and due to target eccentricity on the

other. Future experiments designed to evaluate theories of optimal gaze strate-

gies will learn us more how visual feedback is used for learning and control of

movements. An accurate model of gaze-dependent accuracy may also elucidate

neural mechanisms of areas involved in spatial estimation.

Furthermore, most experimental tasks of eye-hand coordination report on a

coupling between eye and hand. Here, we see a gradual decoupling between

sequences of eye and hand responses. This also implies that two sequences need

to be stored in memory, rather than one.

Overall, this study points out that vision also plays a role also in controlling

overtrained manual motor skills, which implies learning gaze strategies of non-

trivial optimality.

Appendix

Here, we verify the sensitivity of the model to parameter variation, and justify

the parameter set in terms of known neurophysiology and psychology.

5.A. Robustness to parameter variation

Figure 5.13 shows sensitivity of the prediction (Figure 5.12) with respect to model

parameters, in terms of R2. (Note that acuity parameter A0 only change the scale

of certainties, and does not affect our prediction, since RMF is relative). For gaze

to be important for hand accuracy, the speed of change of accuracy (diffusion

rate ν) must scale with the time scale of the task. Thus, when diffusion is too

slow, gaze shifts do not matter, producing weak correlations for low ν. The same

principle applies for scale parameter of distal acuity σgaze - if eccentric (peripheral)

targets can be estimated as good as central (foveal), gaze shifts are not necessary.

On the other hand, if σgaze is small, peripheral targets become unimportant and

subjects would have no choice but to fixate every target. Our model has tolerance

for a variable feedback delay τ delay up to 200 ms, which makes our assumption
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about recall timing of target estimate (see methods) less important. Also, saccade

duration can be varied within reasonable bounds without unduly affecting the

prediction.

5.B. Constraints from known neurophysiology and psychol-

ogy

A study of monkey saccades suggests that a spatial representation can be acquired

and maintained in the frontal eye field for several minutes without update [167]

. Our model also assumes a prior estimate, which represent the memory acquired

map. The dynamic updating is not crucial, it only enhances the quality of the

map. In a sequential planning task, [158] showed that accuracy of target pointing

increased with presentation time in the presence of distractors, continuously over

up to 8 seconds of presentation. In our model, the diffusion rate reported is fast

enough to make spatial accuracy vary in real time, but slow enough to make gaze

history important.

Early studies have shown a linear relationship between eccentricity and visual

resolution [173, 144, 8] , i.e. an inverse linear relationship between accuracy

and eccentricity. Some studies have also shown degraded performance of pointing

with respect to target eccentricity, stressing the difference of foveal and peripheral

vision, rather than a continuous correlation [1, 158] . For convenience, we used a

Gaussian function, where narrow and broad peaks points to non-linear and linear

relationships, respectively. Our prediction was optimal for a peak width of 6 deg.

(target matrix is 16 deg. wide), implying a degree of non-linear relationship. A

narrower peak increases the model’s sensitivity to variability of gaze location,

which cannot be predicted without a more accurate measure of hand accuracy,

which may be the reason of the steep loss of correlation for narrower peaks in our

study.

The latency from perceived visual stimulus to implementation of spatial esti-

mate in computation of hand movement depends on delays in the neural path-

ways, and at what time the estimate is recalled. We assumed a recall for immedi-

ate, online correction. The other possibility is a recall during one or several stages

of movement planning, for example during the initiation of the hand movement
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Figure 5.13. Prediction robustness in terms of R2 to parameters: diffusion rate,

feedback delay, gaze width and saccade duration. The encircled points are the

standard assumption (“mode”) as in Figure 5.12.

(previous key press). As the model prediction was robust for 100’s of milliseconds

in delay, the model is forgiving to this assumption, to some degree.





Chapter 6

Conclusions

In this thesis, we explored two different lines of work regarding real-time con-

straints of human motor control and learning. In the first, a computational

study, we investigated the real-time interactions of modalities with different la-

tencies under a modular, actor-critic framework, in the learning and control of

reaching movements. Population coded outputs were combined with a softmax

function. After learning, performance depended on the faster modality alone.

Further, we found that a preacquired, slower visual module display different roles

during training of a faster somatosensory expert modality: in early learning, the

visual module acts as a guide for the somatosensory module. Late in learning,

the somatosensory module predominates to outperform the visual module, but

the visual module flexibly takes over when the somatosensory module goes out

of control.

In the second, an experimental study, we examined the long term changes

of gaze behaviour in a manual, sequential task. We found that as subjects per-

formed faster, gaze behaviour shifted from fixating each target to shifting key

locations, commonly the center-of-mass of a subsequence of targets. We also

found that manual accuracy was context dependent, and could be explained by a

gaze-dependent Bayesian model of dynamic updating of spatial representations.

This work contribute to developing a full theory of how cortical visual and

somatosensory feedback loops are utilized for learning and control of goal driven,

complex motor behaviour - indeed a very complex and challenging problem. As

argued throughout this thesis, studying the temporal constraints, and timing of

99



100 Chapter 6. Conclusions

behavioural events and neural firings could provide important clues for under-

standing such a theory. Below we point to some future work that are steps in

this direction, and conclude with a summary of the contributions of this thesis.

6.1. Future directions

Our computational study of real-time, multi-modal combination addresses several

important topics to be investigated in neuroscience:

1) Physiology of the multi-modular loop BG-TC system. More electrophysiologi-

cal studies are needed with cell recording of several areas in the basal ganglia-

thalamocortical system (BG-TC) simultaneously [57], for different stages of

motor skill learning. Together with imaging experiments, such studies would

teach us, for example about how different loop circuits communicate, or whether

the actor-critic learning framework, as argued in this thesis, is applicable to

motor learning as well.

2) Combination of modalities under reinforcement learning. This is a hard theo-

retical problem, and the neural mechanisms are largely unknown. The anatom-

ical loop structure [2] suggests that, within a reinforcement learning frame-

work, the output of loops would be evaluated separately. Separate evalua-

tion was also successful in our previous, discrete model [123], but here, we

found it necessary to relax this constraint, and assume a combined evaluation

of outputs. For separate evaluation to work, each loop must receive suffi-

cient, timely information about the state of other loops. For example, the

pre-supplementary area or the cingulate motor area may realize this function

between prefrontal and motor loops [123].

3) Feedback versus feedforward modules. For the sake of simplicity, feedforward

was left out in our study. However, feedforward modules could easily be in-

cluded in our model, and the relative utility of feedback versus and feedforward

control could be studied. Using a more realistic, muscle model plant with ac-

curate noise models [22] based on experimental findings [77, 130] could be

used to study the interaction of slow/clean versus fast/noisy control modules

in speed-accuracy trade-off.
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4) Comparison to state estimation models. The recently popular optimal feed-

back control paradigm [163, 161] may also explain the larger gain of faster

modules. An important field of work is to quantify the limitations of feedback

control models, and test if alternative control paradigms are competitive. For

example, recursive state estimation may be costly in real-time. Also, Kalman

filter-based frameworks assume available system and sensor models, and are

limited to linear systems.

Further, our finding of decoupling of gaze and hand in late learning of manual

sequential skills, make us ask several questions:

1) Cost of gaze shifts. The observation that subjects abandons the strategy of

fixating each manual target in fast, mature execution suggests that there is a

limit to how fast gaze shifts can be processed and integrated. The visual input

of the new gaze location must be remapped and recalibrated with respect to

the previous gaze location [41]. Visual feedback is also lost during the actual

saccade [19]. Faced with these constraints, subjects are left with the option to

rely on peripheral vision. Experiments with controlled gaze behaviour would

improve our understanding of how gaze-dependent vision affects manual ac-

curacy, and to what lengths subjects adapt to improve feedback.

2) Neural mechanisms of dynamic updating of spatial representation [24] . An

active area in neurophysiology is to understand how space is represented,

particularly in the intraparietal areas [24]. A precise understanding of gaze

behaviour, as our proposed Bayesian model may help to understand real-time

patterns of neural activity.

3) Multi-modal sequence learning. The decoupling of visual and motor sequences

implies that two different sequences need to be stored in memory. How gaze

sequences are chunked, and how that affect sequential memory would elucidate

our understanding of procedural memory. Of note are also the parallel paths

between the prefrontal cortex and a) the frontal eye field through the supple-

mentary eye field (SEF) [72, 71], and b) the primary motor cortex through

the supplementary motor area (SMA). The pre-SEF and the pre-SMA, respec-

tively, may store differential sequences, coordinated by the prefrontal cortex.
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6.2. Summary of contributions

Combining modalities with different latencies Our main contributions of

this study are as follows:

1) A successful real-time implementation of a basal ganglia motor learn-

ing model. In contrast to most actor-critic models of the basal ganglia,

which typically models event-driven conditioning tasks, we here demonstrated

successful learning of real-time, joint torque controlled arm movements with

delayed feedback, which may fuel the discussion of the function of the basal

ganglia in motor control.

2) Population coded combination of modules with different latencies

by a softmax function. Using population-coded outputs for each modal-

ity, combined by a softmax function, was demonstrated to be a flexible way

to do action selection in motor control. Instead of using explicit gating,

proper input-output associations are strengthened by reinforcement learning.

The softmax function further enhances the influence of the more sharply dis-

tributed population code (often the faster modality), while the broader popu-

lation code (often the slower modality) is suppressed. The combination should

be equally useful for other differences in feedback qualities, like signal-to-noise

ratios.

3) Robust modular switching in visuomotor skills. Our framework was

shown to be flexible for exploiting the most useful controller among redundant

feedback. In our example, a slow, but robust, general-purpose controller (“the

visual module”) served as a guide to speed up learning of a fast specialized con-

troller (“the somatosensory module”, who otherwise would have to learn under

“motor babbling”, for which learning is painfully slow in high-dimensional sys-

tems). Once trained, the somatosensory module would overtake control and

outperform the visual module. However, because the somatosensory module

only is effective in its expert regime, the visual module would resume control

whenever the arm went out of control. Thus, the visual controller plays the

roles of tutor (early training) and safe-guard (late-training).
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4) The importance of feedback delays in memory transfer. Our results

suggest that the suboptimality of long delayed feedback (e.g. vision) may

provide the indirect effect of memory transfer to modalities of shorter delay

(e.g. somatosensation). In our framework, the output of faster feedback loops

eventually overrides that of slower feedback with training. In a brain, this

would enable the agent to transfer control from slower, conscious and working

memory-driven control loops to faster, unconscious procedural memory, so

that the conscious mind can be pre-occupied with other things.

5) A quantitative picture of the effect of cortical feedback delays on

motor performance. Our results across 0-200 ms of feedback delay space

provide a quantitative picture about the limitation of direct, delayed feed-

back control. Consistent with behavioural data on motor tasks [112, 92], the

performance starts to degrade significantly from 50 ms.

6) Temporal discounting in reinforcement learning in the context of

motor skills. Temporal discounting of reward makes early delivery worth

more than late delivery of the same amount of reward. In the context of motor

control, this effect may explain why motor skills are most often associated with

speedup of performance, although such speedup is not an explicit learning goal

[5, 64].

Gaze strategies in sequential hand movements Our main contributions

of this study are as follows:

1) A change in gaze behaviour in long-term learning of sequential hand

movement. The experimental results confirmed our hypothesis that the man-

ual, behavioural change in long-term skill learning should bring about a change

in gaze strategy. Somewhat contrary to intuition, as performance speeds up,

the hand must wait for the eye, as a very frequently refixating eye cannot pro-

cess feedback in time. In early learning, subjects fixated almost every target,

but late in learning, subjects refixated less number of times than there were

targets.

2) Predictive fixations during fast, manual execution. Late in learning,

subjects fixated predictively in two ways. In some cases, fixations of targets
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were inclined towards the next target. In other cases, subjects would fixate

the center-of-mass of a subsequence of targets. This suggests that subjects

need to rely more on peripheral visual feedback during fast manual execution,

rather than refixation.

3) Context-dependent manual accuracy in sequential hand movement.

We report that the accuracy of aimed arm movements embedded in the press-

ing task were context-dependent. The accuracy of rank order-specific targets

were consistent across subjects and training.

4) A gaze-dependent, Bayesian model of dynamic updating of spatial

representation. We proposed a Bayesian model of dynamic updating of spa-

tial representations. The model provides a method to estimate the real-time

dependent accuracy of visual targets, and could be used to predict behaviour

and possibly neural firing patterns. It can also be used to test the relative

importance of foveal and off-foveal vision. Our model is supported as it could

to some degree predict the context dependent accuracy of hand movements in

the present study.
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