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Biomedical Text Mining Based on Machine Learning:

from Information Extraction to Coordination

Identification ∗

Kazuo Hara

Abstract

We focus on the information extraction from clinical trial MEDLINE abstracts. This
is strongly connected with Evidence-based medicine (EBM), which has arisen from
daily demands from patients for valid information about diagnosis, prognosis, therapy,
and prevention, as well as from clinical doctors for up-to-date, correct, and effective
sources of that information. At present, there are several practices that support EBM;
one example is to manage systems that provide the summary of clinical studies for
specified disorders. However, they mostly depend on human labor. Our future goal is
to create a system that automatically summarizes original articles (such as clinical trial
MEDLINE abstracts). As the necessary pre-processing, in this thesis, we concentrate
on to develop the systems for information extraction and coordination disambiguation.

In information extraction we shall extract compared treatments and patient popula-
tion from phase III clinical trial MEDLINE abstracts. There we shall see that to mark
terms of treatments and patients is not so difficult, however, not all the marked terms
are valid for our purposes: extraction targets should be the treatments and patients that
directly connect with the focusing clinical trial. So we shall attempt to select terms by
employing a sentence classification filter that can make use of grammatical structures
of sentences. There we encounter with the difficulties when we analyze sentences con-
taining coordinated phrases using the state-of-the-art parser. From a viewpoint that
coordinated phrases are likely to include important information for EBM, this problem
is also significant.

Then we propose a method for detecting and disambiguating coordinate phrases.
Nearly all the previous methods focus on the construction of heuristic rules. Unlike
∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD461029, March 17, 2008.
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these approaches that lack both evidence in justification and inter-domain flexibility,
we represent a coordinated phrase in the upper triangular shaped state space mod-
els based on the edit graphs. A unique feature of our method is that it employs a
perceptron-like learning algorithm to adapt the substitution matrix to the training data
drawn from the target language and domain. We obtained a promising empirical re-
sult in detecting and disambiguating coordinated noun phrases in the GENIA corpus,
despite using a relatively small number of training examples with minimal features.

Keywords:

information extraction, biomedical text mining, evidence-based medicine, coordina-
tion identification, sequence alignment, machine learning
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機械学習を用いたテキストマイニング－医療情報抽出
から並列句解析まで－∗

原一夫

内容梗概

本研究は、臨床試験論文からの情報抽出に焦点を当てる。これは近年一般的に
なりつつあるコンセプトである「エヴィデンスに基づく医療（EBM）」と密接な
関連をもつ。EBMの普及により、医療現場では診断、予後予測、治療、予防に
関する最新で正確かつ効果的な方法についての知識が求められるが、それを支援
するシステム作成は人手作業で行われているのが現状である。我々の最終的な目
的は、医療文献を自動的に要約して EBMに必要な情報を患者や医師に提示する
システムの作成であるが、本論文では、その前処理として必要となる情報抽出タ
スクと並列句同定タスクについて論じる。
情報抽出タスクでは、既存の自然言語処理の技術を用いてどの程度の精度で重

要情報抽出ができるかについて論じる（本博士論文の前半部分）。抽出対象はそ
の臨床試験で比較する治療方法と対象患者である。そこで我々が最初に得る知見
は、治療方法と患者を表す基本名詞句の切り出し自体は比較的容易に行うことが
できることである。しかし同時に、当該臨床試験で比較する治療方法ならびに対
象とする患者だけを抽出するのは容易でないことも明らかになる。そこで我々は
文分類によるフィルタリングを試みるが、文の構文構造を素性として用いようと
するなら構文解析が成功することが前提となる。しかし、比較結果を記述する臨
床試験論文においては、並列句が高頻度に出現する。そして、並列句の存在が構
文解析を困難にすることは、自然言語処理学分野ではよく知られている。なおか
つ、並列句は情報抽出の観点からも重要な情報を含みやすい。
そこで我々は、並列句同定法を新しく提案する（本博士論文の後半部分）。従

来の手法はルールを発見的に作成するというものがほとんどである。これに対し
て、我々の提案手法は並列句同定問題を上三角形状の編集グラフにおける系列ア
ラインメントの問題とみなし、編集コスト（素性の重み）を事前に与えることな
∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-IS-DD461029,

2008年 3月 17日.

iii



く、訓練データから学習することができる。GENIAコーパスを用いた実験で、従
来手法と比較して良い並列句同定結果を得ることに成功した。なお、提案手法は
医薬生物学分野以外のテキストにも適用可能な、自然言語処理の要素技術として
用いることができる。

キーワード

情報抽出、医療テキストマイニング、エビデンスに基づく医療、並列句同定、系
列アラインメント、機械学習
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Chapter 1

Introduction

1.1 Background
The goal of biomedicine is to uncover the mechanisms of life. Regarding life as a

product whose design is given by genes, scientists in molucular biology are studying
at the laboratory bench to examine gene dymamics, cell structures, cells complex (e.g.
cancer or imune systems), using micro organisms or experiment animals. Meanwhile,
clinical doctors are working beside beds to help patients by giving accurate diagnosis
and selecting appropriate treatments. Despite the huge efforts from both biological sci-
entists and clinical practitioners in decades, the mechanisms of life remain a mystery.

Such continued efforts result in a huge volume of biomedical documents; experi-
mental results from bench at biological laboratories and clinical records from bedsides
in medical facilities. Although each document is in itself valuable, dealing with them
as an aggregate often leads to new knowledge. Two experimental results, one support-
ing the interaction between gene A and gene B and the other supporting the interaction
between gene B and gene C, suggests possible connections between gene A and gene
C. We also benefit from aggregating documents when, for example, it strengthens the
confidence of the results in case that the number of collected texts presenting similar
results are large. Processing text archives for the purposes such as knowledge acqui-
sition, knowledge confidence evaluation, information extraction and summarization
called text mining.

Having been recognized its importance in the public, text mining has become pop-
ular in both the biomedical and NLP (natural language processing) community. Min-
ing goals includes, as an example in molucular biology domain, gene name identifi-
cation, gene/protein name normalization and extraction of protein-protein interaction



from scientific research paper articles, which are studied in the shared task of BioCre-
AtIvE [26], and as two examples of shared tasks in clinical domain, de-identication
(or anonymization) of personal health information from discharge summaries [58] and
assignment of ICD-9-CM codes (i.e. disease codes) to radiology reports [44].

Here we point out that biomedical text mining is not a task that can not be realized.
We are aware that mining from biomedical documents would be easier than from other
text documents. One reason is that scientific article writers are supposed to compose
sentences with less ambiguities. To do so they have a tendency to avoid ellipsis, for ex-
ample. More specifically we have no trouble in determining sentence boundaries when
we handles scientific articles, which is not the case for mining from web documents. In
addition, compared to newspaper articles that cover a wide area of subjects, the number
of terms occurring in biomedical texts are expected to be quite small, which is advan-
tageous for text mining. Nonetheless biomedical text mining is still a challenge for us,
because we face semantic and syntactic ambiguities that are difficult to disambiguate
automatically, even in such biomedical documents.

1.2 Research objectives
In this thesis, we focus on the information extraction from clinical trial MEDLINE

abstracts. This is strongly connected with Evidence-based medicine (EBM [48]), the
concept that has been popularized rapidly. The EBM has arisen from daily demands
from patients for valid information about diagnosis, prognosis, therapy, and preven-
tion, as well as from clinical doctors for up-to-date, correct, and effective sources of
that information [53]. At present, there are several systems that support EBM; one ex-
ample is the Ovid (http://clinicalevidence.bmj.com/). Although not free, it provides the
summary of clinical studies for specified disorders, as illustrated in Table 1.1, which is
apparently useful to acquire current best evidence. Our future goal is, in short, to ar-
range such tables automatically from original articles such as clinical trial MEDLINE
abstracts. As the necessary pre-processing, in this thesis, we concentrate on developing
the systems for information extraction and coordination disambiguation.

In order to explain why the information extraction and coordination disambiguation
are important to create summary tables, we present an example using an actual MED-
LINE abstract [51]. In Figure 1.1, bold texts are clinically important terms, that is,
name of diseases, drugs, outcomes, interventions, treatments and the phrases describ-
ing experimental conditions or schedules. It is important to note that just to mark key

2



Table 1.1: An output from the EBM support system (The Ovid)
Events/sample size (%) Study Interventions Duration 

(years) 

Outcome 

Intervention Control 

UKPDS “Tight” target BP 

(<150/<85) with 

captopril or atenolol 

vs. “less-tight” 

target (<180/<105) 

8.4 AMI (fatal or 

non-fatal) stroke 

Peripheral vascular 

events 

107/758 

(14%) 

83/390 

(21%) 

HOT Felodipine and ACE 

inhibitor, or 

beta-blocker, with 

three distinct target 

BPs 

3.8 AMI (fatal or 

non-fatal), stroke 

(fatal or non-fatal), or 

other cardiovascular 

death 

22/499 

(4.4%) 

45/501 

(9.0%) 

FACET Fosinopril vs. 

amiodipine 

2.9 AMI, stroke, or 

admission to hospital 

for angina 

14/189 

(7.4%) 

27/191 

(14%) 

ABCD Enalapril vs. 

nisoldipine 

5 AMI (fatal or 

non-fatal) MI, CHF, or 

sudden cardiac death 

5/235 

(2.1%) 

25/235 

(11%) 

Syst-Eur Nitrendipine; 

enalapril + 

hydrochlorothiazide 

vs. placebo 

2 MI, CHF, or sudden 

cardiac death 

13/252 (5%) 31/240 

(13%) 

AFCAPS/T

oxCAPS 

Lovastatin 5 MI, unstable angina, 

or sudden cardiac 

death 

4/84 (4.8%) 6/71 (8.5%) 

SENDCAP Bezafibrate 3 MI, or new ischemic 

changes on ECG 

5/64 (7.8%) 16/64 (25%) 

Helsinki Gemfibrozil 5 MI or cardiac death 2/59 (3.4%) 8/76 

(10.5%) 

HPS Simvastatin vs. 

placebo 

5 CHD, stroke, 

revascularization 

133/1455 

(9.1%) 

197/1457 

(13.5%) 
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ABSTRACT: 

PURPOSE: The combination of paclitaxel with carboplatin is effective in advanced-stage 

non-small cell lung cancer (NSCLC). This phase III study was designed to compare the efficacy 

and tolerability of a weekly versus an every-3-week schedule in the first-line treatment of 

advanced-stage NSCLC. PATIENTS AND METHODS: Chemotherapy-naive patients were

randomized to receive paclitaxel 100 mg/m2 and carboplatin at an area under the curve of 2 

once weekly for 6-8 weeks (arm A) or paclitaxel 200 mg/m2 and carboplatin at an area under

the curve of 6 on day 1 every 21 days (arm B). RESULTS: A total of 883 patients received >or= 1

chemotherapy cycle and were included in the results. The objective response rates observed

(complete response plus partial response) were 38% for arm A and 33% for arm B. Median times

to progression and median survival times were 6.1 months and 8.9 months in arm A and 7.2

months and 9.5 months in arm B, respectively. There were no significant differences between

treatment arms. The chemotherapy was well tolerated in both schedules. However, grade 3/4

sensory neuropathy occurred more frequently with the every-3-week schedule (9.1% vs. 4.4%),

whereas grade 3/4 diarrhea occurred more frequently with the weekly schedule (4.2% vs. 1.1%).

CONCLUSION: In terms of response and survival, paclitaxel/carboplatin administered once

weekly is comparable with the every-3-week schedule. Toxicity differences should be considered

when choosing the appropriate schedule for the individual. 

Figure 1.1: A MEDLINE abstract; bold texts are clinical terms. Coordinations (under-
lined) are important to create summary tables (below).

Table 1.2: Summary tables constructed from a MEDLINE abstract
Experimental setting: 

 paclitaxel carboplatin (schedule) 

arm A 100 mg/m2 AUC of 2 once weekly for 6-8 weeks 

arm B 200 mg/m2 AUC of 6 on day 1 every 21 days 

Comparison of efficacy: 

 response rates median times to progression median survival times 

arm A 38 % 6.1 months 8.9 months 

arm B 33 % 7.2 months 9.5 months 

Comparison of safety: 

 grade 3/4 sensory neuropathy grade 3/4 diarrhea 

arm A 4.4 % 4.2 %  

arm B 9.1 % 1.1 %  
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Table 1.3: The resolution accuracy of “COOD” tags in GENIA corpus by using Char-
niak and Johnson’s state-of-the-art parser

COOD type # of tags precision (%) recall (%) F rate
NP 2591 45.7 41.8 43.7
VP 485 63.3 61.6 62.5
ADJP 409 41.2 46.9 43.9
S 283 57.7 41.0 47.9
PP 209 49.8 48.3 49.0

terms reduces reader’s labor, and which is the first process towards information extrac-
tion. We also show in Figure 1.1 that such key terms very often occur in coordinations
(underlined in the figure). This is because the aims of clinical trials are the comparison
between new and old treatments. In many cases, the conjuncts consist of the experi-
mental settings or the results regarding efficacy and safety, those are the very contents
in the summary tables, as shown in Table 1.2.

Coordination Identification is considered as an important subject not only in the
practical biomedical informatics. It is also the task involving disambiguation difficul-
ties in the general NLP, conventionally solved by parsers. The recent state-of-the-art
parsers are statistical ones that output most probable grammatical structures from the
input sentences. Although their overall performance is excellent, that achieves around
90% accuracy in f-scores [9, 13, 10], they have weakness in coordination identifica-
tion as shown in Table 1.3, where we summarize the result of identifying (the regions
of) coordinated phrases occurred in the GENIA corpus, using the most accurate parser
originated from Charniak and Johnson [10]. We consider that one reason for such low
accuracy comes from the fact that conventional parsers have payed less attention to in-
corporate conjunct parallelism into the models. Therefore we shall focus on the point
in Chapter 4.

Another cause of disambiguation difficulties is ellipsis in coordinations, as has been
discussed by many researchers [45, 23, 8, 40, 7]. In case conjuncts share tokens (e.g.,
“ripe” is shared in “ripe apples and ripe bananas”) the expression tends to be short-
ened by eliminating shared components (“ripe apples and bananas”). However this
raises the problem of ambiguity when the context provides few clues for readers to
disambiguate the interpretations either with or without ellipsis (“ripe apples and ripe
bananas” or “ripe apples and bananas”, respectively). In the bracketing guidelines for
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Penn Treebank [4, Chapter 8], the authors described in fairly detailed manner a way
to annotate shared or unshared complements and modifiers in coordination structures,
this implies that elliptical coordinations accommodate such intrinsic disambiguation
difficulties.

One way to resolve elliptical coordinations is to resort to external knowledge sources
(e.g., such as dictionaries, ontologies, and Web documents). For example, see the
coordinated phrases below, where brackets indicate the correct regions.

• (IL-2 and IL-2-R alpha) promoters

• either (a polyclonal or a clonal) immune response

we reach the correct answers when we find ”IL-2 promoters” and ”a polyclonal im-
mune response” as proper expressions in some knowledge sources. However, we will
not focus on the problem in this thesis, and leave the issue for future work.

1.3 Dissertation Outline
In this thesis, we focus on developing a system for information extraction and co-

ordination disambiguation. The systems of text mining are modularly developed in
general, such that include sentence segmentation, part-of-speech tagging, base noun
phrase chunking, named entity extraction, sentence classification, document classifi-
cation, and parsing. In each component, it is common that the techniques based on sta-
tistical machine learning are employed if an annotated corpus (i.e. document archives
where target information is marked by human labor) is available, and rule based ap-
proaches are used otherwise. Regarding some of those components, in Chapter 3, we
make use of developed techniques (and their software packages). In Chapter 4 we con-
centrate on developing a novel coordination identification technique, that can make up
for the weakness of the state-of-the-art parsers.

This thesis is organized as follows: In Chapter 2, we overview the tasks (i.e. classi-
fication, sequence labeling, and sequence alignment) for which we shall employ or de-
velop machine learning systems in this thesis. Then, we introduce some conventional
approaches to the tasks and also explain the relation between these and our proposing
method for coordination disambiguation.

In Chapter 3 we shall extract compared treatments and patient population from clin-
ical trial MEDLINE abstracts. There we see that to mark terms regarding treatments

6



Figure 1.2: Coordination disambiguation by parsing

and patients is not so difficult, however, not all the marked terms are valid for our pur-
poses; extraction targets should be the treatments and patients directly connected with
the focusing clinical trial. So we shall attempt to select terms by employing a sentence
classification filter that can make use of grammatical structures of sentences. There
we encounter with a problem caused from parsing difficulties when we deal with sen-
tences containing coordinated phrases. The situation is illustrated in Figure 1.2, where
two possible parse trees for a phrase

“1 in the placebo and 13 in the tamoxifen”

are displayed. The correct parse tree is shown with an incorrect one. From a viewpoint
that coordinated phrases are likely to include important information for EBM, this
problem is also crucial.

In Chapter 4 we propose a method for detecting and disambiguating coordinate
phrases. Nearly all the previous methods except parsing focus on the construction
of heuristic rules. Unlike these approaches that lack both evidence in justification
and inter-domain flexibility, we shall represent a coordination in the upper triangular
shaped state space models based on the edit graphs. Figure 1.3 shows our represen-
tation of a coordination, using the same example as Figure 1.2. After learning model
parameters, we shall see our proposing method achieves higher accuracy in the exper-
iments using the GENIA corpus.
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Figure 1.3: Coordination disambiguation by edit graph
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Chapter 2

Preliminaries

2.1 Overview of the tasks and strategies
Here we overview classification, sequence labeling, and sequence alignment tasks,

for which we shall employ or develop machine learning systems in this thesis. In
Chapter 3, we make use of SVMs (Support Vector Machines) for text classification,
employ a classifier based on a boosting algorithm for the tree structured data, and
apply CRFs (Conditional Random Fields) to the tasks of sequence labeling such as base
noun phrase identification and categorization. We shall resort to distributed software
packages for these above. On the other hand, in Chapter 4 we propose a system based
on the averaged perceptron for coordination disambiguation. There we see the problem
as a task of sequence alignment, which shares properties with sequence labeling.

Although it is straightforward to say that the classification task is to assign one of
given labels to an input object, both sequence labeling and sequence alignment tasks
are rather complicated. In Table 2.1 we present an example of base noun phrase iden-
tification task realized within the framework of sequence labeling. There the goal is to
classify each word into one among “B”, “I”, “O” labels, that means, beginning, inside,
and outside of a base noun phrase, respectively. It differs from a simple classification
task in that words occur (in a sentence) correlated with each other. For example, the
word next to a determiner (e.g. “an”) is expected to be the “I” tag with very high
probability, because a determiner usually comprises a noun phrase with subsequent
words. To incorporate such knowledges into a prediction model, one option, but most
prevalently used, is taking the Markov assumption between labels.

Sequence alignment is a task to line up two sequences in accordance with their simi-
larities. The output of the task forms a sequence of edit operations. A simple set of edit



Table 2.1: An example of sequence labeling task; base noun phrase identification

xseq Time flies like an arrow .

yseq B O O B I O

Table 2.2: An example of sequence alignment task

xseq 99% for the standard arm
yseq 182% for the dose dense arm

eseq S S S I I D S

99%

for

the

standard

arm

182% for the dose armdense

Figure 2.1: An example of sequence alignment on the edit graph
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operations consists of three types; substitution, deletion, and insertion (we abbreviate
those by “S”, “D”, and “I”, respectively). In case considering word sequence align-
ment, “S” operation indicates that a component word from the first sequence can be
substituted by one from the second (with paying low costs) because they are similar.
“D” and “I” operations mean that there is no corresponding word in the opposite se-
quence, with respect to a component from the first and second sequences, respectively.
This is illustrated in Table 2.2. Furthermore, a result of sequence alignment can be
drawn on the edit graph, where “S”, “D”, and “I” operations correspond to diagonal,
vertical, and horizontal lines respectively, as shown in Figure 2.1. The edit graph is
very convenient to represent a sequence alignment on the Markov Model.

We give a formal statement of classification, sequence labeling, and sequence align-
ment tasks in Figure 2.2, where prediction functions f̂ pred are optimized in terms of
the following strategies:

• Maximum likelihood (or maximun a posteriori) estimate on the joint (input, out-
put) probability models,

• Maximum likelihood (or maximun a posteriori) estimate on the conditional (out-
put given input) probability models,

• Maximum margin from a separating hyperplane in the feature space (i.e. SVMs),
and,

• Search for a separating hyperplane by correcting errors (i.e. Perceptron),

In this chapter we outline the above strategies in turn, in applying some conven-
tional ways to the tasks of classification and sequence labeling, and explaining recent
exploitation towards sequence alignment including our proposing methods for coordi-
nation disambiguation.

2.2 Modeling joint probability

2.2.1 Classification (naive Bayes classifier)

A traditional way to optimize f̂ pred is based on the estimation of joint probability
that generates data (i.e. input output pair). It is parameterized by Θ, that is,

Prob(input,out put|Θ).
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Fit a prediction function f̂ pred in terms of an optimization principle.

Classification
　Given N independent instances {x(n),y(n)}N

n=1 as training data.
　　 input: x = (x1,x2, . . . ,xD)T ∈RD

　　 output: y ∈ L, L = {a set of labels; l1, l2, . . . , lK}
　　 prediction function f̂ pred : X ⊆RD→ L

Sequence Labeling

　Given N independent instances {x(n)
seq,y

(n)
seq}N

n=1 as training data.
　　 input: xseq = x1x2 . . .xSn ∈Wseq, xs ∈W = {a set of tokens}
　　 output: yseq = y1y2 . . .ySn ∈ Lseq, ys ∈ L = {a set of labels}
　　 prediction function f̂ pred : Xseq ⊆Wseq→ Lseq

Sequence Alignment

　Given N independent instances {x(n)
seq,y

(n)
seq,e

(n)
seq}N

n=1 as training data.
　　 input: xseq = x1x2 . . .xUn ∈Wseq, xu ∈W = {a set of tokens}
　　　　　 yseq = y1y2 . . .yVn ∈Wseq, yv ∈W = {a set of tokens}
　　 output: eseq = e1e2 . . .eZn ∈ Eseq, ez ∈ L = {a set of edit operations}
　　 prediction function f̂ pred : Xseq×Yseq ⊆Wseq×Wseq→ Eseq

Figure 2.2: A formal statement of classification, sequence labeling, and sequence
alignment tasks on the supervised setting. We can replace W with other set accord-
ing to the application domains.
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l1

l2

lK

Y

X1 X2 XD

Figure 2.3: A schematic view of naive Bayes

The probability of generating N independent training data {x(n),y(n)}N
n=1 is

N

∏
n=1

Prob(x(n),y(n)|Θ),

from which we get maximum likelihood estimate of Θ as

Θopt = argmax
Θ

N

∏
n=1

Prob(x(n),y(n)|Θ), (2.1)

and therefore, we obtain a prediction function for a new input x(test) to be

f̂ pred(x(test)) = argmax
y∈L

Prob(x(test),y|Θopt).

When D (the dimension of input data space) is large, precise estimation of probabil-
ity distribution on RD×L requires a great number of training data. In such cases, a
simple but very powerful approximation, so-called naive Bayes assumption is useful,
such that

Prob(x|y) =
D

∏
d=1

Prob(xd|y).
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Maximizing (log) likelihood, we get an optimal parameter estimate under the assump-
tion, such that

Θopt = argmax
Θ

log
N

∏
n=1

Prob(x(n),y(n)|Θ)

= argmax
Θ

N

∑
n=1

logProb(x(n),y(n)|Θ)

= argmax
Θ

N

∑
n=1

logProb(y(n)|Θ)Prob(x(n)|y(n),Θ)

= argmax
Θ

N

∑
n=1

logProb(y(n)|Θ)
D

∏
d=1

Prob(x(n)
d |y(n),Θ)

= argmax
Θ

N

∑
n=1

logProb(y(n)|Θ)+
N

∑
n=1

D

∑
d=1

logProb(x(n)
d |y(n),Θ). (2.2)

A prediction function for a new input x(test) is

f̂ pred(x(test)) = argmax
y∈L

Prob(x(test),y|Θopt)

= argmax
y∈L

logProb(y|Θopt)+
D

∑
d=1

logProb(x(n)
d |y,Θopt). (2.3)

In Figure 2.3, a schematic view of naive Bayes model is shown, which corresponds to
(2.2); selecting a label out of K types (K circles in figure) with Prob(y|Θ) (first term in
equation), and generating D real numbers independently from the selected label (dotted
arrows in figure) with Prob(xd|y,Θ) (second term in equation).

So far we do not give a specific form with respect to Prob(x|y,Θ). Popular ones are
Gaussian, Multinomial, and Bernoulli distributions, which construct so-called Gaus-
sian, Multinomial, Bernoulli mixture models, respectively, with K mixing coefficients
given as Prob(y|Θ). We can use the EM algorithm to optimize parameters, and also
incorporate priors to avoid overfitting.

2.2.2 Sequence labeling (HMMs)

Here we introduce the Hidden Markov Models (HMMs) that had been playing an
important role from the early study of natural language processing, as well as speech
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l1

l2

l4l3

l5

Figure 2.4: The first order Markov Model for sequence labeling (size of label set = 5)

recognition and genome informatics. In this thesis, we assume first order Markov Mod-
els where each label depends on just a previous one. A finite state machine diagram for
the Markov Model is given briefly in Figure 2.4, and the trellis for a given sequence is
shown in Figure 2.5.

In the setting of HMMs, each token xs is emitted from the corresponding label ys

(dotted arrows in Figure 2.6) with Prob(xs|ys,Θ). Together with label (or state) tran-
sition probability given as Prob(ys|ys−1,Θ), the joint probability of token and label
sequences is

Prob(xseq,yseq|Θ) =
S

∏
s=1

Prob(ys|ys−1,Θ)Prob(xs|ys,Θ), (2.4)

where
Prob(y1|y0,Θ)≡ Prob(y1|Θ).
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l1

l2

lK

Y1
l1

l2

lK

Y2
l1

l2

lK

YS

endstart

X1 X2 XS

Figure 2.5: The trellis for a given sequence (length = S)

l1

l2

lK

Y1
l1

l2

lK

Y2
l1

l2

lK

YS

X1 X2 XS

endstart

Figure 2.6: An assumption of HMMs; observed tokens are emitted from unobserved
(hidden) labels
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Then, a maximum (log) likelihood solution from N training instances is

Θopt = argmax
Θ

log
N

∏
n=1

Prob(x(n)
seq,y

(n)
seq|Θ)

= argmax
Θ

N

∑
n=1

logProb(x(n)
seq,y

(n)
seq|Θ)

= argmax
Θ

N

∑
n=1

log
Sn

∏
s=1

Prob(y(n)
s |y(n)

s−1,Θ)Prob(x(n)
s |y(n)

s ,Θ)

= argmax
Θ

N

∑
n=1

Sn

∑
s=1

logProb(y(n)
s |y(n)

s−1,Θ)+
N

∑
n=1

Sn

∑
s=1

logProb(x(n)
s |y(n)

s ,Θ).

Therefore, we obtain a prediction function for a new input sequence x(test)
seq to be

f̂ pred(x
(test)
seq ) = argmax

yseq∈Lseq

logProb(x(test)
seq ,yseq|Θopt)

= argmax
yseq∈Lseq

Sn

∑
s=1

logProb(ys|ys−1,Θopt)+
Sn

∑
s=1

logProb(x(n)
s |ys,Θopt).

2.2.3 Sequence alignment (pair HMMs)

We introduce a variant of HMMs for the task of sequence alignment, that is widely
known as pair HMMs. There, it is assumed that unobserved edit operations (in an out-
put sequence) are generated from the Markov Model. As noted in the beginning of this
chapter, a simplest set of edit operations consists of three types:“S”, “D”, and “I”. Its
finite state machine diagram (Figure 2.7) is the same as the one for sequence labeling
task, however, the trellis for a given sequence pair shown in Figure 2.8 looks a little
complicated. This is because it is also assumed that each edit operation emits observed
(input) tokens and the way of emission differs according to the type of operation: “S”
emits a pair of tokens xu and yv, but others emit a single token, that is, xu for “D” and
yv for “I” (see Figure 2.9). It is important to note that the trellis is equivalent to the edit
graph illustrated in Figure 2.1.

In analogy with Equation (2.4), the joint probability of input and output under the
pair HMMs is

Prob(xseq,yseq|eseq,Θ) =
Z

∏
z=1

Prob(ez|ez−1,Θ)Prob(xu(z),yv(z)|ez,Θ),
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S

D I

Figure 2.7: The first order Markov Model for sequence alignment

where, using indicator function I(·),

u(z) =
z

∑
i=1

I(ez = ”S” or ez = ”D”),

v(z) =
z

∑
i=1

I(ez = ”S” or ez = ”I”),

and also,

Prob(e1|e0,Θ)≡ Prob(e1|Θ),

Prob(xu(z),yv(z)|ez = ”D”,Θ)≡ Prob(xu(z)|ez = ”D”,Θ),

Prob(xu(z),yv(z)|ez = ”I”,Θ)≡ Prob(yv(z)|ez = ”I”,Θ).

Then, a maximum (log) likelihood solution from N training instances is

Θopt = argmax
Θ

log
N

∏
n=1

Prob(x(n)
seq,y

(n)
seq,e

(n)
seq|Θ)

= argmax
Θ

N

∑
n=1

logProb(x(n)
seq,y

(n)
seq,e

(n)
seq|Θ)

= argmax
Θ

N

∑
n=1

log
Zn

∏
z=1

Prob(e(n)
z |e(n)

z−1,Θ)Prob(x(n)
u(z),y

(n)
v(z)|e

(n)
z ,Θ)

= argmax
Θ

N

∑
n=1

Zn

∑
z=1

logProb(e(n)
z |e(n)

z−1,Θ)+
N

∑
n=1

Zn

∑
z=1

logProb(x(n)
u(z),y

(n)
v(z)|e

(n)
z ,Θ).

Therefore, we obtain a prediction function for a pair of new input sequences (x(test)
seq ,y(test)

seq )
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Figure 2.8: The trellis for a given sequence pair (length = U and V)
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Figure 2.9: An assumption of pair HMMs; observed tokens are emitted from unob-
served (hidden) edit operations
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to be

f̂ pred(x
(test)
seq ,y(test)

seq ) = argmax
eseq∈Eseq

logProb(x(test)
seq ,y(test)

seq ,eseq|Θopt)

= argmax
eseq∈Eseq

Zn

∑
z=1

logProb(ez|ez−1,Θopt)+
Zn

∑
z=1

logProb(x(n)
u(z),y

(n)
v(z)|ez,Θopt).

2.3 Modeling conditional probability

2.3.1 Classification (e.g. logistic regression)

An advantage of modeling joint probability, Prob(input,out put|Θ), is that it is pos-
sible to obtain a distribution of inputs by marginalizing with respect to output variables.
However, from a view of classification, it is often sufficient to estimate conditional
probability, Prob(out put|input,Θ), because we can conduct predictions by

f̂ pred(new input) = argmax
out put∈candidate set

Prob(out put|new input,Θ),

and this also saves the amount of training data compared to joint probability estimation.
Once we decide to leave inputs out of targets for probability estimation, we can use

those as clues to estimate (conditional) probability of outputs. Combining with each
label lk, we can freely set feature functions fk (k = 1, . . . ,K) such that

fk : RD×L (= lk) →RMk ,

and their corresponding Mk dimensional weight vectors Wk comprise the model pa-
rameter Θ, that is,

Θ = (W T
1 ,W T

2 , . . . ,W T
K )T .

Then, the conditional model can be defined as

Prob(y = lk|x,Θ) =
1

Z(x,Θ)
exp(W T

k fk(x,y = lk)),

where

Z(x,Θ) =
K

∑
k=1

exp(W T
k fk(x,y = lk)),
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and exp means the exponential function. For the moment, a well-known model called
logistic regression is a special case when fk is given as

fk(x,y = lk) = (1,x1,x2, . . . ,xD)T .

The log likelihood for N training instances is

L(Θ) = log
N

∏
n=1

Prob(y(n) = lk(n) |x(n),Θ)

=
N

∑
n=1

logProb(y(n) = lk(n) |x(n),Θ)

=
N

∑
n=1

W T
k(n)fk(n)(x(n),y(n) = lk(n))− logZ(x(n),Θ).

At the point where L(Θ) is maximum, its derivative equals zero, so we obtain

∂L
∂Wk

=
N

∑
n=1

fk(x(n),y(n) = lk)−
N

∑
n=1

fk(x(n),y = lk)Prob(y = lk|x(n),Θ) = 0.

We can get Θopt using a technique based on the Newton-Raphson algorithm using the
Hessian matrix of L(Θ). In case incorporating priors into parameters, we substitute
L(Θ) for the one based on the posterior distribution. Then a prediction function for a
new input x(test) is given as

f̂ pred(x(test)) = argmax
y∈L

Prob(y|x(test),Θopt)

= argmax
y∈L

W T
k,optfk(x(test),y = lk).

2.3.2 Sequence labeling (linear chain CRFs)

In contrast to the classification task where there are only K types of the target la-
bel, large output-type variations occur in the sequence labeling task; KS types with a
sequence of length S. Except for the cases where KS is small or training data is abun-
dant, it is necessary to elaborate the design of feature functions if we intend to apply
the same method, so-called log linear models, described in the previous section.

In the setting of linear chain CRFs, there are two types of feature functions, the one
involved in a label with a component of output sequences and the other involved in
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labels of adjacent components, such that

fk : Xseq×L (= lk) →RMk , (2.5)

fk′k : Xseq×L (= lk′ )×L (= lk) →R
M

k
′
k , (2.6)

and their corresponding weight vectors Wk and Wk′k comprise the model parameter
Θ, that is,

Θ = (W T
1 ,W T

2 , . . . ,W T
K ,W T

11,W
T
12, . . . ,W

T
KK)T . (2.7)

Then, the conditional model is formulated as

Prob(yseq|xseq,Θ) =
1

Z(xseq,Θ)
exp PathScore(xseq,yseq,Θ),

where

PathScore(xseq,yseq,Θ) =
S

∑
s=1

W T
k fk(xseq,ys = lk)

　+
S

∑
s=1

W T
k′kfk′k(xseq,ys−1 = lk′ ,ys = lk), (2.8)

Z(xseq,Θ) = ∑
yseq∈Lseq

exp PathScore(xseq,yseq,Θ),

fk′k(xseq,y0 = lk′ ,y1 = lk)≡ fk′k(xseq,y1 = lk).

The value of PathScore amounts to a weighted sum of feature function values corre-
sponding to the “path” of label sequence on the trellis (shown in Figure 2.5). The log
likelihood for N training instances is

L(Θ) = log
N

∏
n=1

Prob(y(n)
seq|x(n)

seq,Θ)

=
N

∑
n=1

logProb(y(n)
seq|x(n)

seq,Θ)

=
N

∑
n=1

PathScore(x(n)
seq,y

(n)
seq,Θ)− logZ(x(n)

seq,Θ).

23



At the point where L(Θ) is maximum, its derivative equals zero, so we obtain

∂L
∂Wk

=
N

∑
n=1

Sn

∑
s=1

fk(x
(n)
seq,y

(n)
s = lk)

　−
N

∑
n=1

Sn

∑
s=1

fk(x
(n)
seq,ys = lk)Prob(yseq|x(n)

seq,Θ) = 0, (2.9)

∂L
∂Wk′k

=
N

∑
n=1

Sn

∑
s=1

fk′k(x
(n)
seq,y

(n)
s−1 = lk′ ,y

(n)
s = lk)

　−
N

∑
n=1

Sn

∑
s=1

fk′k(x
(n)
seq,ys−1 = lk′ ,ys = lk)Prob(yseq|x(n)

seq,Θ) = 0. (2.10)

To calculate second terms in each equation, dynamic programming algorithms can be
efficiently used on the trellis. When the size of parameter vector Θ is large (it is often
the case), computing the Hessian matrix of L(Θ) becomes expensive, so it is common
to approximate it using quasi-Newton methods (see [55] for details). After calculating
Θopt using some iterative methods, we get a prediction function for a new input x(test)

seq

such that

f̂ pred(x
(test)
seq ) = argmax

yseq∈Lseq

Prob(yseq|x(test)
seq ,Θopt)

= argmax
yseq∈Lseq

PathScore(x(n)
seq,yseq,Θopt).

2.3.3 CRFs for sequence alignment

It is straightforward to extend linear chain CRFs to the task of sequence alignment,
because output sequences can be represented on trellises in the same way as the se-
quence labeling task. In fact there is a work [19] that applies CRFs to protein sequence
alignment. Since there are two input sequences, feature functions are revised to

fk : Xseq×Yseq×L (= lk) →RMk ,

fk′k : Xseq×Yseq×L (= lk′ )×L (= lk) →R
M

k
′
k ,

where L is the set of edit operations. Then, the conditional model turns to be

Prob(eseq|xseq,yseq,Θ) =
1

Z(xseq,yseq,Θ)
exp PathScore(xseq,yseq,eseq,Θ),
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where

PathScore(xseq,yseq,eseq,Θ) =
Z

∑
z=1

W T
k fk(xseq,yseq,ez = lk)

　+
Z

∑
z=1

W T
k′kfk′k(xseq,yseq,ez−1 = lk′ ,ez = lk),

Z(seq,yseq,Θ) = ∑
eseq∈Eseq

exp PathScore(xseq,yseq,eseq,Θ).

2.3.4 The match or mismatch determination for pair sequences

Here we focus on a study that has close relationship to the method we shall propose
in Chapter 4. So far, the goal of the sequence alignment task is to line up two distinct
sequences. In this section we consider a variant of this, such that to determine whether
a given sequence pair is similar to each other. A formal statement is given in the
following:

The match or mismatch determination for pair sequences

　Given N independent instances {x(n)
seq,y

(n)
seq,m(n)}N

n=1 as training data.
　　 input: xseq = x1x2 . . .xUn ∈Wseq, xu ∈W = {a set of tokens}
　　　　　 yseq = y1y2 . . .yVn ∈Wseq, yv ∈W = {a set of tokens}
　　 output: m ∈M = {+1; match, −1; mismatch}
　 Fit a prediction function f̂ pred : Xseq×Yseq ⊆Wseq×Wseq→M.

The solution described in [39] is based on CRFs, where McCallum et al. assumed
a finite state machine comprising two parts such that the one for match states and the
other for mismatch states (Figure 2.10). The two parts are connected only with the start
state, therefore the trellis for a given sequence pair takes a parallel form (Figure 2.11).
In other words, they augmented the label set to L+ ∪ L− where L+ = {S+,D+, I+}
and L− = {S−,D−, I−}, and restricted (unobserved) label sequences to either Eseq+ =
{eseq = e1e2 . . .eZ ;ez ∈ L+} for matched pairs, or Eseq− = {eseq = e1e2 . . .eZ ;ez ∈ L−}
for mismatched pairs.

Then, their conditional model was given as

Prob(m =+1|xseq,yseq,Θ) =
1

Z(xseq,yseq,Θ) ∑
eseq∈Eseq+

exp PathScore(xseq,yseq,eseq,Θ),

(2.11)
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S+

D+ I+

S-

D- I-

start

Figure 2.10: a finite state machine for discriminating matched/mismatched sequence
pairs; “S+”, “D+”, “I+” imply matches, and “S-”, “D-”, “I-” imply mismatches.

Prob(m =−1|xseq,yseq,Θ) =
1

Z(xseq,yseq,Θ) ∑
eseq∈Eseq−

exp PathScore(xseq,yseq,eseq,Θ),

(2.12)
where

PathScore(xseq,yseq,eseq,Θ) =
Z

∑
z=1

W T
k fk(xseq,yseq,ez = lk)

　+
Z

∑
z=1

W T
k′kfk′k(xseq,yseq,ez−1 = lk′ ,ez = lk),

Z(xseq,yseq,Θ) = ∑
eseq∈Eseq+∪Eseq−

exp PathScore(xseq,yseq,eseq,Θ).

At this point, in comparison with McCallum’s work, we would like to give a profile
of our method for coordination identification that we shall describe details in Chapter 4.
In Figure 2.12, we give the task description. The important requirements are:

• to identify conjuncts within a same word sequence (= sentence),

• to discriminate matched conjunct pairs from mismatched word sequence pairs,
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Figure 2.11: The trellis for a given sequence pair; the upper part is for matched, and
the lower part is for mismatched.
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The coordination identification

　Given N independent instances {x(n)
seq,con junct regions(n)}N

n=1 as training data.
　　 input: xseq = x1x2 . . .xSn ∈Wseq, xu ∈W = {a set of tokens}
　　 output: con junct regions; regions are disjointed each other.
　 Fit a prediction function f̂ pred : Xseq ⊆Wseq→ con junct regions candidate set.

Figure 2.12: A formal statement of coordination identification

and, in some cases

• to detect conjunct pairs without canonical word-by-word alignments.

Because of the first one, our trellis have a shape of upper triangles (see Figure 4.2). The
second leads to the necessity of separate label sets for matched and mismatched parts,
like L+ and L−, respectively. However, unlike the task of match/mismatch determi-
nation, we allow transitions between states in the two sets, for the sake of identifying
matched conjunct regions.

The third requirement means that there is a case where we can not map one input
sequence pair into one label sequence. For example, “dose dense” and “standard” in
Figure 2.1 align essentially as phrases, not by words. One solution is to determine a
canonical label sequence by some predefined rules. Other one, in fact we shall use, is to
consider all label sequences as canonical that are consistent with the phrase-by-phrase
alignment. This situation has a common feature with the task of match/mismatch de-
termination in that “a given sequence pair is similar (or dissimilar)” means that there
are various canonical sequences in Eseq+ (or Eseq−).

2.4 Maximum margin methods
In this section, we introduce two class SVMs that originated in Vapnik [59]. Then we

give a brief description of the method based on SVMs that can deal with both sequence
labeling and sequence alignment tasks [57, 2, 29, 60]. The method has something to
do with our attempts to disambiguate coordinated phrases based on the perceptron
algorithms, in that the goal is to find a hyperplane that separates the difference of
feature vectors , that is, the difference between the feature vector involved in a correct
label (or label sequence) and the one involved in an incorrect label (or label sequence)
for each instance.
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2.4.1 Two class SVMs for classification

Here we restrict the task to binary classification, so we fix the label set in Figure 2.2
as L = {+1,−1}. In the space of inputs RD, we consider a separating hyperplane with
a D dimensional vector W and a scalar b as parameters,

W T x+b = 0.

We define the margin of an instance (x(n),y(n)) from the hyperplane as

margin(x(n),y(n)|W ,b) =
1
‖W ‖y(n)(W T x(n) +b),

where ‖W ‖=
√

W T W . When the sign of W T x(n) +b agrees with y(n), we say the
hyperplane correctly classifies the instance, and the margin equals to the geometric
distance of the instance from the hyperplane. We also define the margin with respect
to the training data set {x(n),y(n)}N

n=1, such that

MARGIN({x(n),y(n)}N
n=1|W ,b) = min

1≤n≤N
margin(x(n),y(n)|W ,b). (2.13)

We begin an explanation of two class SVMs using a simplest case, that is, there are
only two instances, (x(1),y(1) = +1) and (x(2),y(2) = −1). The goal is to find the
hyperplane, or to optimize W and b, that maximizes the MARGIN. Three hyperplanes
that correctly classify the two instances are illustrated in Figure 2.13, in case D = 2.
We see from the top and middle figure that the MARGIN is equivalent, in terms of the
linear transformation of W and b (i.e. W2 = 3W1, and b2 = 3b1). Therefore, to get a
unique solution, we impose the constraints

W T x(1) +b = 1,

W T x(2) +b =−1.

Then Equation (2.13) reduces to 1
‖W ‖ , so maximizing the MARGIN becomes equiva-

lent to minimizing W T W or ‖W ‖. In fact, the bottom in Figure 2.13, that has larger
‖W ‖ than the top, results in the worse MARGIN.

In the general case of N instances, if it is guaranteed that there is a hyperplane that
correctly classifies them (this assumption is sometimes unrealistic), maximizing the
MARGIN is also equivalent to minimizing W T W under the constraints that

y(n)(W T x(n) +b)≥ 1, n = 1, . . . ,N, (2.14)
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Figure 2.13: Separating hyperplanes on contour maps
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the equalities satisfy when the instances are on (the border of) the margin. Using the
Lagrangian theory, this constrained optimization problem can be expressed by the dual
form, that is, to maximize

N

∑
n=1

a(n)− 1
2

N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)x(n)T x(n

′
),

with respect to a(n), n = 1, . . . ,N, subject to the constraints

N

∑
n=1

y(n)a(n) = 0, (2.15)

a(n) ≥ 0, n = 1, . . . ,N, (2.16)

and the following relation between parameters of the primal and dual forms (W and
a(n), respectively) holds:

W =
N

∑
n=1

a(n)y(n)x(n). (2.17)

The optimization of the dual problem satisfies the Karush-Kuhn-Tucker conditions
(see [17, 6] for details) that lead to an interesting property, such that, for each instance,
a(n)

opt = 0 or y(n)(W T
optx

(n) + bopt) = 1. In other words, only the instances that lie on
the border of the margin contribute to decide the parameter W of hyperplanes through
Equation (2.17). As a result, we get a prediction function

f̂ pred(x(test)) = sign(W T
optx

(test) +bopt)

= sign(
N

∑
n=1

a(n)
opty

(n)x(n)T x(test) +bopt).

Next we consider the more realistic situation where there is no hyperplane that clas-
sifies N instances. The solution in [59] is to introduce a slack variable ξ(n) for each
instance, and to relax the constraints (2.14) as

y(n)(W T x(n) +b)≥ 1−ξ(n), n = 1, . . . ,N.

Using a trade-off parameter C that controls the slack variable penalty and margin, the
objective function to minimize is, for the 1-norm soft margin SVMs,

W T W +C
N

∑
n=1

ξ(n),
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and for the 2-norm soft margin SVMs,

W T W +C
N

∑
n=1

ξ(n)2.

Although the original in [59] is the former, here we focus on the 2-norm soft margin
SVMs because they relate Freund and Schapire’s augmented space methods [21] that
we shall incorporate to our proposing method. Using the Lagrangian theory, the dual
objective function becomes

N

∑
n=1

a(n)− 1
2

N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)(x(n)T x(n

′
)− 1

C
δnn′ ),

where δnn′ is the Kronecker δ defined to be 1 if n = n
′

and 0 otherwise. The problem
turns to maximizing this objective function with respect to a(n), n = 1, . . . ,N, subject
to the same constraints as (2.15) and (2.16). In addition to Equation (2.17), it holds
that

a(n) = Cξ(n), n = 1, . . . ,N. (2.18)

For each instance, due to the Karush-Kuhn-Tucker conditions, a(n)
opt = 0 or y(n)(W T

optx
(n)+

bopt) = 1− ξ(n) holds. Together with Equation (2.18), we see that only the instances
that lie inside the margin (not on the border) contribute to decide the parameter W of
hyperplanes through Equation (2.17).

It is important to note that the 2-norm soft margin SVMs are equivalent to the orig-
inal SVMs (i.e. without slack variables) when we convert D dimensional vectors x(n)

to D+N dimensional vectors x̃(n), such that for n = 1, . . . ,N,

x̃(n)T = (x(n)T ,0, . . . ,0, 1√
C
,0, . . . ,0)T , (2.19)

in which the first D dimensions are identical to x(n), and for the remaining N dimen-
sions,

√
C is assigned to the (D+n)th element, and 0 for the rest. Freund and Schapire

used this conversion in [21] to give the mistake bound of the online perceptron algo-
rithm in the inseparable case. It is also called “lambda trick” according to [38]. We
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can confirm the equivalence by the calculation as follows:

W̃ T W̃ = (
N

∑
n=1

a(n)y(n)x̃(n))T (
N

∑
n′=1

a(n
′
)y(n

′
)x̃(n

′
))

=
N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)x̃(n)T x̃(n

′
)

=
N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)(x(n)T x(n

′
) +

1
C

δnn′ )

=
N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)x(n)T x(n

′
) +

1
C

N

∑
n=1

a(n)2y(n)2

=
N

∑
n=1

N

∑
n′=1

a(n)a(n
′
)y(n)y(n

′
)x(n)T x(n

′
) +

1
C

N

∑
n=1

a(n)2

= W T W +C
N

∑
n=1

ξ(n)2,

y(n)(W̃ T x̃(n) +b) = y(n)W̃ T x̃(n) + y(n)b

= y(n)
N

∑
n′=1

a(n
′
)y(n

′
)x̃(n

′
)T x̃(n) + y(n)b

= y(n)
N

∑
n′=1

a(n
′
)y(n

′
)(x(n

′
)T x(n) +

1
C

δnn′ )+ y(n)b

= y(n)
N

∑
n′=1

a(n
′
)y(n

′
)x(n

′
)T x(n) + y(n)

N

∑
n′=1

a(n
′
)y(n

′
) 1
C

δnn′ + y(n)b

= y(n)W T x(n) + y(n)a(n)y(n) 1
C

+ y(n)b

= y(n)W T x(n) +a(n) 1
C

+ y(n)b

= y(n)W T x(n) +ξ(n) + y(n)b

= y(n)(W Tx(n) +b)+ξ(n).

As a final note, we put a comment on the multi class SVMs. Roughly speaking,
there are two strategies. One is to make use of two class SVMs, that is, one versus the
rest, pairwise classification, and error-correcting output coding. The other is to solve
problems directly, in considering multi class objective functions. According to [50],
there is no approach that generally outperforms the others.
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2.4.2 SVMs for sequence labeling and sequence alignment

Here we give a short introduction about the work in [57] that can deal with dis-
criminative problems whose outputs have complex structures. We shall describe the
method in the case of sequence labeling below, however, it can be adopted to sequence
alignment in the same way.

Under the first order Markov assumption on the label sequences, we employ the
same feature functions (2.5) and (2.6) described in the section of linear chain CRFs.
Then for each instance (x(n)

seq,y
(n)
seq), using Equation (2.8), calculate the difference be-

tween the score of correct path and the maximum score of incorrect path on the trellis,
given as

γ(n) = PathScore(x(n)
seq,y

(n)
seq)− argmax

yseq∈Lseq\y(n)
seq

PathScore(x(n)
seq,yseq). (2.20)

The maximum margin principle gives the constrained optimization problem, whose
optimization algorithm is a highlight of [57] (but, we omit it here), as follows:

minimize ΘT Θ, subject to γ(n) ≥ 1, n = 1, . . . ,N,

where Θ is the parameter vector defined in (2.7). In this place, we define the global
feature vector as

F (xseq,yseq) = (fT
1 , . . . ,fT

K ,fT
11, . . . ,f

T
KK)T . (2.21)

Then we can rewrite (2.20) to be

γ(n) = argmax
yseq∈Lseq\y(n)

seq

ΘT (F (x(n)
seq,y

(n)
seq)−F (x(n)

seq,yseq)).

From this representation, we see that feature vectors associated with individual label
sequence (correct or incorrect) are not important; what is important is the difference of
those.

2.5 The perceptron algorithms
In this section, we review the original perceptron algorithms [47] for two class prob-

lems. Then we explain how to extend the original to the ones for sequence labeling and
sequence alignment tasks, showing a comparison with the methods based on CRFs.
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2.5.1 Two class perceptron algorithms

We consider the same situation as in Section 2.4.1 for two class SVMs, that is, the
goal is to find a hyperplane

W T x+b = 0, (2.22)

on the D dimensional space which correctly classify N training instances. For the
moment, we do not think about MARGIN (defined in (2.13)), in this point, the situation
differs from SVMs. For the ease of description, we incorporate the bias term b into
W , and add the corresponding component, that is, 1, into each input vector x. Then,
the above hyperplane (2.22) becomes

W T x = 0

on the D+1 dimensional space.
Once a hyperplane is given, we can enumerate instances that are not correctly clas-

sified by the hyperplane, and we define the Loss given by

Loss =
N

∑
n=1
−y(n)W T x(n) I(y(n)W T x(n) < 0), (2.23)

where I(·) is the indicator function, and the condition y(n)W T x(n) < 0 satisfies when
the instance is misclassified by the hyperplane determined by W . Then the derivative
becomes

∂Loss
∂W

=
N

∑
n=1
−y(n)x(n) I(y(n)W T x(n) < 0),

therefore, the batch perceptron algorithms update W in accordance with the gradient,
such that

Wnew←W +
N

∑
n=1

y(n)x(n) I(y(n)W T x(n) < 0),

whereas the online perceptron algorithms use the stochastic gradient descent that up-
date weights for each misclassified instance, that is

Wnew←W + y(n)x(n), if y(n)W T x(n) < 0 satisfies. (2.24)

The algorithms sweep training data iteratively until convergence, but the conver-
gence is guaranteed only when the linearly separable case. So in general we stop the
learning process by consulting the development data, or just after sufficient number of
iterations. It is also important to note that the result depends on the initial parameter
values, and the order of training instances (in case of online learning). An illustration
of batch perceptron learning is shown in Figure 2.14.
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Figure 2.14: An illustration of batch perceptron learning
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2.5.2 The perceptron algorithms for sequence labeling and sequence

alignment

As we described above, the perceptron algorithms updates parameters when the clas-
sification fails for training instances. For the task of sequence labeling (the same rea-
soning as the following is applicable to sequence alignment task), the condition for
occurring classification error is represented as, by using the global feature vector in
(2.21),

argmax
yseq∈Lseq\y(n)

seq

ΘT (F (x(n)
seq,y

(n)
seq)−F (x(n)

seq,yseq)) < 0.

Under the condition for each instance, parameter update (in case of batch learning) is
executed as follows:

Θnew = Θ+
N

∑
n=1

(F (x(n)
seq,y

(n)
seq)−F (x(n)

seq, ŷseq)), (2.25)

where
ŷseq = argmax

yseq∈Lseq\y(n)
seq

ΘT F (x(n)
seq,yseq).

The search for ŷseq can be carried out efficiently using dynamic programming algo-
rithms on the trellis.

We importantly note that the way of perceptron’s parameter update is closely related
to CRFs. In CRFs, the gradient is represented using the global feature vector, such that
from (2.9) and (2.10),

Wgrad =
N

∑
n=1

(F (x(n)
seq,y

(n)
seq)− ∑

yseq∈Lseq

F (x(n)
seq,yseq)Prob(yseq|x(n)

seq,Θ))

=
N

∑
n=1

(
F (x(n)

seq,y
(n)
seq)− ∑

yseq∈Lseq

F (x(n)
seq,yseq)

ΘT F (x(n)
seq,yseq)

∑y′seq∈Lseq
ΘT F (x(n)

seq,y
′
seq)

)
.

In comparison with (2.25), we see that CRFs use all candidate paths on the trellis in
averaging, on the other hand, the perceptron algorithms update parameters by using
only a most probable candidate path on the trellis.

2.6 Variants of the perceptron algorithms
Here, we describe some strategies to generalize perceptron algorithms to reduce

the risk of over-fitting to training data, which include ensemble methods such as the
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averaged perceptron and the Bayes point machines. In Chapter 4 we shall actually
employ those for coordination disambiguation, and see we get superior results by using
averaged perceptron.

2.6.1 Regularization

Learning model parameters (or weights) from training data is likely to be suffered
from the over-fitting problem, particularly when the dimensionality of the weight vec-
tor is considerably larger than the size of the data. To avoid the problem and achieve
higher performance in test data, one way, so-called regularization, is to add a penalty
term respecting the norm of weight vector to the loss function.

Given the constant C to control the magnitude of the penalty, the Loss (2.23) turns
to be, in case of the L1-norm

Loss =
N

∑
n=1
−y(n)W T x(n) I(y(n)W T x(n) < 0) + C

D

∑
d=1

|Wd|,

and for the L2-norm,

Loss =
N

∑
n=1
−y(n)W T x(n) I(y(n)W T x(n) < 0) +

C
2

D

∑
d=1

W 2
d .

Then, the gradient of the dth element of the weight vector becomes, for the L1-norm,

∂Loss
∂Wd

=
N

∑
n=1
−y(n)x(n)

d I(y(n)W T x(n) < 0) + C sign(Wd), (2.26)

for the L2-norm,

∂Loss
∂Wd

=
N

∑
n=1
−y(n)x(n)

d I(y(n)W T x(n) < 0) + C Wd, (2.27)

and we update the weight vector accordingly.

2.6.2 Lambda trick

We have seen in Section 2.4.1 that the transformation of input x(n) to x̃(n) by (2.19),
which appears when considering 2-norm soft margin SVMs, reduces an inseparable
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problem to a separable one. Applying the transformation (“lambda trick”) to the per-
ceptron algorithm, the condition for updating the weights changes to be

y(n)W̃ T x̃(n) = y(n)W T x(n) <−ErrorTimes(n)

C
, (2.28)

where W̃ is also (D+N) dimensional vector, ErrorTimes(n) is the number of times the
nth instance has been misclassified before, and W̃ memorizes ErrorTimes(n) (multi-
plied by 1√

C
) in the (D+n)th element. This means that the algorithm permits misclas-

sification to the extent that the significance of the error (i.e. y(n)W T x(n)) is tolerable
in terms of the frequency of mistakes for the instance.

2.6.3 MIRA; online perceptron taking the margin into considera-

tion

In the iterative procedure of the (ordinary) online perceptron algorithm, the weight
vector is updated according to (2.24) for the nth instance. There the coefficient of
the term y(n)x(n), called as learning rate, is fixed to unity. The MIRA algorithm [15]
changes the coefficient to τ, given by

τ = G
(
−y(n)W T x(n)−1

x(n)T x(n)

)
, (2.29)

where

G(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 if z < 0

z if 0≤ z≤ 1

1 if 1 < z.

In short,
Wnew mira←W + τ y(n)x(n), if y(n)W T x(n) < 0 satisfies. (2.30)

We visualize in Figure 2.15 the effect of using τ in comparison with the ordinary
online perceptron. The left column in the figure indicates that the focusing instance
has the positive label (y = +1) but resides in the negative region on account of the
hyperplane determined by W . The mid column shows the weight update by (2.24) for
the ordinary perceptron and by (2.30) for the MIRA algorithm. The new hyperplane
obtained by the ordinary update brings the instance deep inside the positive region, on
the other hand, the instance is moved to at most the margin of the new hyperplane by
the MIRA algorithm, as shown in the right column.
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Figure 2.15: Comparison of the ways to update the weights between the ordinary on-
line perceptron and the MIRA algorithm

Table 2.3: Averaged perceptron; weights for testing = 1
T ∑T

t=1 Wt

iteration index t weights after t iteration

1 W1

2 W2
...

...
T WT
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Table 2.4: Bayes point machines; weights for testing = 1
M ∑M

m=1 WmT

weights after t iteration
iteration index t system 1 system 2 . . . system M

1 W11 W21 . . . WM1

2 W12 W22 . . . WM2
...

...
...

...
T W1T W2T . . . WMT

2.6.4 Averaged perceptron

Our proposing method for coordination disambiguation from which we obtain the
best result we shall present in Chapter 4, is based on the averaged perceptron origi-
nated in [22]. The idea is quite simple. In the training phase, to keep in the stack
all updated weight vectors, and to use their average in the test phase (see Table 2.3).
The implementation is uncomplicated and the discriminative power, in applying to the
sequence labeling task, is known to be competitive to (or, sometimes greater than) the
methods representing the state-of-the-art, according to [12, 3].

2.6.5 Bayes point machines

In addition to the averaged perceptron, there is another ensemble technique known
as the Bayes point machines [25]. In the learning phase, the method trains multiple
perceptron classifiers in parallel, which deal with the same training data set but are
different in the ways to use individual instances in choice (for both the batch and on-
line algorithms) or order (for the online algorithm). In Table 2.4, we illustrate the
method having M perceptron classifiers. In contrast to the averaged perceptron that
averages weights over iteration indexes, Bayes point machines use averaged weights
over classifiers for testing.
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Chapter 3

Extracting Clinical Trial Design
Information from MEDLINE
Abstracts

3.1 Introduction
Recently, people who practice medical treatments have been paying more attention

to Evidence-Based Medicine (EBM), the concept of which is defined as: “the con-
scientious, explicit, and judicious use of current best evidence in making decisions
about the care of individual patients” [48]. In practicing EBM, they are encouraged
to be well informed on up-to-date sources of medical knowledge such as MEDLINE,
the US National Library of Medicine’s bibliographic database covering the fields of
medical, pharmaceutical and biological sciences.

Among MEDLINE abstracts, those about clinical trials play one of the most impor-
tant roles in EBM, because the results of clinical trials can provide firm evidence to
support applying a certain therapy in actual medical treatments. However, since the
rate at which new articles are being introduced into the MEDLINE database is fairly
high, it takes patients or doctors who seek beneficial knowledge quite some time to
read all of the articles that may contain clues in finding a suitable therapy. So, in order
to assist members of the medical community, our goal is to extract important informa-
tion from MEDLINE clinical trial abstracts, in an effort to reduce the amount of time
required to find relevant medical information.

In the research field of natural language processing (NLP), the task of information
extraction (IE) has been pursued with a great deal of interest for decades. For example,



in the series of Message Understanding Conferences (MUCs), participants developed
methods for extracting information of the scenario-templates presented by the confer-
ence organizers. The focus of the study there was the construction of domain-specific
lexicons and extraction patterns based on human labor. Following the MUCs, the atten-
tion of researchers has shifted to automatic knowledge acquisition including lexicons
and patterns.

In this thesis, we report experimental results of extracting information about clinical
trial design from the abstracts of phase III clinical trials, to investigate how far the
existing NLP techniques could support EBM on the use of MEDLINE database.

3.2 Background and Objectives

3.2.1 Phase III clinical trials: directly linking to EBM

The broad aim of clinical trials is to demonstrate the efficacy and safety of the new
or focusing treatments. In the development of a new drug, for example, clinical trials
are conducted in a stepwise process such as the one consisting of phase I, to evaluate
the safety and tolerability in healthy volunteers, phase II, to explore the dose response
relationship in patient populations, and phase III, to confirm the efficacy and safety
compared with an active control or placebo in patient populations. Among those steps,
phase III clinical trials are most closely linked to EBM, in other words, hypotheses of
superiority to an active control or placebo is always stated before starting the enroll-
ment of patients, and statistical hypothesis testing is conducted after the completion
of the trials [42]. Such a way protects the statistical test results against bias affection,
so the conclusion obtained from phase III confirmatory analyses can be considered
as a firm evidence of a new drug administration, in case its superiority is proven. In
contrast, exploratory analyses such that involve stratified or subgroup analyses don’t
declare any hypotheses in advance.

3.2.2 MEDLINE abstracts: available resource for EBM

The bibliographic information stored in MEDLINE database is surely the resource
for EBM. However the articles relevant to clinical trials are just a small part of the
database. For selecting those, MEDLINE users can utilize PubMed (http://pubmed.gov),
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Table 3.1: The number of abstracts registered in MEDLINE

PubMed search query # of abstracts
“hasabstract” 8,120,830
“hasabstract AND Clinical Trial[PT]” 352,576
“hasabstract AND Clinical Trial, Phase I[PT]” 6,548
“hasabstract AND Clinical Trial, Phase II[PT]” 10,013
“hasabstract AND Clinical Trial, Phase III[PT]” 2,789
“hasabstract AND Clinical Trial, Phase IV[PT]” 243
“hasabstract AND Neoplasms[MT] AND Clinical Trial[PT]” 52,094
“hasabstract AND Neoplasms[MT] AND Clinical Trial, Phase III[PT]” 1,528

Table 3.2: Examples of IE targets

PMID Patient Population Compared Treatments
16234567 hepatocellular carcinoma doxorubicin versus cisplatin,

interferon alpha-2b, doxorubicin,
and fluorouracil

16192591 metastatic breast cancer doxorubicin and docetaxel versus
fluorouracil, doxorubicin, and
cyclophosphamide

16192580 malignant pleural mesothelioma cisplatin versus raltitrexed and cisplatin

the searchable interface of MEDLINE on the Web. As search queries, users can spec-
ify not only plain text keywords but also categories annotated on each abstract. By
December 2005, a total of 8,120,830 abstracts have been registered in MEDLINE with
approximately 4.3% are categorized as the class of “Clinical Trial [Publication Type]”,
and 2,789 abstracts are annotated as “Clinical Trial, Phase III [Publication Type]” (see
Table 3.1 1). One of the reasons that only a small number of abstracts are categorized
as phase III might be that the sub-categorization of “Clinical Trial [Publication Type]”
to phase I, II, III and IV has started very recently.

1“hasabstract” in the search query specifies articles that have abstracts. “PT” and “MH” are abbre-
viations of “Publication Type” and “MeSH Terms”, respectively.
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Table 3.3: Categories for base NPs

Class label Covered concept Example
Disease disease, symptom, pain, complication “metastatic breast cancer”
Treatment drug, placebo, therapy, surgery “doxorubicin”
Patient participants in clinical trials “patients”
Study clinical trial “a randomized controlled trial”
Others other than the above “the efficacy and safety”

3.2.3 Information extraction targets and data in this thesis

In this thesis, we report results of experiment in extracting “Patient Population” and
“Compared Treatments” as the two most important clinical trial design information
from phase III abstracts.2 Examples of IE targets in abstracts are shown in Table 3.2.3

Other information such as the endpoints or the number of patients enrolled in the clini-
cal trials is also crucial for EBM but the former two information best characterizes the
clinical trials, as seen in the patient recruiting site (http://clinicaltrials.gov) managed
by the same organization as MEDLINE database.

The data we use in this thesis are the most recent 200 out of 1,528 abstracts labeled
as both “Neoplasms [MeSH Terms]” and “Clinical Trial, Phase III [Publication Type]”,
on December 2005. The reasons for having added neoplasms to the search query are
that more than half of 2,789 available phase III abstracts are annotated as “Neoplasms
[MeSH Terms]”, that the reduction of vocabulary variety caused by single disease type
filtering will make the interpretation of our experimental results simple and clear, and
that neoplasms are one of the ever-threatening diseases against humanity.

3.3 Information extraction applied to phase III abstracts
In this chapter, we describe the methods and results of the IE experiment using con-

ventional NLP techniques, which consist of two parts: base NP (noun phrase) chunking
and its categorization, and regular expression pattern matching. The process is illus-
trated in Figure 3.1.

2Strictly speaking, the term “clinical trial design” stands for the methodology to avoid bias, such as
blinding or randomization. Here, however, we use the term in a broader sense.

3“PMID” is the PubMed index of a MEDLINE abstract.
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1. Original text (an example)

• Phase II to III study comparing docetaxel with fluorouracil in patients with
metastatic breast cancer.

2. Base NP chunking

• [Phase II to III study] comparing [docetaxel] with [fluorouracil] in [patients] with
[metastatic breast cancer].

3. Base NP categorization

• Study comparing Treatment with Treatment in Patient with Disease.

4. IE by pattern matching

• “Patient Population”: metastatic breast cancer

(pattern matched with: /Patient with Disease/)

• “Compared Treatments”: docetaxel versus fluorouracil

(pattern matched with: /compar.* Treatment .* Treatment/)

Figure 3.1: The IE process in this thesis

3.3.1 Base noun phrase chunking and its categorization

In the chunking step, our goal is the determination of base NPs in original texts.
A base NP is defined as the shortest unit of noun phrase. For example in Figure 3.1,
“patients with metastatic breast cancer” is an NP but not a base NP, because it could
be divided into two base NPs of “patients” and “metastatic breast cancer”. Next in the
categorization step, we attach a class label to each base NP. The class labels we set
up are shown in Table 3.3. After the process of chunking and categorization, original
texts are transformed into a set of simpler sentences, which are amiable to the following
process of pattern matching.

3.3.2 Methods and Results of automatic base noun phrase chunk-

ing and categorization

We manually annotated the 200 abstracts with correct answers of chunking and cat-
egorization, divided them into training and test sets, and then used machine learn-
ing techniques based on support vector machines (SVM) or conditional random fields
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Table 3.4: Results of base NP chunking

chunker answer system share recall precision
SVM (YamCha) 17,990 18,282 16,572 92.1% 90.6%
CRF (CRF++) 17,990 18,156 16,466 91.5% 90.7%

Table 3.5: Results of base NP categorization

classifier class length answer system share recall precision
SVM (YamCha) Disease 2.7 1,332 1,051 909 68.2% 86.5%

Treatment 2.0 4,198 3,900 3,423 81.5% 87.8%
Patient 1.9 1,309 1,175 1,150 87.9% 97.9%
Study 4.2 491 443 412 83.9% 93.0%
Others 2.1 10,660 11,421 10,131 95.0% 88.7%
total 2.2 17,990 17,990 16,025 89.1% 89.1%

CRF (CRF++) Disease 2.7 1,332 981 921 69.1% 93.9%
Treatment 2.0 4,198 3,914 3,508 83.6% 89.6%
Patient 1.9 1,309 1,216 1,201 91.7% 98.8%
Study 4.2 491 462 450 91.6% 97.4%
Others 2.1 10,660 11,409 10,292 96.5% 90.2%
total 2.2 17,990 17,982 16,372 91.0% 91.0%

(CRF). Among available NLP software tools, we employed YamCha 4 and CRF++ 5

for SVM and CRF, respectively.
Features we used are words and part-of-speeches (window size = 5; 2 previous, 2

next), some of their combinations, and chunking results in case of category determi-
nation, both on the use of SVM and CRF. As of training data in chunk determination,
we also used the sections 15 to 18 of the wall street journal part of the Penn Treebank
corpus 6, which are widely used for the NP chunking tasks.

The results of 10-fold cross validation of base NP chunking and categorization are
shown in Table 3.4 and Table 3.5, respectively.7 In the results of chunk determina-

4http://www.chasen.org/̃taku/software/yamcha
5http://www.chasen.org/̃taku/software/CRF++
6http://www.cis.upenn.edu/̃treebank
7In the result tables, “answer”: # of hand-labeled answers, “system”: # in system output, “share”: #

shared in answer and system, “recall”: percentage of share in answer, “precision”: percentage of share
in system, and “length”: average word length of base NPs.
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Table 3.6: Regular expression patterns for IE

IE target Regular expression pattern
Patient Population /Patient with Disease/

/Treatment (for|of|in) Disease/
Compared Treatments /compar.* Treatment .* Treatment/

/Treatment.* (versus|vs|or|compared with) .*Treatment/

tion, SVM and CRF show almost the same performance. Compared with the best NP
chunking results [31] using the standard data set (CoNLL 2000; sections 15 to 18 of
the wall street journal as training data and section 20 as test data), the performance
is lower. One of the reasons might be the highly frequent appearance of a long base
NP such as “a two-arm, randomized, placebo-controlled, double-blind, parallel-group,
clinical trial”. Other reasons include many uses of parentheses and hyphens in clinical
trial abstracts.

In the results of category determination, CRF shows slightly better performance than
SVM. It is consistent with the theoretical fact that CRF has an advantage in determining
labels with the consideration of global features. In the following, we use CRF for
automatic base NP chunking and categorization.

3.3.3 Regular expression pattern matching

In order to extract two IE targets such as “Patient Population” and “Compared Treat-
ments”, we set up regular expression patterns shown in Table 3.6. We extract base NPs
having the class label of “Disease” from the pattern matched expressions for “Patient
Population”, and extract base NPs having the label of “Treatment” for “Compared
Treatments”, as the final IE results. We expect readers agree that the patterns are not
too elaborate to make out. It is possibly true that those simple patterns do not match
all the expressions containing IE targets, or do match non IE targets. However, in this
thesis, we focus not on the hand-made patterns but on automatic pattern construction
based on machine learning techniques, which will be described in Chapter 3.4.
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Table 3.7: Results of IE; # of abstracts correct information extracted

IE target base NP chunking and categorization; # of abstracts
automatic labeling (AL) or hand-labeling (HL)

Patient Population automatic labeling (AL) 125
hand-labeling (HL) 131

Compared Treatments automatic labeling (AL) 118
hand-labeling (HL) 148

3.3.4 Results of information extraction from MEDLINE abstracts

The evaluation measure is the number of abstracts, whose IE targets only are ex-
tracted by regular expression pattern matching. As for the abstracts that don’t have
IE targets, correct answers are the cases nothing is extracted. If an IE target entity is
mentioned multiple times in an abstract, count as a correct answer when at least one of
those is extracted.

The results of IE from a total of 200 abstracts are shown in Table 3.7. On the sit-
uation of automatic base NP chunking and categorization, “Patient Population” and
“Compared Treatments” are correctly extracted from 125 and 118 abstracts, respec-
tively. In the comparison of the results in “Compared Treatments” between automatic
labeling (118 abstracts) and hand-labeling (148 abstracts), we notice that the failure
of automatic labeling largely affects the IE results. In addition, seeing that even the
results using hand-labeled data (131 and 148 abstracts for “Patient Population” and
“Compared Treatments”, respectively) don’t reach near full marks (namely 200 ab-
stracts), we can say that there is room (left for the next chapter) to improve the results.

3.4 Filtering based on classification techniques
Here, in order to improve the results obtained in the previous chapter, we conduct

IE with filtering based on the document and sentence classification techniques.

3.4.1 Document filtering

The purpose here is to filter out the exploratory abstracts that really don’t contain
our IE targets. In other words, selecting the MEDLINE documents using the query
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Table 3.8: Results of document classification

classifier answer system share recall precision
SVM (TinySVM) 140 159 132 94.3% 83.0%

of “Clinical Trial, Phase III [Publication Type]” does not fully achieve the purpose of
selecting confirmatory and removing exploratory abstracts. For example, abstracts that
just report the results of exploratory analyses using data or participants in past phase
III clinical trials are not excluded. In fact, the reports of exploratory analyses are less
important for EBM than those of confirmatory analyses, even with having to do with
the phase III clinical trials.

3.4.2 Methods and results of automatic document classification

We manually annotated the 200 abstracts with a correct answer of the binary class,
that is, positive class for 140 confirmatory abstracts and negative class for 60 ex-
ploratory abstracts. Then we divided them into 1 test and 199 training abstracts (leave-
one-out setting), and used a SVM classifier 8 with word frequencies as features. The
results are shown in Table 3.8.

3.4.3 Sentence filtering

Here, we are going to select the sentences that contain direct statements of IE tar-
gets. For example, from a sentence: “We compared doxorubicin to placebo in a phase
III trial”, we know without inference that the treatments compared in the trial are dox-
orubicin and placebo. However, from a sentence which describes a result: “The hazard
ratio in doxorubicin compared with placebo was 0.97”, we can only understand that
doxorubicin and placebo were compared somewhere in the analyses of the trial, that
is, it is possible that doxorubicin and placebo are not the IE targets (“Compared Treat-
ments”) in the trial. Another example is a sentence matched with the pattern “/Patient
with Disease/”. From a sentence: “We compared docetaxel to placebo in patients with
metastatic breast cancer in a phase III trial”, we know the patient population of the trial

8TinySVM: http://www.chasen.org/̃taku/software/TinySVM
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is metastatic breast cancer. However, from a false positive sentence: “Subgroup analy-
sis showed that patients with squamous-cell tumours had better survival”, we can only
know that a subgroup analysis was conducted using the patients with squamous-cell
tumours, and so we cannot get the information about the IE targets (“Patient Popula-
tion”) in the trial.

3.4.4 Methods and results of automatic sentence classification

We manually annotated the 2,390 sentences in 200 abstracts with a correct answer
of the binary class, that is, 369 positive and 2,021 negative sentences in “Patient Pop-
ulation”, and 343 positive and 2,047 negative sentences in “Compared Treatments”.
After that, we divided them into training and test sets, and then employed BACT 9,
a state-of-the-art sentence classification algorithm [32], that uses machine learning to
acquire optimal classification patterns and classify sentences according to them.

BACT takes a sentence as input in the form of an ordered tree. The form of the
trees varies according to how the connectivity of words in a sentence is defined. If
the sentence is seen as a set of independent words (no connectivity between words;
so-called bag of words; BOW), a sub-tree represents just a single word node. If the
sentence is seen as a sequence of words, a sub-tree represents an N-gram. If the sen-
tence is parsed into a word dependency tree, a sub-tree represents a set of words that
are directly connected by syntactic relations. After constructing an ordered tree for
each training sentence, BACT searches for sub-trees in each ordered tree and ranks the
sub-trees that are found according to their applicability in sentence classification.

Both the BOW and N-gram assumptions are simple: BOW assumes interesting pat-
terns exist within any single words in a sentence, and N-gram assumes interesting
patterns exist within any sequences of neighboring words in a sentence, so they can
be expressed using regular expressions. On the other hand, a dependency grammar
restriction is available only if lexical knowledge can determine a dependency rela-
tionship between the words in a sentence correctly enough. In this experiment, we
converted a base NP labeled sentence (automatic labeling or hand-labeling) into a
phrase-structure tree using the phrase-structure analyzer proposed by Charniak [9],
and then converted the phrase-structure tree into a dependency tree using the head
rules described in Collin’s doctoral dissertation [13]. Although BACT can also handle

9http://tahoo.org/̃taku/software/bact
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Table 3.9: Results of sentence classification using BACT

IE target assumption answer system share recall precision
Patient Population BOW 369 350 276 74.8% 78.9%

N-gram 369 365 293 79.4% 80.3%
dependency 369 366 290 78.6% 79.2%

Compared Treatments BOW 343 333 268 78.1% 80.5%
N-gram 343 333 272 79.3% 81.7%
dependency 343 327 261 76.1% 79.8%

a phrase-structure tree as input, we select the BOW, N-gram, and dependency tree for
its ease in interpreting patterns.

We compared performance between a BOW assumption, an N-gram assumption,
and a dependency grammar restriction. The results of 10-fold cross validation of sen-
tence classification are shown in Table 3.9. Assuming ideal circumstances in which
the parser always works correctly, we might expect dependency trees to outperform
N-grams and BOWs because dependency trees make use of more lexical knowledge.
For example, N-grams can only deal with multiple neighboring word expressions and
BOWs cannot even handle fixed expressions. However in this experiment, dependency
trees are outperformed by N-grams, and even by BOWs regarding “Compared Treat-
ments”. We can guess the reason for this is that parse errors occurred in many of the
dependency trees caused by the ambiguity of prepositional phrase (PP) attachments
and coordination structures, which are quite often appeared in clinical trial abstracts.
In the following, we use the N-gram assumption for automatic sentence filtering.

3.4.5 Results of information extraction from MEDLINE abstracts

with or without filtering

The results of IE with or without filtering from a total of 200 abstracts are shown
in Table 3.10 and Table 3.11 10. The evaluation measure is the same one as used in
Section 3.4. On the fully automatic situation, “Patient Population” and “Compared
Treatments” are correctly extracted in 153 and 136 abstracts, respectively. We can

10In Table 3.10 and Table 3.11, “AL”: automatic labeling, “HL”: hand-labeling, “AF”: automatic
filtering, and “HF”: hand-filtering. “*”, “**”, and “***” mean that the results come from the process
that includes one, two, and three (= all) non automatic steps, respectively.
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Table 3.10: Results of IE with or without filtering in terms of “Patient Population”; #
of abstracts correct information extracted

Patient Population
base NP document filtering sentence filtering # of abstracts
AL not applied not applied 125
AL not applied AF 142
AL not applied HF *155
AL AF not applied 146
AL AF AF 153
AL AF HF *161
AL HF not applied *174
AL HF AF *177
AL HF HF **183

HL not applied not applied *131
HL not applied AF *142
HL not applied HF **158
HL AF not applied *152
HL AF AF *154
HL AF HF **163
HL HF not applied **181
HL HF AF **179
HL HF HF ***187
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Table 3.11: Results of IE with or without filtering in terms of “Compared Treatments”;
# of abstracts correct information extracted

Compared Treatments
base NP document filtering sentence filtering # of abstracts
AL not applied not applied 118
AL not applied AF 130
AL not applied HF *137
AL AF not applied 130
AL AF AF 136
AL AF HF *141
AL HF not applied *157
AL HF AF *156
AL HF HF **160

HL not applied not applied *148
HL not applied AF *153
HL not applied HF **162
HL AF not applied *158
HL AF AF *157
HL AF HF **163
HL HF not applied **184
HL HF AF **178
HL HF HF ***185
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confirm that document and sentence filtering is effective for “Patient Population”: the
shift of the number of correctly extracted abstracts according to the filtering condition
is 125 (not applied), 153 (AF: automatic filtering), and 183 (HF: hand-filtering). As for
“Compared Treatments”, although it also improves the results from 118 (not applied)
to 136 (AF: automatic filtering) and 160 (HF: hand-filtering), the base NP labeling
problem still remains.

We note a comment about the number of abstracts on the fully manual labeling and
filtering situation: 187 and 185 for “Patient Population” and “Compared Treatments”,
respectively. The reasons that IE targets are not extracted from the rest (13 and 15
abstracts) include having filtered out indirect statements that may contain IE targets,
incorrect hand-labeling and hand-filtering, and typographical errors in original texts.

3.5 Discussion
In the above, we have reported the IE experiment using NLP techniques consisting

of base NP chunking and categorization, regular expression pattern matching, and doc-
ument and sentence filtering. Essentially, it is all right if we can assign a specific label
to the IE targets via the first step only (i.e. base NP chunking and categorization) and
extract them as final outputs. However, such the label is not so easy to learn by the
framework of sequence labeling, hence we have written regular expression patterns,
consulted global features in document classification, and tried to utilize information
from syntactic structures in sentence classification. Then we have seen the results of
IE are improved with the addition of document and sentence classification.

Still, of course, we need to make an effort to improve the performance of each step.
In order to raise the accuracy of the base NP chunking and categorization, one way is
to employ a multiclass classifier for the base NP categorization after executing base NP
chunking by sequence labeling. A merit of this method is to be able to incorporate finer
features such as the initial token, the last token, and the length of the chunked NPs. We
can confirm the effectiveness by using the software SVM multiclass 11 [14, 56] as
shown in Table 3.12, where the mid column corresponds to the F rate obtained by
applying sequence labeling (CRF) to both chunking and categorization (Method A),
and the right column corresponds to the method mentioned here (Method B). Note that
the results (of CRF) in Table 3.5 that are derived from using correct (gold standard)
chunks of the base NPs do not agree with the values of the mid column in Table 3.12.

11http://svmlight.joachims.org/svm multiclass.html
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Table 3.12: Comparison of F rate (%) for base NP chunking and categorization

class Method A Method B
Disease 74.0 81.6
Treatment 78.9 82.2
Patient 91.5 94.7
Study 90.1 92.9
Others 85.1 88.2

In the step of document classification, we used a classifier based on SVM. Here, we
just put a comment that there are other classifiers based on probabilistic models such
as probabilistic latent semantic indexing (PLSI) or naive Bayes classifiers.

In the sentence classification step, we might be able to utilize the information of the
headings such as BACKGROUND, OBJECTIVE, METHOD, RESULTS, and CON-
CLUSION. In our experiments, 146 out of 200 abstracts have this kind of headings.

The idea that the IE benefits from text classification is not a new one [37, 46]. In
bio-informatics, H. Yu and E. Agichtein have used a classifier based on SVM for ex-
tracting gene and protein synonyms from biological journal articles [61]. M. Craven
and J. Kumlien have applied a naive Bayes classifier to the task of protein subcellular-
localization, and also have approached using a shallow phrase-structure parser, an area
that is similar to our approach [16]. The approaches differ in that, firstly, we used de-
pendency trees, and secondly, we employed BACT that learns comprehensively from
all sub-trees of the training sentences.

As of extracting “Compared Treatments”, it has been shown that the improvement
of accuracy in base NP chunking and categorization is critical. One solution is to
conduct base NP categorization according to the MeSH, the US National Library of
Medicine’s controlled vocabulary thesaurus. One of the advantages in the solution is
no requirement for hand-labeled data for training. On the other hand, there are at least
two problems. Firstly, the MeSH categories (see Table 3.13) don’t exactly suit our
purpose. For example, although the “C” category in MeSH almost corresponds to our
“Disease” label, it also includes more general terms such as “tumor” or “recurrence”.
With regard to our “Treatment” label, the “D” and “E” categories in MeSH are helpful,
but “E” also includes terms in epidemiological methods or statistics such as “multivari-
ate analysis” or “confidence interval”. Secondly, the entry terms in MeSH don’t cover
all the representation actually used in MEDLINE abstracts. For example, “interferon
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Table 3.13: The top categories in MeSH thesaurus

1 Anatomy [A]
2 Organisms [B]
3 Diseases [C]
4 Chemicals and Drugs [D]
5 Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
6 Psychiatry and Psychology [F]
7 Biological Sciences [G]
8 Physical Sciences [H]
9 Anthropology, Education, Sociology and Social Phenomena [I]
10 Technology and Food and Beverages [J]
11 Humanities [K]
12 Information Science [L]
13 Persons [M]
14 Health Care [N]
15 Publication Characteristics [V]
16 Geographic Locations [Z]

alfa-2a”, an antiviral and antineoplastic agent, can be written as “interferon alpha-2a”,
“interferon alfa 2a”, “INF alpha-2a”, and so on. After all, we consider it is better we
will make use of the MeSH information as a feature on the use of machine learning
techniques.

3.6 Summary
In this chapter, we have reported results from experiment in extracting information

about the design of phase III clinical trials such as “Patient Population” and “Compared
Treatments” from their MEDLINE abstracts. We have seen that the results of IE are
improved with the additional use of document and sentence classification techniques.
To obtain better results in the next stage of research, the key lies in improving the
accuracy of base NP chunking and categorization, and also in improving parsing accu-
racy in sentence classification, as coordination structure or PP attachment ambiguity
reduces its overall accuracy.
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Chapter 4

A Discriminative Learning Model for
Coordinations

4.1 Introduction
Coordination, along with prepositional phrase attachment, is a major source of am-

biguity in natural language. Although only a small number of previous studies in
natural language processing have dealt with coordinations, this does not mean disam-
biguating coordinations is easy and negligible; it still remains one of the difficulties for
state-of-the-art parsers. In Charniak and Johnson’s recent work [10], for instance, two
of the features incorporated in their parse reranker are aimed specifically at resolving
coordination ambiguities.

Previous work on coordinations includes [1, 8, 35, 40, 41, 45]. Earlier studies [1, 41]
attempt to find heuristic rules to disambiguate coordinations. More recent research are
concerned with capturing structural similarity between conjuncts using thesauri and
corpora [8], or web-based statistics [40].

We identify three problems associated with the previous work.

1. Most of these studies evaluate the proposed heuristics against restricted forms of
conjunctions. In some cases, they only deal with coordinations with exactly two
conjuncts. This leaves the generality of these heuristics unclear.

2. Most of these studies assume that the boundaries of coordinations are known in
advance, which, in our opinion, is an impractical.



3. The proposed heuristics and statistics capture many different aspects of coordi-
nation. However, it is not clear how they interact and how they can be combined.

To address these problems, we propose a new framework for detecting and disam-
biguating coordinations. Being a discriminative learning model, it can incorporate a
large number of overlapping features, encoding various heuristics for coordination dis-
ambiguation. It thus provides a test bed for examining combined use of the proposed
heuristics as well as new ones. As the weight on each feature is automatically tuned
on the training data, assessing these weights allows us to evaluate the relative merit of
individual features.

Our learning model is also designed to admit examples in which only the begin-
ning and end of coordinated phrases are marked, to reduce the cost of training data
annotation.

The state space of our model resembles that of Kurohashi and Nagao’s Japanese
coordination detection method [35]. However, they considered only the decoding of
coordinated phrases and did not address automatic parameter tuning.

4.2 History of coordination disambiguation
Coordinate phrases have been recognized as a source of ambiguity that can some-

times produce multiple interpretations, and so their disambiguation has been a matter
of concern in the natural language processing community for long days. It is widely
known that a key of disambiguation lies in the similarities between coordinated phrases
[49]. Some researchers have even proceeded to build a syntax that accounts for coor-
dinations [27, 28]. However, in terms of practical natural language parsers, and in
particular, probabilistic context-free grammar parsers, incorporating such similarities
into rewrite rules is not straightforward. In fact Charniak’s famous parser has im-
proved accuracy by adding a post-processing step, which reranks parse trees according
to features including coordination relevant ones [9, 10].

There have been two topics in coordination disambiguation. One topic is the de-
termination of the boundary of coordinated conjuncts. Resnik [45] attempted to dis-
ambiguate nominal compounds by heuristics based on counts in corpus, where correct
bracketings like “(bank and warehouse) guard” or “(policeman) and (park guard)” are
discriminated from incorrect ones of “(bank) and (warehouse guard)” or “(policeman
and park) guard”. Almost in the same way, [23] focused on attachment of ambigu-
ous coordinate phrases, and [8] concentrated on coordinations where two syntactic
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readings are possible. [40] also attempted to disambiguate noun compounds based on
web-derived features.

Another topic is the coordination boundary detection from a given sentence. This is a
harder topic because quite a few syntactic readings are possible, while it is much more
practical and interesting for us in that this could be adopted as a pre-processing step
for parsing. [1, 41] attempted to detect coordination by procedures based on heuris-
tics. [34, 35] presented a more sophsticated way to detect coordination boundaries
in Japanese using dynamic programming, however, the similarity values and penalty
points for the calculation of the path scores are determined by heuristics.

Although all the above basically assumed that each coordinate conjunction conjoins
only two conjuncts, more complex coordinations that comprise three or more conjuncts
are not rare. [33] extended their method to disambiguate coordinate phrases including
punctuation in English, such as ”A, B, C, and D”.

4.3 Coordination disambiguation as sequence alignment
It is widely acknowledged that coordinations often consist of two or more conjuncts

having similar syntactic constructs [45]. Our coordination detection model also follows
this observation. To detect such similar constructs, we use the sequence alignment
technique [24].

4.3.1 Sequence alignment

Sequence alignment is defined in terms of transformation of one sequence (string)
into another through an alignment, or a series of edit operations. Each of the edit
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Figure 4.1: An alignment between ‘writer’ and ‘vintner’, represented as a path in an
edit graph
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operations has an associated cost, and the cost of an alignment is defined as the total
cost of edit operations involved in the alignment. The minimum cost alignment can
be computed by dynamic programming in a state space called an edit graph, such
as illustrated in Figure 4.1. In this graph, a complete path starting from the upper-
left initial vertex and arriving at the lower-right terminal vertex constitutes a global
alignment. Likewise, a partial path corresponds to a local alignment.

Sequence alignment can also be formulated with the scores of edit operations instead
of their costs. In this case, the sequence alignment problem is that of finding a series
of edit operations with the maximum score.

4.3.2 Edit graph for coordinations

A fundamental difference between biological local sequence alignment and coordi-
nation detection is that the former deals with finding local homologies between two
(or more) distinct sequences, whereas coordination detection is concerned with local
similarities within a single sentence.

The maximal local alignment between two identical sequences is a trivial (global)
alignment of identity transformation (the diagonal path in an edit graph). Coordination
detection thus reduces to finding off-diagonal partial paths with the highest similarity
score. Such paths never cross the diagonal, and we can limit our search space to the
upper triangular part of the edit graph, as illustrated in Figure 4.2.

4.4 Automatic parameter tuning
Given a suitable substitution matrix, i.e., function from edit operations to scores, it

is straightforward to find optimal alignments, or coordinations in our task, by running
the Viterbi algorithm in an edit graph.

In computational biology, there exist established substitution matrices (e.g., PAM
and BLOSUM) built on a generative model of mutations and their associated probabil-
ities.

Such convenient substitution matrices do not exist for coordination detection. More-
over, optimal score functions are likely to vary from one domain (or language) to an-
other. Instead of designing a specific function for a single domain, we propose a gen-
eral discriminative learning model in which the score function is a linear function of
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the features assigned to vertices and edges in the state space, and the weight of the fea-
tures are automatically tuned for given gold standard data (training examples) drawn
from the application domain. Designing heuristic rules for coordination detection, such
as those proposed in previous studies, translates to designing suitable features in our
model.

Our learning method is an extension of Collins’s perceptron-based method for se-
quence labeling [12]. However, a few incompatibilities exists between Collins’s se-
quence labeling method and edit graphs used for sequence alignment.

1. Collins’s method, like the linear-chain conditional random fields (CRFs) [36,
52], seeks for a complete path from the initial vertex to the terminal using the
Viterbi algorithm. In an edit graph, on the other hand, coordinations are repre-
sented by partial paths. And we somehow need to complement the partial path
to make a complete path.

2. A substitution matrix, which defines the score of edit operations, can be rep-
resented as a function of features defined on edges. But to deal with complex
coordinations, a more expressive score function is sometimes desirable, so that
scores can be computed not only on the basis of a single edit operation, but also
on consecutive edit operations. Edit graphs are not designed to accommodate
features for such a higher-order interaction of edit operations.

To reconcile these incompatibilities, we derive a more finer-grained model from the
original edit graph. In presenting the description of our model below, we reserve the
terminology ‘vertex’ and ‘edge’ for the original edit graph, and use ‘node’ and ‘arc’
for our new model, to avoid confusion.

4.4.1 State space for learning coordinations

The new model is also based on the edit graph. In this model, we create a node for
each triple (v, p,e) where v is a vertex in the original edit graph, e∈{Delete, Insert,Substitute}
is an admissible 1 edit operation at the vertex v, and p ∈ {Inside,Outside} is a polarity
denoting whether or not the edit operation e is involved in an alignment.

1For a vertex v at the border of an edit graph, some edit operations are not applicable (e.g., Insert
and Substitute at vertices on the right border in Figure 4.2); we say such operations are inadmissible at
v. Otherwise, an edit operation is admissible.
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Figure 4.2: An edit graph for coordinate detection

(a) (b) (c) (d) (e)

Figure 4.3: Five node types created for a vertex in an edit graph: (a) Inside Delete, (b)
Inside Insert, (c) Inside Substitute, (d) Outside Delete, and (e) Outside Insert.

For a node (v, p,e), we call the pair (p,e) its type. All five possible node types
for a single vertex of an edit graph are shown in Figure 4.3. We disallow the type
(Substitute,Outside), as it is difficult to attribute an intuitive meaning to substitution
when two words are not aligned (i.e., Outside).

Arcs between nodes are built according to the transitions allowed in the original edit
graph. To be precise, an arc between node (v1, p1,e1) and node (v2, p2,e2) is created
if and only if the following three conditions are met.

(i) Edit operations e1 and e2 are admissible at v1 and v2, respectively,

(ii) the sink of the edge for e1 at v1 is v2, and

(iii) it is not the case with p1 = p2 and (e1,e2) = (Delete, Insert).

64



(a) (b)

Figure 4.4: Series of edit operations with an equivalent net effect. (a) (Insert,Delete),
and (b) (Delete, Insert). (b) is prohibited in our model.

Condition (iii) is introduced so as to disallow transition depicted in Figure 4.4(b).
In contrast, the sequence (Insert,Delete) (Figure 4.4(a)) is allowed. The net effects of
these operation sequences are identical, in that they both skip one word each from the
two sequences to be aligned. As a result, there is no use in discriminating between
these two, and one of them, namely (Delete, Insert), is prohibited.

4.4.2 Learning task

By the restriction of condition (iii) introduced above and the omission of Outside

Substitute from the node types, we can uniquely determine the complete path (from
the initial node to the terminal node) that conjoins all the local alignments by Out-

side nodes (which correspond to edges in the original edit graph). In Figure 4.2, the
augmented Outside edges in this unique path are plotted as dotted lines for illustration.

Thus we obtain a complete path which is compatible with Collins’s perceptron-based
sequence learning method. The objective of the learning algorithms, which we will
describe in the next section, is to optimize the weight of features so that running the
Viterbi algorithm will yield the same path as the gold standard.

Because a node in our state space corresponds to an edge in the original edit graph
(see Figure 4.3), an arc in our state space is actually a pair of consecutive edges (or
equivalently, edit operations) in the original graph. Hence our state model is more ex-
pressive than the original edit graph in that the score function can have a term (feature)
defined on a pair of edit operations instead of one.
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Figure 4.5: A coordination with four conjuncts represented as (a) chainable, and (b)
non-chainable partial paths. We take (a) as the canonical representation.

4.4.3 More complex coordinations

Even if a coordination comprises three or more conjuncts, our model can handle
them as it can be represented as a set of pairwise local alignments that are chainable

[24, Section 13.3]. If pairwise local alignments are chainable, a unique complete path
that conjoins all these alignments can be determined, allowing the same treatment as
the case with two conjuncts.

For instance, a coordination with four conjuncts (A, B, C and D) can be decom-
posed into a set of pairwise alignments {(A,B),(B,C),(C,D)} as depicted in Figure 4.5
(a). This set of alignments are chainable and thus constitute the canonical encoding
for this coordination; any other pairwise decomposition for these four conjuncts, like
{(A,B),(B,C),(A,D)} (Figure 4.5 (b)) is not chainable.

Our model can handle multiple non-nested coordinations in a single sentence as
well, as they can also be decomposed into chainable pairwise alignments. However,
it cannot encode nested coordinations like (A, B, and (C and D)), which should be a
future challenge.

4.5 Algorithms

4.5.1 Reducing the cost of training data construction

Our learning method is supervised, meaning that it requires training data annotated
with correct labels. Since a label in our problem is local alignments (or paths in an edit
graph) representing coordinations, the training sentences have to be annotated with
word-by-word alignments.
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There are two reasons relaxing this requirement is desirable. First, it is expensive
to construct such data. Second, there are coordinations in which the word-by-word
correspondence is unclear even for humans. In Figure 4.2, for example, a word-by-
word alignment of ‘standard’ with ‘dense’ is depicted, but it might be more natural
to regard a word ‘standard’ as being aligned with two words ‘dose dense’ combined
together.

Even when the word-by-word alignment is uncertain, the boundaries of conjuncts
are often obvious, and it is also much easier to mark only the beginning and end of each
conjunct. Thus we would like to allow for training examples in which only alignment
boundaries are specified, instead of a full word-by-word alignment.

For these examples, conjunct boundaries corresponds to a rectangular region rather
than a single path in an edit graph. The shaded box in Figure 4.2 illustrates the rectan-
gular region determined by the boundaries of an alignment between the phrases “182
% for the dose dense arm” and “99 % for the standard arm”. There are many possible
alignment paths in this box, among which we do not know which one is correct (or
even likely). To deal with this difficulty, we propose two simple heuristics we call (i)
path-based and (ii) box-based methods. As mentioned earlier, both of these methods
are based on Collins’s averaged-perceptron algorithm for sequence labeling [12].

4.5.2 Path-based method

Our first method, which we call the “path-based” algorithm, is shown in Figure 4.6.
We denote by A(x) all possible alignments (paths) over x. The algorithm receives T ,
the maximum number of iterations, and a set of examples S = {(xi,Yi)} as input, where
xi is a sentence (a sequence of words with their attributes, e.g., part-of-speech, prefixes
and suffixes) and Yi ⊂ A(xi) is the set of admissible alignments (paths) for xi. When a
sentence is fully annotated with a word-by-word alignment y, Yi = {y} is a singleton
set. In general boundary-only examples we described in Section 4.5.1, Yi holds all
possible alignment compatible with the marked range, or equivalently, paths that pass
through the upper-left and lower-right corners of a rectangular region. Note that it is
not necessary to explicitly enumerate all the member paths of Yi; the set notation here
is only for the sake of presentation.

The external function f (x,y) returns a vector (called the global feature vector in
[52]) of the number of feature occurrences along the alignment path y. In the beginning
(line 5 in the figure) of the inner loop, the target path (alignment) is recomputed with
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input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for t ← 1 . . . T do
3: Δw← 0
4: for each (xi,Yi) ∈ S do
5: y← argmaxy∈Yi w · f (xi,y)
6: y′ ← arg maxy∈A(xi) w · f (xi,y)
7: Δ f ← f (xi,y)− f (xi,y′)
8: Δw← Δw + Δ f
9: end for

10: if Δw = 0 then
11: return w̄
12: end if
13: w← w + Δw
14: w̄← [(t−1)w̄+ w]/t
15: end for
16: return w̄

Figure 4.6: Path-based algorithm

the current weight vector w. The argmax in lines 5 and 6 can be computed efficiently
(O(n2), where n is the number of words in x) by running a pass of Viterbi algorithm
in the edit graph for x. The weight vector w varies between iterations, and so does the
most likely alignment with respect to w. Hence the recomputation in line 5 is needed.

4.5.3 Box-based method

Our next method, called “box-based”, is designed on the following heuristics. Given
a rectangle region representing a local alignment (hence all nodes in the region are of
polarity Inside) in an edit graph, we distribute feature weights in proportion to the
probability of a node (or an arc) being passed by a path from the initial (upper left)
node to the terminal (lower right) node of the rectangle. We assume paths are uniformly
distributed.

Figure 4.8 displays an 8×8 sub-grid of an edit graph. The figure under each vertex
shows the number of paths passing through the vertex. Vertices near the upper-left and
the lower-right corner have a large frequency, and the frequency drops exponentially
towards the top right corner and the bottom left corner, hence placing a strong bias
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input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for each (xi,Yi) ∈ S do
3: gi← (1/|Yi|)∑y∈Yi

f (xi,y)
4: end for
5: for t ← 1 . . . T do
6: Δw← 0
7: for each (xi,Yi) ∈ S do
8: y′ ← argmaxy∈A(xi) w · f (xi,y)
9: Convert y′ into its box representation Y ′

10: g′ ← (1/|Y ′i |)∑y∈Y ′i f (xi,y)
11: Δ f ← gi−g′

12: Δw← Δw + Δ f
13: end for
14: if Δw = 0 then
15: return w̄
16: end if
17: w← w + Δw
18: w̄← [(t−1)w̄+ w]/t
19: end for
20: return w̄

Figure 4.7: Box-based algorithm

on the paths near diagonals. This distribution naturally fits our preference towards
alignments with a larger number of substitutions.

The pseudo-code for the box-based algorithm is shown in Figure 4.7. For each
example xi and its possible target labels (alignments) Yi, this algorithm first (line 3)
computes and stores in the vector gi the average number of feature occurrences in all
possible target paths in Yi. This quantity can be computed simply by summing over all
feature occurrences multiplied by the pre-computed frequency of each nodes and arcs
at which these features occur, analogously to the forward-backward algorithm. In each
iteration, the algorithm scans every example (lines 7–13), computing the Viterbi path
y′ (line 8) according to the current weight vector w. Line 9 then converts y′ to its box
representation Y ′, by sequentially collapsing consecutive Inside nodes in y′ as a box.

For instance, let y′ be the local alignment depicted in Figure 4.2. The box Y ′ com-
puted in line 9 for this y′ is the shaded area in the figure. In parallel to the initialization
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Figure 4.8: Number of paths passing through the vertices of an 8×8 grid.

step in line 3, we store in g′ the average feature occurrences in Y ′ and update the cur-
rent weight vector w by the difference between the target gi and g′. These steps can
be interpreted as a Viterbi approximation for computing optimal set Y ′ of alignments
directly.

4.6 Related work

4.6.1 Discriminative learning of edit distance

In our model, the state space of sequence alignment, or edit graph, is two-dimensional
(which is actually three-dimensional if the dimension for labels is taken into account).
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This is contrastive to the one dimensional models used by Collins’s perceptron-based
sequence method [12] which our algorithms are based upon, and by the linear-chain
CRFs.

McCallum et al. [39] proposed a CRF tailored to learning string edit distance for the
identity uncertainty problems. The state space in their work is two dimensional just
like our model, but it is composed of two decoupled subspaces, each corresponding
to ‘match’ and ‘mismatch,’ thus sharing only the initial state. It is not possible to
make a transition from a state in the ‘match’ state space to ‘mismatch’ space (and vice
versa). As we can see from the decoupled state space, this method is based on global
alignment rather than local alignment; it is not clear whether their method can identify
local homologies in sequences. Our method uses a single state space in which both
‘match (inside)’ and ‘mismatch (outside)’ nodes co-exist and the transition between
them is permitted.

4.6.2 Inverse sequence alignment in computational biology

In computational biology, the estimation of a substitution matrix from data is called
the inverse sequence alignment problem. Until recently, there have been a relatively
small number of papers in this field despite a large body of literature in sequence
alignment. Theoretical studies in the inverse sequence alignment include [43, 54],
both of which regards the inverse sequence alignment as an instance of Eppstein’s
inverse parameter problem [20]. Recently, CRFs have been applied for optimizing edit
distance for global protein sequence alignment [18].

4.7 Empirical evaluation

4.7.1 Dataset and Task

We used the GENIA Treebank beta corpus [30]2 for evaluation of our methods. The
corpus consists of 500 parsed abstracts in MEDLINE with a total of 4529 sentences.

Although the Penn Treebank Wall Street Journal (WSJ) corpus is the de facto stan-
dard corpus for evaluating chunking and parsing performance, it lacks adequate struc-
tural information on coordinations, and therefore does not serve our purpose. Many

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
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coordinations in the Penn Treebank are given a flat bracketing like (A, B, and C D),
and thus we cannot tell which of ((A, B, and C) D) and ((A), (B), and (C D)) gives a
correct alignment. The GENIA corpus, in contrast, distinguishes ((A, B, and C) D) and
((A), (B), and (C D)) explicitly, by providing more detailed bracketing. In addition,
the corpus contains an explicit tag “COOD” for marking coordinations.

To avoid nested coordinations, which admittedly require techniques other than the
one proposed in this thesis, we selected from the GENIA corpus sentences in which
the conjunction “and” occurs just once. After this operation, the number of sentences
reduced to 1668, from which we further removed 32 that are not associated with the
“COOD” tag, and 3 more whose annotated tree structures contained an obvious errors.
Of the remaining 1633 sentences, 1061 were coordinated noun phrases annotated with
NP-COOD tags, 226 coordinated verb phrases (VP-COOD), 142 coordinated adjective
phrases (ADJP-COOD), and so on. Because the number of VP-COOD, ADJP-COOD,
and other types of coordinated phrases are too small to make a meaningful benchmark,
we focus on coordinated noun phrases in this experiment.

The task hence amounts to identifying coordinated NPs and their constituent con-
juncts in the 1633 sentences, all of which contain a coordination marker “and” but only
1061 of which are actually coordinated NPs.

4.7.2 Baselines

We used several publicly available full parsers as baselines: (i) the Bikel parser
[5] version 0.9.9c with configuration file “bikel.properties (denoted as Bikel/Bikel),
(ii) the Bikel parser in the Collins parser emulation mode (using “collins.properties
file) (Bikel/Collins), and (iii) the Charniak and Johnson’s reranking parser (Charniak-
Johnson)[10]. We trained Bikel’s parser and its Collins emulator with the GENIA cor-
pus, WSJ (Penn Treebank), and the combination of the two. Charniak and Johnson’s
parser was used as distributed at Charniak’s home page (and is WSJ trained).

Another baseline we used is chunkers based on linear-chain CRFs with the standard
BIO labels. We trained two types of CRF-based chunkers by giving different BIO
sequences, one for the conjunct bracketing and the other for coordination bracketing.
The chunkers were implemented with T. Kudo’s CRF++ package version 0.45. We
varied its regularization parameters C among C ∈ {0.01,0.1,1,10,100,1000}, and the
best results among these are reported below.
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Table 4.1: Features for the proposed methods
Substitute (diagonal) nodes

• Indicators of the word, POS and morphological attributes of xi, x j, (xi−1, xi), (xi, xi+1),
(x j−1, x j), (x j, x j+1), and (xi, x j), respectively combined with the type of the node.
• For each of the word, POS and morphological attributes, an indicator of whether the

respective attribute is identical in xi and x j, combined with the type of the node.
Delete (vertical) nodes

• Indicators of the word, POS and morphological attributes of xi, x j, x j−1, (xi−1, xi), (xi,
xi+1), and (x j−1, x j), respectively combined with the type of the node.

Insert (horizontal) nodes
• Indicators of the word, POS and morphological attributes of xi, xi−1, x j, (xi−1, xi),

(x j−1, x j), and (x j, x j+1), respectively combined with the type of the node.
Any arcs

• Indicators of the POS attribute of xi, xi−1, x j, x j−1, (xi−2, xi−1), (xi−1, xi), (xi, xi+1),
(x j−2, x j−1), (x j−1, x j), (x j, x j+1), (xi−1, x j−1), (xi−1, x j), (xi, x j−1) and (xi, x j), re-
spectively combined with the type of the arc.

Inside-Outside and Outside-Inside arcs
• Indicator of the distance j− i between two words xi and x j, combined with the type

of the arc.

4.7.3 Features

Let x = (x1, . . . ,xn) be a sentence, with its member xi a vector of attributes for the ith
word. The attributes include word surface, part-of-speech (POS), and suffixes, among
others.

Table 4.1 summarizes (i) the features assigned to the nodes whose corresponding
edge in the original edit graph for x is emanating from row i and column j, and (ii) the
features assigned to the arcs (consisting of two edges in the original edit graph) whose
joint (the vertex between the two edges) is a vertex at row i and column j.

We also tested the path-based and box-based methods, and the CRF chunkers, both
with and without suffix features.

Although this is not a requirement of our model or algorithms, every feature we use
in this experiment is binary; if the condition associated with a feature is satisfied, the
feature takes a value of 1; otherwise, it is 0. A condition typically asks whether or not
specific attributes match those at a current node, arc, or their neighbors.

We used the POS tags from the GENIA corpus as the POS attribute. The morpholog-
ical features include 3- and 4-gram suffixes and indicators of whether a word includes
capital letters, hyphens, and digits.
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For the baseline CRF-based chunkers, we assign the word (surface word), POS (from
GENIA), and morphological features to nodes, and the POS features to edges. The
feature set is identical to those used for our proposed methods, except for features
defined on row-column combination (i.e., those defined over both i and j in Table 4.1),
which cannot be incorporated as a local features in chunkers based on linear chain.

For the Bikel (and its Collins emulation) parsers which accepts POS tags output by
external taggers upon testing, we gave them the POS tags from the GENIA corpus, for
fair comparison with the proposed methods and CRF-based chunkers.

4.7.4 Evaluation criteria

We employed two evaluation criteria: (i) correctness of the conjuncts output by the
algorithm, and (ii) correctness of the range of coordinations as a whole.

For the correctness of conjuncts, we further use two evaluation criteria. The first
evaluation method (“pairwise evaluation”) is based on the decomposition of coordina-
tions into the canonical set of pairwise alignments, as described in Section refsec:ternally-
and-larger-conjuctions. After the set of pairwise alignments is obtained, each pairwise
alignment is transformed into a box surrounded by their boundaries. Using these boxes,
we evaluate precision, recall, and F rate through the following definition. The preci-
sion measures how many of the boxes output by the algorithm exactly match those in
the gold standard, and the recall is the percentage of the correct boxes found by the
algorithm. The F rate is the harmonic mean of the precision and recall.

The second evaluation method (“chunk-based evaluation”) for conjuncts is based on
whether the algorithm correctly outputs the beginning and end of each conjunct, in
the same manner as the chunking task. Here, we adopt the evaluation criteria for the
CoNLL 99 NP bracketing task 3; The precision equals how many of the NP conjuncts
output by the algorithm are correct, and the recall is the percentage of the correct NP
conjuncts found by the algorithm.

Of these two evaluation methods for conjuncts, it is harder to obtain a higher pair-
wise evaluation score than the chunk-based evaluation. To be counted as a true positive
in the pairwise evaluation, two consecutive chunks must be output correctly by the al-
gorithm.

For the correctness of the coordination range, we check if both the start of the first
coordinated conjunct and the end of the last conjunct in the gold standard match those

3http://www.cnts.ua.ac.be/conll99/npb/
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Table 4.2: Performance on conjunct bracketing. P: precision (%), R: recall (%), F: F
rate.

Pairwise evaluation Chunk-bassed evaluation
Method P R F P R F
Path-based 61.4 56.2 58.7 70.9 66.9 68.9
Path-based w/o word and suffix features 61.7 58.8 60.2 71.2 69.7 70.5
Path-based w/o arc features 49.1 50.1 49.6 59.2 62.9 61.0
Box-based 60.6 58.3 59.4 70.5 69.1 69.8
Box-based w/o word and suffix features 59.5 58.3 58.9 69.7 69.5 69.6
Box-based w/o arc features 49.3 50.0 49.7 57.9 61.1 59.5
Linear-chain CRF chunker (conjunct bracketing) 62.6 51.4 56.4 71.0 66.1 68.5
Bikel/Collins (trained with GENIA) 50.0 48.6 49.3 65.0 64.2 64.6
Bikel/Bikel (trained with GENIA) 50.1 47.8 49.0 63.9 61.3 62.6

output by the algorithm. The reason we evaluate coordination range is to compare
our proposed method with the full parsers trained on WSJ (but applied to GENIA).
Although WSJ and GENIA differ in the way conjuncts are annotated, they are mostly
identical on how the range of coordinations are annotated, and hence comparison is
feasible in terms of coordination range. For the baseline parsers, we regard the brack-
eting directly surrounding the coordination marker “and” as their output.

In [11], an F score of 75.5 is reported for the Bikel parser on coordination detection.
Their evaluation is based on dependencies, which is different from our evaluation crite-
ria based on boundaries. Generally speaking, our evaluation criterion seems stricter, as
exemplified by the mismatch in Figures 7 and 8 of Clegg and Shepherd’s paper [11]; in
these figures, our evaluation criterion would result in zero true positive, whereas their
evaluation counts the dependency arc from ‘genes’ to ‘human’ as one true positive.

4.7.5 Results and discussion

The results of conjunct bracketing and coordination bracketing are shown in Ta-
bles 4.2 and 4.3, respectively. These are the results of a five-fold cross validation.
We ran the proposed methods until convergence or the cutoff iteration of T = 10000,
whichever comes first.

Some baseline parsers are evaluated only for coordination boundaries because, as
described in Section 4.7.1, they are trained with the Penn Treebank which differs from
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Table 4.3: Performance on coordination bracketing. P: precision (%), R: recall (%), F:
F rate.

P R F

Path-based 58.2 55.3 56.7
Path-based w/o word and suffix features 57.7 56.6 57.2
Path-based w/o arc features 46.1 48.4 47.3
Box-based 55.6 54.4 55.0
Box-based w/o word and suffix features 54.8 54.6 54.7
Box-based w/o arc features 42.9 45.9 44.4

Linear-chain CRF chunker (conjunct bracketing) 43.9 46.7 45.3
Linear-chain CRF chunker (coordination bracketing) 58.4 51.0 54.5
Bikel/Collins (trained with GENIA) 44.0 45.4 44.7
Bikel/Collins (trained with WSJ) 42.3 43.2 42.7
Bikel/Collins (trained with GENIA+WSJ) 43.3 45.1 44.1
Bikel/Bikel (trained with GENIA) 44.8 45.4 45.1
Bikel/Bikel (trained with WSJ) 40.7 41.5 41.1
Bikel/Bikel (trained with GENIA+WSJ) 43.9 45.8 44.9
Charniak-Johnson reranking parser 48.3 45.2 46.7
Charniak (former version) 41.4 40.8 41.1

Table 4.4: Performance on coordination bracketing; path-based algorithms without
using word and suffix features. P: precision (%), R: recall (%), F: F rate.

P R F

Averaged perceptron 57.7 56.6 57.2
Averaged perceptron (L1-norm regularization) 57.4 57.1 57.3
Averaged perceptron (L2-norm regularization) 57.6 57.1 57.4
Averaged perceptron (lambda trick) 53.9 50.0 51.9
MIRA 51.3 51.9 51.6
Bayes point machine 58.8 55.7 57.2
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the coordination annotation of the GENIA Treebank.
The path-based method (without words and suffixes) and box-based method (with

full features) each achieved 2.0 and 1.3 point improvement over the CRF chunker in
terms of the F score in chunk-based evaluation, 3.8 and 3.0 point improvement in
pairwise evaluation and 2.7 and 0.5 point in coordination identification, respectively.
Our methods also showed a performance considerably higher than the baseline parsers.

To investigate whether the features assigned to arcs are effective or not, we also
evaluated the proposed methods by removing arc features altogether. Without the arc
features, the F rate dropped around 10 point both in the path-based and box-based
method.

The performance of the path-based method was better when the word and suffix fea-
tures were removed, while the box-based method and CRF chunker performed better
with these features.

Among the baseline parsers, Charniak and Johnson’s reranking parser achieved the
highest F-score, despite being trained on the WSJ corpus. This is surprising given
that other parsers shows a significantly inferior performance when trained on the Penn
Treebank. For the Bikel/Bikel and Bikel/Collins parsers, the F measure was highest
when they were trained on the GENIA corpus alone. This should be the effect brought
by the new features for coordination disambiguation used in Charniak and Johnson’s
parser.

We also examined the performance of variants of the perceptron algorithms, de-
scribed in Section 2.6. All those are path-based and without using word and suffix
features. In Table 4.4, “Averaged perceptron” denotes the same one as “Path-based
w/o word and suffix features” in Table 4.3. The hyper parameter C are 1.0 for L1-
norm, 0.0001 for L2-norm, and 1.0 for the lambda trick, those are determined by trial
and errors. Note that MIRA is the online algorithm, whereas others are batch ones.
For the Bayes point machine, we prepare eight inner systems which use in total 80%
training data randomly selected in each iteration.

4.8 Summary
We have proposed a new coordination learning and detection method that can incor-

porate many different features, and automatically optimize their weights on training
data.
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In the experiment of Section 4.7, we obtained a performance that are superior to a
linear-chain chunker and to the state-of-art full parsers.

We used only syntactic and morphological features, and did not use external sim-
ilarity measures like thesauri and corpora, although they are reported to be effective
for disambiguating coordinations. We note that it is easy to incorporate such external
similarity measures as features in our model, thanks to its two-dimensional state space.
The similarity of two words derived from external knowledge bases can be assigned to
a Substitute node at the corresponding locations in the state space, in a straightforward
manner. This is a topic we are currently working on.

We are also planning to reimplement our algorithms using CRFs instead of the av-
eraged perceptron algorithm.
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Chapter 5

Conclusions

In this thesis, we have focused on developing the systems for information extraction
and coordination disambiguation. As for information extraction, we have seen that to
mark terms regarding treatments and patients is not so difficult. However, if we would
like to extract terms in consideration of more detailed contexts, such as sentence struc-
tures, we need parser outputs in high accuracy. Biomedical texts contain a great many
of coordinated phrases, that in fact should be the obstacles for conventional parsers, as
well as they likely to include important information for EBM. Then we have proposed a
method for detecting and disambiguating coordinate phrases, a unique feature of which
is that it employs a perceptron-like learning algorithm to adapt the substitution matrix
to the training data drawn from the target language and domain. We have obtained a
promising empirical result in detecting and disambiguating coordinated noun phrases
in the GENIA corpus, despite using a relatively small number of training examples
with minimal features.

As future work, one, but significant, remaining problem is to adapt nested coor-
dinations. Our proposed method can not deal with those because it is impossible to
represent a nested coordination as a path in the upper triangle state space. However,
it is the fact that very often we come across expressions containing nested coordina-
tions in biomedical texts. For instance, we return to the MEDLINE abstract shown in
Figure 1.1. We find a nested coordination in the sentence:

“Median times to progression and median survival times were 6.1 months
and 8.9 months in arm A and 7.2 months and 9.5 months in arm B ,
respectively .”

Again we emphasize that the author described clinically important information using



Table 5.1: Evaluation of Charniak and Johnson’s state-of-the-art parsing accuracy (re-
call) with respect to the “COOD” tags in GENIA corpus, stratified by non nested or
nested coordination

total non nested nested
COOD type # of tags # of tags recall (%) # of tags recall (%)
NP 2591 1797 43.2 794 38.5
VP 485 312 60.6 173 63.6
ADJP 409 304 49.0 105 41.0
S 283 133 44.4 150 38.0
PP 209 124 50.0 85 45.9

the structure of nested coordination in the sentence.
According to our survey of 100 MEDLINE abstracts regarding clinical trials, 303

are nested among a total of 1053 coordinations. Moreover as for the GENIA corpus,
we show in Table 5.1 that the rate of nested coordination is one third to one quarter
(more than half with respect to COOD type “S”). We see also in Table 5.1 that nested
coordination is harder to detect, except COOD type “VP”.

We wish to construct the nested coordination analyzer that can deal with those, and
we are convincing that the systems will be valuable especially in conducting EBM (i.e.
meta-analysis or systematic review for clinical trials), and also make a great deal of
contribution to the NLP community.
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