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Abstract

Much attention has been paid recently to Feedback Error Learning (FEL)

control, which gives good improvement on the tracking performance of a plant to

be controlled by means of on-line learning, without a mathematical model of the

plant. A remarkable feature of this scheme is that it uses a feedforward controller

which is adjusted by some learning law depending on the feedback error signal.

This thesis addresses how to generalize and apply FEL to Multi-input Multi-

output (MIMO) systems in the framework of adaptive control.

First, the thesis generalizes the FEL scheme to MIMO systems which are

not necessarily biproper, and hence not invertible with properness. An adaptive

feedforward controller based on FEL is derived using linear parameterization.

The stability of the adaptive control law is proved with and without the positive

realness condition for strictly proper and biproper systems, respectively.

Second, a new method for closed-loop identification of a MIMO plant, based

on MIMO-FEL, is proposed. Given a roughly designed control system, a feedfor-

ward controller is constructed by learning the plant inverse to achieve desirable

responses. The trained feedforward controller then generates a model of the plant,

which is effective for re-designing the control system to improve performance.

Third, the exponential convergence of the tracking error in a MIMO-FEL

scheme is proved without the full persistent excitation condition. The merit of

such a result is that, in practice, this condition is undesirable or even impossible to

satisfy, while good tracking performance is required. In addition, by making full
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use of this performance, the plant parameter can be estimated during closed-loop

operation based on frequency response.

Finally, to prove the practicality of the proposed work an experiment is per-

formed to teach robots how to write one-stroke characters in an actual envi-

ronment. In particular, a feedforward controller must be designed for two-link

manipulators to improve tracking performance despite limited knowledge of the

surroundings. MIMO-FEL is employed to tune the feedforward controller. After

convergence, the feedforward controllers are switched depending on the target

character to be written. This switching criterion is a clear contrast with the

precise identification approach, which uses a single general-purpose controller.

Keywords:

Feedback Error Learning, Adaptive and Learning Control, MIMO Systems, Sta-

bility Analysis, Closed-loop Identification, Two-link Manipulator
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Chapter 1

Introduction

1.1. Overview

Recently, adaptive learning control has been attracting much attention due to

its great effectiveness in improving tracking performance. The powerful idea

behind adaptive learning control is that it uses adaptive and learning control

techniques to automatically adjust the parameters or structure of the controller

to provide a satisfactory or desired control response. It can be classified into two

categories: memory-based and memoryless techniques. For the memory-based

techniques, which require memory, the most common approach is the so-called

iterative learning control (ILC), which uses the error recorded in the preceding

trial to improve the performance in the current one and requires, in general, a

resetting procedure at the beginning of each new trial [1, 2, 3]. Thus, ILC requires

many steps to achieve asymptotic convergence of the tracking error. However, for

the memoryless techniques, which do not require memory (i.e., continuous time

framework), it is common to use classical adaptive control techniques, which can

be divided into direct and indirect approaches, to ensure asymptotic convergence

of the tracking error [4, 5, 6, 7]. These techniques usually include the notion

of “model” of the true plant or the existence of an identification mechanism to

provide an implicit or explicit plant model to the adaptation algorithm. Further,

it is known that the adaptation of feedback controller produces a bad transient

response [4, 5] due to initial estimation error.

However, there is a different approach to these techniques, which requires
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neither memory nor many trials nor extensive modeling nor online parameter

estimation. This technique is called Feedback Error Learning (FEL). The concept

of FEL was given by Kawato and his group in 1987 [8], who proposed a model

of our body acquiring accurate motion. Signal transmission in our neural system

is too slow to achieve enough accuracy via feedback alone. Hence our body

uses a feedforward mechanism and adapts it by learning from feedback error.

Kawato et al. applied this mechanism to control system design, which was novel

in control literature. They originally adopted artificial neural networks (ANN) as

a function generator for the feedforward controller. Their pioneering results can

be summarized as follows:

1. There is no need for extensive modeling or parameter estimation for the

plant to be controlled.

2. As learning proceeds, an inverse dynamics model, which represents the feed-

forward controller, gradually takes the place of the feedback controller as

the main controller.

3. After learning, the acquired model learns the dynamics and inverse dynam-

ics of the plant.

4. The model can adapt to a sudden change in the dynamics of the controlled

system.

FEL has become a promising method for designing a control system having a

good tracking property without extensive system modeling.

Miyamura and Kimura [9] established the theoretical stability of the FEL in

the framework of linear control theory. They investigated FEL from the view-

point of adaptive control theory. The learning algorithm of FEL has been ex-

ploited extensively in the framework of conventional adaptive control. Further,

the stability of the algorithm has been established based on the notion of strictly

positive realness (SPR), see Appendix for a definition.

However, Muramatsu and Watanabe [10] relaxed the SPR by using the error

signal between the reference and the output signal as well as the feedback input.

2



Unlike [8], references [9, 10] used an adaptive linear filter for the function approx-

imator, and did not use ANN; nonetheless the learning of the inverse model was

effective.

Wongsura and Kongprawechnon [11, 12, 13, 14] studied a discrete-time setting

of FEL and call it discrete-time feedback error learning (DTFEL).

An extension of the above work to systems with known time delay was dis-

cussed by Miyamura and Kimura [15], Miyamura [16] and Muramatsu and Watan-

abe [17]. However, Terashita and Kimura [18] considered FEL with unknown time

delay.

FEL was also extended and studied for nonlinear systems [19, 20, 21]. In

particular, the relationship between FEL and nonlinear adaptive control with

adaptive feedback linearization was discussed by Nakanishi and Schaal [19]. They

showed that FEL can be interpreted as a form of nonlinear adaptive control.

FEL has been implemented successfully in robotics applications. Miyamoto et

al. [22] have successfully applied the work proposed in [8] to control an industrial

robotic manipulator (Kawasaki-Unimate PUMA 260) with the neural networks

model in a microcomputer. It has been also applied to SCARA robots [23, 24],

and been implemented in humanoid robot, inverted pendulum and flexible link

[25, 26, 27]. All the experimental results have shown the effectiveness of using

FEL to improve tracking performance.

The following definitions are used throughout this dissertation:

• A system G(s) is strictly proper if G(s) → 0 as s →∞.

• A system G(s) is bi-proper if G(s) → C, where det C 6= 0, as s →∞.

• A system P (s) is improper if G(s) →∞ as s →∞.

• A signal is sufficiently rich if it satisfies the persistent excitation (PE) con-

dition, see Appendix.

1.2. The FEL Scheme

The original structure of FEL is shown in Fig. 1.1. It is a two degree of freedom

(2DOF) control scheme which consists of a feedback controller and a tunable feed-

3



Figure 1.1. Feedback Error Learning (Original Scheme, Kawato [28])

forward controller corresponding to the inverse model. The feedback controller

maintains closed-loop stability while the feedforward controller improves track-

ing performance. ANN models have been used to represent the inverse model

structure [8, 28]. Recently, linear filter parameterizations have been used instead

of ANN to parameterize the inverse model structure [9, 10]. The main objective

of FEL scheme is to use feedback control input ufb(t) to tune the feedforward

controller (inverse model). After convergence, the feedforward controller equals

the inverse model of the plant and e(t) converges to zero.

The learning law for the above FEL scheme established in [8] can be described

as follows:

dθ

dt
= αufb(t)

∂uff

∂θ
(t), (1.1)

where θ is the tunable parameter of the feedforward controller (inverse model),

and α is to adjust the learning speed. Miyamura and Kimura [9] derived the

learning law based on adaptive control standpoint using the gradient method

with the error function defined as

V =
1

2
(uff(t)− u0(t))

T (uff(t)− u0(t)), (1.2)

where u0 is the exact feedforward signal which gives y(t) = r(t). The gradient

method deduces the following tuning rule,

dθ

dt
= −α

∂uff

∂θ
(t)(uff(t)− u0(t)). (1.3)

4



However, this tuning rule is not feasible because u0 is unknown. Under the

assumption that the plant input u(t) is correct, i.e.,

u(t) = u0(t) = P−1(s)r(t), (1.4)

then the tuning rule becomes

dθ

dt
= α

∂uff

∂θ
(t)ufb(t). (1.5)

The stability of this deriving rule has been studied in detail with the SPR condi-

tion in [9] and without SPR in [10].

1.3. Research Goals

Adaptive learning control of Multi-input Multi-output (MIMO) systems is an im-

portant research area with both theoretical challenges and practical significance

(e.g., process control systems, robotics control systems and aircraft control sys-

tems usually have multiple inputs and multiple outputs). The main technical

difficulty in multivariable adaptive learning control is to deal with dynamic in-

teractions between system inputs and outputs. The present work overcomes this

difficulty through studies on how to generalize and apply FEL to MIMO system

from the perspective of adaptive control.

The objectives of the present thesis are four-fold. First, learning control

structures are studied for a MIMO system using FEL. By using linear system

parameterization as a function approximator of the feedforward control, I derive

a learning law to adjust the inverse of the plant. A theoretical treatment of how

to generalize FEL to MIMO systems is presented in the framework of adaptive

control.

Second, I propose a new method for closed-loop identification of a MIMO

plant. Given a roughly designed control system, a feedforward controller is con-

structed by learning the plant inverse to achieve desirable responses. The trained

feedforward controller then generates a model of the plant, which is effective for

re-designing the control system to improve performance.

Third, I study the exponential convergence of the tracking error in a MIMO-

FEL scheme having insufficient excitation. The merit of such a result is that
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good tracking performance is only required in practical applications while it is not

desirable or even impossible to satisfy the PE condition. In addition, by making

full use of this performance, I estimate the plant parameter during closed-loop

operation based on frequency response.

Finally, I consider a version of the problem of how to teach robots to write

characters in an actual environment. In particular, I design a feedforward con-

troller for two-link manipulators to improve tracking performance despite limited

knowledge of the surroundings. MIMO-FEL is employed to achieve the objective.

1.4. Contributions

The main contribution of this research can be summarized as follows

1. A theoretical treatment of how to generalize FEL to MIMO systems has

been studied in the framework of adaptive control.

2. A new method for closed-loop identification of a MIMO plant based on the

MIMO-FEL scheme has been proposed.

3. Exponential convergence of the tracking error in the MIMO-FEL scheme

having insufficient excitation has been proved. Further, parameter estima-

tion of the plant based on FEL has been proposed.

4. Experimental validity of the MIMO-FEL scheme is performed using a two-

link manipulator.

1.5. Outline

This dissertation is divided into five main chapters. Chapter 2 first generalizes

the FEL scheme to MIMO systems which are not necessarily biproper, and hence

not invertible with properness. An adaptive feedforward controller based on FEL

is derived using linear parameterization. The stability of the adaptive control law

is proved with and without the SPR condition for strictly proper and biproper

systems, respectively.
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Figure 1.2. Dissertation Outline

Chapter 3 then considers a new method for closed-loop identification of a

MIMO plant based on MIMO-FEL based on the PE condition. Given a control

system roughly designed, a feedforward controller is constructed by learning to

achieve desirable responses. Using sufficiently rich reference signal, the trained

feedforward controller gives a model of the plant.

Chapter 4 studies the exponential convergence of the tracking error in MIMO-

FEL scheme having insufficient excitation; without satisfying the PE condition.

In addition, by making full use of this performance, the plant parameter can

be estimated while in closed-loop operation based on frequency response. This

chapter basically complements the results obtained in Chapters 2 and 3.

Chapter 5 considers how to implement the results obtained in the previous

chapters to a real-world problem to prove the practicality of the proposed work.

A problem of how to teach robots to write characters in an actual environment is

considered. In particular, a feedforward controller must be designed for two-link

manipulators to improve tracking performance despite limited knowledge of the

surroundings. MIMO-FEL is employed to achieve the control objective.

Finally, Chapter 6 summarizes the main achievements of this doctoral dis-

sertation and proposes possible extensions and directions for future work. The

outline is summarized in Fig. 1.2.
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Chapter 2

Generalization of FEL to MIMO

Systems

This chapter studies MIMO learning control systems. It generalizes the FEL

scheme to MIMO systems which are not necessarily biproper, and hence not

invertible with properness. Assuming that a diagonal interactor is known, a

pre-filter and an exact feedforward controller are designed to achieve FEL. Fur-

thermore, an adaptive feedforward controller based on FEL is derived using linear

parameterization. The stability of the adaptive control law is proved with and

without positive realness condition for strictly proper and biproper systems, re-

spectively. Simulation results illustrate the effectiveness of the proposed method.
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Figure 2.1. MIMO-FEL Architecture

2.1. Introduction

The main objective of FEL is to implement the feedforward controller as a func-

tion approximator, improving approximation on-line, instead of designing linear

control on the basis of a plant model. The types of function approximators used

in [8] and [29] as examples are Multi Layer Perception (MLP) and Cerebellar

Model Articulation Controller (CMAC), respectively.

Several problems exist for this kind of function approximator, such as slow

convergence, local minima, computational load and high memory requirement

[30]. However, applications have shown that the FEL controller gives a consid-

erable improvement on the performance of the system [8, 23, 28, 29, 31]. The

results in the literature have shown that FEL can improve the tracking of the

desired trajectory significantly without extensive modeling. FEL uses feedback

error as a learning signal, which is essentially new in control literature [9, 10].

Recently, Miyamura and Kimura [9] have established a control theoretical

validity of the FEL method in the frame of adaptive control, proving its stability

based on strictly positive realness, whereas Muramatsu and Watanabe [10] have

relaxed the positive realness condition of FEL by using the error signal between

the reference and the output signal as well as the feedback input. Unlike [8],

references [9, 10] have used an adaptive linear filter for a function approximator,

and not MLP or CMAC, but the learning of the inverse model was nevertheless

effective.

The objectives of this chapter are two-fold. First, because most control ap-

plications are MIMO, I generalize FEL for a MIMO system. The stability of the

9



derived MIMO-FEL learning law for square case is proved by using the idea of

linear parameterization, which was given by [9, 10] for single-input single-output

(SISO) systems. The parameter has a matrix form instead of a vector form, but

I could derive a learning law in a similar way as in the SISO case.

Second, I also relax the biproper condition even in the MIMO case. The

concept of the interactor (Wolovich and Falb [32]) is used for this purpose. This

concept was originally introduced to generalize the relative degree of scalar trans-

fer functions to MIMO systems.

2.2. Problem Formulation

Consider an n-dimensional controllable and observable linear system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (2.1)

with m-inputs and m-outputs (i.e., square system). Assume that the system is

minimum phase. Namely, I assume

det


 A− sI B

C D


 6= 0, for all Re(s) ≥ 0. (2.2)

If, further, det D 6= 0, then the system is invertible with properness and hence

generalization of FEL is straightforward, so that the method below is significantly

simplified. On the other hand, if det D = 0, then the generalization is difficult,

since I need to define an appropriate pre-filter. I will overcome the difficulty

below. To explain the method clearly, I will further assume that D = 0 in what

follows. (If det D = 0 and D 6= 0, then the argument will be more complicated

but the basic idea still holds.)

Therefore, the transfer matrix is P (s) = C(sI − A)−1B. I also assume that

A,B, C are unknown, but that

Λ :=




c1A
µ1−1B
...

cmAµm−1B


 (2.3)

10



is invertible, where ck is the kth row vector of C and µk is the minimal integer

such that

ckA
µk−1B 6= 0, µk ≥ 1. (2.4)

The integers µ1, µ2, · · · , µm can be regarded as a generalization of the relative

degree. I assume that these integers are known. Furthermore, they have a close

relationship to the following concept (Wolovich and Falb [32]).

Definition 2.1: Given P (s), a square polynomial matrix L(s) is called an inter-

actor if

lim
s→∞L(s)P (s) (2.5)

is a finite matrix with full rank.

With few loss of generality, I can set the interactor matrix to a diagonal form

L(s) =




(s + a1)
µ1 0

. . .

0 (s + am)µm


 (2.6)

where µk is as defined before, and ak is an arbitrarily chosen positive real number

for k = 1, · · · ,m. Then (2.5) equals Λ in (2.3).

The feedback error learning architecture of the MIMO system is shown in

Fig. 2.1. The objective of the control is to minimize the error signal between w(t)

and the plant output y(t). The following equations can be deduced from Fig. 2.1:

y(t) = P (s)u(t)

u(t) = ufb(t) + uff (t)

ufb(t) = Kfbe(t), e(t) = w(t)− y(t)

w(t) = W (s)r(t)

uff (t) = QΘ(s)r(t),

(2.7)

where Kfb is a feedback gain to stabilize the plant, and Θ is a tunable parameter.

The first equation implies

y(t) = £−1[P (s)](t) ∗ u(t),

11



where ∗ denotes the time-domain convolution. For the sake of simplicity, I will

adopt this kind of abuse in time and frequency domains throughout this thesis.

I first note that, if the system is invertible with properness as in [9, 10], then I

can readily take QΘ = P−1 and obtain a perfect tracking. This is not the case,

however, since I have assumed that P (s) is strictly proper, and hence P−1(s)

becomes improper. In the next section, I will see how this difficulty is overcome

by means of a pre-filter W (s) and the concept of the interactor.

2.3. Proposed Method

I now introduce exact and adaptive methods for finding the inverse of the system.

First, I set up Q(s) for the exact case using the interactor concept [32]. Second,

I establish an adaptive method to adjust the parameter Θ in QΘ(s) of equation

(2.7) when A, B, C of the plant are assumed to be unknown. After that, I combine

both methods to derive a tuning rule using the gradient descent concept.

2.3.1 Exact Feedforward Controller

For the original system (2.1) and the interactor L(s) in (2.6) with arbitrarily

chosen ak(k = 1, · · · , m), there exists a gain R such that

N(s) = C(sI − A + BR)−1B = L(s)−1Λ. (2.8)

The gain R can be obtained by the simple formula (Mutoh [33]):

R := Λ−1[L0, · · · , Lµ]




C

CA
...

CAµ




(2.9)

where

L(s) = L0 + L1s + · · ·+ Lµs
µ, (2.10)

µ := max(µ1, · · · , µm). (2.11)

Take
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W (s) = L(s)−1

=




1
(s+a1)µ1

0
. . .

0 1
(s+am)µm




(2.12)

Based on the above, I derive the following lemma.

Lemma 2.1: If the feedforward controller Q(s) is defined by

Q(s) = [I −R(sI − A + BR)−1B]Λ−1. (2.13)

then

P (s)Q(s) = W (s). (2.14)

Proof:

P (s)Q(s)−W (s)

= C(sI − A)−1B[I −R(sI − A + BR)−1B]Λ−1 − C(sI − A + BR)−1BΛ−1

= C{(sI − A)−1B − (sI − A)−1BR(sI − A + BR)−1B − (sI − A + BR)−1B}Λ−1

= C{(sI − A)−1B − [(sI − A)−1BR + I] · [sI − A + BR]−1B}Λ−1

= C{(sI − A)−1B − (sI − A)−1[BR + sI − A] · [sI − A + BR]−1B}Λ−1

= C{(sI − A)−1B − (sI − A)−1B}Λ−1 = 0. ¦

Lemma 1 means that the cascade connection (2.14) makes the response as simple

as possible. W (s) in (2.12) represents invertible delay due to strict properness of

the plant. I thus take as the exact feedforward control:

u0(t) = Q(s)r(t). (2.15)

Since A, B, C of the system are assumed to be unknown, I need to adjust

Q(s) as presented in the next section.

Remark: I will use W(s) and Q(s) in (2.12), (2.13) as a pre-filter and a

feedforward controller in Fig. 2.1, which is a natural generalization of Section 4

of [9].
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2.3.2 Adaptive Feedforward Controller

In this section, I generalize FEL for a MIMO system by using adaptive observer

parameterization [4]. First, I consider the following dynamical system to param-

eterize the feedforward controller.

η̇1(t) = Afη1(t) + Bfr(t)

η̇2(t) = Afη2(t) + Bfu0(t)

u0(t) = F0η1(t) + G0η2(t) + H0r(t)

= Θ0η(t),

(2.16)

where

Θ0 = [F0 G0 H0], η =




η1(t)

η2(t)

r(t)


 , (2.17)

det H0 6= 0. F0, G0, H0 are unknown matrices to be estimated.

I will show that the parameterization of (2.16) can yield an arbitrary transfer

matrix from r(t) to u0(t). Take Af and Bf in a controllable canonical form as

shown in (2.18) and (2.19),

Af =




0 1 0
...

. . . 0

· · · 1

−fν −f1

. . .

0 1 0

0
...

. . .

· · · 1

−fν −f1




(2.18)

14



Bf =




0
... 0

1
. . .

0

0
...

1




, (2.19)

where Af is a stable matrix and (Af , Bf ) is controllable. Then I have

u0 = (I −G0(sI − Af )
−1Bf )

−1 · (H0 + F0(sI − Af )
−1Bf )r(t)

=: QΘ0(s)r(t).
(2.20)

Taking into account that

(sI − Af )
−1Bf = S(s)

1

sµ + f1sµ−1 + · · ·+ fµ

(2.21)

where

S(s) =




1

s 0
...

sµ−1

. . .

1

0 s
...

sµ−1




, (2.22)

I thus obtain

u0(t) = [X(s)]−1Y (s)r(t), (2.23)

where
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X(s) = [(sµ + f1s
µ−1 + · · ·+ fµ)I −G0S(s)],

Y (s) = [(sµ + f1s
µ−1 + · · ·+ fµ)H0 + F0S(s)].

It can be shown that equation (2.23) gives a complete representation of any

transfer matrix of this size and dimension. Namely, by taking F0, G0, H0 appro-

priately, I can obtain Q(s) derived in the previous section, in the form of (2.23).

In reality, however, I do not know such parameters F0, G0, and H0, so that I

regard these matrices as tunable coefficients and adjust them according to some

learning law.

I now construct a tunable feedforward controller. To generate uff (t), I con-

sider the following dynamical system, instead of (2.16):

ξ̇1(t) = Afξ1(t) + Bfr(t)

ξ̇2(t) = Afξ2(t) + Bfuff (t)

uff (t) = F (t)ξ1(t) + G(t)ξ2(t) + H(t)r(t)

= Θ(t)ξ(t),

(2.24)

where

Θ(t) = [F (t) G(t) H(t)], ξ(t) =




ξ1(t)

ξ2(t)

r(t)


 .

(2.25)

Note that the unknown parametric matrices F (t), G(t), H(t) enter linearly. The

matrix Θ(t) is tuned using the learning law, which will be derived in the next

section.

2.3.3 Learning Law

The learning law is derived using the gradient method with an error function,

defined for each time as follows:
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V =
1

2
(uff − u0)

T (uff − u0). (2.26)

Then the steepest gradient method is formulated as

dΘ

dt
= −α

∂V

∂Θ
, (2.27)

for small α > 0.

A major difference from references [8] and [9] is, however, that Θ is not a

vector, but a matrix. Nonetheless the idea carries over only with a slight modifi-

cation.

I define
∂V

∂Θ
=

(
∂V

∂θij

)
, (2.28)

where

Θ = (θij) . (2.29)

Thus, I calculate

∂V

∂θij

=
∂

∂θij

[
1

2

∑

k

v2
k

]
, (2.30)

where

v = uff − u0 = (v1, · · · , vm)T . (2.31)

Using (2.24), I have

v = Θξ − u0. (2.32)

Therefore

∂V
∂θij

=
∑

k[vk
∂vk

∂θij
]

=
∑

k[vk
∂

∂θij
[
∑

l(θklξl − u0k)]].

(2.33)

I also have
∂

∂θij

∑

l

(θklξl − u0k) = δikξj. (2.34)
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where

δik =





0 i 6= k

1 i = k
. (2.35)

Hence, I have

∂V

∂θij

= viξj, i, j = 1, · · · ,m. (2.36)

Therefore, I obtain

∂V

∂Θ
= vξT . (2.37)

I have derived (2.15) since e(t) = 0, which implies that I can take u(t) = u0(t)
1.

The tuning rule then becomes

dΘ

dt
= −α(uff (t)− u(t))ξT (t) = αufb(t)ξ

T (t). (2.38)

where α is a scalar parameter introduced to adjust the adaptation speed. The

above learning law clearly depends on the feedback error signal, and this is why

I call it feedback error learning.

2.4. Stability of the Proposed Scheme

The stability of the above differential equation (2.38) can be verified as in [9]

using the strictly positive realness condition. Using (2.14), (2.15) and (2.7), I

obtain the following relation

P (s)[u0(t)− u(t)] = P (s)Q(s)r(t)− P (s)u(t)

= W (s)r(t)− y(t) = e(t).
(2.39)

If I assume that the initial conditions of equations (2.16) and (2.24) are the

same, then subtraction between the first two equations of (2.16) and (2.24) yields

the following relations

1This approximation holds in the neighborhood of the exact parameter.
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η1 = ξ1,

η2 = ξ2 + (sI − Af )
−1Bf (u0(t)− u(t)).

(2.40)

Using (2.16), (2.24) and (2.7), I obtain the following relation

u0(t)− u(t) = Θ0η(t)−Θ(t)ξ(t)−Kfbe(t). (2.41)

Substituting (2.40) in (2.41), I have

u0(t)− u(t) = Θ0ξ(t)−Θ(t)ξ(t)−Kfbe(t) + G0(sI − Af )
−1Bf (u0(t)− u(t)),

[I −G0(sI − Af )
−1Bf ](u0(t)− u(t)) = −[(Θ(t)−Θ0)ξ(t) + Kfbe(t)],

u0(t)− u(t) = −[I −G0(sI − Af )
−1Bf ]

−1[Ψ(t)ξ(t) + Kfbe(t)], (2.42)

where

Ψ(t) = Θ(t)−Θ0. (2.43)

Θ0 can be regarded as the nominal value of Θ(t). Pre-multiplying (2.42) by P (s),

I have

P (s)[u0(t)− u(t)] = −P (s)[J(s)]−1[Ψ(t)ξ(t) + Kfbe(t)], (2.44)

where

J(s) = [I −G0(sI − Af )
−1Bf ]

From (2.15) and (2.20), I have

[I −G0(sI − Af )
−1Bf ]

−1 = Q(s) · [H0 + F0(sI − Af )
−1Bf ]

−1. (2.45)

Substituting (2.39) and (2.45) in (2.44), I have
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e(t) = −P (s)Q(s)[H0 + F0(sI − Af )
−1Bf ]

−1 · [Ψ(t)ξ(t) + Kfbe(t)].

(2.46)

Using (2.14), I obtain

e(t) = −[I + W (s)(H0 + F0(sI − Af )
−1Bf )

−1Kfb]
−1

·W (s)[H0 + F0(sI − Af )
−1Bf ]

−1Ψ(t)ξ(t)

= −[(H0 + F0(sI − Af )
−1Bf )L(s) + Kfb]

−1 ·Ψ(t)ξ(t). (2.47)

Substituting e(t) in the derived learning law (2.38), I obtain

dΘ
dt

= −αKfb[(H0 + F0(sI − Af )
−1Bf )L(s) + Kfb]

−1Ψ(t)ξ(t)ξ(t)T . (2.48)

Namely, I have

dΨ

dt
= −αM(s)Ψ(t)ξ(t)ξT (t), (2.49)

where

M(s) = Kfb[(H0 + F0(sI − Af )
−1Bf )L(s) + Kfb]

−1,

= KfbW (s)[H0 + F0(sI − Af )
−1Bf + KfbW (s)]−1

(2.50)

Following the idea in [9], I show the following lemma.

Lemma 2.2: Let M(s) be a strictly positive real transfer matrix and ξ(t) be

an arbitrary time-varying vector. Then, the solution Ψ(t) of (2.49) tends to a

constant matrix Ψ0 such that Ψ0ξ(t) → 0. If ξ(t) satisfies the PE condition, the

above Ψ0 is equal to zero matrix. See Appendix for PE condition.

Proof: Consider the state space representation of (2.49)

dx(t)
dt

= Âx(t) + B̂Ψ(t)ξ(t)

y(t) = Ĉx(t) + D̂Ψ(t)ξ(t)
dΨ(t)

dt
= −y(t)ξT (t).

(2.51)
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Since M(s) is strictly positive real, it implies that there exist P = P T > 0, T ,

and Z, and a positive constant ε given in the KYP lemma (see Appendix). I

consider the following Lyapunov function

V (t) = tr{ΨT (t)Ψ(t)}+ xT (t)Px(t). (2.52)

Taking the derivative

V̇ (t) = tr{ΨT (t)Ψ̇(t)}+ tr{Ψ̇T (t)Ψ(t)}
+ẋT (t)Px(t) + xT (t)Pẋ(t).

(2.53)

Using the KYP lemma, I have

V̇ (t) = −‖Tx(t) + ZΨ(t)ξ(t)‖2 − εxT (t)Px(t) ≤ 0.

(2.54)

Since V (t) ≥ 0 while V̇ (t) ≤ 0, this implies that x(t) and Ψ(t)ξ(t) converge to 0.

Also, as x(t) → 0, using (2.51) I have

dΨ(t)

dt
= −D̂Ψ(t)ξ(t)ξT (t). (2.55)

As a result, if ξ(t) satisfies the PE condition, then the above differential equation

is globally exponentially stable, Ψ(t) → 0, based on the PE and Exponential

Stability Theorem in [34], see Appendix. ¦

As a result, I state the following theorem:

Theorem 2.1: Note that

QΘ(s) = (I −G(t)(sI − Af )
−1Bf )

−1

·(H(t) + F (t)(sI − Af )
−1Bf ).

(2.56)

Under any stable transfer matrix P (s) with minimum phase and known upper

bound of the relative degree (µ := max(µ1, · · · , µm)), the MIMO-FEL scheme

and its learning law are stable if Kfb is chosen such that M(s) in (2.49) is strictly

positive real. Also, it yields e(t) → 0, and QΘ(s)r(t) → Q(s)r(t) if ξ(t) satisfies

the PE condition.
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Proof: Based on lemma 2, if Kfb is chosen such that M(s) is strictly positive

real, then the solution of the adaptive law based on FEL will tend to a constant

matrix which proves the stability. Also, if ξ(t) satisfies the PE condition, then

Ψ(t) → 0 and e(t) → 0, which result in uff → u0 as time proceeds. ¦

The above result is an extension of [9] to MIMO systems. A possible drawback

in this approach is that it requires the positive realness condition, which is not

always guaranteed.

Following [10], I establish the stability of the FEL without the positive realness

condition in the case of biproper systems i.e., (W (s) = I). The idea is how to

make M(s) equal to the identity matrix by influencing the kind of dynamics which

is based on the error signal. The new vector ξe(t) is generated by e(t) with the

following dynamics

ξ̇e(t) = Afξe(t) + Bfe(t), (2.57)

where Af and Bf are as defined before.

From (2.46), and taking the Laplace transformation of (2.57), I have the

following relation

[H0 + F0(sI − Af )
−1Bf −Kfb]e(t) = [H0 −Kfb]e(t) + F0ξe(t). (2.58)

Then, substituting (2.58) into (2.45), and defining

ζ :=




ξ1(t) + ξe(t)

ξ2(t)

r(t)


 , (2.59)

I obtain

û0(t) = Θ0ζ(t), (2.60)

which is linearly parameterized by Θ0. To derive an adaptive law for the FEL, I

define û(t) by replacing Θ0 in (2.60) with Θ(t)

û(t) = Θ(t)ζ(t). (2.61)
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I now define an error signal s(t) as

s(t) := û0(t)− û(t) = −Ψ(t)ζ(t). (2.62)

Using the gradient method as before with error function s(t), the learning law

becomes

dΘ(t)

dt
= αs(t)ζT (t). (2.63)

Using (2.43) and (2.62), the learning law can be written as

dΨ(t)

dt
= −αΨ(t)ζ(t)ζT (t). (2.64)

The stability of the above differential equation (2.64) can be verified using the

following lemma.

Lemma 2.3: Let ζ(t) be an arbitrary time-varying vector. Then, the solution of

the differential equation (2.64) tends to a constant matrix Ψ0 such that Ψ0ζ(t) →
0. If ζ(t) satisfies the PE condition, then the above matrix Ψ0 is equal to zero

matrix.

Proof: Let the Lyapunov function be defined as follows:

V (t) =
1

2
tr[ΨT (t)Ψ(t)]. (2.65)

Then, the derivative along the trajectory is given by

V̇ (t) = tr[ΨT (t)Ψ̇(t)]

= −tr[ΨT (t)Ψ(t)ζ(t)ζT (t)] ≤ 0.
(2.66)

Since V (t) ≥ 0 while V̇ (t) ≤ 0, this implies that the above differential equation is

stable according to the Lyapunov theorem. Therefore, Ψ(t)ζ(t) converges to zero

vector and thus dΨ(t)
dt

→ 0. For the second part of lemma 2, if ζ(t) is PE then the

learning law is globally exponentially stable, namely Ψ(t) → 0 based on the PE

and Exponential Stability Theorem [34]. ¦

Thus I derive the following theorem:
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Theorem 2.2: Under any stable transfer matrix P (s) with minimum phase and

known upper bound of the relative degree (µ := max(µ1, · · · , µm)), the MIMO-

FEL scheme and its learning law (2.64) are stable. Also, it yields e(t) → 0 if ζ(t)

satisfies the PE condition.

Proof: From lemma 3, Ψ(t) tends to a constant matrix Ψ0 such that Ψ0ζ(t) → 0.

Therefore, s(t) = −Ψ(t)ζ(t) → 0. If ζ(t) satisfies the PE condition then Ψ0 is

equal to 0, and then Θ(t) → Θ0 using (2.43). This implies that e(t) → 0 as time

proceeds. ¦

Corollary: When e(t) → 0 as t →∞, then

Θ(t) → Θ0, and QΘ(s)r(t) → Q(s)r(t). (2.67)

The corollary concludes that the adaptive feedforward control based on MIMO-

FEL will match the exact one, which is based on the interactorization concept as

time proceeds.

2.5. Simulation Results

To show the effectiveness of the proposed method and summarize the procedure,

I perform numerical simulation. First, I assume that A, B, C are known so that I

can calculate the exact feedforward controller Q(s). Then, I will use the learning

law to adjust the tunable Θ(t) and compare it with a nominal one.

Giving

A =




1 0 −3

2 −4 1

3 1 −5


 , B =




0 0

1 0

0 1


 ,

C =


 1 1 0

0 2 1


 ,

I have the following transfer matrix of the plant:

P (s) =




s2+4s+1
s3+8s2+19s+23

−2s−19
s3+8s2+19s+23

2s2+9s+7
s3+8s2+19s+23

s2+5s−18
s3+8s2+19s+23


 .

24



Using (2.3), I have µ1 = 1, µ2 = 1, and

Λ =


 1 0

2 1


 ,

which is invertible. Then, I select the interactor

L(s) =


 s + 2 0

0 s + 2.5


 .

I now calculate the gain R to find the exact Q(s) using equations (2.9) and (2.13):

R =


 5 −2 −2

−3 2 3


 ,

Q(s) =




s2+5s−18
s2+7s+10

2s+19
s2+7.5s+12.5

−2s2−9s−7
s2+7s+10

s2+4s+1
s2+7.5s+12.5


 . (2.68)

It can be verified that P (s)Q(s) = W (s) = L−1(s).

Second, I tune Θ(t) using the learning rule (2.38) so that I obtain the inverse

of the system provided that the reference input is a sinusoidal signal (r(t) =

[sin(t), sin(t)]T ). Thus, I need to set stable and controllable Af and Bf based on

the upper bound of the relative degree (2.11) µ = 1, (see (2.18) and (2.19)),

Af =


 −4 0

0 −4


 , Bf =


 1 0

0 1


 .

I choose the following feedback gain matrix that maintains the closed-loop

stability and satisfies the SPR condition

Kfb =


 0.1 0.25

−0.3 −0.15


 .

The simulation results in Figs. 2.2 and 2.3, using only a feedback controller,

show bad tracking performance. However, it is shown in Figs. 2.4 and 2.5 that

all outputs y(t) track their reference inputs w(t) using the proposed MIMO-

FEL. Also, it is shown in Fig. 2.6 that the error signals tend to zero for MIMO-

FEL performance. Furthermore, all the parameters F (t), G(t) and H(t) which

25



correspond to Θ(t) converge to their nominal values since e(t) → 0, as shown in

Fig. 2.7. The resulting matrices are as follows:

F0 =


 0.5888 0.1636

−0.0856 0.2545


 ,

G0 =


 0.6524 −0.0452

−0.1542 0.1728


 ,

H0 =


 −0.0032 2.5197

−1.0685 −0.0875


 .

By substituting the above matrices and the defined Af and Bf , the estimated

transfer matrix can be obtained, as follows:

QΘ(s) = [I −G0(sI − Af )
−1Bf ]

−1[H0 + F0(sI − Af )
−1)Bf ]

=




0.4188s2+4.314s+10.39
s2+6.721s+11.23

2.394s2+18.4s+35.12
s2+6.721s+11.23

−1.013s2−7.22s−12.59
s2+6.721s+11.23

−0.0455s2+0.001115s+0.5082
s2+6.721s+11.23


 . (2.69)

It should be noted that the exact Q(s) (2.68) is the true inverse of the plant, while

the QΘ(s) (2.69) is an estimated inverse for the specified reference inputs r(t).

This means that for a different r(t), I will obtain a different estimated inverse. It

seems that this is because of a lack of PE condition in this case. In Figs. 2.8 and

2.9, I compare the outputs of the true and estimated inverse against r(t):

u∗ff = Q(s)r,

uff = QΘ(s)r.

It is shown from the above that the adaptive feedforward inputs approach to the

exact one which clarify the obtained corollary. This shows that the adaptive rule

successfully learns the estimated inverse of the MIMO system, the main goal of

this chapter.

2.6. Conclusion

In this chapter, learning control structures have been proposed for MIMO systems

using FEL. By using linear system parameterization as a function approximator
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of the feedforward control, a learning law has been derived to adjust the inverse

of the plant. A theoretical treatment of how to generalize FEL to MIMO systems

has been studied in the framework of adaptive control. The FEL scheme was

generalized to MIMO systems which are not necessarily biproper, and hence not

invertible with properness. The feedforward controller is not designed on the basis

of the process model, but is trained on-line during control using the feedback error

signal as a learning signal.

Moreover, the exact inverse of the plant has been derived theoretically using

the inverse interactorization concept, and can be used as a guide to check the

correctness of the learning control. Furthermore, the stability of the tuning rule

has been proved with and without positive realness condition.

The simulation results have shown that MIMO-FEL scheme can improve the

system performance drastically.

Figure 2.2. Reference vs. Output without MIMO-FEL:Channel 1
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Figure 2.3. Reference vs. Output without MIMO-FEL:Channel 2

Figure 2.4. Reference vs. Output using MIMO-FEL: Channel 1
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Figure 2.5. Reference vs. Output using MIMO-FEL: Channel 2
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Figure 2.7. Time Evolution of Θ(t)
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Chapter 3

Closed-loop Identification Based

on MIMO-FEL

Motivated by the recent development of FEL, this chapter proposes a method

for closed-loop identification of a MIMO plant. Given a roughly designed control

system, a feedforward controller is constructed by learning to achieve desirable

responses. The trained feedforward controller then gives a model of the plant,

which is effective for re-designing the control system to improve performance.

The effectiveness of the method is verified through numerical simulation.
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Figure 3.1. MIMO-FEL Identification Scheme

3.1. Introduction

In FEL, the parameter in the feedforward controller is tuned so that the feed-

back error converges to zero. An interesting point is that, after convergence, the

acquired feedforward controller has sufficient knowledge about the inverse model

of the plant, since its cascade connection with the plant is equal to the pre-filter;

see Fig. 3.1. Thus, it is natural to expect that I can identify the plant parameter

from this knowledge. In other words, closed-loop identification is achieved by

applying FEL to the plant. The obtained system parameters can be used for

re-designing the control system to improve performance.

In this chapter, I first use the acquired feedforward controller based on MIMO-

FEL to obtain the system model. The performance of system identification is then

evaluated with some examples in various conditions.

Closed-loop identification is attractive since it gives a model during operation

(i.e., on-line), but this is a challenging task due to numerical difficulty. This is

the case also in the proposed scheme, but the result emerges to be adequate. A

striking feature is that even an unstable plant can be identified provided that the

closed-loop is stable.

33



3.2. MIMO-FEL Identification Analysis

The main objective of FEL, as mentioned above, is to improve the tracking per-

formance by means of learning. It is then natural to expect that the acquired

feedforward controller QΘ(s) has sufficient knowledge about the plant model, and

hence I can identify the plant parameter from this knowledge.

Recall that if I take

u0(t) = Q(s)r(t), (3.1)

then I readily have e ≡ 0 in Fig. 3.1. Hence, if QΘ(s) converges to Q(s) in FEL,

then the control objective is achieved, but not necessarily vice versa. I will show

this below.

I note that the parameterization of (2.24) can yield an arbitrary transfer

matrix from r(t) to uff(t). By taking the Laplace transformation of (2.24), I have

uff(t) = F (t)(sI − Af )
−1Bfr(t) + G(t)(sI − Af )

−1Bfuff(t) + H(t)r(t)

=
[
I −G(t)(sI − Af )

−1Bf

]−1 ·
{
H(t) + F (t)(sI − Af )

−1Bf

}
r(t)

=: QΘ(s)r(t). (3.2)

It is already known that e(t) → 0 as t → ∞ by the learning law of Section 2.3.

Then I have

P (s)QΘ(s)r(t) = W (s)r(t), (3.3)

at least for the given r(t). Further, if P (s)QΘ(s) = W (s), then the plant param-

eter can be identified based on this learning feedforward controller. To guarantee

this, I need to take r(t) sufficiently rich (i.e., satisfying the PE condition).

If I do not take sufficiently rich r(t) as a reference signal, correct identification

is no longer expected, although FEL nonetheless assures the perfect tracking

performance. Even so, I may still be able to estimate the frequency characteristic

of P (s) to some extent, because good tracking is achieved for r(t) with limited

frequency components. This is an interesting issue, whose further analysis will

be discussed in Chapter 4.

Thus, the procedure of closed-loop identification based on MIMO-FEL can be

summarized as follows:
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Step 1: I use the learning law (2.38) to tune the linear filter parameter in (2.24).

Step 2: As Θ(t) converges, I use the parameter to estimate the plant parameter

by P (s) = W (s)Q−1
Θ (s). The inversion is feasible by (3.2).

Step 3: If r(t) is sufficiently rich, then I obtain the true value. Otherwise, I only

obtain partial knowledge of P (s).

3.3. Simulation Results

I consider two examples with first and third order systems. First, to illustrate

the idea of the closed-loop identification, I perform numerical simulation using a

simplest first order system.

Given

A =


 −5 0

0 −5


 , B =


 2 0

0 2


 ,

C =


 0.5 1

1.5 2


 ,

I have the following transfer matrix of the plant:

P (s) =




1
s+5

2
s+5

3
s+5

4
s+5


 .

Using (2.3), I have µ1 = 1, µ2 = 1, and

Λ =


 1 2

3 4


 ,

which is invertible. Then, I select the following interactor

L(s) =


 s + 1 0

0 s + 1


 .

I now calculate the gain R to find the exact Q(s), using equations (2.9) and

(2.13):
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R =


 −2 0

0 −2


 ,

Q(s) =




−2s−10
s+1

s+5
s+1

1.5s+7.5
s+1

−0.5s−2.5
s+1


 .

It can be verified that P (s)Q(s) = W (s) = L−1(s).

Second, without using A, B, C, or R, I tune Θ(t) using the learning rule (2.38)

so that I obtain the inverse of the system. In order that the reference input is

sufficiently rich, I take r(t) as a pseudo-random binary signal (PRBS) generated

for identification purposes in MATLAB, as shown in Fig. 3.2. Thus, I need to

set Af and Bf based on the upper bound of the relative degree (2.11) µ = 1 (see

(2.18) and (2.19)) as

Af =


 −4 0

0 −4


 , Bf =


 1 0

0 1


 .

I choose the following feedback gain matrix that maintains the closed-loop

stability and satisfy the SPR condition

Kfb =


 6 4

7 3


 .

The time evolution of Θ(t) can be seen in Fig. 3.3. The convergent value is

Θ =


 −1.9929 0.9905 3.0039 0.0042 −2.0006 1.0022

1.4932 −0.4994 0.0016 3.0032 1.5016 −0.4997


 .

The nominal Θ0 is

Θ0 =


 −2 1 3 0 −2 1

1.5 −0.5 0 3 1.5 −0.5


 .

It can be seen clearly that Θ(t) → Θ0. I can then obtain the learning feedforward

controller QΘ0(s) from (3.2)

QΘ0(s) =




−2.001s2−11.98s−9.932
s2+1.993s+0.9929

1.002s2+5.996s+4.973
s2+1.993s+0.9929

1.502s2+8.992s+7.454
s2+1.993s+0.9929

−0.4997s2−2.994s−2.48
s2+1.993s+0.9929


 .
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Note that if I round off the convergent Θ, then I have Θ(t) = Θ0 as t → ∞. As

a result, if I substitute Θ0 in (3.2), I have QΘ0(s) = Q(s).

I now estimate the plant using QΘ(s) in (3.2)

P̂ (s) =




0.9891s2+5.927s+4.91
s3+10.96s2+34.74s+24.79

1.984s2+11.87s+9.843
s3+10.96s2+34.74s+24.79

2.972s2+17.8s+14.76
s3+10.96s2+34.74s+24.79

3.96s2+23.72s+19.66
s3+10.96s2+34.74s+24.79


 .

The comparison between the estimated plant P̂ (s) and the true plant P (s) is

shown in Figs. 3.4 and 3.5 in terms of the bode plot and step response. The

estimated plant matches the true one. Further, if I round off the convergent Θ, I

then obtain P̂ (s) = P (s).

To check the dependency on signals, I also tested a reference signal which is

not sufficiently rich (rc(t) = [sin(t) cos(t)]T ). The time evolution of Θc(t) can be

seen in Fig. 3.6. The convergent value is

Θc =


 −0.6448 0.1530 1.0810 −1.0344 −2.4260 1.3156

0.5205 −0.0527 −0.6753 0.7263 2.0291 −0.6936


 ,

which is far from the nominal value Θ0. However, I have e(t) → 0 as shown in

Fig. 3.7. The obtained feedforward learning controller is:

QΘc(s) =




−2.426s2−20.39s−42.81
s2+6.193s+8.857

1.316s2+10.44s+20.65
s2+6.193s+8.857

2.029s2+16.2s+32.2
s2+6.193s+8.857

−0.6936s2−5.741s−11.91
s2+6.193s+8.857


 .

The second example (i.e., third order system) is

P (s) =




s2+4s+1
s3+8s2+19s+23

0

0 2s2+9s+7
s3+8s2+19s+23


 .

Using a sufficiently rich reference input r(t) as in Fig. 3.2, Θ(t) has converged to

the following matrix

Θ =


 −0.9358 −0.0029 3.8129 −0.0181 0.7893 −0.0007

0.0006 −1.0457 −0.0081 3.4219 0.0150 0.4516


 .

The estimated plant is as follows:

P̂ (s) =




1.267s2+2.371s+0.3993
s3+6.499s2+13.74s+9.482

0.001934s2+0.0399s+0.04784
s3+6.499s2+13.74s+9.482

−0.04221s2−0.1604s+0.01846
s3+6.999s2+15.99s+11.85

2.214s2+7.512s+3.6
s3+6.999s2+15.99s+11.85


 .
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The comparison between the estimated plant P̂ (s) and the true plant P (s) is

shown in Figs. 3.8 and 3.9 in terms of the bode plot and step response. In

Fig. 3.8, the estimated plant matches the true one for the diagonal elements,

while the off-diagonal elements are close to zero in terms of the gain (i.e., ≈ −40

dB, −70 dB, respectively). This is a good approximation. Fig. 3.9 also shows

that the estimated plant is close to the actual one.

3.4. Conclusion

In this chapter, I have proposed a closed-loop identification technique by means of

MIMO-FEL. If the reference signal is PE, the method has emerged to be effective

in simulation.

Thus, the control performance can be improved by re-designing the controller

with the obtained plant model. At this moment, the convergence is slow, although

this is often the case in adaptation or learning algorithms. This drawback will be

overcome in the next chapter.
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Figure 3.3. Time Evolution of Θ(t)
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Chapter 4

FEL with Insufficient Excitation

This chapter studies the tracking error in a MIMO-FEL system having insufficient

excitation. It is shown that the error converges to zero exponentially, even if the

reference signal lacks the PE condition. Furthermore, by making full use of this

fast convergence, the plant parameter is estimated under closed-loop operation

based on frequency response. Simulation results show the effectiveness of the

proposed method compared to a conventional approach.
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Figure 4.1. MIMO-FEL Architecture for the Biproper Case

4.1. Introduction

The objectives of this chapter are two-fold. First, I prove that the tracking error

converges exponentially to zero even without the full PE condition; i.e., even

if signals are insufficiently rich. The merit of such a result is that, in practice,

this condition is undesirable or even impossible to satisfy while good tracking

performance is required.

Second, by making full use of this performance, the plant parameter is es-

timated under closed-loop operation. I apply a specific frequency of sinusoidal

signal, which is a typical example of insufficient excitation, as a reference signal

and make the feedforward controller learn to track this reference. After con-

vergence, the trained controller reflects the inverse response of the plant at this

frequency. I repeat this process for various frequencies. The plant parameter is

then computed by solving a linear equation from these data.

It is widely known that closed-loop identification is difficult, since the in-

put/output signals have correlation. The proposed method avoids such difficulty

by canceling the feedback effect. As a result, the knowledge of feedback con-

troller is not required, either. The rapid convergence of FEL achieves this pro-

cess efficiently. The method does not follow conventional methodology where

input/output data are given. Rather, it obtains the data by acting on the system

with adaptive feedforward control.

.
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4.2. Exponential Tracking Error Convergence

The PE condition ensures parameter convergence as well as tracking error con-

vergence for the FEL algorithm [9, 10, 36]. In this chapter, I relax this condition

for the latter convergence [39].

First, recall the dynamics of the parameter estimation error defined by

Ψ(t) := Θ0 −Θ(t). (4.1)

By using (2.38), I have

Ψ̇(t) = −αufb(t)ξ
T (t). (4.2)

In the scheme (see Fig. 4.1), I have

ufb = u− uff = P−1y − ûo. (4.3)

Furthermore,

P−1y = Qy ∼= Qr = uo, (4.4)

in the neighborhood of the exact parameter (i.e., when Ψ ∼= 0). By using (4.1),

(4.3), and (4.4) I obtain

ufb(t) = u0(t)− û0(t) = Ψ(t)ξ(t). (4.5)

Substituting (4.5) in (4.2) I have

Ψ̇(t) = −αΨ(t)ξ(t)ξT (t). (4.6)

Thus, by defining the Lyapunov function V = 1
2
tr{ΨT Ψ}, I have its derivative

V̇ (t) = tr[ΨT (t)Ψ̇(t)]

= −αtr[ΨT (t)Ψ(t)ξ(t)ξT (t)] ≤ 0.
(4.7)

This proves that Ψ remains bounded. If ξ is bounded, then from (4.5) the error

e(t) = K−1
fb ufb(t) = K−1

fb Ψ(t)ξ(t) (4.8)

remains bounded. Furthermore, if ξ̇ is bounded, then V̈ is also bounded and V̇

is uniformly continuous. Thus Barbalat lemma [4], see Appendix, can be applied
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to ensure that limt→∞ e(t) = 0. However, this does not guarantee the exponential

convergence of e to zero. An additional condition is usually imposed to this end

[9, 10, 36].

In general, a vector signal, η(t) = [η1(t) η2(t) · · · ηp(t)]
T , satisfies the PE con-

dition, if there exists δ > 0 such that

Ξ(t0, δ) =
∫ t0+δ

t0
η(t)ηT (t)dt > 0, (4.9)

where t0 is the initial time. In what follows, I first show that if ξ(t) in (2.25) is

PE, then e converges to zero exponentially. Namely, there exist constants φ ≥ 0,

σ > 0 such that

|e(t)| ≤ φe−σt. (4.10)

After that, I relax this sufficient condition.

Let vec(Ψ) denote the vector formed by stacking the columns of Ψ into one

long vector:

vec(Ψ) = (ψ11 · · ·ψm1 ψ12 · · · · · ·ψm`)
T . (4.11)

Then for any matrices X, Y and Z with appropriate dimensions, it is known that

[40]

vec(XY Z) = (ZT ⊗X)vec(Y ), (4.12)

where ⊗ is Kronecker product. As a result, (4.6) can be written as

vec(Ψ̇(t)) = (ξ(t)ξT (t)⊗ (−αI))vec(Ψ(t))

= −α




ξ1(t)I

ξ2(t)I
...

ξ`(t)I




[ξ1(t)I ξ2(t)I · · · ξ`(t)I]vec(Ψ(t))
(4.13)

This means that (4.6) is the system of linear differential equations. I now have

the following lemma.

Lemma 4.1:

If ξ(t) satisfies the PE condition, then
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ξ(t)ξT (t)⊗ I =




ξ1(t)I

ξ2(t)I
...

ξ`(t)I




[ξ1(t)I ξ2(t)I · · · ξ`(t)I] (4.14)

also satisfies the PE condition.

Proof: In order to prove that

∫ t0+δ
t0

ξ(t)ξT (t)⊗ Idt =



∫ t0+δ
t0

ξ2
1dtI

∫ t0+δ
t0

ξ1ξ2dtI · · ·
∫ t0+δ
t0

ξ2ξ1dtI
∫ t0+δ
t0

ξ2
2dtI · · ·

...
...

. . .


 > 0,

it is enough to show that if

S =




s11 s12 · · ·
s21 s22 · · ·
...

...
. . .


 > 0,

then

S ⊗ I =




s11I s12I · · ·
s21I s22I · · ·

...
...

. . .


 > 0.

There exists an orthogonal matrix V such that

V T SV =




α1 0

α2

0
. . .


 , αi > 0.

Hence, I obtain (V ⊗ I)T S ⊗ I(V ⊗ I)

=




α1 0

α2

0
. . .


⊗ I =




α1I 0

α2I

0
. . .


 > 0. ¦

I readily have the following theorem.
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Theorem 4.1:

If ξ(t) is PE, then (4.13) is globally exponentially stable, which implies that e(t)

also converges to zero exponentially.

Proof: The first statement holds by applying PE and Exponential Stability The-

orem [34], see Appendix, to the vector differential equation (4.13), with Lemma

1. The second holds by (4.8). ¦
I now proceed to the case where ξ is not fully excited, the first main objective

of the paper. I start by defining the correlation matrix,

M =
∫ ∞

t0
ξ(t)ξT (t)dt > 0. (4.15)

The constant matrix M is positive definite if ξ is PE. If not, however, then M is

positive semidefinite anyway, and there exists the eigenvalue decomposition:

M = R


 Λ 0

0 0


 RT , Λ = diag{λ1, . . . , λp, } (4.16)

where RT = R−1 and λ1 ≥ · · · ≥ λp > 0. Below I will prove that the error system

(4.5) and (4.6) can be written equivalently as a reduced system.

Theorem 4.2:

Using the MIMO-FEL adaptive law (2.38), the smallest nonzero eigenvalue λp

always exists unless ξ ≡ 0, e ≡ 0. Further, the tracking error e converges to zero

exponentially.

Proof: If M = 0 then, from (4.15) ξ ≡ 0, and from (4.8) the error e ≡ 0. Hence,

M 6= 0 and λp > 0 exists. Defining

ρ(t) = RT ξ(t), Ω(t) = Ψ(t)R, (4.17)

ρ(t) =


 ρ1(t)

ρ2(t)


 , Ω(t) =

[
Ω2(t) Ω2(t)

]
, (4.18)

in block sizes compatible with (4.16), the error (4.5) can be written as follows:

ufb(t) = ΨRRT ξ = Ωρ = Ω1ρ1 + Ω2ρ2. (4.19)

From (4.16), the correlation matrix of ρ is computed as
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∫ ∞

t0
ρ(t)ρT (t)dt =


 Λ 0

0 0


 , (4.20)

which implies from (4.18) that

∫ ∞

t0
ρ1(t)ρ

T
1 (t)dt = Λ > 0, ρ2 ≡ 0. (4.21)

Substituting (4.21) in (4.19) gives

ufb(t) = Ω1(t)ρ1(t). (4.22)

This implies that the excitation of ρ has been reduced into the smaller vector ρ1

which is persistently excited by (4.21).

A similar reduction can be shown for Ω as follows. By post-multiplying both

sides of (4.6) by R,

Ψ̇(t)R = −αΨ(t)ξ(t)ξT (t)R. (4.23)

Using (4.17) and (4.5), I have

Ω̇(t) = −αufb(t)ρ
T (t) = −αΩ1(t)ρ1(t)ρ

T (t) (4.24)

by (4.22), which can be partitioned using (4.18) and (4.21) as

Ω̇1(t) = −αΩ1(t)ρ1(t)ρ
T
1 (t), Ω̇2(t) = 0. (4.25)

Since the reduced signal ρ1 in (4.21) is persistently exciting, it follows that the

reduced parameter error Ω1 in (4.25) converges exponentially based on Theorem

1. As Ω1 → 0, ufb(t) → 0 by (4.22), which ensures the exponential convergence

of e by (4.8). ¦
The proof concludes that there is no need for convergence of the full parameter

matrix Θ(t) for the purpose of the exponential convergence of the tracking error.

Rather, partial excitation of η, i.e., ρ1, is sufficient for the exponential convergence

of e.
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4.3. Parameter Estimation

The main advantage of FEL, as mentioned above, is the exponential convergence

of the tracking error by means of learning. It is then natural to expect that

the acquired QΘ(s) has some knowledge of the plant model. If, in particular, I

apply a sinusoidal reference then QΘ(s) works as the inverse of the plant at this

frequency. By testing various frequencies in this way, the plant parameter can be

identified from such knowledge.

Namely, I can estimate plant parameter while in closed-loop operation. To be

specific, I consider a left coprime factorization (LCF)

P (s) = D−1(s)N (s), (4.26)

where D(s) and N (s) are polynomial matrices defined by

D(s) = sµI + sµ−1D1 + . . . + Dµ,

N (s) = sµN0 + sµ−1N1 + . . . + Nµ,
(4.27)

where µ is assumed to be known. N0 is nonsingular because P (s) is biproper.

The second objective of the paper is to estimate the coefficient matrices in (4.27)

based on MIMO-FEL. I now apply the reference signal of the form

ri
k(t) = γi

k sin(ωit), k = 1, · · · ,m, (4.28)

using the same frequency ωi and linearly independent vectors γi
1, · · · , γi

m for

i = 1, · · · , µ. I then make the feedforward controller learn to track such references.

After convergence, the trained controllers satisfy

P (jωi)QΘi
k(jωi)γi

k = γi
k. (4.29)

Hence, from (4.26) I obtain

N (jωi)[ξi
1 · · · ξi

m] = D(jωi)[γi
1 · · · γi

m]. (4.30)

where ξi
k = QΘi

k(jωi)γi
k. Equation (4.30) is a linear equation with respect to

the coefficient matrices of (4.27). By testing (4.28) for various frequencies and

solving (4.30) for i = 1, · · · , µ, I obtain those coefficient matrices.
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Take the second order biprober SISO system for example. I then have four

parameters to be estimated. I need to apply two different frequencies to be able

to estimate the parameters. By taking γi
k = 1, I obtain ξi

k = QΘi
k(jωi). Then

(4.30) becomes

(−ω2
i + jωin1 + n2)(αi + jβi) = (−ω2

i + jωid1 + d2), (4.31)

where QΘi
(jωi) = αi + jβi. Comparing its real and imaginary parts, I have

−ω2
i αi + αin2 − ωiβin1 = −ω2

i + d2

−ω2
i βi + βin2 + ωiαin1 = ωid1

}
i = 1, 2.

(4.32)

The plant parameter is then computed by solving the following linear equation:




ω1 0 −α1ω1 −β1

ω2 0 −α2ω2 −β2

0 1 β1ω1 −α1

0 1 β2ω2 −α2







d1

d2

n1

n2




=




−β1ω
2
1

−β2ω
2
2

ω2
1 − α1ω

2
1

ω2
2 − α2ω

2
2




.

In general, the algorithm is summarized as follows:

1. Put i = 1.

2. Apply sinusoidal reference input ri
k(t) at particular frequency ωi.

3. Use the learning law (2.38) to tune the linear filter parameter in (2.24).

4. As e(t) converges to zero, obtain the value of Θi(t).

5. From Θi(t), compute Q−1
Θi

(jωi).

6. Go back to Step 2 and apply different frequency i := i + 1 until i = µ,

otherwise go to Step 7.

7. Based on the obtained frequency response data, solve the linear system of

equations (4.30).
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Note that the proposed algorithm avoids the input/output correlation of the

signals, which is common in closed-loop identification, by adjusting feedforward

input signals to cancel the feedback effect. The rapid convergence of FEL achieves

this process efficiently. Another advantage of the proposed method is that it does

not require knowledge of the feedback controller.

4.4. Simulation Results

To illustrate the proposed method, I perform numerical simulation. Consider the

plant:

P (s) =
s2 + 3s + 2

s2 + 7s + 12

I apply the reference input ri(t) = sin(ωit), for ω1 = 1 rad/sec and ω2 = 2

rad/sec. I choose a suitable feedback controller gain Kfb = 5, which maintains

the closed-loop stability.

4.4.1 Proposed Method

Based on the degree of the system, I set

Af =


 0 1

−5 −5


 , Bf =


 0

1


 .

I then tune Θ(t) using the learning rule (2.38) so that I can improve the tracking

performance. Fig. 4.2 shows that the error signals ei(t) for the two frequencies

tend to zero very fast. Then, I obtain the value of Θi(t) at the time when ei(t)

vanishes; e1(t) and e2(t) vanish around t1 = 20 and t2 = 40, respectively. The

trained feedforward controllers for the two frequencies are as follows:

QΘ1(s) =
3.421s2 + 16.77s + 18.28

s2 + 5.428s + 1.232
,

QΘ2(s) =
1.66s2 + 7.978s + 10.6

s2 + 2.666s + 0.3708
.

Note that the resulting QΘi
(s) does not represent the inverse of the plant, i.e.,

P (s)QΘi
(s) 6= 1. Θ(t) does not converge to its nominal value, but to some
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other constant. This is because ri(t) lacks full excitation or the PE condition;

nonetheless, the tracking is successful, which is the first result of this paper. To

confirm this, I compute the correlation matrix

M =




1.2161 0.012 3.8782 3.0599 4.9343

0.012 1.2022 −2.9742 3.8524 6.0719

3.8782 −2.9742 20.1335 0.1532 0.6543

3.0599 3.8524 0.1532 20.1224 31.5214

4.9343 6.0719 0.6543 31.5214 50.2183




and find that the rank of M is 4.

I now see that from these trained feedforward controllers, the plant parameter

can be estimated. The Bode plot in Fig. 4.3 shows that the true versus the esti-

mated gain and phase are equal at the particular frequencies; P (jωi) = Q−1
Θi

(jωi).

From the frequency response data Q−1
Θi

(jωi), I solve the linear system given in

Section 4.4 to estimate the plant parameter. The result is as follows:

PFEL(s) =
s2 + 2.8387s + 1.8611

s2 + 6.8567s + 11.1334
.

The estimated parameters are close enough to the true one, but they can be

improved by testing further frequencies. The parameter estimation can also be

improved if I allow more time until parameter convergence.

4.4.2 Conventional Method

I adopt an approach based on 1DOF i.e., without feedforward controller in

Fig. 4.1. The frequency response data from the reference input and the out-

put of the plant are used to estimate the plant parameter. In this simulation, the

spectrum analyzer in MATLAB is used to measure the frequency response data.

The data is collected at the same time as in Section 4.5.1 for fair comparison

between both methods. I also use the same feedback controller, reference input

and frequencies. From the frequency response data, I solve the linear system as

in Step 7 in the algorithm to estimate the closed-loop transfer function. Then,

using feedback controller knowledge, the plant is estimated as follows:

Pcon.(s) =
s2 + 3.405s + 2.5697

s2 + 7.15s + 14.51
.
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This estimation is biased from the actual plant parameter. Note that the estima-

tion is again much improved if I allow more time.

4.4.3 Results Comparison

It can be seen clearly that the estimation based on the FEL is better than the

conventional approach, as shown in Figs. 4.4 and 4.5. The former is fairly close

to the actual one. I conclude that the proposed algorithm gives a good approx-

imation of the plant model faster than the conventional method. Another merit

of FEL estimation over the conventional approach is that it does not require

feedback controller knowledge.

4.5. Conclusion

The main objective of this work was to prove the exponential convergence of

the tracking error without full excitation in FEL. The merit of this result is

that in many applications good tracking performance is required, while it is not

desirable or even impossible to satisfy PE condition. Furthermore, the parameter

estimation using FEL showed better results than the conventional approach after

error convergence without depending on knowledge of the feedback controller as

required by most of the conventional methods.

Compared to the recent work by Kaneko et al. [41], where 2DOF is used as in

the proposed approach for closed-loop identification based on fictitious reference

iterative tuning (FRIT), which requires only one-shot experimental data to iden-

tify the plant parameter. However, the parameter tuning is done off-line using

the collected data, while the proposed method here works on-operation.
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Chapter 5

FEL for Writing One-stroke

Characters by Two-Link

Manipulator

In this chapter, a version of the problem of how to teach robots to write characters

in an actual environment is considered. In particular, a feedforward controller is

designed for two-link manipulators to improve tracking performance despite lim-

ited knowledge of the surroundings. An adaptive scheme, called MIMO-FEL, is

employed to achieve the objective. After convergence, the feedforward controllers

are switched depending on the target character to be written. The effectiveness

of the proposed method is demonstrated with an experiment.

57



Figure 5.1. Experimental Hardware

5.1. Introduction

High tracking performance is one of the most important requirements for robotics

applications. To design a model-based feedforward controller with good tracking

performance, an accurate model of the process is needed. However, factors such

as uncertainty, nonlinearity or time-varying behavior make modeling and identi-

fication more difficult or expensive. To overcome this challenge, several adaptive

and learning control techniques have been proposed [5, 6, 7, 30, 43]. There are

in general two distinct adaptive control approaches. The first approach is called

indirect adaptive control because the adaptive laws provide explicit estimates of

the dynamics of the model parameter, which is then used in controller design

[7]. The second is called direct adaptive control, as the adaptive laws adjust the

control gains directly without parameter estimation [6]. These approaches have

also been used to adjust the feedforward controller to obtain an accurate inverse

model of the plant as in [44]. Adaptive inversion, which first needs to estimate a

plant model, is less sensitive to plant uncertainties and variations but also adjusts

itself to plant parameter changes.

However, two powerful model-free learning control methods, iterative learning

control (ILC) and feedback error learning (FEL), have attracted much attention

in the last two decades (see, e.g., [1, 2, 3, 8, 9, 10]). ILC deals with repeating

tracking tasks in a finite time interval. Thus, it yields the desired input through

the iteration of trials with the reset action of initial conditions. FEL, proposed by
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Kawato et al. [8], achieves an inverse model of the plant without extensive mod-

eling by utilizing the error signal during continuous-time closed-loop operation.

The key point of FEL is to use a learning law which depends on the feedback

error in order to tune the feedforward controller parameters.

Miyamura and Kimura [9] have established a control theoretical validity of

the FEL method in the frame of adaptive control for the SISO case, proving its

stability based on strictly positive realness, whereas Muramatsu and Watanabe

[10] have relaxed the positive realness condition of FEL. Following [9], Alali el al.

in [35, 36, 37] have studied some generalizations of the FEL scheme.

FEL has been implemented successfully using ANN in many systems such as

industrial robot, humanoid robot, inverted pendulum and flexible link [25, 27,

26, 45]. The experimental results have shown the effectiveness of using FEL to

improve tracking performance. The present work further studies an application

of the MIMO-FEL technique developed in [36] to a practical problem in terms of

a two-link manipulator. The basic idea of this work is to achieve an approximated

inverse of the plant adaptively, using linear parameterization instead of ANN, to

improve tracking performance for each specific desired trajectory and also the

speed of parameter convergence by means of MIMO-FEL. This also contrasts

with achieving an exact inverse via precise system identification, which requires a

huge amount of data and richness of the excitation input. Thus, by FEL, one can

obtain an inverse model for a specific reference signal with a limited amount of

data and a limited range of frequency components. In practice, the feedforward

controllers are switched depending on the target character to be written. This

is a clear contrast with the precise identification approach, which uses a single

general-purpose controller.

The basic assumption made in Chapter 2 to prove the convergence of the

proposed algorithm is that the plant is linear. Since the two-link manipulator

is a typical nonlinear system, I have to fill this gap. There are basically two

sources of the nonlinearity: the first one is caused by the friction force generated

by the reduction gear of the motor and the time-varying inertia. The second one

is caused by the trigonometric dependency of the angle of the motors to the X-Y

coordinates of the hand position. I overcome the first one by means of high-gain

local feedback, the second by restricting the working area of the hand position to
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Figure 5.2. Feedforward Controller Design

Figure 5.3. Local Feedback Structure

within a small neighborhood around the equilibrium point.

5.2. Dynamics of Two-Link Manipulator

I consider a two-link manipulator in Fig. 5.1. Each arm is driven by a DC motor

with a reduction gear. The derivers apply the current to each motor in proportion

to their input voltages. The objective here is to design a feedforward controller Ω

for this manipulator system which achieves a good tracking performance, namely

‖p(t)− r(t)‖ → 0 as t →∞ as illustrated in Fig. 5.2. As mentioned above, local

angular velocity and angular feedback based on the encoder signal with relatively

high gains are applied, as in Fig. 5.3. Thus, the nonlinearities due to friction or

time-varying inertia are compensated. Assume that the behavior of the dashed

line block in Fig. 5.3 is much improved by the inner PI loop, i.e., G(s) ' 1. Then,
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Figure 5.4. Two-Link Manipulator Model

the dynamics from input voltage vi to angle θi can be approximated as

θi =
ki

τis + 1
vi, (5.1)

where τi and ki are parameters that need to be identified. The x-y coordinates

of the two points p1 and p2 in Fig. 5.4 are given as follows:


 x1

y1


 =


 l1 cos θ1

l1 sin θ1


 , (5.2)


 x2

y2


 =


 l1 cos θ1 + l2 cos(θ2 − θ1)

l1 sin θ1 − l2 sin(θ2 − θ1)


 . (5.3)

Let
θ1 = θ∗1 + ∆θ1,

θ2 = θ∗2 + ∆θ2,
(5.4)

where θ∗1 and θ∗2 are initial angles of the motor corresponding to the equilibrium

point of the hand position. To overcome the nonlinearity effects caused by the

trigonometric functions in (5.3), I restrict the working area of the hand position

to within a small neighborhood around the equilibrium point. Then, the mo-

tion around (θ∗1, θ
∗
2) can be approximated by linear dynamics using Taylor series

expansion. Therefore, the resulting hand position p2(x2, y2) is given as follows:
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x2 = l1 cos θ∗1 − l1 sin θ∗1∆θ1 + l2 cos(θ∗2 − θ∗1)

−l2 sin(θ∗2 − θ∗1)(∆θ2 −∆θ1)

=: x∗2 + {l2 sin(θ∗2 − θ∗1)− l1 sin θ∗1}∆θ1 − l2 sin(θ∗2 − θ∗1)∆θ2

y2 = l1 sin θ∗1 + l1 cos θ∗1∆θ1 − l2 sin(θ∗2 − θ∗1)

−l2 cos(θ∗2 − θ∗1)(∆θ2 −∆θ1)

=: y∗2 + {l2 cos(θ∗2 − θ∗1)− l1 cos θ∗1}∆θ1 − l2 cos(θ∗2 − θ∗1)∆θ2.

(5.5)

The coordinates x∗2 and y∗2 are given as

x∗2 = l1 cos θ∗1 + l2 cos(θ∗2 − θ∗1),

y∗2 = l1 sin θ∗1 − l2 sin(θ∗2 − θ∗1).
(5.6)

Note that (x∗2, y
∗
2) is the equilibrium point of linearization. Further, the following

relationship is obtained from (5.1)

∆θi =
ki

τis + 1
∆vi, (5.7)

where ∆vi denotes the deviation from the initial voltage. As a result, if I consider

the motion in a small neighborhood of p2(x2, y2), then I can approximate the hand

motion with the following linearized model as


 ∆x2

∆y2


 = M1(θ

∗
1, θ

∗
2)M2(s)


 ∆v1

∆v2


 ,

=: P (s)


 ∆v1

∆v2


 , (5.8)

where
∆x2 = x2 − x∗2,

∆y2 = y2 − y∗2,
(5.9)

M1(θ
∗
1, θ

∗
2) =


 l2 sin(θ∗2 − θ∗1)− l1 sin θ∗1 −l2 sin(θ∗2 − θ∗1)

l2 cos(θ∗2 − θ∗1) + l1 cos θ∗1 −l2 cos(θ∗2 − θ∗1)


 ,

(5.10)
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Figure 5.5. Two-Link Manipulator Control Scheme Using MIMO-FEL

M2(s) =




k1

τ1s+1
0

0 k2

τ2s+1


 . (5.11)

The theoretical contribution in Chapter 2 is two-fold: extension to MIMO

and to strictly proper systems. The target system (5.8) is exactly what should be

considered in the framework and I may apply the linear MIMO-FEL technique

to this plant.

5.3. Controller Design

The two-link manipulator control scheme using MIMO-FEL is shown in Fig. 5.5.

The objective of the controller design is to minimize the error signal between w(t)

and the plant output y(t). Kfb is a feedback gain to stabilize the plant, and Θ is

a tunable parameter.

Note that if the system is invertible with properness as in [9, 10], then I can

readily take QΘ = P−1 and obtain a perfect tracking. This is not the case,

however, since I have obtained P (s) in (5.8), which is strictly proper, and hence

P−1(s) becomes improper. To overcome this difficulty, pre-filter W (s) is intro-

duced. Under a mild assumption on the plant, one can set the pre-filter to a

diagonal form defined in (2.12).
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A tunable feedforward controller is needed to be constructed. To generate

uff(t), the dynamical system defined in (2.24) is considered. Then, the learning

law (2.38) is used to tune Θ(t).

If Θ(t) converges to some constant value Θc which corresponds to Fc, Gc, Hc

and e(t) → 0 as t → ∞, then I can obtain from (3.2) the following learning

feedforward controller

uffLearning
(t) =

[
I −Gc(sI − Af )

−1Bf

]−1

·
{
Hc + Fc(sI − Af )

−1Bf

}
r(t)

=: QΘc(s)r(t).

(5.12)

Clearly, the learning process for QΘc(s) depends on the reference signal r(t).

Thus, I employ a switching strategy in writing different characters since it means

tracking to different references.

5.4. Simulation and Experimental Results

Using the on-line output y(t) for learning may be the ultimate goal to demonstrate

the practical usefulness of the proposed method. Toward this end, I first try

a numerical simulation with nonlinear model (5.3). Since the nonlinear model

includes the motor dynamics (5.3), I have to identify their parameters to perform

the simulation under a realistic situation.

I use the following parameters for the length of the links and the equilibrium

points in both simulation and experiment: l1 = 0.2 [m], l2 = 0.2 [m], θ∗1 = 30

[deg], θ∗2 = 45 [deg]. The working space is within 0.02 [m].

5.4.1 Identification of Motor Dynamics

As mentioned earlier, due to the double local feedback loops, the dynamics of

each motor can be approximated as first order systems. I then identified the

parameters for each motor via curve fitting method as

θ1 =
0.9982

0.2422s + 1
v1,

θ2 =
0.9956

0.1458s + 1
v1.
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The responses are well approximated as shown in Figs. 5.6 and 5.7.

5.4.2 Simulation Results

I first conduct a numerical simulation based on the nonlinear model (5.3) and

linearized model (5.8). I choose the feedback gain and diagonal pre-filter as

Kfb =


 −1 3

−3 −1


 , W (s) =




1
s+1

0

0 1
s+1


 .

I also need to set stable Af and Bf which makes (Af , Bf ) controllable based on

the upper bound of the relative degree µ = 1, (see (2.18) and (2.19)). They are

chosen as

Af =


 −4 0

0 −4


 , Bf =


 1 0

0 1


 .

Note that the size of the matrix Θ(t) is 2 by 6. Thus, it includes 12 components.

I consider the following two different reference trajectories to illustrate the idea

clearly:

r0(t) =


 sin(0.4t)

cos(0.4t)


, r8(t) =


 sin(0.6t)

sin(0.3t)


.

The reference trajectories represent the numerical numbers “0” and “8”, respec-

tively. I then tune Θ(t) by using the learning rule (2.38).

1) Nonlinear model case:

I restrict the working area of the hand position to within a small neighborhood

around the equilibrium point to guarantee the convergence of the learning law.

The time evolution of Θ0(t) and Θ8(t) are shown in Figs. 5.8 and 5.9, respectively.

Each line in the plot corresponds to the time evolution of one component of

the matrix over the time period. It can be seen that the convergence has been

achieved only after a long time. The simulation results of the trajectories of

the hand for “0” and “8” are shown in Fig. 5.10. It shows that the actual

trajectories are close to the reference trajectories. As a result, one can verify that

the algorithm really works for a nonlinear model with a restricted moving area.

However, the result also shows that it takes a few days for convergence, even in

the simulation. This implies that the experiment with on-line data via current
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algorithm is unrealistic. Thus, this direction of research will be considered in the

future.

I now turn the attention toward the simulation with a linear model, as used

in studies such as [9] and [10], to verify the proposed switching learning strategy

in writing characters. The simulation result with the linear model is much faster

than in the nonlinear case, as shown below.

2) Linear model case:

To solve the above problem of slow convergence, I use a linearized model of

the plant, which can be obtained from (5.8) as follows:

P (s) =




−0.04815
0.2422s+1

−0.05154
0.1458s+1

0.3657
0.2422s+1

−0.1923
0.1458s+1


 . (5.13)

Based on this model, I perform another numerical simulation. The time evolution

of Θ0(t) and Θ8(t) is shown in Figs. 5.11 and 5.12, respectively. It is clear how

fast the convergence is, compared to the nonlinear case. Thus, the effectiveness

of using the linearized model is that the time elapsed for convergence is 0.67% of

the time for the nonlinear case. The simulation results of the trajectories of the

hand before and after learning are shown in Fig. 5.13. The resulting parameter

matrices for each example from Figs. 5.11 and 5.12 are as follows:

a) for the first example (“0”):

F0 =


 −0.2200 0.2806

−0.5667 −0.2726


 , G0 =


 0.8815 1.2620

0.8662 2.8618


 ,

H0 =


 −0.7721 1.3840

−2.3745 −0.9749


 ,

b) for the second example (“8”):

F8 =


 −0.3847 0.4273

−0.6492 −0.2156


 , G8 =


 2.9661 0.0107

0.0283 3.0981


 ,

H8 =


 −1.6300 0.3725

−2.8053 −0.3475


 ,

where e(t) → 0 for both. Thus, the resulting learning feedforward controller for

each case using (5.20) is given as follows:
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QΘ0(s) =



−0.7721s2−7.184s−16.47

s2+4.257s+2.456
1.384s2+6.162s+1.355

s2+4.257s+2.456
−2.375s2−18.14s−34.25

s2+4.257s+2.456
−0.9749s2−6.014s−7.973

s2+4.257s+2.456


 ,

QΘ8(s) =



−1.63s2−8.405s−6.354

s2+1.936s+0.9322
0.3725s2+2.25s+1.712

s2+1.936s+0.9322
−2.805s2−14.82s−12.47

s2+1.936s+0.9322
−0.3475s2−1.954s−1.606

s2+1.936s+0.9322


 .

To confirm that the above learning controllers can really let the manipula-

tor write its corresponding characters, I perform an experiment with the real

manipulator.

5.4.3 Experimental Results

The experimental setup of the two-link manipulator is shown in Fig. 5.1. The

target is to let the manipulator write the numerical numbers 0, 2, 3,· · ·, 9. The

first step is to obtain the learning controller for each character, as I did before for

“0” and “8” with (5.13). I then switch the feedforward controller depending on

the objective. For example, I use QΘ0(s) if I want to write “0” and QΘ2(s) to write

“2” and so on. Note that I use the same Kfb and W (s) in the simulation part to

perform the experiment. Fig. 5.14 shows the picture of written “0” and “8” before

and after learning. The resulting picture is close to the numerical simulation result

in Fig. 5.13. The experimental result in Fig. 5.15 shows the reference trajectory

versus the actual one for each number written by the manipulator. The results

indicate that the manipulator succeeded in writing different characters based on

the switching strategy.

5.5. Conclusion

The main objective of this work is to demonstrate the practical effectiveness of the

MIMO-FEL scheme proposed in Chapter 2 by an experiment. I verified that con-

trollers generated by the numerical simulation show good tracking performance in

the experiment with a real two-link manipulator. The next goal is to use on-line

data during the learning process. Under this configuration, I can be free from the

identification of the motor dynamics and the linearization of nonlinear dynamics

of the manipulator.
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Figure 5.8. Time Evolution of Θ0: Nonlinear Case
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Figure 5.9. Time Evolution of Θ8: Nonlinear Case
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Figure 5.10. Nonlinear Simulation Results for 0 and 8
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Figure 5.11. Time Evolution of Θ0: Linear Case
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Figure 5.14. Characters 0 and 8 Written by the Manipulator
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Chapter 6

Conclusion and Future Work

6.1. Conclusion

The ultimate goal of the thesis is to extend and apply FEL to MIMO systems. By

using linear system parameterization as a function approximator of feedforward

control, a learning law was derived to adjust the inverse of the plant. A theoretical

treatment of how to generalize feedback error learning (FEL) to MIMO systems

has been studied in the framework of adaptive control. The FEL scheme was

generalized to MIMO systems which are not necessarily biproper, and hence not

invertible with properness. The feedforward controller is not designed on the

basis of the process model, rather trained on-line during control using feedback

error signal as a learning signal.

Moreover, the exact inverse of the plant was derived theoretically using the

inverse interactorization concept, and can be used as a guide to check the cor-

rectness of the learning control. Furthermore, the stability of the tuning rule has

been proved with and without the positive realness condition.

In this thesis, I have also proposed a new closed-loop identification technique

by means of MIMO-FEL. When the reference signal satisfied the PE condition,

the method was shown to be effective in simulation.

Thus, the control performance can be improved by re-designing the controller

with the obtained plant model. The convergence was slow, although this is often

the case in adaptation or learning algorithms.

Further, I proved exponential convergence of the tracking error without con-
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sidering the PE condition as presented in Chapter 2. The merit of this result

is that in many practical applications good tracking performance is required,

whereas it is not desirable or even impossible to satisfy the PE condition. Fur-

thermore, parameter estimation using such benefits of FEL showed a better result

than the conventional approach after the convergence without using the knowl-

edge of the feedback controller, as required by most of the conventional methods

in order to estimate the plant parameters.

Finally, I demonstrated the practical effectiveness of the proposed MIMO-

FEL scheme by an experiment. I verified that controllers generated by numerical

simulation showed good tracking performance in the experiment using the two-

link manipulator.

6.2. Future Work

From the theoretical point of view, the results of this work can be extended

to time delay systems which have a close relation to work done for the SISO

case [16, 18] where the feedback loop has constant and unknown time delay.

It is also desirable to extend the MIMO-FEL stability proof to include robust

stability in the presence of plant uncertainty or unmodeled dynamics. The current

experiment and simulation results in [51] showed the robustness of MIMO-FEL in

the presence of motor and white noise, respectively. However, it requires further

investigation to prove such results theoretically.

Since most of the adaptive control algorithms assumes the stability of the

plant to be controlled, it would be interesting if the present work considers the

case where the plant is unstable, but its inverse is stable. The simulation results

show the capability of FEL to overcome such a difficult issue.

Moreover, one of interesting parts which needs to be improved in this thesis

is the slow convergence of the closed-loop identification (scheme) in Chapter 3.

Although I have introduced an alternative approach for parameter estimation

using frequency response to overcome such a drawback, further investigations are

needed to improve on the current work.

From the practical point of view, the next goal would be to perform the

learning process on-line. Under this configuration, the identification of the motor
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dynamics and the linearization of nonlinear dynamics of the manipulator are not

needed. To achieve this objective, the current work must be extended to cover the

nonlinear model by finding a proper mathematical representation of a nonlinear

filter instead of using linear one.
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Appendix

Strictly Positive Real (SPR) Definition for Biproper

MIMO System [48]

The m × m biproper transfer function matrix G(s) = D + C(sI − A)−1B with

D > 0, is called SPR if:

1. All elements of G(s) are analytic in Re(s) ≥ 0 (i.e., they do not have a pole

in Re[s] ≥ 0.)

2. G(s) is real for real s.

3. G(s) + G∗(s) > 0 for Re[s] ≥ 0.

Strictly Positive Real (SPR) Definition for Strictly

Proper MIMO System [48]

The m × m strictly proper transfer function matrix G(s) = C(sI − A)−1B, is

called SPR if:

1. All elements of G(s) are analytic in Re(s) ≥ 0.

2. G(s) is real for real s.

3. G(s) + G∗(s) ≥ 0 for Re[s] ≥ 0, G(s) + G∗(s) > 0 for finite s, and

lim
ω→∞

[
ω2 (G(jω) + G∗(jω))

]
> 0.
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KYP Lemma (Kalman-Yakubovich-Popov) [48]

Let G(s) = D + C(sI − A)−1B,

be m×m transfer matrix, where (A,B) is controllable and (A,C) is observable.

Then, G(s) is strictly positive real if and only if there exist matrices P = P T , T ,

and Z, and a positive constant ε such that

PA + AT P = −T T T − εP,

PB = CT − T T Z,

ZT Z = D + DT .

Persistent Excitation (PE) Condition [34]

A vector ζ(t) is PE if there exist λ1, λ2,δ > 0 such that

λ1I ≥
∫ t0+δ
t0

ζ(t)ζT (t)dt ≥ λ2I, for all t0 ≥ 0.

PE and Exponential Stability Theorem [34]

Let w(t) be piecewise continuous.

If w is PE, then φ̇(t) = −gw(t)wT (t)φ(t) for g > 0 is globally exponentially

stable.

Barbalat Lemma [4]

If g is a real function of a real variable t, defined and uniformly continuous for

t ≥ 0, and if the limit of the integral

∫ t

0
g(s)ds

as t tends to infinity exists and is a finite number, then

lim
t→∞ g(t) = 0.
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