
NAIST-IS-DD0561033

Doctoral Dissertation

Constructing Efficient Infrastructures

for Secure Communication

with Various Autonomy

Hisashi Mohri

February 7, 2008

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hisashi Mohri

Thesis Committee:

Professor Hiroyuki Seki

Professor Minoru Ito

Professor Minoru Okada

Associate Professor Yuichi Kaji

Constructing Efficient Infrastructures

for Secure Communication

with Various Autonomy∗

Hisashi Mohri

Abstract

With the growth of the number of services offered on the computer network,

system management techniques for assuring the security become more important.

For example, sharing a cryptographic key is the very first step to realize secure

communication over an untrusted network infrastructure. In ordinary networks,

since we can assume a trusted third party, a central problem is how to design

secure services on top of security operation techniques such as Public-Key Infras-

tructure (PKI). On the other hand, we should investigate a key agreement scheme

itself in case of as ad-hoc networks and sensor networks. In ad-hoc networks, we

should investigate self-organizing key agreement schemes without trusted third

party because of node mobility and lack of trusted third party. Moreover, in

sensor networks, it is very difficult to use a public-key cryptosystem itself due

to the restriction of computational resources of sensor nodes. Hence, we should

investigate key predistribution schemes, which are key agreement schemes with-

out communication overhead for key exchange protocol between two nodes. In

this thesis, efficient and robust infrastructures for secure communication in au-

tonomous computer networks are investigated.

Trust management is a security infrastructure based on PKI. Various trust

management models were proposed in the literature, however, there has been no

trust management model that can explicitly represent a system whose internal

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561033, February 7,
2008.

i

state changes. In Chapter 2, a trust management model that can represent a

system with internal states is proposed. First, a policy specification language is

presented to define the behavior of the system. Also, the verification problem is

defined as the problem to decide whether the behavior of a system with a given

policy satisfies a given verification property, and a verification method for the

problem is also proposed. Experimental results on the verification of a sample

problem are presented, using an implemented verification system and Prolog.

To adapt security infrastructure for ad-hoc networks, using a web-of-trust

type PKI systems is a promising method. In a web-of-trust type PKI system,

each node can issue certificates to others in a self-organized manner. In Chapter

3, new distributed algorithms for solving the certificate-chain discovery problem

for a web-of-trust type PKI are proposed. The algorithm consists of a certificate

searching algorithm and a certificate collecting algorithm. The former algorithm

uses a distributed algorithm for constructing a spanning tree in the weighted

directed graph that models a web-of-trust. Also, communication costs of the

proposed methods and an existing method are evaluated by numerical analysis

and computer simulation, and it is shown that the costs of the proposed methods

is less than the cost of the existing method.

A practical solution to adapt a security infrastructure for sensor networks

is key predistribution schemes in which cryptographic keys are predistributed

in each sensor node before it is deployed. In Chapter 4, a new method and

two extended methods in which keys are assigned according to a basic algebraic

geometry are proposed. The proposed methods associate each node with a line

over a two-dimensional finite plane, and manage keys so that two nodes can

agree a key if and only if the associated lines intersect with each other. The

performance of the proposed methods is computed analytically, and the results

show that the proposed methods are more efficient and robust than the random

key predistribution scheme.

Keywords:

information security, public-key infrastructure, trust management, key predistri-

bution scheme, ad-hoc network, sensor network

ii

種々の自律度に応じた効率のよいセキュア通信基盤に

関する研究∗

毛利　寿志

内容梗概

計算機ネットワーク上で提供されるサービスが拡大されるに従い，セキュリ
ティ保護等を目的としたシステム管理基盤技術がますます重要となっている．そ
の一例として，暗号鍵共有がある．暗号鍵共有は，信頼できないネットワーク上
でのセキュアな通信を行うために必要不可欠な手法であり，現在までに広く研究
されているセキュリティ基盤技術である．一般的なネットワークでは，すでに実用
的な公開鍵暗号技術などが研究されており，鍵共有方式を包括するセキュリティ
基盤技術の構築が問題となっている．この場合，信頼できる第三者を仮定したセ
キュリティ技術の導入が最適である．一方，アドホックネットワークやセンサネッ
トワークなどのように，セキュリティ基盤技術の構築そのものが問題となってい
るようなネットワークも存在する．アドホックネットワークでは，ノードの移動
性及び特定の信頼できる第三者機関の不在などの制約により，既存の公開鍵暗号
基盤をそのまま利用できないという問題点が指摘されている．この場合は，信頼
できる第三者を仮定せず，ネットワーク内の当事者同士で鍵共有を行う方式が必
要となる．また，センサネットワークでは，センサノードの計算，通信，メモリ
資源の制約により，公開鍵暗号そのものの使用ができないことが指摘されている．
そのため，ネットワーク施行後に行われる鍵共有プロトコルは用いず，事前に各
センサノードに暗号鍵を埋め込んでおく方式が適している．本研究では，従来の
ネットワークと二種類の新しいネットワーク（アドホックネットワーク，センサ
ネットワーク）に関し，それぞれの特徴や制約に沿った効率が良く，かつ頑健性
のあるセキュリティ基盤技術を提案する．

∗奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-
DD0561033, 2008年 2月 7日.

iii

信用管理 (Trust Management)とは，公開鍵暗号基盤 (Public-Key Infrastruc-

ture，PKIと略)に基づいたアクセス制御技術である．第 2章では，システムの
内部状態を導入した信用管理モデルを提案する．まず，システムの振る舞いを定
義するために，ポリシ記述言語を提案する．また，本研究では，与えられたポリ
シが与えられた検証項目を満たすかどうかを決定する問題として検証問題を定義
し，モデル検査手法を用いてこの問題を解く手法を提案する．さらに，ある具体
例について，Prologを用いたモデル検査手法の実装法を提案し，検証に要する時
間を示す．
アドホックネットワークにおける鍵共有手法に関する研究として，ネットワー

クに参加している各ユーザが各自で公開鍵証明書を発行し合うような，web-of-

trust型信頼モデルが注目されている．第 3章では，アドホックネットワーク上の
web-of-trust型信頼モデルにおいて，効率の良い証明書連鎖発見アルゴリズムを提
案する．提案アルゴリズムは，信頼モデル上で証明書連鎖を探索する段階と，探索
により見つけた証明書連鎖を収集する段階から成る．探索段階では，web-of-trust

型信頼モデルを表す有向グラフ上で生成木を構成する分散アルゴリズムを利用し
ている．また，提案手法と既存手法の通信コストを数値解析，及び計算機シミュ
レーションによって比較し，提案手法の方が既存手法より少ないコストで問題を
解くことができることを示す．
センサネットワークにおける鍵共有方式に関する研究として，鍵事前格納方

式が注目されている．鍵事前格納方式では，センサネットワークの施行前に各セ
ンサノードに事前に鍵を複数組み込んでおき，各センサノードを配布してセンサ
ネットワークを構築する．第 4章では，各ノードへの鍵事前格納について，代数
幾何に基づいた新しい方式を提案する．有限二次平面上の各格子点にそれぞれ異
なる鍵を割り当て，ある一直線上にある全ての鍵を一つのノードに格納するよう
な方式を提案する．さらに，提案手法の効率性，頑健性を数値解析によって評価
し，提案手法の方が既存手法より効率が良く頑健であることを示す．

キーワード

情報セキュリティ, 公開鍵暗号基盤, 信用管理, 鍵事前格納方式, アドホックネッ
トワーク, センサネットワーク

iv

List of Publications

1. Publications Related to the Thesis
1.1. Journal Papers

(1) Hisashi Mohri, Ikuya Yasuda, Yoshiaki Takata, and Hiroyuki Seki: “New

Certificate Chain Discovery Methods for Trust Establishment in Ad Hoc

Networks and Their Evaluation,” IPSJ Journal, 49, 1, pp.362–374, Jan.

2008. (Chapter 3)

(2) Hisashi Mohri, Ritsuko Matsumoto, and Yuichi Kaji: “Key Predistribu-

tion Schemes for Sensor Networks Using Finite Plane Geometry,” IEICE

Transactions on Information and Systems, E91-D, 5, May 2008, to appear.

(Chapter 4)

1.2 International Conferences (Reviewed)

(3) Hisashi Mouri, Yoshiaki Takata, and Hiroyuki Seki: “A Formal Model

for Stateful Trust Management Systems,” In 9th IASTED International

Conference on Software Engineering and Applications (SEA2005), 467-030,

pp.87–92, AZ, USA, Nov. 2005. (Chapter 2)

(4) Hisashi Mohri, Ritsuko Matsumoto, and Yuichi Kaji: “Key Predistribution

Schemes for Sensor Networks Using Lines and Points over a Finite Geom-

etry,” Third Annual IEEE Communications Society Conference on Sensor,

Mesh and Ad Hoc Communications and Networks (SECON2006), poster

presentation, VA, USA, Sept. 2006. (Chapter 4)

(5) Hisashi Mohri, Ikuya Yasuda, Yoshiaki Takata, and Hiroyuki Seki: “Cer-

tificate Chain Discovery in Web of Trust for Ad Hoc Networks,” The 2007

IEEE International Symposium on Ubisafe Computing (UbiSafe-07), 21st

International Conference on Advanced Information Networking and Appli-

cations Workshops (AINAW), 2, pp.479–485, Ontario, Canada, May 2007.

(Chapter 3)

v

1.3 Workshops

(6) Hisashi Mouri, Yoshiaki Takata, Hiroyuki Seki: “A Stateful Trust Manage-

ment Model,” IEICE General Conference, A-7-2, March 2004. (in Japanese)

(7) Hisashi Mouri, Yoshiaki Takata, and Hiroyuki Seki: “A Formal Model for

Stateful Trust Management Systems,” Technical Report of IEICE, SS2005-

20, pp.13–18, June 2005.

(8) Ritsuko Matsumoto, Hisashi Mohri, and Yuichi Kaji: “A Pre-Distribution

Scheme of Keys for Sensor Nodes Using Small Key Pools,” Symposium

on Cryptography and Information Security (SCIS), 3D4-4, Jan. 2006. (in

Japanese)

(9) Ritsuko Matsumoto, Hisashi Mohri, and Yuichi Kaji: “Key Predistribution

Schemes for Sensor Networks Using Lines and Points over a Finite Geome-

try,” Technical Report of IEICE, ISEC2006-85, pp.97–104, Sept. 2006.

(10) Ikuya Yasuda, Hisashi Mohri, Yoshiaki Takata, and Hiroyuki Seki: “PKI

Certificate Chain Finding Problem for Ad Hoc Networks,” Technical Report

of IPSJ, 2006-MBL-39(5), pp.31–38, Nov. 2006. (in Japanese)

(11) Ritsuko Matsumoto, Hisashi Mohri, and Yuichi Kaji: “Key Predistribution

Schemes for Sensor Networks Using Finite Plane Geometry,” Symposium

on Cryptography and Information Security (SCIS), 3F2-5, Jan. 2007.

2. Other Publications
2.1. International Conference (Reviwed)

(12) Jun Noda, Mie Takahashi, Itaru Hosomi, Hisashi Mouri, Yoshiaki Takata

and Hiroyuki Seki: “Integrating Presence Inference into Trust Management

for Ubiquitous Systems,” Proceedings of 11th ACM Symposium on Access

Control Models and Technologies (SACMAT2006), pp.59–68, CA, USA,

June 2006.

vi

2.2. Workshops

(13) Jun Noda, Hisashi Mouri, Yoshiaki Takata, Hiroyuki Seki, Daigo Taguchi,

Mie Takahashi, and Itaru Hosomi: “A New Architecture for Trust Manage-

ment with User Presence,” Technical Report of IEICE, SS2005-50, pp.13–

18, Oct. 2005.

(14) Yuichi Nino, Yuichi Kaji, Hisashi Mohri, and Daigo Taguchi: “A Proposal

on Key Sharing Method for Access Control in P2P Network,” Symposium

on Cryptography and Information Security (SCIS), 3D4-5, Jan. 2006. (in

Japanese)

(15) Hisashi Mohri, Jun Noda, Yuichi Nino, and Yuichi Kaji: “A Key Manage-

ment Scheme for Sensor Networks Utilizing Multiple Attribute Partitions,”

Symposium on Cryptography and Information Security (SCIS), 3F2-4, Jan.

2007. (in Japanese)

(16) Hisashi Mohri and Ryo Nojima: “Private Evaluation of a Joint Graph,”

The 3rd workshop on Information and Communication System Security,

ICSS2006-24, Feb. 2007.

(17) Jun Noda, Yuichi Kaji, Hisashi Mohri, Yuichi Nino, and Toshiyasu Nakao:

“Development and Evaluation of the Key Management Scheme Using Some

Attributes Associated with Sensors,” Multimedia, Distributed, Coopera-

tive, and Mobile Symposium (DICOMO), 3C-4, July 2007. (in Japanese)

2.3. Technical Report

(18) Yoshiaki Takata, Jun Noda, Mie Takahashi, Hisashi Mouri, Itaru Hosomi,

Daigo Taguchi, and Hiroyuki Seki: “A Presence-aware Trust Management

System,” Technical Report NAIST-IS-TR2005006, Nara Institute of Science

and Technology, Oct. 2005.

3. Award

(1) Paper Award, The 2007 Multimedia, Distributed, Cooperative, and Mobile

Symposium (DICOMO 2007), July 2007.

vii

Acknowledgements

During the course of this work, I have received help from many people.

First, and foremost, I would like to thank my supervisor, Professor Hiroyuki

Seki for giving me a chance to study computer science, and providing me with

continuous support, encouragement and guidance for the work. Moreover, the

professor accommodated me with an excellent environment in Seki Lab. to study

information security and formal method. I would like to thank Professor Minoru

Ito and Professor Minoru Okada for providing me with beneficial comments to

improve this thesis. I am very grateful to Associate Professor Yuichi Kaji for his

continuous support and guidance of the work. His wealth of knowledge and open

mind greatly help me understanding and investigating information security.

I would like to thank Dr. Toshimitsu Masuzawa, Professor at Osaka Univer-

sity, for helpful comments about distributed algorithms. I also would like to

thank Associate Professor Keiichi Yasumoto for helpful comments about ad-hoc

networks. Dr. Yoshiaki Takata, Lecturer at Kochi University of Technology, has

provided me guidance in the work since he was an assistant professor at Nara

Institute of Science and Technology. I am very grateful to him for his continuous

support and guidance.

I would like to thank Assistant Professor Yoshitaka Nakamura for helpful com-

ments about ad-hoc and sensor networks and Dr. Isao Yagi for helpful comments

about the work.

I am grateful to Miss Ikuya Yasuda and Miss Ritsuko Matsumoto, collabora-

tors of the work, for their contributions and efforts to achieve good experimental

results in the work. Also, I would like to thank Mr. Takahito Sakamoto for

introducing related work about security techniques for sensor networks.

Finally, I would like to thank all the members of Seki Laboratory for giving

me much encouragement and help.

viii

Contents

List of Publications . v

Acknowledgements . viii

1 Introduction 1

2 A Formal Model for Stateful Trust Management Systems 7

2.1. Introduction . 7

2.2. Proposed Model . 9

2.2.1 Scheme for Stateful Trust Management Systems 9

2.2.2 Policy Predicates . 11

2.2.3 Syntax and Semantics of Policy 11

2.3. An Example of Policy Specification 12

2.4. Formal Verification . 14

2.4.1 Verification Problem . 14

2.4.2 Verification Method Using Prolog 15

2.4.3 Verification Example . 16

2.5. Conclusion of Chapter 2 . 21

3 New Certificate Chain Discovery Methods for Trust Establish-

ment in Ad Hoc Networks and Their Evaluation 23

3.1. Introduction . 23

3.2. Problem Statement . 25

3.3. Related Work . 27

3.4. Proposed Method . 28

3.4.1 Web-of-Trust in Ad Hoc Networks 28

3.4.2 Basic Scheme . 29

ix

3.5. Evaluation . 31

3.5.1 Preliminaries . 31

3.5.2 Analysis of the Kitada Method 32

3.5.3 Analysis of the Basic Scheme 33

3.5.4 Comparison between the Two Methods 34

3.6. A Modification Scheme of the Basic Scheme 37

3.6.1 Modification Scheme . 37

3.6.2 Evaluation of the Modification Scheme 38

3.7. Simulation Results . 41

3.7.1 Simulation Scenario . 41

3.7.2 Results . 42

3.8. Discussion . 44

3.8.1 Security Consideration . 44

3.8.2 Analysis of Packet Numbers of the Three Methods 48

3.9. Conclusion of Chapter 3 . 51

4 Key Predistribution Schemes for Sensor Networks Using Finite

Plane Geometry 54

4.1. Introduction . 54

4.2. Related Work . 55

4.3. Proposed Scheme . 58

4.3.1 Preliminary . 58

4.3.2 Basic Scheme . 60

4.3.3 Evaluation of the Basic Scheme 61

4.4. Extended Schemes . 63

4.4.1 Extended Scheme 1 . 64

4.4.2 Extended Scheme 2 . 65

4.4.3 Evaluation of the Two Extended Schemes 66

4.5. Discussion . 68

4.5.1 Choice of Parameters . 68

4.5.2 Relation to the Location-Based Approach 69

4.5.3 Robustness of the Proposed Methods 72

4.6. Conclusion of Chapter 4 . 73

x

5 Conclusion 74

References . 77

Appendix 83

A. Verification Program . 83

xi

List of Figures

2.1 A trust management model . 8

2.2 Proposed model . 9

2.3 An example of a never process . 16

2.4 Transition sequence . 18

3.1 A certificate for v issued by u . 25

3.2 Relation between routing network and weighted graph N 29

3.3 Basic scheme vs. the Kitada method (searching cost) 36

3.4 Basic scheme vs. the Kitada method (collecting cost) 37

3.5 Basic scheme vs. the Kitada method (total cost) 38

3.6 Comparison of collecting costs . 39

3.7 Comparison of total costs . 40

3.8 Average number of hops in a unit disc graph 43

3.9 Average searching cost of the Modification scheme 44

3.10 Average searching cost of the Kitada method 45

3.11 Average collecting cost of the Modification scheme 46

3.12 Average collecting cost of the Kitada method 47

3.13 Modification scheme vs. the Kitada method (total cost) 48

4.1 Lines and points over finite geometry 59

4.2 The key-survivability of the basic scheme with pcon = 0.99 and

m = 101 . 62

4.3 The memory size of the basic scheme with pcon = 0.99 63

4.4 The performance of the extended scheme 2 for three choices of

parameters with pcon = 0.5 . 67

4.5 The key-survivability of the extended schemes with pcon = 0.33 . . 69

xii

4.6 The key-survivability of the extended schemes with pcon = 0.5 . . 70

4.7 The key-survivability of the extended schemes with pcon = 0.9 . . 71

xiii

List of Tables

2.1 Verification time . 19

3.1 The proposed schemes vs. the Kitada method 41

3.2 Comparison of packet numbers in certificate searching phase . . . 52

3.3 Comparison of packet numbers in certificate collecting phase . . . 52

3.4 Comparison of the total packet numbers 53

4.1 Parameters to achieve given connectivity 68

xiv

Chapter 1

Introduction

With the growth of the number of services offered on the computer network,

system management techniques for assuring the security become more impor-

tant. For example, sharing a cryptographic key is the very first step to realize

secure communication over an untrusted networks infrastructure. Key agreement

schemes include the following three types [1]:

1. the trusted-server scheme where nodes in a network exchange a key through

a trusted third party and the performance of a key agreement scheme de-

pends on the trusted third party,

2. the self-enforcing scheme where nodes in a network exchange a key without

trusted third parties,

3. and the key predistribution schemes where keys are stored in each node

before it is deployed.

Because which scheme we should use depends on the type of a network, no single

security infrastructure can adapt all types of networks. In this thesis, security

infrastructures in autonomous computer networks are focused. In ordinary net-

works, since we can assume a trusted third party, a central problem is how to

design secure services on top of security operation techniques such as Public-Key

Infrastructure (PKI) [2, 3]. On the other hand, we should investigate a key agree-

ment scheme itself in case of as ad-hoc networks and sensor networks. In ad-hoc

networks, because of node mobility and lack of trusted third party, we cannot

1

use conventional security operation techniques such as PKI. Thus, we should in-

vestigate self-organizing key agreement schemes without trusted third party. To

make matters worse, in sensor networks, it is very difficult to use a public-key

cryptosystem due to the restriction of computational resources of sensor nodes.

Thus, we should investigate key predistribution schemes which are key agreement

schemes without communication overhead for key exchange protocol between two

nodes. Taking these observations into consideration, efficient infrastructures for

secure communication are investigated in this thesis.

Trust Management Access control is one of security techniques, in which only

an authorized user can access a specific resource or receive a specific service. In

a usual access control system, all the users and their rights have to be registered

beforehand. However, in ubiquitous environment which offers a service to the

general public, it is impossible to set the access rights of all users beforehand.

Recently, trust management [4], which is a system management technique based

on PKI, is extensively investigated. In a trust management system, a user re-

quiring a service indicates digital certificates [2, 3] (or certificates for short) based

on PKI. The system verifies the indicated certificates and assigns a kind of trust

(e.g., a role in Role-Based Access Control (RBAC)) to the user. A module that

assigns a trust is called a trust establishment module (TE), and the communi-

cation between a user and TE for assigning a trust is called trust negotiation

[5, 6]. Based on the trust assigned to the user, the system determines whether it

authorizes the user to access a specific resource or receive a specific service.

A typical model for trust management was proposed by Herzberg, et al. [7]. A

policy specification language TPL (Trust Policy Language) based on first-order

predicate logic was also proposed. Generally, an internal state of a system may

change during a trust negotiation and the internal state may affect the next trust

establishment. For example, consider a service which authorizes access rights for

resources to a user who indicates a certificate issued by a trusted customer. In

this service, it is desirable that a trusted customer who introduces more users is

treated better (i.e., is given access rights to more resources). This service can be

realized in such way that the current “prestige” of a trusted customer is stored

in the system and is updated when the trusted customer introduces other users

2

during trust establishment of the users. However, no trust management model

has been proposed which can explicitly represent a system whose internal state

changes as a result of the trust establishment.

In Chapter 2, a formal model for trust management systems with internal

states (or stateful trust management systems) is introduced and a verification

method for the model is proposed. First, a policy specification language to define

the behavior of a system is proposed. A policy specification is a finite set of rules

of definite Horn clause form. These rules define next-state predicates and output

predicates from current-state predicates and input predicates. Also, formal verifi-

cation for the proposed model is discussed. The verification problem is defined as

the problem to decide for a given policy and a verification property whether the

behavior of the system defined by the policy satisfies the verification property.

Experimental results on the verification of a few problems are presented by using

an implemented verification system and Prolog.

Certificate-Chain Discovery for Ad-Hoc Networks An ad-hoc wireless

network is a formed network that can be de-formed on-the-fly without the need

for any system administration [8]. Unfortunately, these characteristics prevent us

from applying traditional security techniques to ad-hoc networks. In particular,

the conventional PKI systems cannot be applied to ad-hoc networks [9, 10].

PKI is one of the most useful security techniques and is a security infrastruc-

ture in which we can authenticate a public key by using certificates. In public-key

cryptosystems, we have to obtain other users’ public keys to securely communi-

cate with those users. In PKI systems, we can verify that pkv is the public key of

v by using certain certificates. Conventional PKI systems require several trusted

authorities to issue certificates, store certificates, and so on.

One of the problems in adopting conventional PKI systems in ad-hoc net-

works is that we cannot assume a trusted certificate authority (to manage digital

certificates) and a centralized repository (to store digital certificates securely).

Moreover, we cannot assign the tasks of a trusted certificate authority or a cen-

tralized repository to any node in an ad-hoc network. If we did so, the PKI could

not work because the node may move out of the network. Hence, to adapt secu-

rity infrastructure for ad-hoc network, using a web-of-trust-type PKI system is a

3

promising method. In a web-of-trust-type PKI system adopted in Pretty Good

Privacy (PGP) [11], each node can issue certificates to others in a self-organizing

manner. Some authors have proposed web-of-trust-type PKI systems for ad-hoc

networks where each node has a distributed repository instead of a centralized

repository [12, 13, 14, 15, 16, 17]. However, these systems suffer from the com-

mon problem that a node must discover a certificate-chain if the node does not

have enough certificates for key authentication1. It is not trivial to discover a

certificate-chain in distributed repositories.

In Chapter 3, the certificate-chain discovery problem in ad-hoc networks is

investigated. First, a formal model for PKI in ad-hoc networks is given. A web-

of-trust-type PKI system is defined as a weighted directed graph where an edge

represents the direct trust relation guaranteed by a certificate between the nodes

and the weight of the edge represents the number of hops in the lower (phys-

ical) layer. Next, a new distributed algorithm and its modification for solving

the certificate-chain discovery problem are proposed based on the model. The

algorithm consists of a certificate searching algorithm and a certificate collecting

algorithm. The former algorithm uses a distributed algorithm for constructing a

spanning tree in the weighted directed graph. Finally, communication costs of the

proposed methods and an existing method are evaluated by numerical analysis

and computer simulation, and it is shown that the costs of the proposed methods

is less than the cost of the existing method.

Key Predistribution Scheme for Sensor Network Requirement for a se-

curity infrastructure in sensor networks is different from that in ad-hoc networks

while the two networks are similar. A critical issue in sensor networks is elec-

tricity consumption. Because usual energy of sensor nodes is battery, reducing

electricity consumption helps increase the sensor network’s overall lifetime. For

example, because energy consumed for computation and communication is so ex-

pensive, the security infrastructure in sensor networks should be low computation

and communication overhead. Moreover, electricity consumption is proportional

to memory size in the node. Hence, the security infrastructure with low memory

size helps to reduce energy consumed.

1A set of certificates for authenticating a node’s public key is called a certificate-chain [18].

4

Many known key agreement schemes commonly make use of techniques of

public-key cryptography or similar methods, and require terminals to perform

rather large and complicated computation. Consequently, it is widely considered

that those techniques for key agreement are not suitable for a sensor network

which consists of resource-restricted sensor nodes. A primitive but practical so-

lution for the key agreement in sensor networks is to predistribute keys to sensor

nodes before they are deployed. The random key distribution is an implemen-

tation of key predistribution proposed by Eschenauer [19]. In the random key

distribution, a key manager determines a set of keys beforehand. The set of keys

are sometimes called a key pool. Keys which are embedded in a sensor node is

randomly chosen by the key manager before the node is deployed to a field. Two

sensor nodes can agree a cryptographic key if and only if they happen to have

keys in common. Several extensions of this simple scheme have been investigated.

The primal objective of Chapter 4 is to construct a better implementation of

the key predistribution scheme than the random key distribution scheme of [19].

As for the measure of “goodness”, three probabilities are investigated. To evalu-

ate the performance of the schemes, three quantitative measures to evaluate key

predistribution schemes are considered; the node memory size, the connectivity

and the key-survivability. The node memory size (or memory size for simplic-

ity) is the number of keys which a node needs to remember, the connectivity is

the probability that randomly chosen two sensor nodes have one or more keys

in common, and the key-survivability is the probability that the key which has

been agreed by two nodes stays secure even if an intruder mounts the node cap-

ture attack, in which an intruder captures sensor nodes deployed in a field, and

retrieves keys embedded in the nodes. In the random key distribution scheme,

these probabilities are determined just by coincidence.

The goal of Chapter 4 is to actively control keys to be embedded in sen-

sor nodes so that all of memory size, the connectivity and the key-survivability

are larger than the random key distribution scheme. A new key predistribution

scheme and two extended methods are proposed. In the proposed methods, keys

are assigned according to a basic geometric geometry. The proposed methods

associate each node with a line over a two-dimensional finite plane, and manage

keys so that two nodes can agree a key if and only if the associated lines intersect

5

with each other. Two randomly chosen lines intersect with each other unless

they are parallel, thus two nodes succeed in key agreement with high probabil-

ity. Then, the performance of the proposed methods is computed analytically,

and it is shown that the proposed scheme realizes better trade-off points than

the random key distribution scheme. Also, memory size of the basic scheme and

the random key predistribution scheme where the same connectivity and key-

survivability are also compared, and it is shown that memory usage of the basic

scheme is about 23% of that of the random key distribution scheme.

6

Chapter 2

A Formal Model for Stateful

Trust Management Systems

2.1. Introduction

Recently, trust management [4], which is a system management technique based

on Public-Key Infrastructure (PKI), is extensively investigated. In a trust man-

agement system, a user requiring a service indicates digital certificates (or cer-

tificates for short) based on PKI. The system verifies the indicated certificates

and assigns a kind of trust (e.g., a role in Role-Based Access Control (RBAC)

[20]) to the user. A module that assigns a trust is called a trust establishment

module (TE), and the communication between a user and TE for assigning a

trust is called trust negotiation [6]. Based on the trust assigned to the user, the

system determines whether it authorizes the user to access a specific resource or

receive a specific service. A typical model for trust management was proposed by

Herzberg, et al. [7]. In their model, a trust management system consists of a trust

establishment module and a RBAC module (Figure 2.1). A policy specification

language TPL (Trust Policy Language) based on first-order predicate logic was

also proposed. Cassandra [21, 22] is another policy specification language based

on first-order logic. Computational complexity of access control with Cassandra

has been investigated in [21, 22]. As well as [7, 21, 22], a few trust management

systems and models have been proposed [5, 23].

Generally, an internal state of a system may change during a trust negotiation

7

Trust
Establishment

Certificates
User

Policy

Access
Control

Request

Policy

Role

Figure 2.1. A trust management model

and the internal state may affect the next trust establishment. For example, con-

sider a service that authorizes access rights for resources to a user who indicates

a certificate issued by a trusted customer. In this service, it may be desirable

that a trusted customer who introduces more users is treated better (i.e., is given

access rights for more resources). This service can be realized in such a way

that the current “prestige” of a trusted customer is stored in the system and is

updated when the trusted customer introduces other users during trust establish-

ment of the users. However, no trust management model has been proposed that

can explicitly represent a system whose internal state changes as a result of the

trust establishment. For example, one may think the above-mentioned policy “if

a certificate is indicated, then the prestige of the trusted customer is increased

by one.” can be specified as a first-order formula as follows. Let cert(X,Y)

be a predicate which denotes that there is a certificate issued by X for Y , and

point(X,P) be a predicate which denotes that the prestige of X is P .

point(X, 0).

point(X,P + 1) :− cert(X,Y), point(X,P). (2.1)

However, by the formula (2.1), once cert(X,Y) becomes true for some Y , point(X,P)

becomes true for every P ≥ 0, i.e., the prestige of user X increases infinitely. This

is because both sides of the formula (2.1) represent the truth values of them in a

same interpretation, not representing a state transition.

In this chapter, a policy specification language to define the behavior of state-

ful trust management systems is proposed. A policy specification is a finite set of

rules of definite Horn clause form. These rules define next-state predicates and

output predicates from current-state predicates and input predicates. Current-

state and next-state predicates represent internal states of the system, and output

8

Trust
Establishment

Ci

User

RA Ai

Memory

RM

Access
Control

RS

Mi

Si

Reqi

Figure 2.2. Proposed model

predicates represent the result of trust establishment and access control. Also,

an example of a stateful trust management system by using the policy specifica-

tion language is given, and a verification method for the model is investigated.

The verification problem is defined as the problem to decide for a given policy

and a verification property whether the behavior of the system defined by the

policy satisfies the verification property. Assuming that a policy specifies a fi-

nite state system, a semi-automatic verification method is proposed: For a given

policy and a verification property written in LTL [24], the author constructs a

Prolog program that searches the state space defined by the policy according to

the verification property and outputs ‘yes’ if the system satisfies the verification

property and outputs a counterexample otherwise. A verification result based on

the proposed method is also reported.

2.2. Proposed Model

2.2.1 Scheme for Stateful Trust Management Systems

Figure 2.2 shows an overview of the proposed model. Similar to the trust man-

agement model of Herzberg, et al. [7], a user who is requesting a service indicates

certificates to the trust establishment module. A system has a storage (or mem-

ory) for storing information on the interaction history between the user and the

system. This is one of the main features of the proposed model because most

of the previous trust management models such as KeyNote [25] and TPL [7]

9

are based on a subclass of first-order predicate logic which has “stateless” or

“memory-less” semantics. This information stored in the memory is used at the

next trust negotiation, and the information is updated as a result of the trust

establishment. Based on the output of the trust establishment and the request

from the user, the access control module decides whether the user can be provided

with the requested service. One application of the proposed model is the reputa-

tion system in which the interaction history is used for estimating the user’s (or

other’s) reputation [26]. The proposed model can store any kind of information

according to a given policy and application of the proposed model is not restricted

to reputation systems. A time period from indication of certificates and service

request to completion of trust establishment and update of the memory is called

a round. Let Ci, Mi, Ai, Reqi and Si represent the followings in the i-th round:

Ci : certificates indicated to the system,

Mi : contents of the memory (i.e., internal state),

Ai : output of the trust establishment,

Reqi : service requests from the user,

Si : output of the access control.

Let RA be a trust establishment policy, RM be a policy for determining how the

memory is updated (i.e., internal state transition), RS be a policy for determining

whether the service is permitted. Relation among them can be represented as

follows (see Figure 2.2):

Ai = RA(Mi, Ci) (2.2)

Mi+1 = RM(Ai, Si, Mi) (2.3)

Si = RS(Ai, Reqi) (2.4)

For example, equation (2.2) means that Ai is computed by applying RA to Mi

and Ci. In ubiquitous computing environments, it is important to take context

[27] into consideration in order to provide a service that fits the user’s physical

and/or logical situation, and a trust management system should consider context

[28]. In this chapter, we assume for simplicity that context is given as certificates

issued by a context server, i.e., context is included in Ci. Hereafter, a triple

(RA,RS,RM) is simply called a policy.

10

2.2.2 Policy Predicates

Predicates used in a policy are classified into four categories. Some predicates

are shown as examples for each category.

1. Predicates for Ci and Reqi (input predicates)

cert(User1,User2) : There is a certificate issued by User1 for User2 in Ci.

2. Predicates for Ai and Si (output predicates)

custom(User), intro(User), prefer(User) : User is identified as a customer,

introducer, preferred customer, respectively, in round i as a result of trust

establishment or access control.

3. Predicate for Mi (current-state predicates)

point(User ,Point) : User ’s prestige is scored as Point in the current state.

4. Predicates for Mi+1 (next-state predicates)

Each predicate in this category has the same name as a predicate in category

3 followed by a prime (’) symbol.

point′(User ,Point) : User’s prestige is scored as Point in the next state.

2.2.3 Syntax and Semantics of Policy

For a policy (RA,RS,RM), each of RA, RS and RM is specified by a set of

definite Horn clauses called inference rules (or rules for short). We put the

following restriction on the syntax of policy specification.

• The head of each rule in RA and RS should be a predicate in category 2.

• RM is divided into the initial state definition part (RMinit) and the tran-

sition definition part (RMtrans).

– Each rule in RMinit should be a fact (i.e., an inference rule with

empty assumptions) on a predicate in category 3.

– The head of each rule in RMtrans should be a predicate in category

4.

11

These restrictions embody the relation represented in equations (2.2), (2.3) and

(2.4).

Next, the semantics of a policy specification is described. In every rule of a

policy, the author interprets every predicate p(. . .) as if it has an extra argument

representing a round i like p(i, . . .). That is, p(i, . . .) represents the truth of p(. . .)

in round i. Each rule is interpreted as follows:

• Each rule p0(. . .) :− p1(. . .), . . . , pn(. . .) specified in RA or RS is inter-

preted as p0(I, . . .) :− p1(I, . . .), . . . , pn(I, . . .) using a new variable I that

represents an arbitrary round. That is, RA and RS define the relationship

among the predicates within a single round I.

• RMtrans defines the truth of the predicates in category 4 in round i

(equivalently, the truth of the predicates in category 3 in round i + 1

in term of predicates in categories 1 to 3 in round i). Thus, each rule

p0(. . .) :− p1(. . .), . . . , pn(. . .) in RMtrans is interpreted as p0(I +1, . . .) :−
p1(I, . . .), . . . , pn(I, . . .).

• RMinit defines the truth of the predicate in category 3 in round 1 (the

initial round). Thus, each rule p(. . .) in RMinit is interpreted as p(1, . . .).

2.3. An Example of Policy Specification

In this section, “introducer gains benefits” system is introduced as an example

which should be defined as a stateful trust management system in its nature. In

the following, a policy specification is shown and the behavior of the system is

explained.

“Introducer gains benefits” system is the system that a shop s gives prestige

to an introducer a when a introduces another user b to s. When we say that a

introduces b to s, it means that a issues to b a certificate which gives access rights

to s. The existence of the certificate is represented by the predicate cert(a, b). In

the system, shop s has the following policy.

i. The shop authorizes the user a as a customer.

ii. The shop authorizes a user introduced by a customer as a customer.

12

iii. When (ii) applies, the introducer’s prestige increases by one.

iv. The shop authorizes the customer whose prestige is more than or equal to

five as a preferred customer.

In this thesis, the following policy predicates are used for specifying a policy

(RA,RS,RM) for this example.

custom(X) : user X is authorized as a customer

intro(X) : user X introduces another user to the shop

prefer(X) : user X is authorized as a preferred customer

point(X,P) : the X’s prestige is P

Example 2.1. RA, RS and RM of the above system are specified by using Prolog-

like syntax. A name whose first character is a capital letter or an underscore ()

represents a variable. Otherwise, a name represents a predicate or constant.

[RA,RS]

custom(a).

custom(Y) :- cert(X,Y), custom(X).

intro(X) :- cert(X,_), custom(X).

prefer(X) :- custom(X), point(X,P), P >= 5.

[RM trans]

point’(X,P) :- intro(X), point(X,Q), P = Q+1.

point’(X,P) :- not intro(X), point(X,P).

[RM init]

point(X,0).

When customer a introduces user b to the shop s, custom(b) and intro(a)

become true. Moreover, the a’s prestige increases by one and point(a, 1) becomes

true since point(a, 0) was true in the previous round.

Example 2.2. The semantics of the policy in Example 2.1 is given by the fol-

lowing set of definite Horn clauses according to Section 2.2.3.

[RA,RS]

custom(I,a).

custom(I,Y) :- cert(I,X,Y), custom(I,X).

13

intro(I,X) :- cert(I,X,_), custom(I,X).

prefer(I,X) :- custom(I,X), point(I,X,P), P >= 5.

[RM trans]

point(I+1,X,P) :- intro(I,X), point(I,X,Q), P = Q+1.

point(I+1,X,P) :- not intro(I,X), point(I,X,P).

[RM init]

point(1,X,0).

2.4. Formal Verification

It is desirable to have a method for verifying whether there is no contradiction

among RA, RS and RM , whether the policy will not cause any problematic

system behavior, etc. In this section, the verification problem is defined as the

problem to decide whether the behavior of a system with a given policy satisfies a

given verification property, and a verification method for the problem is proposed.

2.4.1 Verification Problem

Input of the verification problem is a pair of a policy to be verified and a verifica-

tion property that the policy should satisfy. A verification property is specified

by an LTL (linear temporal logic) formula [24]. Given a policy (RA,RS,RM), a

transition system (Kripke structure) is induced to define the verification problem

by satisfaction relation in LTL (Section 2.4.1).

Definition 2.1. The verification problem

Input A policy (RA,RS,RM) and an LTL formula ψ

Output Does the transition system S induced by (RA,RS,RM) satisfy ψ?

Induced Transition System The transition system S = (Q, I,R) induced by

(RA,RS,RM) is defined as follows. A request Reqi from a user is assumed to be

a member of the set Ci of input certificates in round i for simplicity. A set C of

input certificates is called an input for short.

• Q is a set of states defined by (M,C) where M is a memory content and C

is an input.

14

• I is a set of initial states defined by

I = {(M1, C) | M1 is the initial content of the memory and C is an input}.

• R is a transition relation defined by ((Mi, Ci), (Mi+1, C)) ∈ R if and only

if Mi+1 is the memory content defined by (2.2), (2.3) and (2.4) in section

2.2.1 for Mi and Ci.

Note that a labeled transition system (RA,RS,RM) is translated to an equiv-

alent Kripke structure S = (Q, I,R) by shifting an input C into the second com-

ponent of a state in Q. This transition system is in general an infinite state

system. However, in this section, only a finite state system is considered, i.e., we

assume that the domain of each predicate of categories 2 and 3 in Section 2.2.2

is finite.

Verification Property A verification property is specified by an arbitrary LTL

formula where an atomic proposition is a ground instance of a policy predicate

of categories 2 and 3. The following LTL formula (2.5) is a verification prop-

erty which means that “if cert(a, b) is true infinitely often, then prefer(a) will

eventually become true.” :

¤♦cert(a, b) → ♦prefer(a) (2.5)

2.4.2 Verification Method Using Prolog

Assuming that a policy specifies a finite state system and a verification property

is written in LTL, an automatic verification method is proposed. The author

examined the following LTL model checking methods for a finite state system

specified by Horn clauses.

• Method 1 : SPIN In this method, the system verified by using a model

checker SPIN [29]. However, this method needs a transformation from

definite Horn clauses to a program in Promela, the modeling language of

SPIN, and such a transformation is not trivial in general.

• Method 2 : SPIN with Prolog In this method, I give a Promela

program that executes an external Prolog interpreter to compute the next

state for each state transition.

15

0 1

￢prefer (a) ∧ ￢cert (a,b)

￢prefer (a)

￢prefer (a)

Figure 2.3. An example of a never process

• Method 3 : Prolog In this method, model checking is performed by a

Prolog program.

Neither method 2 nor 3 needs transformation of Horn clauses. In method 3, we

have to implement a model checking algorithm as a Prolog program. Methods

2 and 3 ware implemented in this thesis, and method 3 was more efficient than

method 2 (shown in Section 2.4.3).

An implementation of method 3 is as follows. First, Büchi automaton BA

representing the negation of the given LTL formula is constructed and is trans-

formed into a Prolog program. Next, the product Büchi automaton P of BA and

the state transition system S induced by (RA,RS,RM) is constructed. Finally,

a model checking algorithm is executed on P , which finds an execution sequence

of S that satisfies the negation of the verification property. The detail of the

Büchi automaton BA, the product Büchi automaton P and the model checking

algorithm is described in the following section.

2.4.3 Verification Example

This section describes the details of the conversion of an input of the verification

problem into a Prolog program, taking the “introducer gains benefits” system in

Section 2.3 as an example.

Input to the Verification Problem

16

• Representation of RA, RS and RM Each predicate of categories 1–4

in Section 2.2.2 is extend so that it has arguments representing the state

components Mi and Ci. For example, the predicate cert(M,C,X, Y) rep-

resents the truth of cert(X,Y) when the state is (M,C). Each predicate of

category 4 is defined as a predicate distinct from each predicate of category

3. In this thesis, underscore () is used instead of prime (’) symbol. The

predicate initial(M) represents RMinit, and is true if and only if M is the

initial content of the memory. By this conversion, the following program is

obtained from Example 2.1.

Example 2.3. A program obtained from Example 2.1

[RA,RS]

custom1(_M, _C, a, _).

custom1(M,C,Y,L) :- cert(M,C,X,Y),

not(member(Y,L)),

custom1(M,C,X,[Y|L]).

custom(M,C,Y) :- custom1(M,C,Y,[]).

intro(M,C,X) :- cert(M,C,X,_),

custom(M,C,X).

prefer(M,C,X) :- custom(M,C,X),

point(M,C,X,P), P >= 5.

[RM trans]

point_(M,C,X,P) :- intro(M,C,X),

point(M,C,X,P),

P is Q+1,

Q < 5, !.

point_(M,C,X,P) :- point(M,C,X,P).

[RM init]

initial([0,0]).

Note that the definition of custom is modified to avoid an infinite recursion

caused by the top-down evaluation strategy of Prolog. Also note that the

first rule of RMtrans is modified so that each user’s prestige is more than

or equal to zero and less than or equal to five to make the state space finite.

17

・・・

(initial state)

・

・

・

・

・

・

Figure 2.4. Transition sequence

• Representation of states For simplicity, we assume that categories 1

and 3 contain exactly one predicate, respectively. Let p : D1 × D2 × · · · ×
Dn → {true, false} be the predicate in category 1. A state component C is

represented by a list of truth values whose length is |D1|× |D2|× · · ·× |Dn|.
Each element of the list corresponds to each element (d1, d2, . . . , dn) of D1×
· · · ×Dn and represents the truth value of p(d1, d2, . . . , dn). For example, if

p is cert(User1,User2) and the domain of both User1 and User2 is {a, b},
then the state component is represented as a 4-tuple of truth values where

the elements of the tuple represent the truth values of cert(a, a), cert(a, b),

cert(b, a), and cert(b, b), respectively. In this thesis, 0 and 1 are used for

denoting false and true, respectively.

An input part C of state (M,C) is represented by a list consisting of 0 and 1.

For example, the list [0,1,0,0] represents that cert(a, b) is true, and the list

[0,1,1,0] represents that cert(a, b) and cert(b, a) are true. A memory part M

of state (M,C) is represented in the same way as C. In the “introducer gains

benefits” system, for each user u there exists exactly one value of P such

that the predicate point(u, P) is true. In such a case, the state component

M can be represented by a list of the values P that makes point(u, P) true

for each u ∈ D1. For example, the list [3,2] denotes that both point(a, 3)

and point(b, 2) are true.

• Definition of input predicates The truth of the predicate of category

18

Table 2.1. Verification time

of Restriction # of state Verification Time†

users transitions of S SPIN+Prolog Prolog

3 cert(v, v) is fixed 884,736 17m.16s. 5s.

to be false

3 cert(v, v) is not fixed 56,623,104 16h.54m.35s. 1m.16s.

4 cert(v, v) is fixed 3,623,878,656 – 1h.48m.39s.

to be false
† SWI-Prolog v.5.0.6 and SPIN v.4.2.5, on Solaris8 (UltraSPARCIIe(500MHz),

256MB RAM)

1 depends only on C, and is defined by the following facts.

cert(M, [1, , ,], a, a), cert(M, [, 1, ,], a, b),

cert(M, [, , 1,], b, a), cert(M, [, , , 1], b, b).

Similarly, the truth of the predicate of category 3 depends only on M , and

is defined by the following facts.

point([P,], C, a, P), point([, P], C, b, P).

• Description of transition relation The predicate trans(Mi, C,Mi+1)

which represents the relation between (Mi, C) and Mi+1 is defined as fol-

lows. The internal state Mi+1 = [Pa, Pb] is defined by point which is the

predicate of category 4.

trans(M,C, [Pa, Pb]) :− valid cert set(C),

point (M,C, a, Pa),

point (M,C, b, Pb).

The predicate valid cert set(C) is true if and only if C is a valid input for

19

the trust management system. This predicate is defined as follows.

valid cert set([AA,AB,BA,BB]) :− (AA = 0 ; AA = 1),

(AB = 0 ; AB = 1),

(BA = 0 ; BA = 1),

(BB = 0 ; BB = 1).

where “;” is the disjunction operator, i.e., the predicate valid cert set(C) is

true if and only if C is a list of 0 and 1 whose length is four.

• Description of verification property Büchi automaton BA represents

the negation of a verification property, i.e., it accepts any execution sequence

that does not satisfy the verification property. BA, sometimes called a never

process, is constructed from a given verification property written in LTL

by using an automatic tool such as SPIN. Figure 2.3 shows an example of

a never process generated from the verification property given by formula

(5). This never process can be represented in Prolog as follows.

Example 2.4. Prolog specification of a Büchi automaton BA in Figure 2.3.

ba_trans(M, C, 0, 0) :- not(prefer(M, C, a)).

ba_trans(M, C, 0, 1) :- not(prefer(M, C, a)),

cert(M, C, a, b).

ba_trans(M, C, 1, 0) :- not(prefer(M, C, a)).

ba_initial(0).

ba_accept(1).

Büchi automaton P is the product automaton constructed from a Büchi

automaton BA and a transition system S induced by (RA,RS,RM) in

Section 2.4.1. Given BA and S, P is defined by the following Prolog pro-

gram.

p_trans(M, C, Q, M2, Q2) :- trans(M, C, M2),

ba_trans(M, C, Q, Q2).

p_initial(M, Q) :- initial(M), ba_initial(Q).

p_accept(_, Q) :- ba_accept(Q).

20

Verification Algorithm The Büchi automaton P accepts an infinite sequence

π if and only if π is an execution sequence of S and does not satisfy the veri-

fication property. The language of P is not empty if and only if there exists a

sequence consisting of a simple path from the initial state followed by a simple

cycle including an accepting state (Figure 2.4). To find this path and cycle, the

nested depth-first search [29] used in SPIN is implemented, as a Prolog program.

The main part of the program is shown in Appendix A.

Verification Result The above-mentioned Prolog program using SWI-Prolog

[30] was executed, and it successfully halted without counterexample, which

means the policy satisfies formula (2.5). The same verification using the method

2 was also performed and it was finished in the same result. For each method,

the running times for two cases are shown in Table 2.1, where the set of users is

either {a, b, c} or {a, b, c, d}. As shown in Table 2.1, method 3 was much faster

than method 2. The predicate cert(v, v) for each v ∈ {a, b, c, d} represents the ex-

istence of a certificate for a user issued by him- or herself. If we assume that such

a certificate, which is useless in practice, cannot be indicated, then the running

time is much reduced.

The verification time is propotional to the number of state transitions of S.

The number of state transitions of S in this example equals 22n2 × mn where n

is the number of users and m is the size of the range of the prestige (m = 6 in

this example): As described above, the size of the range of C is 2n2
and that

of M is mn. In this example policy, the next state component Mi+1 is uniquely

determined by Mi and Ci, and thus the number of state transitions equals the

product of the size of the range of Mi, the one of Ci, and the one of Ci+1. When

we assume that the self-issued certificates cannot be indicated, the size of the

range of C reduces to 2n(n−1).

2.5. Conclusion of Chapter 2

In this chapter, a formal model for stateful trust management systems which

can represent a system with internal states was proposed. Also, an LTL model

checking method for the model was proposed. In this verification method, only

21

a finite state system is considered, and a verifier can choose an arbitrary LTL

formula as a verification property.

22

Chapter 3

New Certificate Chain Discovery

Methods for Trust Establishment

in Ad Hoc Networks and Their

Evaluation

3.1. Introduction

In this chapter, certificate-chain discovery problem in ad-hoc networks is inves-

tigated. This chapter is focused on a web-of-trust-type PKI system considered

in Pretty Good Privacy (PGP) [11]. In such a system, each node can issue

certificates to others in a self-organizing manner, so it is suitable for adapt-

ing to ad-hoc networks. Some authors have proposed web-of-trust-type sys-

tems for ad-hoc networks where each node has a distributed certificate repository

[12, 13, 14, 15, 16, 17]. However, these systems suffer from the common problem

that a node must discover a certificate-chain if the node does not have enough

certificates for key authentication.

A set of certificates for authenticating a node’s public key is called a certificate-

chain [18]. In this thesis, the node that authenticates a public key is called the

source node, and the node whose public key will be verified by the source node

is called the destination node (See the following section for the definitions of

23

source node, destination node, and certificate-chain). Even if the source node

does not directly sign the public key, the source node is able to verify a public

key by discovering a certificate-chain from the source node to the destination

node because the trust relation represented by certificates is transitive. First, the

source node trusts the nodes whose public keys are signed by the source node

because the source node can verify the certificates using her public key. Next,

the source node trusts nodes whose public keys are signed by the already trusted

nodes because the source node can verify the certificates using the already trusted

nodes’ public keys. In conventional PKI systems, we can find such a certificate-

chain from the set of certificates in a trusted repository. However, it is not trivial

to discover a certificate-chain in distributed repositories.

In this chapter, new distributed algorithms for solving the certificate-chain

discovery problem in ad-hoc networks are proposed. After stating the certificate-

chain discovery problem, the author models a web-of-trust-type PKI system,

shows that solving the problem can be reduced to finding a path between two

nodes in the graph, and proposes a new distributed algorithm for solving the

problem. In this thesis, the certificate-chain discovery is divided into the certifi-

cate searching phase and the certificate collecting phase. Then, a search method

is proposed based on a distributed algorithm for constructing a spanning tree,

and a method for collecting all certificates in the discovered certificate-chain is

also proposed. The whole algorithm will be called a basic scheme in this chapter.

Also, a modification scheme of the basic scheme is also proposed. Furthermore,

a measure of communication cost is proposed, and according to the measure,

the proposed methods are compared with the existing method. For large-size

networks, the author derives formulae that approximately represent the commu-

nication costs of the existing and proposed methods and numerically evaluates

the formulae. For moderate-size networks, communication costs are evaluated by

computer simulation on a randomly generated unit disk graph as a routing graph

and a random Hamilton graph as a trust model.

24

Certificate :

pkv is the public key of v.

sku (issuer’s signature)

v : A user
pkv : The public key of v

u : The issuer (the signer of the certificate)
sku : The secret key of u (to sign)
pku : The public key of u (to verify)

Figure 3.1. A certificate for v issued by u

3.2. Problem Statement

A certificate C is a data structure including a public key, ID of the owner of the

public key, and the signature by a signer. For a certificate C, the owner of a

public key is called the user of C and its signer is called the issuer of C (See

Figure 3.1). For simplicity, a certificate of which issuer and user are u and v

respectively is written as 〈u, v〉.
This thesis focuses a web-of-trust-type PKI system where every node v has a

repository and stores only the certificate 〈u, v〉 for some u and 〈v, w〉 for some w

(see Figure 3.1) [13, 14, 15, 16, 17]. That is, each node v stores certificates such

that v is an issuer or a user of the certificates in the PKI system, and each node

does not have a list of trusted nodes. The procedure for constructing such a PKI

system in an ad-hoc network is as follows [12, 13].

(Step 1) Creating cryptographic keys: Every node creates a secret key and

corresponding public key using a public key cryptosystem. Though there

are many public key cryptosystems, which one is most suitable for ad-hoc

networks is not considered in this thesis.

(Step 2) Creating a certificate: If a node v would like another node u to

issue certificate for v, v sends the public key pkv to u. After receiving the

key, u creates the certificate u → v and sends the certificate to v. And then,

25

each node stores the certificate in each repository. In this step, u has to get

the v’s public key pkv without PKI mechanisms. To do this step securely,

for example, we may use a side channel such as an infrared channel at the

time of a physical encounter.

This system enables us to reduce communication cost for obtaining certificates

to be stored in a repository in advance. Moreover, this method reduces the cost

of the certificate revocation phase. In this method, a certificate is only held

by its issuer and user (the owner of the public key in the certificate). When

the issuer (or the user) wants to revoke the certificate, she only has to send

revocation information to the user (or the issuer) without heavy computation

and communication (e.g., using a certificate revocation list [20]). In this thesis,

“trust” represents a trust relation between the issuer and the user of a certificate.

That is, “an issuer trusts a user to be honest and to correctly authenticate the

owner of a public key before signing it [31].” By a certificate-chain and the trust

relation in a certificate, a source node can verify the public key of a destination

node even if the source node does not issue the certificate in which user is the

destination node.

However, there is a new problem of discovering a path of certificates based

on the trust relationship in distributed repositories to verify whether a public

key is correct. this problem is called the certificate-chain discovery problem in

ad-hoc networks (Definition 1). Assume that a node u wants to communicate

with another node v. If u does not directly trust v, u has to find a certificate-

chain from u to v. A certificate-chain from u to v is a sequence of certificates

〈u0, u1〉, 〈u1, u2〉, . . . , 〈ul−1, ul〉 (l ≥ 1) such that u = u0, v = ul, and the user

of the certificate 〈ui−1, ui〉 is the issuer of the next certificate 〈ui, ui+1〉. u0 can

verify the public key pku1 by the certificate 〈u0, u1〉. Also, u0 can verify the

public key pku2 by using the certificate 〈u1, u2〉 and the verified public key pku1 .

By performing this verification repeatedly, u0 can get the public key pkul
. We

say u0 and ul are the source node and the destination node of the certificate-

chain, respectively. The source node u can verify the public key pku1 based

on a technique of the public-key cryptography (digital signature) and the trust

relation (“u trusts u1”). Moreover, u can verify the public key pkv based on the

certificate-chain and the trust relation (“ui trusts ui+1”). If we do not assume

26

the trust relation, the source node u has to consider another method to verify

a certificate in which u is neither the issuer nor the user. If u cannot find a

certificate-chain from u to v, u cannot verify the public key pkv. Therefore, the

trust relation is necessary to consider certificate-chain-discovery methods.

Definition 3.1. Certificate-chain discovery problem in ad-hoc networks

Assume that we are given a web-of-trust-type PKI system where every node v has a

repository and stores certificates in which v is the issuer or the user. Also assume

that we are given a source node and a destination node, then, find a certificate-

chain from the source node to the destination node and collect all certificates in

the certificate-chain.

3.3. Related Work

Some authors have proposed PKI systems [16, 17] that limit the issuing of cer-

tificates for simplifying the problem in Definition 3.1. However, such methods

have the problem that a node cannot always issue certificates based on the trust

relation among the nodes.

Kitada, et al. proposed a public key management scheme for ad-hoc networks

[13, 14, 15]. Their proposed scheme is able to reduce the communication cost

in the certificate revocation phase more than the method proposed by Capkun,

et al. [12]. Kitada, et al. also proposed the Ad hoc Simultaneous Nodes Search

(ASNS) protocol to resolve the problem stated in Definition 3.1. ASNS finds a

certificate-chain as follows.

• The source node broadcasts a search packet p to nodes that the source node

directly trusts.

• If a node v receives a packet p, v modifies and sends p as follows.

– The node v adds its own certificate to the packet p, rewrites the address

of p to the nodes that v directly trusts, and broadcasts p to the nodes

that v directly trusts.

– If v directly trusts the destination node, v adds its own certificate to

p, rewrites the address of p to the destination node, and sends p to the

destination node.

27

– If v is the destination node of p, v adds its own certificate to p and

sends p to the source node.

• If a node receives more than one packet sent by an identical source node, the

node processes only the first packet as above and discards all other packets.

Because each node processes only the first packet, the number of packets per

search is proportional to the number of certificates.

However, ASNS has the following shortcomings. In distributed networks such

as ad-hoc networks, the protocol is completed, not when the destination node is

discovered, but when all nodes in the network receive the packet. Thus, ASNS

may have a heavy communication cost because of broadcasting packets with cer-

tificates.

3.4. Proposed Method

In this section, a web-of-trust-type PKI system is formally defined to make the

certificate-chain discovery problem clear. Based on this model, the problem is

divided into two phases. Finally, a new distributed algorithm to solve the problem

is proposed.

3.4.1 Web-of-Trust in Ad Hoc Networks

Definition 3.2. Trust model

A model of a web-of-trust-type PKI in ad-hoc networks is a weighted directed

graph N = (V,E, φ), where

• V is a set of nodes,

• E is a set of directed edges, and

• φ is a weight function that maps each directed edge to a non-negative integer.

A node v in V represents a node in ad-hoc networks. An edge u → v in

E represents a certificate from u to v. The weight φ(〈u, v〉) of an edge 〈u, v〉

28

±°²¯
u

±°²±̄°²¯
±°²¯

±°²¯
v

A
A

H

­­
»»

JJ

Q

routing network

µ´¶³
u µ´¶³

v-3

weighted graph N

Figure 3.2. Relation between routing network and weighted graph N

represents the number of hops from node u to node v (see Figure 3.2)1. For

simplicity, we assume that the set V in a trust model equals the set of nodes in

the corresponding ad-hoc network.

3.4.2 Basic Scheme

As described in Section 3.3, certificates are added to a search packet in the Kitada

method. Thus, all nodes receive a search packet with a number of certificates

whether or not a node needs the certificates. In this thesis, the certificate-chain

discovery problem is divided into the certificate searching phase and the certificate

collecting phase, and a new algorithm for each phase is proposed.

Certificate Searching Phase We assume that each node knows only edges

adjacent to the node in N . The problem in this phase is to find a certificate-chain

from a given source node to a given destination node. Note that we need not find

all certificate-chains; finding one certificate-chain is sufficient for authentication.

To solve the problem in the certificate searching phase, the author uses a

distributed algorithm for constructing a spanning tree where the root node is the

source node. We can use any distributed algorithm for constructing a spanning

tree in a directed graph. The communication complexity of standard algorithms

for constructing a spanning tree is O(|E|), where |E| is the number of elements

of E [32].

1Note that an edge 〈u, v〉 in a trust model does not mean that node u can directly commu-
nicate with node v.

29

Kitada, et al. showed that the Kitada method can find a certificate-chain

in a usual ad-hoc network with topology change by computer simulation [13].

This is because there are some certificate-chain from a given source node to a

given destination node. Assume that a given source node u wants to find a

certificate-chain to a given destination node v. Usually, there are more than one

certificate-chains from u to v in a trust model. In the certificate searching phase,

a spanning tree on the trust model is constructd. When an intermediate node in a

certificate-chain does not receive a search packet from u, another certificate-chain

is found by the distributed algorithm constructing a spanning tree. Hence the

probability that the distributed algorithm cannot find any certificate-chain from

u to v in the trust model is low.

Certificate Collecting Phase When the certificate searching phase is com-

pleted, each node knows which node is the parent in the constructed tree. How-

ever, no nodes, including the source node, know about the entire tree while the

source node needs to obtain all certificates in a certificate-chain. We can reduce

this problem to the problem of collecting all certificates in a path from the source

node to the destination node in the tree because there must be such a path in

the spanning tree. To solve the problem in this phase, the following method is

proposed.

• The destination node sends a packet to the parent node.

• Each intermediate node that received the packet adds its own certificate to

the packet and sends it to its parent node.

This process is repeated until the packet reaches the source node. When this

process is completed, the source node obtains all certificates in a certificate-chain.

Note that the certificate-chain is not a path in the routing graph, but a path in

the trust model. Therefore the collecting method can solve the problem with

some topology changes. That is, the source node can collect all certificates in the

certificate-chain by using the method if every intermediate node is in the ad-hoc

network.

30

3.5. Evaluation

In this section, the communication cost is defined, the costs of the basic scheme

and the Kitada method are analyzed, and the costs of the two methods are

compared.

3.5.1 Preliminaries

Definition of the Communication Cost In Kitada’s work [13], communica-

tion cost is defined as the number of packets. This definition does not consider

the size of a certificate and the number of certificates in a packet. This definition

is not realistic because a packet that includes several heavy certificates is counted

as “one packet”. Thus, the author defines a more realistic communication cost

as follows.

Definition 3.3. The communication cost

Let e be any edge in the directed graph N . The communication cost is defined as

follows. ∑
edge e

{total bit size on e × φ(e)}.

That is, the communication cost is defined as the total message bits by taking

the size of a certificate and the number of certificates in the packet into account.

Cost Tree To estimate the communication cost of the two methods, a cost tree

is considered in this thesis. A cost tree is a balanced tree such that the root node

is a source node, the number of nodes is 2|V | where |V | is the number of nodes

in a trust model, and the degree of a node is m where m is the average number

of certificates issued by the node. This tree represents search packet flows from

a given source node to all other nodes on the trust model.

In both of the two methods, a source node u broadcasts a search packet p

to nodes that u directly trusts in the certificate searching phase. When a node

receives more than one packet sent by an identical source node u, all the packets

except the first one are discarded. Even after a destination node has been found,

the other nodes do not know it and thus the distributed algorithm for constructing

31

a spanning tree on the trust model does not halt until all the packets are discarded.

Therefore the total number of nodes in the cost tree is equal to 2|V |.
Though we assume a cost tree is balanced, the distributed algorithms in both

methods may not construct a balanced tree because an ad-hoc network in the real

world is asynchronous. If we assume an unbalanced cost tree instead, the height of

the unbalanced tree is larger than a balanced tree with the same number of nodes.

Thus, the proposed method outperforms the Kitada method for an unbalanced

tree more than a balanced tree because certificates are attached to search packets.

Therefore we assume a balanced tree as the cost tree so that comparison of the

two methods is not disadvantageous to the Kitada Method. The number of nodes

|V | and the number of edges |E| (i.e., the number of certificates) in a trust model

can be represented by using the height k of a cost tree and the average number

m of the node degree in the cost tree as follows:

2|V | =
mk − 1

m − 1
,

|E| = m × |V |.

3.5.2 Analysis of the Kitada Method

In this section, the Kitada method is examined. Though they analyzed their

method [13], it was based on a communication cost that did not consider the size

of a packet. The author first divides the method into two phases and analyzes

each of the two phases by using Definition 3.3 to compare the method and the

proposed method.

We can consider ASNS to be a distributed algorithm constructing a spanning

tree in which certificates are added to a search packet. The length of a certificate-

chain is the number of edges from the source node to the destination node. On

the other hand, the height of the spanning tree must be at least the length of the

chain because the chain is also a path in the tree, and the height may be longer

than the chain because the distributed algorithm does not halt even if a chain

is discovered. That is, the following relation holds between the length and the

32

height:

(the length of a certificate chain in a spanning tree)

≤ (the height of the tree).

We assume that the length of a certificate chain equals the height of the tree, i.e.,

the communication cost is estimated based on the upper bound of the length.

This assumption was also used in Section 3.5.3.

Certificate Searching Phase In this phase, the source node broadcasts a

search packet to all nodes that the source node directly trusts. When a node

receives the packet, the node adds its own certificate to the packet and broadcasts

it to all nodes that the node directly trusts. A packet is transmitted until a node

receives the same packet twice. Then, the communication cost in this phase S1(k)

is given by the following equation, where n is the average number of hops, m is

the average number of degrees of nodes in N , Cert is the size of a certificate, k

is the height of the constructed spanning tree, and Cert req is the packet size of

a certificate search packet.

S1(k) = n

k∑
i=1

{Cert(i − 1) + Cert req}mi.

Certificate Collecting Phase When the destination node receives a packet

with certificates, the node adds its own certificate to the packet and sends it back

to the source node. The destination node sends back k certificates to the source

node because the number of certificates in this packet is equal to the length of

a certificate-chain. Therefore, the cost C1(k) is given by the following equation,

where Cert rpl is the size of a replying packet:

C1(k) = n(k × Cert + Cert rpl). (3.1)

3.5.3 Analysis of the Basic Scheme

Certificate Searching Phase In the basic scheme, a source node constructs

a spanning tree using any distributed algorithm, and no certificates are added to

33

a packet. Therefore, the cost S2(k) is as follows:

S2(k) = n
k∑

i=1

Cert req × mi.

Certificate Collecting Phase When the destination node receives a search

packet, each node in the tree knows which node is the parent node. The des-

tination node sends the packet to the parent node, and each intermediate node

receiving the packet adds its own certificate and sends it to the parent node.

Thus, the source node receives a packet with (k − 1) certificates. The cost C2(k)

is as follows:

C2(k) = n
k∑

i=1

{Cert(i − 1) + Cert rpl}.

3.5.4 Comparison between the Two Methods

Complexity Analysis The fraction of the communication cost of the two

methods is analyzed. The total cost of the Kitada method is equal to (S1(k) +

C1(k)) and the total cost of the basic scheme is equal to (S2(k) + C2(k)):

S1(k) + C1(k)

S2(k) + C2(k)
=

O(k · Cert · mk+2)

O(mk+1)

= O(k · Cert · m).

This tells us that the cost of the Kitada method is O(k ·Cert ·m) times the cost

of the basic method.

Numerical Analysis The author also compares the costs by numerical analy-

sis. Let be n = 4 and m = 4. Kitada, et al. estimated that the average number

of hops (n) for realistic ad-hoc networks is at most around four. In the Kitada’s

paper, they empirically showed that a trust model is possibly not strongly con-

nected if m < 4. Hence only m ≥ 4 are considered. Note that since a trust model

is given independently of the trust establishment algorithm, we should compare

the proposed method with the Kitada method with an identical value for m. Be-

cause the ratio of the cost of the Kitada method to ours is in proportion to m as

34

shown in the above paragraph, m = 4 is the most advantageous setting for the

Kitada method. We assume that a trust model is strongly connected to evaluate

the entire phase of the two methods. In a realistic world, a trust model may

not be strongly connected. However, if a trust model is not strongly connected,

there is no certificate chain between a pair of two nodes in different connected

components. Therefore, if we considered such a trust model, we cannot evaluate

the cost of the certificate collecting phase. Note that the costs of the certificate

searching phase in the two methods do not depend on whether the destination

node is found or not because the both methods are distributed algorithms.

In the RSA public key cryptosystems, the size of a public key is 1024bits and

the size of each cipher text (or signature) is more than 1024bits. Therefore the

size of a certificate is more than 2048bits2. Therefore, we let Cert = 2050.

Also, we let Cert req = 100 and Cert rpl = 100. We assume the size of each

ID as 10bits. These 10bit length IDs can identify 210 = 1024 nodes, which is large

enough for an ordinary ad-hoc network. Each search packet Cert req includes a

source node, destination node, and pairs of the next node on the trust model and

the next hop on the routing graph [13]. The number of pairs of the next node and

the next hop is not a constant and depends on the number of certificates issued

by each node (the degree of a node in a trust model). According to Kitada’s

estimation that the average degree of nodes to construct a web-of-trust is four

[13], we assume that the average number of pairs of the next node and the next

hop in a search packet is four. Therefore, the average size of a search packet is

10 + 10 + 4 × (10 + 10) = 100. On the other hand, each reply packet Cert rpl

may be less than 100bits. However, the basic scheme outperforms the Kitada

method for less than 100bits more than it does for 100bits because Cert divided

by Cert rpl is larger. Therefore, we assume that Cert rpl is also 100bits so that

the comparison of the two methods is not disadvantageous to the Kitada Method.

Figure 3.3 shows the costs of the searching phase. The cost of the basic scheme

is lower than the cost of the Kitada method. This is because the searching phase

2In the real world, a certificate includes ID of the issuer and owner of a public key, a
timestamp of expiration date and so on, and the size of a certificate may become larger than
2050bits.

35

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 11 43 171 683 2731

node's number

co
m

m
u

n
ic

a
ti

o
n

 c
o

st
(l

o
g

 s
ca

le
)

Kitada method

Basic scheme

Figure 3.3. Basic scheme vs. the Kitada method (searching cost)

in the basic scheme broadcasts search packets without adding certificates. Figure

3.4 shows the graph of the cost of the collecting phase. In the collecting phase of

the Kitada method, the destination node sends packets to the source node. On

the other hand, we have to collect certificates from the destination node to the

source node while sending back the packet along with the certificate-chain in the

proposed method. Thus, the cost of the basic scheme is higher than the Kitada

method. Finally, Figure 3.5 compares the total costs of the two methods. We

can see that the basic scheme has a lower cost than the Kitada method.

As a comparison in a more realistic environment, the author also compared

the proposed method and the Kitada method by computer simulation in Section

3.7. Moreover, according to the Kitada’s definition of the communication cost,

the author analyzed the packet numbers of the proposed method and the Kitada

method by numerical analysis in Section 3.8.2.

36

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 11 43 171 683 2731

node's number

co
m

m
u

n
ic

a
ti

o
n

 c
o

st
 (

lo
g

 s
ca

le
)

Kitada method

Basic scheme

Figure 3.4. Basic scheme vs. the Kitada method (collecting cost)

3.6. A Modification Scheme of the Basic Scheme

The basic scheme has a disadvantage on the cost of the collecting phase. To

reduce the cost, the collecting phase of the basic scheme is revised.

3.6.1 Modification Scheme

In the basic scheme, the source node obtains all certificates in a certificate-chain

by making each intermediate node add its certificate to the replying packet. This

scheme requires extra cost because the packet from the destination node runs

through the whole chain, expanded with the added certificates. To avoid this

overhead, the phase is modified as follows:

• The destination node sends a packet to the parent node in the certificate-

chain.

37

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 11 43 171 683 2731

node's number

co
m

m
u

n
ic

a
ti

o
n

 c
o

st
(l

o
g

 s
ca

le
)

Kitada method

Basic scheme

Figure 3.5. Basic scheme vs. the Kitada method (total cost)

• Each intermediate node receiving the packet sends its certificate directly

to the source node and also sends the packet to the parent node (because

no node knows whether the node itself is on the certificate-chain to the

destination node).

The whole algorithm is called a modification scheme in this chapter. As same as

the basic scheme, the source node can collect all certificates in the certificate-chain

by using the method if every intermediate node is in the ad-hoc network.

3.6.2 Evaluation of the Modification Scheme

After this modification, the cost S3(k) of the certificate searching phase is the

same as S2(k), and the cost C3(k) of the collecting phase is as follows.

C3(k) = (k − 1) × n × (Cert + Cert rpl). (3.2)

38

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 11 43 171 683 2731

node's number

co
m

m
u

n
ic

a
ti

o
n

 c
o

st
(l

o
g

 s
ca

le
)

Kitada method

Proposed scheme

Modification scheme

Figure 3.6. Comparison of collecting costs

In the modification scheme, the source node can collect all certificates in the

certificate-chain if every intermediate node is in the ad-hoc network.

The author also investigated another modification in his previous work [33].

An idea of the other modification is to use a distributed algorithm for construct-

ing a shortest path tree such as the distributed Bellman-Ford algorithm in the

searching phase. However, the upper bound of the computation time for the

distributed Bellman-Ford algorithm is O(V · E) [32] and the one for the stan-

dard distributed Dijkstra algorithms is O(V 2) [34]. Because these costs are much

higher than the costs of algorithms for spanning trees, the method using a dis-

tributed algorithm for constructing a shortest path tree require more total cost

than the basic scheme and the Kitada method.

Numerical Analysis The above methods are compared by numerical analysis.

We let n = 4, m = 4, Cert = 2050, and Cert req = Cert rpl = 100.

39

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 11 43 171 683 2731

node's number

co
m

m
u

n
ic

a
ti

o
n

 c
o

st
(l

o
g

 s
ca

le
)

Kitada method

Basic scheme

Modification scheme

Figure 3.7. Comparison of total costs

The cost of the modification scheme is the same as the cost of the basic scheme

and is lower than the Kitada method (see Figure 3.3).

Figure 3.6 shows a graph of the cost of the collecting phase. The modification

method also has a lower cost than the Kitada method in this phase.

In Figure 3.7, the total costs of all the above methods are compared. From

this comparison, we obtain the following result:

S1(k) + C1(k) (the Kitada method)

> S2(k) + C2(k) (the basic scheme)

> S3(k) + C3(k) (the modification scheme).

Note that for (3.1) and (3.2), C1(k) ≤ C3(k) if and only if k ≥ Cert
Cert rpl

+ 2. We

assumed that Cert = 2050 and Cert rpl = 100 and hence C1(k) < C3(k) if

k > 22. Figure 3.6 conforms to this result. The number of nodes in a network

is already more than 100,000 when k = 9 and is out of range in Figure 3.6. The

result of the numerical analysis is summarized in Table 3.1.

40

Table 3.1. The proposed schemes vs. the Kitada method

Method Name Search Collect Total

Basic X X
Modification X X† X

Note : “X” means that the cost is lower than the Kitada method.
† C1(k) > C3(k) if and only if k < Cert

Cert rpl
+ 2.

3.7. Simulation Results

The numerical analysis in Section 3.6 showed that the modification scheme re-

quires the least communication cost among the existing and proposed methods.

In this section, the author compares the modification scheme and the Kitada

method more precisely for moderate-size networks. The author describes the

simulation scenarios, and then shows the average weight in the trust model and

the communication costs of the two methods. All simulations were performed

with a simulator implemented in Java with a java library of graph algorithms

and optimization [35].

3.7.1 Simulation Scenario

The following simulation scenarios are used.

• The number of nodes |V | are 20, 40, 60, 80, and 100.

• The number of certificate |E| is 4 × |V |.

• The power range of each node is 100.

• The simulation regions are as follows.

– 100 × 100 (20 ≤ |V | ≤ 100),

– 200 × 200 (20 ≤ |V | ≤ 100),

– 300 × 300 (20 ≤ |V | ≤ 100),

– 400 × 400 (40 ≤ |V | ≤ 100),

41

– 500 × 500 (60 ≤ |V | ≤ 100),

– 600 × 600 (n = 100).

• The routing graph is a unit disc graph. Formally, a unit disc graph is the

intersection graph of a set of unit diameter closed disks in the plane [36].

Generally, a unit disc graph is not always connected, which means that an

ad-hoc network itself is not formed. Because this section focuses on the cost

of the two methods, connected unit disc graphs are used.

• The trust model is a random Hamilton graph where each weight of an edge

〈u, v〉 is defined as the shortest path length from i to j in the unit disc

graph (see Definition 3.2). Kitada, et al. assume a trust model as a strongly

connected graph in simulation scenario, so a random Hamilton graph is used

as an example of such graphs.

• The packet size is 100bits,

• The certificate size is 2050bits.

3.7.2 Results

Average Number of Hops Figure 3.8 shows the average number of hops in

a unit disc graph. The number of hops is evaluated by computing the average of

the shortest hops between arbitrary pairs of distinct nodes in a unit disc graph.

When the simulation region is 500 × 500, the number of hops nearly equals four,

which matches the number of hops (m = 4) adopted in the numerical analysis

(see Section 3.5.4 and 3.6.2).

Comparison of the Two Methods Figure 3.9–3.13 show the communica-

tion costs of the modification scheme and the Kitada method by simulations.

The modification scheme outperforms the Kitada method also in the simulation

results. Below detailed comparisons are given.

Figure 3.9 and 3.10 show the costs of the searching phase. The cost of the

modification scheme is much lower than the cost of the Kitada method. In the

searching phase of both methods, a source node constructs a spanning tree. For

42

0

1

2

3

4

5

6

0 100 200 300 400 500 600
Simulation region

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

|V| = 20
|V| = 40
|V| = 60
|V| = 80
|V| = 100

Figure 3.8. Average number of hops in a unit disc graph

simplicity, a shortest path tree is used for the constructed spanning tree. A

constructed spanning tree is not always a shortest path tree because of node

failure or non-uniform communication delay. However, the probability of not

constructing a shortest path tree is not high. Furthermore, whether we use a

shortest path tree or not does not largely affect the comparison result of the two

methods. Figure 3.11 and 3.12 show the costs of the collection phase. Also for this

phase, the costs are evaluated by using a shortest path tree. Figure 3.13 shows

the total costs of the two methods. The average of the total cost is evaluated

as the sum of the average searching cost and the average collecting cost. The

simulation results showed that the total cost of the modification scheme is less

than 10% of the cost of the Kitada method.

43

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500 600

simulation region

co
m

m
un

ic
at

io
n

co
st

(l
og

 s
ca

le
)

n=100

n=80

n=60

n=40

n=20

Figure 3.9. Average searching cost of the Modification scheme

3.8. Discussion

3.8.1 Security Consideration

In this section, the robustness of the proposed methods to some known attacks

are discussed.

Sybil attack In a distributed network without a trusted third party maintaining

identities (ID), a malicious node can have not only a legitimate ID but also

one or more counterfeit IDs. This attack is called the Sybil attack [37]. If a

node succeeds in the Sybil attack, it can improperly raise its ranking in a

reputation system [38] by voting itself using counterfeit IDs, for example.

In this thesis, two variations of the Sybil attack are considered. One is

that a malicious node obtains one or more counterfeit IDs but it has only

one (legitimate) public key (and its corresponding secret key). The other

44

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500 600

simulation region

co
m

m
un

ic
at

io
n

co
st

 (l
og

 s
ca

le
)

n=100

n=80

n=60

n=40

n=20

Figure 3.10. Average searching cost of the Kitada method

is that a malicious node obtains both of counterfeit IDs and public keys.

The former case is easy to treat. Remember that a certificate binds the

ID and the public key of a user. Hence, if we find two certificates that

bind different IDs with the same public key, we know that the user of the

public key is malicious. For the latter case, it is generally impossible to

find out whether or not the Sybil attack occurs since no node can always

know the physical relation between a public key and its owner. However,

the proposed methods can find a certificate-chain correctly as long as every

node, including the malicious node of the Sybil attack, faithfully relays

packets. Also, the public-key exchange and the creation of a certificate are

usually done through a side channel (e.g., over an infrared channel at the

time of a physical encounter) before constructing an ad-hoc network [12].

Therefore the threat of the latter type of Sybil attack is not serious.

Man-in-the-middle attack When nodes A and B exchange their public keys

45

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500 600

simulation region

co
m

m
un

ic
at

io
n

co
st

 (l
og

 s
ca

le
)

n=100

n=80

n=60

n=40

n=20

Figure 3.11. Average collecting cost of the Modification scheme

pkA and pkB via a key exchange protocol, a malicious intermediate node M

may be able to give A pkM instead of pkB and give B pkM instead of pkA.

If this attack succeeds, M can eavesdrop on communications between A

and B. However, in conventional PKI systems, a certificate 〈u, v〉 is issued

if u trusts v to be honest and has correctly authenticated v as the owner

of its public key before signing it [31]. Moreover, in web-of-trust-type PKI

systems, the source node can verify the public key of the destination node

by a certificate-chain. Therefore, web-of-trust-type PKI systems including

the proposed methods can prevent the man-in-the middle attack.

Also, when the public key exchange between A and B is completed, this at-

tack would be foiled with public keys because the man-in-the-middle would

not have the private key to be able to decrypt messages encrypted under

A’s public key [39].

46

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500 600

simulation region

co
m

m
un

ic
at

io
n

co
st

(l
og

 s
ca

le
)

n=100

n=80

n=60

n=40

n=20

Figure 3.12. Average collecting cost of the Kitada method

Denial of service attack Denial of service (DoS) attacks disable routing pro-

tocols of ad-hoc networks, and some authors have investigated efficient DoS

attacks for ad-hoc networks [40]. The main aim in this chapter is to get

the public key of another node securely and to prevent the eavesdroppings

of malicious nodes, so the resilience against DoS attacks is out of the scope

of this thesis. However, a perfectly reliable routing on ad-hoc networks are

not assumed in this thesis, i.e., the proposed methods work even if a routing

is unreliable.

No single security system can prevent all kinds of attacks. Generally, we

combine several security techniques against these attacks. The main aim of this

chapter is to provide a secure End-to-End encryption [39]. In the End-to-End en-

cryption, the sender of a message and its receiver should have a shared key or the

sender should have the public key of the receiver. Because a message is encrypted

by a shared key between the sender and the receiver, even an intermediate host

47

1000

10000

100000

1000000

10000000

100000000

100 200 300 400 500 600
simulation region

co
m

m
un

ic
at

io
n

co
st

(l
og

 s
ca

le
)

Kitada (n=100)

Kitada (n=80)

Kitada (n=60)

Kitada (n=40)

Kitada (n=20)

Modification (n=100)

Modification (n=80)

Modification (n=60)

Modification (n=40)

Modification (n=20)

Figure 3.13. Modification scheme vs. the Kitada method (total cost)

cannot decrypt it. This encryption scheme does not depend on routing protocols,

so we usually can use some key management and exchange protocol on routing

protocols. On the other hand, there is Link encryption [39] such that the sender

and the receiver and each intermediate node should share a key. Because every

block of a packet, not only the data part but also the header part, is encrypted in

the Link encryption, each intermediate node has to decrypt the packet to check

the header part and encrypt it before sending it to next node. In this encryption,

each intermediate node can read not only the header part but also the data part

because each intermediate node has the shared key and can decrypt the packet.

In this chapter, the author investigates a secure End-to-End encryption scheme

in ad-hoc networks, where we should use keys and key management schemes dis-

tinct from those in the Link encryption for security. Though the Link encryption

is also important, this thesis do not consider it.

3.8.2 Analysis of Packet Numbers of the Three Methods

The communication costs of the basic scheme, the modification scheme and the

Kitada method are compared by numerical analysis in Section 3.5. In this the-

sis, the cost is defined as the total bit size transmitted while a certificate-chain

48

discovery method is performed. In [13] Kitada, et al. estimated the number of

packets. Though the cost defined in this thesis is more realistic estimation than

that defined in [13], some readers may be interested in analysis of the total packet

numbers of the three methods. Thus, the total packet numbers of the three meth-

ods are analyzed in this section. The number of packet depends on the Maximum

Transmission Unit (MTU) that decides the maximum quantity of data per trans-

mission. Therefore, in this thesis, the definition of the number of packets in [13]

are generalized, and the number of packets of each methods is analyzed according

to the generalized definition.

We let MTU be size of the MTU3. By using MTU , each number of packets

of the three methods is represented as follows.

Analysis of the Kitada Method

S ′
1(k) = n

k∑
i=1

⌈Cert(i − 1) + Cert req

MTU

⌉
× mi,

C ′
1(k) = n(k ×

⌈Cert + Cert rpl

MTU

⌉
).

Analysis of the Basic Scheme

S ′
2(k) = n

k∑
i=1

⌈Cert req

MTU

⌉
× mi,

C ′
2(k) = n

k∑
i=1

⌈Cert(i − 1) + Cert rpl

MTU

⌉
.

Analysis of the Modification Scheme

S ′
3(k) = S ′

2(k)

C ′
3(k) = (k − 1) × n ×

⌈ Cert

MTU

⌉
+ k × n ×

⌈Cert rpl

MTU

⌉
.

3Note that the size represents the number of bit in this thesis though the number of byte is
used generally.

49

Comparison among the Three Methods Packet numbers of the three meth-

ods are compared by numerical analysis. We let n = 4, m = 4, Cert = 2, 050,

and Cert req = Cert rpl = 100. The largest MTU value allowed by Ethernet is

1500byte (= 12000 bit) packet while the smallest MTU value is 128byte (= 1, 024

bit). Therefore, This thesis compare the number of messages of the three methods

with MTU = 12, 000 and MTU = 1, 024.

Table 3.2 shows packet numbers of the searching phase. The packet numbers

of the proposed schemes are smaller than the packet number of the Kitada method

with MTU = 12, 000 while the packet numbers of the three methods are same

value for each k with MTU = 1, 024. Generally, there is a following relation

between the Kitada method and the proposed schemes.S ′
1(k) = S ′

2(k) if
⌈

(k−1)×Cert
MTU

⌉
= 1

S ′
1(k) À S ′

2(k) otherwise

Thus S ′
1(k) ≥ S ′

2(k) for any MTU and k.

In Table 3.3, the packet numbers of the collecting phase are shown. The packet

numbers of the proposed schemes are larger than that of the Kitada method.

Finally, in Table 3.4, the total packet numbers of the three methods are com-

pared. The packet numbers of the proposed schemes are smaller than that of the

Kitada method with MTU = 12, 000 since |S ′
1(k) − S ′

2(k)| is much bigger than

|C ′
1(k) − C ′

2(k)| (or |C ′
1(k) − C ′

3(k)|). On the other hand, with MTU = 12, 000,

the packet numbers of the proposed schemes are slightly bigger than that of the

Kitada method. That is, the result of the comparison of the three methods de-

pends on the value of d (k−1)×Cert
MTU

e. If d (k−1)×Cert
MTU

e > 1, the packet numbers of

the proposed schemes are smaller than that of the Kitada method. On the other

hand, if we assume sufficient amounts of the MTU value or a small size certificate

so that we can include many certificates in one packet, the total packet number

of the Kitada method is smaller than that of the proposed schemes. However,

in a realistic world, an ad-hoc network consists of heterogeneous mobile devices

with several MTU values. Also, every node has to agree a protocol to separate

certificates contained in one packet before they form an ad-hoc network. There-

fore, even if we assume MTU = 12, 000 or a small size certificate, the Kitada

method may not be better choice than the proposed methods.

50

3.9. Conclusion of Chapter 3

In this chapter, the author modeled web-of-trust-type PKI systems, formally

defined the certificate-chain discovery problem, and proposed a new distributed

algorithm as well as a modification for solving the problem. Furthermore, a

measure for the communication cost is proposed, and according to the measure,

the proposed algorithms are compared with the Kitada method by numerical

analysis. To evaluate the performance of the modification scheme in a more

realistic environment, it and the Kitada method are evaluated by simulation.

The simulation results showed that the modification scheme requires a lower cost

than the Kitada method.

Unfortunately, existing routing protocols for ad-hoc networks are unable to

catch up with frequent link changes [8]. These protocols minimize the effect of

the dynamic change of the topology caused by nodes’ mobility by reducing time,

communication, and round complexity. The proposed methods also address node

mobility by reducing such complexities as existing routing protocols do.

51

Table 3.2. Comparison of packet numbers in certificate searching phase

k |V | MTU = 1, 024 MTU = 12, 000

S ′
1(k) S ′

2(k) = S ′
3(k) S ′

1(k) S ′
2(k) = S ′

3(k)

1 3 16 16 16 16

2 11 208 80 80 80

3 43 1,488 336 336 336

4 171 8,656 1,360 1,360 1,360

5 683 45,520 5,456 5,456 5,456

6 2,731 225,744 21,840 21,840 21,840

Table 3.3. Comparison of packet numbers in certificate collecting phase

k |V | MTU = 1, 024 MTU = 12, 000

C ′
1(k) C ′

2(k) C ′
3(k) C ′

1(k) C ′
2(k) C ′

3(k)

1 3 12 4 4 4 4 4

2 11 20 16 20 4 8 12

3 43 28 36 36 4 12 20

4 171 36 64 52 4 16 28

5 683 44 100 68 4 20 36

6 2,731 52 144 84 8 24 44

52

T
ab

le
3.

4.
C

om
p
ar

is
on

of
th

e
to

ta
l
p
ac

ke
t

n
u
m

b
er

s

k
|V

|
M

T
U

=
1,

02
4

M
T

U
=

12
,0

00

S
′ 1
(k

)
+

C
′ 1
(k

)
S
′ 2
(k

)
+

C
′ 2
(k

)
S
′ 3
(k

)
+

C
′ 3
(k

)
S
′ 1
(k

)
+

C
′ 1
(k

)
S
′ 2
(k

)
+

C
′ 2
(k

)
S
′ 3
(k

)
+

C
′ 3
(k

)

1
3

28
20

20
20

20
20

2
11

22
8

96
10

0
84

88
92

3
43

1,
51

6
37

2
37

2
34

0
34

8
35

6

4
17

1
8,

69
2

1,
42

4
1,

41
2

1,
36

4
1,

37
6

1,
38

8

5
68

3
45

,5
64

5,
55

6
5,

52
4

5,
46

0
5,

47
6

5,
49

2

6
2,

73
1

22
5,

79
6

21
,9

84
21

,9
24

21
,8

48
21

,8
64

21
,8

84

53

Chapter 4

Key Predistribution Schemes for

Sensor Networks Using Finite

Plane Geometry

4.1. Introduction

In this chapter, key predistribution schemes for two neighbor sensor nodes (nodes

that can directly communicate with each other) are investigated. The primal

objective of this chapter is to construct a better implementation of the key pre-

distribution scheme than the random key distribution scheme of [19]. Three

quantitative measures to evaluate key predistribution schemes are considered; the

node memory size, the connectivity and the key-survivability. The node memory

size (or memory size for simplicity) is the number of keys that a node needs to

remember, the connectivity is the probability that randomly chosen two sensor

nodes have one or more keys in common, and the key-survivability is the prob-

ability that the key which has been agreed by two nodes stays secure even if an

intruder mounts the node capture attack, in which an intruder captures sensor

nodes deployed in a field, and retrieves keys embedded in the nodes. There are

obvious tradeoff relations between the three quantitative measures. For example,

if we try to increase the connectivity without changing the memory size, then the

key-survivability decreases accordingly in general. A key predistribution scheme

needs to provide good tradeoff points with respect to the three measures, and it is

54

preferred that the tradeoff points are controllable. The random key distribution

scheme is, however, not good with respect to these issues, because the scheme is

so simple that we have little way to control its performance.

In this chapter, the author considers to actively control keys to be embedded

in sensor nodes so that both the connectivity and the key-survivability are larger

than the random key distribution scheme. For this sake, a method using simple

geometric properties of lines and points is considered. The proposed methods

associate each node with a line over a two-dimensional finite plane, and manage

keys so that two nodes can agree a key if and only if the associated lines intersect

with each other. Two randomly chosen lines intersect with each other unless they

are parallel, thus two nodes succeed in key agreement with high probability. A

scheme that is directly based on this idea is proposed (called a basic scheme).

The basic scheme can realize high connectivity with small memory size, but it is

difficult to flexibly control the tradeoff points in general. To overcome this prob-

lem, two extensions of the basic scheme are also proposed. The extended schemes

have more flexibility than the basic scheme, though they are not as advantageous

as the basic scheme compared to the random key distribution scheme. The basic

and extended schemes is analytically evaluated, and the result is compared with

that of the random key distribution scheme.

4.2. Related Work

A naive scheme for key agreement in sensor networks is to use a global key. The

key manager determines a unique “global key”, and distributes the global key to

all the sensor nodes. A node can agree a key with any other node in the system

and therefore the connectivity is 1. On the other hand, the key-survivability of the

scheme is quite poor because an intruder can obtain all the secret of the system

by capturing just one node. Another straightforward scheme is to assign different

keys for different pairs of nodes, and provide a sensor node with the keys which

the node commits to. This scheme gives high key-survivability, but the memory

size increases as the network size (the number of nodes in the network) increases.

Usually a sensor network consists of many sensor nodes which have small memory

size, and therefore this scheme is not suitable for sensor networks.

55

In the random key distribution scheme [19], as briefly introduced in Section 1,

the connectivity and the key-survivability are controlled by two parameters; the

size of the key pool K and the node memory size m (the number of keys stored

in a node). We can show easily that the connectivity and the key-survivability

(under the situation that c nodes are captured) of the random key distribution

scheme are given as

pcon = 1 −
m−1∏
i=0

|K| − m − i

|K| − i
,

psurc = (1 − m

|K|
)c,

respectively. The random key distribution scheme is sometimes used as a “build-

ing block” of more sophisticated key predistribution schemes. For example, Chan,

et al. considered to improve the trade-off points of the random key distribution

scheme by making use of multiple keys which are shared by two nodes [41], but

they basically used exactly the same random key distribution scheme in its key

distribution phase. The scheme proposed by Du, et al. [1] also used the random

key distribution scheme partly.

There are several studies which take different approaches from the random

key scheme. One major approach among them is to make use of the deploy

location of sensor nodes. In the random key approach, it is implicitly assumed

that we cannot predict where a sensor node is deployed. In some applications,

however, this is not the case. We may be able to statistically predict the deploy

location of each sensor node. Such statistical information is helpful to realize

secure and efficient key agreement, as investigated in [42, 43, 44, 45]. The relation

between the location-based and the location-free approaches will be discussed in

Section 4.5.2.

There also exist studies in which much emphasis is devoted to establishing

path-keys. Assume that two nodes, say a and b, fail to agree a cryptographic key.

In this case, we can ask other nodes to help a and b setting up a key: Determine

a sequence of nodes a = n0, n1, . . . , nr−1, nr = b so that ni and ni+1 with 0 ≤ i ≤
r−1 can agree a key, and ask the intermediate nodes ni to relay secret information

which enables key agreement between a and b. The key established between a

and b in this way is called a path-key . Liu proposed in [46] a scheme which makes

56

use of bivariable polynomials. The scheme has relatively low connectivity, but

high probability that randomly chosen two nodes succeed to agree a path-key.

Du, et al. considered similar approach [47], but they used the Blom’s scheme

[48] instead of bivariable polynomials. To the authors’ understanding, a path-key

cannot be an alternative to the link-key which is directly agreed between two

nodes. Computing a path-key requires sensor nodes to pay large computational

and communication overheads, and its security will be seriously damaged if there

are selfish or dishonest nodes in the network. Consequently it is quite misleading

to compare the connectivity wit respect to link-keys and the connectivity with

respect to path-keys.

Other well-known studies on the key management in sensor networks include

SPINS by Perrig, et al. [49]. SPINS is a collection of protocols for key manage-

ment between sensor nodes and a base station, and does not intend for the key

agreement between two sensor nodes. LEAP is another widely known scheme for

key management in sensor networks [50]. LEAP is a general mechanism which

allows a group of nodes to agree a key, but the security of LEAP strongly depends

on an uncommon assumption; a node is equipped with a precise timer, a (global)

master key, and a special mechanism which erases the master key at a certain

timing. The node makes use of the master key to share cryptographic keys with

other nodes, and then erases the master key to avoid troubles in case the node

is captured. If the key-erasing mechanism does not work as expected and an

intruder happen to capture a node in which the master key remains not-erased,

then the entire system might be paralyzed completely.

Light mechanisms for key agreement have been studied for long years. For

example, Matsumoto and Imai have proposed the concept of the Key Predistri-

bution Scheme (KPS) in late 80s [51], mainly intended for applications in smart-

cards. The KPS itself is a general concept, and [51] gives an implementation of

KPS which utilizes matrix computation. The concept of KPS is also effective

for sensor networks, but concrete implementations of KPS which is suitable for

sensor networks is still an open problem. Gong and Wheeler have proposed a

key management scheme that is based on algebraic geometry [52]. The idea to

use lines and point is similar to this work, though, the used techniques and the

obtained results of [52] are quite different from ours. Some characteristics of the

57

scheme in [52] are problematic in sensor network applications. For example, the

scheme in [52] cannot support a large network that consists of nodes with quite

small memory size.

4.3. Proposed Scheme

4.3.1 Preliminary

Let p be a prime number, Zp = {0, . . . , p − 1} and Z2
p = {(x, y)|x, y ∈ Zp}. We

call Z2
p a plane and elements in Z2

p points . For a and b in Zp, a line is a collection

of points defined as l(a, b) = {(x, y)|x ∈ Zp, y = ax + b (mod p)}. We can easily

show the following lemma.

Lemma 4.1. Consider two lines l(a1, b1) and l(a2, b2):

1. If a1 = a2 and b1 6= b2, then l(a1, b1) ∩ l(a2, b2) = ∅ (we say that the two

lines are parallel).

2. If a1 6= a2, then l(a1, b1)∩ l(a2, b2) contains exactly one point in Z2
p (we say

that the two lines intersect, and the point is an intersection point).

Proof. Let a1 = a2 and b1 6= b2, and assume without loss of generality that

b1 ≤ b2. Suppose that there is (x, y) such that (x, y) ∈ l(a1, b1) ∩ l(a2, b2), so

a1x + b1 ≡ a1x + b2 mod p. This implies that b2 − b1 ≡ 0 mod p. Because

(b2− b1) ∈ Zp, b2− b1 ≡ 0 if and only if b2 = b1. This contradicts our assumption,

and (1) is proved. Next, let a1 6= a2, and assume without loss of generality that

a1 < a2. For x ∈ Zp, define as dx = (a2x + b2) − (a1x + b1) (mod p). To prove

(2), I show that d0, . . . , dp−1 is the permutation of 0, . . . , p − 1. It is clear that

dx ∈ Zp for any x ∈ Zp, and it suffices to show that d0, . . . , dp−1 are all different.

Suppose for contradiction that dx = dx′ for x < x′, then

(a2x + b2) − (a1x + b1)

≡ (a2x
′ + b2) − (a1x

′ + b1) mod p.

Thus, (a2−a1)(x
′−x) ≡ 0 mod p. However, the product of (a2−a1) and (x′−x)

cannot be divisible by p, because p is prime, (a2 − a1) ∈ Zp and (x′ − x) ∈ Zp.

58

0 1 2 3 4
x-0

1

2

3

4

y

6

l(1, 0)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

r
r

t
r

rl(2, 3)

l(2, 3) l(2, 3)

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

r

r

rl(1, 2)

l(1, 2)

r
r

r

r
t

p p p p p p p p p p p
p p p p p p p p p p p

p p p p p p p p p p p

p p p p p p p p p p p
p p p p p p p p p p p

Figure 4.1. Lines and points over finite geometry

Therefore, no value appears twice in d0, . . . , dp−1. The intersection point of the

two lines is (x, a1x + b1) for x such that dx = 0.

Example 4.1. Consider a plane Z2
5 . Figure 4.1 shows three lines l(1, 0), l(2, 3),

and l(1, 2) over Z2
5 . The lines consist of the following points:

l(1, 0) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},
l(2, 3) = {(0, 3), (1, 0), (2, 2), (3, 4), (4, 1)},
l(1, 2) = {(0, 2), (1, 3), (2, 4), (3, 0), (4, 1)}.

The line l(1, 0) intersects with the line l(2, 3) at the point (2, 2), and the line

l(2, 3) intersects with the line l(1, 2) at the point (4, 1). The line l(1, 0) is parallel

to the line l(1, 2).

Let L be the class of all lines, then L contains p2 lines in total. Let l be a line

in L, then there are p lines (including l itself) which are parallel to l, and all the

other p2 − p = p(p− 1) lines intersect with l. Thus if we choose another line from

L randomly, then the line intersect with l with probability p(p−1)/p2 = (p−1)/p,

which approaches to 1 as p increases.

59

4.3.2 Basic Scheme

To make the later discussion clear, a key predistribution scheme is described by

a four-tuple (K,N,m, k), where K, the key pool , is a collection of keys, N is the

set of nodes, m is the number of keys which are assigned to a sensor node, and

k is a key assignment function mapping N to a subset of K with cardinality m.

For example, in the random key distribution scheme [19], k is a random function

which associates a node with a randomly chosen subset of K.

Now a new key predistribution scheme is defined and called the basic scheme

in this chapter. First, choose a prime number p, and associate each point in Z2
p

with a randomly chosen cryptographic key. The key that is assigned to a point π

is denoted as k(π). The key pool K is defined as K = {k(π)|π ∈ Z2
p}. For a node

n ∈ N , let l(n) be a line which is chosen randomly from L. The key assignment

function k is then defined as

k(n) = {k(π)|π ∈ l(n)}.

Intuitively, a node is associated with a randomly chosen line in L and the node

has keys that are on the line. Because a line contains p points, a node is assigned

with p keys. The obtained key predistribution scheme is thus (K,N, p, k).

It is easily understood that two sensor nodes n1 and n2 share a key in common

if and only if lines l(n1) and l(n2) intersect. Thus the connectivity of the basic

scheme is

pcon = (p − 1)/p. (4.1)

To discuss the key-survivability, assume that l(n1) and l(n2) intersect at a point

π, and n1 and n2 share the key k(π). The number of lines which pass through

π is p, and therefore if we choose a line from L randomly and uniformly, then

the chosen line passes through π with probability p/p2 = 1/p. This probability

coincides with the probability that a sensor node which is captured by an intruder

happen to have k(π). Consider that an intruder have captured c sensor nodes.

The key k(π) stays secure (not known to the intruder) if and only if all the c

nodes do not include k(π). This happens with probability (1 − 1/p)c. Thus the

key-survivability of the basic scheme under c captured nodes is

psurc = (1 − 1/p)c.

60

4.3.3 Evaluation of the Basic Scheme

The performance of the basic scheme is evaluated in this section. The basic

scheme is intended to replace for the random key distribution scheme in [19],

and to be used as a “building block” of other advanced schemes. Thereby the

basic scheme and the random key distribution scheme are compared, other ad-

vanced schemes are not considered in this section. As noted in Section 4.1, there

are tradeoff relations between the memory size, the connectivity and the key-

survivability. To make the discussion clear, we meanwhile set the memory size

to a constant number, and observe the relation between the connectivity and the

key-survivability.

According to some literatures [41, 19], we assume that a node can have about

100 keys. In the basic scheme, the memory size equals to the prime number p,

and hence choosing p = 101 seems reasonable for this setting. This choice of p

makes the connectivity pcon = 0.99. In the random key distribution scheme, the

connectivity is controlled by the size of the key pool |K| and the memory size m.

To make pcon = 0.99 and m = 101, the key pool must contain 2311 or less keys.

Under the choice of these parameters, the survivabilities of the two schemes under

a node capture attack are compared. The numerical result is depicted in Figure

4.2. The x-axis of the graph is the number of compromised nodes, and the y-

axis is the key-survivability. As the number of compromised nodes increases, the

key-survivability decreases in general. We can see from the figure that the key-

survivability of the random key distribution scheme drops rapidly as the number

of compromised nodes increase, whereas that of the basic scheme decreases slowly.

Compare, for example, the key-survivability of the two schemes when 50 nodes

are compromised. The figure shows that only 10% of keys survive in the random

key distribution scheme, while about 60% of keys survive in the basic scheme.

This means that the basic scheme offers more robustness against node capture

attacks than the random key distribution scheme, with the same connectivity and

the same number of keys in each node.

To compare the two schemes from another direction, consider how many keys

are needed in the random key distribution scheme to achieve the same perfor-

mance as the basic scheme. Assume that we would like to realize a key agreement

scheme with the connectivity pcon = 0.99 and the key-survivability psurc ≥ 0.9

61

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Number of compromised nodes

su
rv

iv
ab

il
it

y
Basic Scheme

Random

Figure 4.2. The key-survivability of the basic scheme with pcon = 0.99 and m =

101

for up to 10 compromised nodes. In the basic scheme, choosing p = 101 achieves

the required performance as illustrated in Figure 4.2. In this case, a sensor node

needs to have 101 keys. To achieve the same performance by using the random

key distribution scheme, we need to choose so that |K| = 41504 and m = 454.

The random key distribution scheme requires a sensor node to have four times

more keys than the basic scheme. Other comparisons for other choice of psurc and

c are presented in Figure 4.3. We can see that the basic scheme requires smaller

number of keys than the random key scheme. The number of keys has strong

relationship to the memory size of a sensor node, and thus to the manufacturing

cost and the energy efficiency of a node. We could see clear advantage of the

basic scheme against the random key distribution scheme.

The basic scheme also has an advantage in the communication overhead for

the key agreement. In the random key distribution scheme, two nodes need to

exchange what keys they do have. This will be done by exchanging the indices of

62

0

50

100

150

200

250

300

350

400

450

500

(10, 0.9)

(22, 0.8)

(35, 0.7)

(51, 0.6)

(69, 0.5)

(92, 0.4)

(120, 0.3)

(161, 0.2)

(231, 0.1)

(c, Psurc)

of

 k
ey

s
in

 e
ac

h
no

de
Random Key Predistribution Scheme
The Basic Scheme

Figure 4.3. The memory size of the basic scheme with pcon = 0.99

the keys, but the communication cost for this operation should be proportional

to the number of keys in the nodes. In the basic scheme, the keys are assigned

in a structured and systematic manner, which helps reducing the communication

overhead. Remind that a line over a plane is defined by just two parameters,

a and b. Once two node, n and n′, exchange their parameters, then the nodes

can compute the intersection point of l(n) and l(n)′ by themselves. The commu-

nication for exchanging the parameters can be done with constant amounts of

clear-text messages. This is a significant advantage in sensor networks in which

energy consumed for computation and communication is so expensive.

4.4. Extended Schemes

The basic scheme is advantageous to the random key distribution scheme. On

the other hand, the basic scheme does not have sufficient flexibility to control

the connectivity and the key-survivability as described below. The scheme has

63

just one parameter, the prime number p, and choosing p determines the memory

size (the number of keys assigned to a node), the connectivity and the key-

survivability. In general, the prime number p cannot be very small, which means

that the connectivity pcon = (p − 1)/p should be always close to 1. In a sparse

network, keeping pcon close to 1 is desirable, while in a non-sparse network, it

is sometimes allowed that pcon can be much smaller than 1 to obtain more key-

survivability. Unfortunately, it is difficult in the basic scheme to make pcon small

value without affecting other criteria. In this section, extensions of the basic

scheme is investigated so that we can have more flexibility and controllability.

4.4.1 Extended Scheme 1

The first type of extensions is to use lines partially. In the basic scheme, a sensor

node n is associated with a line l(n), and all keys in {k(π)|π ∈ l(n)} are assigned

to n. Now, instead of assigning all keys on the line, consider to assign a subset

of {k(π)|π ∈ l(n)} to n. Let m be an integer with m < p and define the key

assignment function k as

k(n) = {k(π)|π ∈ lm(n)},

where lm(n) is a randomly chosen subset of l(n) with cardinality m. Thus, the

number of keys that a node needs to remember is smaller than the prime number

p. This may reduce the memory requirement of sensor nodes, or allow us choosing

the prime number p bigger than the memory restriction of sensor nodes.

Two nodes share a key if and only if the lines associated with the nodes

intersect, and both of the two nodes have the key at the intersection point of the

lines. Thus the connectivity of this extension scheme is

pcon
′ = pcon(m/p)2 = (p − 1)m2/p3,

where pcon is defined in (4.1). Let k(π) be the key shared by the two nodes. A

randomly chosen sensor node n contains k(π) if and only if the line l(n) passes

through π and lm(n) happens to contain π. The probability that n have k(π) is

therefore (p/p2)(m/p) = m/p2. The key-survivability of the extended scheme for

c captured nodes is

psur
′
c = (1 − m/p2)c.

64

4.4.2 Extended Scheme 2

The above described extension can be regarded as a combined scheme of the

basic scheme and the random key distribution scheme, where the random key

distribution scheme is used as an “inner scheme”. We can consider another com-

bined scheme in which the random key distribution scheme is used as an “outer

scheme”. Let S0 = (K0, N,m0, k0) be a random key predistribution scheme. As-

sume that K0 contains r keys and keys in K0 are numbered from 1 to r. The

number associated with a key k ∈ K0 is denoted by i(k). Also define r basic

schemes Si = (Ki, N,m, ki) with 1 ≤ i ≤ r where Ki ∩ Kj = ∅ if i 6= j. Now

combine these schemes and define

S0 ◦ {S1, . . . , Sr} = (
r⋃

i=1

Ki, N,m0m, k′),

where

k′(n) =
⋃

k∈k0(n)

ki(k)(n).

In this extension, r independent key distribution schemes S1, . . . , Sr are prepared.

The “parent scheme” S0 assigns each node with keys in K0. If k ∈ K0 is assigned

to a node by S0, a “child scheme” Si(k) is used to determine m keys for the node n.

In other words, S0 is used to determine which schemes should be used to assign

keys for a node. The scheme S0 assigns m0 keys to a node, and each Si with

1 ≤ i ≤ r assigns m(= p) keys if it is chosen by S0. Therefore a node receives

m0m(= m0p) keys in total.

In this scheme, two nodes share a key if and only if (i) there is a scheme Si

with 1 ≤ i ≤ r that is commonly used by the two nodes, and (ii) the two nodes

agree a key by using the scheme Si. Remark that S0 is a random key distribution

scheme and it can assign, to two nodes, multiple keys in common. In this case,

the two nodes use multiple child schemes in common. The probability that two

nodes use i child schemes in common is(
r
i

)(
r−i

2(m0−i)

)(
2(m0−i)

m0−i

)(
r

m0

)2 =

(
m0

i

)(
r−mo

m0−i

)(
r

m0

) .

Two nodes fail to agree a key if all the i key schemes fail to assign common keys.

65

Therefore the connectivity of this extended scheme is

pcon
′′ =

m0∑
i=1

(
m0

i

)(
r−mo

m0−i

)(
r

m0

) (1 − (1 − pcon)i). (4.2)

where pcon is defined in (1). If we use the extended scheme 1 for S1, . . . , Sr instead

of the basic scheme, then the connectivity changes to a value that is obtained by

replacing pcon with p′con in (2). To discuss the key-survivability, assume that

two nodes are assigned a common scheme Si, and share a key k(π) of Si. The

probability that a node which is captured by an intruder happen to include k(π) is

(m0/r)(1/p) = m0/rp. Thus the key-survivability of this scheme under c captured

nodes is

psur
′′
c = (1 − m0/rp)c.

If we use the extended scheme 1 for S1, . . . , Sr, just replace m0/rp in the above

equation with m0m/rp2.

In this extended scheme 2, there is a lot of flexibility for parameter choices.

Now, consider that a node can have about 200 keys. In this case, we can arbitrarily

choose m0 and p to accomplish m0p ≈ 200. After we choose m0 and p, we can

change the connectivity and the key-survivability by changing the parameter

r. For example, consider three choices (p,m0) = (199, 1), (41, 5), and (19, 10)

which all make m0p ≈ 200. For each choice, we choose r = 2, 40 and 145 to

make the connectivity p′′con = 0.5. Figure 4.4 shows the evaluation results of

key-survivability for the above three choices of parameters. This shows that the

key-survivability gets better as p increases.

4.4.3 Evaluation of the Two Extended Schemes

This section is to compare the extended schemes 1 and 2 with the random key

distribution scheme. I set m, the number of keys in a node, to m = 200 in this

section, and observe how the key-survivability changes for pcon = 0.33, 0.5 and

0.9. Table 4.1 summarizes parameters that make each scheme achieve the given

connectivity.

Figures 4.5–4.7 illustrate the key-survivability for each pcon. We can see that

the extended schemes show better key-survivability than the random key distri-

bution scheme. The advantage of the proposed schemes is especially significant

66

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Number of compromised nodes

su
rv

iv
ab

il
it

y

p=199, m0=1, r=2
p=41, m0=5, r=40
p=19, m0=10, r=145

Figure 4.4. The performance of the extended scheme 2 for three choices of pa-

rameters with pcon = 0.5

when pcon is close to 1. This result suggests that the proposed scheme is more

favorable when we need high connectivity.

Numerical results show that the extended scheme 1 has small advantage to the

extended scheme 2 with respect to the key-survivability. However, the extended

scheme 2 has some advantages that are not illustrated in the figures. For example,

the extended scheme 2 allows sensor nodes to have two or more keys in common.

Hence techniques similar to the q-composite key [41] is easily available in the

extended scheme 2, and the key-survivability might be improved by using such

additional techniques.

67

Table 4.1. Parameters to achieve given connectivity

pcon Extended 1 Extended 2 The Random Key

p (p, r,m) |K|
0.33 347 (199,3,1) 99,619

0.50 283 (199,2,1) 58,295

0.90 211 (37,21,6) 18,008

4.5. Discussion

4.5.1 Choice of Parameters

To use the proposed scheme in real applications, we need to determine the values

of parameters. Different choice of parameters gives the scheme different char-

acteristics. We would like to find the optimum values of parameters for a given

application, but the choice of parameters strongly depends on many aspects which

are difficult to quantify.

For example, how the density of sensor nodes affects the choice of parameters

is considered. If sensor nodes are deployed sparsely in a field, then we should

choose parameters so that the scheme has high connectivity. In a sparse network,

a node is expected to have small number of neighbor nodes. If the connectivity

is small in this sparse network, then it can happen with considerable probability

that a node cannot agree a key with any of its neighbor nodes, and is isolated (in

the sense of secure communication) in the network. Such an isolation of a node

happens with probability (1 − pcon)d, where d is the average number of neighbor

nodes. To make this probability small, we need to let pcon take a value close to 1.

This is possible by choosing a large prime number for p in the basic scheme, or

by choosing p and m close in the extended scheme 1. (parameter choices of the

extended scheme 2 is complicated, but we can determine appropriate parameter

values by solving an equation).

The discussion goes differently if sensor nodes are deployed densely. On dis-

cussing key agreement, there are two points that we need to remark to compare

a sparse network and a dense network. The first point is that, in a dense net-

work, an intruder will be able to find and capture sensor nodes easily, and the

68

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Number of compromised nodes

su
rv

iv
ab

il
it

y

Extended scheme 1
Extended scheme 2
Random

Figure 4.5. The key-survivability of the extended schemes with pcon = 0.33

node capture attack is more serious than the sparse network case. The second

point is that the cost to reinforce a key agreement scheme, for example by us-

ing path-keys [46, 47] or the multipath key reinforcement [41], is smaller and

more acceptable in a dense network than in a sparse network. Hence, instead of

increasing the connectivity, we may choose parameters so that the scheme has

large key-survivability, and to use the reinforce techniques to mitigate the low

connectivity.

4.5.2 Relation to the Location-Based Approach

A sensor network is constructed by deploying a number of sensor nodes in a

designated area. In many cases, it is difficult to predict (or control) the exact

deploy location of each node, and we cannot know in advance which nodes come

close to a given node. To realize a key-agreement scheme under this situation,

there are two different approaches. In a location-free approach, I investigate

69

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Number of compromised nodes

su
rv

iv
ab

il
it

y

Extended scheme 1
Extended scheme 2
Random

Figure 4.6. The key-survivability of the extended schemes with pcon = 0.5

a scheme that shows reasonable performance for “any” deploy scenario. Even

if nodes are deployed unintentionally or randomly, the scheme is required to

show reasonable performance. The scheme investigated in this thesis follows the

location-free approach. In a location-based approach, we assume that nodes are

deployed under a certain condition, and devise a scheme that is optimized for

the assumed deploy scenario. For example, [1] considers a location-based scheme

assuming that nodes are deployed by dropping from a helicopter. We cannot

predict exactly where a node is settled, but a certain distribution function will

be available in this case. By using the distribution function, we can choose keys

to be embedded in a node “non-uniformly”. In other words, we choose keys so

that two nodes which will be deployed closely have keys in common. The idea of

the location-based approach is further developed in [43] and [42] for example.

The location-based approach has several advantages against the location-free

approach. If nodes are deployed as expected, then a location-based scheme shows

better connectivity than a location-free scheme in general. It is also said that, in

70

0

0.2

0.4

0.6

0.8

1

0 50 100 150
Number of compromised nodes

su
rv

iv
ab

il
it

y

Extended scheme 1
Extended scheme 2
Random

Figure 4.7. The key-survivability of the extended schemes with pcon = 0.9

the location-based approach, the affect of a node capture attack is confined in a

small local section of the network. The approach is, furthermore, able to support

very large scale network.

In spite of these advantages of the location-based approach, it is significant to

investigate the location-free aproach. The essential problem of the location-based

approach is that the approach is not always available. If we know nothing about

the node deployment, then we cannot devise a location-based scheme. Consider

for example mobile nodes which autonomously and freely move after they are

deployed. Obviously location-based schemes are not available to support such

mobile nodes, and we need to consider location-free schemes. In other words,

location-based schemes cannot replace for all the location-free schemes, and hence

studying good location-free scheme has practical significance.

Comparison of the location-free and location-based approaches suggests possi-

ble applications of the proposed scheme. The key agreement scheme investigated

in this chapter is intended to be general, multi-purpose and fundamental technol-

71

ogy which is available in wide range of applications. However, unfortunately, the

proposed scheme is not the very best for all applications: For example, location-

based schemes will be more useful than the proposed scheme if we can predict

the deploy locations of sensor nodes. The proposed scheme is superior to other

schemes if we cannot predict the deploy locations in advance, and if high con-

nectivity is strongly required. For example, consider mobile sensor nodes which

are carried by users or equipped on a vehicle. In such applications, nodes will

move extensively large area, and the network can be regarded as very sparse.

The connectivity must be sufficiently large in this case, because an encounter

with other nodes is “precious” in such a sparse network and we should not miss

the opportunity. The location-based approach is not available in this case since

the move of nodes is not predictable. Within the location-free framework, the

proposed scheme show clear advantage to the random key distribution scheme

when the connectivity is required to be large. It seems that the proposed scheme

is the best choice for such an application.

4.5.3 Robustness of the Proposed Methods

When an intruder compromises a node, the intruder can absorb a line stored

in the node. However, threat of the node capture attack against the proposed

method is no bigger than that against the random distribution scheme. Remind

that the basic scheme associates each lattice point in Z2
p with a randomly chosen

cryptographic key and does not create a cryptographic key by using information

about Z2
p . We assume that an intruder would like to break a secure link between

two nodes without compromising the two nodes. In the proposed methods, the

intruder cannot create the key for the secure link if the compromised nodes do

not store the key. Thus, information about Z2
p is not additional profit for the

intruder. On the other hand, two nodes exchange just two parameters a and

b in the basic method while the two nodes exchange m indices of keys in the

random key distribution scheme. Since the intruder can easily absorb the index

of the shared key used for the secure link by eavesdropping whole the network,

the intruder may find the shared key in the basic method easier than that in the

random key predistribution scheme.

72

4.6. Conclusion of Chapter 4

New schemes for predistributing cryptographic keys in sensor networks ware pro-

posed. The proposed scheme is a direct scheme with which key agreement is

accomplished between two involved nodes only. The scheme is well suited for

realizing high connectivity, which is strongly desired in sensor networks in which

sensor nodes are deployed very sparsely. It is also notable that the proposed

schemes do not require special assumptions nor equipments such as a timer and

key diminish mechanisms.

The proposed scheme can replace for the naive random key scheme, achiev-

ing higher security (with respect to the key-survivability) while other system

parameters unchanged. The random key distribution scheme has been used as

a fundamental component for constructing more sophisticated key management

scheme, and therefore the proposed scheme can make significant contribution in

the wide ranges of key management techniques for sensor networks.

73

Chapter 5

Conclusion

In this thesis, efficient and robust infrastructures for secure communication in

autonomous computer networks were investigated. Because which scheme we

should use depends on properties of a network (e.g., node mobility, existance of

trusted third party, resource constraint, and so on), no single security infrastruc-

ture can adapt all types of networks. According to the properties of the network,

the thesis proposed three security infrastructures.

In Chapter 2, a policy specification language to define the behavior of stateful

trust management systems that can represent a system with internal states was

proposed. A policy specification is a finite set of rules of definite Horn clause form.

Also, the verification problem was defined as the problem to decide whether the

behavior of a system with a given policy satisfies verification property, and a

verification method for the problem was also proposed. Input of the verification

problem is a pair of a policy to be verified and and a verification property that

the policy should satisfy specified by an LTL formula. The verification methods

considered in the thesis are two automatic model checking methods; one consists

of SPIN with Prolog (Method 2) and the other consists of only Prolog (Method 3).

Model checking methods for the “introducer gains benefits” system (See Section

2.3) ware implemented as an example. The result showed that the Method 3

is more efficient than the Method 2 (See Table 1). Also, I showed that the

verification time is propotional to the number of state transitions of S where S

is a state transition system induced by the given policy. As a fragment of future

work, I will consider a detailed implementation based on the proposed model,

74

e.g., an implementation of the memory and interface among the modules (trust

establishment, access control, and memory).

In Chapter 3, Public-Key Infrastructure for ad-hoc networks was investigated.

A central problem to adapt Public-Key Infrastructure for ad-hoc networks is the

certificate-chain discovery problem. In this thesis, new distributed algorithms for

solving the certificate-chain discovery problem for a web-of-trust type PKI are

proposed. The certificate searching algorithm uses a distributed algorithm for

constructing a spanning tree in the web-of-trust. Also, to evaluate communication

overhead of the proposed methods, the communication cost was defined as the

total message bits by taking the size of a certificate and the number of certificates

in the packet into account. According to the definition, performance evaluations

of the existing and proposed methods were conducted by numerical analysis and

computer simulation. The results showed that the communication cost of the

proposed algorithm is less than ten percent of that of the existing method (See

Table 2). The author’s future work will include the modeling of web-of-trust-

type PKI systems for ad-hoc networks more deeply to construct a new trust

model combining the models of Capkun, et al. [12] and Kitada, et al. [13].

In Chapter 4, predistributing cryptographic keys in sensor networks was in-

vestigated. A new method and two extended methods in which keys are assigned

according to a basic algebraic geometry are proposed. The proposed methods

associate each node with a line over a two-dimensional finite plane, and manage

keys so that two nodes can agree a key if and only if the associated lines intersect

with each other. From comparison the extended scheme 1 and 2, we can see

the schemes has defferent advantages. The performance of the proposed meth-

ods was computed analytically, and the results show that the proposed methods

have better trade-off point than the random key predistribution scheme. The

extended scheme 1 has small advantage to the extended scheme 2 with respect

to the key-survivability. The extended scheme 2 allows sensor nodes to have two

or more keys in common. Hence techniques similar to the q-composite key [41]

is easily available in the extended scheme 2, and the key-survivability might be

improved by such applications of advanced scheme. It seems that there are a lot

of points for improving and extending the basic scheme. For example, lines and

points over a two-dimensional plane considered. We can extend the geometry to

75

three or more dimensional space.

76

References

[1] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney: “A Key Manage-

ment Scheme for Wireless Sensor Networks Using Deployment Knowledge,”

IEEE Conference on Computer Communications (INFOCOM), 2004.

[2] R. Housley W. Polk W. Ford, and D. Solo, “Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile,”

RFC 3280, 2002.

[3] L. M. Kornfelder: “Toward a Practical Public-Key Cryptosystem,” Bache-

lor’s thesis, Dept. Electrical Eng., Massachusetts Inst. of Technology, 2005.

[4] M. Blaze, J. Feigenbaum, and J. Lacy: “Decentralized Trust Management,”

IEEE Symposium on Security and Privacy (S&P), pp.164–173, 1996.

[5] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H.

Mills, and L. Yu: “Requirements for Policy Languages for Trust Negoti-

ation,” IEEE International Workshop on Policies for Distributed Systems

and Networks (POLICY), pp.68–79, 2002.

[6] M. Winslett: “An Introduction to Trust Negotiation,” International Con-

ference on Trust Management (iTrust), Lecture Notes in Computer Science,

2692, pp.275–283, 2003.

[7] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid: “Access Control

Meets Public Key infrastructure Or: Assigning Roles to Strangers,” IEEE

Symposium on Security and Privacy (S&P), pp.2–14, 2000.

[8] C. K. Toh: “Ad-Hoc Mobile Wireless Networks: Protocols and Systems,”

Prentice Hall, 2001.

[9] L. Zhou and Z. J. Hass: “Securing Ad Hoc Networks,” IEEE Network, 13,

6, pp.24–30, 1999.

[10] S. Yu and R. Kravets: “Composite Key Management for Ad Hoc Networks,”

IEEE Annual International Conference on Mobile and Ubiquitous Systems:

Networks and Services (Mobiquitous), pp.52–61, 2004.

77

[11] P. Zimmermann: “The Official PGP User’s Guide,” MIT Press, 1995.

[12] S. Capkun, L. Buttyan, and J. P. Hubaux: “Self-Organized Public-Key Man-

agement for Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Com-

puting, 2, 2, pp.52–64, 2003.

[13] Y. Kitada, Y. Arakawa, K. Takemori, A. Watanabe, and I. Sasase: “On

Demand Distributed Public Key Management Using Routing Information for

Wirelss Ad Hoc Netwoks,” IEICE Transactions on Information and Systems,

J88-D1, 10, pp.1571-1583, 2005. (in Japanese)

[14] Y. Kitada, A. Watanabe, K. Takemori, and I. Sasase: “On Demand Dis-

tributed Public Key Management for Wireless Ad Hoc Networks,” IEEE

Pacific Rim Conference on Communications, Computers and Signal Pro-

cessing (PacRim), 2005.

[15] Y. Kitada, A. Watanabe, K. Takemori, and I. Sasase: “On Demand Dis-

tributed Public Key Management without Considering Routing Tables for

Wireless Ad Hoc Networks,” Asia Pacific Symposium on Information Tech-

nology (APSITT), pp.375-381, 2005.

[16] X. Li, S. Gordon, and Jill Slay: “On Demand Public Key Management for

Wireless Ad Hoc Networks,” Australian Telecommunication Networks and

Applications Conference (ATNAC), pp.36–43, 2004.

[17] R. Li, J. Li, H. Kameda, and P. Liu: “Localized Public-Key Management

for Mobile Ad Hoc Networks,” IEEE Global Telecommunications Conference

(Globecom), pp.1284–1289, 2004.

[18] D. E. Clarke, J. E. Elien, C. M. Ellison, M. Fredette, A. Morcos, and R. L.

Rivest: “Certificate Chain Discovery in SPKI/SDSI,” Journal of Computer

Security, 4, 9, pp.285–322, 2001.

[19] L. Eschenauer and V. D. Gligor: “A Key Management Scheme for Dis-

tributed Sensor Networks,” ACM Conference on Computer and Communi-

cations Security (CCS), pp.41–47, 2002.

[20] M. Bishop: “Computer Security: Art and Science,” Addison Wesley, 2002.

78

[21] M. Y. Becker and P. Sewell: “Cassandra: Distributed Access Control Policies

with Tunable Expressiveness,” IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY), pp.159–168, 2004.

[22] M. Y. Becker and P. Sewell: “Cassandra: Flexible Trust Management, Ap-

plied to Lectronic Health Records,” IEEE Computer Security Foundations

Workshop (CSFW), pp.139–154, 2004.

[23] S. Weeks: “Understanding Trust Management Systems,” IEEE Symposium

on Security and Privacy (S&P), pp.94–105, 2001.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled: “Model Checking,” The MIT

Press, 2000.

[25] M. Blaze, J. Feigenbaum, and J. Ioannidis: “The KeyNote Trust-

management System Version 2,” RFC2704, Sept., 1999.

[26] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara: “Reputation

Systems,” Communications of the ACM, 43, 12, pp.45–48, 2000.

[27] A. K. Day: “Understanding and Using Context,” Personal and Ubiquitous

Computing Journal, 5, 1, pp.4–7, 2001.

[28] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D. Mickunas: “Cer-

berus: A Context-Aware Security Scheme for Smart Spaces,” IEEE Interna-

tional Conference on Pervasive Computing and Communications (PerCom),

pp.489–496, 2003.

[29] G. J. Holzmann: “The SPIN Model Checker,” Addison-Wesley, 2004.

[30] SWI-Prolog’s Home page, http://www.swi-prolog.org/

[31] U. Maurer: “Modelling a Public-Key Infrastructure,” European Symposium

on Research in Computer Security (ESORICS), Lecture Notes in Computer

Science, 1146, pp.325–350, 1996.

[32] N. A. Lynch: “Distributed Algorithms,” Morgan Kaufmann Publishers,

1996.

79

[33] H. Mohri, I. Yasuda, Y. Takata, and H. Seki: “Certificate Chain Discovery

in Web of Trust for Ad Hoc Networks,” IEEE International Symposium on

Ubisafe Computing (UbiSafe), 21st International Conference on Advanced

Information Networking and Applications Workshops (AINAW), 2, pp.479–

485, 2007.

[34] K. Miura, T. Masuzawa, and N. Tokura: “A Distributed Shortest Paths Al-

gorithm with Distance-Dependent Message Complexities,” IEICE Transac-

tions on Information and Systems, J77-D1, 1, pp.21–32, 1994. (in Japanese)

[35] H. T. Lau: “A Java Library of Graph Algorithms and Optimization,” Chap-

man & Hall/CRC, 2006.

[36] H. Breu and D. G. Kirkpatrick: “Unit Disk Graph Recognition is NP-hard,”

Computational Geometry: Theory and Applications, 9, pp.3–24, 1993.

[37] J. R. Douceur: “The Sybil Attack,” International Workshop on Peer-to-Peer

Systems (IPTPS), Lecture Notes in Computer Science, 2429, pp.251–260,

2002.

[38] N. Mezzetti: “A Socially Inspired Reputation Model,” European PKI Work-

shop: Research and Applications (EuroPKI), Lecture Notes in Computer

Science, 3093, pp.191–204, 2004.

[39] C. P. Pfleeger and S. L. Pfleeger: “Security in Computing,” Prentice Hall,

2006.

[40] I. Aad, J. P. Hubaux, and E. W. Knightly: “Denial of Service Resilience

in Ad Hoc Networks,” ACM Annual International Conference on Mobile

Computing and Networking (MobiCom), pp.202–215, 2002.

[41] H. Chan, A. Perrig, and D. Song: “Random Key Predistribution Schemes

for Sensor Networks,” IEEE Symposium on Security and Privacy (S&P),

pp.197–213, 2003.

[42] F. Anjun: “Location Dependant Key Management Using Random Key-

Predistribution in Sensor Networks,” ACM Workshop on Wireless Security,

pp.21–30, 2006.

80

[43] T. Ito, H. Ohta, N. Matsuda, and T. Yoneda: “A Key-Distribution Scheme

for Deployable Sensor Networks Using Probability Density Function of Node

Deployment,” IEICE Transactions on Fundamentals of Electronics, Com-

munications and Computer Sciences, J89-A, 12, pp.1034–1043, 2006. (in

Japanese)

[44] D. Liu, P. Ning, and W. Du: “Group-Based Key Pre-Distribution in Wireless

Sensor Networks,” ACM Workshop on Wireless Security, pp.11–20, 2005.

[45] L. Zhou, J. Ni, and C. V. Ravishanker: “Efficient Key Establishment for

Group-Based Wireless Sensor Reployments,” ACM Workshop on Wireless

Security (WiSe), pp.1–10, 2005.

[46] D. Liu and P. Ning: “Establishing Pairwise Keys in Distributed Sensor Net-

works,” ACM Transactions on Information and System Security, 8, 1, pp.41–

77, 2005.

[47] W. Du, J. Deng, Y. S. Han, P. Varshney, J. Katz and A. Khalili: “A Pairwise

Key Pre-distribution Scheme for Wireless Sensor Networks,” ACM Transac-

tions on Information and System Security, 8, 2, pp.228–258, 2005.

[48] R. Blom: “An Optimal Class of Symmetric Key Generation Systems,” Ad-

vances in Cryptology (CRYPTO), Lecture Notes in Computer Science, 209,

pp.335–338, 1984.

[49] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler: “SPINS:

Security Protocols for Sensor Networks,”ACM Journal of Wireless Networks,

8, 5, pp.521–534, 2002.

[50] S. Zhu, S. Setia, and S. Jajodia: “LEAP: Efficient Security Mechanisms for

Large-Scale Distributed Sensor Networks,” ACM Conference on Computer

and Communications Security (CCS), pp.62–72, 2003.

[51] T. Matsumoto and H. Imai: “On The Key Predistribution System: A Prac-

tical Solution to The Key Distribuion Problem,” Advances in Crypology

(Crypto), Lecture Notes in Computer Science, 293, pp.185–193, 1988.

81

[52] L. Gong and D. J. Wheeler: “A Matrix Key Distribution Scheme,” Journal

of Cryptology, 2, 1, pp.51–59, 1990.

82

Appendix

A. Verification Program

The top level goal for the model checking algorithm is “go”. In this program,

I use the predicates recorda and recorded that are built-in predicates of SWI-

Prolog to remenber visited states. These predicates manage lists of terms. By

recorda(id, pair(m, q)), the term pair(m, q) is added into the list named id. Sub-

goal recorded(id, pair(m, q)) checks whether or not the term pair(m, q) is in the

list named id. Although this remembering facility can be implemented by the

predicate assert, it requires recompling of program and is not efficient.

/* Model Checking Algorithm */

go :- p_initial(M,Q), dfs(M,Q,[],[]).

/* search for outside */

dfs(M,Q,Stack,InputSeq)

:- recorda(visited,pair(M,Q)),

recursion_for_each_trans(M,Q,Stack,InputSeq);

p_accept(M,Q),

inner_dfs(M,Q,[],[pair(M,Q)|Stack],InputSeq).

/* search for all transition from (M,Q) */

recursion_for_each_trans(M,Q,Stack,InputSeq)

:- p_trans(M,C,Q,M2,Q2),

not(recorded(visited,pair(M2,Q2))),

dfs(M2,Q2,[pair(M,Q)|Stack],[C|InputSeq]),

83

fail.

/* search for inside */

inner_dfs(M,Q,Stack,OuterStack,InputSeq)

:- recorda(inner,pair(M,Q)),

inner_recursion_for_each_trans(M,Q,Stack,

OuterStack,InputSeq).

/* search for all transition from (M,Q) */

inner_recursion_for_each_trans(M,Q,Stack,

OuterStack,InputSeq) :-

p_trans(M,C,Q,M2,Q2),

(member(pair(M2,Q2),OuterStack)

-> (show_counterexample(M,C,Q,M2,Q2,Stack,

OuterStack,InputSeq), fail)

; /* else */ true),

not(recorded(inner,pair(M2,Q2))),

inner_dfs(M2,Q2,[pair(M,Q)|Stack],OuterStack,

[C|InputSeq]),

fail.

/* showing counterexample */

show_counterexample(M,C,Q,M2,Q2,Stack,

[_Ac|OuterStack],InputSeq) :-

write(’fail: ’),

write([pair(M2,Q2),pair(M,Q)|Stack]),

write(OuterStack),

write([C|InputSeq]), nl.

84

