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Barge-in Robust Spoken Dialogue Interface

Using Multichannel Sound Field Control and

Array Signal Processing∗

Shigeki Miyabe

Abstract

A spoken dialogue system is demanded as a user-friendly human-machine

interface that does not require any special skills in its manipulation. Speech has

advantageous features: they are hands-free and eyes-free, i.e., one can use speech

while doing other tasks. For effective utilization of the features, it is desirable that

the system can be used even when the user stands away from the microphone or

the user’s speech is uttered interrupting the output sound of the system (response

sound). The problem in satisfying such demands is the degradation of automatic

speech recognition (ASR) because of feedback of response sound and observation

of interfering noise due to other sound than the user’s speech. Since current ASR

systems are sensitive to noise, a noise reduction method is indispensable.

In elimination of the response sound and the interfering noise, an acoustic

echo canceller (AEC) and an adaptive beamformer (ABF) are generally used,

respectively. In each of the methods, a filter is adapted to eliminate its target

noise based on the minimum-mean-squared-error criterion. Thus, when their

filters are trained using signals containing sources other than their target noise,

their performances degrade severely. To prevent such degradation, the system

should detect the times when the observed signals contain sounds other than the

target noise, denoted as double-talk detection (DTD). However, accurate DTD is

difficult, particularly in such a situation that both response sound and interfering

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561031, September
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noise exist. In this dissertation, I propose a new framework for eliminating both

the response sound and the interfering noise without DTD by (1) response sound

elimination based on fixed-filter-based control with robust structure against the

fluctuation of the acoustical transfer system, and (2) filter adaptation for the

elimination of both the response sound and the interfering noise without DTD.

The robustness of the response sound elimination against the fluctuation of

the transfer system can be improved by increasing the number of transfer channels

in the structure of the elimination. To realize this, I propose a new mechanism to

eliminate the response sound using sound field control with multiple loudspeakers

which cancels the response sound at microphones. With this structure, the effect

of changes in the transfer system from the state of the measurement is dispersed

to multiple channels. As a means of sound field control for the elimination, I

propose two methods with and without high-quality reproduction of the response

sound. While the former can improve the robustness by increasing the number

of loudspeakers, the latter can achieve high robustness using fewer loudspeakers

than the former. The former using 24 loudspeakers and the latter using five

loudspeakers performed 20% and 15% better than the conventional AEC in word

accuracy in a speech recognition experiment involving a dictation task.

Blind source separation (BSS) has been developed over a last few decades as

an unsupervised method of training a beamformer to separate unknown sound

sources. In our problem, the source of the response sound is known. In this

dissertation, I propose a new semiblind source separation by modifying the struc-

ture of BSS to deal with a semisupervised problem, and combine the semiblind

source separation with the sound field control. With this combination, semiblind

source separation enforces the speech enhancement of the sound field control by

eliminating both the residual response sound caused by the fluctuation and the

interfering noise. As a result of a comparison between the performance of the pro-

posed method and the performance limit of the combination of AEC and ABF,

the proposed method was found to perform about 10% better in word accuracy.

Keywords:

Hands-free speech recognition, multichannel sound field control, blind source sep-

aration, independent component analysis, acoustic echo canceller.
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マルチチャネル音場制御とアレー信号処理を用いた

割り込み発話に頑健な音声対話インタフェース∗

宮部 滋樹

内容梗概

音声対話システムは，操作に特別な技術を必要としないマンマシン・インタ

フェースとして期待されている．このシステムでは，ほかの作業をしながらでも

利用できるハンズフリー・アイズフリーという音声の長所を生かすため，ユーザ

がマイクロホンから離れている場合や，ユーザ音声がシステム自身が発する応答

音に割り込んで入力された場合でも入力音声を受理できるのが望ましい．このよ

うな要求を満たすにあたって問題となるのは，システム出力音 (応答音) のマイ

クロホンへの回り込みと，システムを使用する環境のユーザ音声以外の音に起因

する外部雑音がユーザ音声に混入して観測されることによる，音声認識精度の劣

化である．現状の音声認識技術は雑音に対して脆弱であり，雑音除去の仕組みが

必要不可欠である．

応答音と外部雑音の除去には，それぞれ音響エコーキャンセラとマイクロホ

ンアレーによる適応ビームフォーマを用いるのが一般的である．これらはそれぞ

れの対象となる雑音を除去するために誤差最小化基準を用いてフィルタの適応を

行う．そのため，除去対象以外の音を含んだ観測信号で学習すると，その精度が

著しく低下してしまう．これを防ぐため，対象雑音以外の音が鳴っている時間区

間を検出するダブルトーク検出という仕組みが必要となる．しかしダブルトーク

の完全な検出は難しく，特に応答音と外部雑音の両方が存在するような騒音下で

は高い精度の検出は期待できない．そこで本論文では，(1) 音響伝達系変動に対

して頑健な構造を持つ固定フィルタを用いた応答音除去と，(2) 応答音と外部雑

音を除去する雑音除去のダブルトーク検出不要な適応に基づく，ハンズフリー音

声対話のための新しい枠組みを提案する．

∗奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-
DD0561031, 2007年 9月 30日.
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伝達系変動に対する頑健性の向上は，応答音除去の仕組みを複数の伝達経路を

持つ構造にすることで実現できる．これを実現するために，複数のラウドスピー

カを用いてマイクロホンの位置で応答音を相殺させる音場制御を用いた新しい応

答音除去の仕組みを提案する．このようなマルチチャネル構造により，伝達系の

測定時からの変化による誤差は複数パスに分散される．応答音を消すための音場

制御としては，応答音の高品質再現を行うものと，再現精度を緩めた２つの手法

を提案する．前者はラウドスピーカ数を増やすことにより高い頑健性を得ること

ができ，ディクテーションタスクの音声認識実験では，24個のラウドスピーカを

用いることで従来型音響エコーキャンセラよりも 20%高い単語正解精度が得られ

た．また，後者は前者に比べてやや音質が劣るものの，少ないスピーカ数でも安

定な制御を実現することができ，実験では 5 個のラウドスピーカを用いて従来型

音響エコーキャンセラよりも 15%高い単語正解精度が得られた．

未知の音源に対する教師なしのビームフォーマの学習則として，近年ブライ

ンド音源分離 (BSS) の研究が進んでいる．本研究で扱う問題では，応答音の音源

はシステムにとって既知である．そこで，BSS を既知である応答音の情報を利用

した半教師なし構造に拡張することにより，BSS よりも効率的に音源分離を行う

セミブラインド音源分離を提案し，音場制御による応答音除去と組み合わせる．

このような組み合わせにより，セミブラインド音源分離は応答音の消し残りと外

部雑音を除去し，音場制御による音声強調を強化する．提案手法の性能を音響エ

コーキャンセラと適応ビームフォーマの併用の性能限界と比較する実験の結果，

単語正解精度の約 10%の向上が得られた．

キーワード

ハンズフリー音声認識, マルチチャネル音場制御, ブラインド音源分離, 独立成分

分析, 音響エコーキャンセラ
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1. Introduction

1.1 Background

Speech is the most basic means of human communication. As a user-friendly

human-machine interface, there has been an increasing demand for a spoken dia-

logue system, where speech is used as the means of both command input and mes-

sage output. As a result of the marked improvement of automatic speech recog-

nition (ASR) in recent decades, speech interaction with machines is no longer

a fantasy. In fact, there have been several implementations, e.g., speech dia-

logue systems with robots [KYHS97], flight reservation systems [SP00], guidance

systems at community centres [CNLS07], and call systems [SHL+98, ZSG+00].

However, in all such implementations, the vocabulary, grammar, and topics are

limited, and they do not represent speech interaction in the true sense. There

are many problems in realizing an intuitive, unconstrained, and stress-free speech

interaction between human and machine.

The problems concerning the spoken dialogue system are listed below.

(1) Hands-free speech input: For the sake of eyes-free manipulation, the

system should receive the user’s speech uttered far from the microphone.

In addition, to free the user from physical constraint, it is desirable that

the user be able to input their commands without special equipment such

as head-set microphones.

(2) linguistic phenomena inherent to free spoken language: Current ASR

systems cannot deal sufficiently with the unnecessary words that appear

only in spoken language, such as hesitation or rephrasing.

(3) Dialogue control: Control of the flow of conversation should be improved

to accept user’s demands smoothly.

(4) Quality of synthesized speech: For the generation of the sound response

to the user, text-to-speech (TTS) is desirable because of its flexibility. How-

ever, TTS is generally inferior to recorded speech in its quality and some-

times hardly understandable.
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(5) Real-time processing: To realize smooth interaction, all processes should

be completed in real time.

(6) Free-timing input: To remove inconvenience, it is desirable that the user’s

speech utterance be accepted any time, even when the system is outputting

its response.

1.1.1 Research purpose

In this research, I focus on (1) hands-free speech input and (6) Free-timing input.

Hands-free speech input is an important issue related to the significance of

spoken dialogue systems. In the conventional manipulation of machines, input

is generally achieved by manipulating buttons or keyboards, while the output

is displayed on LEDs or monitor screens. Spoken-dialogue-based manipulation

has the advantage of freeing the user’s hands and eyes. Accordingly, the user

is allowed to do other tasks than device manipulation. Thus close-talking or

headset microphones that constrain the user’s pose or position are undesirable.

However, in such a situation where the microphone is set away from the user, the

microphone often picks up interfering noise with relatively high energy, caused

by, for example, air-conditioners or speech of people other than the user. Since

ASR is weak against noise, a noise reduction method to enhance the speech is

indispensable for realizing robust ASR in the form of hands-free input. In this

paper, such noise in a room is denoted as interfering noise.

Free-timing input is important to develop natural usability. In conversation

among people, a person often interrupts another person’s speech. This is a neces-

sary action for a person to process the conversation rapidly or to acquire initiative

in the conversation. In a spoken dialogue system, such interruption corresponds

to the user’s speech commands neglecting the system’s responses, or an uninten-

tional start of the speech command in the end of the system’s response. The

system should be able to accept such speech utterances. Such an interruptive

speech utterance is refered to as barge-in [JS01], as depicted in Fig. 1. However,

to accept barge-in in a hands-free system, the sound message of the system is fed

back to the microphone and acts as noise in ASR. In the following, such feedback

is denoted as response sound.
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a cq u is it ion of u s er' s  s peech

Figure 1. Situation of barge-in in a spoken dialogue system.

In this study, the goal is to realize a barge-in- and interfering-noise-robust

interface for a hands-free spoken dialogue system by enhancing the user’s speech

and eliminating the response sound and the interfering noise.

1.1.2 Related works

To eliminate the response sound from the system, an acoustic echo canceller

(AEC) is commonly used. Many types of AECs have been proposed, such as

single channel, stereophonic [Han01, SJH01], wave-synthesis [BBK05, BSK04],

and beamformer-integrated types [HBK03, HK02, Her04]. Typical echo cancellers

are listed in Table 1, and their adaptation methods are listed in Table 2. However,

the AEC has the inherent problem that accurate adaptation is difficult to work

accurately and sometimes diverges in duration when both the user and the system

emit sound simultaneously (this is also referred to as double-talk). Because of this

problem, the conventional AEC should detect the double-talk duration and stop

adaptation to optimize filter coefficients only in the single-talk of the system;

this implies that the elimination performance is likely to degrade when a change

in a room transfer function arises during double-talk. Although there is much

research on the double-talk detection (DTD) [YW91, GB01, GB06], in general,

DTD is quite difficult in noisy environments. As another approach to achieving
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Table 1. Types of echo cancellers

Echo suppressor [SB80] Cancellation of echo in telephony caused by

impedance mismatch by simple switching on/off

of lines.

Echo canceller [Son67] Cancellation of echo in telephony with adaptive

filter to estimate accurate echo component.

Acoustic echo canceller

(AEC) [CSO72, KIS+73]

Echo canceller for acoustic echo caused by re-

verberation in hands-free speech input.

AEC with two echo path

model [AOO77]

Double-talk robust AEC with dual filter struc-

ture.

Stereo AEC [MS99] AEC for stereo loudspeakers.

Wave-domain adaptive fil-

tering [BSK04]

AEC for wave synthesis with multiple loud-

speakers.

Integration with adaptive

beamformer [HBK03]

Simultaneous adaptation of AEC and adaptive

beamformer to eliminate both acoustic echo and

interfering noise.

robustness against double-talk, some researchers have proposed AECs with dual

filters, but they are equivalent to DTDs based on fluctuation of adaptation.

The problem of the DTD cannot be avoided even by combining an AEC with

some noise reduction methods such as an adaptive beamformer (ABF) [Fro72,

GJ82], because adaptation of beamformer also requires the detection of the single-

talk duration of the interfering noise. Typical beamformers are listed in Table 3.

Furthermore, many approaches have been adopted to avoid the divergence of

adaptation in a double-talk situation [AOO77, BBGK03, BDH+99]. However,

those methods are intended only to prevent divergence and cannot improve the

echo cancellation performance in the double-talk duration.

1.2 Contribution

In this dissertation, I propose a new framework of a spoken dialogue interface

without DTDs comprising a combination of sound field control and source sepa-
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Table 2. Typical filter adaptations for AEC

LMS [WH60] The most basic on-line adaptation to update filter in each

of input samples.

RLS [LMF78] Adaptation by shifting block of training samples with cer-

tain length. More robust and faster convergence than LMS.

Subband LMS

[Fur84, Kel84]

LMS with faster convergence by subband analysis of train-

ing samples to reduce autocorrelation.

ration.

Response sound elimination using sound field reproduction

DTDs are required in AECs to follow the fluctuation of the acoustical transfer

system, and the performance of AECs degrades when the adaptation cannot

follow the fluctuation. The cause of the degradation is the weakness of AECs

against fluctuations. With a robust elimination mechanism of the response sound,

its filter is not required to adapt in real time. The robustness can be obtained

by increasing the channels of the transfer system and dispersing the effect of

fluctuation. To increase the number of transfer channels, I adopt sound field

control with multiple loudspeakers and microphone array. By sound field control,

the response sound is cancelled at each point of the microphone elements. In

this dissertation, I propose two versions of sound field control for response sound

reduction. The first one reproduces the response sound with high quality at the

user’s ears, and the second version mitigates the strict reproduction. While the

first one is superior to the second in the quality of the reproduction, the second

one can eliminate the response sound efficiently with fewer loudspeakers.

Source separation to eliminate both response sound and interfering

noise

To reinforce the response sound elimination by sound field control and to elimi-

nate interfering noise, I combine sound field control with adaptive signal process-

ing. To realize speech enhancement without DTDs, I adopt unsupervised source
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Table 3. Typical beamformers

Name Adaptation Features

Delay and sum

[FJZE85]

None The most basic beamformer for micro-

phone array with simple structure to

synchronize signals from specific direc-

tion.

Linear constrained

minimum variance

(LCMV) [Fro72]

Batch The most basic adaptive beamformer.

Generalized side-

lobe canceller (GSC)

[GJ82]

On-line Approximation of LCMV for on-line

adaptation with least mean squares.

Adaptive microphone

array for noise reduc-

tion [KO86]

On-line Modification of GSC to reduce distor-

tion by making virtual speech signal.

separation. To eliminate both the known response sound and unknown interfer-

ing noise efficiently, I propose a new structure of partially unsupervised source

separation.

1.3 Overview of dissertation

In Chapter 2, the basic idea of the adaptation of AEC and ABF are reviewed.

In the discussion of the optimal filter, I point out the problem that the DTD is

indispensable in the adaptation.

In Chapter 3, a new mechanism of response sound elimination using sound field

reproduction and a microphone array is proposed. The mechanism of obtaining

robustness is discussed both theoretically and experimentally.

In Chapter 4, a modified version of the sound field control to realize efficient

elimination with fewer loudspeakers is proposed.

In Chapter 5, a new source separation technique is proposed to separate both

the known and unknown sources, and it is combined with the elimination based

6



on sound field reproduction.

Chapter 6 gives a conclusion of the entire dissertation and the plans for future

work.
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2. Adaptive Signal Processing for Acoustic Echo

Canceller and Adaptive Beamformer

2.1 Introduction

In this chapter, I review conventional adaptive signal processing methods used in

hands-free robust speech recognition in a spoken dialogue system. In spoken dia-

logue system, noise can be classified into two categories; known noise as response

sound of the spoken dialogue system, and unknown noise as interfering noise in

the environment. I describe a basic ideas of AEC to eliminate the response sound

and ABF to reduce interfering noise.

The chapter is organized as follows: AEC is reviewed in Chapter 2.2, fol-

lowed by review of ABF in Chapter 2.3. Finally, the chapter is summarized in

Chapter 2.4.

2.2 Acoustic echo canceller

AEC is a problem to reduce feedback of the response sound from the loudspeaker

to the microphone. Configuration of AEC is shown in Fig. 2. The observed signal

x(ω) of the microphone can be described as

x(ω) = g(ω)rsrc(ω) + e(ω), (1)

where ω shows angular frequency, g(ω) denotes transfer function between the

loudspeaker and the microphone, rsrc(ω) shows source of the response sound, and

e(ω) is a signal component related to user’s speech or interfering noise. The

processed signal y(ω) is written as

y(ω) = x(ω) + ĝ(ω)rsrc(ω), (2)

and the goal is to conform y(ω) to e(ω) by optimizing ĝ(ω) to identify antiphase

of g(ω) as

g(ω) + ĝ(ω) = 0. (3)

Here the power of the processed signal y(ω) can be expanded as

|y(ω)|2 =|e(ω)|2 + |(g(ω) + ĝ(ω)) rsrc(ω)|2

+ 2 real [e∗(ω)(g(ω) + ĝ(ω)rsrc(ω)] , (4)
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+
x (ω)

r    (ω)src

y       (ω)AEC

DTD

g (ω)^

g (ω)

e (ω)

Figure 2. Configuration of adaptation in AEC.

where real[·] denotes real part of conjugate value and {·}∗ denotes complex con-

jugate. Since e(ω) does not include component due to the response signal rsrc(ω),

uncorrelation between e(ω) and rsrc(ω) can be assumed, i.e.,

E [e(ω)r∗src(ω)]ω√
E [|e(ω)|2]ω

√
E [|r(ω)|2]ω

= 0, (5)

where E[·]i denotes expectation with respect to i. Thus the third term of the

right side in Eq. (4) can be neglected and optimum condition in Eq. (3) minimizes

|y(ω)|2. Thus |y(ω)|2 can be used as the criterion, and as shown in [WGM+75],

the optimum solution can be obtained as

ĝ(ω) =
x(ω)r∗src(ω)

|rsrc(ω)|2
. (6)

However, with finite length of signals, assumption of uncorrelation in Eq. (5) is

not satisfied because of statistical bias. For real-time usage in speech application,

adaptation is required to be obtained with short length of observed signals. To

realize this, adaptation is generally conducted in the detected time duration by

DTD when s(ω) = 0.

Although I have shown batch-wise adaptation, desirable real-time solution

is on-line adaptation rather than batch-wise adaptation. Many types of on-line

adaptation, e.g., least mean squares or recursive least squares approximate batch

optimum solution Eq. (6). However, problem of statistical bias affects more

severely to such on-line adaptation, and mis-detection of on-line DTD results

as large error in adaptation.

9



w        (ω)ABFL

w       (ω)ABF1
. .

 .
a   (ω)11

a    (ω)1L

. .
 .

. .
 .

a    (ω)KL

a   (ω)K1

x  (ω, t)1

x   (ω, t)K

s  (ω, t)L

s  (ω, t)1

+
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Figure 3. Configuration of adaptation in AEC.

2.3 Adaptive beamformer

ABF is a noise-reduction method by forming directional null to interfering noise.

Here I mention linear-constrained minimum variance (LCMV) beamformer [Fro72],

which is the most basic adaptation of ABF. Configuration of ABF is shown in

Fig. 3. Assume L source signals s(ω) = [s1(ω), . . . , sL(ω)]T are observed at K

microphones as x (ω) = [x1(ω), . . . , xK(ω)]T, and the first source s1(ω) is the de-

sired signal while the others are interfering noise. The observed signals x (ω) can

be written as

x (ω) = A(ω)s(ω), (7)

A(ω) = [akl(ω)]kl for k = 1, . . . , K, l = 1, . . . , L, (8)

where [x]ij denotes a matrix who has an entry x in the i-th row and j-th column,

and akl(ω) denotes a transfer function from the l-th source to the k-th microphone.

Noise reduction using the beamformer is achieved by optimizing beamformer

coefficients wABF(ω), denoted as

wABF(ω) = [wABF1(ω), . . . , wABFK(ω)], (9)

orthogonal to the transfer functions related to the interfering noise, as

wABF(ω)a l(ω) = 0 for l = 2, . . . , L, (10)
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where a l(ω) = [a1l, . . . , aKl(ω)]T. Then its output yABF(ω) includes only the

desired signal s1(ω) as

yABF(ω) = wABF(ω)x (ω) = wABF(ω)a1(ω)s1(ω). (11)

To optimize wABF(ω), first short-time Fourier analysis is applied to the ob-

served signals x(ω). I denote the short-time spectrum of x (ω) as x (ω, t) =

[x1(ω, t), . . . , xK(ω, t)]T, where [·]T denotes matrix transposition and t shows in-

dex of analysis frame. The filter coefficients wABF(ω) are optimized by minimiz-

ing the output power when the desired source s1(ω) is inactive. Assume a DTD

successfully finds set T of the frame index t when s1(ω, t) is inactive. Then the

optimal solution can be written as

minimize ⟨|wABF(ω)x (ω, t)|2⟩t∈T , (12)

where ⟨·⟩t denotes time-averaging operation. Here, to prevent directional null to

the direction of the desired signal, the gain against the direction is constrained

to 1 as

wABF(ω)q(ω) = 1, (13)

where a column vector q(ω) is a rough approximation of a1(ω) called steering

vector, which should be estimated in advance. Optimal solution of wABF(ω) to

minimize Eq. (12) under the constraint Eq. (13) can be obtained as

wABF =
qH(ω)R−1(ω)

qH(ω)R−1(ω)q(ω)
, (14)

where {·}H denotes conjugate transposition and R(ω) is a covariance matrix of

the observed noise given by

R(ω) = ⟨x (ω, t)xH(ω, t)⟩t∈T . (15)

LCMV gives optimal solution of batch-wise adaptation, and there are many

modifications to on-line adaptation, e.g., generalized sidelobe canceller [GJ82].

As discussed above, DTD is indispensable in adaption of ABF to detect time

duration when only the signal component due to the interfering noise is included

in the observed signals. DTD is difficult when both desired signal and interfering

noise are speech.
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In addition, when combined with AEC, DTDs are more difficult to be imple-

mented because of the complication; DTD for AEC is to detect only the response

sound while DTD for ABF is to detect only the interfering noise. In [HK02],

integration of AEC and ABF is discussed. In addition, their structure (AEC-

first or their joint optimization) and their DTDs are discussed in [HNK05] and

[HBNK05], respectively. The optimum structure depends on SNR. However, SNR

is hardly known in advance, and it is heavily variable. Also, DTDs are very com-

plicated even in the simple environment with few sources of noise in [HBNK05],

and the features for the classification of noise have much overlap in each pair of

classes.

2.4 Conclusion

In this chapter, I reviewed two adaptive signal processing methods for robust

speech recognition in a spoken dialogue system. While AEC is generally used to

eliminate response sound feed back to observed signal, an adaptive beamformer

is used to eliminate interfering noise. I pointed out that both of them requires

DTDs for adaptation of their filters, which are difficult to be implemented.
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3. Response Sound Elimination Based on Sound

Field Reproduction

3.1 Introduction

In this chapter, I describe a new elimination technique of the response sound

using sound field reproduction, which is the most important part of the proposed

framework. As discussed in the previous chapter, AEC cannot always adapt its

filter coefficients because of the double-talk problem. Since AEC should obtain

accurate antiphase of the echo return, the elimination performance degrades ex-

tremely when AEC cannot be adapted to the acoustical environment, which is

heavily variable in general. However, since the mechanism of the elimination

is robust against the fluctuation of the acoustical room transfer system, the re-

sponse sound can be eliminated without adaptation by designing the filter using

the acoustical impulse responses measured when the devices are settled.

In order to achieve robustness, I propose a new interface for a barge-in ro-

bust spoken dialogue system that combines multichannel sound field control and

beamforming. At first, to prevent the response sound from being observed at the

microphone elements, I utilize the sound field reproduction technique via multiple

loudspeakers and an inverse filter of the room transfer functions [MK88]. The

sound field reproduction is generally used in a transaural system [BC96], which

presents a three-dimensional sound image to a user at a fixed position. I apply

this technique to the response sound elimination by controlling sound field around

the microphone to be silent alongside the transaural reproduction at the user’s

ears, denoted as the multiple-output and multiple-no-input (MOMNI) method.

In the next step, the user’s speech is enhanced by beamforming. By increasing the

numbers of loudspeakers and microphone elements, the control of the MOMNI

method becomes robust against the fluctuation of the room transfer functions.

With sufficient numbers of loudspeakers and microphones, the MOMNI method

enables us to eliminate the response sound with enough robustness to sustain

speech recognition accuracy.

Although the MOMNI method requires many loudspeakers and the cost for

the hardware is higher than the conventional acoustic echo canceller, the MOMNI
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method uses a fixed filter designed in advance and real-time adaptation is unnec-

essary. As a result, computational cost can be reduced. In addition, the MOMNI

method has an advantage that sound virtual reality [TSS01] can be achieved with

transaural reproduction.

In Chapter 3.2, I describe the weakness of the conventional acoustic echo

canceller against fluctuation of the room impulse responses. In Chapter 3.3, I

describe the principle of the MOMNI interface. In Chapter 3.4, an experimen-

tal comparison of response sound elimination performances is carried out. In

Chapter 3.5, the effectiveness of the MOMNI method is validated in the speech

recognition experiment. In Chapter 3.6, I assess the quality of the response sound

reproduced by the MOMNI method.

3.2 Response sound elimination error of the acoustic echo

canceller when fluctuation of the room transfer func-

tion occurs

The room transfer functions are easily changed with the variation of the system’s

state such as the movement of people. In this section, the response sound elimi-

nation error signal d′(ω) of the AEC is examined in the case where the transfer

function is changed. Suppose that the room transfer function g(ω) in Eq. (1) is

changed to g′(ω) by additive variation ∆g(ω) caused by the fluctuation of room

transfer function, described as

g′(ω) = g(ω) + ∆g(ω). (16)

In this case, the observed response sound d′(ω) can be written as

d′(ω) = [g(ω) + ∆g(ω)]rsrc(ω). (17)

The elimination error signal ϵ(ω) of the response sound is written using the esti-

mated filter ĝ(ω) as

ϵ(ω) = ∆g(ω)rsrc(ω), (18)

where it is assumed that the filter was exactly estimated so as to satisfy the

condition in Eq. (3) and

g(ω)rsrc(ω) + ĝ(ω)rsrc(ω) = 0. (19)
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Since the acoustic echo canceller has no mechanism for improving the robustness

of the elimination (unless it contains a suitable post-processing for that case), the

fluctuation of the transfer function effects directly to its error. Therefore, if the

fluctuation occurs when the adaptation stops because of barge-in, its elimination

performance degrades. To prevent the degradation, adaptation of AEC must

follow the fluctuation.

3.3 Multiple-output and multiple-no-input method

In this section, I propose a new response sound elimination technique using sound

field reproduction, which is robust against the fluctuation of the room transfer

function. The MOMNI method mainly consists of two steps. First, sound field

control with multiple loudspeakers realizes silent zones at the microphone ele-

ments while the dialogue system gives the response sound to the user. Next, by

delay-and-sum-type beamforming using a microphone array, the residual com-

ponent of the response sound caused by the fluctuation of the transfer function

is suppressed and the user’s utterance is emphasized. The response sound sig-

nal is outputted from the multiple loudspeakers and cancelled at multiple con-

trol points. With this mechanism, the response sound is prevented from be-

ing inputted to the speech recognition system. Thus this technique is so-called

Multiple-Output/Multiple-No-Input (MOMNI) method. I describe the relation

between the robustness of the control and the number of transfer channels. Then

it is proved that the MOMNI method can improve its robustness against the fluc-

tuation of the transfer functions by increasing the numbers of loudspeakers and

microphone elements. With sufficient numbers of loudspeakers and microphones,

the MOMNI method can eliminate the response sound with enough robustness

using fixed filter coefficients. Needless to say, this processing requires no double-

talk detection.

3.3.1 Sound field reproduction

Here, I describe the sound field control used to eliminate the acoustic echo of

the response sound from the system. The configuration of the MOMNI system is

shown in Fig. 4. Let M be the number of secondary sound sources S1, . . . , SM and
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Figure 4. Configuration of the proposed system.

N be the number of control points C1, . . . , CN . The control points C1, . . . , CK

(K = N − 2) are arranged to the elements of a microphone array for acquisition

of a user’s speech, and CK+1 and CK+2 are set at both ears of the user. The

signals to be reproduced at the control points C1, . . . , CK+2 are described by

r(ω) = [r1(ω), . . . , rK(ω), rR(ω), rL(ω)]T, (20)

where T denotes matrix transposition. Similarly, the signals observed at these

control points are represented by

d(ω) = [d1(ω), . . . , dK+2(ω)]T. (21)

Using, e.g., chirp signal [SA95], all of the transfer functions from secondary sound

sources Sm should be measured in advance to control points Cn, denoted by

gnm(ω), where n = 1, . . . , N , and m = 1, . . . ,M . Here, to design an inverse filter

of the transfer functions with nonminimum phases, the condition

M > N (22)

must hold [MK88]. To use fixed filter coefficients for the inverse filter, the posi-

tions of the loudspeakers and the microphones should not be changed after the

measurement. In addition, the position for the user to listen to the response sound

is specified by, for example, setting a chair at the position. Here in the phase of
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the measurement, to obtain the transfer function of the user’s ears, since it is a

burden for the user to sit on the position wearing microphones at his/her ears, the

user can be substituted by a head and torso simulator (HATS) with microphones

at the ears. Let G(ω) = [gnm(ω)]nm be an N×M matrix and H (ω) = [hmn(ω)]

be an M ×N inverse filter of G(ω), where [x]ij denotes matrix who has an entry

x in the i-th row and j-th column, and gnm(ω) denotes a transfer function from

the m-th loudspeaker to the n-th control point. The inverse filter H (ω) is then

designed so that

G(ω)H (ω) = IN(ω), (23)

where IN(ω) denotes an N×N identity matrix. Using the transfer function ma-

trix G(ω) and the inverse filter matrix H (ω), the relation between the observed

signals d(ω) and the reproduced signals r(ω) is written as

d(ω) = G(ω)H (ω)r(ω). (24)

In Eq. (24), the response sound of a dialogue system is reproduced at both of

the user’s ears (i.e., [dK+1(ω), dK+2(ω)] = [rR(ω), rL(ω)]), and reproduce silent

signals with zero amplitudes at the microphone elements (i.e, [d1(ω), . . . , yK(ω)] =

[0, . . . , 0]) as

r(ω) = [0, . . . , 0︸ ︷︷ ︸
K

, rR(ω), rL(ω)]T. (25)

By this sound reproduction, a sound field can be actualized in which the response

sound is presented to the user while the response sound cancels at the microphone

elements.

To remove the redundant filtering process of the zero signals, the matrix H (ω)

is truncated into H 2(ω) = [hm,k+K ]mk for m = 1, . . . ,M , k = 1, 2 which is an

M × 2 truncated filter matrix of H (ω). By inputting the response sound to this

filter matrix, the following equation holds

d(ω) = G(ω)H 2(ω)[rR(ω), rL(ω)]T

= [0, . . . , 0︸ ︷︷ ︸
K

, rR(ω), rL(ω)]T. (26)

Therefore, the condition equivalent to Eq. (25) can be realized with an M × 2

filter matrix H 2(ω).
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Since the MOMNI method uses an inverse filter of the room transfer function,

the response sound can be shown to the user in the form of a transaural system,

say, a three-dimensional sound field localization [BC96]. In transaural system,

a clear sound image of a primary sound source can be shown to the user by re-

producing a binaural signal [Bla97], say, a convolution of a signal and transfer

functions from the sound source to a person’s ears. To provide a practical appli-

cation of this property, I generate the response sound signals rR(ω) and rL(ω) by

multiplying a monaural source of the response sound signal rsrc(ω) and the room

transfer functions gpri(ω) between a primary sound source and both of the user’s

ears, as

gpri(ω) = [gpriR(ω), gpriL(ω)]T (27)

and

[rR(ω), rL(ω)]T = gpri(ω)rsrc(ω). (28)

Such reproduction can be written as

d(ω) = G(ω)H 2(ω)gpri(ω)rsrc(ω) = [0, . . . , 0, rR(ω), rL(ω)]. (29)

In the transaural reproduction described above, the sound image is degraded

when the user is not at the prepared position because the perceived response

sound is not an accurate binaural sound. However, the sound quality away from

the prepared position is sufficient for the presentation of the response sound for

the spoken dialogue system. I will justify this argument in the experiment in

Chapter 3.6.

3.3.2 Delay-and-sum beamformer

In this section, I will focus attention on array signal processing. In this study, a

delay-and-sum beamforming [FJZE85] is adopted to emphasize the user’s utter-

ance. The filter of the k-th element in the delay-and-sum beamformer is denoted

by wk(ω) for k = 1, . . . , K. Then wk(ω) can be expressed as

wk(ω) =
1

K
·e−jωτk , (30)

where τk stands for the arrival time difference of the user’s utterance between a

suitable standard point and the k-th element position. I set τk to form a directivity
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to the look direction of the user. Suppose that the signal added through the

beamforming filters is a signal for speech recognition. Then the response sound

dDS(ω) contained in the processed signal is expressed as

yDS(ω) =
K∑

k=1

xk(ω). (31)

When this delay-and-sum-type beamformer is used, the system’s response sound

which arrives from other than the target direction are out of phase at each ele-

ment, and only the user’s speech which comes from the target direction is in phase

at each element and added. As a result, only the user’s speech can be emphasized

in the yDS(ω). Thus this signal is given to the speech decoder to recognize the

user’s speech.

3.3.3 Inverse system design for sound field reproduction

In a multipoint control system which controls multiple control points with many

loudspeakers, large amounts of calculation and memory are needed to design an

inverse filter in the time domain. Therefore, I design the inverse filter matrix

H (ω) by using the least-norm solution (LNS) in the frequency domain [TSS01].

The method has advantages that the amount of calculation is small in the fre-

quency domain, and the designed system is stable because the output from each

sound source is suppressed to the minimum. As an inverse filter, I adopt Moore-

Penrose generalized inverse matrix as the inverse matrix which gives the least-

norm solution. I obtain a singular value decomposition of G(ω) as

G(ω) = U (ω)[ΓN(ω),ON,M−N(ω)]V H(ω), (32)

ΓN(ω) ≡ diag[µ1(ω), µ2(ω), . . . , µN(ω)], (33)

where U (ω) and V (ω) are N×N and M×M unitary matrices, respectively,

µn(ω) for n = 1, 2, . . . , N are the singular values of G(ω), and are arranged so

that µn(ω)≥µn+1(ω) in matrix ΓN(ω), ON,M−N(ω) denotes an N×(M −N) null

matrix, and {·}H(ω) represents a conjugate transposition.

Then the Moore-Penrose generalized inverse matrix G+(ω) of G(ω) is given

by

G+(ω) = V (ω)

[
ΛN(ω)

OM−N,N(ω)

]
U H(ω), (34)
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ΛN(ω) ≡ diag

[
1

µ1(ω)
,

1

µ2(ω)
, . . . ,

1

µN(ω)

]
. (35)

Then I utilize the Moore-Penrose generalized inverse matrix for the inverse filter

as H (ω) = G+(ω).

3.3.4 Response sound elimination error for fluctuation of room transfer

functions

In an acoustic echo canceller, because the transfer function should be reestimated

when it is changed, there is a problem that the response sound elimination ac-

curacy degrades during the estimation process. In contrast, it is proven that the

MOMNI technique is robust against the fluctuation of room transfer functions,

even when the fixed filter coefficients are used. Here, suppose that an inverse

filter matrix computed before the fluctuation is used to control the sound field.

Supposing that the variation ∆gnm(ω) caused by the fluctuation of transfer

functions is added to a transfer function gnm(ω), the transfer function matrix after

the fluctuation will become G(ω) + ∆G(ω), where ∆G(ω) is an N × M matrix

composed of ∆gnm(ω). Then, by using an inverse filter matrix H (ω) designed

before the fluctuation of transfer functions, the response sound signals d ′(ω) at

each of the control points are expressed as

d ′(ω) = [G(ω) + ∆G(ω)]H (ω)r(ω)

= [IN(ω) + ∆G(ω)H (ω)]r(ω), (36)

and the errors caused by the fluctuation are represented as ∆G(ω)H (ω)r(ω). In

this case, the error ∆yDS(ω) in the processed signal ϵ(ω) of the DS beamformer

in Eq. (31) is written as

ϵ(ω) =
K∑

k=1

wk(ω)
{ M∑

m=1

∆g(k+2)m(ω) · [hm1(ω)rR(ω) + hm2(ω)rL(ω)]
}

. (37)

because the MOMNI method controls ymic(ω) such that it is 0 before the fluctu-

ation of transfer functions, ∆yDS(ω) after the fluctuation is the response sound

elimination error signal ϵ(ω). This is expressed as

ϵ(ω) = yDS(ω) + ∆yDS(ω)

= ∆yDS(ω). (38)
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Next, let the singular values of G(ω) be µj(ω) for j = 1, 2, · · · , N and let the

eigenvalues of GH(ω)G(ω) be λj(ω) for j = 1, 2, · · · , N . Then, the norm ∥G(ω)∥
is given by

∥G(ω)∥ =
√

max
j

(λj(ω))

=
√

max
j

({µj(ω)}2)

= |µ1(ω)|, (39)

where max
j

(aj) denotes the largest element of aj for any j. The relation λj(ω) =

{µj(ω)}2 is used here.

Alternatively, since the singular values of G+(ω) are given by 1/µj(ω), the

norm ∥G+(ω)∥ is expressed as

∥G+(ω)∥ =

√
max

j

(
1

λj(ω)

)

=

√
max

j

(
1

{µj(ω)}2

)
=

1

|µN(ω)|
. (40)

Since the secondary sound source is arranged with almost equal distance for each

control point, if the number of secondary sound sources, M , increases, the norm

of G(ω) is directly proportional to M , i.e., ∥G(ω)∥ ∝ M . Moreover, although the

condition number of G(ω), which is expressed by the ratio between the maximum

and minimum singular values, i.e.,

cond(G) = µ1/µN , (41)

is known that the condition number will be close to unity when the number of

secondary sound sources arranged is much larger than that of control points (this

is experimentally proven in Chapter 3.4.3 and shown in Fig. 12). Therefore, the

following relation can be derived from Eqs. (39) and (40):

∥H (ω)∥ = ∥G+(ω)∥ =
1

|µN(ω)|

≃ 1

|µ1(ω)|
=

1

∥G(ω)∥
∝ 1

M
. (42)
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Substituting Eq. (30) into Eq. (37) obtains

∆ŷDS(ω) = ∥H (ω)∥ 1

K

{ K∑
k=1

M∑
m=1

∆gkm(ω)

·
[
h̄m(K+1)(ω)rR(ω) + h̄m(K+2)(ω)rL(ω)

]
·e−jωτk

}
, (43)

where h̄mn(ω) = hmn(ω)/∥H (ω)∥. Assume that ∆gnm(ω) for n = 1, 2, · · · , N and

m = 1, 2, · · · ,M are mutually independent and follow the same Gaussian distri-

bution with zero-mean and variance σ2. Furthermore, since h̄mn(ω) is a function

normalized by ∥H (ω)∥ and independent on M , the deviation of {·} in Eq. (43)

can be represented by η
√

MKσ, where η is a suitable constant. Therefore, the

elimination error ϵ(ω) of response sound is obtained from Eq. (42) as

ϵ(ω) = ∆yDS(ω) ∝ 1

M
· 1

K
·
√

MK

=
1√
MK

. (44)

In other words, Eq. (44) shows that the elimination error of the response sound for

the fluctuation of the transfer functions is inversely proportional to
√

MK. Thus,

if the number of transfer channels from loudspeakers to microphones increases,

the response sound elimination of the MOMNI method improves its robustness

against the fluctuation of the transfer functions.

In the real environment, it is remarked to be difficult to prove whether or not

the variations ∆gnm(ω) caused by the fluctuation of the room transfer functions

are mutually independent for every channel from a loudspeaker to a microphone.

However, in the next section, the simulations using impulse responses measured

in the real environment show that the error estimation in Eq. (44) is valid.

3.3.5 Computational complexity

Here computational complexity of the MOMNI method is discussed. In the fol-

lowing, NMOMNI denotes filter length in taps of the MOMNI method’s inverse

filter, and NAEC denotes that of the AEC. Typical values of NMOMNI and NAEC
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Table 4. Computational cost of the AEC and the MOMNI method.

Method Order Typical values

Single-channel AEC 3B log2 2N 264 (B = 8, N = 1024)

Stereo AEC 6B log2 2N 528 (B = 8, N = 1024)

MOMNI method (M + 2) log2 2N + 2M 268 (M = 16, N = 8192)

are 1024 and 8192, respectively. We summerized the computational cost for the

AEC and the MOMNI method in Table 4.

If AEC is adapted using simple normalized LMS, the number of multiplica-

tions required is NAEC per sample. When the AEC uses the typical filter length

NAEC = 1024, the computational quantity is very high. If adaptation is con-

ducted in the frequency domain with block-partitioned samples, the significant

factors are the FFT of the observed and the reference signals, and IFFT of the

processed signal; the number of the multiplications required is 3 log2 2NAEC per

sample if the blocks have no overlap. When the multiple microphones and loud-

speakers are used, the computation increases in proportion to the numbers. In

addition, to improve convergence speed, the blocks should be overlapped. Then

the number of the multiplications are B(2K + M) log2 2NAEC per sample where

B is the number of the block overlaps, K the number of the microphones, M the

number of the loudspeakers. Thus the typical stereo AEC with K = 2, M = 2,

B = 8 requires 528 multiplications. In this estimation of the computation, I

ignored the computation required for the control of the adaptation. For further

detailed discussion, please see [Her04] where joint adaptation of AEC and ABF

is implemented in real time. Note that many DTD algorithm requires similar

computation to that of adaptation.

In real-time implementation of the MOMNI method, only the computation of

filtering matters because the filter is designed off line. Since the inverse filter of

the MOMNI method is the fixed filter, simple overlap-add filtering with rectangle

window can be used. FFT and IFFT are required for input signals of two channels

for the user’s ears and the M -channel loudspeaker outputs. Thus the number of

the multiplications required for the FFT is (2 + M) log2 2NMOMNI. In addition,

2M multiplications are required for the filtering in frequency domain. Note that
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number of the microphone-array elements does not affect the complexity of the

filtering. In total, (2 + M) log2 2NMOMNI + 2M multiplications are required for

the filtering in the MOMNI method; 268 multiplications in the typical setting

with M = 16. Therefore, the computational complexity of the MOMNI method

is comparable or lower level to the AEC.

3.4 Experimental comparison of response sound elimina-

tion performance

To assess the robustness of the MOMNI method against the fluctuation of the

room transfer functions, the response sound elimination performance of the MOMNI

method is evaluated by simulations. Its performance is compared with that of

conventional acoustic echo canceller.
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3.4.1 Experimental conditions

The simulations are carried out by using impulse responses measured in a real

acoustic environment. Figure 5 shows the arrangement of the apparatuses. To

imitate the user at the center of the room, I set a HATS. To cause fluctuations

of the room transfer functions intentionally, I placed a life-size mannequin as

an interference near a user, under the assumption that a person approaches to

the user. I measured in a total of 13 patterns of the room impulse responses: 12

patterns are for the state in which the interference is allocated, and the remaining

pattern is for the state in which no interference exists. The transfer functions

before fluctuation are used to design filters both for the acoustic echo canceller

and the MOMNI method, and I evaluated the performance under static transfer

functions after fluctuations. To prevent the effect of the change of condition

to observe the user’s utterance, I did not change the user’s position in these

fluctuations. A loudspeaker set in front of the user is used both as an acoustic

echo canceller and as a primary sound source of the MOMNI method. The

reverberation time is about 160 ms. The room impulse responses are sampled

at a frequency of 48 kHz and the magnitudes are quantized to 16 bits. I used

a circular array with 12 elements, and equally spaced elements were selected for

use.

Conventional Acoustic Echo Canceller Our interest is focused on the

robustness against the fluctuation of room transfer functions. Therefore, the

experiment is carried out under the assumption that the filter coefficients of the

acoustic echo canceller are once estimated precisely, and then the fluctuation

occurs when the estimation stops because of barge-in. To imitate this situation,

I used the transfer function before fluctuation as the estimated transfer function

of the acoustic echo canceller, and fixed its filter coefficients. The microphone

element closest to the user is chosen as a microphone for acquisition of the user’s

speech.

MOMNI method The inverse filter in the MOMNI method is calculated only

using the impulse responses in the case where there is no fluctuation. The design

conditions of the inverse filters are as follows: the number of secondary sound
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sources M = 4 to 36, the number of control points N = 3 to 8, the filter length

16384, and the passband range 150 to 4000 Hz.

3.4.2 Evaluation score

The response sound elimination performance is evaluated using Echo Return Loss

Enhancement (ERLE) as

ERLE[dB] = 10 log10

∑
ω{dmicref(ω)}2∑

ω{ϵ(ω)}2
, (45)

where dmicref(ω) is the response sound reproduced at a standard microphone, and

ϵ(ω) is the response sound elimination error signal derived from Eqs. (18) or (38).

3.4.3 Experimental results and discussion

Figures 6–8 show that frequency characteristics of the response sound elimination

error signal in the conventional acoustic echo canceller and the MOMNI method

after the room transfer function has changed. In these evaluations, I used a female

utterance selected from the ASJ database [HIKT93] as a response sound. From

these figures, it turns out that both of the methods can suppress the response

sound independent of frequency in the passband.

The ERLE for each position of the interference in the case of the typical

number of loudspeakers and 2 elements is shown in Fig. 9, and that for each

position of interference in the case of 24 loudspeakers and the typical number of

microphones in Fig. 10. In these evaluations, to remove the effect of the bias of

frequency characteristics, I used a white noise as a response sound. It can be

seen that increasing both the number of microphone elements and the number of

loudspeakers improves the performance of the MOMNI method, and can make

the control robust against the fluctuation of room transfer functions. Regardless

of the position of the interference, the performance of the MOMNI method is

superior to that of the conventional echo canceller. Hereafter, I show only the

averaged ERLE of 12 types of fluctuations.

In Fig. 11, ERLE is shown as a function of the number of transfer channels

(= MK) from the loudspeakers to the microphone elements. The theoretical
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Figure 6. Example of frequency characteristics of observed signal obtained by

acoustic echo canceller. The signal is observed at the microphone near the user.

The position of interference is no.1 in Fig. 5.
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Figure 7. Example of frequency characteristics of observed signal obtained by the

MOMNI method with 36 loudspeakers and 1 microphone element. The signal is

observed at the microphone near the user. The position of interference is no.1 in

Fig. 5.
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MOMNI method with 36 loudspeakers and 6 microphone elements. The signal is

observed at the microphone near the user. The position of interference is no.1 in

Fig. 5.
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curve in the figure is drawn by plotting the ERLE derived from Eq. (44), which

is given by
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ERLEtheory [dB] = 10 log10

∑
ω{dmicref(ω)}2∑

ω{ϵ(ω)}2

= 10 log10

∑
ω{ymic(ω)}2∑

ω{∆ŷmic(ω)}2

∝ ξ + 10 log10

1

1/(MK)

∝ ξ + 10 log10(MK), (46)

where ξ is a suitable constant.

From this figure, it can be seen that the response sound elimination perfor-

mance is improved if the number of transfer channels increases. It also turns out

that the deviation between the experimental and theoretical values arises when

the number of microphone elements increases. The reasons are as follows:

(A) The stability margin of the inverse filters becomes small when the number

of control points is close to that of the secondary sound sources.

(B) When there exist too many transfer channels, the independence of each

channel is no longer valid. Consequently, the performance is saturated.

To prove the above claim (A), I show the condition number of transfer functions

in Fig. 12. The condition number, expressed as cond(G(ω)) in Eq. (41), repre-

sents the unstableness of the inverse filters. This figure shows that the condition

number becomes close to 1 when the number of loudspeakers is much larger than

that of the microphone elements (equal to the number of control points minus

two), as argued in Chapter 3.3.4. However, when the number of microphone el-

ements increases, the condition number increases. In addition, such a tendency

becomes remarkable when the number of the secondary sound sources is small.

This causes an appreciable degradation in ERLE.

Comparing the conventional acoustic echo canceller with the MOMNI method

in Fig. 11, it can be seen that the MOMNI method is more robust against the

fluctuation of transfer functions if the number of transfer channels increases.
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3.5 Speech recognition experiment

The experiment involving large-vocabulary speech recognition is carried out to

investigate the efficacy of the MOMNI method, compared to that of the conven-

tional acoustic echo canceller.

3.5.1 Experimental conditions

In the recognition experiment, I use the speech signal obtained by imposing the

response sound elimination error signal ϵ(ω) on the user’s input speech. A large-

vocabulary recognition engine Julius ver. 3.4.2 [LKK01] is used as a speech de-

coder. I used two kinds of speaker-independent phonetic tied mixtures [LKTS00]

as phoneme models. One is an ordinary clean model. The other is generated

by a known-noise imposition technique [YLSS03] (see Appendix). I imposed a

known noise of 30 dB on the observed signals to mask the redundant response

sound, and to match its phoneme features, and imposed the noise of 25 dB on
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the speech in the learning data. A language model is made from newspaper dic-

tation with a vocabulary of 20,000 words [IYT+98]. As the user’s speech, 200

sentences obtained from 23 males and 23 females are used through the JNAS

database [IYT+99]. As the response sound of the dialogue system, a sentence of

a female’s speech from the ASJ database is used. Experimental conditions such

as interference arrangements to cause changes of the transfer functions are the

same as in the previous section.

3.5.2 Evaluation score

In order to evaluate the speech recognition performance, I adopt the word accu-

racy (WA) as an evaluation score. Word accuracy is defined as follows:

WA [%] =
W − S − D − I

W
, (47)

where W is the total number of words in the test speech, S is the number of

substitution errors, D is the number of deletion errors, and I is the number of

insertion errors. The resultant recognition score is computed using the average

value of data derived from the 200 sentences.

3.5.3 Experimental results and discussions

The speech recognition results obtained by the MOMNI method are shown in

Fig. 13 for the clean model, and in Fig. 14 for the known noise imposition. The

results of the recognition experiment show that the word accuracy is −8.0% and

−13.2% without any processing, and 47.1% and 64.6% when using the conven-

tional acoustic echo canceller, for the clean model and known-noise imposition,

respectively. By masking the redundant component of the response sound, all

the results are improved compared with the results with the clean model. All

the performances of the MOMNI method in the figure are superior to those of

the conventional acoustic echo canceller. Note that neither system is adapted,

i.e. optimal weights for system before acoustic change is used. The results show

that when the transfer functions are changed, the degradation of speech recog-

nition accuracy can be prevented by increasing the number of transfer channels.

From these results, the effectiveness of the MOMNI response sound elimination

technique is ascertained.
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3.6 Sound quality assessment at various user positions

The sound quality of the MOMNI method is guaranteed and clear sound image

is presented only when the user’s ears are at the control points where the re-

sponse sound is reproduced. However, even when the user moves away from the

controlled area, the quality of the response sound is sufficient for the spoken dia-

logue system. To prove this argument, I assess the quality of the response sound

which is perceived by the user at various positions. The quality is assessed from

two aspects; objective and subjective evaluations.

3.6.1 Objective evaluation

The objective evaluation is carried out via a simulation using impulse responses

measured in a real acoustic environment. Figure 15 shows the arrangement of the

apparatuses. The room is the same one used in the experiments of Chapters 3.4

and 3.5. I measured four patterns of impulse responses changing the positions of

the HATS from position 0 to position 3. The control points of the the MOMNI

method are two microphone elements in the microphone array and the ears of the
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HATS at the position 0. The primary sound source of the response sound is the

loudspeaker of the acoustic echo canceller.

As an evaluation score, I introduce cepstral distance (CD [RJ93]), which is

often used in various speech processing. CD is given by

CD [dB] =
1

F

F∑
t=1

20

log 10

√√√√ 20∑
l=1

2(Cobs(l, t) − Cref(l, t))2, (48)

where F denotes the number of speech frames, Cobs(l, t) is the l-th FFT-based

cepstrum of the observed signal at the t-th frame, and Cref(l, t) is a reference

cepstrum for evaluating the distance. The number of liftering points is 20. A

smaller CD value indicates better sound quality. The reference cepstrum Cref(l, t)

is obtained from the source signal of the response sound. I average the CDs at

both ears. Note that to express CD in dB the term 20/log 10 is multiplied to

the Euclidean distances between the cepstrum coefficients which are obtained

from natural logarithm of the waveforms. In addition, because of symmetry of

cepstrum coefficients, liftered cepstrum is obtained from twice of the cepstrum

coefficients from l = 1 to l = 20.

Figures 16 and 17 show the CDs of the MOMNI method compared with those

of the acoustic echo canceller. Since the MOMNI method reproduces the output

sound of the acoustic echo canceller at the position 0, its CD is similar to that

of the acoustic echo canceller. When the HATS is not at the position 0, the CDs

increase. However, its difference is only within 1 dB. Thus, the sound-quality

degradation of the MOMNI method is not significant.

3.6.2 Subjective evaluation

To ascertain that the distortion caused by the MOMNI method is not discomfort,

I conduct a subjective evaluation of the sound quality reproduced by the MOMNI

method in a real environment. I changed the positions of the subjects and let

them answer mean opinion score (MOS). The opinion score for evaluation was

set to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

The room used in this experiment is the same one where the impulse responses

are measured in the other experiments. I directed the positions of the subjects

by setting chairs at the position 0, the position 1 and the position 2 in the
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Figure 16. Cepstral distance in various positions when 12 loudspeakers are used

for the MOMNI method.
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Figure 17. Cepstral distance in various positions when 24 loudspeakers are used

for the MOMNI method.

36



M
ea

n 
op

in
io

n 
sc

or
e

E
qu

iv
al

en
t Q

 v
al

ue
 [d

B
]

25

35

45

1

2

3

4

5
: Acoustic echo canceller

Index of user’s position
0 1 2

: Proposed method

Figure 18. Mean opinion score for the positions of the subjects. The blocks show

the means and the error bars show the 95% confidence intervals.

Fig. 15. The filter of the MOMNI method was designed using measured impulse

responses where the HATS is set at the position 0. The primary sound source of

the response sound is the loudspeaker of the acoustic echo canceller. The number

of the secondary sound sources are 24 and the microphone elements of the silent

reproduction is two.

I compared the MOSs of the MOMNI method and the acoustic echo canceller.

In addition, to give the MOSs objective meaning, I evaluated opinion equivalent

Q value [DHP93]. To obtain opinion equivalent Q value, I made three kinds of

response sound imposed white noises whose segmental SNRs are 25 dB, 35 dB and

45 dB. Then these noise-added response sound is outputted from the acoustic echo

canceller. Therefore, the forms of the reproductions are five, i.e., the MOMNI

method, the acoustic echo canceller and the three noise-added response sound.

For each of these forms, I prepared 15 sentences of the speech uttered by four

males and three females. Then for each of the three positions, I evaluated the

MOSs in random orders.

Figure 18 shows the MOSs for each of the subjects’ positions. The scores of the

acoustic echo canceller rated at more than four four in any of the positions. For

the MOMNI method, the score at the position 0 is similar to that of the acoustic
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echo canceller. Even at the position 0, the binaural response sound is degraded

by the difference of the shapes of the head and the sitting heights between the

subjects and the HATS. However, it can be seen that the degradation does not

influence the MOSs. Although the MOSs decrease as the subjects move away

from the position 0, the degradation of the score is within one. In addition, even

in the worst score at the position 3, the opinion equivalent Q value is over 45 dB.

From these findings, it is ascertained that the MOMNI method can present the

response sound with sufficient quality even when the user is out of the prepared

position.

3.7 Conclusion

A barge-in robust spoken dialogue interface combining sound field reproduction

and beamforming called MOMNI method is proposed. It is shown that the re-

sponse sound elimination performance for the fluctuation of room transfer func-

tions depends on the number of transfer channels. By using an adequate num-

ber of loudspeakers and microphone elements, the performance of the MOMNI

method is better than that of the conventional acoustic echo canceller. In the

experiment where the MOMNI method is compared with acoustic echo canceller

in the condition that the filter coefficients are fixed, the efficacy of the MOMNI

method is ascertained. Although the MOMNI method requires multichannel fil-

tering and multiple loudspeakers, the MOMNI method can maintain the high

speech recognition performance in barge-in situation without adaptation.
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4. Response Sound Elimination Based on Null-

Space Based Sound Field Control

4.1 Introduction

In this chapter, I propose small-scale variation of the sound field control to elim-

inate the response sound at the microphones. The MOMNI method can make

control of silence by increasing the number of loudspeakers, as discussed in Chap-

ter 3.3.4. However, a large number of loudspeakers are needed to achieve sufficient

robustness for speech recognition. Furthermore, the MOMNI method reproduces

the response sound only around the user’s ears, and premises that the user does

not move from the assumed specific position. To address the problems of the

MOMNI method, I propose a new filter design method for realizing silence at

positions of the microphone elements without reproducing the response sound

at the user’s particular position, called nullspace-based sound field control (NB-

SFC). First, singular value decomposition is utilized to provide vectors that span

the nullspace of the matrix of room transfer functions among the loudspeakers

and microphones. Nullspace vectors are assumed to be the filter candidates that

can realize silence at the microphone positions. Second, the linear summation of

the vectors closest to the delayed impulse yields the resultant filter coefficients

corresponding to the nullspace, while maintaining better sound qualities. The re-

laxation of the strict reproduction of the response sound can reduce the number

of loudspeakers while maintaining stable control and allowing the user to move.

A computer simulation using impulse responses measured in a real acoustic

environment reveals that the NBSFC is more robust against fluctuation of the

room transfer function than the conventional methods even when there are few

loudspeakers. However, although the NBSFC with many microphone elements

improves its speech recognition performance, the quality of response sound is

speculated to slightly degrade. I discuss the trade-off between speech recognition

performance and sound quality in our sound quality assessment experiment.

The outline of this chapter is as follows: The proposed filter design method

is described in Chapter 4.2. The performance of the NBSFC method is discussed

in Chapter 4.3. Finally, the conclusion of this study is provided in Chapter 4.4.
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Figure 19. Configuration of NBSFC.

4.2 Response sound cancellation based on nullspace-based

sound field control

In this section, I propose a new filter design algorithm to provide silent zones

on control points but reproduction of input signal. Silent zones are realized by

cancellation of input signal but reproduction of zero signals. Since no control

points other than the microphone elements are set, sound field control can be

performed stably with fewer loudspeakers.

4.2.1 Sound field control for cancelling out response sound

In Fig. 19, Sm(m = 1, . . . ,M) denote the loudspeakers and Ck (k = 1, . . . , K)

represent the control points where microphones are set. The numbers of loud-

speakers and microphone elements must satisfy the condition

M > K. (49)

The observed signals at the control points are designated as

d(ω) = [d1(ω), . . . , dK(ω)]T , (50)

where dk(ω) (k = 1, . . . , K) are the signals observed at the microphones Ck. The

response sound is monaural and denoted by a scalar rsrc(ω). The response sound
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is outputted from the loudspeakers after being processed by filters. The filter

coefficients are represented by

b(ω) = [b1(ω), . . . , bM(ω)]T, (51)

where bm(ω) (m = 1, . . . ,M) are the filter coefficients corresponding to the loud-

speakers Sm. The M × K matrix, which is composed of the room transfer func-

tions gkm(ω) between the loudspeakers Sm and the control points Ck, is denoted

by G(ω) as

G(ω) =

 g11(ω) . . . g1M(ω)
...

. . .
...

gK1(ω) . . . gKM(ω)

 , (52)

and d(ω) is denoted by

d(ω) = G(ω)b(ω)rsrc(ω). (53)

The following condition must be satisfied when any response sounds are cancelled

out at the positions of microphone elements.

G(ω)b(ω) = 0 (54)

subject to ||b(ω)|| = C (55)

where, 0 is a K-dimensional column zero vector and C is a constant for adjusting

the gain. The norm of b(ω) is constrained to fix the total gain of the filters and

to avoid the trivial filter coefficients that output no signal.

4.2.2 Extracting vectors that span nullspace

Equation (54) shows that b(ω) is orthogonal to the row space of G(ω). The

subspace that includes all orthogonal vectors in all rows of G(ω) is called the

nullspace of G(ω). Singular value decomposition provides the vectors that span

the nullspace of G(ω) in the form of eigenvectors that correspond to zero singular

values. The filter coefficients b(ω) can be designed by the linear summation of

these vectors.

Singular value decomposition of G(ω) is denoted by

G(ω) = U (ω)
[
Γ(ω) OK,M−K

]
V H(ω), (56)
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where O i,j is an i × j zero matrix, and [·]H represents the conjugate transpose.

Γ(ω) is a K × K diagonal matrix:

Γ(ω) =



µ1

. . .

µRω

0
. . .

0


. (57)

Rω is the rank of G(ω), and its diagonal elements {µ1(ω), . . . , µRω(ω), 0, . . . , 0}
are singular values of G(ω). U (ω) and V (ω) are K × K and M × M unitary

matrices, whose column vectors {u1(ω), . . . , uRω(ω)} and {v 1(ω), . . . , vRω(ω)}
are eigenvectors corresponding to singular values {µ1(ω), . . . , µRω(ω)}, respec-

tively, and the rest of the vectors {uRω+1(ω), . . . , uK(ω)} and {vRω+1(ω), . . . ,

vM(ω)} are the eigenvectors corresponding to zero singular values. In particular,

{vRω+1(ω), . . . , vM(ω)} are the nullspace vectors needed. These vectors exist

because of the condition M − Rω≥M − K > 0.

The nullspace vectors v r(ω) (r = Rω + 1, . . . , M) satisfy Eq. (54) as shown

by

G(ω)v r(ω) = U (ω) [Γ(ω),OK,M−K ]

·V H(ω)v r(ω)

= U (ω) [Γ(ω),OK,M−K ]

· [0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−r

]T

= U (ω)0

= 0. (58)

Therefore, any summation of the nullspace vectors b ′(ω), which is a model of the

filter b(ω), can be denoted by

b ′(ω) =
M∑

r=Rω+1

αr(ω)v r(ω), (59)
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where αr (r = Rω + 1, . . . ,M) are arbitrary complex values. This vector b ′(ω)

satisfies Eq. (54) as shown by

G(ω)b ′(ω) =
M∑

r=Rω+1

αr(ω)G(ω)v r(ω)

=
M∑

r=Rω+1

αr(ω)0

= 0. (60)

In another denotation,

b ′(ω) = W (ω)α(ω), (61)

where

W (ω) = [vRω+1(ω), . . . , vM(ω)] , (62)

and α(ω) is an (M − Rω)-dimensional complex vector given by

α(ω) = [αRω+1, . . . , αM ]T . (63)

Since b ′(ω) does not satisfy the norm condition of Eq. (55), the resultant filter

b(ω) is obtained by normalizing b ′(ω) with its norm, as

b(ω) = C
b ′(ω)√
∥b ′(ω)∥2

= C
W (ω)α(ω)√

αH(ω)W H(ω)W (ω)α(ω)
. (64)

Since V (ω) is a unitary matrix,

vH
i (ω)v j(ω) =

{
1 for i = j;

0 for i ̸= j.
(65)

Accordingly,

W H(ω)W (ω) = IM−Rω , (66)

where IM−Rω denotes (M − Rω) × (M − Rω) identity matrix. The substitution

of Eq. (66) in Eq. (64) leads to

b(ω) = C
W (ω)α(ω)√
αH(ω)α(ω)

. (67)
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Figure 20. Example of waveform of filter coefficients designed by random sum-

mation of the nullspace vectors. The filter is designed with eight loudspeakers

and two microphones, and corresponds to one loudspeaker. The filter is designed

with FFT points of 16384, and cut by a rectangle window of 8000 points. The

sampling frequency is 16 kHz and the bandwidth is 150–4000 Hz.

4.2.3 Filter coefficients closest to impulses

In the previous section, I showed that the conditions of Eqs. (54) and (55) are

satisfied by b(ω) in Eq. (67), i.e., any appropriately normalized linear summations

of the nullspace vectors. However, the output sound becomes extremely distorted

if the expansion coefficients α(ω) are selected randomly. Indeed, Fig. 20 shows

an example of the filter designed by random summation of the nullspace vectors,

where a large undesired pre/post-echo can be seen. In the following, I propose an

algorithm for designing a filter with a small distortion by utilizing the solution

closest to impulses.

I define the following filter coefficient vector l(ω) whose components are the

filter coefficients of the impulses with the same amplitude and the same latency
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Figure 21. Example of the projection of l(ω) to the nullspace of G(ω) when the

row space of G(ω) is spanned by v 1(ω), and W (ω) = [v 2(ω) v 3(ω)].

τ .

l(ω) = ejωτ [1, . . . , 1︸ ︷︷ ︸
M

]T (68)

Then I try to find a vector closest to the target vector l(ω) within the nullspace.

The output of each loudspeaker becomes less distorted because each filter coef-

ficient closely approaches the impulse that has a full bandpass property and a

linear phase. The optimal expanded coefficient vector α(ω) can be obtained by

solving the following least squares problem:

min
α(ω)

∥W H(ω)α(ω) − l(ω)∥2. (69)

Such a vector W (ω)α(ω) can be obtained by projection of l(ω) to the nullspace

of G(ω), or in other words, the column space of W (ω), as an example shown

in Fig. 21. Such expanded coefficients αr(ω) (r = Rω + 1, . . . ,M) that satisfy

Eq. (69) can be given by the inner product of v r(ω) and l(ω) as

αr(ω) =
vH

r (ω)l(ω)

vH
r (ω)v r(ω)

= vH
r (ω)l(ω). (70)
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Figure 22. Example of waveform of filter coefficients designed by NBSFC. The

filter is designed with eight loudspeakers and two microphones, and corresponds

to one loudspeaker. The filter is designed with FFT points of 16384, and cut by

a rectangle window of 8000 points. The sampling frequency is 16 kHz and the

bandwidth is 150–4000 Hz.

Therefore, α(ω) can be given by

α(ω) =

vH
Rω+1(ω)

...

vH
M(ω)

 l(ω) = W H(ω)l(ω). (71)

Then the resultant filter coefficients b(ω) is obtained by substituting Eq. (71) in

Eq. (67) as

b(ω) = C
W (ω)W H(ω)l(ω)√

lH(ω)W (ω)W H(ω)l(ω)
. (72)

Figure 22 shows an example of a filter designed by the NBSFC. It can be seen

that its distortion is considerably lower than that in Fig. 20.
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4.2.4 Response sound elimination error when changing room transfer

functions

In this section I describe the theoretical estimation of error caused by fluctua-

tion in the NBSFC, as shown for the MOMNI method in Chapter 3.3.4. As-

sume that the fluctuation of the room transfer functions between the m-th loud-

speaker and the k-th microphone, denoted by ∆gkm(ω), are Gaussian random

variables with the variance σ2. Here, define an M -dimensional orthonormal ba-

sis b1(ω), . . . , bM(ω) with its first vector b1(ω) = b(ω)/C. Then ∆gk(ω) =

[gk1 . . . gkM ] can be written as

∆gk(ω) =
M∑

m=1

ϕkm(ω)bH
m(ω), (73)

where ϕkm(k = 1, . . . , K,M = 1, . . . ,M) are random variables with variance σ2.

Then ϵ can be expressed as

ϵ(ω) =
1

K

K∑
k=1

M∑
m=1

Ak(ω)ϕkm(ω)bH
m(ω)b(ω)

=
C

K

K∑
k=1

M∑
m=1

ϕkm(ω)bH
m(ω)b1(ω)e−jωτk

=
C

K

K∑
k=1

ϕk1(ω)e−jωτk

∝ 1√
K

. (74)

This reveals that its performance is influenced only by the number of microphones

and no improvement can be obtained by increasing the number of loudspeakers.

Therefore the MOMNI method performs better than the NBSFC if many loud-

speakers are available. However, if the number of loudspeakers is small, the con-

trol of the MOMNI method is inferior because of two reasons. The first reason is

that MOMNI method can control 2 less microphones than the NBSFC, as can be

seen in Eqs. (22) and (49), because of the sound field reproduction at the user’s

ears. The second reason is that the condition in Eq. (44) fails to hold and its

performance degrades. Since that condition is based on an assumption that the

condition number of H (ω) approaches 1, this assumption can hold only when
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Table 5. Computational cost of the AEC and the MOMNI method.

Method Order Typical values

Single-channel AEC 3B log2 2N 528 (B = 8, N = 1024)

NBSFC M + 1 log2 2N + M 134 (M = 8, N = 8192)

the number of loudspeakers is much larger than the number of control points.

Therefore, even a control of few microphones is unstable with a small number

of loudspeakers because of the large condition number. From these findings, the

proposed NBSFC performs better than the MOMNI method when the number

of loudspeakers is small.

4.2.5 Computational complexity

Since the input signal is single channel, the computation is simpler than the

MOMNI method. We list the computational cost of the AEC and the NBSFC

in Table 5. Similarly to the discussion in Chapter 3.3.5, single-channel FFT of

the input signal, M -channel filtering in the frequency domain and M -channel

IFFT of the loudspeaker outputs require (M + 1) log2 2NNB + M multiplications

per sample where NNB is the filter length in taps. Thus, typical setting with

M = 8, NNB = 8192 requires 134 multiplications per sample. The single-channel

AEC with filter length of NAEC taps and B block overlaps requires log22NAEC

multiplications per sample; 264 multiplications per sample with typical values

B = 8 and NAEC = 1024. Thus the computational complexity of the NBSFC is

lower than that of the AEC.

4.3 Experiments and results

In this section, I present two experiments in which the conventional methods (an

acoustic echo canceller and the MOMNI method) and the NBSFC are compared.

To validate the robustness of the NBSFC against the fluctuation of the room

transfer functions, a response sound elimination experiment is conducted where

changes in the transfer functions are simulated. Then the sound quality of the

response sound is evaluated. Subsequently, the performance of each method on
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Figure 23. Layout of acoustic experiment room.

the basis of a speech recognition experiment is evaluated to verify the applicability

of the NBSFC. Finally, the sound quality of these methods is assessed.

4.3.1 Experimental conditions

In the experiments, it is premised that the fluctuation of transfer functions is

caused by changes in positions of an interference, i.e., a life-size mannequin. The

interference is arranged under the assumption that another person (the man-

nequin) approaches the user, which is a very common occurrence in real environ-

ments. I measured 13 types of impulse responses: 12 patterns are for the states

in which the interference is allocated, and the remaining pattern is for the state

in which no interference exists. I used impulse responses without the mannequin

as those before fluctuation, and I evaluated the average performance in 12 types

of fluctuation. Figure 23 shows the arrangement of the apparatuses. As shown in

Fig. 23, I place a dummy head, which has an average human head and an upper

body, at the user’s position. I designed the filters used in the MOMNI method and

NBSFC with room transfer functions before fluctuation. I gave the acoustic echo

canceller the room transfer function before fluctuation as its filter coefficients,
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(a) (b) (c)

Figure 24. Exact locations of loudspeakers when (a) five, (b) eight and (c) twelve

loudspeakers are used.

assuming that its adaptation was performed accurately without errors before the

fluctuation of the transfer functions; however, after the fluctuation, the adapta-

tion could not be performed because of double talk. I evaluated the performances

with the average of 12 kinds of impulse responses with the mannequin.

The impulse responses used in this experiment are measured in an acoustic

experimental room. The reverberation time is approximately 160 ms. The sam-

pling rate is with a 48 kHz and resolution is 16-bit. The loudspeakers used in

the sound field control of the MOMNI method and the NBSFC are positioned in

the outer circumference of the room. The primary sound source of the MOMNI

method is the loudspeaker used as the spoken dialogue system in the acoustic

echo canceller.

The filters for sound field control, in which the number of loudspeakers is M

(M = 5, 8 or 12) and the number of control points on the microphone elements

is K (K = 1, 2, 3 or 4) (hereafter, I label the transfer system “M -K system”),

are designed. The exact locations of the loudspeakers are shown in Fig. 24.

The passband range is 150–4000 Hz. I use a circular microphone array with 12

elements and select the elements that are spaced equally.
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Table 6. BRRs [dB] of MOMNI method before fluctuation

K = 1 K = 2 K = 3 K = 4

M = 5 82.1 50.1 15.1 21.8

M = 8 92.3 90.3 85.4 67.5

M = 12 98.6 98.0 93.4 74.5

Table 7. BRRs [dB] of the NBSFC before fluctuation

K = 1 K = 2 K = 3 K = 4

M = 5 119.4 101.1 94.5 66.4

M = 8 117.4 115.0 111.6 88.2

M = 12 119.3 113.6 112.4 91.1

4.3.2 Response sound elimination experiment

To evaluate the performance of response sound elimination, I calculate barge-in

reduction rate (BRR), which is defined by

BRR = 10 log10

∑
ω |year(ω)|2∑
ω |yout(ω)|2

[dB], (75)

where year(ω) is the response sound signal observed at the ear of the user (dummy

head), and yout(ω) is the output in each method. For instance, a large BRR score

indicates a desirable situation in which the barge-in sound can be removed from

the array output while maintaining the presentation of the response sound to the

user.

As the response sound from the dialogue system, I use a female utterance

selected from the ASJ database [HIKT93]. Although the sampling frequency of

the response sound is 16 kHz, I use the signal in which the frequency components

beyond 4 kHz are eliminated.

I show the BRRs of the MOMNI method and the NBSFC before fluctuation

in Tables 6 and 7. The BRR of the acoustic echo canceller before fluctuation was

almost infinity. Theoretically, the performances are infinity except for the 5-4

and 5-3 system of the MOMNI method, which do not satisfy the condition (1).
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Figure 25. Comparison of BRR for M loudspeakers: (a)M = 5, (b)M = 8 and

(c)M = 12.

However, their performances are not infinity because of the computational error.

The effect of the error is not so large that their speech recognition performance

does not degrade.

Though the performances of all the method are very high in Tables 6 and 7,

they degrade after fluctuation. Figure 25 shows the BRRs for all the combinations

of the number of loudspeakers and microphone elements. In this figure, (a),

(b) and (c) show the results of 5, 8 and 12 loudspeakers, respectively. The

horizontal axis represents the number of microphone elements, and the vertical

axis represents the BRR.
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The proposed NBSFC shows a higher performance than the acoustic echo

canceller in all combinations. For the 5 loudspeakers, the proposed NBSFC shows

a higher performance than the MOMNI method. In particular, the NBSFC of the

5-4 system shows the highest performance of 28.8 dB among all of these results.

With more loudspeakers, the MOMNI method shows an improvement while the

increase in the performance of the NBSFC can not be seen. This is because

the performance of the NBSFC is independent of the number of loudspeakers as

discussed in Chapter 4.2.4. Thus, the NBSFC is highly beneficial for application

to a few loudspeakers.

MOMNI and
proposed method

Acoustic echo canceller

same power of response
sound on the user’s ear

Figure 26. Configuration of the speech recognition.

4.3.3 Speech recognition experiment

The effect of response sound elimination is evaluated using a large vocabulary

continuous speech recognition task. To evaluate the speech recognition perfor-

mance, I adopt word accuracy (WA) shown in Eq. (47), where I average each WA

obtained from 200 utterances.

I show the configuration of the condition of the speech recognition in Fig. 26.

The speech signal obtained by superimposing the elimination error of response

sound, Eout(ω), on the user’s speech is used in the speech recognition experiment.

In the acoustic echo canceller, the power ratio of the response sound and the user’s
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Figure 27. Comparison of WA with clean model for M loudspeakers: (a)M = 5,

(b)M = 8 and (c)M = 12.

speech at the microphone is set to 0 dB. In the MOMNI method and NBSFC,

I arranged the power of the response sound observed at the user’s ear to be

equal to that of the acoustic echo canceller in the 0 dB state. I use two speaker-

independent phonetic tied mixture (PTM) models based on triphones. One is

generated from clean speech, and the other is learned using the speech imposed

office noise of 25 dB. In speech recognition with a 25 dB model, the same noise of

30 dB is imposed on the recorded speech signal. Figures 27 and 28 show the WA

for all the combinations. Figure 27 shows the speech recognition performance

with a clean model, and Fig. 28 shows that with known-noise imposition. All
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the scores are similar to those in Fig. 25, e.g., the 5-4 system shows the highest

performance in both clean and 25 dB models.

Because of the property of this experiment in which the interference noise is

the speech signal, it is difficult to sufficiently prevent insertion error in the user’s

silent period even when the noise reduction performance is high. Therefore the

known-noise imposition technique improves the speech recognition performance

considerably. The NBSFC for the 5-4 system with known-noise imposition has

the highest score of 76.1%. Using the NBSFC together with known-noise su-

perposition, an improvement of 27.3% over the performance of the conventional

acoustic echo canceller with clean speech is achieved.

4.3.4 Sound quality assessment

Although the NBSFC shows high speech recognition performance, the quality

of its output sound is not guaranteed because the proposed filter design method

maintains only the total gain (see Eq. (55)). In this section, I assess the quality of

the response sound produced by the NBSFC. I evaluate the sound quality against

the user’s movement. I show the index of the user’s position in Fig. 29. I apply

CD shown in Eq. (48) as an evaluation score. I average the CDs at both ears.

The less CD shows the better sound quality.

Figure 30 shows the CDs between the observed signals at the user’s posi-

tion and original response sound signal (dry source). The NBSFC is evaluated

in comparison with the acoustic echo canceller, the MOMNI method and the

filter designed by the random summation of the nullspace vectors explained in

Chapter 4.2.3.

The distortion of the acoustic echo canceller is caused only by the reverber-

ation of the room. Therefore, its CD increases when the user moves away from

the loudspeaker, but its influence is very small.

Since the MOMNI method reproduces the output sound of the acoustic echo

canceller at position 0, its CDs are similar to those of the acoustic echo canceller.

However, when the user moves away from position 0, the increase in the CDs for

the MOMNI method is larger than that for the acoustic echo canceller because

the observed signals at the user’s ears are influenced not only by the reverberation

of the room but also by that of the inverse filter.
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Figure 28. Comparison of WA with model imposed 25 dB known-noise in the

case of M loudspeakers: (a)M = 5, (b)M = 8 and (c)M = 12.

The sound quality of random summation is very poor, as shown by all the

results. The CDs of the NBSFC are considerably lower than those of the random-

summation nullspace filter. The efficacy of distance minimization on impulses is

obvious.

In the NBSFC, the degradation of sound quality does not occur regardless

of the user’s position. The strict reproduction at control points by the MOMNI

method distorts the response sound at positions other than the control points. On

the other hand, the mitigated presentation of the NBSFC has no specific control

points where sound quality is high, the distortion of the output signal from filter
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Figure 29. Configuration of user’s movement. The symbol “0” indexes the posi-

tion where the MOMNI method presents the response sound. Symbols 1, 3 and 5

index the positions 0.5 m, 1.0 m and 1.5 m right side from position 0, respectively.

Similarly, symbols 2, 4 and 6 index the positions 0.5 m, 1.0 m and 1.5 m behind

position 0, respectively.

coefficients close to impulses is not very high throughout the room. The sound

quality of the NBSFC is almost the same as that of the MOMNI method when

the user moves 0.5 m from position 0, and better when the distance is longer

than 1.0 m. The sound quality of the NBSFC is slightly lower than that of the

acoustic echo canceller.

On one hand, increasing the number of microphone elements improves speech

recognition performance. However, the quality of the response sound degrades

when the number of microphone elements is large. This is because the dimensions

of nullspace decrease and the distance between the filter b(ω) and the pulses l(ω)

increases. The NBSFC has a trade-off between sound quality and speech recog-

nition performance. The summary of the results is listed as follows.
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Figure 30. Comparison of cepstral distance from original response sound signal.

The experiments are performed with 5 loudspeakers and (a) 1, (b) 2, (c) 3, and

(d) 4 microphone elements except for the acoustic echo canceller.

With one or two microphone elements: On the average, the difference in

the sound quality of the NBSFC from that of the acoustic echo canceller is small

and within 1 dB. However, the improvement in speech recognition performance

is small. Therefore, the merit of using the NBSFC is not significant.

With three microphone elements: The deterioration of the CDs is slightly

more than 1 dB, but this presents no problem in hearing. Since the improvement

in speech recognition performance is large, it can be said that the NBSFC is

beneficial for a spoken dialogue interface.
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With four microphone elements: Although the improvement in speech recog-

nition performance is significant, the deterioration of the CDs is nearly 2 dB and

the user can perceive the degradation of sound quality.

4.4 Conclusion

I proposed a new small-scale barge-in robust interface using sound field control

called NBSFC to realize response sound cancellation. Since the NBSFC does not

control the sound around the user’s position, the user is allowed to move. In

addition, relaxation of the reproduction improves the robustness of the control.

As results of the experiment, the robustness of sound elimination and the per-

formance of speech recognition are improved when the number of loudspeakers is

relatively small. It is also validated that the use of the NBSFC together with an

appropriate number of microphone elements does not degrade the quality of the

response sound. From these findings, the availability of the NBSFC for a spoken

dialogue interface is ascertained.
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5. Introducing Semiblind Source Separation to

MOMNI Method

5.1 Introduction

In this chapter, to adapt a beamformer to the environmental noise and fluctua-

tion of transfer system, source separation is introduced to the MOMNI method.

To enhance speech by reducing both known and unknown noise, a new source

separation technique is proposed.

Since the MOMNI method uses the simplest DS-type beamformer with a fixed

filter, the inherent problem is that the residual response sound caused by fluc-

tuation of transfer function cannot be eliminated perfectly. In addition, the DS

beamformer is relatively weak against the reduction of interfering noise, espe-

cially in low-frequency regions with limited number of microphones. Indeed in

the Chapter 3, we could not address any acoustical scenarios where the inter-

fering noise exists as well as the response sound and user’s voice. One intuitive

solution is to use an ABF instead of the DS beamformer to eliminate interfering

noise sufficiently. However, similarly to the combination of AEC and ABF, many

filter adaptation techniques also require DTD, but DTD in heavily noisy environ-

ments is still difficult and impractical. Therefore, our next step is to proceed into

a new combination of sound field control and unsupervised adaptation method,

and we mainly deal with an applicability of the combination to a barge-in- and

noise-robust spoken dialogue system in this work.

As an unsupervised adaptation of the beamformer, blind source separation

(BSS) based on independent component analysis (ICA) [Com94, Lee98] has been

studied. Many types of ICA-based BSS methods are presented for an acous-

tical source separation problem, e.g., time-domain method (TD-ICA) [NSS03,

TNSS04, BAK05] and frequency-domain method (FD-ICA) [Sma98, PS00, SKN+06],

and some researchers reported an approach to apply TD-ICA to the AEC prob-

lem [POL03, ES07]. However, there are no concrete reports on the effective

combination of response-sound elimination and noise reduction by ICA, as far

as we know. In this chapter, to realize the barge-in- and noise-robust spoken

dialogue interface, we extend BSS to a new semiblind source separation (SBSS)
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[MTM+06, MTS+07] to separate both the known and unknown sources. By in-

putting the known response sound signal directly to ICA, its output signals are

separated from the echo return of the response sound. Its filter coefficients can

be adapted even in the barge-in and noisy situations, and can eliminate the re-

sponse sound efficiently. In addition, the SBSS can be learned together with

BSS to eliminate interfering noise [MTS+07]. Combined with SBSS, the MOMNI

method achieves more robustness against the fluctuation of the transfer function

and elimination capability of interfering noise.

This chapter is organized as follows. In Chapter 3.3, we will review the prin-

ciple of the MOMNI method. In Chapter 5.2, we will describe the strategy and

the algorithm of the proposed combination of the MOMNI method and SBSS. In

Chapters. 5.3–5.4 we will present experimental results and compare the proposed

method with the conventional AEC and that combined with ABF using an ideal

DTD. The conclusion will be summarized in Chapter 5.5.

5.2 Introducing ICA to the MOMNI method

5.2.1 Motivation

As discussed in Chapter 3.3.4, the MOMNI method can eliminate the response

sound with high robustness using many loudspeakers. However, there are two

remaining requirements:

(R1) As shown in [MHS+07], robustness of the MOMNI method is improved

according to the number of loudspeakers. To reduce the expense of the

loudspeakers, adaptation of the elimination is required.

(R2) For a hands-free system, elimination of interfering noise is an important

issue, and adaptive signal processing to reduce interfering noise is required.

To satisfy (R1), adaptation is effective in either sound field control or signal

processing applied to the observed signals. However, adaptation only in sound

field control is invalid for (R2). To satisfy both of them, we try to apply adaptive

signal processing to the observed signals of the microphones.

As adaptive signal processings, AEC and ABF are often used for (R1) and

(R2), respectively. However, both of them requires DTD and inappropriate for
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our purpose, i.e., the double-talk robust system. As an unsupervised filter adap-

tation without DTD, BSS based on ICA is a strong candidate. Since it is known

that frequency-domain ICA (FD-ICA) has advantages over time-domain ICA

both for computational simplicity and separation performance [NSS03], we try to

adopt FD-ICA in the MOMNI framework.

Here we formulate the problem. The purpose is to separate the sources using

under the condition where only the response sound is known without using DTD.

Suppose L source signals s(ω) are observed as mixed signals x (ω) at K micro-

phones. Among the L sources, the first s1(ω) is the desired source, i.e., user’s

utterance. The L-th source sL(ω) is the response sound rsrc(ω) played back by

the MOMNI method, i.e.,

sL(ω) = rsrc(ω). (76)

The remaining L − 2 sources, sl(ω) for l = 1, . . . , L − 1, are interfering noise.

Note that only the L-th source signal sL(ω) is known to the system and the

others are unknown. In this section the goal is to extract the user’s utterance

without noise from the mixture by separating the observed signals into each of the

sources. Then the mixture of the sources in the observed signals can be described

by Eq. (7) similarly to the case of ABF.

x (ω) = A(ω)s(ω). (77)

While akl(ω) for k = 1, . . . , K, l = 1, . . . , L − 1 are the room transfer func-

tion from the l-th source to the k-th microphone, akL(ω) for k = 1, . . . , K is

the complicated transfer function influenced by the binaural room transfer func-

tions gpri(ω) in Eq. (28), the filter H 2(ω) of the MOMNI method, and the

M transfer functions g ′
k(ω) from the M loudspeakers to the k-th microphone.

The transfer functions g ′
k(ω) are the altered version of the transfer functions

gk(ω) = [gk1(ω), . . . , gkM(ω)] which are measured in advance to design H 2(ω).

By the effect of the fluctuation in the acoustical condition of the room, gk(ω) is

altered to g ′
k(ω) by a small additional component ∆gk(ω), described as

g ′
k(ω) = gk(ω) + ∆gk(ω). (78)

For the elimination of the response sound at the microphones, the filter H 2(ω) of

the MOMNI method is designed to satisfy gk(ω)H 2(ω) = 0. Thus the residual
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method.

observation d′
k(ω) of the response sound at the k-th microphone, caused by the

fluctuation, can be written as

d′
k(ω) = g ′

k(ω)H 2(ω)gpri(ω)rsrc(ω)

= (g(ω) + ∆g(ω))H 2(ω)gpri(ω)rsrc(ω)

= ∆gk(ω)H 2(ω)gpri(ω)rsrc(ω). (79)

Thus the transfer function akL(ω) for k = 1, . . . , K can be written as

akL(ω) = ∆gk(ω)H 2(ω)gpri(ω). (80)

5.2.2 BSS based on FD-ICA

In this section we review the general principle of BSS based on FD-ICA. Configu-

ration of BSS is shown in Fig. 31. BSS is a problem to estimate unknown source

signals only from the observed signals without using DTD and any other a-priori

information about sources like steering vector used in ABF. In this framework,

even the known source signal sL(ω) is regarded as unknown signal. The purpose

of BSS is to obtain an L × K separation filter matrix W (ω) which makes its

output signals,

y(ω) = [y1(ω), . . . , yL(ω)]T = W (ω)x (ω), (81)
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be the estimation of the separated sources.

First, similarly to ABF, short-time analysis of the observed signals is con-

ducted by frame-by-frame discrete Fourier transform. Time-frequency expression

of the observed signals x (ω) are denoted as x (ω, t). Next, we obtain the separa-

tion filter W (ω) whose time-series output y(ω, t), written as

y(ω, t) = [y1(ω, t), . . . , yL(ω, t)]T = W (ω)x (ω, t), (82)

is separated to each of source components. Assuming statistical independence

among the sources s(ω, t) = [s1(ω, t), . . . , sL(ω, t)], the necessary and sufficient

condition for the separation is statistical independence among y(ω, t). For the

case of K = L, such W (ω) to output independent signals is optimized by, for

example, the following iterative updating operation [ACY96]:

W (ω) → W (ω) − η{I − ⟨Φ(y(ω, t))yH(ω, t)⟩t}W (ω), (83)

where → denotes updating operation in a single iteration. In our research, we

use tangent hyperbolic function based on polar coordinate [SMAM03] as;

Φ(y(ω, t)) =

 tanh(|y1(ω, t)|) exp (j arg (y1 (ω, t)))
...

tanh(|yK(ω, t)|) exp (j arg (yL (ω, t)))

 . (84)

The optimum solution of W (ω) satisfies the following condition similar to Eq. (10);

W (ω)A(ω) = Π(ω)C (ω), (85)

where Π(ω) = [δΠω(l)k]lk is an L × L permutation matrix with an arbitrary per-

mutation Πω : {1, . . . , L} → {1, . . . , L}, δlk is Kronecker delta, and C (ω) is a

L × L diagonal matrix whose diagonal components are arbitrary complex value.

The separation filter W (ω) to satisfy the condition Eq. (85) requires some

modifications to be used in noise reduction. First, as can be seen as arbitrary

diagonal matrix C (ω) in Eq. (85), the condition of independence has ambiguity

in scaling of the output signals, both for amplitudes and phases. To compensate

for this, we apply inverse filter of the separation filter W (ω) [IM99] to estimate

the source signals at the microphone points using inverse of the separation filter.

Second, as can be seen as Π(ω) in Eq. (85), independence also has ambiguity in
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the ordering of the signals to be outputted, refered to as ‘permutation problem’.

To reconstruct the estimated sources, the ordering must be aligned. To solve

the permutation, several approaches have been proposed, e.g., use of directivity

pattern of the separation filter [SKT+03] and use of envelopes’ correlations among

narrow-band signals [IM99], and their combination [SMAM04].

Combination of FD-ICA and the MOMNI method has several problems. The

first one is that its output signals are distorted. The mechanism of convolutive

separation by ICA is multiple beamformers which extract independent sources

separately [AMM+03]. In general, to construct a beamformer with high perfor-

mance, required filter length is longer than those of the room transfer functions.

Since the inverse filter H 2(ω) used in the MOMNI method has much longer

impulse responses than those of the room transfer functions. By necessity the

transfer function akL(ω) = ∆gk(ω)H 2(ω)gpri(ω) has long impulse response. Nev-

ertheless, we must use short filter coefficients in a real environment because blind

estimation of long filter coefficients requires long input data which is difficult to

obtain. The use of the short filter coefficients distorts the output signals as a

result of a circular convolution effect. The second problem is difficulty in solv-

ing permutation in this case. Since the transfer functions corresponding to the

response sound, i.e., ∆gk(ω)H 2(ω)gpri(ω), have no specific directivity, the per-

mutation solution based on directivity is insufficient. For these reasons, we cannot

expect that this integration of BSS and the MOMNI method will perform as well

as the ordinary BSS.

5.2.3 Semiblind source separation

In the previous section, we have discussed combination of the MOMNI method

and BSS where the response sound is dealt as an unknown signal, and shown

its insufficiency. In this section, we propose a new semiblind source separation

(SBSS) which separates sources from mixture of known and unknown sources

efficiently utilizing information of known source. We give information of known

source by inputting the known source directly into to ICA.

Configuration of SBSS is shown in Fig. 32. To separate L sources, ICA re-

quires L mixed reference signals, which are L observed signals in ordinary BSS.

However in this case, we can use sL(ω) directly as one of the reference input sig-
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nals combined with L − 1 observed signals. Such input signals can be described

by the substitution

aLk(ω) =

{
0 for k = 1, . . . , L − 1,

1 for k = L,

and

xL(ω) = sL(ω), (86)

in Eq. (77). Since the L-th input signal sL(ω) is already separated, it should be

outputted without any modification, i.e.,

yL(ω) = xL(ω) = sL(ω). (87)

Thus, the L-th row wL(ω) of the separation filter W (ω) should be fixed as

wLl(ω) =

{
0 for l = 1, . . . , L − 1,

1 if l = L.
(88)

Since wL(ω) is fixed, the components W̄ (ω) in W (ω) to be updated is the

(L − 1) × L truncated submatrix

W̄ (ω) = [wlk(ω)]lk for l = 1, . . . , L − 1, k = 1, . . . , L

= [I L−1,0L−1]W (ω), (89)
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where 0i denotes i-dimensional column zero vector. As derived in Appendix A,

independence among y(ω, t) can be improved by the following updating formula;

W̄ (ω) ← W̄ (ω) − η
{
W̄ (ω) − ⟨Φ(ȳ(ω, t))yH(ω, t)⟩tW (ω)

}
, (90)

where

ȳ(ω) = [y1(ω), . . . , yL−1(ω)]T. (91)

The fix of wL(ω) has many advantages over conventional BSS. First, with the

constraint that the component due to sL(ω) is fixed to outputted from yL(ω),

we need not solve the permutation for yL(ω) but for only the remaining L − 1

outputs. Second, giving part of the answer yL(ω) = xL(ω) makes the problem

easier and helps the avoidance of local minima in the nonlinear optimization. In

addition, SBSS has advantage in the length of the separation filter. Though BSS

is a problem to obtain a beamformer, SBSS eliminates the component due to

sL(ω) in yl(ω) for l = 1, . . . , L − 1 by obtaining opposite phase of mixture just

like AEC. Thus required filter length becomes shorter.

Since ICA in SBSS exploits higher-order statistics, more information from

training samples is extracted compared with correlation analysis Eq. (6). Thus,

with limited length of training samples, SBSS outperforms AEC. The proposed

SBSS is equivalent to the complex extension of the instantaneous nonblind source

separation proposed in [JMM01]. Extension to convolutive separation problem is

already proposed in [POL03] and [ES07] in the form of TD-ICA. However, it is

known that FD-ICA is superior to TD-ICA to deal with long impulse response,

which is the case in speech application. In addition, as discussed above, we

have investigated that the extension to FD-ICA has an advantage to overcome

permutation problem, which is one of the most significant weakness of FD-ICA.

The advantage of SBSS discussed above is important especially when com-

bined with the MOMNI method. As discussed in Chapter 5.2.2, the long impulse

response of akL(ω) = ∆gk(ω)H 2(ω)gpri(ω) requires BSS to have extremely long

filter coefficients. Since the required filter length in SBSS is shorter than BSS,

the separation works sufficiently. In addition, difficulty in solution of permutation

caused by no specific directivity of the MOMNI method can be solved by the fix

of the output of the known source. Thus, by combining the MOMNI method and

SBSS, the sound elimination before the microphone by the MOMNI method and
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adaptation by ICA coordinate successfully, and robust speech recognition in the

high quality sound presentation can be realized.

5.2.4 Computational complexity and sound quality

I have discussed that the computational complexity of the MOMNI method is

lower than that of the AEC at the sacrifice of the cost of multiple loudspeak-

ers. However, the computational cost in the adaptation of ICA is much larger

than those of the AEC and the ABF, and requires (the number of the frames)×
(the number of the microphones) × (the number of the output signals) for an it-

eration in a frequency bin. In addition, update of the filter has long latency, and

to implement real-time BSS, an older filter than the current update should be

used in the separation. Since a certain length of the reference signals are required

for an efficient performance, the filter should be updated in batch-wise manner

once every certain time, e.g., three seconds.

The MOMNI method combined with ICA plays an important role to cover

the late learning and large computation of ICA. When the convergence of ICA

is insufficient, the MOMNI method designed in advance eliminates the response

sound with a certain performance. Thus the MOMNI method covers the above-

mentioned late learning of ICA and degraded performance of ICA by the reduced

iteration number for a real-time implementation. In addition, semi-blind struc-

ture reduces computation of BSS because of the reduced number of the output

signals; output of the known response sound is not required.

As for the quality of the response sound, the output response sound is the

same as that of the MOMNI method because the signal processing after the

observation does not affect the loudspeaker output. As examined in Chapter 3.6,

the quality outside the control point slightly degrades but it is not problematic

for the spoken dialogue system.

5.3 Experiments without interfering noise

5.3.1 Experimental conditions and competitive methods

In this section, to validate robustness of the proposed combination of MOMNI

method and SBSS to eliminate the response sound, we conduct an experiment un-
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Figure 33. Layout of the acoustic environment room when there is no other noise

than the response sound.

der existence of the response sound and the user’s utterance, without interfering

noise. Here we describe the competitive methods. As the conventional methods,

we evaluate performances of two kinds of AECs. The first AEC (AEC1) is the

AEC adapted by the adaptation Eq. (6) without DTD, to investigate importance

of DTD. The second AEC (AEC2) is a kind of performance limit of the AEC us-

ing ideal DTD. By giving the true single talk by setting threshold to the power of

the source which is unknown in fact, we imitated an ideal behavior of DTD. The

detection and adaptation is conducted in time-frequency domain. Details of its

adaptation is described in Appendix B.1. In addition, conventional the MOMNI

method with DS beamformer (MOMNI+DS) is evaluated. To investigate su-

periority of SBSS to BSS and effectiveness of the integration with the MOMNI

method, the performances of BSS and SBSS are evaluated in the playback of the

response sound both with the single loudspeaker (BSS and SBSS) and with the

MOMNI reproduction (MOMNI+BSS and MOMNI+SBSS).

The impulse responses used in this experiment are measured in an acoustic

experimental room, where the reverberation time is approximately 160 ms. Figure

33 shows the arrangement of the apparatuses. Sampling frequency and resolution
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are 16 kHz and 16 bit, respectively. Eight loudspeakers used in the sound field

control of the MOMNI method are positioned along the outer circumference of the

room. The primary sound source of sound field reproduction is a loudspeaker set

in the center of the room. This loudspeaker is also used to play back the response

sound in AEC1, AEC2, BSS and SBSS methods. As shown in Fig. 33, we place a

dummy head, which is a replica of an average human head and torso, at the user’s

position. For the AECs, the power of the user’s speech and the response sound

are arranged to be the same. For BSS and SBSS, the power balances are similarly

determined. However, for the methods with sound field control of the MOMNI

method, i.e., MOMNI+DS, MOMNI+BSS and the proposed combination, the

proportion of power cannot be determined in the same manner. Since the response

sound is intended to be presented to the user, its volume of necessity depends on

the power to reach the user’s ears. Thus we arrange the power of the response

sounds to be the same as the AECs at the user’s ears, and the user’s speech

to be the same as the AECs. For the AECs and the ICAs, we use filter with

2048 taps. The length of the training data to adapt their filters is 5 seconds.

The passband range of the response sound is set to 150–4000 Hz. For the ICAs

used in BSS and MOMNI+BSS, the interelement spacing is 6 cm. For the DS

used in MOMNI+DS, the interelement spacing is 30 cm. BSS, MOMNI+DS

and MOMNI+BSS use two microphone elements while the other methods use

single microphone. All BSS-based methods use the permutation solver proposed

in [SMAM03].

When the room transfer functions do not alter from the state where the inverse

filter was designed, the performance of the MOMNI method is almost perfect.

However, since the transfer functions fluctuate at all times, the performances

should be evaluated in the state after fluctuations. To this end, we located an

obstacle and we measured various impulse responses by changing its position.

Assuming that another person than the user is moving about in the room, we

used a life-size mannequin as the obstacle. We measured 13 kinds of impulse

responses as follows: one is for the state where the obstacle does not exist, and

the other 12 are for the states where the obstacle is located at various positions

near the dialogue system. The inverse filter in the MOMNI method was designed

with the impulse responses before fluctuation, and we evaluated the average of
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Figure 34. The relationship between the threshold and the rate of time-frequency

grids to be judged as single-talk. The horizontal axis shows the rate of the number

of whole the grids and the number of the grids where the power ratio of the

response sound to the user’s speech exceeds. The power balance between the two

signals is even at the microphone. The scores are averaged over 200 sentences of

the user’s speech and 12 fluctuations.

the performances in the latter 12 states after fluctuations. We used a sentence

of a male utterance as the response sound. As the user’s utterance, we used

200 sentences spoken by 13 male and 13 female selected from JNAS database

[IYT+99]. The performances are also averaged by these 200 utterances.

Here we describe behavior of the ideal DTD used in AEC2. There is trade-off

between the quality and the quantity of the training data selected by the DTDs

used in AEC2. To obtain training data with higher SNR for the adaptation,

threshold of the detection must be set higher. However, the high threshold re-

jects many data and causes shortage of training data. We show the relationship

between the threshold and the rate of single-talk time-frequency grids detected

by the DTD in Fig. 34. In this experiment, the highest performance is achieved

with the threshold of 15 dB among 5, 10, 15, 20 and 25 dB. Therefore in the

following discussion, we show the results with 15 dB of the threshold for AEC2.

71



5.3.2 Performance evaluation of response sound reduction

We evaluate signal-to-noise ratios (SNRs) of the observed signals (observed SNRs)

and the processed signals (processed SNRs) for each of the compared methods.

The results are shown in Fig. 35. These SNRs are merely the power ratios of the

user’s speech and the other signals:

SNR = 10 log10

∑
ω |yuser(ω)|2∑

ω |y(ω) − yuser(ω)|2
[dB], (92)

where y(ω) is the observed or processed signal, and yuser(ω) is the component due

to the user’s speech in y(ω). Consequently, it should be noted that these scores

are not influenced by distortions of the spectra. To evaluate the performances of

the sound field control and the signal processing after observation, we evaluated

the SNRs of both the observed signals and the processed signals.

Because AEC1 is adapted to short reference signal without DTD, its perfor-

mance is quite low. Although AEC2 is adapted to the room transfer functions,

its performance is limited within almost the same level of MOMNI+DS without

adaptation because of the shortage of single-talk components. The performance

of BSS is the worst. It is well known that the separation mechanism of BSS is

based on beamforming [AMM+03]. Because the user, the microphone array and

the loudspeaker all fall on the same straight line in this experiment, it is difficult

for beamformers to separate the response sound and the user’s speech well. Since

the separation mechanism of SBSS is based on AEC but on the beamformer,

such a positioning is of little significance and the performance is as good as AECs

despite no use of DTD. However, the improvement of the processed SNR from

the observed SNR, i.e., effective improvement by the DS beamformer is not very

high. In MOMNI+BSS, the improvement of the SNR is lower than the DS beam-

former. This is because the permutation alignment is difficult, as discussed in

Chapter 5.2.2. In contrast, in the proposed combination of the SBSS and the

MOMNI method, the SBSS sufficiently eliminates the residual response sound of

the MOMNI method. Consequently the highest performance is achieved by the

proposed combination.
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Figure 35. Comparison of observed SNRs without interfering noise. The SNRs

are evaluated both for the observed signals and the processed signals. The score

is averaged over 200 sentences of the user’s speech and 12 fluctuations.

5.3.3 Assessment of distortion

In this section, we assess the quality of the enhanced speech signal. We apply

CD shown in Eq. (48) as an evaluation score. The reference is the component

of user’s speech in the observed signal without mixture of the other components,

and distortion is evaluated for the processed signal of this signal without the

mixture. Therefore, in contrast to the SNR, this score indicates the distortion of

signal processing but is not affected by elimination error.

Since the AEC1, AEC2, SBSS and the proposed combination do not modify

the component of the user’s utterance, the processed signals are not distorted and

their CDs are zero. Although the DS beamformer in MOMNI+DS modifies the
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Figure 36. Comparison of CDs without interfering noise. The signal component

of user’s speech in the observed signal without mixture of the other component

is used as reference signal. The CDs evaluate how much the reference signal is

distorted by signal processing. The scores are averaged over 200 sentences of the

user’s speech and 12 fluctuations.

user’s speech, its effect is not problematic for speech enhancement. Thus the CD

of the conventional MOMNI method with the DS beamformer is low. However,

we can see that for BSS and MOMNI+BSS, their outputs are distorted. It can

be said for both of them that the permutation distorts their outputs. In addition,

as for MOMNI+BSS, the circular convolution effect induces further distortion as

discussed in Chapter 5.2.2.
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Table 8. Experimental conditions for speech recognition

Test data JNAS [IYT+99]

Frame length 25 msec (Hamming window)

Frame interval 8 msec

Feature vector 12 MFCCs, 12 ∆MFCCs, ∆power

Language model Newspaper dictation [IYT+98]

Phoneme model Phonetic Tied Mixture (PTM) [LKTS00]

with known noise imposition [YLSS03]

Decoder Julius ver. 3.5.1 standard [LKK01]

5.3.4 Speech recognition experiment

The effect of response sound elimination is evaluated using a large-vocabulary

continuous-speech recognition task. To evaluate the speech recognition perfor-

mance, we adopt WA as an evaluation score, which is given by Eq. (47). Table

8 lists the experimental conditions for speech recognition. Figure 37 shows

the WAs with all the combinations. The speech recognition performances are

affected by both elimination performance and distortion. All the WAs are pro-

portional to the processed SNRs except the methods with high distortion, i.e.,

BSS and MOMNI+BSS. For BSS and MOMNI+BSS, their speech recognition

performances are heavily degraded by the distortion. Because of the high elim-

ination performance without distortion, the proposed combination of the SBSS

and the MOMNI method shows the highest speech recognition performance and

the value is close to the upper limit.

5.4 Experiments in noisy environments

5.4.1 Experimental conditions and competitive methods

To validate the elimination performance of both the response sound and inter-

fering noise, we compare the speech enhancement performances in noisy environ-

ments between the proposed combination (MOMNI+SBSS) and conventional

methods, i.e., two kinds of AEC-integrated ABF, BSS, SBSS, MOMNI+DS,

and MOMNI+BSS. The ABF is adapted using ideal DTD after echo cancella-
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Figure 37. Comparison of WAs of the processed signals without interfering noise.

The scores are averaged over 200 sentences of the user’s speech and 12 fluctua-

tions. The broken line shows upper limit in the room.

tion with the two kinds of AECs in Chapter 5.3 (AEC1+ABF and AEC2+ABF).

The detail of the adaptation is described in Appendix B.2. Figure 38 shows the ar-

rangement of the apparatuses. Apparatuses are similar to those in Fig. 33 except

for the existence of interfering noise at an edge of the room. For AECs and ICAs,

we use filter length of 2048 taps. The length of the training data to adapt their

filters is 5 seconds. AEC uses single microphone. AEC+ABF, SBSS and the pro-

posed combination use two microphone elements while BSS and MOMNI+BSS

use three microphone elements, and their interelement spacings are about 3 cm.

MOMNI+DS uses three microphone elements with interelement spacing of about

26 cm. The length of the training data to adapt each of the adaptive filters and

ICAs is 5 seconds. All BSS-based methods use the permutation solver proposed

in [SMAM03].
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Figure 38. Layout of acoustic environment room when there is interfering noise.

The power balances of the user’s speech and the response sound are set in the

same manner as discussed in Chapter 5.3. The power of the interfering noise is

arranged to be 10 dB lower than that of the user’s speech. As interfering noise, we

used three signals, i.e., a female utterance, music (a symphony), and stationary

noise with −10 dB/octave spectral coloration.

We show the rates of the time-frequency grids detected as single talk by DTD1

for the AEC2 and DTD2 for the ABF in Figs. 39 and 40, respectively. As can

be seen in Fig. 39, the order of the sparseness is from female utterance, music to

stationary noise. Therefore, for the adaptation of the AEC2, the most single-talk

grids of the response sound can be find in the noise of female utterance. However,

in contrast, Fig. 40 shows that the single-talk of the female utterance grids for

the ABF adaptation are fewest because of the sparseness. In average of these

three noises, the best performance was achieved with T (ω) = 15 dB. Therefore,

we use this value in the following discussion.

The other conditions are similar to those of the experiments in Chapter 5.3.
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Figure 39. The relationship between the threshold T (ω) for DTD1 and the rate

of time-frequency grids to be judged as single-talk. The horizontal axis shows

the rate of the number of whole the grids and the number of the grids where the

power ratio of the response sound to the other signals exceeds T (ω). The powers

of the user’s speech and the response sound is equal and those of the interfering

noises are 10 dB lower. The scores are averaged among 200 sentences of the user’s

speech and 12 fluctuations.

5.4.2 Performance evaluation of noise reduction

Similarly to the experiment discussed in Chapter 5.3.2, we evaluate the SNRs of

the observed and the processed signals to assess the reduction performance of the

response sound and the interfering noise. The observed and processed SNRs are

shown in Figs. 41 and 42, respectively.

Since the power of the interfering noises are −10 dB, the observed SNRs of

the methods with sound field control are around 10 dB. Otherwise, the observed

SNRs of the other methods are under 0 dB.

For the AEC and MOMNI+DS, the processed SNRs cannot reach the suffi-

cient level because they have no effective mechanism for eliminating the interfering

noise. We can confirm that SBSS can adapt well even in noisy environment. Al-

though the processed SNR of AEC+ABF and SBSS are similarly high, it should

be noted that such precise DTDs used in AEC+ABF cannot be implemented in
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Figure 40. The relationship between the threshold T (ω) for DTD2 and the rate

of the time-frequency grids to be judged as single-talk. The DTD2 detects the

single-talk time frequency grids of the interfering noise in the processed signals

of the AEC with DTD1. The thresholds of DTD1 and DTD2 are equal. The

horizontal axis shows the rate of the number of whole the grids and the number

of the grids where the power ratio of the interfering noise to the other signals

exceeds T (ω). The powers of the user’s speech and the response sound is equal

and those of the interfering noises are 10 dB lower. The scores are averaged

among 200 sentences of the user’s speech and 12 fluctuations.

practice while SBSS requires no DTD. The performance of MOMNI+BSS is lower

than those of AEC+ABF and SBSS. The improvement of SNR is more consid-

erable in the proposed combination of SBSS and the MOMNI method compared

with all of the competitive methods, which shows the best processed score.

5.4.3 Assessment of distortion

To evaluate the distortion occurring in each signal processing, we compare the

CDs in the same manner as described in Chapter 5.3.3. The results are shown

in Fig. 43. While BSS and MOMNI+BSS have high distortion, the distortion of

the other methods is not problematic.

79



MOMNI+S
BSS

(P
ro

po
se

d)

: Stationary noise: Music: Male utterance
Type of interference

-2

0

4

6

8

10

12

O
bs

er
ve

d 
S

N
R

 [d
B

]

AEC2+
ABF

AEC1+
ABF

BSS
SBSS

MOMNI+D
S

MOMNI+B
SS

2

Figure 41. Comparison of observed SNRs for three kinds of interfering noises. The

scores are averaged among 200 sentences of the user’s speech and 12 fluctuations.

5.4.4 Speech recognition experiment

To assess the efficacy of the proposed combination under the existence of the

response sound and interfering noise, we evaluate its speech recognition perfor-

mance. The experimental conditions are similar to those discussed in Chap-

ter 5.3.4. The results are shown in Fig. 44.

The results are almost proportional to those in Fig. 37. We can say that the

performance of SBSS is very high because, despite no use of DTD, the SBSS

achieves close performance to AEC2+ABF using ideal DTDs. Although the pro-

posed combination has slightly more distortion than AEC2+ABF, the WA of the

proposed combination is the highest because of the remarkably high processed
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Figure 42. Comparison of processed SNRs for three kinds of interfering noises.

The scores are averaged among 200 sentences of the user’s speech and 12 fluctu-

ations.
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Figure 43. Comparison of CDs for three kinds of interfering noises. The signal

component of user’s speech in the observed signal without mixture of the other

components is used as reference signal. The CDs evaluate how much the reference

signal is distorted by signal processing. The scores are averaged among 200

sentences of the user’s speech and 12 fluctuations.
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Figure 44. Comparison of WAs of the processed signals for three kinds of inter-

fering noises. The scores are averaged among 200 sentences of the user’s speech

and 12 fluctuations. The broken line shows upper limit in the room.

SNR. In summary, these results can provide the convincing evidence that our

proposed strategy (combination of sound field control and SBSS) is more bene-

ficial to the barge-in- and noise-robust spoken dialogue system in comparison to

possible conventional speech enhancement methods.

5.5 Conclusion

This chapter mainly addressed the problem on improvement of robustness in a

spoken dialogue system. To improve the performance of the conventional MOMNI

method using sound field control and a DS beamformer, we proposed to combine
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the MOMNI method with SBSS by extending conventional BSS. By inputting

known response sound signal directly to ICA, SBSS can separate the user’s speech

from the response sound and interfering noise without DTD. Because of the sim-

plification of permutation solution and decrease of the required filter length, the

possible drawbacks in SBSS are mitigated in comparison to conventional BSS.

By replacing a DS beamformer with SBSS, the MOMNI method achieves both

more robustness and ability of noise reduction.

In the experiment without interfering noise, the proposed combination showed

higher speech recognition score than AEC adapted under an ideal condition. Thus

it is revealed that the proposed combination can eliminate the response sound

with high accuracy. Also in the experiment with interfering noises, the proposed

combination showed higher performance than a combination of AEC and ABF

adapted under an ideal condition. The proposed combination can reduce both

the response sound and interfering noise regardless of the double-talk. From these

findings, the efficacy of the proposed combination is confirmed for the interface

of a barge-in- and noise-robust spoken dialogue system.
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6. Conclusion

6.1 Thesis summary

In this dissertation, I described a hands-free interface for a spoken dialogue system

using sound field reproduction and source separation. The proposed framework is

easier to implement in a real-time system than the conventional methods based on

adaptive filters, because the proposed framework excludes double-talk detection

(DTD).

In Chapter 1, I introduced the background of this research, and briefly de-

scribed the basic concept of the dissertation.

In Chapter 2, I reviewed optimal solution of the adaptive signal processing

for acoustic echo canceller (AEC) and adaptive beamformer (ABF), and pointed

out the inherent problem of the DTD.

In Chapter 3, to eliminate the response sound of the spoken dialogue system

with a fixed filter, I proposed a new combination of sound field reproduction

and a beamformer, named the multiple-output and multiple-no-input (MOMNI)

method. By reproducing the response sound at the user’s ears and silent sig-

nals at the microphones, high-presence response-sound reproduction and robust

elimination of the response sound are realized simultaneously. Since the effect

of the error caused by the fluctuation of room acoustics is dispersed to multiple

channels, the MOMNI method achieves high robustness through increased num-

bers of loudspeakers and microphones. With sufficient numbers of loudspeakers

and microphones, the proposed method achieves satisfactory robustness against

fluctuation. In the experiment, the MOMNI method performed over 20% bet-

ter than the conventional AEC in word accuracy using 24 loudspeakers and four

microphones.

In Chapter 3, by removing strict reproduction at the user’s ears from the

MOMNI method, I proposed a small-scale version of sound field control to elim-

inate the response sound at the microphones. The MOMNI method requires

many loudspeakers to achieve robust elimination, and its performance degrades

when the number of loudspeakers is insufficient because of the large condition

number of the inverse filter. To address the problem, I proposed a new filter

design method by exploiting the nullspace of the transfer system, refered to as
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nullsapce-based sound field control (NBSFC). The NBSFC is more robust than

elimination based on the MOMNI method when the number of the loudspeakers

is small. In the experiment, the NBSFC performed 15% better than the AEC

and the MOMNI method with five loudspeakers.

In Chapter 5, I proposed a new semiblind source separation (SBSS) to sepa-

rate both known and unknown noise efficiently, and combined it with the MOMNI

method. To realize adaptation without DTDs, I adopted independent component

analysis (ICA). ICA is generally used for unsupervised adaptation of the beam-

former. For the efficient separation of noise from its known source, SBSS exploits

the known source as a reference signal. In addition, the unknown sources are

separated in parallel with the known-noise separation. SBSS is effective for sep-

arating the residual response sound in the MOMNI method with a long impulse

response and no specific directivity. Thus, SBSS can reinforce the response sound

elimination by the MOMNI method and even reduces unknown noise. In the ex-

periment, the performance of the proposed combination was compared with the

ideal behavior of the combination of AEC and ABF. As a result, the proposed

combination was found to perform 10% better in word accuracy than the perfor-

mance limit of AEC and ABF.

6.2 Application

Above-discussed new framework combining sound field control and unsupervised

noise reduction realizes noise-robust spoken dialogue system. For settled spoken

dialogue system which does not require the high-fidelity reproduction such as

guidance systems at community centres, the combination of the NBSFC and

SBSS satisfies a robust hands-free spoken dialogue interface efficiently.

In car-navigation system, the combination of the MOMNI method and SBSS

meets the demands. To avoid accidents, most of the car navigation systems reject

the manipulation when the cars are running. A hands-free spoken dialogue system

can avoid such risk. Thus car navigation is one of the most important application

of the hands-free spoken dialogue system. In addition, the reproduction of the

MOMNI method can reproduce music of car stereo with high fidelity and removes

its affect on the speech recognition performance. In this situation, the limitation

of the reproduction area is not problematic because the user is always sitting on
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the seats.

Another important application of the spoken dialogue system is robot. Speech

dialogue is desirable for the manipulation of the robots to assist the user in many

situations. We can apply the proposed framework to robots by setting multiple

loudspeakers on the robot. Although the robot cannot carry many loudspeakers,

this situation may require only few loudspeakers because the microphones can be

set close to the loudspeakers and the effect of the reverberation is not sufficient.

This should be examined in the future research.

In addition, duplex virtual reality of sound realized by the proposed framework

also has wide application, for example, remote communication, remote commu-

nication, tele-presence, or entertainment such as computer games.

6.3 Future research

Although I evaluated the performances in only an acoustic environmental room

in this dissertation, each of the situation in a particular application could have

unique problems and the performance for each of the application should be eval-

uated. In in-car application, the required number of the loudspeakers is expected

to be small because of the low reverberation in a small capacity of a car cabin. In

addition, the current car interior already has about ten loudspeakers. However,

their irregular positioning may degrade the performance.

Also in robot application, the performance should be examined to reveal the

expected reduction of the number of the loudspeakers as discussed above. An-

other problem of the robot application is the effect of the interior noise caused

by machinery of the robot. Application of SBSS with additional sensors for ob-

servation of the interior noise is also an interesting topic.

Another remaining issue is the robustness of the sound field reproduction

against change of the user’s position. In sound field reproduction of the MOMNI

method, the robustness of the reproduction against the user’s movement must

be improved. Similarly to the NBSFC in this dissertation, the nullspace of the

transfer system does not affect sound at the the ears of a user in a fixed position.

Utilizing this feature, the simultaneous realization of two sound reproductions

at a fixed position and in the area outside the fixed position can be realized.

For the reproduction of binaural recording composed of two components, the

87



members of the Speech and Acoustics Laboratory and I have already proposed

a system based on this idea [MST+06]. Now one of the master’s students in

the Laboratory is working on the problem with an arbitrary number of sources.

In his preliminary experiment, a subjective assessment of the sound localization

indicated good impressions even outside the sweet spot. The problem in the

source separation is the real-time and online adaptation of ICA. This is a common

challenge of almost all methods based on ICA.
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Appendix

A. Derivation of Update Formula

Making y1(ω, t), . . . , yL(ω, t) mutually independent is equivalent to minimizing

Kullback-Leibler divergence IKL(ω) between the joint probability distribution

p (y(ω, t)) and the product of marginal probability distributions
∏L

l=1 p (yl(ω, t))

[ACY96, Sma98], where IKL(ω) is described as

IKL(ω) =

∫
p (y(ω, t)) log

p (y(ω, t))∏L
l=1 p (yl(ω, t))

dy(ω, t)

= E [log p (y(ω, t))]t − E

[
L∑

l=1

log p (yl(ω, t))

]
t

. (93)

The partial differential of IKL(ω) by W̄ (ω) can be written as

∂IKL(ω)

∂W̄ (ω)
=E

[
∂

∂W̄ (ω)
log p (y(ω, t))

]

−

[
∂

∂W̄ (ω)

L∑
l=1

log p (yl(ω, t))

]
t

. (94)

The first term in the right side of Eq. (94) can be written as

∂ log p (y(ω, t))

∂W̄ (ω)
=

∂

∂W̄ (ω)
log

(
p (x (ω, t))

|J(ω)|

)
=

∂

∂W̄ (ω)
{log (p (x (ω, t))) − |det [W (ω)]|}

= − ∂

∂W̄ (ω)
|det [W (ω)]| , (95)

where “det” denotes the determinant and J (ω) denotes the Jacobian of the vari-

able transform from x (ω, t) to y(ω, t). Here, the following relation is well known:

∂ log p (y(ω, t))

∂W (ω)
= W −H(ω), (96)

where {·}−H denotes the inversion of the conjugate transposition. Since the differ-

ential ∂/∂W̄ (ω) is a truncated submatrix of ∂/∂W (ω), The following condition
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satisfies:
∂

∂W̄ (ω)
= [I L−1,0]

∂

∂W (ω)
, (97)

where 0 denotes the zero vector. Substituting Eq. (97) in Eq. (96) obtains

∂ log p (y(ω, t))

∂W̄ (ω)
= [I L−1,0]W −H(ω) (98)

Also for the second term in Eq. (94), the following approximation is proposed in

[SMAM03];

∂

∂W (ω)

L∑
l=1

log p (yl(ω, t)) = Φ(y(ω, t))xH(ω, t). (99)

Substitution of Eq. (97) in Eq. (99) obtains

∂

∂W̄ (ω)

L∑
l=1

log p (yl(ω, t)) = Φ(ȳ(ω, t))xH(ω, t). (100)

Substituting Eqs. (98) and (100), Eq. (94) can be rewritten as

∂IKL(ω)

∂W̄ (ω)
= E

[
[I L−1,0]W −H(ω) − Φ(ȳ(ω, t))xH(ω, t)

]
t

= [I L−1,0]W −H(ω) − E
[
Φ(ȳ(ω, t))xH(ω, t)

]
t
. (101)

By applying the natural gradient of W (ω) [ACY96], the update of W̄ (ω) can be

written as

W̄ (ω) ← W̄ (ω) − η
∂IKL(ω)

∂W̄ (ω)
W H(ω)W (ω)

= W̄ (ω) − η
{
W̄ (ω) − E

[
Φ

(
ȳ(ω, t)

)
yH(ω, t)

]
t
W (ω)

}
. (102)

Assuming the ergodicity of the sources, the expectation can be substituted by

the time average and the update formula Eq. (90) is obtained.
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B. AEC and ABF with Ideal DTD Used in Ex-

periments in Chapter 5

In this section I describe the adaptation of AEC2 and ABF in the experiments.

The configuration of the combination of AEC2 and ABF is shown in Fig. 45.

B.1 AEC with ideal DTD

Here I describe the adaptation of AEC with ideal frequency-domain DTD used

in the experiments. The filter coefficient ĝ(ω) can be estimated using frequency-

domain batch adaptation with the ideal frequency-domain DTD. Since the human

speech is sparse in time-frequency domain, there are many time-frequency grids

where the response sound is much larger than the user’s utterance. Therefore,

by finding them with frequency-domain DTD, AEC can be adapted in frequency

domain even if there is no full-band single-talk duration of the response sound.

Assuming a DTD works without error, I give the AEC2 the durations t ∈ T (ω)

when the power ratio of the response sound and the user’s speech exceeds the

threshold T (ω) as

t ∈ T (ω) if
|g(ω)rsrc(ω, t)|2

|xnoresp(ω, t)|2
> T (ω), (103)

where xnoresp(ω, t) denotes the observed signal component of the user’s utterance.

It should be noted that such an accurate DTD without error cannot be imple-

mented in real world; this corresponds to ideal DTD for the AEC. Using the result

of DTD, the filter is adapted by frame-analysis version of Eq. (6) as

ĝ(ω) = −

〈
d(ω, t)r∗src(ω, t)

〉
t∈T (ω)〈

|rsrc(ω, t)|2
〉

t∈T (ω)

. (104)

This corresponds to a batch learning, and is more robust than on-line learning

methods. Using this batch learning and the ideal DTD, I evaluate the perfor-

mance limit of the AEC of DTD framework.
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Figure 45. Configuration of the adaptation of the AECs and ABF using ideal

frequency-domain DTDs.

B.2 Combination of AEC and ABF using ideal DTDs

Here I describe the combination of the AEC and the ABF using ideal DTDs. As

the adaptation algorithm of ABF, I adopt the minimum variance ABF [Fro72].

Since the minimum variance ABF is a batch adaptation algorithm, it consis-

tently outperforms on-line adaptation algorithms like generalized sidelobe can-

celler [GJ82]. Combined with ideal DTDs, the performance limit of the supervised

adaptation based on AEC and ABF can be evaluated. First, I obtain processed

signals of AEC yAEC(ω, t) = [yAEC1(ω, t), . . . , yAECK(ω, t)]T for each of the K

microphone elements k = 1, . . . , K. Then, to distinguish the single-talk of the

interfering noise in yAEC(ω, t), an ideal DTD for ABF (DTD2) detects the times

t ∈ T2(ω) when the power ratio of the component of the interfering noise and the

other components exceeds a threshold T (ω), similarly to Eq. (103). A covariance

matrix RAEC(ω) of AEC outputs yAEC(ω, t) in t ∈ T2(ω) can be obtained as

RAEC(ω) = ⟨yAEC(ω, t)yH
AEC(ω, t)⟩t∈T2(ω). (105)

Finally, the optimal wABF(ω) is obtained by applying the adaptation in Eq. (15)

to RAEC(ω) as

wABF(ω) =
qH(ω)R−1

AEC(ω)

qH(ω)R−1
AEC(ω)q(ω)

. (106)
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