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Abstract

Many natural language processing (NLP) tasks involve multiple inputs and/or

outputs, which are strongly correlated to each other. We call such problems

“interdependent decision problems (IDPs)” since the decisions on outputs should

be interdependent to each other. In this thesis, we focus on three typical IDPs

in NLP and investigate discriminative learning methods for these problems.

The first IDP is sentence selection, which is the process of selecting sen-

tences from a document according to some criterion. Sentence selection is an

IDP in the sense that whether an item is selected depends on other items in the

input set and cannot be decided only from the features of the item. In Chapter

2, we proved that selection problem can be converted into classification problem.

Then a new learning algorithm, Selection SVM, is proposed to solve successive

selection problems. Experimental results on an artificial dataset and a sentence

selection dataset are also reported.

The second IDP is multi-topic text categorization, which is a labeling

process of assigning all (possibly multiple) relevant topics to a text. Multi-topic

text categorization is an IDP decision problem since topics often show strong

correlation among them. In Chapter 3, we address the problem of multi-topic

text categorization. First We propose a new learning algorithm, Maximal Margin

Labeling (MML), and also describe efficient algorithms for MML. MML is tested

on datasets of Web pages, and the results are reported.

The third IDP is sequence tagging, which is a process of assigning a tag

from given tag set to each word in a sequence. Sequence tagging can be called

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0461007, September
20, 2006.
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a structured IDP since it has a chain structure on outputs, which naturally sug-

gests that the correlations with near outputs are much stronger than those with

far outputs. In Chapter 4, we presented an efficient algorithm for computing an

optimal tagging order. Then we proposed a learning algorithm of strategy func-

tion, which predicts best tagging position. The experiments using a real sequence

tagging data are described.

The future works related to the above problems are also discussed.

Keywords:

natural language processing, sentence selection, multi-topic categorization, se-

quence tagging, machine learning, discriminative model
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Chapter 1

Introduction

1. Natural Language Processing and Discrimina-

tive Learning

In recent years, the design of natural language processing (NLP) algorithms has

experienced a drastic paradigm shift from an artistic fine-tuning of elaborate

hand-crafted heuristics to an automatic estimation of naive but massive model

parameters. From a social viewpoint, this is because the cost of computation

has been constantly declining and a lot of electronic linguistic data has become

available due to the spread of personal computers into every aspect of our life.

On the other hand, this is also because NLP researchers came to realize that lan-

guage is such a complex object that we need more complex models and principled

methodologies to adjust them 1.

The parameter estimation is usually done by machine learning algorithms.

Here we use “machine learning” in a broad sense to refer to any method which

estimates model parameters from given training data. Training data can be simply

a set of instances of an interesting linguistic phenomenon or a set of input-output

pairs of a specific NLP task. Given training data, machine learning algorithms es-

timate model parameters by searching parameters which minimize (or maximize)

an objective function of learning.

Corresponding to what is modeled, there are two types of machine learning.

Models of the first type methods are probability distributions which give proba-

bilities that target linguistic phenomena happen. On the other hand, models of

1You can find a similar argument in the preface of [1]
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the second type are deterministic functions whose values are outputs of target

natural language processing. The first models are called “generative models”, and

the second ones “discriminative models”.

Generative models are more general than discriminative models since a pro-

cess with input X and output Y can be modeled as a phenomenon whose joint

probability is Pr(X,Y ), and a discriminative model can be derived from the joint

probability by arg maxY Pr(Y |X). Discriminative models, however, are more spe-

cific to target tasks and then are likely to become much simpler than generative

models. Generally speaking, parameters of simple models can be accurately es-

timated and this is why discriminative models often show better performance on

various NLP tasks than generative models. The model simpleness also implies

that we need only a small number of training data, which is another advantage

for discriminative models since the cost of training data construction is usually

large in NLP. These advantages make discriminative-model-based machine learn-

ing (discriminative learning) quite popular in NLP.

2. Interdependent Decision Problems

NLP tasks often involve multiple inputs and/or multiple outputs. For example,

part-of-speech(POS) tagging, whose goal is to assign POS to words in a sen-

tence, involves multiple inputs (words) and multiple outputs (part-of-speeches).

It is also often the case that such multiple inputs and/or outputs are strongly

correlated. For the case of POS tagging, each POS is strongly correlated to neigh-

bor POS: for example, verbs do not appear after articles. We call the problems

which involves (strongly) correlated inputs and/or outputs “interdependent deci-

sion problems” since the decisions on inputs/outputs are interdependent to each

other.

For interdependent decision problems, it is natural to expect that machine

learning methods can benefit from incorporating the input/output correlations

into the models.

For generative models, however, such incorporation is usually difficult. When

modeling joint probability distributions, one usually assume some dependencies

between input and output variables. In many cases, these dependencies are de-

signed to reflect causal relationships between variables. However, it is often the

case that to capture the causality in linguistic phenomena is very difficult. For

example, it is far from obvious whether the POS of a word is a cause or a result
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of the previous word’s POS.

For discriminative models, situations are quite different since we do not have

to worry about things like what causes what. We can design models more freely

since what we need is a model of process, not phenomenon, and any algorithm

can be a model of process as long as its input and output meet the problem’s

specification.

3. Problems Addressed in This Thesis

In this thesis, we will address the following problems as typical examples of in-

terdependent decision problems.

3.1 Sentence Selection: an Interdependent Input Problem

The goal of sentence selection is to select sentences from a document (i.e, a set

of sentences) according to some criterion. Sentence selection is considered to be

an important step in automatic text summarization [2]. It can be used as a pre-

processor before more elaborated operations such as sentence compaction, or as

a stand-alone process to generate extracts.

Discriminative learning of selection (selection learning) is a learning task in

which the learner attempts to estimate the selection criterion from samples of

the target selection process. More formally speaking, the learner is given samples

of input item (i.e, sentence in sentence selection) sets S and output item sets

T ⊂ S, and then searches a set-to-set function F which approximates well T by

F (S) even for unseen S.

Sentence selection is an example of interdependent decision problem in the

sense that whether an item is selected depends on other items in the input set

and cannot be decided only from the features of the item. Since the dependency

mainly exists among input items, we say that selection learning is an interdepen-

dent input problem.

3.2 Multi-topic Text Categorization: an Interdependent

Output Problem

Multi-topic text categorization is a labeling task whose goal is to assign all rel-

evant topics to a text. Topics should be selected from a given topic set and a

3



single text can have multiple topics. There are many examples of multi-topic text

categorization in real world applications: news companies use multiple topic tags

to classify articles [3]; search engines link multiple categories to a single web page

for directory services [4].

Learning of multi-topic text categorization is a learning task in which the

learner attempts to estimate the labeling rules from samples of text and assigned

topics.

Multi-topic text categorization is an example of interdependent decision prob-

lem since the outputs (i.e, topics) often shows strong positive and negative corre-

lation among them. Since the dependency mainly exists among outputs, we say

that selection learning is an interdependent output problem.

3.3 Sequence Tagging: a Structured Output Problem

The goal of sequence tagging is to assign a tag from given tag set to each word in

a sequence. (We use term sequence in the meaning of word sequence throughout

this thesis.) Many important NLP problems such as token segmentation, part-of-

speech tagging and shallow parsing can be regarded as sequence tagging problems.

The goal of learning of sequence tagging is to estimate tagging rules from

samples of tagged sequences. In some tasks, samples are converted into a form of

tagged sequence before learning. For example, in token segmentation task, whose

goal is to segment a sequence into tokens a segmented sentence is converted into

a character sequence in which each character has a tag indicating whether the

character is at the beginning or end of a token. Using this kind of conversion,

many NLP tasks can be solved as a sequence tagging task.

Sequence tagging is another example of interdependent output problems since

neighbor outputs (i.e, tags) are usually strongly correlated. It also has a chain

structure on outputs, which naturally suggests that the correlations with near

outputs are much stronger than those with far outputs. Thus we say that sequence

tagging is a structured output problem2.

2Since the term “structure” implies dependencies, we omit “interdependent”.
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4. Main Contributions of This Thesis

4.1 Reduction of Selection Problem to Classification Prob-

lem

We proved that selection problem can be converted into classification problem,

thus can be solved by any classifier learning algorithm. This is the first formal

argument found in literatures, which justifies the use of classifier in selection

learning problems. Then a new learning algorithm, Selection SVM, was proposed

to solve successive selection problems. Experiments with an artificial dataset and

a sentence selection dataset showed that Selection SVM performs well compared

to other classifier-based methods and order learning methods.

4.2 Multi-class Classification Method for Multi-topic Cat-

egorization

We proposed a novel learning algorithm, Maximal Margin Labeling, which regards

a set of multiple topics as a distinguished class and circumvents the difficulties

caused by decomposition of multi-topic. Among related studies, this is the first

full non-decompositional approach to multi-topic categorization problem. We

also presented an approximation method in learning and efficient prediction algo-

rithms to overcome the demanding computational cost of MML. In experiments

on a collection of Web pages, MML outperformed other methods including SVM

and showed better generalization.

4.3 Decision Order Learning in Sequence Tagging

First we presented an efficient algorithm for computing an optimal tagging (deci-

sion) order from given tagged sequence and tag classifiers and showed experimen-

tally that even off-the-shelf classifiers can achieve an excellent tagging accuracy

if they are led by a good decision order. Then we proposed a learning algo-

rithm of strategy function, which predicts best position to tag during tagging.

The experimental results showed that the learned strategies achieves much higher

performance than non-learning strategies. The framework of strategy learning is

novel and is not found in related literatures.
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5. Organization of This Thesis

Chapter 2 addresses the problem of sentence selection. First we proved that selec-

tion problem can be converted into classification problem. Then a new learning

algorithm, Selection SVM, is proposed to solve successive selection problems. Ex-

perimental results on an artificial dataset and a sentence selection dataset are also

reported.

In Chapter 3, we address the problem of multi-topic text categorization. First

we propose a new learning algorithm, Maximal Margin Labeling (MML), and also

describe efficient algorithms for MML. MML is tested on datasets of Web pages,

and the results are reported.

Chapter 4 addresses the problem of sequence tagging. First we presented an

efficient algorithm for computing an optimal tagging order. Then we proposed

a learning algorithm of strategy function, which predicts best tagging position.

The experiments using a real sequence tagging data are described.

We summarize this thesis and discuss the directions of future work in Chap-

ter 5.
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Chapter 2

Sentence Selection

1. Introduction

The goal of sentence selection is to select sentences from a document (i.e, a set

of sentences) according to some criterion. Sentence selection is considered to be

an important step in automatic text summarization [2]. It can be used as a pre-

processor before more elaborated operations such as sentence compaction, or as

a stand-alone process to generate extracts.

Discriminative learning of selection (selection learning) is a learning task in

which the learner attempts to estimate the selection criterion from samples of

the target selection process. More formally speaking, the learner is given samples

of input item (i.e, sentence in sentence selection) sets S and output item sets

T ⊂ S, and then searches a set-to-set function F which approximates well T by

F (S) even for unseen S.

This chapter is organized as follows. First we briefly review related works

in sentence selection and selection learning literatures in Section 2. Then the

main problem of this chapter is stated in Section 3. In Section 4, we prove that

selection problem can be converted into classification problem and a new learning

algorithm, Selection SVM, is proposed to solve successive selection problems. In

Section 5, experimental results on an artificial dataset and a sentence selection

dataset are also reported. We summarize the results in Section 6.
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2. Related Works

2.1 Classification

Hirao et al. applied Support Vector Machine (SVM) to sentence selection [5].

Their approach is as follows.

1. Regard selected sentences as positive examples and not-selected ones as

negative examples.

2. Train SVM to discriminate these positive and negative examples.

3. Use the trained SVM as a scoring function to select sentences.

From a practical point of view, this approach has a potential advantage that

one can apply any binary classifier for selection learning as long as the classifier

gives a score of its prediction. It also showed good performance in experiments.

However, it lacks theoretical justification of why classifier can be applied to selec-

tion problems in which items are NOT selected on the basis of their membership

in some category.

2.2 Order Learning

In a sense, a selection process can be identified as a ranking process where the

first selected item is first-ranked, the second selected item is second-ranked and so

on. Under this identification, one can apply order learning methods to selection

learning problems.

Order learning studies can be grouped into two types. The first group is

categorical ordinal regression [6, 7, 5]. The second group is preference learning [8,

9, 10]. We will review these studies in turn.

Categorical Ordinal Regression

Categorical ordinal regression is a regression in which output (response) is a cat-

egorical rank, not a real value [6, 7, 5]. Categorical ranks are categories among

which an order is defined. Thus categorical ordinal regression is essentially clas-

sification although it is called “regression”.

On the other hand, ranks induced by a selection process are not categorical:

the same item can be ranked differently by a selection process if input item sets
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are different. Thus the application of categorical ordinal regression to selection

problem also lacks a theoretical justification as the application of classification

methods does.

Preference Learning

Preference learning is another classification-based method for order learning [10,

8, 9].

In preference learning, a classifier is trained to discriminate correctly ordered

item pairs from wrongly ordered ones. (By “correctly ordered item pairs”, we

mean the pairs in which the first item is ranked higher than the second item.) At

prediction, an optimal ranking is constructed from the predicted preferences [10],

or items are sorted using a scoring function which is a by-product of the learned

classifier [8, 9].

Preference learning methods are designed for relational ranks, not categori-

cal ranks. This makes preference learning theoretically more appropriate to be

applied to selection problems. They, however, have not been applied to sen-

tence selection task as far as we know and therefore their validity in the task is

unknown.

3. Problem Statement

Each past study described in the previous section has its own problem. Hirao et

al.’s classifier-based approach showed good performance in real sentence selection

experiments, but lacks theoretical justification. Preference learning is theoreti-

cally more suitable to selection problems, but has not been applied to sentence

selection task and thus its validity for the task is unknown.

To solve these problems, this study will answer the following questions.

• Is there any theoretical justification for solving selection problem with clas-

sification learning? If the answer is yes, can we construct a better learning

algorithm based on the theoretical discussion?

• What is the best learning methods for sentence selection?

We will address the first question in Sec. 4 and the second one in Sec. 5.
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4. A Large Margin Method for Selection Learn-

ing

4.1 Definitions

Selector

Given a set of finite number of items, X, we define selector as follows.

1. Selector F is a mapping from the set of non-empty subsets of X, {S|S ⊂
X,S ̸= {}}, to an element of X.

2. F (S) ∈ S.

3. For all S, T ⊂ X, if T ⊂ S and F (S) ∈ T , then F (S) = F (T )

The second condition guarantees that a selector outputs an element of the input

set. (This is why we call the function “selector”.) Roughly speaking, the third

condition says that a selector must choose the same element from a set and its

subset. This condition might be easily understood if you interpret that a selector

chooses the “best” item from its input and the “best” item must be the same if

two item sets share the item and one set is the subset of the other.

Order Induced by Selector F

As the above “best” item interpretation may suggest, a selector F naturally

defines an order ≽F on X.

1. x ≻F y ⇔ F ({x, y}) = x

2. x =F y ⇔ x = y

3. x ≽F y ⇔ x ≻F y ∨ x =F y

It is easily proved that ≽F satisfies reflexivity, antisymetricity and transitivity,

thus is a linear order.
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Scoring Function for Selector F

1. Scoring function g for F is a mapping from X to R.

2. g(x) > g(y) ⇔ x ≻F y

Since ≽F is a linear order on X and |X| is finite, there is at least one scoring

function for any selector. (Sort X according to ≽F and assign decreasing real

numbers to the sorted items.)

N-best Selector Induced by Selector F

We (recursively) define a n-best selector Fn induced by a selector F as follows.

(X represents the set of all subsets of X.)

1. N-best selector Fn is a a mapping from X to X .

2. If S is not empty, F1(S) = {F (S)}. F1({}) = {}.

3. For n > 1, Fn(S) = Fn−1(S) ∪ F1(S/Fn−1(S))

It is apparent from the above definition why we call Fn n-best selector; it chooses

the “best” items one by one (the last condition) and outputs the n-best items.

Please note that Fn(S) = S when n ≥ |S|. (|S| is the number of elements in S.)

p-percentile Selector Induced by Selector F

Another kind of selector is p-percentile selector, which chooses the items in the

top p × 100% percentile.

1. p-percentile selector Gp is a a mapping from X to X . 0 < p ≤ 1.

2. Gp(S) = F⌈np⌉(S), where n = |S| and ⌈a⌉ is the smallest integer not less

than a.

Please note that the number of the selected items depends on the input size.
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4.2 Marginalized Selection Probability

If we can learn a scoring function for the target selector well, it is expected that the

selection problem is solved accurately. The learning is not a straight-forward job

since we can not observe scoring function’s outputs directly. Fortunately, however,

one can construct scoring functions if there are enough samples of the selection

problem. We will describe three scoring functions, each of which corresponds to

each selector in the previous section.

Marginalized Selection Probability of Selector F

The marginalized selection probability f(x) is the probability that the selector F

chooses x given an item set S which includes x. 1 That is,

f(x) = Pr{x = F (S)|x ∈ S}. (2.1)

As we will prove soon later, the marginalized selection probability is a scoring

function of the selector F . Hereafter we assume that input items in S are inde-

pendently and identically drawn (i.i.d.) from a probability distribution p(x), and

its size |S| is independently determined by probability distribution Pr{|S| = m}.
Additionally it is assumed that p(x) does not concentrate on particular items and

Pr{|S| = m} decreases rapidly enough as m gets larger, so that a typical S does

not have duplicate members.

Theorem The marginalized selection probability of Eq.(2.1) is a scoring func-

tion of the selector F .

1Marginalized selection probability is a generalization of order statistic [11] for the order
induced by a selector. In our previous work [12], we call the marginalized selection probability
“the conditional distribution of generalized order statistic”. We have changed the name be-
cause we believe that selection-based names and concepts make our discussion much easier to
understand.
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Proof

f(x) = Pr{x = F (S)|x ∈ S}

=
∞∑

m=1

Pr{x = F (S)|x ∈ S, |S| = m}Pr{|S| = m}

=
∞∑

m=1

mC1q(x)m−1 Pr{|S| = m}

=
∞∑

m=1

amq(x)m−1.

Here am = mC1 Pr{|S| = m} and q(x) =
∑

z∈X,x≻F z p(z). Since am is non-

negative and at least one of am is strictly positive, f(x) is a monotonically in-

creasing function of q(x). Thus x ≻F y ⇔ q(x) > q(y) ⇔ f(x) > f(y). 2

Marginalized Selection Probability of N-best Selector Fn

A similar scoring function can be constructed from a n-best selector. First we

define the marginalized selection probability of n-best selector Fn as follows.

fn(x) = Pr{x ∈ Fn(S)|x ∈ S} (2.2)

Theorem The marginalized selection probability of Eq.(2.2) is a scoring func-

tion of the selector F .

Proof

fn(x) = Pr{x ∈ Fn(S)|x ∈ S}

=
∞∑

m=1

Pr{|S| = m}Pr{x ∈ Fn(S)|x ∈ S, |S| = m}

=
n−1∑
m=1

Pr{|S| = m}

+
∞∑

m=n

Pr{|S| = m}Pr{x ∈ Fn(S)|x ∈ S, |S| = m} (2.3)
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Pr{x ∈ Fn(S)|x ∈ S, |S| = m}
= Pr{x ∈ Fn−1(S) ∨ x ∈ F1(S/Fn−1(S))|x ∈ S, |S| = m}
= Pr{x ∈ Fn−1(S)|x ∈ S, |S| = m}

+ Pr{x ∈ F1(S/Fn−1(S))|x ∈ S, |S| = m}

=
n∑

k=1

Pr{x ∈ F1(S/Fk−1(S))|x ∈ S, |S| = m}, (2.4)

where F0(S) ≡ {}. To derive the last equation, we ignore the possibility that S

has duplicate members. 2 Each summand in Eq.(2.4) is equal to

Pr{x ∈ F1(S/Fk−1(S))|x ∈ S}
= Pr{x ∈ F1(S/Fk−1(S)), x ∈ S/Fk−1(S)|x ∈ S}

+ Pr{x ∈ F1(S/Fk−1(S)), x /∈ S/Fk−1(S)|x ∈ S}
= Pr{x = F (S/Fk−1(S)), x ∈ S/Fk−1(S)|x ∈ S}
= mC1m−1Ck−1(1 − q(x))k−1q(x)m−k. (2.5)

The last expression represents the probability that x is the n-th best item.

From Eq.(2.4) and Eq.(2.5), we get

Pr{x ∈ Fn(S)|x ∈ S, |S| = m}

= mC1

n∑
k=1

m−1Ck−1(1 − q(x))k−1q(x)m−k. (2.6)

Eq.(2.6) is a monotonically increasing function of q(x) since the differentiation

with respect to q(x) is positive except at a single point.

d

dq
Pr{x ∈ Fn(S)|x ∈ S, |S| = m}

= m

n∑
k=1

m−1Ck−1{−(k−1)(1−q)k−2qm−k + (m−k)(1−q)k−1qm−k−1}

= m(m−1)
n∑

k=1

{−m−2Ck−2(1−q)k−2qm−k + m−2Ck−1(1−q)k−1qm−k−1}

= m(m−1)m−2Cn−1(1−q)n−1qm−n−1

≥ 0.
2This is consistent with the assumptions about p(x) and Pr{|S| = n}. (See the descriptions

below Eq.(2.1).)
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Here the last equality holds only when q(x) = 0, i.e, x is the “worst” item in X.

From Eq.(2.3) and the monotonicity of Eq.(2.6), fn(x) is also a monotonic

increasing function of q(x). Thus x ≻F y ⇔ q(x) > q(y) ⇔ fn(x) > fn(y), i.e,

fn(x) is a scoring function of F . 2

Marginalized Selection Probability of p-percentile Selector Gp

The last marginalized selection probability, gp(x) corresponds to p-percentile se-

lector.

gp(x) = Pr{x ∈ Gp(S)|x ∈ S} (2.7)

Theorem The marginalized selection probability of Eq.(2.7) is a scoring func-

tion of the selector Gp.

Proof

gp(x) =
∞∑

m=1

Pr{|S| = m}Pr{x ∈ Gp(S)|x ∈ S, |S| = m}

=
∞∑

m=1

Pr{|S| = m}Pr{x ∈ F⌈mp⌉(S)|x ∈ S, |S| = m}

As proved above, Pr{x ∈ F⌈mp⌉(S)|x ∈ S, |S| = m} is a monotonically increasing

function of q(x). Thus gp(x) is a scoring function. 2

Examples of Marginalized Selection Probability

Figure 2.1 shows examples of marginalized selection probability. The probabilities

are numerically computed using a selector, one of whose scoring functions is shown

in Figure 2.2. We used the uniform distribution over [−2, 2] as the distribution

of x and fixed size inputs (|S| = 5). It is observed that all the marginalized

selection probabilities keep the order of the scoring function although the shapes

are skewed.

4.3 Selection as Classification

The previous section proved that the marginalized selection probability Pr{x ∈
Sel(S)|x ∈ S} is a scoring function of the selector Sel. This probability can be
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Figure 2.1. Examples of Marginalized Selection Probability. fn is the graph of

fn(x). These probabilities are numerically computed from a selector on [−2, 2],

one of whose scoring functions is shown in Figure 2.2. p(x) is the uniform distri-

bution, Pr{|S| = m} = 1 for m = 5 and 0 otherwise.
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also expressed informally as Pr{x is selected}. This expression shows that we can

treat selection like classification in which items are classified into “selected” or

“not selected” as long as our only concern is the marginalized selection probability.
3 This observation leads to the following reduction from a selection learning

problem to a classification learning problem.

Reduction of Selection Learning to Classification Learning

1. Given selection data Dsel = {(Si, Sel(Si))}m
i=1, where Si is a non-empty

subset of X, define classification data Dcls as

Dcls ≡ {(x, y)|x ∈ X, y ∈ {−1, 1},
∃i x ∈ Si ∧ y = I±[x ∈ Sel(Si)]}. (2.8)

Here I±[statement] is an indicator function which is equal to 1 if statement

is true or -1 otherwise.

2. Estimate the conditional probability Pr(y|x) from Dcls.

3. Output Pr(y = 1|x) as an estimated scoring function of the selector Sel.

Since the second step in the above reduction is a standard binary classification

problem, any classification learning algorithm can be applied to the step as long

as its classifier’s output can be related to the conditional probability.

Using SVM to Learn a Selector

As an example of the use of classification learner as selection learner, we will

explain how Support Vector Machine (SVM) [13] can be used as selection learner.

SVM is known to show good performance in many classification tasks. From a

practical point of view, the so-called “kernel trick” is one of the most advantageous

characters SVM has since the “trick” enables users to apply SVM to non-vectorial

data such as strings and trees. This is especially true for Natural Language

Processing in which data is generally non-vectorial. Thus it is expected to be

very useful if one can use SVM to learn selector.

3It is worth to emphasize here that selection itself is NOT a classification: a selector does
not choose items based on their membership to a category. If so, the selector could not choose
items when its input does not include any element of such category. This would contradict the
definition of selector.
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Although SVM is usually not regarded as a probabilistic classifier, it is shown

in [14] that SVM is (approximately) equivalent to maximum a posteriori (MAP)

estimation of the following parametrized class of conditional probabilities.

Pr(y|x; w⃗, b) =
exp(−|1 − y(w⃗·ϕ⃗(x) + b)|+)

exp(−|1 − (w⃗·ϕ⃗(x) + b)|+) + exp(−|1 + (w⃗·ϕ⃗(x) + b)|+)

≃ exp(−|1 − y(w⃗·ϕ⃗(x) + b)|+), (2.9)

Pr(w⃗) ∝ exp

(
− 1

2C
∥w⃗∥2

)
, (2.10)

where w⃗ ∈ RN and b ∈ R are parameters; ϕ⃗ : X 7→ RN is a feature function; |z|+
is defined as z when z > 0 and 0 otherwise.

Given samples of {(xi, yi)}m
i=1, the logarithm of a posteriori distribution of the

parameters becomes

log Pr(w⃗, b|{(xi, yi)}m
i=1) = log Pr(w⃗) +

m∑
i=1

log Pr(yi|xi; w⃗, b)

≃ − 1

2C
∥w⃗∥2 −

m∑
i=1

|1 − yi(w⃗·ϕ⃗(xi) + b)|+.

Thus maximum a posteriori value of the parameters is equal to the solution of

the following optimization problem.

min
w⃗,b

1

2
∥w⃗∥2 +

m∑
i=1

|1 − yi(w⃗·ϕ⃗(xi) + b)|+. (2.11)

Eq.(2.11) is equivalent to a standard SVM formalization.

In summary we can get an approximation of a scoring function by training a

SVM with the classification data Dcls , which is reduced from the selection data,

and then computing the conditional probability Pr(y|x) with Eq.(2.9). If only

scoring function is necessary, one can directly use w⃗ · ϕ⃗(x) as a scoring function

since Pr(y = 1|x) in Eq.(2.9) is a monotonically increasing function of w⃗ · ϕ⃗(x).

We should remind the readers that the idea of solving selection problem by

SVM was first proposed by Hirao et al. in [5]. They, however, did not provide

any theoretical explanation for using classifiers to selection problems. As far as

we have known, this work is the first one to give an answer to the theoretical

question.
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4.4 Selection Support Vector Machine

Successive Selection Problem

In many real situations, selection happens to be repeated. For example, in order

to make a ranking of some items, one may select the best item repeatedly. Such

situations can be modeled as multiple selectors are applied to the same item set.

To represent this more formally, we introduce a new concept ”successive selection

problem”.

Suppose that Selj(1 ≤ j ≤ k) are n-best selectors Fnj
where ni < nj

for i < j, or p-percentile selectors Gpj
where pi < pj for i < j and all

Selj are induced from one selector F .

Then k-successive selection problem is the estimation problem of the

selector F , given samples of (k + 1)-tuple (S, Sel1(S), . . . , Selk(S)).

One possible solution to a k-successive selection problem is to decompose it

to k selection problems, each of which the data {(S, Selj(S))} is given as the

training data. This solution, however, does not count the fact that each Selj is

induced from the same selector. To overcome this shortcoming, we propose an

SVM-based solution which learns successive selection at once.

Selection SVM: Learning Successive Selection at Once

As explained in the previous section, a scoring function of one selector can be

learned using an SVM. Thus if we use one SVM for each successive selector Selj,

we need 2k parameters, {w⃗j}k
j=1 and {bj}k

j=1, in total. Since it is assumed that all

the successive selector is induced from the same selector, it is natural to expect

w⃗j are not so different from each other. This leads to the idea that successive

selection problem can be solved more accurately if we learn one SVM for one

successive selector but the SVMs’ weight vectors w⃗j are constrained to stay near

the “center” w⃗.

Selection SVM

1. Given k-successive selection data,

Dk
sel = {(Si, Sel1(Si), Sel2(Si), . . . , Selk(Sk))}m

i=1,
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generate the classification data,

Dk
cls = {(x, y1, y2, · · · , yk)|x ∈ X,∀yj ∈ {−1, 1},

∃ ix ∈ Si ∧ ∀yj = I±[x ∈ Selj(Si)]}.

2. Solve the following optimization problem.

min
w⃗,{v⃗j}k

j=1,{bj}k
j=1

1

2
∥w⃗∥2 +

k∑
j=1

λ

2
∥v⃗j∥2

+ C
∑

(x,y1,...,yk)∈Dk
cls

k∑
j=1

|1 − yj((w⃗ + v⃗j) · ϕ⃗(x) + bj)|+ (2.12)

3. Output w⃗ · ϕ⃗(x) as a scoring function of the selector.

v⃗j represents each weight’s deviations from the center weight w⃗, and is (softly)

constrained by the second term in Eq.(2.12). (λ controls the strength of the

constraint.)

In practice, the Wolfe dual form of Equation 2.12 is more convenient to solve.

Selection SVM (Dual Form)

1. Generate Dk
cls as explained above. We will refer the i-th element of Dk

cls as

(xi, y
1
i , y

2
i , . . . , y

k
i )(1 ≤ i ≤ l) hereafter.

2. Solve the following optimization problem.

max
αj

i

l∑
i=1

k∑
j=1

αj
i −

1

2

l∑
i,i′=1

k∑
j,j′=1

αj
iα

j′

i′ y
j
i y

j′

i′ K(xi, xj)

(
1 +

δj,j′

λ

)
s.t. 0 ≤ αj

i ≤ C for ∀i, j
l∑

i=1

αj
iy

j
i = 0 for ∀j, (2.13)

where δt,t′ is Kronecker delta and K(xi, xj)(≡ ϕ⃗(xi) · ϕ⃗(xj)) is a kernel

function on X × X.
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3. Output the following function as a scoring function.

l∑
i=1

k∑
j=1

αj
iy

j
i K(xi, x) (2.14)

Note that all the computation with xi can be done using the kernel function

K(xi, xj) like SVM [13]. Thus we need only a kernel, not an explicit vector

representation, on X to use Selection SVM.

5. Experiments

This section reports the results of applying Selection SVM to an artificial data

and a sentence selection data. We compared the performance of Selection SVM to

SVM [5] and Herbrich’s method [9]. We call Herbrich’s method “Support Vector

Preference Learning (SVPL)” hereafter.

SVPL’s inputs are samples of correctly ordered pair, (x, y), in which x is

ranked higher (preferred) than y. Given training samples {(xi, yi)}m
i=1 and feature

function ϕ⃗, SVPL searches the optimal scoring function h(x) = w⃗ · ϕ⃗(x) by which

the training sample pairs are separated as much as possible, i.e, min{h(xi)−h(yi)}
becomes as large as possible. This optimal weight is the solution of the following

optimization problem.

min
w⃗

1

2
∥w⃗∥2 + C

m∑
i=1

|1 − (w⃗·ϕ⃗(xi) − w⃗·ϕ⃗(yi))|+. (2.15)

See [9] for more details.

5.1 Artificial Data

Data

We generated the artificial selection data as follows. We let X be [0, 1]×[0, 1], and

p(x) the uniform distribution on it. The size of S is fixed to 4, i.e, Pr{|S| = m}
is equal to 1 if m = 4, otherwise 0. The selector F uses the scoring function

(x1−0.5)(x2−0.5) (x1 and x2 is the first and second element of x) and chooses

the highest score point from S. Under these setting, we generated samples of suc-

cessive selection (S, F1(S), F2(S), F3(S)), where Fn is the n-best selector induced

from F .
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Learning of SVM and SVPL

We trained three SVMs, each of which uses (S, Fj(S))(1 ≤ j ≤ 3) as selection

data and learn parameter with the schema of Sec. 4.3.

To train SVPL, the preference data Dpref were generated from the successive

selection data Dk
sel.

Dpref = Dsel
pref ∪ Dother

pref

Dsel
pref = {(x1, x2)|x1, x2 ∈ X,

∃(S, Sel1(S), Sel2(S), . . . , Selk(S)) ∈ Dk
sel,

∃i < j, x1, x2 ∈ Selj(S) ∧ x2 /∈ Seli(S)}
Dother

pref = {(x1, x2)|x1, x2 ∈ X,

∃(S, Sel1(S), Sel2(S), . . . , Selk(S)) ∈ Dk
sel,

x1 ∈ Selk(S) ∧ x2 ∈ S ∧ x2 /∈ Selk(S)}

We used a RBF kernel k(x, y) = exp(−∥x−y∥2

σ2 ) with σ = 0.5 for Selection

SVM, SVM and SVPL. The hyper-parameter C was set to 1 in all the methods,

and the hyper-parameter λ of Selection SVM was set to 1, 102, 104,∞. 4

Performance Measure

The performance was evaluated by n-best accuracy An.

An =
1

|Dtest|
∑

S∈Dtest

|Fn(S) ∩ F̂n(S)|
|Fn(S)|

,

where Dtest is the test dataset of the successive selection, F̂n the n-best selector

induced from a learned selector. We generated 1,000 test samples of S and used

them throughout this experiment.

Results

Figure 2.3 clearly shows the n-best accuracies of Selection SVM, SVMs and SVPL,

all of which were trained with 5/10/25/100/250 successive selection samples.5

4λ = ∞ means that all v⃗j were fixed to 0 in Equation (2.12).
5As for Selection SVM, Figure 2.3 shows only the results for λ = 102. This is because the

results with the other λ do not show any significant differences.
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Figure 2.3. The n-best accuracies on artificial data. “SelSVM” is Selection SVM

(λ=102), and “SVMn” SVM estimation of fn(x).
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Figure 2.4. The 1-best accuracies of the learners trained on 5 successive selec-

tion samples (top) and 250 samples (bottom). SS=Selection SVM, PL=SVPL,

SV=SVM. The numbers below “SS” are the values of λ. (inf = ∞)
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The training was repeated 100 times and each point in Figure 2.3 is the median

of the results. Figure 2.4 shows the box-plots of 1-best accuracies of the learners

trained with 5 (top) and 250 (bottom) ranked lists. The box-plots summarize the

results of the 100 training results: middle line in the boxes shows the median of

1-best accuracies, the boxes show the ranges from 25% quantile to 75% quantile,

and the top and bottom lines show the ranges from 5% quantile to 95% quantile.

Figure 2.3 shows that Selection SVM outperforms SVMs in all n-best accu-

racies. The differences between those two methods are quite large as shown in

Figure 2.4. This is a natural result because Selection SVM uses all the succes-

sive selection data for estimation whereas SVMs use only a single selection data.

Selection SVM seems to succeed in extracting more information from the same

training set.

On the other hand, Selection SVM’s accuracies are slightly behind SVPL’s

accuracies. The differences, however, are not significant compared to the differ-

ences between Selection SVM and SVMs, especially for the small training dataset

(Figure 2.4).

Selection SVM’s accuracies do not show much dependency on the choice of

the hyper parameter λ although Figure 2.4 shows that a good choice of λ leads

to a smaller variance of the accuracies.

5.2 Real-world Sentence Selection Data

The second experiment was on a real-world sentence selection data, which was

used in the First NTCIR’s Text Summarization Challenge (TSC-1) 6.

The TSC-1 Data

The TSC-1 dataset is a collection of 180 Japanese newspaper articles, which

includes reports, editorials, and commentaries. A small portion (10, 30 and 50%)

of sentences of each article were selected by human experts according to the

importance of the sentences. Although the experts were not instructed to do so,

a larger selection usually contain a smaller selection. Thus the TSC-1 data can be

regarded as a successive selection data, where p-percentile selectors (p = 0.1, 0.3

and 0.5) are used to choose items (sentences).

6NII-NACSIS Test Collection for IR Systems Workshop
http://research.nii.ac.jp/ntcir/workshop/
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Measure A0.1 A0.3 A0.5

Selection SVM
C = 10−3 C = 10−3 C = 10−3

λ = 102 λ = 102 λ = 101

SVM(0.1) C = 10−5 C = 10−5 C = 10−2

SVM(0.3) C = 10−3 C = 10−3 C = 10−1

SVM(0.5) C = 10−2 C = 10−2 C = 10−4

SVPL C = 10−4 C = 10−5 C = 10−3

Table 2.1. The hyper-parameters used in the TSC-1 experiment. SVM(p) is SVM

estimation of Gp.

We used the domestic news section of the TSC-1 data, which consists of 63

articles. The 63 articles were shuffled randomly and divided into 43, 10 and 10

articles for training, development and test respectively.

Features

Each sentence was converted into a binary vector in the same fashion as [5].

Elements of the vector represent various aspects of the sentence such as the

relative position in article, the number of keywords, the existence of proper nouns,

and the type of the functional word at the end of the sentence. The number of

elements totaled 318. See [5] for more details of the vector representation.

Training

We used a quadratic kernel (x⃗ · y⃗ + 1)2, which was also used in [5], for Selection

SVM, SVMs and SVPL. The hyper-parameter C and λ were chosen so that the

method shows the best performance on the development data. (We will explain

the performance measures later.) We tested C = 10n(n = −5,−4,−3,−2,−1, 0),

and λ = 10n(n = 0, 1, 2, 3, 4) and ∞. Table 2.1 shows the chosen hyper-parameters.
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Measure A0.1 A0.3 A0.5

Selection SVM 0.64 0.58 0.64

SVM(0.1%) 0.68 0.58 0.59

SVM(0.3%) 0.68 0.58 0.55

SVM(0.5%) 0.45 0.43 0.65

SVPL 0.41 0.51 0.53

Table 2.2. p-accuracies in the TSC-data experiment. The best results for each

accuracy are emphasized with bold characters.

Performance Measures

The performance was evaluated with p-accuracy Ap,

Ap =
1

|Dtest|
∑

S∈Dtest

|Gp(S) ∩ Ĝp(S)|
|Gp(S)|

.

Here Ĝp represents the p-percentile selector induced from a learned scoring func-

tion.

Results

Table 2.2 shows p-accuracies for the test articles. The results with TSC-1 dataset

are quite different from those with the artificial dataset. Selection SVM and SVMs

clearly outperform SVPL although Selection SVM is constantly a good performer

over all p-accuracies whereas no single SVM can match this characteristic.

We think that this difference reflects the impact of data sparseness. In the

artificial dataset, an item was represented by a two-dimensional vector and a

sufficiently large number of items (up to 250 × 4 = 1000 items) were fed to the

learning algorithms. On the other hand, an item (i.e. a sentence) in TSC-1

dataset was represented by a 318-dimensional vector and only a small number

of items (about 900) were fed to the algorithms. With such sparse data, it is

important to extract as much information as possible from the training samples.

SVPL only counts preference relations within each successive selection whereas

Selection SVM and SVMs aggregate instances across all selections into “classes”

in order to estimate marginalized selection probability. This means that Selection
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SVM and SVMs can use extra information SVPL cannot use and may result in

producing more accurate scoring functions. We, however, need further study to

confirm this conjecture.

6. Conclusion

In this chapter, we first proved that selection problem can be converted into clas-

sification problem, thus can be solved by any classifier learning algorithm. Then

Selection SVM is proposed to solve successive selection problems. Experiments

with an artificial dataset and a sentence selection dataset show that Selection

SVM performs well compared to single SVMs and SVPL.
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Chapter 3

Multi-topic Text Categorization

1. Introduction

Multi-topic text categorization is a labeling task whose goal is to assign all rel-

evant topics to a text. Topics should be selected from a given topic set and a

single text can have multiple topics. There are many examples of multi-topic text

categorization in real world applications: news companies use multiple topic tags

to classify articles [3]; search engines link multiple categories to a single web page

for directory services [4].

Learning of multi-topic text categorization is a learning task in which the

learner attempts to estimate the labeling rules from samples of text and assigned

topics.

This chapter is organized as follows. In Section 2, we briefly review related

works in multi-topic text categorization. In Section 3, we point out a problem

of past related works and state this chapter’s main problem. Then we propose

a new learning algorithm, Maximal Margin Labeling (MML), and also describe

efficient algorithms for it in Section 4. MML is tested on datasets of Web pages,

and the results are reported in Section 5. Section 6 summarizes this chapter.
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2. Related Works

2.1 One Classifier for One Topic

Although there are huge amount of studies on text categorization1, most studies

take the same approach of decomposing a multi-topic categorization problem into

multiple binary judgement subproblems in which each text is judged whether it

is relevant to a topic.

This decomposition approach is very popular since one can use any binary

classifier to judge the relevance. It also shows quite good performances on various

text categorization tasks when it is used with an appropriate classifier such as

Support Vector Machines [17].

However, this approach ignores the correlation between topics. Thus even

when strong correlation exists, it cannot use such correlation to improve its pre-

diction accuracy.

2.2 Parametric Mixture Model

Parametric Mixture Model (PMM) [4] is a probabilistic model of multi-topic

text. PMM assumes that a text is a “bag-of-words” and word order is completely

ignored2. It is also assumed that a multi-topic text is generated by random

sampling from a probabilistic distribution of words, and the source distribution

of a multi-topic text is a mixture (an average) of topic-specific word distributions.

The topic-specific distributions are estimated from sample multi-topic texts.

When predicting label, PMM searches the most likely combination of topics

for the bag-of-words of given text. Thus PMM is different from the above decom-

position approach in the sense that its prediction is decided on the label basis,

not on the topic basis.

PMM’s mixture model, however, does not count multi-topic words, which are

words strongly relating to multiple topics. Thus when such words often appear

in training texts, PMM seems to suffer serious model mismatches.

1For example, see the references in [15, 16].
2This (rather radical) assumption is widely accepted among text categorization researchers.
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2.3 BoosTexter

BoosTexter is a boosting-based algorithm for multi-topic text categorization. [18]

Boosting is a general method to get a good classifier by combining simple but

not-so-good classifiers (weak learners) [19]. In BoosTexter, each weak learner is

responsible only for judging a topic’s relevance as is the case in the decomposition

approaches. On the other hand, the loss function of the combined classifier is

label-based, not topic-based. Thus one can say BoosTexter is a hybrid method

in which topic-wise classifiers are trained with label-wise evaluation.

When predicting label, BoosTexter judges each topic relevance independently

based on the sum of weak learners’ scores. Thus the correlation between topics

is not taken into account explicitly.

3. Problem Statement

All methods we described in the previous section have a common feature that

they somehow decompose a label into topics: binary classification approaches do

no care about which label the target topic belongs to; PMM represents multi-

topic as a simple aggregation of component topics; BoosTexter uses single-topic

classifiers as its building blocks. This label decomposition is quite reasonable from

the viewpoints of keeping model simple and making computational costs lower.

However, this can be a disadvantage from a viewpoint of performance since there

are some cases that important information is lost through label decomposition.

For example, suppose that we have a multi-topic categorization task in which

it is known that several topics are mutually exclusive, i.e, they are never assigned

together to text. In this case, if we have a strong evidence that one of the exclusive

topics is relevant to some texts, we can safely predict that the labels of the texts

never include the other exclusive topics. Label decomposition, however, discards

information of such strong (negative) correlation.

As another example, suppose that we have a multi-topic categorization prob-

lem of scientific papers in which quantum computing papers are assigned multi-

topic label “quantum physics & computer science”3. (quantum physics and com-

puter science are topics in this example.) Then consider the word “qbit”. “Qbit”

is very specific to quantum computing4: it frequently appears in quantum com-

3This kind of situation is arguably often the case when things change very rapidly and topic
systems cannot catch up the changes.

4Qbit is a unit of quantum information.
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puting literatures, but rarely seen in other research papers. Thus it is natural

to think that clever multi-topic categorization algorithms should use “qbit” as

an important evidence to assign label “quantum physics & computer science”.

However, label decomposition makes it difficult to take multi-topic words such as

“qbit” into account.

One solution to these problems is to regard multi-topic categorization prob-

lems as multi-class classification problems in which each label is a distinguished

class. This means, for example, that if sports and politics are topics, there are

four classes, sports, politics, sports & politics, and a reject class (i.e, no topic is

assigned). The above problems with label decomposition are not problems any

more for this “label as class” approach: the case of mutually exclusive topics

can be naturally represented as a case in which a class which corresponds to a

combination of these topics does not have any member; multi-topic words can be

represented specific words to the classes of that multi-topics.

This label-as-class approach, however, has its own problems. From n topics,

2n labels (i.e, classes) can be generated. This implies that training data per

class can be very sparse and the data sparseness can easily cause over-fitting.

Additionally existing multi-class classifier algorithms simply cannot deal with

such a huge number of classes. These problems define the following question we

will answer in this chapter.

Based on the label-as-class idea, is it possible to learn a multi-class

classifier, which is computationally efficient and does not suffer from

over-fitting?

4. Maximal Margin Labeling

4.1 Multi-class Kernel-based Vector Machines

We start from the multi-class classifier proposed in [20]. Hereafter we use the

notation given in Table 3.1.

The multi-class classifier in [20] categorizes an object into the class whose

prototype vector m is the closest to the object’s feature vector x. By substituting

label for class, the classifier can be written as follows.

f(x) = arg max
λ∈Λ

⟨x,mλ⟩X (3.1)
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Symbol Meaning

x(∈ Rd) A document vector

t1, t2, . . . , tl Topics

T The set of all topics

L, λ(⊂ T ) A label

L[j] The binary representation of L. 1 if tj ∈ L and 0 otherwise.

Λ(= 2T ) The set of all possible labels

{(xi, Li)}m
i=1 Training samples

Table 3.1. Notation

where ⟨, ⟩X is the the inner product of Rd, and mλ ∈ Rd is the prototype vector

of label λ. The prototype vectors are learned by solving the following maximal

margin problem5.

min
M

1

2
∥M∥2 + C

∑
1≤i≤m

∑
λ∈Λ,λ̸=Li

ξλ
i

s.t. ⟨xi,mLi
⟩X − ⟨xi,mλ⟩X ≥ 1 − ξλ

i for 1 ≤ i ≤ m, ∀λ ̸= Li, (3.2)

where M is the prototype matrix whose columns are the prototype vectors, and

∥M∥ is the Frobenius matrix norm of M .

The solution of Eq.(3.2) gives the prototypes which minimize the sum of their

squared norms6 while keeping the smallest margin between the scores of correct

and incorrect labels to 1 (with allowing (small) violations ξλ
i ). This minimization

is equivalent to the maximization of the margin while keeping the sum of the

prototype vectors’ squared norms constant.

Note that Eq. (3.1) and Eq. (3.2) cover not only training samples’ labels, but

also all possible labels. This is because the labels unseen in training samples

may be relevant to test samples. In usual multi-class problems, such unseen

labels never exist. In multi-topic text categorization, however, unseen labels

often appear in test data. Thus it is necessary to consider all possible labels in

Eq. (3.1) and Eq. (3.2) since it is impossible to know which unseen labels are

present in the test samples.
5In Eq.(3.2), we penalize all violation of the margin constraints. On the other hand, Cram-

mer and Singer penalize only the largest violation of the margin constraint for each training
sample [20]. We chose the “penalize-all” approach since it leads to an optimization problem
without equality constraints (see Eq.(3.7)), which is much easier to solve than the one in [20].

6Note that ∥M∥2 is equivalent to the sum of the squared norms of all prototype vectors.
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There are two problems with Eq. (3.1) and Eq. (3.2). The first problem is

that they involve the prototype vectors of rare or never seen labels. Without

the help of prior knowledge about where the prototype vectors should be, it is

impossible to obtain appropriate prototype vectors for such labels. The second

problem is that these equations are computationally too demanding since they

involve combinatorial maximization and summation over all possible labels, whose

number can be quite large. (For example, the number is around 230 in the datasets

used in our experiments.)

4.2 A Large Margin Algorithm for MTC

In this section, we incorporate some prior knowledge about the location of pro-

totype vectors into Eq. (3.1) and Eq. (3.2), and propose a novel MTC learning

algorithm, Maximal Margin Labeling (MML).

As prior knowledge, we simply assume that the prototype vectors of similar

labels should be placed close to each other. Based on this assumption, we first

rewrite Eq. (3.1) to yield

f(x) = arg max
λ∈Λ

⟨MTx, eλ⟩L, (3.3)

where ⟨, ⟩L is the inner product of R|Λ| and {eλ}λ∈Λ is the orthonormal basis of

R|Λ|. The classifier of Eq. (3.3) can be interpreted as a two-step process: the

first step is to map the vector x into R|Λ| by MT , and the second step is to

find the closest eλ to image MTx. Then we replace {eλ}λ∈Λ with (generally)

non-orthogonal vectors {ϕ(λ)}λ∈Λ whose geometrical configuration reflects label

similarity. More formally speaking, we use vectors {ϕ(λ)}λ∈Λ that satisfy the

condition

⟨ϕ(λ1), ϕ(λ2)⟩S = S(λ1, λ2) for ∀λ1, λ2 ∈ Λ, (3.4)

where ⟨, ⟩S is an inner product of the vector space spanned by {ϕ(λ)}λ∈Λ, and S

is a Mercer kernel [21] on Λ × Λ and is a similarity measure between labels. We

use VS to denote the vector space spanned by {ϕ(λ)}.
With this replacement, MML’s classifier is written as follows.

f(x) = arg max
λ∈Λ

⟨Wx, ϕ(λ)⟩S, (3.5)
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Figure 3.1. Maximal Margin Labeling

where W is a linear map from Rd to VS. W is the solution of the following

problem.

min
W

1

2
∥W∥2 + C

m∑
i=1

∑
λ∈Λ,λ̸=Li

ξλ
i

s.t.

⟨
Wxi,

ϕ(Li)−ϕ(λ)

∥ϕ(Li)−ϕ(λ)∥

⟩
≥ 1−ξλ

i , ξλ
i ≥ 0

for 1 ≤ i ≤ m, ∀λ ̸= Li. (3.6)

Note that if ϕ(λ) is replaced by eλ, Eq. (3.6) becomes identical to Eq. (3.2)

except for a scale factor. Thus Eq. (3.5) and Eq. (3.6) are natural extensions

of the multi-class classifier in [20]. We call the MTC classifier of Eq. (3.5) and

Eq. (3.6) “Maximal Margin Labeling (MML)”.

Figure 3.1 explains the margin (the inner product in Eq. (3.6)) in MML. The

margin represents the distance from the image of the training sample xi to the

boundary between the correct label Li and wrong label λ. MML optimizes the
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linear map W so that the smallest margin between all training samples and all

possible labels becomes maximal, along with a penalty C for the case that samples

penetrate into the margin.

Dual Form For numerical computation, the following Wolfe dual form of Eq. (3.6)

is more convenient.

max
αλ

i

∑
i,λ

αλ
i −

1

2

∑
i,λ

∑
i′,λ′

αλ
i α

λ′

i′ (xi ·xi′)
S(Li, Li′)−S(Li, λ

′)−S(λ, Li′)+S(λ, λ′)

2
√

(1−S(Li, λ))(1−S(Li′ , λ′))

s.t. 0 ≤ αλ
i ≤ C for 1 ≤ i ≤ m, ∀λ ̸= Li, (3.7)

where we denote
∑m

i=1

∑
λ∈Λ,∀λ̸=Li

by
∑

i,λ, and αλ
i are the dual variables corre-

sponding to the first inequality constraints in Eq. (3.6). Note that Eq. (3.7) does

not contain ϕ(λ): all the computations involving ϕ can be done through the label

similarity S. Additionally xi only appears in the inner products, and therefore

can be replaced by any kernel of x.

Using the solution αλ
i of Eq. (3.7), the MML’s classifier in Eq. (3.5) can be

written as follows.

f(x) = arg max
L∈Λ

∑
i,λ

αλ
i (x·xi)

S(Li, L)−S(λ, L)√
2(1−S(Li, λ))

. (3.8)

Label Similarity As label similarity, we use Dice measure SD.

SD(λ1, λ2) =

{
1 if |λ1| = |λ1| = 0
2|λ1∩λ2|
|λ1|+|λ2| otherwise

(3.9)

It can be shown that Dice measure is a Mercer kernel on Λ × Λ, i.e, it is

an inner product of some vectorization of λ. See this chapter’s appendix for its

proof.

4.3 Approximation in Learning

Eq. (3.7) contains the sum over all possible labels. As the number of topics (l)

increases, this summation rapidly becomes intractable since |Λ| grows exponen-

tially as 2l. To circumvent this problem, we approximate the sum over all possible

labels in Eq. (3.7) by the partial sum over αλ
i of |(A∩Bc)∪(Ac∩B)|=1 and set all
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the other αλ
i to zero. This approximation reduces the burden of the summation

quite a lot: the number of summands is reduced from 2l to l, which is a huge

reduction especially when many topics exist.

To understand the rationale behind the approximation, first note that αλ
i

is the dual variable corresponding to the first inequality constraint (the margin

constraint) in Eq. (3.7). Thus αλ
i is non-zero if and only if Wxi falls in the margin

between ϕ(Li) and ϕ(λ). We assume that this margin violation mainly occurs

when ϕ(λ) is “close” to ϕ(Li), i.e. |(A∩Bc)∪(Ac∩B)|=1. If this assumption holds

well, the proposed approximation of the sum will lead to a good approximation

of the exact solution.

4.4 Polynomial Time Algorithms for Classification

The classification of MML (Eq. (3.8)) involves the combinatorial maximization

over all possible labels, so it can be a computationally demanding process. How-

ever, efficient classification algorithms are available when the dice measure is used

as label similarity.

Eq. (3.8) can be divided into the subproblems by the number of topics in a

label.

f(x) = arg max
L∈{L̂1,L̂2,...,L̂l}

g(x, L), (3.10)

L̂n = arg max
L∈Λ,|L|=n

g(x, L). (3.11)

where g(x) is

g(x, L) =

{
a0 if |L| = 0∑l

k=1 a|L|[k] L[k] otherwise,

a0 =
∑

i,λ ̸=Li

αλ
i (xi ·x)√

2(1−D(Li, λ))

×2(I[|Li|=0]−I[|λ|=0]),

an[k] =
∑

i,λ ̸=Li

αλ
i (xi ·x)√

2(1−D(Li, λ))

×
(

2Li[k]

|Li| + n
− 2λ[k]

|λ| + n

)
. (3.12)

Here n = |L|. The computational cost of Eq. (3.12) for all j is O(nαl) (nα is the

number of non-zero α), and that of Eq. (3.11) is O(l log l). Thus the total cost
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of the classification by Eq. (3.10) is O(nαl2 + l2 log l). On the other hand, nα

is O(ml) under the approximation described above. Therefore, the classification

can be done within O(ml3) computational steps, which is a significant reduction

from the case that the brute force search is used in Eq. (3.8).

5. Experiments

In this section, we report experiments that compare MML to SVM, k nearest

neighbor (kNN), PMM and BoosTexter using a collection of Web pages [4]. We

chose these methods to compare since (1) SVM and kNN are two of the most

popular binary classifiers in text categorization studies, and (2) PMM and Boos-

Texter take different approaches from these binary classifiers.

5.1 Web Datasets

The Web datasets used in our experiment are the same as those used in [4]. The

datasets consist of 11 sets of Web pages which were collected through the hyper-

links from Yahoo!’s directory service (dir.yahoo.com). Each dataset corresponds

to one of the top categories listed in the directory services. Pages in the datasets

are labeled with Yahoo’s second level sub-categories from which the pages are

hyperlinked. Thus, theses sub-categories are topics in our term. Table 3.2 shows

a summary of the dataset.

From each dataset, we randomly selected 500 pages for development data and

3,000 pages for test data The rest of the pages were pooled for training data of

various sizes.

5.2 Feature Vector

As feature vector, we used “bag-of-words” vector, each of whose element repre-

sents the “weight” of a word in the text. Since the purpose of our experiments

is to compare the learning algorithms, we neither performed any stemming nor

removed any stop-words. We tested three types of weighting.

Binary If the word is present in the text, the weight is 1. Otherwise 0.

TF The weight is equal to the number of appearances of the term in the text

(term frequency).
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Dataset Name (Abbrev.) #Text #Voc #Tpc #Lbl Label Size Frequency (%)
1 2 3 4 ≥5

Arts & Humanities (Ar) 7,484 23,146 26 599 55.6 30.5 9.7 2.8 1.4
Business & Economy (Bu) 11,214 21,924 30 233 57.6 28.8 11.0 1.7 0.8
Computers & Internet (Co) 12,444 34,096 33 428 69.8 18.2 7.8 3.0 1.1
Education (Ed) 12,030 27,534 33 511 66.9 23.4 7.3 1.9 0.6
Entertainment (En) 12,730 32,001 21 337 72.3 21.1 4.5 1.0 1.1
Health (He) 9,205 30,605 32 335 53.2 34.0 9.5 2.4 0.9
Recreation (Rc) 12,828 30,324 22 530 69.2 23.1 5.6 1.4 0.6
Reference (Rf) 8,027 39,679 33 275 85.5 12.6 1.5 0.3 0.1
Science (Si) 6,428 37,187 40 457 68.0 22.3 7.3 1.9 0.5
Social Science (SS) 12,111 52,350 39 361 78.4 17.0 3.7 0.7 0.3
Society & Culture (SC) 14,512 31,802 27 1054 59.6 26.1 9.2 2.9 2.2

Table 3.2. A summary of the web page datasets. “#Text” is the number of texts

in the dataset, “#Voc” the number of vocabularies (i.e. features), “#Tpc” the

number of topics, “#Lbl” the number of labels, and “Label Size Frequency” is

the relative frequency of each label size in the dataset. (Label size is the number

of topics in a label.)

TF×IDF The weight is equal to the product of TF and inverse document fre-

quency (IDF) [22]. IDF is log(Nd/Nw), where Nd is the number of docu-

ments in the dataset and Nw the number of documents in which the word

appears. IDF gives high weight to rarely seen words.

5.3 Learning Setup

MML

We used a normalized linear kernel k(x,x′) = x · x′/∥x∥∥x′∥.

SVM

For each topic, an SVM classifier is trained to predict whether the topic is rel-

evant (positive) or irrelevant (negative) to input documents. Different penalty

parameters were used for positive and negative examples as proposed in [23]: the

ratio of the penalties for positive and negative examples was set equal to the ratio

of the numbers of negative and positive examples.

We used a normalized linear kernel k(x,x′) = x · x′/∥x∥∥x′∥.
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Method Feature Type Parameter

MML TF, TF×IDF C = 0.1, 1, 10

PMM TF Model1, Model2

SVM TF, TF×IDF C = 0.1, 1, 10

Boost Binary R={2, 4, 6, 8, 10}×103

kNN TF, TF×IDF k = 1, 3, 5, 7

Table 3.3. Candidate feature types and learning parameters. (R is the number of

weak hypotheses.) The underlined fetures and parameters were selected for the

evaluation with the test data.

k nearest neighbor

We normalized feature vectors before computing distance between inputs, which

is equivalent to the usage of normalized linear kernel in MML and SVM.

BoosTexter

BoosTexter has four variants[18]. We used “real abstaining AdaBoost.MH”,

which showed the best performance in the experiments of [18].

5.4 Feature and Parameter Selection

Before testing, we searched the best combinations of feature types and learning

parameters as follows.

1. Train the learners on 2,000 pages randomly drawn from the pooled dataset

with all combinations of feature types and parameters listed in Table 3.3.

2. Compute average Dice measure (Sec.5.5) of each feature-parameter combi-

nation using the development dataset.

3. Choose the combination of highest average Dice measure.

The combinations underlined in Table 3.3 were chosen by the above procedure.

5.5 Evaluation Measures

We used three measures to evaluate labeling performance: micro average F-

measure, macro average F-measure and average Dice measure. In the follow-
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ing definitions, {Lpred
i }n

i=1 and {Ltrue
i }n

i=1 mean the predicted labels and the true

labels, respectively.

Micro Average F-measure F̄micro

F̄micro =
2
∑n

i=1 |Ltrue
i ∩ Lpred

i |∑n
i=1 |Ltrue

i | +
∑n

i=1 |L
pred
i |

(3.13)

Micro average F-measure is a standard evaluation measure in text categorization

and information retrieval citeIR-textbook. F̄micro evaluates the labeling accuracy

regarding the whole dataset as single item.

Macro Average F-measure F̄macro

F̄macro =
1

l

l∑
j=1

2
∑n

i=1 Lpred
i [j]Ltrue

i [j]∑n
i=1(L

pred
i [j] + Ltrue

i [j])
. (3.14)

Macro average F-measure is also a standard evaluation measure in text catego-

rization and information retrieval citeIR-textbook. F̄macro evaluates the average

accuracy of labeling for each topic.

Average Dice Measure D̄

D̄ =
1

n

n∑
i=1

2|Lpred
i ∩ Ltrue

i |
|Lpred

i | + |Ltrue
i |

(3.15)

This measure was used in [4]. D̄ evaluates the average accuracy of labeling for

each item.

5.6 Results

Performance Comparison

First we trained the classifiers with 2,000 samples randomly chosen from the

pooled data. We then calculated the three evaluation measures on the test data.

This process was repeated five times and the measures were averaged. Table 5.6

shows the results. Table 5.6 clearly shows that MML outperforms other methods
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F̄micro F̄macro D̄

MM SV PM kN Bo MM SV PM kN Bo MM SV PM kN Bo
Ar 0.52 0.47 0.44 0.39 0.39 0.30 0.29 0.24 0.26 0.22 0.55 0.46 0.50 0.42 0.38
Bu 0.76 0.75 0.70 0.70 0.71 0.25 0.29 0.20 0.33 0.20 0.80 0.76 0.75 0.74 0.75
Co 0.59 0.58 0.54 0.50 0.48 0.27 0.30 0.19 0.31 0.17 0.62 0.55 0.61 0.53 0.47
Ed 0.55 0.52 0.48 0.44 0.42 0.25 0.25 0.21 0.25 0.16 0.56 0.48 0.51 0.46 0.37
En 0.62 0.58 0.54 0.50 0.51 0.37 0.35 0.30 0.35 0.29 0.64 0.54 0.61 0.52 0.49
He 0.71 0.68 0.61 0.57 0.60 0.35 0.35 0.23 0.32 0.26 0.74 0.67 0.66 0.60 0.60
Rc 0.60 0.52 0.49 0.47 0.47 0.47 0.40 0.36 0.40 0.33 0.63 0.49 0.55 0.51 0.44
Rf 0.65 0.62 0.56 0.54 0.53 0.29 0.25 0.24 0.29 0.16 0.67 0.56 0.63 0.56 0.50
Si 0.59 0.52 0.46 0.46 0.42 0.37 0.31 0.28 0.32 0.19 0.61 0.47 0.52 0.49 0.39
SS 0.69 0.67 0.58 0.56 0.58 0.36 0.31 0.18 0.32 0.15 0.73 0.64 0.66 0.60 0.59
SC 0.55 0.49 0.48 0.43 0.43 0.29 0.26 0.25 0.27 0.20 0.60 0.49 0.54 0.47 0.44
Avg 0.62 0.58 0.53 0.51 0.50 0.32 0.31 0.24 0.31 0.21 0.65 0.56 0.59 0.54 0.49

Table 3.4. The micro-average F-measure F̄micro, the macro-average F-

measure F̄macro, and the average Dice measure D̄. The bold num-

bers (the underlined numbers) are the best ones (the second best ones) of

each measure. (MM=MML, SV=SVM, PM=PMM, kN=k-nearest neighbor,

Bo=BoosTexter)
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MML SVM PMM kNN Boost

Ar 0.44 0.29 0.21 0.27 0.22

Bu 0.63 0.57 0.48 0.52 0.53

Co 0.51 0.41 0.35 0.39 0.34

Ed 0.45 0.30 0.19 0.32 0.23

En 0.55 0.42 0.31 0.40 0.36

He 0.58 0.47 0.34 0.40 0.39

Rc 0.54 0.37 0.25 0.39 0.33

Rf 0.60 0.49 0.39 0.46 0.41

Si 0.52 0.36 0.22 0.38 0.28

SS 0.65 0.55 0.45 0.48 0.49

SC 0.44 0.32 0.21 0.27 0.27

Avg 0.54 0.41 0.31 0.39 0.35

Diff. from D̄ 0.08 0.15 0.28 0.15 0.14

Table 3.5. The exact match ratios.

in micro average F-measure and average Dice measure. MML also shows the

best performance in macro average F-measure although the margins to the other

methods are not as large as observed in macro average F-measure and average

Dice measure. Note that all the methods other than MML show good perfor-

mance in some measures, but also show poor performance in other measures. For

example, PMM shows high average Dice measures, but its performance is rather

poor when evaluated in macro average F measure.

Table 3.5 shows the ratio of the cases when the predicted labels are exactly

the same as the true labels. It is observed that MML predicts exact label more

often than other methods. This exactness seems to contribute a lot to MML’s

accurate labeling since the difference between exact match ratio and average Dice

measure, which can be seen as the sum of the exact match ratio and the accuracies

on partial matches, is very small.

To see generalization power, we evaluated the classifiers trained with 250–2000

training samples. Figure 3.2 shows each measure averaged over all datasets. It

is observed that the MMLs show high generalization even when training data is

small.
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Figure 3.2. The learning curve of micro average F-measure (F̄micro), macro average

F-measure (F̄macro), and average Dice measure ( ¯Dice)

Effects of Approximation

As explained in Sec. 4.3, MML uses an approximation in learning to reduce

training time. Although this approximation is essential when the number of

topics is large, it is possible to train MML without the approximation when the

number of topics is small.

Table 3.6 shows the micro average F-measures of MML with approximation

(MML) and MML without approximation (MML-all), both of which were trained

on 2,000 randomly sampled data in which only 10 most frequent topics are as-

signed. (Table 3.7) Please note that some texts are not assigned any topics since

less frequent topics are removed. Table 3.6 also shows the ratio of the texts that

MML and MML-all predict the same label. We also recorded the training times

of MML and MML-all, which ran on a Linux box with Intel Xeon 3.4GHz CPU.

These times are shown in Table 3.8.

It is observed that there is no major difference between micro average F-

measures of MML and MML-all, and their predictions are very similar. On

the other hand, training time is greatly reduced by the approximation. This

implies that the approximation in Sec.4.3 leads to a similar solution to the original

solution while reducing training runtime drastically.
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MML MML-all Same Label (%)

Ar 0.55 0.54 78.7%

Bu 0.80 0.80 92.3%

Co 0.64 0.65 86.4%

Ed 0.57 0.56 79.7%

En 0.64 0.64 85.3%

He 0.73 0.72 88.0%

Rc 0.62 0.62 85.0%

Rf 0.69 0.70 89.1%

Si 0.61 0.60 86.7%

SS 0.73 0.73 91.1%

SC 0.60 0.59 86.4%

Avg 0.65 0.65 86.2%

Table 3.6. A comparison of the micro-average F-measures of approximate learning

and exact learning.

#Label Label Size Freq. (%)

0 1 2 3 ≥4

Ar 152 7.9 61.3 23.7 5.4 1.7

Bu 54 2.5 61.4 26.7 8.2 1.2

Co 75 7.4 68.9 19.0 4.0 0.7

Ed 129 6.4 62.5 23.2 6.2 1.8

En 105 2.2 74.9 18.2 3.4 1.3

He 99 2.1 57.6 31.4 6.7 2.3

Rc 118 9.7 71.1 15.3 3.1 0.7

Rf 68 9.4 81.1 8.8 0.5 0.1

Si 91 17.6 65.6 13.9 2.3 0.6

SS 79 5.9 79.4 12.6 1.6 0.4

SC 168 8.7 63.4 19.9 5.4 2.6

Table 3.7. A summary of the Web page datasets with the most frequent 10 topics.
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Training Time (sec)

MML(T ) MML-all(Ta) Ta/T

Ar 361 42857 119

Bu 246 21796 87

Co 366 35123 96

Ed 352 46481 132

En 398 39666 99

He 295 32506 110

Rc 399 40372 101

Rf 390 34007 87

Si 434 33811 78

SS 354 30451 86

SC 456 45388 100

Table 3.8. A comparison of the training time of approximate learning (MML)

and exact learning (MML-all).

6. Conclusion

In this chapter, we proposed a novel learning algorithm for multi-topic text cat-

egorization. The algorithm, Maximal Margin Labeling, embeds labels (sets of

topics) into a similarity-induced vector space, and learns a large margin classifier

in the space. To overcome the demanding computational cost of MML, we pro-

vide an approximation method in learning and efficient classification algorithms.

In experiments on a collection of Web pages, MML outperformed other methods

including SVM and showed better generalization.

Appendix

Proof that Dice Measure is a Kernel

To prove that SD is a Mercer kernel on Λ × Λ, it is sufficient to show that the

matrix G (Gi+1,j+1 = SD(λi, λj)) is positive semi-definite. (cf. Proposition 3.5 in

[24]). Here 0 ≤ i, j ≤ 2l − 1 and {λi}2l−1
i=0 is an enumeration of all labels in Λ.

Without loss of generality, we assume λ0 is empty. Then G is a matrix of the
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following form.

G =

(
1 O1,2l−1

O2l−1,1 H

)
.

Here Om,n is m×n zero matrix and Hij = SD(λi, λj). Since uT Gu = v2 +wT Hw

for all u = (v,w) ∈ R2l
, G is positive semi-definite if and only if H is positive

semi-definite.

Hij is equal to the following Pij and Qij.

Hij = 2PijQij

Pij = |λi ∩ λj|

Qij =
1

|λi| + |λj|

From Proposition 13.2 in [25], if the matrices P and Q are positive semi-definite,

H is also positive semi-definite.

First we will prove that P is positive semi-definite. P can be decomposed into

a product of vectors.

Pij = pT
i pj

pi = (λi[1], λi[2], . . . , λi[l])
T

Then P is positive semi-definite since

wT Pw =
∑
ij

wiwjp
T
i pj =

∥∥∥∥∥∑
i

wipi

∥∥∥∥∥
2

≥ 0.

To prove Q is positive semi-definite, we use the following lemma.

Lemma For a symmetric matrix A which has two identical rows (this also implies

A has two identical columns), we denote by Ã another symmetric matrix

which is created from A by removing one of the identical rows and columns.

Then A is positive semi-definite if and only if Ã is positive semi-definite.

Proof of Lemma Without loss of generality, we assume that the last two rows

and columns of A are identical. Then A and Ã are connected by a (n−1)×n
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matrix S as follows.

A = ST ÃS,

S =


1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 1


From this equation and the fact that for any y ∈ Rn−1, there exists x ∈ Rn

which satisfies y = Sx,

A is positive semi-definite ⇔ xAxT ≥ 0 for ∀x ∈ Rn

⇔ yÃyT ≥ 0 for ∀y ∈ Rn−1

⇔ Ã is positive semi-definite.

This completes the proof of the lemma. 2

From the above lemma and the fact that interchanging i-th and j-th rows,

and i-th and j-th columns of a matrix does not change positive semi-definiteness

of the matrix, Q is positive semi-definite if and only if the following R is positive

semi-definite.

R =


1

1+1
1

1+2
· · · 1

1+l
1

2+1
1

2+2
· · · 1

2+l
...

...
. . .

...
1

l+1
1

l+2
· · · 1

l+l

 .

As shown in page 137 in [26], R is positive semi-definite if all leading principal

minors |R1...k
1...k| are positive.

∣∣R1...k
1...k

∣∣ =

∣∣∣∣∣∣∣∣∣
1

1+1
1

1+2
· · · 1

1+k
1

2+1
1

2+2
· · · 1

2+k
...

...
. . .

...
1

k+1
1

k+2
· · · 1

k+k

∣∣∣∣∣∣∣∣∣ . (3.16)

From page 87 in [26], Eq.(3.16) is equal to

∣∣R1...k
1...k

∣∣ =

{∏
1≤i<j≤k(i − j)

}2∏
1≤i,j≤k(i + j)

> 0.

Thus R is positive semi-definite. This completes the proof of the claim that SD

is positive semi-definite. 2
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Chapter 4

Sequence Tagging

1. Introduction

The goal of sequence tagging is to choose a relevant tag from a given tag set

for each word in a sequence. Many important NLP problems such as token

segmentation, part-of-speech tagging and shallow parsing can be regarded as

sequence tagging problems.

The goal of sequence tagging learning is to estimate tagging rules from samples

of tagged sequences. In some tasks, samples are converted into a form of tagged

sequence before learning. For example, in token segmentation task, whose goal

is to segment a sequence into tokens, a segmented sentence is converted into

a character sequence in which each character has a tag indicating whether the

character is at the beginning or the end of a token. Using this kind of conversion,

many NLP tasks can be solved as a sequence tagging task.

This chapter is organized as follows. In Section 2, related works are briefly

reviewed. Then we state the main problem of this chapter tagging strategy

learning, in Section 3. In Section 4, we present an efficient algorithm for com-

puting an optimal tagging order and show an upper bound of tagging accuracies.

In Section 5, we proposed a learning algorithm of strategy function, which is a

predictor of the best tagging position. The experiments using a real sequence

tagging data are reported in Section 6. Then we summarize this chapter in Sec-

tion 7.
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2. Related Works

There are many research papers on sequence tagging. Among them we briefly

review two types of tagging models: sequential classification models and one-shot

prediction models. These models are chosen here because (1) they are flexible

enough to be applied to various sequence tagging problems and (2) they show

quite good performance on a wide range of tagging tasks in NLP.

2.1 Sequential Classification Models

Sequential classification models [27, 28, 29, 30, 31] decomposes a tagging task into

sequential subtasks. In each subtask, a classifier assigns a tag to a word using the

previous assigned tags, in addition to the feature of the word itself, as features.

For example, a typical sequential classification model, “left-to-right” model,

first determines the tag of the left-most place and then determines the other tags

from left to right using the left tag as an additional feature (Figure 4.1). Similarly

“right-to-left” model first determines the right-most tag and then go from right

to left using the right tag as an additional feature. 1

Tsuruoka et al. proposed the easiest-first model in which classification order

is dynamically computed.[31] The easiest-first model proceeds as follows (Fig-

ure 4.2). (a) All tags are temporarily predicted using only word features. (b)

The most “confident” (i.e, easiest to predict) tentative tag is actually assigned.

(c) The tentative tags adjacent to the assigned one is re-predicted using word

feature and the assigned tag as features, and the most confident tentative tag is

assigned. (d) This process is repeated until all tags are assigned. Note that tags

may be predicted using the both sides tag as features during easiest-first process.

Sequential classification models have two advantages over one-shot prediction

models [31]. The first advantage is that they generally run faster than one-shot

prediction models. This is because sequential classification models use only ac-

tually assigned tags as a part of features and do not need to scan all possible tag

assignments, which is the case in one-shot prediction models as we will describe

later. The second advantage is that sequential classification models can use any

type of classifier as tag predictors. This allows users to improve tagging perfor-

mance easily by incorporating state-of-the-art machine learning techniques into

the models.

1In [29], left-to-right model is called “forward parsing”, and right-to-left “backward parsing”.

51



Figure 4.1. Left-to-right sequential model. (a) Assigns the left-most tag using

the left-most word feature. (b) Assigns the second left-most tag using the cor-

responding word feature and the left tag, which is assigned in the previous step.

(c) Repeat the assignment step until the right-most tag.
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Figure 4.2. Easiest-first sequential model
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The disadvantage of sequential classification models is that they cannot redo

tag prediction once the tag is predicted, i.e, the models cannot exploit (probably)

useful tag information that may come later. This may cause a serious bias that

tags which occur frequently with the already assigned tags are preferred than

tags which occur frequently with to-be-assigned tags. This bias is named “label

bias” by Lafferty et al. [32]

Some authors address this label bias problem by applying a beam search to

delay predictions[27, 28] although Ratnaparki does not report its effectiveness in

[27], and Kudo et al. report it does not result in any significant improvements[29].

2.2 One-shot Prediction Models

One-shot prediction models [33, 32, 34, 35] searches the best tag sequence using

a scoring function of a whole sequence. The scoring function does not evaluate

any single tag in isolation as is the case in sequential classification models.

Different one-shot prediction models use different types of scoring functions.

Hidden Markov Models [33] assume a stochastic generative process of tagged se-

quence in which tags are hidden states and words are observable outputs emitted

from hidden states. The score of a tag sequence is computed from the proba-

bilities of state transition and emission, which are estimated from training data.

Conditional Random Fields (CRFs) [32] treat sequence tagging as an inference

problem of maximum likelihood configuration on a Markov random field over a

chain. The likelihood of a tag sequence (i.e, a configuration) is computed as a

product of clique potentials, which is estimated from training data using log-linear

models. Hidden Markov Support Vector Machines [34] and Max-Margin Markov

Networks [35] use a linear combination of tagged sequence features as a scoring

function. The weights are optimized so that the score of correctly tagged sequence

becomes as much higher than those of wrongly tagged sequence as possible.

An obvious advantage of one-shot prediction models is that they do not suffer

from label bias since they select the highest scored tag sequence from all possible

tag sequences. In fact state-of-the-art one-shot prediction models like CRFs often

outperform sequential classification models. Searching the highest scored tag

sequence, however, is computationally demanding and one-shot prediction models

usually run much slower than sequential classification models.
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3. Problem Statement

Sequential classification models run much faster than one-shot prediction models,

but suffer from label bias. Thus one of natural research directions is to develop

a method to make label bias less serious in sequential classification models while

keeping computational costs low.

The easiest-first model [31] can be considered as one of such attempts. It as-

signs tags to easy-to-predict parts of sequences before hard-to-predict parts. Thus

when the hard parts are tagged, it is likely that tag classifier can use adjacent and

(probably) reliable tag information. Although this does not completely eliminate

label bias, the situation is much better than fixed-order sequential models such

as left-to-right and right-to-left models.

The easiest-first model determines next tagging positions solely on the basis

of tag classifier’s confidence score. However it is not clear that classifier’s score is

a good indicator of the reliability of classifier’s prediction. In addition to that, no

linguistic information is used to determine next positions although some linguis-

tic information is definitely helpful to know easy-to-predict parts in sequences.

(For example in named entity recognition, if the word “Bush” appears just after

“President”, it is almost certain that this “Bush” means the name of a person,

not a shrub.)

From the above considerations, the following questions arise.

• How should classifier’s confidence score and linguistic information be com-

bined to guess a good tagging position?

• How much improvement can be expected if the optimal tagging positions are

chosen in sequential classification models?

The second question is as important as the first one because an answer to the

second question should give an upper bound to the impact of guessing good

tagging positions. Therefore we will answer the second question first.

4. Optimal Sequential Classification

From here, x and y represent a word sequence and its tag sequence respectively.

The i-th word (tag) of x(y) is resented by xi (yi). T denotes the set of all

tags. Additionally we assume that the following four tag classifiers are given.

(Figure 4.3)
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Figure 4.3. Tag classifiers

• fN(xi) predicts the i-th word’s tag given only the feature of i-th word.

• fL(xi; yl) predicts the i-th word’s tag given the feature of i-th word and the

left-side tag yl.

• fR(xi; yr) predicts the i-th word’s tag given the feature of i-th word and

the right-side tag yr.

• fB(xi; yl, yr) predicts the i-th word’s tag given the feature of i-th word, the

left-side tag yl and the right-side tag yr.

All methods and discussions in this thesis can be easily extended to use more

complex tag classifiers such as the one using second left-side tag as a feature.

We, however, decided to use only these four tag classifiers in this thesis because

the addition of tag classifiers makes algorithms more computationally demanding

and it becomes very difficult to repeat experiments.

To make statements simpler, we introduce a concept strategy. Strategy is

the ordering of tagging positions. More formally speaking, a strategy for x is a

permutation ⟨i1, i2, . . . , in⟩, where n is the number of words in x, 1 ≤ ik, il ≤ n

and ik ̸= il for ∀k ̸= l. If a strategy ⟨i1, i2, . . . , in⟩ is given, one can stepwise

predict the tags ⟨yi1 , yi2 , . . . , yin⟩ using fN (if both-side words are not tagged),

fL (if only left-side word is tagged), fR (if only right-side word is tagged), or fB

(if both-side words are tagged) for each step prediction.

With these notations, the second question of Sec.3 can be restated as follows.

Given x and y, find the optimal strategy which minimize the tag error

of the resultant tag sequence.

Here “tag error” means the number of wrong tag assignments.
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Figure 4.4. All possible strategies for a 3-word sequence. Six (= 3!) different

strategies result in at most four (= 23−1) different tag sequences. Tag sequences

with the same dependency are enclosed by a dashed lines.

4.1 Dynamic Programming for Minimum Error Strategy

To keep statements simple, we call tagging order between adjacent tags “depen-

dency” hereafter. We say “a tag depends on its left (right) tag” if the tag is

predicted after the left (right) tag.

Since a strategy corresponds to a permutation of n positions, there are n!

possible strategies. Thus it is practically impossible to enumerate all possible

strategies and compare their errors in a brute force fashion. Fortunately, however,

there is a dynamic programming method which finds the optimal strategy in a

polynomial time complexity of n.

The dynamic programming method is based on the observation that output

tags are completely determined by the dependencies between words, and some

strategies result in identical dependencies. (Figure 4.4) This leads to the following

restatement of the second question in Sec.3.

Given x and y, find the optimal dependencies which minimize the tag

error of the resultant tag sequence.

To answer this question, we introduce the following variable.

αi
ti,di,ti+1

≡ min
tj∈T,dj∈D(1≤j≤i−1)

i∑
k=1

I[yk ̸= tk|tk = f(xk; tk−1, dk−1, dk+1, tk+1)]. (4.1)

Here T is the set of all possible tags, D the set of two dependencies {←,→}
(← (→) means that the left(right)-side tag depends on the right(left)-side tag);

ti is the predicted tag of the i-th word and di is the dependency between i-th and
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(i+1)-th tags; I[· · · | · · · ] is a conditional indicator function,

I[statement|condition] =


1 if condition is true ∧ statement is true

0 if condition is true ∧ statement is false

∞ if condition is false,

(4.2)

and f is a proxy tag classifier defined as

f(x; tl, dl, dr, tr) ≡


fN(x) if dl =← ∧dr =→
fL(x; tl) if dl =→ ∧dr =→
fR(x; tr) if dl =← ∧dr =←
fB(x; tl, tr) if dl =→ ∧dr =← .

(4.3)

Since the k-th summand in Eq.(4.1) is the tag error of the k-th word, the minimum

error is equal to mintn αn
tn,←,EOS, where EOS is the special tag for the end of

sequence 2.

αn
tn,←,EOS can be evaluated in O(n) using the following recursion.

αi
ti,di,ti+1

= min
ti−1,di−1

αi−1
ti−1,di−1i,ti

+ I[yi ̸= ti|ti =f(xi; ti−1, di−1, di+1, ti+1)] (4.4)

α0
t0,d0,t1

=

{
0 if t0 = BOS ∧ d0 =→
∞ otherwise

(4.5)

Figure4.5 is a pseudo code for computing α and minimum tagging error. We

separate the main part of computation into function MinErrorTagging which

outputs the minimum error tag sequence instead of the minimum error itself.

In MinErrorTagging, variable A
(k)
tk,dk,tk+1

keeps track of a part of minimum error

tag sequence which are read out at the last stage of the function. Please note

that the algorithm in Figure4.5 can be seen as an adaptation of the bidirectional

inference algorithms in [31], where the objective function is a total confidence of

tag classifiers.

4.2 Impact of Minimum Error Strategy

To investigate how good minimum error tag sequence is, We computed minimum

tagging error on real NLP tagging data and compared it to some sequential

classification models.
2We assume that virtual tags BOS(beginning of sequence) and EOS are assigned to both

sides of sequence before tagging, and tag classifiers accept these virtual tags as feature.
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1 : function MinError(x,y)

2 : n := |x|
3 : ŷ := MinErrorTagging(x,y, 1, n, BOS, EOS)

4 : err := 1
n

∑n
i=1 I[yi ̸= ŷi]

5 : return err

1 : function MinErrorTagging(x,y, s, e, ts−1, te+1)

2 : // s(e) : Start(End) index to tag

3 : // ts−1(te+1) : Tag of xs−1(xe+1)

4 : α := ∞
5 : for each t ∈ T

6 : αts−1,→,t := 0

7 : // Main loop

8 : for i := s . . . e

9 : if i < e D′ := D,T ′ := T

10 : else D′ := {←}, T ′ := {te+1}
11 : α′ := ∞
12 : for each dr ∈ D′, tr ∈ T ′

13 : for each ⟨tl, dl, t⟩ where αtl,dl,t ̸= ∞
14 : if α′

t,dr,tr
> αtl,dl,t + I[yi ̸= t|t = f(xi; tl, dl, dr, tr)]

15 : α′
t,dr,tr

:= αtl,dl,t + I[yi ̸= t|t = f(xi; tl, dl, dr, tr)]

16 : A
(i)
t,dr,tr

:= ⟨tl, dl⟩
17 : α := α′

18 : // Read out the minimum error path

19 : dr :=←, ŷe+1 := te+1 , ŷe := arg min
t∈T

αt,dr,ŷe+1

20 : for i := e . . . s

21 : ⟨ŷi−1, dl⟩ := A
(i)
ŷi,dr,ŷi+1

22 : dr := dl

23 :

24 : return ŷs,e

Figure 4.5. Pseudo Code of Minimum Error Tagging
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Figure 4.6. An Example of Chunking Data. (a) A sentence with chunking

(phrase) information and (b) its converted form for tagging.
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Data

We used CoNLL-2000 Chunking dataset [36] for this purpose. The dataset con-

sists of 8,936 training sentences and 2,012 test sentences which are from news

articles of Wall Street Journal. Each word in sentences are annotated with a

part-of-speech and a chunking tag. (Figure 4.6) A chunking tag represents that

the word is the beginning of phrase (B-*), the inside or end of phrase (I-*), or

does not belong to any phrase (O).

Tag Classifiers

One-vs-rest Support Vector Machines with polynomial kernels were used as tag

classifiers. We used a binary feature vector, whose element is associated with a

unique feature pattern. An element is equal to 1 if its associated pattern matches

the context of xi and 0 otherwise. The following templates are used to generate

the feature patterns.

• xk’s token is [TKN]. (i−2 ≤ k ≤ i+2)

• xk’s part-of-speech is [POS]. (i−2 ≤ k ≤ i+2)

• (Only for fL and fB) yi−1 is [TAG].

• (Only for fR and fB) yi+1 is [TAG].

A feature pattern is generated by replacing [TKN], [POS] and [TAG] by any

token, part-of-speech and tag respectively. For example, Table 4.1 shows the

feature patterns that match the context of the word “current” in Figure 4.6.

The degree of polynomial kernel d and the hyper-parameter C are optimized

by 10-fold cross validation on training data. We tested all combination d = 1, 2, 3

and C = 0.001, 0.01, 0.1, 1.0, then chose d = 2 and C = 0.1.

Results

Table 4.2 shows the accuracy and F-measure of minimum tag error sequence,

three sequential classification models (left-to-right, right-to-left, easiest-first) and

the best three results reported in the CoNLL-2000 Shared Task page 3 (Zhang et

al., Kudo et al., Carreras et al.).

3http://www.cnts.ua.ac.be/conll2000/chunking/
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xi−2’s token is “reckons”.

xi−1’s token is “the”.

xi’s token is “current”.

xi+1’s token is “account”.

xi+2’s token is “deficit”.

xi−2’s part-of-speech is VBZ.

xi−1’s part-of-speech is DT.

xi’s part-of-speech is JJ.

xi+1’s part-of-speech is NN.

xi+2’s part-of-speech is NN.

(Only for fL and fB) yi−1 is B-NP.

(Only for fR and fB) yi+1 is I-NP.

Table 4.1. The feature patterns which match the context of “current” in Fig. 4.6.

Accuracy F-measure

Left-to-right 95.85 93.56

Right-to-left 95.90 93.66

Easiest-first 95.98 93.73

Zhang et al.[37] — 94.13

Kudo et al.[29] — 93.91

Carreras et al.[38] — 93.74

Min. Tag Error 97.02 95.18

Table 4.2. Performance of Minimum Error Strategy
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Accuracy and F-measure are defined as

Accuracy ≡ (# of Correctly Predicted Tags)

(# of Tags)
, (4.6)

F-measure ≡ 2 × (# of Correctly Recognized Chunks)

(# of True Chunks) + (# of Recognized Chunks)
. (4.7)

Table 4.2 clearly shows that the minimum error tag sequences are much better

than not only the sequential classification methods, but also the state-of-the-art

methods. The improvement is impressive: the minimum error results are better

than the top result by around 1 point in F-measure, whereas the difference in

F-measure between the top result and the (rather naive) left-to-right result is

only 0.57 point.

Thus the second question in Sec.3 has been answered quite positively: much

better tagging is achieved if we know better strategies. That also means that the

first question in Sec.3 is indeed worth to consider.

5. Learning of Tagging Strategy

First we introduce some notations and concepts.

x and y are the same as in the previous section. ŷi ∈ T ∪{∅} is a tag assigned

to the i-th word by a tag classifier, where ŷi = ∅ means that the i-th word is

not assigned a tag yet. We call a pair (x, ŷ) “a partially tagged sequence.” A

strategy function g(x, ŷ) is a map from partially tagged sequences to untagged

positions in ŷ, i.e, {k|ŷk = ∅}.
With the above notations, the first question in Sec.3 can be restated as follows.

How to construct a good strategy function from classifier’s confidence

score and linguistic information?

In this thesis, we will investigate a machine learning approach to construct a

good strategy function. For brevity, we simply call learning of strategy function

“strategy learning” hereafter.

5.1 Generating Training Data

In this thesis, we assume that sample tagged sequences are given to the learner.

These sequences, however, cannot be used directly as the training data for strat-

egy learning because the training data should be pairs of strategy function’s input
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and output, i.e., partially tagged sequence and next tagging positions. Thus it is

necessary to generate training data from given tagged sequences.

Concerning training data generation, there are two problems.

1. Which partially tagged sequences should be selected as input samples?

2. How do we define “good” tagging positions?

Selection of Partially Tagged Sequences

The number of possible partially tagged sequences is so huge that it is impossible

to use all of them as training data. In addition to that, it is useless (and probably

harmful) to include the partially tagged sequences which would not appear during

tagging.

Based on the above discussion, we propose to use partially tagged sequences

which appear during tagging along the current strategy. Figure 4.7 is a pseudo

code of the proposed training data generation process. In the algorithm, we use

proxy tag classifier f 4,

f(x; yl, yr) ≡


fN(x) if yl = ∅ ∧ yr = ∅
fL(x; yl) if yl ̸= ∅ ∧ yr = ∅
fR(x; yr) if yl = ∅ ∧ yr ̸= ∅
fB(x; yl, yr) if yl ̸= ∅ ∧ yr ̸= ∅.

(4.8)

For each sequence the algorithm starts with InitialTagging. Function Initial-

Tagging assigns highly confident tags before tagging with the current strategy

g. This greatly reduces the run time of data generation without deteriorating

the quality of data. (See the experimental results for detail.) Then the algo-

rithm generates a training sample (x, ŷ, i) (i.e, partially tagged sequence and

next tagging position) in each tagging step with the given strategy g (Line 7-14).

To generate the sample, GenerateTrainData calls function NextTaggingPosition,

which estimates the best tagging position for the next step. We will explain

NextTaggingPosition below.

Evaluation of Tagging Position

Intuitively an untagged position should be considered as a good tagging position

when an accurate tag sequence is obtained if the untagged position is tagged
4Here we reuse the notation f , which is also used in Eq.(4.3), since both f are proxy tag

classifiers and it is obvious which f is used from context.
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1 : function GenerateTrainData(g, {(xk,yk)}m
k=1)

2 : // g : Strategy function

3 : // {(xk,yk)}m
k=1 : Samples of tagged sequence

4 : D := {}
5 : for each (x,y) ∈ {(xk,yk)}m

k=1

6 : ŷ := InitialTagging(x)

7 : U := {i|ŷi = ∅}
8 : while U ̸= {}
9 : // Generate training data

10 : i := NextTaggingPosition(x, ŷ,y)

11 : Add (x, ŷ, i) to D

12 : // Tagging with the current strategy

13 : i := g(x, ŷ)

14 : ŷi := f(xi; ŷi−1, ŷi+1)

15 : U := U/{i}
16 : return D

1 : function InitialTagging(x)

2 : for i := 1, . . . , |x|
3 : if the confidence score of fN(xi) > given threshold

4 : yi := fN(xi)

5 : else

6 : yi := ∅
7 : return ŷ

Figure 4.7. Pseudo code of training data generation
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Figure 4.8. Illustration of evaluation process of next tagging position (a) First

each candidate position is tagged. (b) Remaining empty position is filled by the

evaluation strategy. (c) The result sequence is evaluated using true tag sequences.

(d) The candidate position from which the best result originated is choosen as

the best position to tag in the next step.
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1 : function MaxErrorTagging(x,y, s, e, ts−1, te+1)
...

14 : if α′
t,dr,tr

> αtl,dl,t + I[yi = t|t = f(xi; tl, dl, dr, tr)]

15 : α′
t,dr,tr

:= αtl,dl,t + I[yi = t|t = f(xi; tl, dl, dr, tr)]
...

Figure 4.9. Pseudo Code of Maximum Error Tagging. Line 2-13 and 16-24 are

the same as MinErrorTagging, thus omitted.

first and then the remaining positions are tagged along a strategy function the

learner will finally produce. (Figure 4.8) This characterization of good tagging

position, however, involves a circular argument since it uses the to-be-learned

strategy to learn the strategy itself. To circumvent this problem, we propose to

use one of the following strategies instead of the to-be-learned strategy. (We call

these strategies “evaluation strategies” to emphasize that they are only used to

“evaluate” the goodness of next tagging position.)

Minimum Error Strategy Assign tags to untagged words using MinErrorTag-

ging in Figure 4.5. This strategy produces the most accurate tag sequence

which can be derived from given partially tagged sequence, thus gives an

upper bound of the position’s goodness. This strategy may not be learnable.

Current strategy Assign tags using the strategy being learned. This strategy is

not so optimistic as Minimum Error Strategy and is learnable by definition.

Maximum Error Strategy Assign tags to untagged words so that the resul-

tant tag sequence becomes the most inaccurate tag sequence. Figure 4.9

shows an algorithm which performs (sub)sequence tagging with this strat-

egy. On the contrary to Minimum Error Strategy, Maximum Error Strategy

evaluates tagging positions in their worst case.

Figure 4.10 shows pseudo codes of NextTaggingPosition and the above evalu-

ation strategies (EvalTagging *).
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1 : function NextTaggingPosition(x, ŷ,y)

2 : n := |x|
3 : U := {i|ŷi = ∅}
4 : for each i ∈ U

5 : ŷi := fi(x, ŷ)

6 : ŷ := EvalTagging(x, ŷ,y)

7 : li = 1
n

∑n
i=1 I[yi ̸= ŷi]

8 : return arg min
i∈U

li

1 : // Evaluated with Minimum Erorr Strategy

2 : function EvalTagging MinError(x, ŷ,y)

3 : R := {(s, e)|1≤s<e≤n ∧ ŷs−1 ̸= ∅ ∧ ŷe+1 ̸= ∅ ∧ ŷi = ∅ for ∀i ∈ [s, e]}
4 : for each (s, e) ∈ R

5 : ŷs,e := MinErrorTagging(x,y, s, e, ŷs−1, ŷe+1)

6 : return ŷ

1 : // Evaluated with Maximum Error Strategy

2 : function EvalTagging MaxError(x, ŷ,y)

3 : R := {(s, e)|1≤s<e≤n ∧ ŷs−1 ̸= ∅ ∧ ŷe+1 ̸= ∅ ∧ ŷi = ∅ for ∀i ∈ [s, e]}
4 : for each (s, e) ∈ R

5 : ŷs,e := MaxErrorTagging(x,y, s, e, ŷs−1, ŷe+1)

6 : return ŷ

1 : // Evaluated with the current strategy g

2 : function EvalTagging CurrentStrategy(x, ŷ,y)

3 : U := {n|ŷn = ∅}
4 : while U ̸= {}
5 : i := g(x, ŷ)

6 : ŷi := f(xi; ŷi−1, ŷi+1)

7 : U := U/{i}
8 : return ŷ

Figure 4.10. Pseudo code of position evaluation
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5.2 Learning of Linear Strategy Model

We described a generation method of training data. Now we turn to the problem

of how to learn a strategy function from generated training data.

A Linear Strategy Model

We assume that there are position scoring functions hi(x,y) behind a strategy

function and the strategy function returns the highest score position, i.e,

g(x, ŷ) = arg max
i∈{j|ŷj=∅}

hi(x,y). (4.9)

Additionally it is assumed that the position scoring function is a linear function

of a position-dependent feature vector ϕ⃗i(x, ŷ),

hi(x,y) = w⃗ · ϕ⃗i(x, ŷ), (4.10)

where w⃗ is a weight vector. Here are some examples of position-dependent fea-

tures.

• Information of i-th word and its neighborhood words

• Already assigned tags around i-th word

• Predicted tag and its confidence score by tag classifier

We show a pseudo code of sequence tagging with the above linear model in Fig-

ure4.11.

In Figure 4.11, tagging a whole sequence needs n (n is the length of the input

sequence x) iterations of the loop, and the k-th iteration involves the search of

the maximum element among n−k−1 untagged positions. (Line 4 in Figure 4.11)

Thus it takes O(n2) computational steps in general to assign all tags. This O(n2)

computational cost is against our research motivation of improving sequential

classification models while keeping computational cost low. However we can

reduce this cost to O(n log n) if the position-dependent feature vector ϕ⃗i(x, ŷ) is

designed so that a tag assignment to the i-th word results in a limited number of

other feature vectors ϕ⃗j ̸=i(x, ŷ) [31].

To explain how this reduction can be done, suppose that a tag assignment

affects at most k feature vectors. First we store the scores {w⃗ · ϕ⃗j(x, ŷ)}j∈U in

a red-black tree [39]. This step takes at most O(n log n). Then in each iteration
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1 : function SequenceTagging(x)

2 : U := {i|ŷi = ∅}
3 : while U ̸= {}
4 : i := arg max

j∈U
w⃗ · ϕ⃗j(x, ŷ)

5 : ŷi := f(xi; ŷi−1, ŷi+1)

6 : U := U/{i}
7 :

8 : return ŷ

Figure 4.11. Pseudo code of sequence tagging with linear strategy model

1 : function UpdateStrategy(w⃗, {(xk, ŷk, ik)}m
k=1)

2 : for n := 1, 2, . . . , N

3 : for each (x,y, i) ∈ {(xk, ŷk, ik)}m
k=1

4 : U := {j|ŷj = ∅}
5 : for j ∈ U/{i}
6 : if w⃗ · ϕ⃗i(x, ŷ) ≤ w⃗ · ϕ⃗j(x, ŷ)

7 : w⃗ = w⃗ + (ϕ⃗i(x, ŷ) − ϕ⃗j(x, ŷ))

8 : return w⃗

Figure 4.12. Pseudo code of strategy update

in Figure 4.11, we search the highest score position (this can be done within

O(log n)) and update (i.e, delete and insert) at most k scores (this can be done

within O(k log n)). Thus the whole tagging can be done in O(kn log n).

Perceptron-based Update

Figure 4.12 shows the learning algorithm for our linear strategy models. The

algorithm is an adaptation of Perceptron variants proposed by Collins et al. [40,

41, 42]. The algorithm updates the weight vector w⃗ only when the score of the

to-be-tagged position w⃗ · ϕi(x, ŷ) is lower than those of the other positions. The

update is done so that to-be-tagged position scores get higher while the other

position scores lower. w⃗ converges within a finite iterations if the generated
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1 : function StrategyLearn({(xk,yk)}m
k=1)

2 : Initialize w⃗

3 : u⃗ := w⃗

4 : for t := 1, 2, . . . , T

5 : D := GenerateTrainData(g, {(xk,yk)}m
k=1)

6 : UpdateStrategy(w⃗,D)

7 : u⃗ := u⃗ + w⃗

8 : return u⃗/T

Figure 4.13. Pseudo code of strategy learning

training data are “separable” i.e, there is a weight vector which can score all the

to-be-tagged position higher than the others. [42].

5.3 Full Description of Strategy Learning

Figure 4.13 shows the main algorithm of the proposed strategy learning method.

To avoid over-fitting and enhance generalization, StrategyLearn outputs not the

weight vector w⃗, but the averaged weight vector u⃗/T . This type of averaging is

investigated in [43] and the experimental results there shows constantly better

results than the non-averaged case.

5.4 Round Robin Training

When we use a good machine learning algorithm to construct tag classifiers, it

is better to split training data for tag classifiers learning and strategy function

learning. This is because tag classifiers are generally so good at predicting tags on

training data that any tagging strategy (even a random strategy) could produce

quite accurate tagging. Thus it is very hard to learn a meaningful strategy from

the training data for tag classifiers. Splitting training data, however, also means

that neither tag classifier learning algorithm or strategy learning algorithm can

use the whole training data. This usually results in inaccurate tag classifier and

strategy functions.

To overcome this trade-off, we propose Round Robin Training.（Figure 4.14）
Round Robin Training proceeds as follows.
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Figure 4.14. Round robin training

72



1. Split given training data into N parts of the same size.

2. Repeat step 3 and 4 from i = 1 to N

3. Learn tag classifiers using the training data except the i-th part.

4. Learn strategy function with the tag classifiers learned in step 3 using the

i-th part as training data. Use the weight vector in the previous iteration

as the initial value of w.

5. Output the averaged weight vector as the parameter of strategy function.

6. Learn tag classifiers using all the training data.

Training data for tag classifiers and strategy function do not overlap in each

iteration of Round Robin Training. Additionally both tag classifiers and strategy

function are trained using all the training data. Thus Round Robin Training

avoids both problems described at the beginning of this section.

6. Experiments

6.1 Data and Tag Classifiers

We used the same CoNLL-2000 Chunking data and the same learning conditions

of tag classifiers (i.e, feature, hyper-parameter, and kernel) as in Sec.4.2.

6.2 Strategy Learning Setup

We use feature vector ϕ⃗i(x, ŷ) which consists of a real-valued element and binary-

valued elements. The real-valued element is the confidence score of f(xi; ŷi−1, ŷi+1),

i.e, the output of the SVM which corresponds to f(xi; ŷi−1, ŷi+1). The binary el-

ements represent the existence of feature patterns generated from the following

feature templates.

• xk’s token is [FREQTKN]. (i−1 ≤ k ≤ i+1)

• xk’s part-of-speech is [POS] (i−1 ≤ k ≤ i+1).

• The pair of xk and xl’s tokens is ([FREQTKN1], [FREQTKN2]). (i−1 ≤
k < l ≤ i+1)
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• The pair of xk and xl’s part-of-speeches is ([POS1], [POS2]). (i−1 ≤ k <

l ≤ i+1)

• The pair of xk’s token and xl’s part-of-speech is ([FREQTKN], [POS]).

(i−1 ≤ k < l ≤ i+1)

• The pair of xk’s token and f(xi; ŷi−1, ŷi+1) is ([FREQTKN], [TAG]). (i−1 ≤
k ≤ i+1)

• The pair of xk’s part-of-speech and f(xi; ŷi−1, ŷi+1) is ([POS], [TAG]). (i−1 ≤
k ≤ i+1)

• A part-of-speech trigram within a chunk after tagging is [CHUNK POS TRIGRAM].

Here [FREQTKN*] represents a token which is among 200 most frequent tokens

in the training data. [CHUNK POS TRIGRAM] represents a trigram of part-of-

speeches which does not cross chunk boundaries. An example of feature patterns

is shown in Table 4.3.

6.3 Results

Effects of Learned Strategy

Figure 4.15 and Figure 4.16 show the accuracies and the F-measures of learned

strategy tagging on the CoNLL-200 test sentences. The tag classifiers were trained

on 1936 sentences randomly drawn from the CoNLL-2000 training sentences, and

the strategy function were trained on 1000, 2000, 3000, 4000, 5000, 6000, 7000

sentences randomly drawn from the remaining training sentences. We did not use

Round Robin Training in this experiment to see the genuine difference between

learned and non-learned strategies. The threshold in InitialTagging was 1.0, the

number of UpdateStrategy iterations (N in Figure 4.12) 5, and the number of

StrategyLearn iterations (T in Figure 4.13) 10. Minimum Error Strategy was

used as the evaluation strategy in Figure 4.10.

Figure 4.15 and Figure 4.16 show that the proposed strategy learning method

produces better strategies than non-strategy-learning sequential classification meth-

ods (left-to-right, right-to-left and easiest-first). Additionally the improvement is

getting larger when more training sequences are given to the learner.
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xi’s token is “the”.

xi−1’s part-of-speech is VBZ.

xi’s part-of-speech is DT.

xi+1’s part-of-speech is JJ.

The pair of xi−1 and xi’s part-of-speeches is (VBZ, DT).

The pair of xi−1 and xi+1’s part-of-speeches is (VBZ, JJ).

The pair of xi and xi+1’s part-of-speeches is (DT, JJ).

The pair of xi’s token and xi−1’s part-of-speech is (“the”, VBZ).

The pair of xi’s token and xi’s part-of-speech is (“the”, VBZ).

The pair of xi’s token and xi+1’s part-of-speech is (“the”, JJ).

The pair of xi’s token and f(xi; ŷi−1, ŷi+1) is (“the”, B-NP).

The pair of xi−1’s part-of-speech and f(xi; ŷi−1, ŷi+1) is (VBZ, B-NP).

The pair of xi’s part-of-speech and f(xi; ŷi−1, ŷi+1) is (DT, B-NP).

The pair of xi+1’s part-of-speech and f(xi; ŷi−1, ŷi+1) is (JJ, B-NP).

A part-of-speech trigram within a chunk after tagging is NP:%BOC%-DT-JJ.

A part-of-speech trigram within a chunk after tagging is NP:DT-JJ-NN.

A part-of-speech trigram within a chunk after tagging is NP:NN-NN-%EOC%.

Table 4.3. Example feature patterns for strategy function. The feature patterns

in the table match the i-th position in the partially tagged sequence at the top

of the figure. The tokens “reckons” and “current” do not trigger any pattern

because they are not frequent in training data. %BOC% represents a begining of

chunk and %EOC% an end of chunk. The first NP chunk does not trigger any

pattern because the end of the chunk can not be determined.
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Figure 4.15. Learning curve of Accuracy

Figure 4.16. Learning curve of F-measure
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Strategy Accuracy F-measure

Left-to-right 95.85 93.56

Right-to-left 95.90 93.66

Easiest-first 95.98 93.73

T20%-S80% 95.24 92.42

T40%-S60% 95.52 92.91

T60%-S40% 95.72 92.91

T80%-S20% 95.81 93.42

Round Robin 96.10 93.89

Table 4.4. Performance comparison of learning strategies (Txx%-Syy% and

Round Robin) and non-learning strategies (Left-to-right, Right-to-left and

Easiest-first).

Round Robin Training

One can say that the above experiment is unfair since the non-learned strategies

uses only 1,936 sentences for training while the learned strategies uses additional

1,000-7,000 sentences for strategy training. Thus we conducted another experi-

ment in which the whole training data is used to achieve best results for every

method. Table 4.4 shows the accuracies and the F-measures of the learned and

the non-learned strategies which were trained as follows. For non-learned strate-

gies (i.e, left-to-right, right-to-left and easiest-first), tag classifiers are trained

using the whole 8,936 training sentences. For learned strategies, two types of

training were tested; (1) 20,40,60,80% of the training sentences were used for tag

classifiers and the remains for strategy function (Txx%-Syy% in Table 4.4). (2)

Round Robin Training with 5 splits (Round Robin). Other learning conditions

were the same as in the first experiment.

In Table 4.4, accuracy and F-measure becomes better when the number of

training data for strategy learning becomes fewer, whereas the previous experi-

ment shows that the performance becomes better when the number of the training

data becomes larger. (Figure 4.15 and Figure 4.16) This is because when training

data for strategy learning gets smaller, training data for tag classifiers gets larger

and tag classifiers become more accurate. This improvements in tag classifiers

compensate the degradation in strategy function. Table 4.4 also indicates that

Round Robin Training moderates such trade-off between tag classifiers and strat-
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Evaluation Strategy Acccuracy F-measure

Minimum Error Strategy 96.10 93.89

Current Strategy 95.95 93.66

Maximum Error Strategy 95.90 93.56

Table 4.5. Performance comparison of different loss function and evaluation strat-

egy combinations.

egy function and achieves much better results than the non-learning sequential

tagging methods.

Evaluation Strategy

Table 4.5 shows the performances of different evaluation strategies. The learning

conditions except evaluation strategy are the same as Round Robin Training in

the previous experiment. The result of Minimum Error Strategy is much better

than those of Current Strategy and Maximum Error Strategy.

From informal inspections of the learning process with Current Strategy, we

observed that the convergence of the strategy function was much slower than

the other strategies. This seems to be caused by the fact that the goodness of

a tagging position change as learning proceeds and this makes it hard to learn

a strategy function predicting the goodness. Minimum Error Strategy does not

suffer from such value changes, since it is independent of strategy being learned,

Another inspection of Maximum Error Strategy shows another evaluation

problem: Maximum Error Strategy does not tell good positions from bad ones

in some cases where Minimum Error Strategy does. Figure 4.17 illustrates an

example of such cases. In this example, we have a three-word sequence, whose

possible tagging are shown in Figure 4.17(a). We assume that the bottom right

tagging (“A-B-A”) is correct. (Intuitively this means that the middle tag is hard

to predict without the help of both sides’ tag information.) Then Minimum

Error Strategy can tell the learner that the right and the left are better positions

than the middle. (Figure 4.17(b)) Maximum Error Strategy, however, will not

show any preference between the three positions.(Figure 4.17(c)) Although this

example is artificial, the essentially same situation, where there exists a position

which is hard to predict without the help of both sides’ tag, often occurs in real

tagging problems.
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Figure 4.17. Comparison of Minimum Error Strategy and Maximum Error Strat-

egy
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Threshold Accuracy F-measure Relative Training Time

0.0 95.92 93.38 0.2

0.2 95.99 93.82 0.3

0.4 96.04 93.79 0.3

0.6 96.05 93.81 0.6

0.8 96.07 93.81 0.7

1.0 96.10 93.89 1.0

1.2 96.09 93.89 3.2

1.4 96.03 93.78 10

1.6 96.04 93.81 24

1.8 96.02 93.79 34

2.0 96.05 93.82 53

∞ 96.04 93.79 63

Table 4.6. Performance and runtime comparison of different thresholds for initial

tagging. The relative training times are scaled so that the time of threshold 0.6

be 1.

Initial Tagging

Table 4.6 shows the performance measures (accuracy and F-measure) and the

relative training time of strategies trained with different thresholds. The learning

conditions except initial threshold are the same as Round Robin Training of the

second experiment. It is observed that the performance is not so sensitive over

a rather wide range of threshold although it decreases rapidly if the threshold is

lowered too much. On the other hand the training time is very sensitive to the

choice of threshold and can be much reduced while keeping high accuracy and

F-measure.

7. Conclusion

In this chapter we addressed the problem of strategy learning in sequence tag-

ging. First we presented a polynomial time algorithm for computing the mini-

mum error strategy of a given tagged sequence and showed that tagging with the

minimum error strategy produces very accurate tagging. Then a strategy learn-

ing algorithm were proposed. The experimental results showed that the learned
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strategies achieves much higher performance than non-learning strategies.
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Chapter 5

Conclusions

1. Summary of Thesis

In this thesis, we addressed three interdependent decision problems in natural

language processing.

The first problem is sentence selection. (Chapter 2) We proved that a selec-

tion problem can be converted into a classification problem, thus can be solved

by any classifier learning algorithm. Then Selection SVM is proposed to solve

successive selection problems. Experiments with an artificial dataset and a sen-

tence selection dataset show that Selection SVM performs better compared to

SVMs and SVPL.

The second problem is multi-topic text categorization. (Chapter 3) We pro-

posed a novel learning algorithm for multi-topic text categorization. The al-

gorithm, Maximal Margin Labeling, embeds labels (i.e, sets of topics) into a

similarity-induced vector space, and learns a large margin classifier in the space.

To overcome the demanding computational cost of MML, we provide an approx-

imation method in learning and efficient classification algorithms. In the experi-

ments on a collection of Web pages, MML outperformed other methods such as

SVM and nearest neighbor showed better generalization.

The last problem is sequence tagging. (Chapter 4) We proposed the strategy

learning approach, whose goal is to learn a strategy function which guides where

to tag in the next step. We presented a polynomial time algorithm for computing

the minimum error strategy of a given tagged sequence and showed that tagging

with the minimum error strategy leads to very accurate tagging. Then a strategy

learning algorithm were proposed. The experimental results showed that the
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learned strategies achieves much higher performance than non-learning strategies.

2. Implications for General Interdependent De-

cision Problems

The definition of interdependent decision problem is very general whereas this

thesis covers only three examples of interdependent decision problems in NLP. In

this section, we will discuss what implications this thesis’ results have for general

interdependent decision problems.

First we introduce some notations. Xi(1 ≤ i ≤ m) is the i-th input vari-

able and Yj(1 ≤ j ≤ n) the j-th output variable. When we mention the all

input(output) variables at once, we use X1m(Y1n) or simply X(Y ). Pr(·|·) repre-

sents a conditional probability. With these notations, the goal of interdependent

decision problems is to predict

y∗
1n = arg max

y1n

Pr(Y1n = y1n|X1m = x1m) (5.1)

for each given input variables x1m.

2.1 Modeling Full Conditional Probability

Arguably the most straight-forward approach is to directly model the conditional

probability in Eq.(5.1). This is the approach we take for multi-topic text catego-

rization in Chapter 3, where the scoring function of Eq.(3.5) corresponds to the

conditional probability Pr(Y1n|X1m), where Xi represents the i-th feature of text

and Yj the relevancy of the j-th topic.

Generally speaking, this approach is too naive since the number of possible

output assignments can be so huge that a good estimation of Pr(Y1n|X1m) or a

corresponding scoring function can be quite hard due to data sparseness. For

some situations, however, only small fraction of possible output assignments are

actually observed and then a good modeling of the full conditional probability is

possible. For example, in “Arts & Humanities” dataset of Table 3.2, there are

26 topics, thus 226 ≈ 108 possible output assignments (i.e, labels). The number

of observed assignments, however, is only 599 and much smaller than that of

possible assignments. Although 599 classes are rather huge compared to usual

multi-class categorization problems, the results of Chapter 3 show that multi-class

categorization techniques can be successfully applied to such cases.
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We think that the results of Chapter 3 suggest that the combination of pow-

erful generalization techniques such as large margin principle and efficient imple-

mentation techniques can lead to good estimation of the full conditional proba-

bility when the number of observed output assignments are not so large.

2.2 Sequential Prediction

Using Bayes’ rule, Pr(Y1n|X1m) can be factorized into

Pr(Y1n|X1m) =
n∏

k=1

Pr(Yjk
|Yj1 , Yj2 , . . . , Yjk−1

, X1m)

where (j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n). In some cases, we can

assume conditionally independence properties and can reduce the number of con-

ditional variables like

Pr(Yjk
|Yj1 , Yj2 , . . . , Yjk−1

, X1m) = Pr(Yjk
|Bjk

, X1m), (5.2)

where Bjk
is a (usually small) subset of Yj1 , Yj2 , . . . , Yjk−1

. From Eq.(5.1) and

Eq.(5.2), we get

y∗
1n = arg max

Y1n

n∏
k=1

Pr(Yjk
|Bjk

, x1m). (5.3)

Now let’s think the following assignment ŷjk

ŷjk
= arg max

Yjk

Pr(Yjk
|Bjk

, x1m) for ∀k ∈ {1, 2, . . . , n}, (5.4)

where Bjk
represents the assignment of ŷj1 , ŷj2 , . . . , ŷjk−1

to the corresponding

variables in Bjk
. Although ŷ1n does not coincide with y∗

1n in general, ŷ1n can

be good approximations of y∗
1n if the mass of Pr(Yjk

|Bjk
, x1m) concentrates on a

specific value of Yjk
for all k. This condition can be stated more formally as the

conditional entropy,

H(Yjk
|Bjk

, x1m) = −
∑
Yjk

Pr(Yjk
|Bjk

, x1m) log Pr(Yjk
|Bjk

, x1m), (5.5)

should be small. If we have a good model of H(Yjk
|Bjk

, x1m), we can construct a

deterministic approximation procedure for Eq.(5.3) as follows.

1. Find jk which achieves the smallest value of Eq.(5.5).
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2. Compute ŷjk
using Eq.(5.4).

3. Repeat the above steps until all output variables are assigned.

Strategy learning approach in Chapter 4 can be seen as a discriminative mod-

eling of the above approximation procedure: the strategy function g(x, ŷ) corre-

sponds to the conditional entropy H(Yjk
|Bjk

, x1m) and the tag classifier f(x, ŷ)

to the conditional probability Pr(Yjk
|Bjk

, x1m). It is obvious that this correspon-

dence can be established in general interdependent decision problems. Addition-

ally the above discussion implies that strategy learning approach may be effective

if H(Yjk
|Bjk

, x1m) is very small at least for one jk.

3. Future Work

In this section, we list future work directions related to this thesis.

Classification-based Method for More General Selector In Section 4.1,

we define two types of selector, n-best selector and p-percentile selector, which

choose a set of items from input item sets. Although these selectors can represent

a wide range of selection processes, this is not always the case in real selection

problems.

For example, suppose that you are asked to select a representative sentence

set from an article, say A, and select a sentence set S. Then suppose that the

article is slightly updated and a new sentence t which summarizes well a part of

S is inserted into the article. Now you can make more representative sentence

set by removing a part of S which is summarized by t and adding t and other

sentences to S. This situation cannot be expressed with n-best or p-percentile

selector since if the selector (you) is a n-best or p-percentile selector, an addition

of an item (t) must results in the replacement of a member of S with t, or change

nothing.

The methods introduced in Chapter 2 cannot be applied directly to such

situations. Thus it is an interesting question whether any classification-based

method can be developed for more general selectors.

Kernel Design in Label Space We used Dice measure as a kernel for labels in

Maximal Margin Labeling. An interesting question is how much effect the choice

of kernel in label space has on MML’s performance. We reported a preliminary
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result on the effect of other label kernels in [44], but the result was far from

conclusive.

Kernel design is one of the most important research topic in theory of kernel-

based methods [25]. Most studies, however, concentrate on the design of kernel

for inputs. Thus the design of kernel for outputs (labels) might be an interesting

topics also from theoretical viewpoints.

Suggestion of New Topic When we investigated the experimental results in

Chapter 3, we found some specific topic combinations are assigned to many texts,

and thus behave like new topics. In such cases, it may be helpful to suggest users

that these combinations might be considered new topics. Since it is not easy

to tell whether such a combination really represents a new topic (like quantum

computing) or just strongly-correlated topics for some reasons, this needs further

studies.

Strategy Learning on More Complex Structure Recently, structured out-

put problems have attracted many researchers’ attention and are being studied

intensively [45, 34, 35, 46, 47]. Most of such studies are based on the idea of solv-

ing structured output problems by learning a scoring function which evaluates

the “goodness” of an input-output pair.

On the other hand, the strategy learning approach we proposed is based on

quite a different idea of learning a strategy to predict structured outputs step-

by-step. Thus it is a natural question whether this approach can be extended

for more complicated structured outputs such as trees and graphs. Since such

complex structures often appear in natural language processing, the question is

not only interesting, but also important.

Proof of Convergence in Strategy Learning In the experiments in Chap-

ter 4, we observed that the weight w of strategy function converged rather

smoothly. However, we do not have any theoretical guarantee that this is always

the case. From a practical point of view, it is important to know the conditions

by which a convergence is guaranteed.
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Proceedings of the Tenth European Conference on Machine Learning, pages

137–142, 1998.

[18] R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text

categorization. Machine Learning, 39(2/3):135–168, 2000.

[19] Yoav Freund and Robert E. Schapire. A short introduction to boosting.

Jornal of Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[20] Koby Crammer and Yoram Singer. On the algorithmic implementation of

multiclass kernel-based vector machines. Journal of Machine Learning Re-

search, 2:265–292, 2001.
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