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Abstract

In realizing a speech recognition system robust to variation of speakers, an

efficient adaptation algorithm is needed. Most adaptation techniques require

many adaptation data to carry out an adaptation task. Adaptation data are

often collected from the actual speaker itself in several utterances. With the time

needed to gather and transcribe the adaptation utterances, together with the

actual execution time of the adaptation algorithm, real-time speech recognition

is difficult to realize.

We propose a novel approach in solving the problem that hinders practical im-

plementation of speaker adaptation by using only a single untranscribed utterance

from the user. This unsupervised speaker adaptation approach can execute in few

seconds with a significant improvement in recognition performance as compared

to data-greedy and time-exhausting adaptation schemes. This thesis, details the

science behind the development and implementation of the rapid unsupervised

speaker adaptation based on Hidden Markov Models-Sufficient Statistics (HMM-

Sufficient Statistics).

In this approach, we process in advance the training database into HMM-

Sufficient Statistics Sufficient. During the actual adaptation (online), the process

starts with the N-best speaker selection which is acoustically close to the user’s

utterance. The HMM-Sufficient Statistics of the N-best speakers are selected

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-

mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0361218, September

29, 2006.
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as adaptation data. In view of the fact that HMM-Sufficient Statistics are pre-

computed offline, considerable amount of computation time needed for processing

is saved and re-allocated efficiently to using good-performance but computation-

ally expensive adaptation platforms. The end result, a rapid adaptation system

with good recognition performance. Experiments using Vocal Tract Length Nor-

malization (VTLN), Maximum A Posteriori (MAP) and Maximum Likelihood

Linear Regression (MLLR) were performed. Moreover we tested for robustness

under noisy environment conditions such as office, car, crowd and booth noise in

several signal-to-noise ratios (SNRs).

In this thesis we successfully designed a rapid unsupervised speaker adapta-

tion that requires only a single arbitrary utterance without transcriptions and

execute in 7 sec of adaptation time. The proposed method is suitable for speech

recognition applications where adaptation data is scarce and execution time is

critical. Furthermore, we have fully integrated the proposed approach in a real

application using a dialogue system, where the adaptation technique is integrated

and interacts freely with the recognizer and several processes in the system in a

real environment condition.
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1. Introduction

Automatic Speech Recognition (ASR) can be viewed as an advance form of pat-

tern classification. In a basic pattern classification problem, one is tasked of

segregating different classes of objects. Basically, in the same manner the speech

utterance is broken down into sequence of sounds that vary acoustically, and the

recognizer processes each of these to produce a hypothesis that correspond to the

actual sound itself. Brought by the advent of fast computers, the technique of

doing speech recognition has evolved rapidly. With improved computer power

and disk storage, the speech recognition technology effectively combines different

sources of knowledge to further increase performance and reliability. This means

that in addition to the unique acoustical information the speech utterance can

offer, speech recognition technology accesses and combine some other relevant

sources like linguistic information in constructing the sentence in a form of se-

mantics and pragmatics. Perhaps, context is added to validate the coherence of

the recognized word with the task domain of the recognizer. There are so many

sources of knowledge that is incorporated to the speech recognition system. In

effect, the performance of the ASR increases significantly as the system becomes

more intelligent, discriminative, and a more advanced pattern classification tech-

nique.

The availability of free softwares [1] [2], speech database and tools, revolu-

tionalize the way this technology is applied. The once-upon-a-time fiction movies

showing robots communicating to human beings is now a reality. Nowadays,

whether in space flights, in health care, or perhaps in a word processor software,

speech recognition is more likely being used. An example of a human-machine

interface is the dialogue system in Figure 1 where speech recognition is used in

answering queries and relevant information of a particular task [3]. This system

is an example of a ASR that incorporates the knowledge of different sources to

accomplish certain speech recognition task and to respond accordingly.

Although speech recognition has improved for the past years. Still, this field

has a lot of challenging problems in attaining a very reliable result when used in

real environment conditions. Efforts are being made in making it more robust

and practical for all of its wide-range applications.

1



Figure 1. On-site speech dialogue system “Takemaru-kun”.

1.1 The Speech Recognition System

Techniques in speech recognition has evolved with time. These techniques include

template-based system, where Dynamic Programming (DP) is used in matching

an utterance with the pre-stored utterance template. Also, we have the use of

Neural Networks often referred as the connectionist approach. The most recent

and widely used technique is the probabilistic approach like the HMMs. In Figure

2 the basic speech recognition system is shown. First, the speech utterance is

processed to a suitable format. Then, with the aid of the Acoustic Model and

the Language Model, the recognizer establishes statistical inference which results

to a hypothesis of the recognized utterance.

In general, we use a probabilistic model in which a certain W word sequence

generates an acoustic observation Y . The joint probability P (W ,Y ) leads to

Bayes’ formula:

P (W |Y ) =
P (Y |W )P (W )

P (Y )
, (1)

where P (Y |W ) is the conditional probability of the observed data given the word

2
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string W and generally referred to as the acoustic model . P (W ) is the a priori

probability of the word sequence W . Since this probability is associated with the

sequence of words, it is referred to as the language model . The objective of the

recognizer is to find

Ŵ = arg max
W

P (Y |W )P (W ). (2)

Equation 2 is known as the MAP decoding rule which is a function of both

the acoustic model and the language model. In this thesis, we deal only with the

acoustic model part.

1.2 Challenges in Speech Recognition

The current speech recognition system is very sensitive to variations in the acous-

tic environment such as noise and non-linear channel distortions. Moreover, vari-

ation of the actual speakers’ speech characteristics contribute significantly to the

poor performance of the system. A scenario depicting speech recognition working

in adverse conditions such as in noisy environment and with wider spectrum of

users is shown in Figure 3. In short, real environment speech recognition needs

more work. There are many techniques used in addressing the problems in the

recognizer. However, employing additional algorithms to aid the recognizer would

mean additional overhead such as computation time, and in case of adaptation

techniques, adaptation data is needed to be collected and transcribed. These

overheads preclude the practical aspect of speech recognition. It is imperative

that in the course of formulating techniques in minimizing the effects of these

problems, practical issues should be addressed.

1.3 Thesis Overview

This thesis is organized as follows, Chapter 2 presents a literature review, where

the problems of speech recognition are discussed including the efforts to mini-

mize these problems. In Chapter 3, background in statistics such as, parameter

estimation is introduced which is very useful in understanding the logical progres-

sion from Maximum Likelihood Estimate, towards the basic concept of Sufficient

Statistics. Theoretical background is presented together with applications in

4



pattern recognition in general. Moreover, as the basic theoretical framework is

discussed, the basic statistical concept gradually expands its application in the

context of HMM. In Chapter 4, we explain the HMM-Sufficient Statistics. A

detail explanation and theoretical concept in the application to adaptation using

HMMs is presented, which highlights the significance and effectiveness in realiz-

ing a practical unsupervised speaker adaptation in speech recognition using only

a single arbitrary adaptation utterance. Chapter 5 focuses on rapid unsuper-

vised adaptation based on Baum-Welch reestimation, where the HMM-Sufficient

Statistics is used as adaptation data. In this chapter, we discuss the basic imple-

mentation using a single template model followed by the multi-template model

approach. System modifications are shown with the implementation of HMM-

Sufficient Statistics weighting, global HMM-Sufficient Statistics interpolation and

clustering of speakers. Each of the presented techniques are accompanied with

result and discussion. Issues in recognition performance and adaptation time in

the context of single iteration of Baum-Welch is the main topic in this chap-

ter. A very different adaptation approach based on Maximum Likelihood Linear

Regression (MLLR) [4] is explained in Chapter 6 when applying the concept

of Sufficient Statistics. We discuss the system’s design to accommodate N-best

speakers’ Sufficient Statistics and improve recognition performance with a very

short adaptation time using MLLR. This chapter is focused on the modification of

a powerful adaptation technique that takes many utterances for adaptation into

a rapid adaptation technique using only a single utterance. The experimental

set-up and the summary of the results in recognition performance of the pro-

posed adaptation schemes are presented in Chapter 7. More evaluation results

using current approaches like VTLN, MAP, and conventional MLLR are com-

pared with the proposed algorithm. In Chapter 8, we show the implementation

of the proposed rapid adaptation technique being integrated in an actual dialogue

system. In this chapter, the actual performance of the proposed rapid unsuper-

vised speaker adaptation technique is tested in a real environment application.

Finally we conclude this thesis and describe our future work in Chapter 9.
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2. Speech Recognition In Adverse Conditions

2.1 Problems In Speech Recognition

In a controlled environment condition, we assume that the intrinsic characteristics

of the speech signal as it travels through the medium and into the system until

its conversion to digitized form is preserved [5]. In this situation, the recognizer

will be working normally as it is designed. However, this is not really the case

in a real environment situation. In the physical environment, the acoustical

property of the speech signal is often affected by distortion caused by additive

noise which superimposes to the speech signal, and convolutive noise as well

which is caused by channel distortion. Aside from these two events that happen

along the medium, there are also issues that are critical in speech recognition

particularly the variation of the acoustical properties of the speech inherent to

the individual speaker.

2.2 Noisy Environments

Some basic speech enhancement techniques employed in speech recognition sys-

tems used to minimize the effect of noisy environment conditions are discussed in

this section. For simplicity purposes, we will deal only with the additive noise.

The recognizer can achieve as much as 94.0% of recognition performance in

Word Accuracy (WA) in clean environment condition using a Speaker-Independent

model (SI) without any adaptation even for a 20K dictation task. However, when

recognition is done in noisy environment conditions such as office, crowd, booth,

and car noise, the recognition performance degrades drastically as a function of

the Signal-to-Noise ratio (SNR). Thus it is important to employ speech enhance-

ment techniques in order to minimize its effect to the recognizer. Different types

of noise have different degradation impact to the speech signal. White noise tend

to be easier to denoise as compared to colored noise. First, we show how the

spectograms differ for a clean utterance and the noise-corrupted utterance. In

Figure 4, the time domain (top) and spectogram (bottom) of a clean utterance

is shown. In Figure 5 on the other hand, the spectogram of car noise (top) and

spectogram of the utterance corrupted by car noise (bottom) is given. If both

6
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Figure 4. Time domain (top) and spectogram (bottom) of a clean utterance.
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Figure 6. Spectogram of crowd noise (top) and the corrupted utterance (bottom).

Figures 4 and 5 are compared, the visible changes of the spectogram (bottom)

between clean utterance and noise-corrupted utterances are apparent. Next, we

show that different types of noise have different effects. Consider Figure 6 (top)

where we use a different type of noise such as crowd noise. This type of noise

has a speech-like nature and if we compare it to the spectogram of the car noise

in Figure 5 (top), we can see that its energy is widely distributed almost over

the whole frequency spectrum while the latter is just concentrated in the lower

frequency part. This is one of the reasons why crowd noise is difficult to address

in speech recognition, since it corrupts almost all parts of the speech in the fre-

quency spectrum compared to some other noise, like the car noise which corrupts

only the low frequency part as illustrated in Figure 5 (bottom), and Figure 6

(bottom).

2.3 Speaker Variation

In practical application, a wide variety of users are expected to use the system.

Mismatch due to different age-groups and genders causes a problem of speaker
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variability which degrades the performance of the recognizer [6]. The degree of

degradation depends primarily on the acoustical mismatch of the user’s speech

and the model. Since model-based systems are sensitive to mismatch, there is a

need to employ adaptation techniques to minimize if not totally eradicate this

problem. To show the variabilities of the speech utterances, Figure 7 illustrates

the variations of the spectograms of the an utterance spoken by (a) adult male,

(b) adult female, (c) senior male, and (d) senior female.

2.4 Data and Time Constraints

In practical applications, the challenge does not end in designing adaptation

technique robust to mismatch and noisy environment, but most of all in rendering

this technique practical. The algorithm used should be effective even when using

minimum amount of adaptation data, and carry-out the adaptation task in a

short period of time in a range of few seconds and not in several minutes. Well

known adaptation techniques such as MLLR require many adaptation utterances

from the test speaker himself in order to achieve a considerable improvement in

recognition performance. With the time needed to gather and transcribe these

adaptation utterances, together with the time to execute adaptation, real-time

speech recognition is difficult to realize. To illustrate how difficult it is to design a

practical system as far as data collection and adaptation time is concerned, Figure

8 shows an estimate time-line of the whole process starting from the gathering

of adaptation utterances, transcribing, and parameterizing prior to the actual

adaptation. If one has to roughly sum all of the accumulated time in each phase,

execution time is expected to be at least in several minutes.

2.5 Approaches to the Problem

2.5.1 Speech Enhancement

One of the classical approaches in denoising speech, is the Spectral Subtraction

(SS). Owing to its simplicity to implement [7], it has been applied in robust

speech recognition under noisy environment, and is given by Equation 3

|S(k)|2 = |Y (k)|2 − α|D(k)|2, (3)

10



Transcribe 
utterances

Paremeterize
utterances

Adaptation

Record 
utterances

Data Preparation

Transcribe 
utterances

Paremeterize
utterances

Adaptation

Record 
utterances

Data Preparation

Transcribe 
utterances

Paremeterize
utterances

Adaptation

Record 
utterances

Data PreparationData Preparation

Figure 8. A time-line block diagram of computation needed for a robust speech
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where |S(k)| is the denoised spectrum, |Y (k)| is the noisy spectrum and |D(k)|

is the noise-only spectrum. α is the oversubtraction parameter that dictates the

extent of noise suppression. The oversubtraction parameter can be computed in

various ways and one of these is the multi spectral approach [8]. Also, there is

a method based on the human auditory system [9]. A basic expression of the

oversubtraction parameter is given in Equation 4 which is a function of SNR [10]

α = α0 −
3

2
SNR − 5 5 SNR 5 25, (4)

where α0 is a constant.

Denoising the corrupted speech signal relatively increases the SNR but in

effect, it also introduces some distortion. By using SS as a platform of denoising,

we will analyze its effect as far as recognition performance is concerned in a model-

based speech recognition system. Consequently, we will measure the improvement

in SNR given by

NRR = SNRnew − SNRold (5)

where NRR [11] is the Noise Reduction Rate, SNRold and SNRnew are the SNR

before and after SS respectively. Also, we will consider distortion in terms of

MelCD given as
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Figure 9. Plot of Word Accuracy, NRR, and MelCD in 25 dB office noise with

varying α.
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Figure 10. Plot of Word Accuracy, NRR, and MelCD in 10 dB office noise with

varying α.
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Figure 11. Plot of Word Accuracy, NRR, and MelCD in 0 dB office noise with

varying α.

MelCD =
20

ln10

√√√√2
25∑

i=1

(mcorig
i ) − (mcnew

i )2, (6)

where mcorig
i and mcnew

i are the Mel Cepstrum coefficients before and after SS

respectively. The NRR and MelCD give an indirect, yet informative insight of

how the recognition performance might be. We investigate these parameters in

parallel with the recognition performance as we denoise the test utterances with

SS. Figures 9, 10, and 11 are the graphs showing the relationship of the recognition

performance in Accuracy (word accuracy), NRR, and MelCD as a function of α

in 25 dB, 10 dB, and 0 dB SNR respectively [12]. In Figure 9, where the original

noisy speech utterances have SNR=25 dB, the correlation among Accuracy, NRR,

and MelCD is well established. Maximum NRR and minimum MelCD correspond

to the peaking of the word accuracy. Another result shows that, in a noisier

condition with SNR�25 dB as shown in Figures 10 and 11, Maximum NRR and

minimum MelCD do not correspond to maximum accuracy in the same manner

as that of SNR=25 dB. This result points to the fact how complicated it becomes
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Figure 12. Block diagram of the time-domain Wiener filtering implementation.

when dealing with very low SNRs as far as the the recognizer is concerned. In

a considerably high SNRs, speech enhancement like SS infers that a higher SNR

and a lower distortion result to an improvement of the recognition performance.

However as SNR decreases, this inference does not hold anymore in SS. Another

speech enhancement technique is the Wiener filtering approach. Like many other

denoising algorithms, this approach assumes that the interfering noise is additive

and statistically independent which is simply written as

x = s+ n, (7)

where x,s, and n are the noisy signal, clean speech signal and the additive noise

respectively. The figure of merit of Wiener filtering is that it gives the best

estimate of the signal by minimizing the mean (expected value) of the squared

error. There are many ways of implementing this approach. One example is the

single channel time-domain implementation [13] shown in Figure 12. First, time

domain noisy signal is divided into frames, after which the order of the filter is

decided as given in Equation 8

L = round(
20fs + 2

2
), (8)

where L is the filter order and fs is the sampling frequency in KHz.
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The signal is then broken into blocks corresponding to the filter order, sepa-

rating the noisy part (both the speech and the additive noise), and the noise-only

part. The autocorrelation Rx is calculated for each of these blocks using Equation

9

Rx =
xT x

LS − L + 1
, (9)

where Ls is the sample length. Wiener filtering is carried-out by first calculating

the Wiener filter coefficients using the expression

W WF = R−1
x (Rx −Rn), (10)

where Rx and Rn are the autocorellation matrices of both the noisy signal and the

noise-only signal. The denoised output Y is achieved by multiplying the Wiener

filter coefficients to the transpose of the noisy blocked matrix given as

Y = W WFxT . (11)

Figure 13 shows the plot of the original signal corrupted by noise and the cor-

responding reconstructed signal using Wiener filtering. Multiple channels imple-

mentation of Wiener filtering can be found in the works of [14][15].

There are many different ways in reducing mismatch cause by noise. Denoising

operations may be performed through combinations of various techniques, in

different multi-stages and in different domains. The SS and Wiener filtering

previously discussed are both operating in the time domain. The ETSI front-end

approach implements hybrid enhancement techniques as shown in Figure 14. In

this figure, denoising is done in different stages such as Wiener filtering and blind

equalization in the ceptsrum domain. In Figure 15 a graph of the MFCC bins

in a speech segment is shown when processed with ETSI together with the clean

utterance itself without any denoising at all.

It should be clear by now, that denoising techniques implemented in one form

or another have one purpose- to minimize the effect of mismatch. By removing

the noise in the signal, we intend to preserve as much as possible the original state
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mentation.

16



ETSI Front-end denoisingClean speech

M
FC

C 
Va

lue
s

MFCC bins of an utterance segment 

0 10 20 30 40 50 60 70
-60

-50

-40

-30

-20

-10

0

10

20

30

ETSI Front-end denoisingClean speech

M
FC

C 
Va

lue
s

MFCC bins of an utterance segment 

0 10 20 30 40 50 60 70
-60

-50

-40

-30

-20

-10

0

10

20

30

Figure 15. Plot of the MFCC of a speech segment when using ETSI and with no

processing at all.

of the training utterances when creating the model. This is the very same model

we use in performing recognition given the noisy test utterance. This however,

can be solved by creating different models matched with different acoustical envi-

ronments, but there are so many scenarios of different acoustic environments that

we can think of, thus creating matched models is impractical if not impossible.

Later in this thesis we will show our approach to this problem. In getting away

of matching models with different types of noise, we introduce a robust model.

It has been shown how complicated the problem becomes under noisy envi-

ronment conditions. The basic SS recognition experiment for example, shows

that no matter how much we attempt to correlate the recognition performance

with different measures such us NRR and MelCD, these become more unreliable

as SNR decreases.
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2.5.2 Speaker Normalization and Adaptation

An accurately trained SI model is possible by means of using multiple training

database of various genders and age-groups as shown in Figure 16. Although

it reduces the sensitivity to different genders due to a broader age and gender

spectrum, this approach is likely to render the SI model to have an increase in

variance due to the wide varieties of speakers. Net effect is, recognition distri-

bution would be flat due to the averaging of too many speakers [16]. Studies in

speaker variability show that there are several methods in addressing this problem

[17]. One way of dealing with speaker variability is to use some training tech-

niques like the cluster-based modeling approach which results to an improvement

in recognition performance by training multiple classes of acoustic models with

smaller variances together with an appropriate model selection method [18].

Pre-processing techniques during feature extraction prior to modelling are also

widely used like the Vocal Tract Length Normalization VTLN [19] [20] which

effectively compensates the different sizes of speakers’ vocal tracts through fre-

quency warping. Experiments in adult and children data yield an improvement

18



in recognition accuracy when using VTLN [21].

Another method in minimizing the effect of speaker variability is to employ

model adaptation in which our proposed method falls in the same category. This

approach effectively adjusts the SI model to reflect the inherent characteristics

of the adaptation data to the adapted model. Popular techniques that belong to

this category are the Maximum Likelihood Linear Regression (MLLR) [22] and

Maximum A Priori (MAP) [23]. Model adaptation by means of transformation

and combination of HMMs [24] and smooth N-best based speaker adaptation [25]

are also proposed.

2.5.3 Minimum data and Rapid Approach

To address both adaptation data and adaptation time issues in speaker adapta-

tion, it is important to find ways in which adaptation algorithms are responsive

even with very small adaptation data. Moreover, computational load should be

kept minimal. Works like the linear combination of rank-one matrices [26] and a

very fast compact context-dependent eigenvoice model adaptation [27] that can

handle short adaptation data and adapt fast are presented. Unsupervised speaker

adaptation based on HMM-Sufficient Statistics has been proposed [28]. This is

a promising approach for a fast adaptation using only one arbitrary adaptation

utterance without transcription. In this thesis we will discuss the concept and

the development of this rapid adaptation scheme.

2.6 A Closer Look On Mismatch

Mismatch is not just caused by additive noise nor the immense variability of the

speech signal itself. Different systems have different configurations and this can

cause mismatch. Consistency in processing the speech is very important as these

are reflected in the model. An example of mismatch in the parameterization

process are shown in Figures 17 and 18. These figures show the spectra of the

vowel “i” and “o” processed independently with SS and the ETSI front-end.

These discrepancies affect the model being trained that will render one model

to be completely not usable with the other processing or the other way around.

Another illustration showing mismatch in the MFCC for a single utterance is
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Figure 17. Discrepancies in the spectrum of the Japanese vowel “i” processed by

SS and ETSI front-end.
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ferent processing.

shown in Figure 19.

2.7 The Proposed Approach

We have discussed the problems that degrades the performance of the ASR in

general context, and the available approach needed to minimize its effects. We

will introduce the merits of our approach towards a robust speech recognition in

real environment conditions. In later chapters, a more detailed explanation will

be presented.

2.7.1 Under Real Environment Condition

Our proposed approach is designed to work in noisy environment conditions. By

superimposing 25 dB office noise to the utterances prior to training and superim-

posing 30 dB office noise to the noisy utterance denoised by SS, a single robust

model is created to avoid the use of matched models with different types of noise.

Moreover, we evaluate the systems performance in car, crowd, booth, and office
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Figure 20. Using multi-template selection and model adaptation for robustness

in speaker variation.

environment with different SNRs.

2.7.2 Robustness in Speaker Variation

The proposed adaptation method deals the problem of speaker variation with two

series of improvements. First, we employ multi-template model selection based

on the acoustic similarity of the test utterance to improve the performance of

the system as opposed to using only a SI model. Second, to further improve the

acoustic model relative to the test utterance, adaptation is performed using the

selected model and the HMM-Sufficient Statistics as adaptation data. This is

illustrated in Figure 20 where “S.I.(1)” is selected based on its acoustic similarity

with the test utterance and then adaptation is performed using the selected model

and the corresponding adaptation data which belongs to the class of the selected

model.
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Figure 21. Overview of the proposed recognition approach using only a single

arbitrary utterance for adaptation.
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2.7.3 Rapid Adaptation Using Single Adaptation Utterance

Adaptation data in the form of Sufficient Statistics are pre-parameterized and

stored during the training process. By making use of discriminate selection of

speakers, we are able to employ a mechanism replacing the actual adaptation

data with the HMM-Sufficient Statistics making adaptation faster and more ef-

ficient. Figure 21 compares the conventional adaptation and the proposed rapid

adaptation using a single utterance only. In the conventional approach, in order

to adapt to the test utterance A, data from speaker A is collected in many utter-

ances to serve as an adaptation data. This process cannot be done before hand.

The collection takes place on-site which takes a lot of time. When adaptation

data collection is finished, supervised transcription is needed together with the

parameterization of the speech utterances into suitable format. Until then, the

actual adaptation commences. In the bottom part of the figure, the proposed

method is shown. It is apparent that data collection is not necessary since the

method has a mechanism of substituting the needed adaptation data with some

replacements, this process will be explained later in details. For now, we assume

that adaptation data is readily available to the system anytime for adaptation.

The proposed approach, only uses a single arbitrary utterance for adaptation and

since adaptation data is readily available, time-consuming processes are by-passed

which is absent in the conventional approach.

2.8 Summary

In this chapter, we focused on the external factors that affect the performance of

the recognizer. We have discussed in detail the two most important problems that

arise in real environment conditions namely, additive noise and speaker variability.

Examples in forms of illustrations are given to understand the nature of these

problems and how these two impact the performance of our recognizer. It is

noted earlier that recognizers tend to perform poorly as the SNR increases or as

it becomes noisier. Aside from the additive noise, speaker variability also degrades

performance of the system. We reviewed current research that deals with these

problems and implementation towards a more robust speech recognition system.

We then introduced briefly how our approach would solve or minimize the effects
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of these problems in a very practical manner. In Chapter 3, we will discuss

the basic concepts in statistics that will lead to the theoretical framework of

the HMM-Sufficient Statistics in Chapter 4. Chapters 5 and 6 will discuss the

two adaptation schemes based on HMM-Sufficient Statistics, the rapid Baum-

Welch reestimation and the rapid MLLR adaptation. Results will be discussed

in detail in Chapter 8 while in Chapter 9 we will evaluate the performance of the

proposed method in real environment conditions, being integrated in an actual

dialogue system. We conclude this thesis in Chapter 9.
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3. Statistics Theory in Speech Recognition and

the Proposed Rapid Unsupervised Speaker Adap-

tation

In designing classifiers, knowledge of the probabilistic structure of the problem is

very important but unavailable in a real pattern classification applications. We

resort to train a classifier using the limited information within our disposal. Two

common approaches are available namely, Bayesian and Maximum Likelihood

estimation. In this chapter, the basic statistical tools are introduced which are

used in gradually establishing the theoretical concept of the proposed adaptation

technique in Chapter 4.

3.1 Bayes’ Decision Theory

A basic approach to the parameter estimation problem is the Bayesian decision

theory. In this theory, decision is achieved by acknowledging that the given

classification problem is probabilistic in nature and comes along with it is the

cost in every decision to make. First, we need to identify the states that we are

interested for a particular classification problem. The states simply represent the

classes needed to be identified. We denote the state as ωn where n is the nth

class. Moreover, in the Bayesian approach, it is important to know in advance

some priors which actually affects the outcome of the next state. It is referred

to as the a priori probability denoted by P (ωn) s.t. for N number of classes we

impose

N∑

n=1

P (ωn) = 1. (12)

In classification problems, there are several variables available that help gather

more information pertaining to a certain class. If tasked to solving a classification

problem, it is important to identify these variables and refer to these from time to

time to establish a measurement of similarity or dissimilarity between objects of

interest. This becomes the basis for classification. Suppose that variable x gives a
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measurement of a certain property present in all objects to be classified, but varies

accordingly in each of the objects. This information can be used and expressed

in a probabilistic manner to improve the performance of the classifier. The class

conditional probability density function p(x|ωn) is introduced, this is referred

as the likelihood of ωn. Suppose x is some measurement of a certain property,

then p(x|ω1) and p(x|ω2) show the individual measurements in classes ω1 and

ω2 respectively. Since, prior information of this measurement is assumed to be

available in every object needed to be classified, the class conditional probability

density function gives an additional information of how much measurement of a

certain property is present in the unknown object.

After putting all these probabilistic concepts, the state of an unknown object

can be meaningfully predicted. The joint probability density p(ωn, x) is given as

p(ωn, x) = P (ωn|x)p(x)

= p(x|ωn)P (ωn).
(13)

By using 13, the question of how the measurements x affect the identification of

the actual class of the unknown object can be answered. From Equation 8, the

Bayes’ formula is expressed as

P (ωn|x) =
p(x|ωn)P (ωn)

p(x)
, (14)

where p(x|ωn) and P (ωn) are the conditional density function and the prior

probability respectively. The denominator p(x) functions as a normalizing factor

given by

p(x) =
N∑

n=1

p(x|ωn)P (ωn). (15)

The Bayes’ formula in Equation 14 shows that through the observation of the

value x as given by the likelihood , the prior can be converted to the posterior

which is the probability of the state of nature of being in the class ωn given the

measurement x. From these onwards, it is obvious that decision can be made using
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the result of the posterior. For two classes ω1 and ω2, and with an observation x,

the class that results to a higher posterior value is more likely the actual class to

be classified. The probability of error is introduced in order to establish a decision

rule. A simple expression for the probability of error whenever x is observed is

P (error|x) = min[P (ω1|x), P (ω2|x)]. (16)

The posterior that results to a minimum probability of error influences the deci-

sion of identifying the unknown class.

In real classification problem, it is often expected to use more than one feature.

Thus Equation 14 is expressed as

P (ωn|x) =
p(x|ωn)P (ωn)

p(x)
, (17)

and p(x) is given as

p(x) =

N∑

n=1

p(x|ωn)P (ωn). (18)

Moreover, a loss function can be introduced in decision rule instead of using the

probability of error . By defining that a loss ψ(δi|ωn) is incurred whenever taking

an action δi if the true state of nature is ωn. The accumulated loss is

R(δi|x) =
N∑

n=1

ψ(δi|ωn)P (ωn|x). (19)

where R(δi|x) is called as the conditional risk . It is apparent that in order to

minimize the expected loss whenever x is encountered, the corresponding action

selected should minimize Equation 19 the conditional risk . The introduction of

the conditional risk paves the way of calculating the overall risk . The problem

now evolves in finding a decision rule that minimizes the overall risk .

Our objective is to look for δi that would minimize R(δi|x). This will serve as

a decision rule in which action to take given every possible observation against
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Figure 22. Block diagram of basic Bayesian decision rule.

P (ωn) such that the overall risk is minimized. Figure 22 summarizes the basic

steps in identifying classes using the basic decision rule. State nature ω1,2,3,...,n is

identified beforehand, which is basically identifying the possible classes involved

in the problem. It is assumed that the prior probability is known, and by using

the likelihood information, the prior probability is converted into a posterior

probability. Consequently, the conditional risk is associated with every action

δi. A corresponding δ is selected which minimize the conditional risk . Finally,

decision rule is established based on the minimum risk.

An illustration of classifying two sets of classes and the advantage of using

Bayes’ approach is shown in Figures 23 and 24. Figure 23 shows a relatively

simple classification problem where the decision boundary is easily solved linearly.

This kind of classification problem occurs most often when there are two classes

involved and when these classes are very dissimilar to each other. In Figure

24 however, we see a more complicated picture where it is difficult to separate

the boundaries between two classes linearly. We tried a simple Least-Square

algorithm to establish the boundaries between class A and class B and obviously,

LS results a poor separation between class A and B. However, if we resort to

using Bayes’ decision rule, the separation between classes A and B as shown by

the dashed line is better compared to LS. This shows the advantage of using Bayes’
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Figure 23. An example of an easy pattern classification problem where two classes

can be linearly separated.

decision rule in classifying patterns that cannot be easily linearly separated.

3.2 Bayesian Estimation

Bayesian learning or Bayesian Estimation approach does not assume θ to be fixed

given a parametric form Z (θ). It treats this as a random variable and together

with the training data, finds a solution of an unknown distribution. In Figure

25, the process of Bayesian estimation is explained. The objective is to find

the unknown probability density p(x) but since this is not feasible, we resort to

solving for p(x|D). This is done by calculating for p(x, θ|D). Thus solving for

p(x|D) is actually dependent on p(x|θ) and p(θ|D). Note that these two are both

known. To be more specific, we need to integrate the joint density p(x, θ|D) over

θ and get

p(x|D) =

∫
p(x, θ|D)dθ. (20)

30



-3 -2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

Class B 

Class A 

x

y

-3 -2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

-3 -2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

Class B 

Class A 

x

y

Figure 24. Comparison between Bayes’ and LS when classifying two classes whose

boundary cannot be separated linearly.
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Figure 25. The Bayesian estimation method.
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But

p(x, θ|D) = p(x|θ, D)p(θ|D), (21)

since both x and D are independently selected, Equation 20 becomes

p(x|D) =

∫
p(x|θ)p(θ|D)dθ. (22)

3.3 Maximum Likelihood Estimation

Optimal classifiers can be designed if information such as the prior probabilities

P(ωi) and class conditional probabilities p(x|ωi) are available. However, we do

not have access to these information, and the least information available to us

is the general knowledge of the situation and representations of the patterns

that we need to classify. If the parameters are identified beforehand, and if the

class conditional probabilities p(x|ωi) can be parameterized by using the general

knowledge about the data, then Maximum Likelihood Estimation (MLE) can be

used. It is reasonable to assume that p(x|ωi) v Z (θ), Hence, the problem of

estimating p(x|ωi) settles down to estimating the parameter θ for the known

density Z (θ). In the case of the Normal distribution, θ is consist of the mean µ

and covariance matrix Σ. In this context we refer to likelihood of the parameter

to be estimated with respect to the training data

p(D |θ) =
∏n

k=1
p(xk|θ), (23)

where D is the set of training data containing n samples x1,...,xn and θ is the

vector-valued parameter to be estimated. We define

φ(θ) ≡ p(D |θ). (24)

The ML estimate θ̂ is the value of θ that maximizes the likelihood p(D |θ) ie.

θ̂ = arg m
θ
axφ(θ) (25)

32



For analytical purposes, it is preferable to work in terms of log-likelihood

rather than the likelihood itself. Since the logarithm is monotonically increasing,

the parameter θ that maximizes the log-likelihood also increases the likelihood

itself. Thus, the expression

logφ(θ) =
∑n

k=1
log p(D |θ), (26)

and to maximize θ we make sure that

∂ logφ(θ)

∂θ
= 0. (27)

As noted earlier, MLE is important in establishing the significance of the

proposed adaptation method based on HMM-Sufficient Statistics. Hence, a very

brief example using ML estimation is discussed. Suppose that samples are drawn

from a multivariate normal population having a mean µ and covariance matrix

Σ. By considering sample point xk we get

ln p(xk|θ) = −
1

2
ln[(2π)d|Σ|] −

1

2
(xk − θ)T

Σ−1(xk − θ). (28)

For simplicity, we only consider the case where Σ is given, thus we only need

to find for µ. Thus

ln p(xk|µ) = −
1

2
ln[(2π)d|Σ|] −

1

2
(xk − µ)T

Σ−1(xk − µ). (29)

To find µ̂ we use Equation 27. Since Σ is assumed to be given, the only

variable in θ is µ. Thus, we maximize the log-likelihood with respect to µ such

that

∂ lnφ(µ)

∂µ
= 0. (30)

The ML estimate of µ must satisfy

∂

∂µ
(−

1

2
ln[(2π)d|Σ|] −

1

2
(xk − µ)T

Σ−1(xk − µ)) = 0. (31)

and obtain µ̂ as

µ̂ =
1

n

∑n

k=1
xk . (32)
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Figure 26. Overview of the E-M algorithm maximizing the objective function

with a lower bound.

This result implies that the sample mean which is the average of the training data

is a ML solution. We will discuss later the relevance of this result in connection

with Sufficient Statistics.

3.3.1 Expectation Maximization

As a solution to the ML problem, an iterative technique is used in estimating

probabilistic model parameters θ given some data D [29] [30] [31] [35] [36]. This

optimization scheme is also called as primal dual method [32] [33] [34]. A graph-

ical illustration of the optimization process used in E-M is shown in Figure 26,

where an iterative lower bound estimate B(θt, θt+1) touches the objective func-

tion f(θ) [37] [38] [39] [40]. Moreover, as it proceeds from current guess at time t

to t = t + 1 the current lower bound estimate is always a better estimate of the

previous one unless there is no change in the gradient at that particular point.

The overall cycle of lower bound estimates would lead to the maximization of the

objective function f(θ). Thus clearly, the whole process is composed mainly of
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Figure 27. Basic illustration of the iterative E-M Algorithm used to find and

maximize the bound.

calculating the lower bound which is called the “E-step” and the “M-step” which

is maximizing the lower bound in order to touch the objective function.

The algorithm is summarized in Figure 27 where an initial estimate θ is used

at t = 0. For the E-step which is comprised of calculating the lower bound

B(θt, θt+1), we calculate the expected log-likelihood Q t(θ), the entropy ξ, and the

log of P (θ). To make sure that the lower bound touches the objective function,

the bound is maximized through the M-step. The resulting θ̂ is used as input

to the E-step and the process is iterated. The E-M algorithm sometimes result

to a faster convergence as compared to the Newton’s method [41]. However,

this is still a local technique which suffers local minima problems. Thus, it is

very important to have a better initial estimate at the beginning to decrease the

chances of being stuck at a local minima. The concept of a good estimate is

important to understand the advantage of multi-template models we used in our

proposed adaptation in the later chapters. An illustration of the impact of using

a good initial estimate for the E-M are given in Figures 28- 31 which are the 1st,

2nd, 3rd, and 4th (last) iterations respectively. We used a good estimate for θ
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Figure 28. The lower bound estimate that touches the likelihood function with

iteration 1 using a good initial estimate.
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Figure 29. The lower bound estimate that touches the likelihood function with

iteration 2 using a good initial estimate.
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Figure 30. The lower bound estimate that touches the likelihood function with

iteration 3 using a good initial estimate.
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Figure 31. The lower bound estimate that touches the likelihood function with

iteration 4 using a good initial estimate.
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Figure 32. The lower bound estimate that touches the likelihood function with

iteration 1 using a random initial estimate.

at the very beginning thus it takes only four iteration in order to complete the

whole process in finding θ̂. On the other hand, in Figures 32 - 37 when using E-M

with the same training data but using random initial estimates. In these figures,

it is apparent that it takes two more iterations to complete the whole process as

opposed to using a good initial estimate in Figures 28 - 31.

Another important consideration when dealing with E-M for mixture model is

the size of the training database and the number of mixtures. As a rule of thumb,

it is better to increase the number of mixtures when the training database is of

considerable size. That is, the more training data we have, the performance would

significantly improve if we increase our mixtures as a result of a better model fit.

However, increasing the mixtures indiscriminately would result to a degradation

of the performance due to insufficiency of training data. This is an important

introductory concept since in later chapters we will be dealing with models with

much more than single mixture (i.e. 64 Gaussian mixtures). As an illustration,

E-M is used to separate two classes of data. Figure 38 shows the performance

when using only a single Gaussian mixture. We increased the number of mixtures

to two and the separation is shown in Figure 39. As we continuously increased the

38



-3
-2

-1
0

1
2

3

-2

0

2

0

0.1

0.2

0.3

0.4

0.5

θ1
θ2

i=2

-3
-2

-1
0

1
2

3

-2

0

2

0

0.1

0.2

0.3

0.4

0.5

θ1
θ2

i=2

Figure 33. The lower bound estimate that touches the likelihood function with

iteration 2 using a random initial estimate.
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Figure 34. The lower bound estimate that touches the likelihood function with

iteration 3 using a random initial estimate.
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Figure 35. The lower bound estimate that touches the likelihood function with

iteration 4 using a random initial estimate.
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Figure 36. The lower bound estimate that touches the likelihood function with

iteration 5 using a random initial estimate.
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Figure 37. The lower bound estimate that touches the likelihood function with

iteration 6 using a random initial estimate.

number of mixtures to three as shown in Figure 40, the boundary of separation

between two classes improved further as compared to using fewer mixtures.

3.4 Maximum Likelihood or Bayes’ Method

It is often the case where Maximum Likelihood and Bayes’ are compared. Whether

one is better than the other is more of a design issue which is dependent of the

available resources at our disposal. In order to limit our descriptions of the ad-

vantages and disadvantages of the two, we will cite 2 important practical issues.

The training data, and computational complexity.

Given an infinite data, both Maximum Likelihood and Bayes’ method are

equivalent in the asymptotic limit sense, assuming each has prior distributions

that do not preclude the true solution. It should be apparent by now that we

assume a parametric solution p(x|θ̂) for Maximum Likelihood. This condition

however may not be true for Bayesian making it more general than ML. Its

implication is that, Bayesian method has the characteristics of improving its per-

formance with the addition of training points where Maximum Likelihood may

render its solution to be unchanged [42]. With regards to the computational
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Figure 38. Boundary created by Expectation-Maximization using a single Gaus-

sian mixture.
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Figure 39. Boundary created by Expectation-Maximization using two Gaussian

mixtures.
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Figure 40. Boundary created by Expectation-Maximization using three Gaussian

mixtures.

complexity issue, Maximum Likelihood requires only techniques used in calculus

while the latter may involve multi-dimensional integration. Another issue related

to computational complexity is the simplicity of the solution for the Maximum

Likelihood where we arrive to a single estimate. Unlike in Bayesian we get more

complicated answer in a form of weighted parameters. Lastly, as a direct conse-

quence of computation complexity, since Maximum Likelihood requires a simpler

solution, then it requires a shorter amount of time than the Bayesian approach.

3.5 Sufficient Statistics Background

We have shown the important role of MLE in parameter estimation in which

the unknown parameter θ is best estimated by maximizing the probability using

the actual observed samples. Thus, an inference of a good parameter estimate is

dependent with the actual observed data. In real applications, there could be a

lot of parameters to be estimated using a very huge training data. This scenario

would lead to a problem of directly computing Equation 23. It is desirable to find
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a feasible method in avoiding the difficulties of setting up the needed large param-

eters and at the same time, without compromising the estimate of θ. Depending

on the distribution, computational feasible solutions that simplify the problem of

directly computing Equation 23 is possible through Sufficient Statistics .

By virtue of Sufficient Statistics, we refer to a vector-valued function s of

the sample in the training data D which is directly related in estimating the

parameter θ. Furthermore, we define that s is sufficient for θ if it is shown that

given p(D |s, θ) is independent of θ. Thus, the Factorization theorem

p(D |θ) = g(s, θ)h(D) , (33)

states that if the p(D |θ) can be written as a product where g(., .) is independent

of the training data h(D), then s is said to be the Sufficient Statistics of θ.

Given this notion that Sufficient Statistics simplify the solution to calculating

directly Equation 23, we can instead calculate for s rather than θ. Thus, it

is very important to show that s would result to a good estimate or at least

as good as MLE. In this part, we use the theory of Sufficient Statistics and

compare its result to the MLE case. Again, for simplicity we consider the case of

a Normal distribution with a known covariance and unknown mean. In deriving

the Sufficient Statistics s, the Factorization theorem is invoked and starting from

the likelihood function

p(D |θ) =
∏n

k=1

1

(2π)
d
2 |Σ|

1

2

exp[−
1

2
(xk − θ)TΣ−1(xk − θ)] . (34)

Since

∏n

k=1
A exp[b] = An exp[

∑n

k=1
b], (35)

we get

p(D |θ) =
1

(2π)
dn
2 |Σ|

n
2

exp[−
1

2

∑n

k=1
(θTΣ−1θ − 2θTΣ−1xk + xT

k Σ−1xk)] . (36)

By rearranging and making sure that one factor is independent of θ, we get
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p(D |θ) = exp[−
n

2
θTΣ−1θ + θTΣ−1(

∑n

k=1
xk)]

˙
1

(2π)
dn
2 |Σ|

n
2

exp[−
1

2

∑n

k=1
xT

k Σ−1xk].
(37)

Considering the first factor which is a function of θ and x we have

g(s, θ) = exp[−
n

2
θTΣ−1θ + θTΣ−1 (

∑n

k=1
xk)] , (38)

and from the equation above, it is obvious that the Sufficient Statistics s is given

as

s =
∑n

k=1
xk , (39)

Equation 38 can be rearranged as

g(s, θ) = exp[−
n

2
(θTΣ−1θ − 2θTΣ−1 1

n

∑n

k=1
xk)] , (40)

where the Sufficient Statistics becomes

s =
1

n

∑n

k=1
xk , (41)

which happens to be θ̂ particularly µ̂ of the MLE given in Equation 32, thus

s = µ̂ . (42)

Equation 42 is very important because we have established that s is equal to

MLE’s θ̂.

3.6 Applications of Sufficient Statistics

The notion of Sufficient Statistics is applicable to most of the exponential family

which includes the Gaussian distribution. Thus, we can also apply this theory to

speech recognition where we approximate speech as Gaussian. Moreover, there

are distributions which this cannot be applied simply because Factorization the-

orem does not hold like the Cauchy distribution. It follows that as long as the
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Figure 41. The differences between keeping the training samples and keeping

only the Sufficient Statistics.

Sufficient Statistics exists, the sample mean and sample covariance are good es-

timators of the true mean and the true covariance. Sufficient Statistics can be

interpreted as way of estimating the parameters without resorting to using the

actual observed data itself. Since the basic foundation of Sufficient Statistics has

already been discussed, the wide-range applications of HMM-Sufficient Statistics

will be presented.

3.6.1 Data Reduction

Consider the independent and identically distributed random variables x1,x2,...,xn

having a distribution Z(θ). Suppose that in Figure 41 given with two observation

points A and B where in A one can have direct access of observing the entire

data x1,x1,...,xn and in B, one can only have an access to the Sufficient Statis-

tics s(x1, x2, ..., xn). Between the two observation points, it is obvious that we

can get more information such as the discrete distribution and its corresponding

parameters θ̂ when observing at point A rather than at B. However, if one is

only interested in finding θ̂ then point B gives us as much information as observ-

ing at point A. Most applications in pattern classification and in our adaptation
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approach, we are only interested of θ̂. The benefit in terms of data reduction

should be clear by now. If one’s application only requires θ̂ then it is practical

to keep data in terms of Sufficient Statistics s(x1, x2, ..., xn) which is compact in

size rather than keeping all of the observed data x1,x2,...,xn.

3.6.2 Sufficient Statistics as a Better Estimator

Applications of Sufficient Statistics do not end in data reduction by keeping s and

throwing away the rest of the data. Another important use of Sufficient Statistics

is that it can serve as a basis for an estimator. The Rao-Blackwell Theorem states

that given θ̂ be a finite-varianced estimator of θ and suppose that we have T

which is the Sufficient Statistics (s1, ..., sn) of θ. The new estimate θ̃ using the

Sufficient Statistics T is

θ̃ = E(θ̂|T ) , (43)

such that

T = s1, ..., sn , (44)

which results to a better estimator in MSE sense

E(θ̃ − θ)
2
≤ E(θ̂ − θ)

2
. (45)

The equality is strict unless θ̂=θ̃. Suppose, that s1, ..., sn ∼ Z(θ) and we

estimate θ. By starting with the unbiased estimator θ = s1, Rao-Blackwellization

results to

θ̃ = E[s1 |T = t ]

=
1

n
E[s1 | =

∑n

k=1
sk = t ],

(46)

since the Sufficient Statistics s1, ..., sn are IID, then

θ̃ = E[s1 |s1 + s2 + ... + sn ]

=
s1 + s2 + ...+ sn

n
.

(47)
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The intuition of Equation 47 is that, Sufficient Statistics is used as a new

estimator which is actually a better estimator in the MSE sense. Its implication

is of great value since it paves the way of breaking down extensive computations

in solving equation 24. Consider that you want to estimate the parameter θ

using ML with a huge training data. With the relationship of ML, Sufficient

Statistics, and by using Rao-Blackwellization, we can segregate the training data

into several parts and calculate the corresponding Sufficient Statistics of each

part. If we take the average of these kept Sufficient Statistics in Equation 47

we can estimate our new θ̂. This results to a reduction of computation time

as one can possibly distribute computation loads to different processors without

affecting the final estimate. This is not just limited to parallel processing but

works in selective training also makes use of this technique [43]. Moreover, the

proposed rapid adaptation makes use of this as well, which will be discussed in

later chapters.

3.7 Summary

This chapter is dedicated in explaining the general concept of Sufficient Statis-

tics which is used in the proposed rapid adaptation. To understand this, we

started with the basic pattern classification concept which include Bayes’ deci-

sion rule, Bayesian training and Maximum Likelihood Estimation. The relation-

ship between the latter and Sufficient Statistics is also established. Moreover,

the applications of Sufficient Statistics which includes parameterizing the data

into Sufficient Statistics for data reduction and parallel training by virtue of Rao-

Blackwellization are presented.
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4. Hidden Markov Models-Sufficient Statistics and

N-best Speakers Selection

Adaptation time and adaptation data are two of the most common issues in

improving the performance of speech recognition. The proposed approach ad-

dresses these two problems. First, through the use of HMM-Sufficient Statistics,

adaptation algorithms become more efficient and faster as adaptation data are

processed in advance and only the statistical parameters are kept. Secondly, using

the concept of N-best speaker selection, adaptation is possible without collecting

adaptation utterances from the user.

4.1 The Expectation-step

In this section, we will expand the general concept of Sufficient Statistics discussed

in the previous chapter, and in our application we refer to HMM-Sufficient Statis-

tics. Solving for the HMM-Sufficient Statistics, is the first step in realizing the

rapid adaptation approach. This constitutes the Expectation-step (E-step) which

is analogous to computing the lower bound in Figure 27, in which we refer as the

Q function Qt(θ). It basically requires the calculation of the probability of the

observation sequence O given the model λ i.e., P (O|λ). Since it is not feasible

to calculate this directly, a more efficient way is to use Forward procedure to cal-

culate the required probabilities. A similar approach which is the time-reversed

version of Forward procedure known as the Backward procedure is available. By

using these two algorithms, the HMM-Sufficient Statistics can be computed.

4.1.1 The Forward and Backward Procedure

These algorithms evolve through the fact that only the likelihood of generating

an observation and the likelihood of being in a particular state at a given time is

important. The forward procedure computes the required probabilities αj(t) in

a trellis, as the HMM unfolds through time. The subscript j and t denotes the

state 1 ≤ j ≤ N and the time 1 ≤ t ≤ T respectively. The forward variable αj(t)

is defined as
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Figure 42. Initialization of the forward probabilities
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Figure 43. Computation of the forward probabilities by induction
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Figure 44. The last phase of Forward algorithm which result to the terminal

forward probabilities

αj(t) = P (o1o2 . . .ot, qt = j|λ). (48)

The algorithm is primarily composed of three parts. The first part is the initial-

ization phase shown in Figure 42. This is the start of the computation of the

forward probability αj(t) known as the initial conditions given by

αj(1) = a1jbj(o1), (49)

where bj denotes the forward probability of the emission of the visible state and

o1 is the observation at t = 1. After the initialization, the forward probabilities

shown in Figure 43 are then computed by induction through forward recursion

αj(t) = [
∑N

i=1
αi(t− 1)aij]bj(ot). (50)

The final phase shown in Figure 44 is where the calculation of the forward prob-

abilities terminate at t=T for 1 ≤ j ≤ N
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Figure 45. The Backward procedure showing the initialization phase, backward

recursion and the finalization phase.

αj(T ) =
∑N

i=1
αi(T )aij. (51)

From the final phase, it is obvious that P (O|λ) can be computed by summing all

of the terminal forward variables αj(T )

P (O|λ) =
∑N

j=1
αj(T ). (52)

The Backward procedure on the other hand is the time-reversed version of

the Forward algorithm which allows for the calculation of the backward variables

βi(t) for 1 ≤ i ≤ N and 1 ≤ t ≤ T and defined as

βi(t) = P (ot+1ot+2 . . .oT |qt = i, λ). (53)

The trellis for the Backward procedure is shown in Figure 45 where the initial-

ization takes place at t=T for 1 ≤ j ≤ N by setting

βi(t) = aij, (54)
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the backward recursion allows to traverse the trellis, and is given by

βi(t) =
∑N

j=1
aijbj(ot + 1)βj(t + 1). (55)

Lastly, the final computed probabilities for 1 ≤ i ≤ N is to set t=1 in Equation

55.

4.1.2 HMM-Sufficient Statistics Parameters

As a direct consequence of the Forward and Backward procedures, we can calcu-

late the parameters of the HMM-Sufficient Statistics

m
spkr
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)Or
t , (56)

v
spkr
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)Or
tO

r
t
T , (57)

where Lr
im is the probability of mixture component occupancy while m

spkr
im and

v
spkr
im are the mean and variance of a particular state i and mixture component

m respectively as represented by the subscript im. The observation vector is

denoted by O. The index spkr refers to the particular speaker where the training

data comes from, and will be discussed further in the N-best speaker section.

Aside from Equations 56 and 57, we also calculate for the accumulated prob-

ability of the mixture occupancy Lspkr
im given as

L
spkr
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t) , (58)

where Rspkr is the total number of speakers in the training data. Moreover, the

state transition occupancy is calculated as

L
spkr
ij =

∑Rspkr

r=1

∑Tr−1

t=1
Lr

ij(t). (59)

The parameters given by Equations 58 and 59, which are computed during the

E-step are also kept together with Equations 56 and 57. The proposed method

is specifically designed to operate using HMM-Sufficient Statistics parameters

instead of the actual observations provided by the actual samples of the adapta-

tion data. These parameters are then used for a rapid model adaptation to be

discussed in Chapters 5 and 6.
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Figure 46. Selecting adaptation data from the training database that are acous-

tically close to the user using a single utterance

4.2 N-best Speakers’ HMM-Sufficient Statistics as Adap-

tation Data

In the previous section, we discussed about keeping the HMM-Sufficient Statistics

instead of the actual samples of the adaptation data o. In this section, we will

discuss another advantage of the proposed method, which is the ability to use the

training database as adaptation data. Instead of collecting the actual adaptation

data from the user, we can bypass this by using the N-best speakers in the training

database as the adaptation data. This approach is done concurrently with the

presumption, that given a multiple training databases with a huge spectrum

of speakers of different genders and age-groups, there exists N-nearest speakers

(N-best) that are acoustically similar to the arbitrary utterance which can be

used as adaptation data, as shown in Figure 46. With this approach, the time

needed in gathering the actual adaptation data of the test speaker is bypassed.

By combining the concept of HMM-Sufficient Statistics and the N-best speaker

selection, the training database is converted to HMM-Sufficient Statistics. This
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Figure 47. Creating individual-speaker GMMs from the training database

means that each of the speaker in the training database has a corresponding

HMM-Sufficient Statistics which will be used when adaptation is carried out.

Prior to the selection of the speakers’ HMM-Sufficient Statistics, the system needs

to identify the N-best speakers, and this process is done by creating individual-

speaker Gaussian Mixture Models (GMMs) as shown in Figure 64, each of the

speaker in the training database has a corresponding GMM and these are trained

offline.

When all of the individual-speaker GMMs are prepared, N-best speaker selec-

tion is done online as shown in Figure 48 and described as follows:

1) The noisy utterance is denoised using SS prior to GMM selection followed

by the parameterization to MFCC. Since there is a trace of residual noise after SS,

low-power mfcc frames in the denoised utterance are removed and only the high-

power MFCC frames are retained. In this way, the effects of the residual noise

that is present in the silence or unvoiced region is reduced. This however does

not affect the overall performance of the system since our models are individual-

speaker GMMs.

2) We use the MFCC as observation vectors to find the likelihood given the
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Figure 48. GMM speaker selection using the noisy utterance.

individual-speaker GMMs which results to likelihood scores.

3) From the likelihood scores, only N-best speakers that are close to the test

utterance are selected. Meaning, only speakers in the GMMs that are acoustically

close to the test utterance which gives the N-highest likelihood scores will be

generated in the N-best speakers list.

4) From the N-best speakers’ list, the system will automatically select the

corresponding HMM-Sufficient Statistics of each speaker during the actual adap-

tation to be discussed in Chapters 5 and 6.

The advantage of N-best speaker selection is the ability to search for the most

suitable adaptation data in the training database using the likelihood criterion.

Given a huge pool of speakers in the database, not all of these are close to the

test utterance. Although an accurately trained model can be achieved when

using all of the speakers in the training database, the trained model has no

good speaker discrimination property. By using N-best speaker selection, we

improve speaker discrimination by choosing only the adaptation data from the

neighborhood of N-best speakers. In effect, recognition performance improves as

compared to using all of the adaptation data where the recognition performance

is generally flat. Figures 49 and 50 is the plot of the actual distribution of

the male and female speakers respectively in our database. Due to the high

dimensionality of the Gaussian models used to describe each of the speaker, we
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use Principal Component analysis in projecting to two dimensions. In these

figures, we illustrate the peaking of the recognition performance corresponding

to the N-best neighborhood. Also, the flat recognition performance is due to the

over-averaging of Gaussians when using indiscriminately all of the data.

4.3 Summary

This chapter expands the general concept of Sufficient Statistics that was loosely

described in Chapter 3. Discussions evolved primarily on HMM-Sufficient Statis-

tics, including the algorithm needed in its calculation. We have also discussed

the mechanism on how to substitute actual users’ adaptation data to using the

training database by means of N-best speaker selection. With the concept of

HMM-Sufficient Statistics and the mechanism to select adaptation data using N-

best speakers, adaptation data is effectively processed beforehand and kept prior

to actual adaptation.
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Figure 49. Optimizing recognition performance using N-best speakers selection

(adult and senior male database).
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Figure 50. Optimizing recognition performance using N-best speakers selection

(adult and senior female database).

59



5. Rapid Baum-Welch Unsupervised Speaker Adap-

tation based on N-best Speakers’ HMM-Sufficient

Statistics

In the previous chapter we discussed about the importance of the Q function and

the probabilities that are attached to it. As a result we employ the E-step and

calculate the HMM-Sufficient Statistics. In this chapter, we aim for the maxi-

mization of the Q function which is basically the M-step. This process completes

the Baum-Welch re-estimation which results to an updated model where P (O|λ)

is maximized. The conventional way of updating the model parameters using

Baum-Welch is to execute the whole E-M process as follows

C adp
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)
∑Rspkr

r=1

∑Tr

t=1
Lr

i (t)
, (60)

µ
adp
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)or
t

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)
, (61)

Σ
adp
im =

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)(or
t − µ

adp
im )(or

t − µ
adp
im )

T

∑Rspkr

r=1

∑Tr

t=1
Lr

im(t)
, (62)

and

a
adp
ij =

∑Tr

t=1
αt−1(i)aijbj(ot)βt(j)

∑Tr

t=1
αt−1(i)βt−1(i)

(63)

where C adp
im , µ

adp
im Σ

adp
im , and aadp

ij are the updated mixture weight, mean, covariance

matrix and updated transition probability respectively. Moreover, Equations 61

and 62 are dependent of the actual observation data o.

In realizing a rapid Baum-Welch model adaptation, we use HMM-Sufficient

Statistics as adaptation data, thus performing beforehand the E-step as discussed

in Chapter 4.1 and keeping the parameters m
spkr
im , v

spkr
im , Lspkr

im , and Lspkr
ij given in

Equations 57-59. During the actual adaptation process, N-best speaker selection
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is used to select the speakers’ HMM-Sufficient Statistics and use these parameters

in Baum-Welch model updating. The updated parameters using HMM-Sufficient

Statistics are

C adp
im =

∑S

s=1
Ls

im

∑S

s=1

∑M

m=1
Ls

im

, (64)

µ
adp
im =

∑S

s=1
ms

im

∑S

s=1
Ls

im

, (65)

Σ
adp
im =

∑S

s=1
vs

im

∑S

s=1
Ls

im

− µ
adp
im µ

adp
im

T
, (66)

and

a
adp
ij =

∑S

s=1
Ls

ij

∑S

s=1

∑J

j=1
Ls

ij

(67)

where C adp
im , µ

adp
im , Σ

adp
im , and a

adp
ij are the updated mixture weight, mean, covari-

ance matrix and updated transition probability respectively. Ls
im, Ls

ij, ms
im, vs

im

are the probability of mixture component occupancy, the accumulated probabil-

ity of the state occupancy, means and variance respectively of the selected N-best

speakers. Since the HMM-Sufficient Statistics are already pre-computed offline,

the actual online adaptation only requires performing the M-step which is trans-

formed to simply summing and averaging HMM-Sufficient Statistics in which

extensive computations are done offline. As opposed to Equations 61 and 62, the

adapted mean and covariance given in Equations 65 and 66 are independent of

the actual observation vector o.

In the following sections, we will discuss the different implementation in

the context of Baum-Welch using HMM-Sufficient Statistics. These include the

single-template approach, multi-template, weighting of the HMM-Sufficient Statis-

tics, linear interpolation and clustering of speakers. No matter what approach

it takes, the Baum-Welch adaptation using HMM-Sufficient Statistics is mainly

composed of two parts, the offline where speakers’ HMM-Sufficient Statistics are
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Figure 51. Block diagram of the conventional HMM-Sufficient Statistics adapta-

tion.

created, and the online where speaker selection and the actual adaptation takes

place.

5.1 Single-template HMM-Sufficient Statistics

Single-template HMM-Sufficient Statistics adaptation is shown in Figure 51. In

the offline part, SI model is trained regardless of classes using all of the train-

ing data from the JNAS Adult and Senior database. Using this SI model, the

E-step is performed which leads to the estimate of the HMM-Sufficient Statistics

per speaker in the database, and these parameters are kept. In the online part,

N-best speakers selection takes place which is immediately followed by the exe-

cution of the M-step which constitutes the actual adaptation and completes the

whole process of Baum-Welch through updating of the target speaker’s model

parameters using the pre-calculated HMM-Sufficient Statistics.
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Figure 52. Recognition performance using single-template HMM-Sufficient Statis-

tics adaptation with one iteration of Baum-Welch reestimation.

5.1.1 Results

Figure 52 shows the result of the single-template HMM-Sufficient Statistics adap-

tation based on one-iteration of Baum-Welch. In this graph, the recognition per-

formance using only the SI model without adaptation is used as the baseline and

the four classes of test sets used. The graph shows that the proposed method

using a single arbitrary utterance of data performs better than using only the

SI model without adaptation. Moreover, The Senior male (SM) which has an

absolute improvement of 4.9% has the most significant improvement among all

of the test classes.

5.1.2 Limitations of the Single-template HMM-Sufficient Statistics Adap-

tation

It is possible that the acoustical characteristics of the test speaker and the SI

model is very dissimilar. Usually, Baum-Welch is iterated several times resulting

to a progressively improved model estimate as discussed in Chapter 3.3. The
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Figure 53. Block diagram of the multi-template HMM-Sufficient Statistics adap-

tation.

iterative process eliminates the mismatch due to several model updates. However,

in the rapid Baum-Welch adaptation using HMM-Sufficient Statistics, we only

use one-iteration of Baum-Welch owing to adaptation time constraint. Thus,

model reestimation is not optimized. To counter the effect of the one-iteration

constraint, a good initial model is needed, the one that is acoustically close to

the test speaker.
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5.2 Multi-Template HMM-Sufficient Statistics

To improve the performance of the one-iteration Baum-Welch, we introduce

multi-template models. This approach resembles that of cluster based modelling

[18] but more effective since we do not just choose an optimal model but we also

incorporate adaptation. Figure 53 is the block diagram of the multi-template

rapid Baum-Welch reestimation. From the SI model, multi-template HMMs are

created namely: Adult male, Adult female, Senior male and Senior female. Con-

sequently, by implementing the E-step, four sets of HMM-Sufficient Statistics for

each speaker are created. Thus, gender and age information are emphasized and

embedded in the HMM-Sufficient Statistics. In the online phase, N-best speakers

are selected and followed immediately by the implementation of the M-step. As

a result, the adapted model has an improved discrimination performance among

different classes of speaker’s acoustical characteristics. This method gives the

system more degrees of freedom to choose the appropriate template model which

is closer to the test utterance. This compensates the effect of using only a single

iteration of the Baum-Welch approach. The merit of this is best explained in

Figure 54. Selecting a template model close to the test utterance gives a better

initial estimate of the lower bound than using a single-template model which is

very essential when using only a single-iteration of Baum-Welch. The adapted

parameters are as follows

C
adp(temp)
im =

∑S

s=1
L

s(temp)
im

∑S

s=1

∑M

m=1
L

s(temp)
im

, (68)

µ
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s(temp)
im
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s(temp)
im

, (69)

Σ
adp(temp)
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s=1
v

s(temp)
im
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L

s(temp)
im
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adp(temp)
im µ
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, (70)

and
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Figure 54. Template selection using multi-template models gives better estimate

than using single-template model.
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L
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ij
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L
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ij

(71)

where temp refers to the classes in the multi-template models (Adult male, Adult

female, Senior male, and Senior female)

5.2.1 Results

In Figure 55 we compared the recognition performances for the three conditions.

Using the single-template rapid Baum-Welch adaptation, multi-template models

without adaptation, and when combining multi-template models with Baum-

Welch adaptation. In this graph, it is apparent that the use of multi-template

models together with the rapid Baum-Welch adaptation performs better than the

single-template Baum-Welch and the unadapted multi-template models. This

proves that the system’s performance responds positively to the improved initial

model using the multi-template models through model selection where the Baum-
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Figure 55. Recognition performance using multi-template HMM-Sufficient Statis-

tics adaptation with one iteration of Baum-Welch reestimation.

Welch rapid adaptation can possibly select the models and Sufficient Statistics

that are acoustically close to the test utterance.

5.2.2 Limitations of the Multi-template HMM-Sufficient Statistics Adap-

tation

The recognition performance and adaptation speed of this approach are depen-

dent on the number of N-best speakers, S. Experiments showed that the optimal

N-best is Soptimal = 40 which corresponds to a 10-second adaptation time [28] [44]

[45]. If S is further reduced such that S < Soptimal, adaptation time is reduced

with a trade-off of the recognition performance as illustrated in Figure 56. This is

attributed to the fact that further decreasing S would result to insufficient data

necessary to robustly estimate the target speaker’s HMMs.
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Figure 56. Relationship between N-best and recognition performance.

5.3 Weighting of the HMM-Sufficient Statistics

The single-template and multi-template Baum-Welch reestimation both gives bi-

nary weights to HMM-Sufficient Statistics prior to adaptation, where the N-best

speakers have weight equal to one while the rest are zeros. Here, we will detail an-

other technique meant to weight the HMM-Sufficient Statistics parameters prior

to adaptation. In the speaker selection, each of the speaker in the N-best list has

its corresponding likelihood score given the observation data. These likelihood

scores are the basis of identifying the N-best among all of the speakers in the

database. The intuition of weighting the HMM-Sufficient Statistics is to utilize

these likelihood scores and based on these, introduce weighting mechanism of

the individual Sufficient Statistics in the N-best list prior to adaptation. Figure

57 illustrates the idea of weighting. First, we have the test utterance as input

to the system. N-best selection follows right after, where individual GMMs are

used to get the individual likelihood given the test utterance. Next, we calculate

the weights ωp. These weights are then applied to the individual HMM-Sufficient

Statistics as a mechanism to control its statistical components such as Lspkr
im , Lspkr

ij ,

m
spkr
im , and v

spkr
im . Weighting of the N-best HMM-Sufficient Statistics emphasizes

the ones that are close to the test utterance while it attenuates those that are

acoustically dissimilar. Lastly, we can use the newly weighted HMM-Sufficient
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Figure 57. Block diagram of weighting HMM-Sufficient Statistics prior to adap-

tation.

Statistics as adaptation data.

We have provided two ways of calculating the weights, the first one is a linear

weight which is independent of the likelihood scores. Its slope is dictated by the

number or selected N-best. The linear weight is defined as

wp =
S − p

S
, (72)

where

S∑

p=1

wp = 1. (73)

The second definition of the weight takes into consideration the likelihood scores

from the N-best list and defined as

wp =
P (O|λp)∑S

s=1
P (O|λs)

(74)
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Figure 58. Effects of weighting the individual HMM-Sufficient Statistics using a

linear weight.
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Figure 59. Effects of weighting the individual HMM-Sufficient Statistics derived

from the likelihood of the GMMs given the test utterance.
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where wp is the corresponding weight of the pth speaker , P (O|λp) is the likelihood

of the observation O given the pth GMM model λp and S is the the number of

selected speakers.

Figure 58 shows the mixture component occupancy of the selected N-best

speakers (top) and its corresponding likelihood scores (bottom). On top, the

light shaded bars are the unweighted mixture component occupancy (HMM-

Sufficient Statistics) which is flat in general over N-best while the dark bars

represent its weighted version using linear weighting. Furthermore, the weighted

HMM-Sufficient Statistics has a decreasing trend over N-best speakers towards

the acoustically dissimilar speakers which is also of the same trend as that of the

likelihood scores of the individual speaker as shown in the bottom. Although this

kind of weighting does not have any direct relationship with the actual likelihood

scores, the envelope of the weighted HMM-Sufficient Statistics reflect the overall

trend of the likelihood. In Figure 59 however, we used the likelihood weighting

given in Equation 74. Thus, the envelope of the weighted Sufficient Statistics has

a direct relationship with the envelope in the bottom of the figure unlike in Figure

58 where it just reflect the trend but no direct relevance with the envelope.

5.3.1 Results

We performed recognition experiments which involve weighting of the Sufficient

Statistics, and the result is given in Figure 60. In this figure, we show the two

types of weighting, based on likelihood and the linear weighting given in Equations

74 and 72 respectively. We compared the result to the baseline using the rapid

Baum-Welch multi-template reestimation using binary weighting. There is a

minimal improvement in both linear and likelihood weighting as opposed to the

baseline.

5.3.2 Limitations of Weighting

Although recognition performance is slightly improved when using the linear and

likelihood weights, this is not so significant as compared to the baseline approach

where binary weighting is implemented. Weighting does not reduce the selected

N-best speakers. Moreover, it requires additional computation load to execute

Equations 74 and 72, thus adaptation time reduction cannot be achieved.
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Figure 60. Recognition performance with the weighted HMM-Sufficient Statistics

adaptation based on one-iteration of Baum-Welch.
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Figure 61. Illustration of the global Sufficient Statistics as the sum of all the

speakers’ Sufficient Statistics.
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Figure 62. Block diagram of HMM-Sufficient Statistics adaptation with linear

interpolation using individual speakers’ Sufficient Statistics.

5.4 Linear Interpolation of the Global HMM-Sufficient Statis-

tics and Clustering of Speakers

To further reduce adaptation time using the multi-template E-M approach, we

introduce linear interpolation using the global Sufficient Statistics . In this section

we discuss two types of implementing linear interpolation. First, treating all of the

speakers in the database individually “individual speaker”, the implementation

that we have been using until now. The next implementation, is to impose

clustering technique, replacing the individual speakers into clustered speakers.
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To explain further the idea of global Sufficient Statistics, Figure 61 illustrates a

global Sufficient Statistics denoted as sglobal as a sum of all the speakers’ Sufficient

Statistics sspkr. In particular, the global HMM-Sufficient Statistics are given as

m
global
im =

∑Q

s=1
ms

im , (75)

v
global
im =

∑Q

s=1
vs

im , (76)

L
global
im =

∑Q

s=1
Ls

im , (77)

and

L
global
ij =

∑Q

s=1
Ls

ij (78)

where Q is the total number of speakers in the database. m
global
im , v

global
im , Lglobal

im ,

and Lglobal
ij are the global HMM-Sufficient Statistics.

In Figure 62 we show the over-all block diagram of the proposed method using the

the weighting of the global Sufficient Statistics together with the multi-template

Baum-Welch adaptation. In the offline part, together with the creation of the

multi-template HMM-Sufficient Statistics from multi-template models, we create

a global HMM-Sufficient Statistics using the SI model. The actual adaptation

online follows exactly the same as the previous HMM-based approach except for

the linear interpolation. The provision of linear interpolation makes it possible

to robustly estimate the target speaker’s HMMs even with N-best reduced (S <

Soptimal) since the weighted global Sufficient Statistics offsets the negative effect of

the removed statistical information [46] to update a robust model. The adapted

HMM parameters are as follows :

C
adp(temp)
im =

∑S

s=1
L

s(temp)
im + ωL

global
im

∑M

m=1
(
∑S

s=1
L

s(temp)
im + ωL

global
im )

, (79)

µ
adp(temp)
im =

∑S

s=1
m

s(temp)
im + ωm

global
im

∑S

s=1
L

s(temp)
im + ωL

global
im

, (80)
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Figure 63. Contour plot of the weighting factor for interpolation.

Σ
adp(temp)
im =

∑S

s=1
v

s(temp)
im + ωv

global
im

∑S

s=1
L

s(temp)
im + ωL

global
im

− µ
adp(temp)
im µ

adp(temp)
im

T
, (81)

and

a
adp(temp)
ij =

∑S

s=1
L

s(temp)
ij + ωL

global
ij

∑J

j=1
(
∑S

s=1
L

s(temp)
ij + ωL

global
ij )

(82)

where C
adp(temp)
im , µ

adp(temp)
im , Σ

adp(temp)
im , and a

adp(temp)
ij are the newly updated mix-

ture weight, means, covariance matrix, and updated transition probability using

linear interpolation. Ls
im, Ls

ij, ms
im, and vs

im are the probability of mixture com-

ponent occupancy, the accumulated probability of the state occupancy, means and

variance respectively of the selected N-best speakers S. Lglobal
im , Lglobal

ij , m
global
im , and

v
global
im are the probability of the mixture occupancy, the accumulated probabil-

ity of the state occupancy, means and variance respectively which are estimated

using all of the training data which constitute the global Sufficient Statistics. ω
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Figure 64. Creating clustered-speaker GMMs from the training database

is the weighting factor of the global HMM-Sufficient Statistics . Figure 63 shows

the contour plot of the word accuracy (WA) at different values of the multiply-

ing constant ω and corresponding N-best speakers selected. With the aid of this

figure we set ω = 0.015 with N-best=25.

In this part, we extended the linear interpolation approach by clustering the

speakers in the database shown in Figure 65 as opposed to using only individual

speakers in Figure 62. In this scheme, the individual-speaker GMMs are changed

to cluster-based GMMs as shown in Figure ??. Likewise, the individual HMM-

Sufficient Statistics are changed to clustered speakers’ HMM-Sufficient Statistics.

The N-best list generates the list of clusters that are close to the target speaker.

The motivation of this approach is to further reduce adaptation time by reduc-

ing N-best. Although, a further reduction of N-best poses a problem due to

insufficient statistical data, this problem is minimized by combining 2 speakers’

statistical information in each cluster and at the same time incorporate linear

interpolation. In order to keep the statistical information uniform in the N-best

list, we impose that each cluster be composed of a uniform number of speakers

(ie. 2 speakers per cluster) by using Minimax [47].
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Figure 65. HMM-Sufficient Statistics adaptation with linear interpolation using

clustered speakers’ Sufficient Statistics.
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Figure 66. Clustering of speakers using Minimax.
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Figure 67. Reduction of adaptation time when using linear interpolation of the

global HMM-Sufficient Statistics.
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Figure 68. Recognition performance of a reduced N-best without interpolation of

HMM-Sufficient Statistics.

Figure 66 illustrates the clustering procedure. First, the distances from a

particular speaker relative to the rest of the speakers are calculated. This is done

for each and every speaker in the speaker space and a table of distances is then

generated for each speaker. From each of these table (each speaker), we find the

minimum distance and create a new list which is composed of minimum distances

for all speakers. From this new list we find the maximum distance. The speaker

indices that has the maximum distance constitute a cluster and then removed in

the speaker space. The process is iterated until all speakers are clustered. We

choose to use this clustering technique in order to set two speakers per cluster

unlike K-means clustering where the number of speakers per cluster are variable

which has detrimental effects during model adaptation. Increasing the number of

speakers per cluster results to a combination of speakers that are more acoustically

dissimilar and this has a negative effect during adaptation. Experiment shows

that by limiting each cluster to 2 speakers only, this negative effect is negligible.

We also implemented K-means clustering but the former has a better recognition

performance. The updated model parameters are given as
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C
adp(temp)
im =

∑S

clust=1
L

clust(temp)
im + ωL

global
im

∑M

m=1
(
∑S

clust=1
L

clust(temp)
im + ωL

global
im )

, (83)

µ
adp(temp)
im =

∑S

clust=1
m

clust(temp)
im + ωm

global
im

∑S

clust=1
L

clust(temp)
im + ωL

global
im

, (84)

Σ
adp(temp)
im =

∑S

clust=1
v

clust(temp)
im + ωv

global
im

∑S

clust=1
L

clust(temp)
im + ωL

global
im

− µ
adp(temp)
im µ

adp(temp)
im

T
, (85)

and

a
adp(temp)
ij =

∑S

clust=1
L

clust(temp)
ij + ωL

global
ij

∑J

j=1
(
∑S

clust=1
L

clust(temp)
ij + ωL

global
ij )

(86)

where clust refers to the selected clustered speaker HMM-Sufficient Statistics.

5.4.1 Results

Figure 67 shows the result of interpolating the global HMM-Sufficient Statistics

prior to one-iteration of Baum-Welch reestimation. Here we emphasize more, the

time execution since this technique is designed to reduce adaptation time. In this

graph, the adaptation time from the single-template Baum-Welch reestimation

is significantly reduced from 10 sec to 5 sec as interpolation and clustering of

speakers is used. Moreover there is no degradation of the recognition performance

even though we reduced the adaptation data since it is compensated with the

interpolation technique. However, Figure 68 shows a degradation in recognition

performance when N-best is just merely reduced without using interpolation of

the global HMM-Sufficient Statistics. Although adaptation time is reduced, the

adapted model is not robust due to the insufficiency of adaptation data.

5.4.2 Limitations of Interpolation and Clustering

Although linear interpolation is effective in reducing the N-best speakers, its

implementation in Baum-Welch makes it vulnerable to the limitations of the
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latter. Moreover, clustering of speakers may not be effective to a smaller number

of speakers using a small database and combining speakers into clusters that are

acoustically dissimilar will have negative effects during adaptation.

5.5 Summary

The HMM-Sufficient Statistics created offline is a result of the data reduction

property of the Sufficient Statistics discussed in Chapter 3. This chapter dis-

cussed the utilization of the HMM-Sufficient Statistics as adaptation data. By

using the N-best speakers’ HMM-Sufficient Statistics, Baum-Welch reestimation

is implemented online. Moreover we have introduced several variation of the rapid

adaptation based on Baum-Welch from single-template to the multi-template ap-

proach. Weighting of the HMM-Sufficient Statistics is also discussed. We have

also implemented linear interpolation of the global HMM-Sufficient Statistics to-

gether with the clustering of speakers where adaptation time was greatly reduced.
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6. Rapid MLLR Unsupervised Speaker Adapta-

tion Based on N-best Speakers’ HMM-Sufficient

Statistics

In the previous chapter we discussed the HMM-Sufficient Statistics adaptation

based on Baum-Welch reestimation. Although this approach works very well,

the system is still limited by the fact that Baum-Welch re-estimation is very

sensitive to the amount of adaptation data being used. On the contrary, we

aim at reducing adaptation data by reducing the number of N-best speakers.

The more adaptation data being used, the more adaptation time is required.

Reducing adaptation data implies a faster implementation. It is also important

to note that we are not able to use the full potential of Baum-Welch re-estimation

since we only allow a single iteration of the algorithm. Thus, it is imperative to

use another adaptation scheme that is not sensitive to the size of adaptation data,

can be implemented online, and delivers a better recognition performance than

the one-iteration Baum-Welch reestimation. There is one adaptation scheme that

fits the criteria, the MLLR adaptation approach is powerful and requires fewer

adaptation data than Baum-Welch. However, this an offline approach and takes

much more time than Baum-Welch owing to a more complex computational task

if compared using the same amount of adaptation utterances. Moreover, it does

not perform well when using only a single adaptation utterance.

In this chapter, we propose to extend the rapid Baum-Welch reestimation

by using MLLR. By tailor-fitting this powerful algorithm to make use of N-best

HMM-Sufficient Statistics adaptation, we can effectively reduce its current adap-

tation time comparable to that of the rapid Baum-Welch, to realize a rapid adap-

tation scheme. The importance of clustering acoustically close Gaussians in the

form of regression tree which is important in the MLLR adaptation is also dis-

cussed. The concept of of MLLR mean and variance adaptation using the obser-

vation data will be presented together with its counterpart using HMM-Sufficient

Statistics. This approach is similar to that of [2] [22], but extended to using the

N-best speakers HMM-Sufficient Statistics as a mechanism to provide adaptation

data and execute rapidly.
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Figure 69. Mixture components of Gaussians from the model set that are acous-

tically close which are grouped together in the regression tree.

6.1 Regression Class Trees

Due to the enormous amount of models that we are dealing, it is improbable

to get as much adaptation data that would effectively cover all of these using

only several utterances. Thus, employing clustering of Gaussians through the

regression tree would allow mixtures to be grouped and updated altogether. This

is effective especially when adaptation data is scarce. Figure 69 illustrates the idea

of creating regression tree for the model. In the uppermost part of the figure, the

HMMs are shown with different Gaussian mixtures in every state. By imposing

the regression tree as shown in the bottom of the figure, classes can be generated

depending on the amount of the adaptation data. In the figure, four classes

are generated and each of the class contains the corresponding mixtures that

are acoustically close with each other. These mixtures may span across models

and states. In effect, we keep the mixture-level of each of the speakers’ HMM-

Sufficient Statistics in the regression class with approximately 6.8MB in size. It

is imperative to identify the class where Gaussians share the same transform.
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As mentioned earlier, the choice of the number of classes depends primarily on

the available adaptation data. The more adaptation data available, using more

classes is recommended for a better discrimination of the groupings of Gaussian

components. The regression class tree dictates the grouping of these Gaussians

in the model set which allow for a possible adaptation of Gaussians even without

adaptation data but proven to be acoustically close to some in which it is tied

with.

6.2 Mean Adaptation

A global transformation is possible but with the size of N-best speakers adapta-

tion data at hand we opt to find the individual transform at class level. In our

approach, mean adaptation requires the calculation of the individual transforma-

tion matrix at the mixture level m in each class c. The adapted mean µadp
mc

is

given as

µadp
mc

= W mc
ζmc

, (87)

where W mc
is the unknown transformation matrix to be estimated that maxi-

mizes the likelihood of the adaptation data. The subscript mc denotes that the

transformation matrices are also tied across Gaussians. This allows a robust esti-

mate of the transformations. ζmc
is the extended mean vector of the HMM given

as

ζmc
= [ω µ1 µ2 . . . µn]

T
. (88)

In adapting the mean, the variance is unchanged thus we have this expression for

the covariance matrix

Σadp
mc

= Σmc
, (89)

we use E-M technique to solve for the maximization problem with the standard

auxiliary function

Q(M ,M adp) =
1

2

∑R

r=1

∑Mc

mc=1

∑T

t=1
Lmc

(t)[K(m) + log(|Σmc
|)+

(o(t) − µmc
)T

Σadp−1
mc

(o(t) − µmc
)].

(90)
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where K(m) is a constant. After substituting Equation 87 to the auxiliary function

and maximizing it we get

wcp = k(p)
c G(p)−1

c , (91)

where k(p)
c and G(p)−1

c are given as

k(p)
c =

∑Mc

mc=1

1

σmcp
2
ζmc

ζmc

T
∑T

T=1
Lmc

(t) (92)

and

G(p)−1
c =

∑Mc

mc=1

∑T

T=1
Lmc

(t)
1

σmcp
2
op(t)ζmc

T . (93)

In effect, mean adaptation evolves in the calculation of k(p)
c and G(p)−1

c . It should

be noted that in Equation 93, it is very important to have a direct access to the

actual observation data o.

6.3 Variance and Covariance Adaptation

The adapted variance and covariance are derived separately from the mean and

is given by

Σadp
c = B

�

mc
HcBmc

, (94)

where we need to find linear transformation H. B is the inverse of the Choleski

factor Σ−1
mr and expressed as

B = C−1
mc

. (95)

Substituting equation 94 to the auxiliary function and maximizing it, the linear

transformation Hc is given as

Hc =

∑Mc

mc=1
Cmc

T [Lmc
(t)(o(t) − µadp

mc
)(o(t) − µadp

mc
)
T
]Cmc

Lmc
(t)

. (96)

Equation 96 is expressed in terms of the observation data o, which signals its

dependency to the actual collected adaptation utterances.

86



6.4 MLLR Adaptation Parameters Using HMM-Sufficient

Statistics

In realizing a rapid MLLR adaptation, it is important to remove the dependency

of the adaptation algorithm with the actual data samples o. This is possible by

virtue of HMM-Sufficient Statistics. This implies that the E-step is performed

offline as discussed in Chapter 4. The new expressions for Equations 92, 93, and

96 are

k(p)
c =

∑Mc

mc=1

1

σmcp
2
ζmc

∑S

s=1
ms

imc
, (97)

G(p)−1
c =

∑Mc

mc=1

1

σmcp
2
ζmc

ζ
�

mc

∑S

s=1
Ls

imc
, (98)

and

Hc =

∑Mc

mc=1
C

�

mc
Cmc

∑Mc

mc=1

∑S

s=1
Ls

imc

[
∑S

s=1
vs

imc

∑S

s=1
ms

imc
µadp

�

mc
−

∑S

s=1
ms

imc
µadp

mc
+

∑S

s=1
Ls

imc
µadp

mc
µadp

�

mc
].

(99)

These equations needed to carry out the MLLR adaptation are now functions of

the selected N-best speakers’ Sufficient Statistics Ls
imc

,ms
imc

, and vs
imc

which are

all precalculated parameters.

6.5 MLLR with Multi-template HMM-Sufficient Statistics

The block diagram of the proposed system is shown in Figure 70. This approach

is still based on multi-template models in creating the HMM-Sufficient Statis-

tics. During the actual adaptation process, we use MLLR adaptation instead

of using the Baum-Welch approach in the M-step. This constitutes primarily

the calculation of the parameters given by Equations 97-99. Since all adaptation

data are already parameterized in advance, in the form of HMM-Sufficient Statis-

tics, MLLR adaptation is executed in just a few seconds. In performing MLLR
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Figure 70. Block diagram of the online MLLR adaptation using HMM-Sufficient

Statistics.

we obtain a set of transformation matrices that maximizes the likelihood of the

adaptation data, given the model parameters.

6.5.1 Results

We evaluated the performance of the online MLLR approach using HMM-Sufficient

Statistics. In Figure 71, the Baum-Welch based approach is shown together with

the rapid MLLR based on HMM-Sufficient Statistics adaptation using 32, 64, and

128 classes. In this graph, the performance of the MLLR adaptation based on

HMM-Sufficient Statistics improves as the number of classes is increased. This
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Figure 71. Recognition performance of the rapid MLLR adaptation based on

HMM-Sufficient Statistics.

is logical since, we use many adaptation data. Lastly, it is important to note

that the MLLR adaptation based on HMM-Sufficient Statistics outperforms the

one-iteration Baum-Welch discussed in Chapter 4.

6.6 Linear Interpolation of the Global HMM-Sufficient Statis-

tics in MLLR

We have extended the MLLR based HMM-Sufficient Statistics adaptation to using

global interpolation of the HMM Sufficient Statistics. Linear interpolation of the

global HMM Sufficient Statistics result to a reduction in adaptation time in the

Baum-Welch approach in Chapter 5. Here, we will apply interpolation in the

online MLLR adaptation. With this, it may be possible to reduce the N-best

used in the online MLLR without degrading recognition performance as this will

be compensated by the interpolation of the global HMM Sufficient Statistics. The

parameters needed for mean adaptation are
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where ω is the interpolating factor of the global HMM Sufficient Statistics. More-

over, the parameter needed for the variance adaptation is

H =
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C
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Cmc
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�
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(102)

6.6.1 Results

We have successfully reduced adaptation time when using linear interpolation

in the Baum-Welch implementation, and in Figure 72 we show the result when

applying interpolation in the online MLLR adaptation. In this figure we show

the adaptation time for all classes. The dashed line represents the normal MLLR

online adaptation without interpolation while the block line shows the result

when interpolation is employed. In the case of the 32-class, interpolation does

not reduce adaptation time due to poor discrimination of classes. When classes

are increased to 64 and 128 owing to a considerable amount of adaptation data

available, a reduction of one second is possible with the 64-class and 128-class is

achieved without degradation of the recognition performance. This result shows

that the linear interpolation technique implemented to the rapid Baum-Welch

reestimation is robust, and can be applied to MLLR as well.

6.7 Summary

We have just successfully implemented another HMM-Sufficient Statistics adap-

tation using MLLR [4] which is a far more effective adaptation scheme than the
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Figure 72. Reduction of adaptation time when using linear interpolation of the

global HMM-Sufficient Statistics in the online MLLR adaptation.

Baum-Welch reestimation. By redesigning the conventional MLLR to accommo-

date the N-best speakers’ HMM-Sufficient Statistics as adaptation data, a rapid

implementation of MLLR is achieved using only one arbitrary utterance. The

rapid MLLR adaptation which is the ultimate adaptation technique of this thesis

has better recognition performance than that of the Baum-Welch approach. We

also show that reduction of adaptation time is possible when the linear interpo-

lation is combined with the online MLLR HMM-Sufficient Statistics adaptation.
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7. Experimental Results and Discussion

In this chapter, we will discuss the basic setup, conditions and parameters used

in the experiments. To show the robustness of the rapid adaptation using HMM-

Sufficient Statistics for both Baum-Welch and MLLR, different types of noise

are considered like office, car, crowd, and booth noise. Tests are also conducted

in different SNRs from 10 dB, 15 dB, 20 dB, and 25 dB. Moreover, a more

comprehensive discussion of the advantages using the rapid approach as compared

to the existing adaptation schemes like MAP, MLLR and VTLN.

7.1 Experimental Setup

In the acoustic modelling part, 25 dB office noise is superimposed to the speech

database [44] in creating the phonetically tied mixture (PTM) HMMs [48]. In

the adaptation part, the single arbitrary noisy utterance is denoised with SS

which is used for speaker selection. Lastly, for the actual recognition testing,

the SS-denoised test utterances are superimposed with 30 dB office noise prior

to recognition to neutralize the residual noise [44]. Figure 73 shows the overall

block diagram of the system.

The test set is composed of four classes, namely: Adult male, Adult female,

Senior male and Senior female. Each class is of 100 utterances from 23 speakers

which are taken outside of the training speakers. This sums up to 400 total test

utterances from 92 test speakers across different genders and age-groups. The

speakers used in testing are different speakers from that of the training database.

Recognition experiments are carried out using JULIUS [1] with 20K-word on

Japanese newspaper dictation task from JNAS. The language model is provided

by the IPA dictation toolkit. Table 1 summarizes the recognition parameters

used in our experiment.

All of the speakers in the Adult and Senior JNAS training databases have

four HMM-Sufficient Statistics which account the four multi-template HMMs

(Adult Male, Adult Female, Senior Male and Senior Female) except for the single-

template approach. The databases is consist of 60K-utterance from 301 (JNAS

Adult) speakers and 53K-utterance from 260 (JNAS Senior) speakers where each

speaker has 150 and 200 utterances respectively [6] as shown in Table 2. The size
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using all platforms of HMM-Sufficient Statistics adaptation.
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Table 1. System specifications

Sampling frequency 16 kHz

Frame length 25 ms

Frame period 10 ms

Pre-emphasis 1 − 0.97z−1

Feature vectors 12-order MFCC,

12-order ∆MFCCs

1-order ∆E

HMM PTM , 2000 states

Training data Adult and Senior by JNAS

Test data Adult and Senior by JNAS

Table 2. Set-up of Adult and Senior JNAS Database for HMM-Sufficient Statistics

Database Gender Speakers Utterances

Adult JNAS Male 151 150

Adult JNAS Female 150 150

Senior JNAS Male 130 200

Senior JNAS Female 130 200

Table 3. HMM-Sufficient Statistics Info
Rapid adaptation HMM-Suff Stat per speaker Size per Suff Stat

Baum-Welch: single-temp 1 5.5MB

Baum-Welch: multi-temp 4 5.5MB

Baum-Welch: Interpolation 4 5.5MB

MLLR: multi-temp 4 6.8MB

MLLR: Interpolation 4 6.8MB

of the individual HMM-Sufficient Statistics is approximately 5.5MB for the Baum-

Welch and 6.8MB for the rapid MLLR which are stored in the disk. Summary of

the HMM-Sufficient Statistics is given in Table 3.
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Table 4. Word Accuracy of various SNR Statistics ( Single-temp: Soptimal = 40 /

Multi-temp: S = 40 / Multi-temp with interpolation S = 25 /Multi-temp with

interpolation, Clustered-Speakers S = 20 / MLLR-based 128-class.

65.4/66.5/67.0/67.1/68.2 75.7/76.7/77.2/77.2/78.4 82.6/83.1/83.5/83.6/84.7 84.7/85.4/85.9/85.9/87.0 

79.3/80.0/81.4/81.5/82.9 84.3/85.0/85.1/85.1/86.3 85.0/85.8/86.3/86.4/87.3 85.9/86.6/87.0/87.0/87.8

64.8/65.5/65.8/65.9/66.6 78.2/79.0/79.3/79.3/80.2 82.6/83.5/83.7/83.8/84.4 83.7/84.2/84.5/84.5/85.1

43.7/44.3/44.6/44.6/45.5 68.1/68.7/69.1/69.2/69.9 81.7/82.5/82.8/82.9/83.5 82.7/83.2/83.4/83.4/84.1 

10dB 15dB 20dB 25dB

office

car

crowd

booth

Noise

65.4/66.5/67.0/67.1/68.2 75.7/76.7/77.2/77.2/78.4 82.6/83.1/83.5/83.6/84.7 84.7/85.4/85.9/85.9/87.0 

79.3/80.0/81.4/81.5/82.9 84.3/85.0/85.1/85.1/86.3 85.0/85.8/86.3/86.4/87.3 85.9/86.6/87.0/87.0/87.8

64.8/65.5/65.8/65.9/66.6 78.2/79.0/79.3/79.3/80.2 82.6/83.5/83.7/83.8/84.4 83.7/84.2/84.5/84.5/85.1

43.7/44.3/44.6/44.6/45.5 68.1/68.7/69.1/69.2/69.9 81.7/82.5/82.8/82.9/83.5 82.7/83.2/83.4/83.4/84.1 

10dB 15dB 20dB 25dB

office

car

crowd

booth

Noise

7.2 Basic Results using HMM-Sufficient Statistics Adap-

tation

Recognition performance and the corresponding adaptation time of the rapid

HMM-Sufficient Statistics adaptation both using Baum-Welch and MLLR is shown

in Figure 74. In (A), the WA when using SI (no-adaptation) is 84.1%, which

is improved to 84.9% when Baum-Welch based single template HMM-Sufficient

Statistics adaptation is used with 10 sec adaptation time. Consequently, WA

increased to 85.4% when multi-template approach is implemented (C). Since we

only used a single iteration of Baum-Welch, the system’s ability to select an

acoustically close model through the multi-template implementation, improved

the system’s performance. Its corresponding adaptation time is left unchanged

to 10 sec. Linear Interpolation of the global HMM-Sufficient Statistics in (D)

significantly reduced the adaptation time to 6 sec. This approach compensates

the effect of a degradation of the recognition performance when using fewer adap-

tation data by decreasing N-best from S = 40 to S = 25. In fact, the recognition

performance slightly increased as compared to (C). When speakers are clustered

prior to the creation of the HMM-Sufficient Statistics together with linear in-

terpolation (E), the recognition performance remained unchanged in (D) but a

further decrease of the adaptation time from 6 sec to 5 sec is achieved.
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In the case of using MLLR for the rapid HMM-Sufficient Statistics adaptation

as discussed in Chapter 5, a recognition performance of 85.5% is attained when

using only 32 classes. There is a slight decrease in WA compared to the Baum-

Welch reestimation with linear interpolation in (E). However, adaptation time

is reduced to 3 sec from 5 sec. As we increased the number of classes to 64

(G), WA increased to 86.3% which is better than that of (E). When we used

128 classes, we have achieved 87.0% WA with 7 sec adaptation time. This has

an absolute improvement of 1.1% compared to the best-performing Baum-Welch

based approach (D) and (E). Lastly, when applying the interpolation approach

for the online MLLR using 129 classes (I), we have maintained the recognition

performance at 87.0% the same as in (H) but adaptation time is reduced to 6

seconds.

In Table 4, the summary of recognition performance in office, crowd, car and

booth noise environments with different SNRs are given. In this result here, we

use the optimal N-best result that corresponds to the highest recognition perfor-

mance of a particular set-up. By looking at the WA we can see the improvement

of the recognition performance of the various HMM-Sufficient Statistics schemes

from the conventional single-template of the Baum-Welch based, up to the online

MLLR approach.

7.3 Adaptation Time of Conventional MLLR

The conventional MLLR that makes use of the actual observed adaptation data

consumes more time than the rapid MLLR that takes as input the N-best speak-

ers’ HMM-Sufficient Statistics. The fact that gathering and transcribing these

utterances play an integral part in the adaptation process. In Figure 75, a graph

of adaptation time as a function of N-best is shown when using the conven-

tional MLLR approach taking as input the actual observed data. We compare

this adaptation time with the rapid MLLR using HMM-Sufficient Statistics as

adaptation data. The horizontal broken line shows the amount of adaptation

needed for the conventional approach and the rapid approach. With N-best=11,

adaptation time are as follows : 100 sec (32-class), 130 sec (64-class) and 200 sec

(128-class). These shows that adaptation time is significantly higher compared to

the proposed online MLLR adaptation based on HMM-Sufficient Statistics using
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Figure 75. Adaptation time of the conventional MLLR and the proposed MLLR

adaptation based on HMM-Sufficient Statistics.

the same N-best=11 as shown in Figure 74 with the following adaptation time:

3 sec (32-class), 5 sec (64-class) and 7 sec (128-class). The very low adaptation

time for the HMM-Sufficient Statistics based MLLR adaptation is attributed to

the fact that statistical parameters are already pre-calculated and are readily

available for adaptation.

7.4 Detailed Results on Speaker Clustering and Linear In-

terpolation

In Chapter 4, the clustering of speakers combined with the interpolation of the

global HMM-Sufficient Statistics is the bets performing rapid Baum-Welch adap-

tation. In this scheme, the adaptation time has been reduced without degrading

the recognition performance even though adaptation data is reduced. In this

section, a more detailed result on clustering of speakers together with linear in-

terpolation is presented. Figure 76 shows the plot of the WA comparing in detail

when using 1) individual speakers (unclustered) with interpolation, 2) clustered
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Figure 76. Recognition Performance of the Baum-Welch based linear interpolation

approach.

speakers with and without linear interpolation as a function of N-best. The N-

best list for the unclustered speakers are the original speakers in the database

while the latter’s’ N-best list is composed of two speakers, clustered together.

In this graph, it is apparent that the proposed linear interpolation improves the

performance of the clustered speakers as opposed to the clustered speakers Baum-

Welch adaptation without linear interpolation. More interestingly, the clustered

speakers with linear interpolation using N-best =20 achieved the same recogni-

tion performance with that of using the individual speakers (unclustered) with

N-best = 25, thus a reduction in adaptation time is further attained. The effect

of the clustering of speakers is manifested in the reduction of adaptation time

since N-best is further reduced. In the case of clustering, it is possible that the

two speakers are dissimilar and when clustered altogether this will have a neg-

ative impact in the adaptation process. The linear interpolation is responsible

of compensating for the reduction adaptation data as a consequence of dropping

some clusters in the N-best list.
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Figure 77. Performance of the proposed rapid MLLR adaptation based HMM-

Sufficient Statistics (Adult Male).

7.5 Detailed Comparison Between the Rapid Baum-Welch

and Rapid MLLR based Adaptation

In this section, the Baum-Welch adaptation with linear interpolation, which is

the best-performing HMM-Sufficient Statistics adaptation in Chapter 5 is com-

pared with the rapid MLLR approach as shown in Figures 77, 78, 79, and 80.

These figures we show the recognition performance in every class (Adult male,

Senior male, Adult female, and Senior female). We can observe that when using

the Baum-Welch based approach, the system needs more N-best to reach the op-

timum recognition performance while it takes fewer N-best for the online MLLR

approach. This result points to the fact that online MLLR is very robust to

smaller adaptation data than Baum-Welch. Moreover, it is also clear that once

the online MLLR approach reaches the optimal recognition performance, further

increasing N-best from that point onwards manifests a decreasing trend of the

recognition performance. This is attributed to the fact that we are using different

speakers’ HMM-Sufficient Statistics . Whenever N-best is increased, acoustical
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Figure 78. Performance of the proposed rapid MLLR adaptation based HMM-

Sufficient Statistics (Adult Female).
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Figure 79. Performance of the proposed rapid MLLR adaptation based HMM-

Sufficient Statistics (Senior Male).
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Figure 80. Performance of the proposed rapid MLLR adaptation based HMM-

Sufficient Statistics (Senior Female).

difference increases as well.

7.6 Further Investigating the HMM-Sufficient Statistics

We investigate the effects brought by implementing the Baum-Welch based lin-

ear interpolation and the online MLLR approach in HMM-Sufficient Statistics

adaptation. In Figure 81 we show the graph of the HMM-Sufficient Statistics,

particularly the mixture component occupancy (in logscale) versus the pool of

all Gaussian mixtures. In this figure, we show the effect of merely reducing N-

best from 40 to 25 (without interpolation). This is manifested by a decrease in

the mixture component occupancy as depicted by the shifting of the envelope (N-

best=25) downwards relative to N-best=40. This can be translated to a reduction

in the recognition performance, because reducing the number of selected N-best

means reducing the adaptation data. On the other hand, the effect of the lin-

ear interpolation pushes back the envelope of the N-best=25 close to N-best=40.

The supposed decrease in the mixture component occupancy is compensated by

101



Pool of Mixture Component Occupancy

10 -4

10 -2

10 0

10 2

10 4

Global HMM-Suff. Stat
N-best = 40
N-best = 25
N-best = 25 + interpolation

M
ix

tu
re

 C
o
m

p
o

n
e

n
t O

cc
u
p

a
n
cy

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
x 104

Pool of Mixture Component Occupancy

10 -4

10 -2

10 0

10 2

10 4

Global HMM-Suff. Stat
N-best = 40
N-best = 25
N-best = 25 + interpolation

M
ix

tu
re

 C
o
m

p
o

n
e

n
t O

cc
u
p

a
n
cy

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
x 104

Figure 81. Effects of linear interpolation of the global HMM-Sufficient Statistics.

the interpolation of the global HMM-Sufficient Statistics . This would mask the

detrimental effect in the recognition performance brought by decreasing N-best.

Figure 82 illustrates the advantage of using MLLR instead of Baum-Welch.

The ordinate shows the number of unupdated models while the abscissa represents

the number of N-best selected speakers. This figure shows that the number of

unupdated models decreases as N-best increases. Meaning, Baum-Welch based

approach is not robust when using only very few N-best. Thus the system can

benefit much more when using MLLR.

7.7 Comparisons with VTLN, MAP and Conventional MLLR

We refer to MLLR as the conventional approach requiring speech utterances for

adaptation not unless specified as online MLLR using only one arbitrary ut-

terance for selecting N-best speakers’ HMM-Sufficient Statistics. Recognition

experiments using VTLN, MLLR, MAP were performed for comparison with

the HMM-Sufficient Statistics techniques. We also combined VTLN with MLLR

(VTLN+MLLR) and VTLN with MAP (VTLN+MAP) for an improved perfor-
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Figure 82. unupdated models caused by insufficiency of adaptation data in Baum-

Welch reestimation.

mance and compare it with HMM-Sufficient Statistics adaptation. Figure 83

shows the case of combining VTLN and MAP/MLLR. In the offline part of this

figure, we search for the warping parameter α that maximizes the log-likelihood

score of the training database [49]. Figure 84 shows a plot of α averaged with

all speakers, the corresponding α that results to the peaking of the envelope

is chosen in warping all of the training utterances and used to reestimate the

VTLN-adapted model. Consequently, in the online part, we do the same process

of finding α of the adaptation utterances using the VTLN-adapted model and

warped these utterances prior to MLLR/MAP adaptation. The process of find-

ing α is repeated again for the last time using the MLLR/MAP adapted model

to the test utterances. Finally, we warp the testing utterances for recognition

experiment.

In Figure 85, we show the recognition results using the supervised MAP,

MLLR, VTLN+MAP and VTLN+MLLR. In the abscissa, the labels 10 and 50

utterances correspond to the adaptation data matched with the test speaker for

the MLLR and MAP variants. We compare these results with the best per-
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Figure 85. Recognition performance with various adaptation techniques.
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Figure 86. Performance comparison of HMM-Sufficient Statistics vs. VTLN,

MAP, and MLLR.

forming Baum-Welch based (using interpolation) and the online MLLR HMM-

Sufficient Statistics (128-class). The abscissa denotes the number of adapta-

tion utterances used. The horizontal block line refers to the Baum-Welch based

HMM-Sufficient Statistics with interpolation while the broken line is of the online

MLLR based on HMM-Sufficient Statistics. Both of these require only one ar-

bitrary adaptation utterance. This figure shows that both the Baum-Welch and

the online MLLR based on HMM-Sufficient Statistics outperform the supervised

MLLR, MAP, VTLN+MAP and VTLN+MLLR when using 10-utterance adap-

tation data. With 50 utterances of adaptation data, MLLR and VTLN+MLLR

perform better than the Baum-Welch HMM-Sufficient Statistics . However, the

online MLLR based on HMM-Sufficient Statistics is better than conventional

MLLR with 50 adaptation data. It should be noted that when using 50-utterances

of adaptation data, MLLR and MAP takes more adaptation time than Baum-

Welch with interpolation and the online MLLR based on HMM-Sufficient Statis-

tics which can adapt in just 6 and 7 sec respectively using only a single arbitrary

adaptation utterance without transcriptions. Figure 86 shows the summary of the

comparisons among VTLN, MAP and MLLR. The legend o denotes that the cor-
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responding HMM-Sufficient Statistics adaptation outperforms the corresponding

adaptation approach being compared with.

7.8 Summary

In this chapter, we presented the set-up used in the experiment. The results of the

HMM-Sufficient Statistics adaptation discussed in Chapters 4 and 5 are summa-

rized here showing the evolution of the proposed rapid unsupervised speaker adap-

tation based on HMM-Sufficient Statistics. Moreover, experiments with the com-

monly used adaptation techniques in speaker adaptation such as VTLN, MAP,

conventional MLLR are compared with our approach. Furthermore, detailed ex-

planation of the merits of using the proposed technique is presented.
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8. Evaluation in Real Environment Conditions

The ultimate goal of the rapid unsupervised speaker adaptation is to realize

an ASR system with the recognizer and adaptation algorithm working together

toward a more robust system. The task of the adaptation algorithm is to provide

a robust model to the recognizer using only the current utterance. As a result,

the recognizer will have an improved performance for every recognition task. In

this chapter, we will discuss the integration of the proposed rapid adaptation in a

dialogue system. Furthermore we discuss the modifications of the system’s design

to accommodate practical integration issues. Lastly we will show recognition

results with the current system set-up.

8.1 Practical Implementation

We have shown the potential of the rapid unsupervised adaptation in Chapters 5

and 6. In those chapters, we are more concerned of the performance of the adap-

tation scheme and the parameters where specific to test the adaptation technique

with lesser regards on other issues. This is depicted in Figure 87 where we treat

independently every process during the experimental phase to check its effec-

tiveness without the intervention of some other processes. In this figure, we set

specific rules or parameters to hasten up testing of the adaptation phase given

the adaptation environment. However, this is not the same case in a full system

integration. In an actual system implementation as shown in Figure 88 the in-

dividual processes shown in Figure 87 are integrated to create a single system,

and the focus is not just on the adaptation algorithm alone but in the whole

system itself having several processes. This scenario is totally different with that

of the experimental phase. Complications arise as more and more processes are

involved. These processes might be interdependent with each other or the indi-

vidual processes may require simultaneous use of the computers’ resources. These

are just one of the many issues in a full system integration. In Figure 88 for exam-

ple, both the recognizer and the adaptation module access some system resources

to carry out respective tasks. Also, the recognizer needs as input the output

adapted model from the adaptation technique. To accommodate these factors af-

fecting the overall system, we need to loosen some of the parameters specifically
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Figure 87. Treating individual system independently to hasten up testing during

experimental phase.

designed to each of the processes and create a single environment that supports

the interactions of these processes.

8.2 Redesigning The Rapid Adaptation System

The detailed set-up in testing the proposed adaptation system during the exper-

imental phase is shown in Figure 89. In this figure, we already know beforehand

the test sets. This means that we have a prior knowledge of which speaker does

a certain test utterance comes from. However, we emphasize that we use open

test sets which means that these speakers/utterances have never been used in

training or in adaptation. To hasten up the evaluation process, we assume that

all the test utterances of the same speaker have the same N-best speakers list and

every time a test utterance falls to a corresponding speaker, we automatically

use the corresponding speaker’s N-best list. The purpose of doing this is to avoid

calculating the likelihoods each time for a known speaker-utterance and hasten

up the evaluation of the recognition performance.

109



RECOGNIZER ADAPTATION

SYSTEM 
MANAGER

SYSTEM 
RESOURCES

SYSTEM 
INPUT/OUTPUT

SYSTEM INTEGRATION

RECOGNIZER ADAPTATION

SYSTEM 
MANAGER

SYSTEM 
RESOURCES

SYSTEM 
INPUT/OUTPUT

SYSTEM INTEGRATION

Figure 88. Multiple processes working interdependently in an integrated system.

Open testsets:

Spkr A:
utt_1,…..utt_N

SpkrP:
utt_1,…..utt_N

N-best speakers 

Spkr A:
List A … List A

Spkr P:
List P … List P

ADAPTATION
(each utterance)

Current 
Model

Open testsets:

Spkr A:
utt_1,…..utt_N

SpkrP:
utt_1,…..utt_N

N-best speakers 

Spkr A:
List A … List A

Spkr P:
List P … List P

ADAPTATION
(each utterance)

Current 
Model

Figure 89. Testing set-up of the rapid unsupervised speaker adaptation (experi-

mental approach).
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Figure 90. Testing set-up of the rapid unsupervised speaker adaptation (practical

implementation).

In a practical implementation, there is no way of identifying the speaker,

simply because we do not have prior knowledge of the actual test speakers. It is

also impossible to test random speakers which are not in the open test sets because

there is no way of comparing results from random speakers reasonably. The only

feasible thing to do is to use the same test sets blindly simulating random speakers

and at the same time be able to compare results. In Figure 90 the modified

implementation of the proposed rapid speaker adaptation is illustrated. In this

figure, the utterances in the open test sets are not labeled anymore nor classified

to a particular speaker. This means that utterances are shuffled and speaker label

removed to simulate an actual test speaker. In real environment scenario, it is

more logical to assume that the same speaker may use the system more than once,

this means that the next utterance to be processed by the recognizer is more likely

to belong to the previous speaker. The speaker adaptation system should be able

to exploit these instances when it happens, thus we include a speaker checking

mechanism to do this task. This will provide the computation for the individual

likelihoods in the speaker-GMMs to search for the N-best speakers list. If the
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Figure 91. Implementation of the modified adaptation algorithm to accommodate

practical issues.

current utterance belongs to the previous speaker then adaptation will not be

performed. Otherwise, if the current utterance is recognized to be coming from

different speaker, then a new N-best list is created enabling to perform adaptation

with a new model. Each time a new speaker is identified, the current N-best list

replaces the previous one, the same rule applies to the adapted model.

A very detailed illustration of the modified adaptation subsystem discussed in

Figure 90 is shown in the block diagram in Figure 91. In this figure, the unknown

test utterance input is processed in a module called, “same speaker check”. This

module runs the Viterbi algorithm using GMM1 which is gender-GMMs. The

corresponding gender will dictate which GMM2 to use. A “male” result, would

load the GMM2 composed of male speakers only and a “female” gender result,

will load the GMMs composed of female speakers for GMM2. The second Viterbi
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will find the N-best speakers’ list through the likelihoods generated. This module

will output gender information and N-best speakers’ list in preparation for the

adaptation process particularly the selection of the HMM-Sufficient Statistics

and the corresponding template model. When all the necessary input to the

Baum-Welch adaptation is loaded, rapid adaptation will commence resulting to

an adapted model. TMix is then applied which is needed for the PTM models and

then transform these into binary format HMMs. In the event that same speaker

is detected, the “model adapt” module will not be executed thus the previously

adapted model will be considered as current adapted model until such time a

newly adapted model is created.

8.3 Performance of the Modified System

We test the recognition performance for the modified online adaptation approach

shown in Figure 91 and compare it to the experimental approach. In this testing,

we re-shuffled the ordering of the test utterances 5 times as shown in the x-axis.

By rearranging the order of the test utterances in random without knowing the

speaker, we simulate an actual scenario where actual test speakers are unknown,

unlike the “experimental approach” where we know beforehand the test speakers.

The recognition performance result for the Baum-Welch and the rapid MLLR

implementation using the experimental and the practical approach is shown in

Figure 92. In all the five re-shuffles, the changes between the experimental and the

practical implementation are insignificant in both the Baum-Welch and MLLR

implementation. This signifies that the proposed approach is robust even in

practical condition. In this figure the baseline recognition performance without

adaptation is also shown with 84.1% WA. It should be noted that the acceptable

WA performance of the information guidance task that we use is about 80.0%-

84.0%, thus the result of the proposed adaptation algorithm as shown in Figure

92 is considered to be acceptable in information guidance application.

8.4 Implementation With The On-site Dialogue System

As what we have mentioned earlier, the goal of this research is not just to design

a rapid adaptation technique, but to implement this technique together with the
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Figure 92. Recognition performance of the practical implementation of the rapid

unsupervised speaker adaptation based on HMM-Sufficient Statistics.

recognizer. In this section, we will discuss the actual integration of the rapid

adaptation technique in a a dialogue system “Takemaru-kun” shown in Figure

1. This is a guidance dialogue system [3] using automatic speech recognition.

A user can address his queries to the system using the microphone without any

keyboard and the system will respond accordingly to the queries and give some

answers according to its task. In this kind of application, the need to integrate a

speaker adaptation scheme arises from the fact that we expect a wide spectrum

of users. In addition, this kind of application requires a fast implementation and

the only adaptation data that is available to the system is the utterance from the

user. In this scenario, the proposed rapid adaptation is more suited to do the

job.

Figure 93 shows the dialogue system with the adaptation module intercon-

nected. The dialogue manager is responsible of controlling the flow of all the

processes in the whole system. At the beginning, the speech utterance is made

available to Julius1, Julius2, and the adaptation module through the audio input

tool. In the recognizer side, two processes of “Julius” is used, one uses the fix
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SI model (Julius1) and the other uses the adapted model (Julius2). These two

recognition processes are controlled via TCP/IP by the dialogue manager. Both

of these two processes perform recognition task to the utterance, the dialogue

manager then checks which of the two results to a highest likelihood, the hypoth-

esis that corresponds to the highest likelihood is then selected as the recognized

words or the final hypothesis. In the adaptation side, the speech utterance is

processed independently checking for same speaker and perform adaptation as

discussed in Figure 91. Performing the adaptation routine we discussed in the

previous chapters and saves the adapted model to a fixed location if adaptation is

carried out, otherwise it will leave the fixed location empty to signify that there

is no adapted model and that the previous speaker is the owner of the current

utterance. The dialogue manager, routinely checks for model in the assigned fixed

location. If it finds a model, it automatically sends this model in binary format

via TCP/IP to the second recognizer Julius2, the recognizer tasked to process

the utterance using the adapted model. As soon as the hypotheses are available

from the two recognizers, the results are sent back to the dialogue manager via

TCP/IP for the dialogue manager to decide which of the two hypotheses is se-

lected for the actual recognized words. These processes are repeated in a loop

until terminated.

It is important to note that in the event when the adaptation process is not

yet finish with its current task, and the speaker is already speaking the next

utterance, the dialogue system will continue to operate normally and uses the

previously adapted model for Julius 2. This event would have a less impact to

the system since it is more probable that the current speaker is the previous

speaker since abrupt change of users is not common. Besides, the system also

uses the SI model and in the event, there is an abrupt change of speaker whose

speech is acoustically dissimilar to the previous speaker, the result from the SI

model in Julius1 is more likely used.

8.5 Summary

In this chapter, we have extended the implementation design of the proposed

rapid adaptation based on HMM-Sufficient Statistics for practical implementa-

tion. In Chapter 5 and 6, we dealt about the experimental approach in which
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we focused more on the performance of the adaptation scheme and proved that

our approach works well. In this chapter, we considered a real ASR system us-

ing the speech dialogue system where the adaptation technique plays a role in

the overall processes. We have modified some implementation of the “experi-

mental approach” to work in a real environment situation and our recognition

performance evaluation shows that the system is robust and stable even in actual

scenarios.
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9. Conclusion

In this thesis, we use HMM-Sufficient Statistics as a form of adaptation data

instead of using the actual observed data. Since adaptation data can be replaced

by the training database using N-best speaker selection, the proposed method

breaks the actual E-M process into two separate procedures, the E-step where

parameters that are function of the actual observed data are computed in advance

and the M-step, where the actual adaptation takes place. In so doing, we can

have a rapid unsupervised adaptation using only a single arbitrary utterance.

We have shown two platforms of adaptation schemes where we used HMM-

Sufficient Statistics as adaptation data : The Baum-Welch and MLLR techniques.

These algorithms supposedly take much more time in executing adaptation when

using the actual observed data but we specifically redesigned these two to make

use of N-best selected speakers’ HMM-Sufficient Statistics as adaptation data.

As a result we can have an online adaptation approach in 6 sec adaptation time.

Since adaptation is mostly of an offline approach due to the constraints brought

by time and adaptation data, this research with rapid adaptation is a manifes-

tation that online adaptation can be achieved in tandem with real-time speech

recognition. In addition, by using only a single arbitrary utterance without tran-

scription in carrying out the adaptation process, reinforces the practicability of

the proposed method in speaker adaptation. Furthermore, the system works well

under office, crowd, booth and car noise and in different SNRs. With the proposed

linear interpolation of the HMM-Sufficient Statistics in both the online Baum-

Welch and MLLR, it is possible to reduce N-best and a dapt to a robust model.

The proposed rapid adaptation which has 87.0% WA performance has an abso-

lute improvement of 2.9% compared to using only the SI model (no adaptation)

which has 84.1% of WA. Given the fact that around 80.0% - 84.0% of WA is con-

sidered as an acceptable performance in the information guidance task in which

we use to test the system, thus an absolute improvement of 2.9% brought by the

proposed adaptation algorithm is already considered good-performing technique.

Lastly, we have shown that the proposed rapid adaptation technique can be fully

integrated in a speech recognition system in Chapter 8. Implementation of the

dialogue system together with the recognizer and the adaptation module affirms

that the proposed method is feasible in an actual speech recognition application.
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Figure 94. Reducing execution time through effective use of memory in minimiz-

ing disk access time in loading and saving parameters.

Moreover, it validates its practicability as far as adaptation time and adaptation

data is concerned.

We will focus our future research to make use of existing powerful adaptation

techniques to using HMM-Sufficient Statistics for a more improved recognition

performance. Investigating discriminative training approach and extend its ap-

plication to HMM-Sufficient Statistics is an interesting topic. Moreover, we will

also look into further detail on how to minimize the execution-time contributed

by the adaptation algorithm and the overheads which do not directly involve the

adaptation algorithm but affects the overall system in general. This would entail

efficient use of memory resources and minimize disk accesses when loading and

saving models. As an example, Figure 94 shows an ongoing work on this par-

ticular problem. Lastly, we will consider to a great extent the improvements for
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the N-best speakers’ selection. At the moment we are using 64-Mixture GMMs

for the individual speaker. We will consider to employ parameter tying to reduce

execution time, and most of all find means to improve the N-best performance.
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Appendix

A. List of Abbreviations

ASR Automatic Speech Recognition

dB decibel

ETSI European Telecommuniactions Standard Institute

E-M Expectation Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model

JNAS Japanese Newspaper Article Sentences

MAP Maximum A-Priori

MLLR Maximum Likelihood Linear Regression

MelCD Mel Cepstrum Distortion

MFCC Mel Frequency Cepstrum Coefficients

NRR Noise Reduction Rate

SS Spectral Subtraction

SI Speaker Independent

SNR Signal-to-Noise Ratio

WA Word Accuracy

VTLN Vocal Tract Length Normalization

B. Expressions Used in Weighting the Sufficient

Statistics

The new expression for the single-template Baum-Welch adapted HMM-Sufficient

Statistics previously given in Equations 64-67 which currently reflects the weights

ws are given as follows,
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