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Abstract

This dissertation introduces τk-notation to be used for analyzing test gen-

eration complexity of a class of circuits with a type of faults based on com-

binational test generation complexity. Using τk-notation, the test generation

complexity for acyclic sequential circuits with stuck-at faults are reconsidered.

The test generation complexity for combinational circuits and acyclic sequential

circuits with robust and non-robust path delay faults are also analyzed. On the

other hand, easily testable classes of cyclic sequential circuits are defined in the

aspects of the number of time frames and running time taken by the state justifi-

cation and differentiation for both cases of stuck-at faults and path delay faults.

Apart from classification of sequential circuits based on combinational test gen-

eration complexity, a new class of sequential circuits called acyclically testable

sequential circuits is introduced. The application based on the classification of

sequential circuits is two-fold. Firstly, the test generation method can be applied

for combinational circuits with stuck-at faults, which is more efficient. Second,

a design for testability or a synthesis for testability method can be introduced

based on the properties defined for each class of sequential circuits.

Keywords:

τk-notation, easy testability, combinational/acyclic test generation complexity,

design/synthesis for testability(DFT/SFT), stuck-at faults, path delay faults
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Chapter 1

Introduction

1.1. The Time Complexity of Test Generation

Problem

It has been known for about three decades that the test generation problem,

even for combinational circuits with stuck-at faults, is NP-complete[1]. In other

words, there does not exist an algorithm that solves an arbitrary instance of the

problem in polynomial time, unless P = NP . However, empirical observation

showed that the time complexity of test generation for practically encountered

combinational circuits with single stuck-at faults seems to be polynomial, that

is O(nr) for some constant r, where n is the size of the circuits [2,3]. For exam-

ple, the automatic test pattern generation (ATPG) tool named SPIRIT [4] can

achieve 100% fault efficiency for benchmark circuits ITC’99, surpassing the exist-

ing commercial ATPGs. Consequently, the works related to the classification of

sequential circuits based on combinational test generation complexity started. In

this dissertation, combinational test generation is assumed to achieve complete

fault efficiency based on the work in [4]. Therefore, combinational test generation

complexity is fundamental in the discussion on the time complexity of test gen-

eration of sequential circuits. When more and more classes of sequential circuits

is introduced, it is helpful to use a general notation to discuss the test generation

complexity. Therefore, a notation called τk-notation is defined based on combina-

tional test generation complexity. The combinational test generation complexity
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is assumed as Θ(nr) for some constant r > 2 and it is denoted by τ(n), where n

is the size of the circuit.

1.2. Classification of Sequential Circuits

Several classes of acyclic sequential circuits have been introduced in the previous

works. These include balanced sequential circuits [5], strongly balanced sequential

circuits [6], internally balanced sequential circuits[7], switched balanced sequential

circuits [8] and switched internally balanced sequential circuits[9], all of which

are acyclic. The test generation for internally balanced sequential circuits and

balanced sequential circuits with stuck-at faults has been shown to be reducible

into that for combinational circuits with stuck-at faults [10,11].

Although a test generation model was proposed to transform any acyclic

sequential circuit into its combinational equivalent with logic duplicates at most d

time frames where d is the sequential depth in [12], the test generation complexity

for acyclic sequential circuits has not yet been clarified. Neither has been that for

cyclic sequential circuits whose test generation problem is generally modeled by an

iterative logic array and may have greater time complexity than acyclic sequential

circuits. Apart from stuck-at fault model, which is the representative fault of

static faults, path delay fault model, which is a powerful timing fault model,

is important to ensure the temporal correctness of a circuit. The relationships

between the test generation for combinational circuits with path delay faults and

that with stuck-at faults have been discussed in [13,14,15,16,17]. They showed

that the ATPG for stuck-at faults plus some polynomial circuit transformation

can be used as an ATPG for robust and non-robust path delay faults. The test

generation was not discussed explicitly in the aspect of time complexity. Neither

was the test generation complexity for sequential circuits with path delay faults.

In this dissertation, the analysis of test generation complexity is done on

the acyclic sequential circuits and some cyclic sequential circuits with stuck-at

faults and path delay faults using τk-notation. As the first step of the work, only

robust and non-robust faults are discussed for path delay faults. Besides ana-

lyzing the test generation complexity of several existing classes of circuits with

stuck-at faults and path delay faults, several new classes of sequential circuits are

2



introduced. As mentioned, previously defined classes of sequential circuits with

combinational test generation complexity are acyclic. In this dissertation, some

cyclic sequential circuits with combinational test generation complexity are iden-

tified. These classes include l-length-bounded testable circuits, l-length-bounded

validity-identifiable circuits, t-time-bounded testable circuits and t-time bounded

validity-identifiable circuits. Classification of sequential circuits with combina-

tional test generation complexity is extended to classification of sequential cir-

cuits with acyclic test generation complexity. Also, since the test generation

of acyclic sequential circuits seems not very difficult for practically encountered

circuits, classification of sequential circuits is also done based on the time com-

plexity of acyclic sequential circuits, or simply acyclic test generation complexity.

A new class of sequential circuits with acyclic test generation complexity called

acyclically testable sequential circuits is also introduced.

1.3. Application of Classification of Sequential

Circuits

Clarifying the test generation complexity for sequential circuits or classification

of sequential circuits leads to two applications.

First, based on the properties of a known class, a special ATPG is designed

to run the test generation on the circuit, which is generally more efficient than

does the general sequential ATPG. For instance, the test generation technique

involving separating of separable inputs, wire replacing, combinational test gen-

eration and sequence transformation, is used to obtain a test in an internally

balanced sequential circuits, the test generation time of which has been proved

reduced [7]. Another application is design for testability (DFT) and synthesis for

testability (SFT). For example, based on the feature of balanced structure, the

DFT called BALLAST was introduced in [5]. For a given arbitrary sequential cir-

cuti (resp. arbitrary design), a DFT method (resp. SFT method) is designed and

applied to augment the circuit into one of the easily testable classes of sequential

circuits.

In the dissertation, the introduction of each new class of sequential circuits

is followed by a test generation procedure and a DFT or SFT method.

3



1.4. Dissertation Organization

The dissertation is organized as follows. Chapter 2 introduces some fault models,

including single stuck-at fault model, multiple stuck-at fault model and path delay

fault model. The chapter also introduces the test generation model for acyclic

sequential circuits called time-expansion model (TEM) [18]. The extension of

TEM called double time expansion model [19] is also elaborated.

When more and more classes of circuits are introduced and the discussion

of test generation complexity for each class with different type of faults becomes

important, it would be useful if there is a general notation to be used in the

discussion. Therefore, chapter 3 presents a new notation called τk-notation, which

is defined using asymptotic notation. Using τk-notation, the test generation

complexity for existing classes of sequential circuits is reconsidered.

Chapter 4 classifies sequential circuits with stuck-at faults based on combi-

national test generation complexity. Classes of easily testable sequential circuits

have been considered for only acyclic sequential circuits. This chapter introduces

several classes of sequential circuits that include some cyclic sequential circuits.

The test generation procedure for each new class of sequential circuits and a DFT

method that augments an arbitrary sequential circuit into one belonging to the

new class are also presented.

Chapter 5 classifies sequential circuits with path delay faults based on

combinational test generation complexity. Besides, the relationship between test

generation for sequential circuits with stuck-at faults and test generation for

sequential circuits with path delay faults is discussed. There exists a class of

sequential circuits whose test generation for stuck-at faults and test generation

for path-delay faults are not equivalent.

Chapter 6 extends the work of classifying sequential circuits based on com-

binational test generation complexity to classfying sequential circuits based on

acyclic test generation complexity. In this chapter, new concept of several circuit

properties are introduced. Based on the properties, a new class of sequential cir-

cuits called acyclically testable sequential circuits is introduced. This is followed

by a test generation procedure for the new class and a DFT method to augment

an arbitrary circuit into acyclically testable. Chapter 7 concludes the dissertation

by its main contributions and identifies some future works.
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Chapter 2

Fault Models and Test

Generation Models

2.1. Introduction

Fault modeling alleviates the test generation complexity because it obviates the

need for deriving tests for each possible defect. In fact, many physical defects map

to a single fault at the higher level. Therefore fault modeling is essential in testing.

On the other hand, test generation model is another important concept in testing,

which is used to model the problem of test generation. This chapter introduces

fault models at logical level. These fault models include single stuck-at fault

model, multiple stuck-at fault model, path delay fault model and segment delay

fault model. Besides, fault models, the chapter also elaborates a test generation

model called time expansion model (TEM)[18] and its extended model called

double time expansion model (DTEM)[19].

2.2. The Single Stuck-At Fault Model

The single stuck-at-fault model is the most widely studied and used in testing. Al-

hough it is not universal, it is useful because it represents many different physical

faults and is independent of technology. Furthermore, it has empirically shown

that tests that detect single stuck-at faults detect many other faults as well. In

5



structural testing, it is necessary to make sure that the interconnections in the

given circuit are able to carry both logic 0 and 1 signals. The stuck-at-fault model

is derived directly from these requirements. A line is stuck-at 0(SA0) or stuck-at

1(SA1) if the line remains fixed at a low or high voltage level, respectivley. A sin-

gle stuck-at-fault that belongs to the single stuck-at-fault model is only assumed

to happen on only one line in the circuit. If the circuit has k lines, it can have

2k single SAFs, two for each line.

2.3. The Multiple Stuck-At Fault Model

If the stuck-at-fault occurs on more than one line in the circuit, the faults are

said to belong to the multiple stuck-at-fault model. To model a circuit with a

multiple stuck-at-fault by a model containing only one single stuck-at fault, m

extra gates are added into the circuit as follows, where m is the multiplicity of

faults.

• A two-input OR (resp. AND) gate is inserted in a line if the line is stuck-at

1, SA1 (resp. stuck-at 0, SA0) and one of the input lines of the gate is fed

from the ground of the circuit as a fanout branch of a ground line G. The

input of AND gate that is fed from line G is inverted. The multiple fault

is then represented by a single SA1 fault on the fanout stem G.

The controlling value of each gate is the same as the value at which the

line is stuck. Thus, the faulty value appears on the output of each gate if the

SA1 fault on line G is activated. Otherwise, the gate forces the correct value on

it. Thus, the model is satisfying the conditions of circuit equivalence and fault

equivalence.

Example 2.3.1. Figure 2.1(a) shows four lines with inputs a, b, c and d, and the

respective outputs A, B, C and D. A multiple SAF here consists of the first two

lines stuck-at 1 and the others stuck-at 0. Figure 2.1 (b) shows the representation

of a multiple stuck-at-fault with a single stuck-at-fault model.
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Figure 2.1. (a) A multiple SAF. (b) An equivalent single SAF.

2.4. Delay Fault Models

Several fault models have been introduced in the previous works. These include

transition fault model, gate delay fault model, line delay fault model, path delay

fault model and segment delay fault model. In this section, segment delay fault

model besides path delay fault model is also discussed because it is useful in

relating the test generation of sequential circuits with path delay faults to the

test generation of combinational circuits with stuck-at faults in the dissertation.

2.4.1 Path Delay Fault Model

In a sequential circuit, a path is defined as an ordered set of gates {g1, g2, ..., gm},
where g1 is a primary input or a FF and gm is a primary output or a FF (Figure

2.2). Also, gate gi is an input to gate gi+1 (1 ≤ i ≤ m − 1). A path has a delay

fault if for any input sequence that generates a rising or falling transition through

the path, the propagation time of such transition exceeds a specified clock period.

Such a delay fault on a path is said to be a path delay fault (PDF)[20].

Let S denote a sequential circuit and P denote a path in S. Let f be

a rising (resp. falling) PDF on P and let Sf be the faulty circuit of S in the

presence of f . The fault is also denoted by P ↑ (resp. P ↓). The fault f is

testable if there exists an input sequence t for S and Sf such that the following

conditions hold.
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Figure 2.2. PDFs in a sequential circuit
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1. A rising (resp. falling) signal transition is launched at the starting point (a

FF or a primary input) of P in S by t at time T1.

2. The transition launched at the starting point of P is propagated to the

ending point (a FF or a primary input) of P along P in S by t.

3. The captured or observed value induced by the transition at the ending

point of P in Sf is different from that of S at time T2 where interval T2−T1

is the maximum allowable path delay for the fault-free circuit.

4. The output sequence of S and that of Sf are different at time T2.

Such an input sequence t is regarded as a PDF test sequence.

2.4.2 Segment Delay Fault Model

In a combinational circuit, a segment S is defined as an ordered set of gates

{g1, g2, ..., gm}, where the output of g1 is the starting point of S, the output of gm

is the ending point of S and m is the length of the segment. The length of the

segment, m, can be anywhere from 1 to the number of gates in the longest path

in the circuit. Also, gate gi is an input to gate gi+1 (1 ≤ i ≤ m − 1). A segment

has a delay fault if the propagation time of the rising or falling signal transition

through the segment exceeds a specified limit. Such a delay fault on a segment

is said to be a segment delay fault (SDF) [21]. It is assumed that an SDF is

large enough to cause a delay fault on all the paths that include the segment.

Let C be a combinational circuit and S be a segment in C. Let f be

a rising (resp. falling) SDF on S and let Cf be the faulty circuit of C in the

presence of f . The fault f is also denoted by S ↑ for rising transition (S ↓ for

falling transition). The fault f is testable if there exists an input vector pair

< v1, v2 > for C and Cf such that the following conditions hold.

1. A rising (resp. falling) signal transition is launched at the starting point (a

gate or a primary input) of S in C by < v1, v2 > at time T1.

2. The transition launched at the starting point of S is propagated to the

ending point (a gate or a primary output) of S along S in C by < v1, v2 >.
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3. The value induced by the transition at the ending point of S of Cf is different

from that of C at time T2 where interval T2 − T1 is the maximum allowable

segment delay in the fault-free circuit.

4. The second output vector of C and that of Cf are different at time T2.

Such an input vector pair < v1, v2 > is regarded as an SDF 2-pattern test .

A controlling value for a gate g is the value at its input that determines

the value at the output independent of the other inputs, and is denoted as A(g).

A non-controlling value for a gate g is the value at its input which is not a

controlling value for the gate, and is denoted as I(g). Let P (resp. S) be a path

(resp. segment). The side-inputs of gi along P (resp. S) are denoted as SI(gi, P )

(resp. SI(gi, S)).

A path (resp. segment) P = {g1, g2, ..., gm} (resp. S = {g1, g2, ..., gm})
is said to be robust testable for the rising transition at gm by the vector pair

< v1, v2 > if at each node gi, gi(v1) �= gi(v2) yields the desired transition being

tested, and for each node hj ∈ SI(gi, P ) (resp. hj ∈ SI(gi, S)):

1. hj(v2) = I(gi), and

2. if gi−1(v1) = I(gi), then there is no transition on hj .

A path (resp. segment) P = {g1, g2, ..., gm} (resp. S = {g1, g2, ..., gm}) is

said to be non-robust testable for the rising transition at gm by the vector pair

< v1, v2 > if at each node gi, gi(v1) �= gi(v2) yields the desired transition being

tested, and for each node hj ∈ SI(gi, P ) (resp. hj ∈ SI(gi, S)), hj(v2) = I(gi).

Note that a robust testable PDF is also a non-robust testable PDF but the

converse is not true.

Example 2.4.1. Let’s consider the two-line segment {g1, g2} in the circuit shown

in Figure 2.3. The falling transition is launched at line g1 by launching a rising

transition at x1. Then the transition is propagated to g2 by assigning two-pattern

test 11 to x2. Finally the transition at g2 is propagated to output z. The test at

x1x2x3 is < 010, 110 >, which is a robust test.
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Figure 2.3. SDF test generation

2.5. Test Generation Models

This section reviews time expansion model, TEM[18] and double time-expansion-

model, DTEM [19] that was extended from TEM.

2.5.1 Time Expansion Model

Time expansion model has been widely used as an approach of test generation of

acyclic sequential circuits as the tests can be generated by applying combinational

test generation to the time expansion model.

Definition 2.5.1. A topology graph is a directed graph G = (V, A, r) where

a vertex v ∈ V denotes a combinational logic block which contains primary

inputs/outputs and logic gates, and an arc (u, v) ∈ A denotes a connection or a

bus from u to v. Each arc has a label r : A �→ Z+ (Z+ denotes a set of non-

negative integers), and r(u, v) represents the number of registers on a connection

(u, v).

Definition 2.5.2. Let SA be an acyclic sequential circuit and let G = (V, A, r)

be the topology graph of SA. Let E = (VE, AE , t, l) be a directed graph, where

VE is a set of vertices, AE is a set of arcs, t is a mapping from VE to a set of

integers, and l is a mapping from VE to a set of vertices V in G. If graph E

satisfies the following four conditions, graph E is said to be a time expansion

graph (TEG) of G.

• C1(Logic block preservation): The mapping l is surjective, i.e., ∀v ∈
V, ∃u ∈ VE s.t. v = l(u).
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• C2(Input preservation): Let u be a vertex in E. For any direct pre-

decessor v(∈ pre(l(u)) of l(u) in G, there exists a vertex u′ in E such that

l(u′) = v and u′ ∈ pre(u). Here, pre(v) denotes the set of direct predeces-

sors of v.

• C3(Time consistency): For any arc (u, v)(∈ AE), there exists an arc

(l(u), l(v)) such that t(v) − t(u) = r(l(u), l(v)).

• C4(Time uniqueness): For any vertices u, v(∈ VE), if t(u) = t(v) and if

l(u) = l(v), then the vertices u and v are identical, i.e., u = v.

Definition 2.5.3. Let SA be an acyclic sequential circuit, let G = (V, A, r)

be the topology graph of SA, and let E = (VE, AE, t, l) be a TEG of G. The

combinational circuit CE(SA) obtained by the following procedure is said to be

the time expansion model (TEM) of SA based on E.

1. For each vertex u ∈ VE, let logic block l(u) (∈ V ) be the logic block

corresponding to u.

2. For each arc (u, v) ∈ AE , connect the output of u to the input of v with a

bus in the same way as (l(u), l(v))(∈ A). Note that the connection corre-

sponding to (u, v) has no register even if the connection corresponding to

(l(u), l(v)) has a register (i.e. r(l(u), l(v)) > 0).

3. For a line or a logic gate in each logic block obtained by Step (1) and (2),

if it is not reachable to any input of other logic blocks, then it is removed.

2.5.2 Double Time Expansion Model

Iwagaki et. al.[19] introduced double time expansion model (DTEM) to

generate test sequences for all the testable transition faults. The idea of pattern

dependency from this work is applied to introduce a test generation method that

generates test sequences for all the testable robust and non-robust PDFs for

acyclic sequential circuits by using SAF test generation method.

Definition 2.5.4. Let SA be an acyclic sequential circuit, and C(SA) be a TEM

of SA. Then, a combinational circuit obtained by the following procedure is said

to be a double time-expansion model (DTEM) C∗(SA) of SA.
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S1: Duplicate C(SA) so that C∗(SA) consists of two copies of C(SA), namely

C∗
V 1(SA) and C∗

V 2(SA).

S2: Connect any pair of primary inputs u in C∗
V 1(SA) and v in C∗

V 2(SA) such

that t(v) − t(u) = 1 and l(u) = l(v), and feed a new primary input W into

them.

Figure 2.4 shows an acyclic sequential circuit, its TEM and its DTEM.

2.6. Conclusion

Stuck-at fault model and path delay fault model are two representative fault

models for logical faults and timing faults, representatively in testing. Both test

generation for stuck-at faults and path delay faults and their relationship are

discussed in the dissertation. Time expansion model (TEM) is a test generation

model for acyclic sequential circuits. The time complexity of acyclic sequential

circuits with stuck-at faults is discussed under TEM. The test generation for

acyclic sequential circuits with path delay faults is discussed using extended TEM

called double time expansion model or DTEM.
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Figure 2.4. (a)An acyclic sequential circuit. (b) Its TEM. (c) Its DTEM.
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Chapter 3

τk-Notation

3.1. Introduction

In this chapter, τk notation is defined using asymptotic notation. Generally,

asymptotic notation is used to describe the asymptotic running time of an algo-

rithm. This notation is also convenient for describing the worst-case running time

of the test generation problem. Let g(n) be a given function. The following de-

scribes briefly Θ(g(n)) and O(g(n)). A function f(n) belongs to the set Θ(g(n))

if g(n) is an asymptotically tight bound for f(n). A function f(n) belongs to the

set O(g(n)) if g(n) is an asymptotically upper bound for f(n)[22].

3.2. Definitions of τk-Notation

To facilitate the discussion, the time complexity of test generation problem is

defined as follows.

PC : Combinational Test Generation Problem

Instance: A combinational circuit C and a fault f .

Question: Is there a test pattern to detect f in C?

PS: Sequential Test Generation Problem

Instance: A sequential circuit S and a fault f .

Question: Is there a test sequence to detect f in S?
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Pα: Class α Test Generation Problem

Instance: A sequential circuit S in α and a fault f .

Question: Is there a test sequence to detect f in S?

Definition 3.2.1. The time complexity of a problem P is the time com-

plexity of the fastest algorithm for the problem P . Let TC(n), TS(n) and Tα(n)

be the time complexity of PC, PS and Pα, respectively, where n is the size of

the problem instance. TC(n), TS(n) and Tα(n) are also called test generation

complexity for class C, class S and class α, respectively.

In this discussion, the following assumption about the combinational test gener-

ation complexity is used.

Assumption: The combinational test generation complexity is Θ(nr) for some

constant r > 2, where n is the size of the combinational circuit considered.

To further clarify the test generation complexity, τk notation is defined.

TC(n) is considered as a basic unit of the time complexity of the test generation

problem, therefore τ(n) is used to denote TC(n) in the following text, where

τ(n) = TC(n) = Θ(nr) for some constant r > 2.

Definition 3.2.2. T (n) is τk-equivalent if and only if T (n) = Θ(τk(n)) and

τk-bounded if and only if T (n) = O(τk(n)), where k > 0.

Definition 3.2.3. Class α is τk-equivalent if and only if Tα(n) = Θ(τk(n)) and

τk-bounded if and only if Tα(n) = O(τk(n)), where k > 0.

3.3. Test Generation Complexity of Existing Classes

of Sequential Circuits with Stuck-At Faults

The test generation problem for the existing easily testable classes of acyclic

circuits in terms of τk notation gives a clearer picture of the test generation

complexity.

3.3.1 Balanced Sequential Circuits

Let a directed graph G = (V, A, H) represent a sequential circuit. The set V

of vertices represents a set of clouds where each cloud is a maximal region of
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connected combinational logic such that its inputs are either primary inputs or

outputs of registers and its outputs are either primary outputs or inputs to regis-

ters. The set A of arcs represents a set of connections between two clouds through

a register. Arcs in H ⊆ A represent HOLD registers. A sequential circuit is said

to be a balanced sequential circuit if

1. G is acyclic;

2. ∀vi, vj ∈ V , all directed paths (if any) from vi to vj are of equal length;

3. ∀h ∈ H , if h is removed from G, the resulting graph is disconnected.

Theorem 3.3.1. Balanced sequential circuits is τ -equivalent.

Proof. [5] shows that every balanced sequential circuit can be transformed to

its combinational equivalent by only replacing all registers in the circuit with

delayless wires. The circuit transformation can be done in time O(n). Let TB(n)

denote the test generation complexity for balanced sequential circuits, where

n is the size of the circuits. TB(n) consists of the circuit transformation time

complexity and the test generation complexity for the combinational equivalent.

TB(n) = O(n) + τ(n)

= Θ(τ(n)). (3.1)

From Definition 3.2.3, the class of balanced sequential circuits is τ -equivalent.

3.3.2 Strongly Balanced Sequential Circuits

Let a directed graph G = (V, A, w) represent a sequential circuit. V represents a

set of clouds, where each cloud is a maximal region of connected combinational

logic such that its inputs are either primary inputs or outputs of registers and its

outputs are either primary outputs or inputs to registers. A represents a set of

connections between two clouds. A weight, w(a) on the arc a = (vi, vj) equals to

the number of registers between the corresponding clouds. A sequential circuit

is a strongly balanced sequential circuit when the following conditions are

satisfied.

17



1. G is acyclic;

2. ∀vi, vj ∈ V , all directed paths (if any) from vi to vj are of equal length;

3. There exists a function t from v to a set of integers such that t(vi) =

t(vj) + w(a) for ∀a = (vi, vj).

Theorem 3.3.2. Strongly balanced sequential circuits is τ -equivalent.

Proof. Since the class of strongly balanced sequential circuits is a subclass of

balanced sequential circuits, a given strongly balanced sequential circuit can be

transformed to its combinational equivalent by replacing all registers in the cir-

cuit with delayless wires. This can be done in time O(n). There is no logic

duplication in the transformed circuit. Let TSB(n) denote the test generation

complexity for strongly balanced sequential circuits, where n is the size of the

circuits. TSB(n) consists of circuit transformation time complexity and the test

generation complexity for the combinational equivalent of the sequential circuits.

TSB(n) = O(n) + τ(n) (3.2)

= Θ(τ(n)).

Therefore, strongly balanced sequential circuits is τ -equivalent.

3.3.3 Internally Balanced Sequential Circuits

According to [7], if a circuit resulting from operation 1 of the extended com-

binational transformation (C∗-transformation) on an acyclic sequential circuit

is a balanced sequential circuit, then the circuit is regarded as an internally

balanced sequential circuit . In [7], the concept of separable is defined for

branches of a primary input. The concept will be used in the definition of C∗-

transformation. Suppose x is a primary input and xi and xj are branches of x. If

no path exists such that a primary output zk can be reached from xi and xj over

equal depth paths, then xi and xj are called separable. Equal depth paths are

the paths where the number of flip-flops included in each of the paths is same.
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C∗-transformation consists of the following two operations.

1. For a primary input with fanout branches, the set of fanout branches of

that primary input is denoted by X. Let us obtain the smallest partition

of X which satisfies the following statement: If branches xi and xj belong

to different blocks X(i), X(j) of partition Π(xi ⊂ X(i), xj ⊂ X(j), X(i) �=
X(j)), then xi and xj are separable. Each partitioned block is provided

with a new primary input separated from the original primary input;

2. All flip-flops are replaced by wires.

Theorem 3.3.3. Internally balanced sequential circuits is τ -equivalent.

Proof. [7] has proved that if a fault f in an internally balanced sequential cir-

cuit S can be tested then the corresponding fault fC in C∗(S) can be tested.

And, there is no logic duplication in C∗-transformation. C∗(S) can be done in

time O(n2). Let TIB(n) denotes the test generation complexity for internally

balanced sequential circuits, where n is the size of the circuits. TIB(n) includes

C∗-transformation time complexity and the test generation complexity for the

combinational equivalent. Then, the test generation time complexity is

TIB(n) = O(n2) + τ(n) = Θ(τ(n)). (3.3)

From Definition 3.2.3, the class of internally balanced sequential circuits

is τ -equivalent.

3.3.4 Acyclic Sequential Circuits

An acyclic sequential circuit is a sequential circuit without feedback. The test

generation complexity for this class is not τ -equivalent under the test generation

model called time expansion model or TEM [18].

Lemma 3.3.4. Let u and v be arbitrary logic blocks of an acyclic sequential

circuit where u ∈ pre(v). The logic block u will be mapped to q different logic
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blocks in TEM if there are p connections between logic block u and v with q

different labels where p ≥ q.

Proof. Let v′ be the corresponding logic block of v in TEM (l(v′) = v) and

let ri(u, v) be labels for each connection (u, v) where 0 ≤ i ≤ q. Let also u′
j

denote each corresponding logic block of u in TEM. From the condition of input

preservation and time consistency [18],

t(u′
j) = t(v′) − ri(u, v) (3.4)

Since 1 ≤ i ≤ q, the range of j is also 1 ≤ j ≤ q. Since u = l(u′
j), the lemma is

proved.

Theorem 3.3.5. There exists an acyclic sequential circuit whose test generation

complexity represented by TEM is not τ -equivalent.

Proof. Let an acyclic sequential circuit, Sa have a structure represented by a

topology graph G = (V, A, r) as follows.

• V = {u, v} where u ∈ pre(v) and A = {ai | 0 ≤ i ≤ d};

• ri(u, v) = i for 0 ≤ i ≤ d where ri(u, v) represents a label on arc aj and d

is the sequential depth of Sa, which is not a constant.

Let n0 and n1 be the size of the logic block represented by vertices u and

v, respectively where n0 = n1 = n
2

as shown in Figure 3.1.

From Lemma 3.3.4, vertex u in the topology graph is mapped to (d + 1)

different vertices in TEM as shown in Figure 3.2. Note that no logic portion

can be removed. Thus, the size of the combinational equivalent of the acyclic

sequential circuit represented in TEM is

N =
n

2
× (d + 1) +

n

2
(3.5)

=
d × n

2
+ n

Since a combinational test generation is applied on the time expansion

model to generate tests, the test generation complexity of the acyclic sequential
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circuit is

TA = τ(N) = τ(
d × n

2
+ n)

= τ(d × n) (3.6)

= Θ(dr × nr) �= Θ(nr)

for some constant r.

The equation 3.6 proves the theorem.

Figure 3.1. Structure of Sa.

Figure 3.2. TEM of Sa.

However, there might be other test generation models for acyclic sequential

circuits besides TEM. “Is TA τ -equivalent?” remains an open question. No one

has proved the answer is “Yes” but it might probably be “No” since existing

studies show that the logic duplication might happen for at most d time frames

in the test generation problem, where d is the sequential depth under some test

generation models. Therefore, we have the following conjecture and theorem.
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Conjecture 3.3.1. The class of acyclic sequential circuits is not τ -equivalent.

Theorem 3.3.6. The class of acyclic sequential circuits is τ 2-bounded.

Proof. [12] shows that the number of time frames in which logic duplication might

take place is at most d, where d is the sequential depth. Therefore, the size of

the transformed circuit to be used for the test generation is at most n × (d +

1). Since d ≤ n, the test generation complexity of acyclic sequential circuits is

O(τ 2(n)).

The practical observation shows that the test generation of acyclic sequen-

tial circuits is close to Θ(τ(n)) instead of Θ(τ 2(n)) bound. In other words, its

test generation is still not very hard. Figure 3.3 shows the relationships among

existing classes of acyclic sequential circuits.

Figure 3.3. Classes of acyclic sequential circuits.
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3.4. Conclusion

τk notation has been introduced. Using τk notation, balanced sequential circuits,

strongly balanced sequential circuits and internally balanced sequential circuits

are shown τ -equivalent in test generation for stuck-at faults. Acyclic sequential

circuits are τ 2-bounded in test generation for stuck-at faults. Under time expansin

model (TEM), it is proved that the class of acyclic sequential circuits is not τ -

equivalent. τk notation is also used for discussing the test generation complexity

of other classes of sequential circuits with stuck-at faults and path delay faults in

the following chapters.
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Chapter 4

Classification of Sequential

Circuits with Stuck-At Faults

Based on Combinational Test

Generation Complexity

4.1. Introduction

In this dissertation, a class is considered to be easily testable if its test generation

complexity is τ 2-bounded. In other words, τ 2-bounded classes and τ -equivalent

classes are easily testable. In this chapter, several classes of easily testable sequen-

tial circuits are introduced. The test generation for stuck-at faults in some cyclic

sequential circuits is τ -equivalent. Also, synthesis for testability (SFT) can be

used to augment a given sequential circuit into an easily testable circuit belong-

ing to one of these classes. Case studies are done to compare the test application

time and area overhead of these augmented circuits with their corresponding scan

designed circuits.
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4.2. Classes of Easily Testable Sequential Cir-

cuits

Generally, the test generation problem of a cyclic sequential circuit is modeled by

an iterative logic array that consists of several time frames so that it can be solved

by combinational test generation techniques. The model is shown in Figure 4.1.

The test generation problem involves the following three steps.

1. Derivation of the excitation state;

2. State justification for i time frames; and

3. State differentiation for j time frames.

Generally, backtracks may occur between the three steps. For a given

fault, step 1 is performed to obtain an excitation state for state justification and

state differentiation. If state justification or state differentiation fails, step 1 is

performed again to get a different excitation state for state justification and state

differentiation. Logic duplication of the combinational part takes place at every

time frame for state justification and state differentiation. In the worst case, i

and j equal 2p, where p is the number of memory elements. These factors result

in high complexity for test generation of cyclic sequential circuits.

However, there exist classes of sequential circuits which are τ -equivalent

or τ 2-bounded and include some cyclic sequential circuits. In such classes, it is

guaranteed that any excitation state can be justified and the fault effect of any

activated fault can be propagated to a primary output. Since the derivation of

the excitation state is done by the test generation on the combinational part at

time frame 0, the time complexity TE(n) is always τ -equivalent. Therefore, if

the state justification and state differentiation can be reduced to the problems

which are τ 2-bounded or τ -equivalent or with less time complexity, the circuits

become easily testable. Let TJ , TE and TD denote the time complexity of state

justification, derivation of excitation state and state differentiation, respectively.

The test generation complexity for a class of easily testable sequential circuits,
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TS(n) is

TS(n) ≤ TE(n) + TJ + TD (4.1)

= τ(n) + TJ + TD

The following sub-sections introduce several new classes of easily testable

sequential circuits, which cover some cyclic sequential circuits.

Figure 4.1. Iterative logic array model.

4.2.1 l-Length-Bounded Testable Circuits

The number of time frames expanded by the state justification and state differen-

tiation accounts for the length of a test sequence. In this sub-section, a new class

of easily testable sequential circuits called l-length-bounded testable circuits, the

test sequence length of which is bounded so that the class becomes easily testable,

is introduced.

Definition 4.2.1. A sequential circuit S is l-length-bounded testable with

respect to a fault set F if the following conditions are satisfied.

1. For any state si, there exists a state justification sequence of length at most

l;

2. For any pair of states (sj, sjf), there exists a state differentiation sequence

of length at most l, where sj is a fault-free state and sjf is a state in the

faulty sequential circuit with a fault f ∈F.

Theorem 4.2.2. l-length-bounded testable circuits is τ 2-bounded if l is O(n),

where n is the size of the sequential circuits.
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Proof. To generate a test sequence for a given fault f in a l-length-bounded

testable circuit, firstly combinational test generation is performed at time frame

0 to derive an excitation state si so that f is excited and the fault effect is

propagated to a next-state line or a primary output. Second, state justification

sequence is generated for the excitation state si and lastly if the fault effect is not

propagated to a primary output by the first two steps, fault propagation sequence

is generated for a pair of (sj , sjf), where sjf is the next state of time frame 0 and

sj is the corresponding state in the fault-free circuit. Condition 1 of Definition

4.2.1 guarantees that for any state sj, there exists a state justification sequence

and Condition 2 of Definition 4.2.1 guarantees that for any pair of states (sj , sjf),

there exists a fault propagation sequence. Consequently, the test generation for a

given fault is a one-way procedure consisting of the three steps mentioned above,

which means no backtracks occur between the steps. Condition 1 of Definition

4.2.1 implies that the state justification expands the combinational part for at

most l time frames to justify the excitation state si. Therefore, the justification

is performed on the duplication of combinational part of size at most l × n.

The state justification TJ for an excitation state si can be reduced into a

combinational test generation problem of the iterative logic array (Figure 4.2(b))

that satisfies the following conditions.

• It consists of at most l time frames;

• each next state line of the last time frame is connected to an input of an

AND gate. The next state line is connected to the AND gate through an

inverter if the bit signal of si at the line is 0; and

• the output of the AND gate has stuck-at 1 fault.

Therefore, the time complexity of the state justification TJ is τ -bounded (TJ(NJ) =

O(τ(NJ))) where NJ is the size of the state justification problem. The time com-

plexity of the state justification TJ(l × n) is

TJ(l × n) = O(τ(l × n)). (4.2)

Condition 2 of Definition 4.2.1 implies that the state differentiation ex-

pands the combinational part for at most l time frames in order to propagate the
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fault effect from time frame 0 to a primary output. Similar to the problem of the

state justification, the fault propagation TD for an activated fault can be reduced

into a combinational test generation problem of the iterative logic array (Figure

4.2(c)) that satisfies the following conditions.

• It consists of at most l time frames; and

• it has the multiple faults including a fault in each time frame that corre-

sponds to the activated fault in the excitation time frame and a stuck-at

fbit fault in each present-state line of the first time frame that receives the

fault effect of the activated fault in excitation time frame. The value of fbit

is 0 (resp. 1) if present-state line is 0 (resp. 1) in sjf .

This test generation problem with multiple faults can be further reduced into a

combinational test generation problem of the iterative logic array that consists of

at most l time frames with a single stuck-at fault at a primary input connected

to ground (signal value 0) as shown in Figure 4.2(d) by using the transformation

introduced in Chapter 2. Therefore the time complexity of the fault propagation

TD is τ -bounded (TD(ND) = O(τ(ND))) where ND is the size of the state dif-

ferentiation problem. The time complexity of the state differentiation TD(l × n)

is

TD(l × n) = O(τ(l × n)). (4.3)

Let TLBT (n) be the test generation complexity for l-length-bounded testable cir-

cuits and l be O(n). Then,

TLBT (n) ≤ TE(n) + TJ(l × n) + TD(l × n)

= τ(n) + O(τ(l × n)) + O(τ(l × n))

= τ(n) + O(τ 2(n)) + O(τ 2(n)) for l is O(n)

= O(τ 2(n)). (4.4)

Hence, the test generation complexity for the l-length-bounded testable circuits

is τ 2-bounded if l is O(n). Note that justification (resp. propagation) is a sub-

problem of combinational test generation. Therefore, the time complexity of

justification (resp. propagation) is O(τ(n)).
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4.2.2 l-Length-Bounded Validity-Identifiable Circuits

Valid states are the reset state and all states in the machine that are reachable

from the reset state using an input sequence [24]. There are some sequential

circuits where not all the states are valid states. Based on this characteristic, the

class of l-length-bounded validity-identifiable circuits is defined.

Definition 4.2.3. A sequential circuit S is l-length-bounded validity-identifiable

with respect to a fault set F if the following conditions are satisfied.

1. There exists a combinational circuit of size O(n) called validity checker

(Figure 4.3) that can identify the validity of states, where n is the size of

the sequential circuits;

2. For any valid state si, there exists a state justification sequence of length

at most l from initial state S0;

3. For any pair of states (sj, sjf), there exists a state differentiation sequence

of length at most l, where sj is a fault-free valid state and sjf is a state in

the faulty sequential circuit with a fault f ∈F.

Theorem 4.2.4. The class of l-length-bounded validity-identifiable circuits is τ 2-

bounded if l is O(n), where n is the size of the sequential circuits.

Proof. From Condition 1 of Definition 4.2.3, prior to the test generation of a

l-length-bounded validity-identifiable circuit a combinational circuit of size O(n)

that can identify the validity of the states is constructed and embedded in the

combinational part C of the l-length-bounded validity-identifiable circuit such

that any excitation state si derived by the combinational test generation is a

valid state. The transformed combinational part as shown in Figure 4.3 is denoted

by C ′, which has size O(2 × n). It can be shown that a fault is testable in C

with a valid state if and only if the fault is testable in C ′. To generate a test

sequence for a given fault f in a l-length-bounded validity-identifiable circuit,

firstly combinational test generation is performed on C ′ at time frame 0 to derive

an excitation state si so that f is excited and propagated to a next-state line

or a primary output. Note that si is a valid state. Second, state justification

sequence is generated for the excitation state si and lastly if the fault effect is
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not propagated to a primary output by the first two steps, state differentiation

sequence is generated for a pair of states (sj, sjf), where sjf is the next state of

time frame 0 and sj is the corresponding state in fault-free circuit. Condition

2 in Definition 4.2.3 guarantees that for any valid state si, there exists a state

justification sequence and Condition 3 in Definition 4.2.3 guarantees that for any

pair of states (sj , sjf), there exists a state differentiation sequence. Consequently,

the test generation is a one-way procedure consisting of the above three steps,

which means no backtracks occur between the steps. Let TE(2 × n) be the test

generation complexity of C ′. The derivation of excitation state can be done in

TE(2 × n) = τ(2 × n)

= τ(n). (4.5)

From Condition 2 of Definition 4.2.3,

TJ = O(l). (4.6)

From Condition 3 of definition 4.2.3,

TD = O(l). (4.7)

Let TLBV I(n) be the test generation complexity for l-length-bounded validity-

identifiable circuits. Then,

TLBV I(n) ≤ TE(2n) + TJ (l × n) + TD(l × n)

= τ(n) + O(τ 2(n)) + O(τ 2(n))

= O(τ 2(n)), which is τ 2-bounded. (4.8)

4.2.3 t-Time-Bounded Testable Circuits

Classification of sequential circuits is also considered from the aspect of time

dimension instead of length dimension. In this section, another new class of
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sequential circuits called t-time-bounded testable circuits is introduced. The t-

time-bounded testable circuit is defined as follows.

Definition 4.2.5. A sequential circuit S is t-time-bounded testable with re-

spect to a fault set F if the following conditions are satisfied.

1. For any state si, there exists a state justification sequence which can be

obtained in time O(t);

2. For any pair of states (sj, sjf), there exists a state differentiation sequence

which can be obtained in time O(t), where sj is a fault-free state and sjf is

a state in the faulty sequential circuit with a fault f ∈F.

Theorem 4.2.6. The class of t-time-bounded testable circuits is τ -equivalent

(resp. τ 2-bounded) if t is τ(n) (resp. τ 2(n)), where n is the size of the sequential

circuits.

Proof. To generate a test sequence for a given fault f in a t-time-bounded testable

circuit, firstly combinational test generation is performed at time frame 0 to

derive an excitation state so that f is excited and propagated to a next-state line

or a primary output. Second, state justification sequence is generated for the

excitation state si and lastly if the fault effect is not propagated to a primary

output by the first two steps, fault propagation sequence is generated for the

pair of states (sj, sjf), where sjf is the next state of time frame 0 and sj is the

corresponding state in fault-free circuit. Condition 1 of Definition 4.2.5 guarantees

that for any state si, there exists a state justification sequence and Condition 2 of

Definition 4.2.5 guarantees that for any pair of states (sj, sjf), there exists a fault

propagation sequence. Consequently, the test generation for a given fault is a one-

way procedure consisting of the above three steps, which means no backtracks

occur between the steps. From Condition 1 of Definition 4.2.5,

TJ = O(t). (4.9)

From Condition 2 of Definition 4.2.5,

TD = O(t). (4.10)
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Let TTBT (n) be the test generation complexity for t-time-bounded testable cir-

cuits. Then,

TTBT (n) ≤ TE(n) + TJ + TD

= τ(n) + O(t) + O(t)

= τ(n) + O(τ(n)) + O(τ(n)) for t be τ(n) (4.11)

= O(τ(n)).

Hence, the test generation complexity for t-time-bounded testable circuits is τ -

equivalent if t is τ(n). In the case where t is τ 2(n),

TTBT (n) ≤ TE(n) + TJ + TD (4.12)

= τ(n) + O(t) + O(t)

= Θ(τ(n)) if t = τ(n) or

O(τ 2(n)) if t = τ 2(n).

Therefore, the class of t-time-bounded testable circuits is τ -equivalent if t = τ(n)

and τ 2-bounded if t = τ 2(n).

4.2.4 t-Time-Bounded Validity-Identifiable Circuits

The test generation of t-time-bounded validity-identifiable circuits is also bounded

by the time complexity. However, different from the t-time-bounded testable

circuits, not all the states of a t-time-bounded validity-identifiable circuit are

valid states.

Definition 4.2.7. A sequential circuit S is t-time-bounded validity-identifiable

with respect to a fault set F if the following conditions are satisfied.

1. There exists a combinational circuit of size O(n) called validity checker

(Figure 4.3) that can identify the validity of states, where n is the size of

the sequential circuits;

2. For any valid state si, there exists a state justification sequence from initial

state S0 which can be obtained in time O(t);
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3. For any pair of states (sj, sjf), there exists a state differentiation sequence

which can be obtained in time O(t), where sj is a fault-free valid state and

sjf is a state in the faulty sequential circuit with a fault f ∈F.

Theorem 4.2.8. The class of t-time-bounded validity-identifiable circuits is τ -

equivalent (τ 2-bounded) if t is τ(n) (τ 2(n)), where n is the size of the sequential

circuits.

Proof. From Condition 1 of Definition 4.2.7, prior to the test generation of a

t-time-bounded validity-identifiable circuit a combinational circuit of size O(n)

that can identify the validity of the states is constructed and embedded in the

combinational part C of the time-bounded validity-identifiable circuit such that

any excitation state si derived by the combinational test generation is a valid

state. The transformed combinational part as shown in Figure 4.3 is denoted by

C ′, which has size O(2× n). It can be shown that a fault is testable in C with a

valid state if and only if the fault is testable in C ′. To generate a test sequence for a

given fault f in a time-bounded validity-identifiable circuit, firstly combinational

test generation is performed on C ′ at time frame 0 to derive an excitation state si

so that f is excited and propagated to next-state lines or primary outputs. Note

that si is a valid state. Second, state justification sequence is generated for the

excitation state si and lastly if the fault effect is not propagated to primary output

by the first two steps, fault propagation sequence is generated for a pair of states

(sj, sjf), where sjf is the next state of time frame 0 and sj is the corresponding

state in fault-free circuit. Condition 2 in Definition 4.2.7 guarantees that for

any valid state si, there exists a state justification sequence and Condition 3 in

Definition 4.2.7 guarantees that for any pair of states (sj, sjf), there exists a fault

propagation sequence. Consequently, the test generation is a one-way procedure

consisting of the above three steps, which means no backtracks occur between

the steps. Let TE(2× n) be the test generation complexity of C ′. The derivation

of excitation state can be done in

TE(2 × n) = τ(2 × n)

= τ(n). (4.13)
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From Condition 2 of Definition 4.2.7,

TJ = O(t). (4.14)

From Condition 3 of Definition 4.2.7,

TD = O(t). (4.15)

Let TTBV I(n) be the test generation complexity for t-time-bounded validity-

identifiable circuits. Then,

TTBV I(n) ≤ TE(2n) + TJ + TD

= τ(n) + O(t) + O(t)

= Θ(τ(n)) if t = τ(n) or

O(τ 2(n)) if t = τ 2(n) (4.16)

Therefore, the class of t-time-bounded validity-identifiable circuits is τ -equivalent

if t = τ(n) and τ 2-bounded if t = τ 2(n).

4.3. Examples of Easily Testable Sequential Cir-

cuits

Although several classes of easily testable sequential circuits have been introduced

in the previous section, the definitions are too general to easily categorize a given

circuit into those classes. Therefore, this section introduces two special subclasses,

namely counter-cycle finite state machine realizations and state-shiftable finite

state machine realizations.

4.3.1 Counter-Cycle Finite State Machine Realizations

A counter-cycle finite state machine realization satisfies the following

conditions.

1. The number of valid states is in O(n) and there exists a validity checker of
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size O(n).

2. There exists an input symbol ε that strongly connects all valid states ac-

cordingly in a linear feedback shift register (LFSR) counter with a feedback

polynomial.

3. Column ε (counter-cycle operation) is realized by AND-OR logic shown in

Figure 4.5(a) (resp. NOT-OR-AND logic shown in Figure 4.5(b)) feeding

each flip-flop such that

• the combinational logic assigns 0 (resp. 1) to the input of the OR gate

(resp. AND gate) when the input combination corresponds to column

ε;

• a primary input is fed to an input of the AND gate (resp. NOT gate

that connected to an input of OR gate) and the LFSR counter logic is

connected to the other input of the AND gate (resp. OR gate).

4. All flip-flops are resettable and the flip-flop that represents the most signif-

icant bit of the state is observable.

Figure 4.4(a) shows an example of a counter cycle with 6 states while Figure

4.6(a) illustrates the realization of counter-cycle FSM.

Theorem 4.3.1. The class of counter-cycle FSM realizations is τ -equivalent.

Proof. To generate a test for a counter-cycle FSM realization, first an excitation

state is derived in time Θ(τ(n)). Then, the excitation state is justified by an input

sequence of constant value ε and length at most p from the reset state, where p

is the number of valid states. Lastly, the faulty next state generated after the

derivation of excitation state is distinguished from the fault-free next state by

an input sequence of constant value ε and length at most p. Both justification

and differentiation are done by forward implication. Since p = O(n), the time

complexities of justification and differentiation are O(n2), respectively, where n

is the size of the circuit. The class of counter-cycle FSM realizations is a subclass

of t-time-bounded validity-identifiable circuits, where t = O(n2).
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4.3.2 State-Shiftable Finite State Machine Realizations

Another class of easily testable sequential circuits called state-shiftable FSM is

introduced. A state-shiftable finite state machine [23] with m states is a machine

that possesses

1. transfer sequences of length at most �log2m� to carry the machine from

state s0 to state si for all i, and

2. distinguishing sequences of length �log2m�, which are arbitrary input se-

quences consisting of two input symbols.

A sequential circuit that is realized from the state-shiftable finite state

machine is called state-shiftable finite state machine realization.

Theorem 4.3.2. The class of state-shiftable FSM realizations is τ -equivalent if

the following conditions are satisfied.

1. The FSM contains a two-column submachine equivalent to a binary shift

register, where the input symbols of the two columns are denoted by ε0 and

ε1, respectively;

2. When input combination corresponds to column ε0 (resp. ε1), flips-flops are

in shifting operation with bit 0 (resp. bit 1) being shifted into the flip-flop

that represents the least significant bit of the state.

3. Columns ε0 and ε1 (shifting operation) are realized by an AND-OR logic

(Figure 4.5(a)) connected to each flip-flop such that

• the combinational logic assigns 0 to the OR gate when the input com-

bination corresponds to either column ε0 or ε1.

• a primary input is fed to an input of the AND gate and the output of

a flip-flop is connected to the other input of the AND gate.

4. The flip-flop that represents the most significant bit of the state is observ-

able.

The realization is shown in Figure 4.6(b). As an example, the transitions

happening in columns ε0 and ε1 of the SSFSM of degree 2 are shown in Figure

4.4(b).
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Proof. To generate a test for a state-shiftable FSM realization, first an excitation

state is derived in time Θ(τ(n)). Then, the excitation state is justified by an

input sequence which consists of ε0 and ε1. The input sequence has length at

most p where p = log2m = O(n). Lastly, the faulty next state generated after the

derivation of excitation state is distinguished from the fault-free next state by an

input sequence which consists of ε0 and ε1. The input sequence has length at most

p. Both justification and differentiation are done by forward implication. Since

p = O(n), the time complexities of justification and differentiation are O(n2),

respectively, where n is the size of the circuit. The class of state-shiftable FSM

realizations is a subclass of t-time-bounded testable circuits, where t = O(n2).

4.4. Synthesis for Testability Method

In synthesis for testability, testability is considered during the synthesis process

itself. Since state-shiftable FSM realizations and counter-cycle FSM realizations

are cyclic sequential circuits defined at the FSM level and gate structural level

that depends on the synthesis method, a given sequential design at FSM can be

augmented into one of the easily testable classes using synthesis for testability

method during synthesis instead of design for testability method after synthesis.

Note that DFT considers the structure of the circuit kernel while SFT considers

the whole circuit at FSM level in augmenting a given circuit into an easily testable

circuit.

4.4.1 SFT for Counter-Cycle FSM Realizations and State-

Shiftable FSM Realizations

To synthesize a given design into a counter-cycle FSM realization, the following

steps are implemented.

1. Add at most one column of ε into the state table of the design so that the

design becomes a counter-cycle FSM.

2. Perform state encoding and logic minimization in the synthesis.
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3. Realize column ε as in Condition 3 of the definition of counter-cycle FSM

realizations and add a primary output to the flip-flop which is the most

significant.

The following shows the SFT method to synthesize a given design into a

state-shiftable FSM realization.

1. Add at most two columns of ε0 and ε1 into the state table of the design so

that the design becomes state shiftable FSM.

2. Perform state encoding and logic minimization in the synthesis.

3. Realize columns ε0 and ε1 as in Condition 3 of Theorem 4.3.2 and add a

primary output to the flip-flop which is the most significant.

4.4.2 Case study: Comparison between SFTs and DFTs

Case studies are conducted on five MCNC [25] benchmark finite state machines,

namely bbsse (16 states), cse (16 states), dk16 (27 states), opus (10 states) and

tma (20 states). State encoding and logic minimization for these designs were

performed using Synopsys Design Analyzer. Synopsys TetraMax tool is used to

run the test generation on the circuits.

Original circuits of each benchmark do not have complete fault efficiency

except opus. bbsse, cse, dk16 and tma have 96.56%, 99.42%, 99.72% and 99.52%,

respectively. Since full scan designed circuits are also easily testable circuits,

state-shiftable FSM realizations and counter-cycle FSM realizations are compared

with full scan designed circuits. Table 4.1 indicates the result on the comparison of

the area overhead (number of gates) between the scan design, counter-cycle FSM

realizations and state-shiftable FSM realizations. The values in the parenthesis

are the overhead in percentage. One of the columns of tma corresponds to column

ε1 of a state-shiftable FSM. Therefore, only one column is added to the state table

during SFT, thus reducing the area overhead. State-shiftable FSM realizations

have less area overhead compared to counter-cycle FSM realization. Comparing

the state-shiftable FSM realizations and full scan design, the state-shiftable FSM

realizations of cse, dk16 and tma have less overhead. The flip-flops used to realize

counter-cycle FSMs are asynchronous flip-flops. The logic complexity of these
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flip-flops explains in part that counter-cycle FSM realizations have larger area

overhead. Moreover, the counter-cycle FSM realizations of bbsse and cse need

five flip-flops, which is one extra flip-flop compared to the state-shiftable FSM

realizations. Extra XOR gates are necessary to realize the LFSR counter-cycle

operation while no extra gates are needed for shifting operation in state-shiftable

FSM.

Table 4.2 presents the result on the comparison of the test application

time (in clock cycles) among the scan designs, counter-cycle FSM realizations and

state-shiftable FSM realizations. From the result, state shiftable FSM realizations

have shorter test application time compared to full scan designs and counter-cycle

FSM realizations. The justification and differentiation sequence of counter-cycle

FSM is at most the number of valid states while that of state-shiftable FSM is

at most the logarithm of the number of states. In the experiment, the number of

valid states of counter-cycle FSM are higher than the logarithm of the number of

states in state-shiftable FSM. Table 4.3 shows that the circuits in scan techniques

and our method have complete fault efficiency while the original circuits do not.

Table 4.1. Experimental result: area overhead(gate count)
B/mark Ori.(%) FS(%) CCFSM(%) SSFSM(%)
bbsse 130 146(12.3) 191(46.9) 150(15.4)
cse 205 221(7.8) 241(17.6) 215(4.9)

dk16 215 235(9.3) 287(33.5) 215(0)
opus 92 108(17.4) 140(52.2) 131(42.4)
tma 205 225(9.8) 269(31.2) 206(0.5)

Table 4.2. Experimental result: test application time(clock cycles)
B/mark Original FS CCFSM SSFSM
bbsse 161 294 459 233
cse 359 434 766 458

dk16 421 455 1100 335
opus 167 184 204 179
tma 342 461 968 436
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Table 4.3. Experimental result: fault efficiency(%)
B/mark Original FS CCFSM SSFSM
bbsse 96.36 100 100 100
cse 99.44 100 100 100

dk16 99.62 100 100 100
opus 99.71 100 100 100
tma 99.08 100 100 100

4.5. Conclusion

Several classes of easily testable cyclic sequential circuits have been introduced.

These include l-length-bounded testable circuits and l-length-bounded validity-

identifiable circuits with l = O(n), t-time-bounded testable circuits and t-time-

bounded validity-identifiable circuits with t = τ(n) or τ 2(n), state-shiftable FSM

realizations and counter-cycle FSM realizations. The case studies indicated that

state-shiftable FSM realization can be better than its corresponding counter-cycle

FSM realization and its corresponding full scan designed circuit in certain cases

while full scan designed circuit has better result than its corresponding counter-

cycle FSM realization in certain cases.
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Figure 4.2. The problems of state justification and fault propagation of l-length-
bounded testable circuits.
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Figure 4.3. Transformed combinational part C ′ that consists of C embedded with
a validity checker.

Figure 4.4. (a) State diagrams of counter-cycle FSM. (b) State-shiftable FSM.
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Figure 4.5. (a) AND-OR logic. (b) NOT-OR-AND logic.
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Figure 4.6. (a) Realizations of counter-cycle FSM. (b) State-shiftable FSM with
feedback polynomial 0...11.
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Chapter 5

Classification of Sequential

Circuits with Path Delay Faults

Based on Combinational Test

Generation Complexity

5.1. Introduction

In Chapter 3, τk-notation is introduced. Using the notation, test generation

complexity for several classes of sequential circuits with stuck-at faults is studied.

In this chapter, test generation complexity for sequential circuits with path delay

faults is discussed based on τk-notation. In the following text, the test generation

problem for path delay faults is simply called PDF test generation while the test

generation problem for stuck-at faults is simply called SAF test generation.

Delay testing is very important to ensure the temporal correctness of a

circuit. According to Cheng’s classification, path delay faults (PDFs) can be

classified into four categories by the conditions of their off-inputs: (1) robust

testable, (2) non-robust testable, (3) functional sensitizable and (4) functional

unsensitizable[20]. PDF test generation problem has been studied and several

algorithms have been introduced. Some approaches increased the complexity of

the problem. Therefore, works have been done on establishing the relationship
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between PDF test generation problem and SAF test generation problem. Sal-

danha et al.[13] proved that a single stuck-at fault (SAF) test generation tool

could be used for the robust test generation in a combinational circuit by trans-

forming it into a rising-smooth-circuit or falling-smooth-circuit. Gharaybeh et

al.[14] showed that the single SAF test generation tool can be used for the non-

robust test generation for a combinational circuit by first transforming a given

circuit into a two-level circuit. Ohtake et al.[15] introduced a method of PDF

test generation using SAF test generation algorithms. They introduced path-leaf

transformation as a circuit pseudo-transformation to generate a partial leaf-dag

from a given combinational circuit. Ohtake et al. in [16] also showed the re-

ducibility between the PDF test generation of balanced sequential circuits and

that for the corresponding segment path delay faults (SDF test generation) of

its combinational equivalent circuit for non-robust tests. Majumder et al. [17]

presented a complete characterization of the path delay faults through stuck-at

faults under various classifications schemes. They considered only the combina-

tional circuits. In Chapter 4, the faults being studied are stuck-at faults, which

are logical faults. In this chapter, the work is extended to the delay faults, which

are timing faults. The relationship between PDF test generation and SAF test

generation for several classes of circuits is discussed based on τk-notation. The

concern is to compare the test generation complexity between SAF and PDF.

They are equivalent for combinational circuits, balanced sequential cricuits, and

internally balanced sequential circuits. For acyclic sequential circuits, they are

equivalent under time expansion model (TEM) with slow-fast-slow clock, but

still it is not known whether they are equivalent. Since it looks equivalent, it is

concluded as a conjecture. For cyclic sequential circuits, they are equivalent for

t-length-bounded testable circuits with t = τ(n) and two-column SSFSM realiza-

tions with observable shifting logic under slow-fast-slow clock but it is not known

if they are equivalent for two-column distributive SSFSM realizations. Then, the

concern is whether there is any class of circuits, the test generation complexity

for both SAF and PDF of which are not equivalent. If there exists such class

of circuits, the following question arises. “Which complexity is higher, SAF’s

or PDF’s?” This chapter shows that there is a class of circuits, the SAF and

PDF test generation complexity of which might be not equivalent; by showing its
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PDF test generation is τ -equivalent while its SAF test generation is τ 2-bounded.

The SAF test generation might be not τ -equivalent, hence it is concluded in a

conjecture such that they are not equivalent and PDF test generation has less

complexity than SAF test generation.

In this chapter, the equivalence of the robust and non-robust SDF test

generation and the SAF test generation of combinational circuits is addressed.

By using this result, the reducibility of the robust and non-robust PDF test gen-

eration of acyclic sequential circuits to the SAF test generation of combinational

circuits is proved. Two easily testable classes of cyclic sequential circuits, namely

two-column SSFSM realizations and two-column distributive SSFSM realizations

are also introduced and their test generation complexities are discussed[27].

5.2. Path Delay Fault Test Generation Complex-

ity of the Combinational Circuits

In this section, we define a single-path leaf-dag CLD
P for path P and a path

rising-smooth circuit CRS
P for path P , which are the pseudo circuits transformed

from a given combinational circuit prior to test generation, based on [13]. These

transformations allow the PDF test generation of a given combinational circuit

to be done by running ATPG on the transformed pseudo circuits with the cor-

responding SAFs. First, the transformation of a given circuit into CLD
P for path

P (resp. CRS
P for path P ) through single-path-leaf transformation (resp. path

rising-smooth transformation) to generate tests for combinational circuits with

non-robust PDFs (resp. robust PDFs) is illustrated.

Definition 5.2.1. A single-path leaf-dag CLD
P for path P is a combinational

circuit such that a fanout and an inverter along P are only permitted at the

starting point of P and the output of the inverter, if one exists along P , is not

allowed to have fanouts.

Definition 5.2.2. Let P denote a path in a given combinational circuit C. C

can be transformed into a single-path leaf-dag CLD
P for path P , by the single-

path-leaf-transformation :
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• P consists of an ordered set of gates {g1, g2, ..., gm}, where g1 is a primary

input and gm is a primary output. Also, gate gj is an input to gate gj+1 (1 ≤
j ≤ m − 1). Let Pre(gj) denote a set of predecessor gates {g1, g2, ..., gj−1}
on P . Traversing from gm, if a gate gj has a fanout of two or more, each

gate in Pre(gj) with the connections to its immediate predecessor gates are

duplicated once. Let g′
k denote the duplicate of gk, where gk ∈ Pre(gj). For

each gk in Pre(gj) and for each immediate successor gate hk+1 of gk which

is not on P , the connection of gk to hk+1 is changed to the connection of g′
k

to hk+1. The resulting path P is free of fanout.

• Starting from gm along P , all the NAND (resp. NOR) gates on P are

changed to the OR (resp. AND) gates using De Morgan’s Law.

Let n denote the number of gates of a given combinational circuit. Let np

and n′
p denote the number of gates along P and the number of gates along P that

are duplicated. Note that the size of the resulting circuit after this transforma-

tions is n′ = n + n′
p. Since n′

p ≤ np ≤ n, the size of the transformed circuit is at

most 2n.

Definition 5.2.3. The I-edge of path P with input i in a single-path leaf-dag

CLD
P refers to the first connection of P after the inverter, if it exists. The I-edge

is said to be associated with input i.

Let i denote a primary input on path P , the I-edge of P and other fanout

branches of i have a transition if i has a transition. The transition from a fanout

branch of i may propagate to the side-input of a gate on P . Using I-edge as one

of the properties, the pseudo-circuit called path rising-smooth circuit CRS
P (resp.

path falling-smooth circuit CFS
P ) is introduced. Except I-edge, a constraint is

assigned to each fanout branch so that the two-pattern tests does not propagate

a transition to any side input of P for a robust PDF.

Definition 5.2.4. A single-path leaf-dag CLD
P for path P can be transformed

into a path rising-smooth circuit CRS
P (resp. path falling-smooth circuit CFS

P ) for

path P by the path rising-smooth (resp. path falling-smooth) transformation:

• Let QOR (resp. QAND) denote the OR gates (resp. AND gates) along P

that have a rising (resp. falling) transition along. A gate may have no
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parity, 0, 1 or both parities. A gate fed to the side-input of an OR gate

(resp. AND gate) in QOR (resp. QAND) has parity 1 (resp. 0). Perform a

reverse topological traversal of the gates Q in the transitive fanout of i, to

determine the parity of all gates along the side-paths to P where i is the

primary input on P . The parity is complemented across a NOT gate. If

some fanouts of a gate have parity 1 and others have parity 0, the gate is

assigned both parities.

• Duplicate the gates so that each resulting gate is either nothing, 0, or 1,

but not both, depending on its successor gates.

– Traversing from the primary output gm on P , for each gate hj with a

parity (parities) and with a successor gate that is off path and without

parity, hj and the connections to its immediate predecessor gates are

duplicated once and its duplicate h′
j has no parity. For each immedi-

ate successor gate hj+1 of hj that is off path and has no parity, the

connection from hj to hj+1 is replaced by the connection from h′
j to

hj+1.

– Traversing from the primary output gm on P , each gate hj with both

parities and the connections to its immediate predecessor gates are

duplicated once and assigned parity 1. Its duplicate h′
j is assigned

parity 0. For each immediate successor gate hj+1 of hj that has parity

0 (1 if there is an inversion between hj and hj+1), the connection from

hj to hj+1 is replaced by the connection from h′
j to hj+1.

• Let input i denote the primary input on P . Assign 0 to any fanout branch

of input i (or the first connection after the inverter, if it exists on the fanout

branch) that is connected to a gate with parity 0 and 1 to any fanout branch

of input i (or the first connection after the inverter, if it exists on the fanout

branch) that is connected to a gate with parity 1.

Let n denote the number of gates of a given combinational circuit. Note that the

size of the resulting circuit after the single-path-leaf transformation is n′ = n+n′
p

where n′
p ≤ np ≤ n. During the path rising-smooth transformation on this circuit

with size n′, the gates that are potential to be duplicated are gates other than
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those on P and their duplicates, the number of which is n′−np−n′
p. Therefore, the

size of the resulting circuit is n′′ = 2n′ − np − n′
p = 2n + n′

p − np for n′ = n + n′
p.

The size of the resulting circuit is at most 2n because the maximum value of

n′
p − np is 0 where n′

p ≤ np.

A parity at an input of an OR gate in QOR is corresponding to a signal

that masks a transition from another input of the OR gate to the outupt. The

parity at the fanout branch of i, which is not its I-edge, is the constraint that

makes sure the generated tests do not propagate a transition from the fanout

branch to the side input of a gate on path P .

Example 5.2.1. Figure 5.1 shows a combinational circuit(a), its full leaf-dag

and rising smooth circuit, and its single-path leaf-dag and path rising-smooth

circuit for c2367x. Gate 1 is duplicated once while gate 2 is duplicated twice in

the transformation to a rising-smooth circuit (Figure 5.1(b)). Whereas, only gate

2 is duplicated twice in transforming the circuit into a path rising-smooth circuit

shown in Figure 5.1(c).

Definition 5.2.5. [15] A vector pair < ṽ, v > is a single-input-change (SIC)

two-pattern test if there exists a coordinate i such that ṽi = vi for the coordi-

nate i of v and ṽj = vj for each coordinate j other than i.

In the following text, P ↑ (resp. P ↓) denotes a rising (resp. falling) tran-

sition path delay fault where the rising (resp. falling) transition is the transition

type at the starting point of path P .

Lemma 5.2.6. Let C denote a given combinational circuit with size n and P ↑
(resp. P ↓) denote a rising (resp. falling) PDF. The time complexity of the

single-path-leaf transformation on C with P ↑ (resp. P ↓) is O(n2).

Proof. Let the SuccessorGate of Gate denote an immediate successor gate of

Gate. Let the PredecessorGates denote all immediate predecessor gates of Gate.

The following shows the pseudocode for the single-path-leaf transformation.
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Figure 5.1. (a) A PDF c2367x ↑. (b) A full leaf-dag (left) and a rising-smooth
circuit (right) (c) A single-path leaf-dag (left) and a path rising-smooth circuit
(right).
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Single-path-leaf transformation (C, P) times

(at most)

FOR each Gate on P from the primary output to the n+1

primary input

IF Gate has a fanout of more than one

SET FirstFanout as Gate

BREAK LOOP FOR

END IF

END FOR

FOR each Gate on P from FirstFanout to the primary n

input

duplicate Gate as Gate’

connect Gate’ to PredecessorGates

FOR each SuccessorGate of Gate n*n

IF SuccessorGate is not on P THEN

Replace connection Gate to SuccessorGate by

connection Gate’ to SuccessorGate

END IF

END FOR

END FOR

FOR each Gate on P from the primary output to the n+1

primary input

Change the NAND gates and NOR gates to the

AND gates and OR gates, respectively

END FOR

The pseudocode proves the lemma. The proof for P ↓ can be derived similarly.

Lemma 5.2.7. Let C denote a single-path leaf-dag with size n and P ↑ (resp.

P ↓) denote a rising (resp. falling) PDF. The time complexity of the path rising-

smooth (resp. path falling-smooth) transformation on C with P ↑ (resp. P ↓) is

O(n2).

Proof. The proof is only for P ↑. The similar proof can be derived for P ↓ by
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considering AND gates instead of OR gates and all the parity in the pseudocode

below is complemented. Let g denote the number of the OR gates on P while h

denote the total number of gates on P and their duplicates where g, h ≤ n. Let

SuccessorGate of Gate and PredecessorGates denote an immediate successor

gate and all immediate predecessor gates, respectively of Gate and i denote the

primary input on P . The following pseudocode proves the lemma.

Path rising-smooth transformation (C, P) times

(at most)

FOR the Gate at the side-input of each ORGate on P g+1

IF there is an inversion between Gate and ORGate THEN

Assign to Gate a parity 0

ELSE

Assign to Gate a parity 1

END IF

END FOR

FOR each Gate from the primary output on P in the n+1

transitive fanout of the primary input i on P

FOR each SuccessorGate of Gate n*n

IF there is an inversion between Gate and

SuccessorGate THEN

Assign to Gate a parity complemented to the

SuccessorGate’s

ELSE

Assign to Gate a parity same as the SuccessorGate’s

END IF

END FOR

END FOR
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FOR each Gate with a parity n-h+1

IF there is an off-path SuccessorGate without parity THEN

Duplicate Gate as Gate’

Connect Gate’ to PredecessorGates

FOR each off-path SuccessorGate of Gate (n-h)*(n-h)

IF SuccessorGate has no parity

Replace connection from Gate to SuccessorGate

by connection from Gate’ to SuccessorGate

END IF

END FOR

END IF

END FOR

FOR each Gate with both parities n-h+1

Duplicate Gate as Gate’

Connect Gate’ to PredecessorGates

Assign to Gate a parity 1

Assign to Gate’ a parity 0

FOR each SuccessorGate (n-h)*(n-h)

IF the parity is 0 (1 if there is an inversion

between Gate and SuccessorGate) THEN

Replace the connection from Gate to SuccessorGate

by a connection from Gate’ to SuccessorGate

END IF

END FOR

END FOR

FOR each Gate connected to i 2n

Assign to Gate 1 if the parity is 1

Assign to Gate 0 if the parity is 0

END FOR
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Lemma 5.2.8. The time complexity of SIC two-pattern n-bit test transformation

is O(n).

Proof. Let v denote a test obtained from a SAF test generation. The first pattern

ṽ can be derived by complementing the value vi for ṽi and duplicate other vj for

ṽj, where i �= j based on the definition of SIC, which can be done in linear

time.

Definition 5.2.9. A given combinational circuit C with a SAF f can be trans-

formed into a circuit Cδ
f (Figure 5.2) by the δ transformation as follows:

S1. Let o1, ..., op denote the primary outputs of C. Let c1, ..., cp denote the XOR

function of each primary output of C and the corresponding primary output

of the faulty circuit Cf . Let G(C, Cf) be the circuit realizing c1 OR ...OR

cp.

S2. Connect the output of G(C, Cf) to a two-input AND gate A. The other

input of the AND gate A is a primary input I while the output of the AND

gate A is a primary output O in Cδ
f .

Figure 5.2. A circuit Cδ
f .

Example 5.2.2. Figure 5.2 shows the general block diagram for a circuit Cδ
f .

Note that the transitive fanin of c can be any combinational logic. It is well-known

that the SAF test generation problem of circuit C is polynomially transformable

into CIRCUIT-SAT(C ′) problem where C ′ is an XOR function of circuit C and

its faulty circuit Cf .
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Lemma 5.2.10. Let P = {I, A, O}. Let C and Cδ
f denote a combinational circuit

and its δ-transformed circuit, respectively. v is a test for a SAF f in C if and

only if < v ∼ 0, v ∼ 1 > (resp. < v ∼ 1, v ∼ 0 >) is a robust test for path

IAO ↑ (resp. IAO ↓) in the corresponding circuit Cδ
f where v ∼ b denotes the

concatenation of vector v and bit b that is a value at the primary input of P .

Proof. If part: < v ∼ 0, v ∼ 1 > is a robust test for the IAO ↑ in a Cδ
f . The par-

tial two-pattern vector < 0, 1 > launches the IAO ↑ while the partial two-pattern

vector < v, v > generates the stable non-controlling values at the side-inputs of

gates on IAO. This means c has a stable value 1 under < v ∼ 0, v ∼ 1 >.

Therefore, v is a test for SAF f in C.

Only if part: v is a test for SAF f in C. v generates 1 at c as c is a boolean

circuit casting the CIRCUIT-SAT problem that is equivalent to the test genera-

tion problem of SAF f . By applying < v, v > to the partial circuit c, stable non-

controlling values are generated at the side-inputs of all gates on IAO. Therefore,

< v ∼ 0, v ∼ 1 > is also a robust test for the IAO ↑.
Lemma 5.2.11. The robust PDF test generation of path IAO of Cδ

f is equivalent

to the SAF test generation of combinational circuits, which is τ -equivalent.

Proof. Lemma 5.2.10 proves the equivalence of both problems while the previ-

ous chapter showed that the SAF test generation of combinational circuits is

τ -equivalent.

Lemmas 5.2.10 and 5.2.11 will be used as part of the proof of the PDF test

generation complexity and SDF test generation complexity in this section and

the following section.

section and the following section.

5.2.1 Robust Testable PDFs

Lemma 5.2.12. [13] < v1, v2 > is a robust test for the P ↑ (resp. P ↓) in the

path rising-smooth-circuit CRS
P for P , if and only if < v1, v2 > is a robust test for

the P ↑ (resp. P ↓) in the single-path leaf-dag CLD
P for P .

Proof. The following is the proof for the case of P ↑. The proof for the case of

P ↓ can be done analogously by considering AND gates instead of OR gates. Let
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i be the input of P . Let PI denote the side-paths to OR gates along P in CLD
P ,

such that the I-edge of each Q ∈ PI is associated with input i.

If part: < v1, v2 > is a robust test for the P ↑ in CLD
P . By the definition of

robust test, each side-input along path Q ∈ PI to an OR gate along P in CLD
P

is at a steady non-controlling (0) value with no transitions although there is a

transition on the I-edge of each Q ∈ PI associated with i on the application of

v2 after v1. This implies that asserting any constant value on the I-edge of each

Q ∈ PI in CRS
P leaves the value on these side-inputs unchanged under < v1, v2 >.

Hence < v1, v2 > remains a test for P in CRS
P .

Only if part: Only the I-edges of paths in PI are set to 1 or 0 according to

their parities in obtaining CRS
P from CLD

P . By the definition of robust test, each

side-input to OR gates along P in CRS
P is at a steady non-controlling(0) value.

This implies that the constants 1 or 0 asserted on the I-edge of each path in

PI according to their parities does not propagate to the side-inputs of these OR

gates. Otherwise, the side-inputs to the OR gates are not guaranteed to be at

non-controlling value under v2. In other words, none of the transitions on the

corresponding I-edges in CLD
P propagate to the side-inputs of OR gates along

P . Since the side-inputs of all other gates along P are same in CLD
P and CRS

P ,

< v1, v2 > is a robust test for P in CLD
P .

Lemma 5.2.13. [13] v is a test for the SA0(resp. SA1) fault on the I-edge of P

in the CRS
P for path P if and only if the SIC vector < ṽ, v > is a robust test for

the P ↑(P ↓) in CLD
P .

Proof. If part: Let < ṽ, v > be a robust test for the P ↑ in CLD
P . Then it is also

a robust test for the P ↑ in CRS
P according to Lemma 5.2.12. The output P is

1 when v is applied to the CRS
P for P . Consider what happens in the presence

of the SA0 fault on the I-edge of P in CRS
P under vector v. By the definition of

robust test, each side-input to the OR gates on P is at a noncontrolling value

under v. The I-edge of P is 1 (in the absence of the fault) under vector v in CRS
P .

Hence v is a test for the SA0 fault on the I-edge of P in CRS
P .

Only if part: Let v be a test vector for the SA0 fault on the I-edge of P in

the CRS
P for P . i is the only input in CRS

P that changes under the vector pair

< ṽ, v >. Let PS denote the side-paths to P whose I-edges are not associated

with i. Each side-input to P that belongs to a side path in PS must be at a non-
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controlling value under v; this is due to the test condition for the SAF. Among

the remaining side-inputs, let Iand denote the side inputs that meet P at an AND

gate, and let Ior denote the side-inputs that meet P at an OR gate. Ior is empty

by construction of the CRS
P because the side-paths to OR gates on P that have

i as inputs have been separated to form new inputs during the transformation.

Since a SA0 fault is being tested, each side input to P in Iand is at value 1 in CRS
P

under v (in the absence of the fault). Apply the vector ṽ to the circuit. The side-

inputs to P in Iand may be at either value 0 or 1. Then, apply the vector v. The

side-input to P in Iand may change to 1, or they may remain at 1, possibly with

dynamic or static hazards, respectively. All the other side-inputs to P remain at

hazard-free non-controlling values, since the transition on i under the vector pair

cannot propagate to these side-inputs in the CRS
P . The transition that propagates

along P is a 0-to-1 transition, which propagates a delay fault at each AND gate

along P irrespective of the presence of hazards on the side-inputs, provided the

side-inputs have a final value of 1. Since this condition holds, < ṽ, v > is a robust

test for the rising transition along P in CRS
P , and hence in CLD

P .

Lemma 5.2.14. The robust PDF test generation of combinational circuits and

the SAF test generation of I-edges of path rising-smooth circuits are equivalent,

which are τ -bounded.

Proof. Lemma 5.2.12 and 5.2.13 have proved the relationship between the robust

PDF test generation of combinational circuits and the SAF test generation of

I-edges of path rising-smooth circuits. Therefore, a two-pattern robust test on a

combinational circuit C for P ↑ (resp. P ↓) can be performed using SAF test

generation by the following procedure.

1. Perform single-path-leaf transformation for P on C and the resulting circuit

is CLD
P .

2. Perform path rising-smooth transformation (resp. path falling-smooth trans-

formation) on CLD
P for P and the resulting circuit is CRS

P .

3. Perform SAF test generation of SA0 (resp. SA1) on the I-edge associated

with i in CRS
P . Let v denote the test.

4. Transform v into the SIC two-pattern test < ṽ, v >.
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Let n be the size of a given combinational circuit C. Let TSPL, TPRS, T sSA
C

and TP denote the time complexity of the single-path-leaf transformation, the

time complexity of the path rising-smooth transformation, the single SAF com-

binational test generation and the two-pattern transformation. Let NSPL, NPRS,

N sSA
C and NP denote the problem sizes of the single-path-leaf transformation, the

path-rising-smooth transformation, the single SAF combinational test generation

and the two-pattern transformation, respectively. According to Lemmas 5.2.6-

5.2.8 and for NSPL = n, n ≤ NPRS ≤ 2n, n ≤ N sSA
C ≤ 2n and NP ≤ n, the test

generation complexity is

T rPD
C (n) = TSPL(NSPL) + TPRS(NPRS) + O(T sSA

C (N sSA
C )) + TP (NP )

= O(N2
SPL) + O(N2

PRS) + O(τ(N sSA
C )) + O(NP )

= O(n2) + O(n2) + O(τ(2n)) + O(n)

= O(τ(n)).

Example 5.2.3. Given a combinational circuit (Figure 5.1(a)) that has PDF

c2367 ↑, it is transformed into the corresponding single-path leaf-dag and then

path rising-smooth circuit for c2367x. Then combinational test generation is

performed to obtain the test patterns. The two-pattern test at primary inputs

abc for this example is < 001, 000 >.

Theorem 5.2.15. The robust PDF test generation and the SAF test generation

of combinational circuits C are equivalent, which are τ -equivalent.

Proof. To show that the robust PDF test generation and the SAF test generation

of combinational circuits are equivalent, it is needed to prove that the SAF test

generation of combinational circuits is equivalent to the robust PDF test gen-

eration of a class of combinational circuits in addition to Lemma 5.2.14. Thus,

Lemma 5.2.11 and Lemma 5.2.14 prove the theorem.

5.2.2 Non Robust Testable PDFs

Lemma 5.2.16. v is a test for the SA0(resp. SA1) fault on the I-edge of P in

the CLD
P for path P if and only if < ṽ, v > is a non-robust test for the P ↑(P ↓)
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in CLD
P .

Proof. If part: Let < ṽ, v > be a non-robust test for P ↑ in CLD
P . The output

of P is 1 when v is applied to CLD
P . Consider the case of the presence of SA0 on

the I-edge of P in CLD
P under vector v. From the definition of non-robust test,

each side-input to P is at a non-controlling value under v. The I-edge of P is 1

under v in the absence of the fault P ↑. According to test condition, the SA0 is

excited and its fault effect propagates to the output in CLD
P . Hence v is a test for

the SA0 fault on the I-edge of P in CLD
P .

Only if part: Let v be a test vector for the SA0 on the I-edge of P in CLD
P . i is

the input that changes under the vector pair < ṽ, v >. Under the test condition,

the side inputs along P are at non-controlling value under v. When vector ṽ

is applied, the side-inputs to P may be at either value 0 or 1. The side-inputs

to P may change to non-controlling value or remain at non-controlling value.

According to the definition of non robust test, only the second vector of side-

inputs must be non-controlling value. Thus, < ṽ, v > is a non-robust test for P ↑
in CLD

P .

Lemma 5.2.17. The non-robust PDF test generation of combinational circuits

is equivalent to the SAF test generation of I-edges of single-path leaf dags, which

is τ -bounded.

Proof. Based on Lemma 5.2.16, the following procedure generates a two-pattern

non-robust test on a combinational circuit using a stuck-at fault test generation.

1. Perform single-path-leaf transformation on C with path P . The resulting

circuit is called single path-leaf-dag CLD
P for P .

2. Perform SAF test generation of SA0 (resp. SA1) on the I-edge of P associ-

ated with i in CLD
P . Let v denote the test.

3. Transform v into the SIC two-pattern test < ṽ, v >.

Let n be the size of a given combinational circuit C. Let TSPL, T sSA
C and TP

denote the time complexity of the single-path-leaf transformation, the single SAF

combinational test generation and the two-pattern transformation. Let NSPL,

N sSA
C and NP denote the problem sizes of the single-path-leaf transformation,
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the single SAF combinational test generation and the two-pattern transformation,

respectively. According to Lemmas 5.2.6 and 5.2.8 and also for NSPL = n, n ≤
N sSA

C ≤ 2n and NP ≤ n. Therefore, the test generation complexity is

T nrPD
C (n) = TSPL(NSPL) + O(T sSA

C (N sSA
C )) + TP (NP )

= O(N2
SPL) + O(τ(N sSA

C )) + O(NP )

= O(n2) + O(τ(2n)) + O(n)

= O(τ(n)).

Theorem 5.2.18. The non-robust PDF test generation and the SAF test gener-

ation of combinational circuits C are equivalent, which are τ -equivalent.

Proof. To show that the non-robust PDF test generation and the SAF test gen-

eration of combinational circuits are equivalent, it is sufficient to prove that the

SAF test generation of combinational circuits is equivalent to the non-robust

PDF test generation of a subclass of single-path leaf-dags. Since Cδ
f is a subclass

of single-path leaf-dags and robust PDF is a subset of non-robust PDF, Lemma

5.2.11 in addition to Lemma 5.2.17 prove the theorem.

The combinational test generation complexity for robust and non-robust

PDFs is τ -equivalent.

5.3. Segment Delay Fault Test Generation Com-

plexity of the Combinational Circuits

In Section 5.2, it is showed that the combinational test generation complexity

for robust and non-robust PDFs is τ -equivalent. In this section, segment delay

faults (SDFs) are considered and the test generation complexity of those faults

in combinational circuits is considered. The result will be used in Section 5.4 to

study the PDF test generation complexity in acyclic sequential circuits.

Definition 5.3.1. An n-bit vector vl consists of (vl
1, v

l
2, ..., v

l
j, ..., v

l
n).
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Definition 5.3.2. A segment-leaf-dag CLD
S for segment S (S = {g1, g2, ..., gm})

is a combinational circuit such that a fanout and an inverter are only permitted

at g1 of the segment S and the output of an inverter along S is not allowed to

have a fanout.

Definition 5.3.3. Let S denote a segment in a given combinational circuit C.

C can be transformed into CLD
S , by the segment-leaf transformation :

• S consists of an ordered set of gates {g1, g2, ..., gm}, where the output of

g1 is the starting point of S and the output of gm is the ending point of

S, respectively. Also, gate gi is an input to gate gi+1 (1 ≤ i ≤ m − 1).

Let Pre(gi) denote a set of gates {g2, g3, ..., gi−1} on S. Traversing from

gm, if a gate gi has a fanout of two or more, each gate in Pre(gi) with the

connections to its immediate predecessor gates are duplicated once. Let

g′
j denote the duplicate of gj, where gj ∈ Pre(gi). For each gj in Pre(gi)

and for each immediate successor gate hj+1 of gj, the connection from gj to

hj+1 is changed to the connection from g′
j to hj+1 if hj+1 is not on S. The

resulting segment S is free of fanout.

• Starting from gm along S, all the NAND (resp. NOR) gates on S are

changed to the OR (resp. AND) gates using De Morgan’s Law.

Note that the segment-leaf-transformation is defined analogously to the

single-path-leaf transformation by considering segment S instead of path P .

Definition 5.3.4. The S-edge of segment S with starting point s in a

segment-leaf-dag CLD
S refers to the first connection of S after the inverter, if it

exists. The S-edge is said to be associated with s.

Example 5.3.1. Figure 5.3 shows a combinational circuit (a) and its segment

leaf-dag for segment s45e (b). Gate 4 is duplicated so that S is free of fanout

while Gate 5 and Gate 41 are changed to OR gate and AND gate respectively

using De Morgan’s law so that the inverters exist only at s along S.

Definition 5.3.5. A segment transition-smoother STS(Figure 5.4) is a

circuit with inputs V0 and V1 and outputs D0 and D1. When V0 = V1, D0 and
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Figure 5.3. (a) a combinational circuit (b) a segment leaf-dag

D1 have the same value as V0 and V1, respectively. When V0 �= V1, D0 is assigned

value 0 while D1 is assigned value 1. The logic function is summarized as follows.

V0 V1 D0 D1

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Figure 5.4. segment transition-smoother

Definition 5.3.6. A segment-leaf-dag CLD
S for segment S can be transformed

into a segment-rising-smooth circuit CRS
S (resp. segment-falling-smooth circuit

CFS
S ) for segment S by the segment-rising-smooth (resp. segment falling-smooth)

transformation:

1. Let QOR (resp. QAND) denote the OR gates (resp. AND gates) along S

that have a rising (resp. falling) transition. A gate may have no parity,

0, 1 or both parities. A gate fed to the side-input of an OR gate (resp.

AND gate) in QOR (resp. QAND) has parity 1 (resp. 0). Perform a reverse

topological traversal of the transitive fanout of the primary inputs that are
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in the transitive fanin of g1 on S(= {g1, g2, ..., gm}) to determine the parity

of gates along the side-paths to S. The parity is complemented across a

NOT gate. If some fanouts of a gate have parity 1 and others have parity

0, the gate is assigned both parities.

2. Duplicate the gates so that each resulting gate is either nothing, 0, or 1,

but not both, depending on its successor gates.

• Traversing from the ending point gm on S, for each gate hj that has a

parity (parities) and has a successor gate that is off path and without

parity, hj and the connections to its immediate predecessor gates are

duplicated once and its duplicate h′
j has no parity. For each immedi-

ate successor gate hj+1 of hj that is off path and has no parity, the

connection from hj to hj+1 is changed to the connection from h′
j to

hj+1.

• Traversing from the ending point gm on S, each gate hj with both

parities and the connections to its immediate predecessor gates are

duplicated once and assigned parity 1 while its duplicate h′
j is assigned

parity 0. For each immediate successor gate hj+1 of hj that has parity

0 (1 if there is an inversion between hj and hj+1), the connection from

hj to hj+1 is changed to the connection from h′
j to hj+1.

3. Let C2P denote the transformed circuit after the above two steps. C2P

is called the second pattern partial circuit. Duplicate the transitive fanin

of S-edge of C2P as C1P , which is called the first pattern partial circuit.

Each primary input i1P in C1P has a corresponding primary input i2P in

C2P . Each gate g1P in C1P has a corresponding g2P in C2P . Let s2P denote

the starting point of S2P . Insert a segment transition-smoother STS to

a primary input i2P if i2P has an immediate gate with parity 0 or 1 by

connecting the inputs i1P of C1P and i2P of C2P to the inputs V0 and V1

of STS, respectively and connecting D0 and D1 of STS to the immediate

gates with parity 0 and 1, respectively.

Let n denote the number of gates of a given combinational circuit and ns

denote the number of gates along S. Let n′
s denote the number of gates along
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S that are duplicated where n′
s ≤ ns. Note that the size of the resulting circuit

after the segment-leaf transformation is n′′′ = n+n′
s where n′

s ≤ ns ≤ n. Let nsts

denote the number gates resulted from the insertion of STS. During the segment-

rising-smooth transformation on the segment leaf-dag with size n′′′, the gates that

are potential to be duplicated in step 2 are gates other than those on S and their

duplicates, the number of which is at most n′′′−ns−n′
s. Therefore, the size of the

resulting circuit after step 2 is at most 2n′′′−ns−n′
s or 2n+n′

s−ns for n′′′ = n+n′
s.

The number of gates duplicated in step 3 is the number of gates composing the

transitive fanin of the starting point of S, which is nc ≤ 2n − 2ns. The number

of gates nsts is at most 2n− 2ns as each STS is composed by 2 gates. Therefore,

the size of the resulting circuit is n′′′′ ≤ 2n + n′
s − ns + nc + nsts = 6n + n′

s − 5ns.

The size of the resulting circuit is at most 6n − 5.

Lemma 5.3.7. Let n denote the size of a given combinational circuit C. The

time complexity of the segment-leaf transformation on C is O(n2).

Proof. Segment-leaf transformation is composed of two steps, which are duplica-

tion of each gate along segment S at most once and moving all the inverters on

S to the starting point s. The pseudocode is similar to the pseudocode of the

single-path-leaf transformation in Lemma 5.2.6 except that segment S from the

starting point s to the ending point e is considered instead of path P from the

primary input to the primary output. The pseudocode proves the lemma.

Lemma 5.3.8. Let C denote a segment-leaf-dag and S ↑ denote a rising SDF

in C. The time complexity of the segment rising-smooth transformation on C is

O(n2).

Proof. Let g denote the number of the OR gates on S. Let h denote the total

of the gates on S and their duplicates. SuccessorGate of Gate denotes the im-

mediate successor gate of Gate while PredecessorGates denotes the immediate

predecessor gates of Gate. i2P means a primary input of C while i1P means a

primary input of the duplicate of C. STS(i, j) denotes STS with inputs i and j.

The following pseudocode proves the lemma.
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Segment rising-smooth transformation (C, S) times

(at most)

FOR the Gate at the side-input of each ORGate on S g+1

IF there is an inversion between Gate and ORGate THEN

Assign to Gate a parity 0

ELSE

Assign to Gate a parity 1

END IF

END FOR

FOR each Gate in the transitive fanout of PIs in n+1

the transitive fanin of the starting point s on S

FOR each SuccessorGate of Gate n*n

IF there is an inversion between Gate and

SuccessorGate

Assign to Gate a parity complemented to the

SuccessorGate’s

ELSE

Assign to Gate a parity same as the SuccessorGate’s

END IF

END FOR

END FOR
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FOR each Gate with a parity n-h+1

IF there is an off-segment SuccessorGate

without parity THEN

Duplicate Gate as Gate’

Connect Gate’ to PredecessorGates

FOR each off-segment SuccessorGate of Gate (n-h)*(n-h)

IF SuccessorGate has no parity THEN

Replace connection Gate to SuccessorGate

by connection Gate’ to SuccessorGate

END IF

END FOR

END IF

END FOR

FOR each Gate with both parities n-h+1

Duplicate Gate as Gate’

Connect Gate’ to PredecessorGates

Assign to Gate a parity 1

Assign to Gate’ a parity 0

FOR each SuccessorGate (n-h)*(n-h)

IF the parity is 0 (1 if there is an inversion

between Gate and SuccessorGate) THEN

Replace the connection Gate to SuccessorGate

by Gate’ to SuccessorGate

END IF

END FOR

END FOR
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Duplicate the circuit C 2n

FOR each primary input i n+1

FOR each Gate connected to i 2n*n

IF the parity of Gate is 1 THEN

replace the connection i to Gate by

connection D1 of STS(i2P, i1P) to Gate

ELSE IF the parity of Gate is 0 THEN

replace the connection i to Gate by

connection D0 of STS(i2P, i1P) to Gate

END IF

END FOR

END FOR

In the following subsection, the SDF test generation problem of a combi-

national circuit C is showed to be reducible to the double SAF test generation

problem of its transformed circuit of C. Therefore, the time complexity of the

double SAF test generation is discussed beforehand.

Lemma 5.3.9. The test generation complexity for segment-rising-smooth cir-

cuits CRS
S with double SAFs is equivalent to the test generation complexity for

combinational circuits with single SAFs, i.e. it is τ -equivalent.

Proof. A circuit with a multiple fault can be represented by a multiple fault model

containing an SAF by adding m extra gates, where m is the multiplicity of the

faults [13]. In the case of the double SAF test generation, extra two gates are

added to the original circuit. Since the fault in the first pattern partial circuit is

always at a primary output, the fault is tested if it is excited. Thus, the objective

of the double SAF test generation problem represented by its multiple fault model

is to generate tests to propagate the fault effect of the corresponding SAF to a

primary output in the second pattern partial circuit. Therefore, the double SAF

test generation has same complexity as the single SAF test generation.
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5.3.1 Robust Testable SDFs

Lemma 5.3.10. Let u ∼ v denote the concatenation of vectors u and v, where

u consists of a vector at the second pattern primary inputs I2P and v consists

of a vector at the first pattern primary inputs I1P of CRS
S . < u1, u2 >=< v1 ∼

v1, v2 ∼ v1 > is a robust test for the S ↑ in the segment rising-smooth circuit CRS
S

for S, if and only if < v1, v2 > is a robust test for the S ↑ in the segment leaf-dag

CLD
S for S.

Proof. If part: < v1, v2 > is a robust test for the S ↑ in CLD
S for S. By the

definition of robust test, the side-inputs of the OR gates along S in CLD
S are at

a steady non-controlling (0) value with no transitions on the application of v2

after v1. Let PS be a set consisting of all the side-paths to OR gates along S.

This means the transitions on each I-edge of Q ∈ PS do not propagate under the

application of < v1, v2 >. Let uy
x denote a vector bit of vector uy at the input

x. With the segment transition-smoother in CRS
S , a constant is assigned to the

fanout branch of a second pattern primary input i2P according to the parity of

the gate connected to the fanout branch if uk
i2P

�= uk
i1P

under vector uk. Let I1P

and I2P denote all first pattern primary inputs and all second pattern primary

inputs, respectively. Since u2
I1P

= u1
I2P

= v1, a constant is assigned to the fanout

branch of a primary input i2P according to the parity of the gate connected

to the fanout branch in CRS
S , which has an STS, when there is a transition at

i2P (u2
i2P

�= u1
i2P

which also means u2
i2P

�= u2
i1P

) under < u1, u2 >. Since the

second pattern partial circuit C2P of CRS
S is functionally equivalent to CLD

S , the

second pattern primary inputs I2P of CRS
S that are assigned with constants under

< u1, u2 > are corresponding to the primary inputs of CLD
S that have transitions

under < v1, v2 >. Since all the paths from the primary inputs with constants are

the paths in PS in CRS
S and the transitions on the corresponding primary inputs

in CLD
S do not propagate to the side-inputs of the OR gates on S, the values

of the gates in the transitive fanout of the side-inputs to the OR gates on S2P

in CRS
S are same with those on S in CLS

S . Under u1(= v1 ∼ v1), no constants

are assigned in CRS
S since u1

I2P
= u1

I1P
and thus S ↑ is initialized. Therefore,

< u1, u2 >=< v1 ∼ v1, v2 ∼ v1 > is a robust test for the S ↑ in the segment-

rising-smooth circuit CRS
S for S.

Only if part: Since < u1, u2 >=< v1 ∼ v1, v2 ∼ v1 > is a robust test for
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S in CRS
S , each side-input to OR gates along S is at a steady non-controlling

(0) value. This implies that the constants (assigned according to the parities)

asserted on the primary inputs due to u1
i2P

�= u2
i2P

do not propagate to the side-

inputs of OR gates along S. Since u1
I2P

= v1 and u2
I2P

= v2 and the second pattern

primary inputs I2P in CRS
S that are assigned with constants are corresponding to

the primary inputs in CLD
S that have transitions under < v1, v2 >, the transition

on the primary inputs in CLD
S do not propagate to the side-inputs of OR gates

along S under < v1, v2 >. Also, the values of all the gates without parity in the

transitive fanout of the side-inputs to the OR gates on S2P in CRS
S and those on

S in CLD
S are same. Therefore, < v1, v2 > is a robust test for S in CLD

S .

Lemma 5.3.11. u2 = v2 ∼ v1 is a test for the double SAF of SA0 on the S-edge

of S2P and SA1 on the S-edge of S1P in CRS
S if and only if < v1, v2 > is a robust

test for S ↑ in CLD
S .

Proof. If part: Let < v1, v2 > be a robust test for the S ↑ in CLD
S . Then,

from Lemma 5.3.10, < u1, u2 >=< v1 ∼ v1, v2 ∼ v1 > is a robust test for the

S ↑ in CRS
S . The starting point s and the ending point e of S2P are 1 when

u2(= v2 ∼ v1) is applied to CRS
S in a fault-free case. This means SA0 is activated

and propagated to e. Based on condition 4 of the definition of SDF, the difference

at e is propagated to a primary output under v2 ∼ v1 in CRS
S . Let PS denote a

set consist of all the side-paths to OR gates along S2P . Since the transitions at

the I-edges of the paths in PS do not propagate to the side inputs of OR gates on

S2P , the constants assigned to the corresponding primary inputs of those I-edges

do not propagate to the side-inputs of OR gates on S2P and also other part of

the circuit. So, v2 ∼ v1 also propagate the fault effect of SA0 at e to the primary

output. The partial vector v1 of v1 ∼ v1 of < u1, u2 > assigns to the S-edge of

S2P a value 0 in order to initialize P ↑. This implies v1 of v2 ∼ v1 assigns to the

S-edge of S1P a value 0. This activates and propagate the SA1 to the primary

output sed. Hence, v2 ∼ v1 is a test for the SA0 on the S-edge of S2P and SA1 on

the S-edge of S1P in CRS
S .

Only if part: Let v2 ∼ v1 be a test for the SA0 on the S-edge of S2P and

SA1 on the S-edge of S1P in CRS
S . The partial vector v1 of v2 ∼ v1 is a test for

SA1, which assigns 0 to the S-edge of S1P under the fault free case while the

partial vector v2 is a test for SA0, which assigns 1 to the S-edge of S2P This
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implies the partial vector v1 of v1 ∼ v1 initializes and launches the S ↑ under

< u1, u2 >. According to the SAF test condition, all the side-inputs of the gates

along S2P are at the non-controlling value and the fault effect of S2P propagate to

a primary output under v2 ∼ v1. In order to propagate the fault effect of SA0 on

the S-edge of S2P , the constants asserted by the STSs to the primary inputs do

not propagate to the side-inputs of the OR gates along S2P . A constant is only

asserted to a primary input j if uk
j2P

�= uk
j1P

. Since u2
j1P

= u1
j2P

, transitions at the

primary inputs launched by < u1, u2 > do not propagate to the side inputs of OR

gates along S. This satisfies the definition of robustly testable SDF. Therefore,

< v1 ∼ v1, v2 ∼ v1 > is a robust test for S ↑ in CRS
S and according to Lemma

5.3.10, < v1, v2 > is also a robust test for S ↑ in CLD
S for S.

Figure 5.5. (a) a combinational circuit. (b) a segment leaf-dag. (c) a segment
rising-smooth circuit.

Lemma 5.3.12. The robust SDF test generation of combinational circuits is

equivalent to the SAF test generation of S-edges of segment-rising-smooth cir-

cuits, which is τ -bounded.

Proof. Lemma 5.3.10 and Lemma 5.3.11 show the equivalence of the SDF test

generation of a given combinational circuit and its segment rising(falling)-smooth

circuits. Therefore, SDF test generation of the combinational circuits using SAF

test generation can be performed by the following procedure.
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1. Perform the segment-leaf transformation for segment S on a given combi-

national circuit C and the resulting circuit CLD
S is called segment-leaf-dag.

2. Perform the segment-rising-smooth transformation (resp. segment falling-

smooth transformation) on CLD
S for segment S and the resulting circuit is

CRS
S .

3. Perform the SAF test generation of SA0 on the S-edge of S and SA1 on the

S-edge of Sd in CRS
S . Let v1 ∼ v2 denote the test.

4. Transform v1 ∼ v2 into the robust two-pattern test < v1, v2 >.

Let n be the size of a given combinational circuit C. Let TSL, TSRS, TmSA
C and TP

denote the time complexity of the segment-leaf transformation, segment-rising-

smooth transformation, double SAF test generation and the two-pattern test

transformation. Let NSL, NSRS, NmSA
C and NP denote the problem size of the

segment-leaf transformation, segment-rising-smooth transformation, the double

SAF combinational test generation and the two-pattern test transformation, re-

spectively. According to Lemmas 5.3.7-5.3.9 and for NSL = n, n ≤ NSRS ≤ 2n,

2n ≤ NmSA
C ≤ 6n − 5 and NP ≤ n. Therefore, the test generation complexity is

T rSD
C (n) = TSL(NSL) + TSRS(NSRS) + O(TmSA

C (NmSA
C )) + TP (NP )

= O(N2
SL) + O(N2

SRS) + O(τ(NmSA
C )) + O(NP )

≤ O(n2) + O(4n2) + O(τ(6n)) + O(n)

= O(τ(n))

Example 5.3.2. Figure 5.5 shows a combinational circuit with a SDF 345 ↑(a),

its corresponding segment-leaf-dag for segment 345 (b) and its corresponding

segment-rising-smooth circuit for 345. The two-pattern test at the inputs ABC

of the original circuit is < 111, 101 >.

Theorem 5.3.13. The robust SDF test generation and the SAF test generation

of combinational circuits are equivalent, which are τ -equivalent.
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Proof. A segment-rising-smooth circuit is also a path rising-smooth circuit when

the starting point and the ending point of a segment S are also the primary input

and the primary output of the circuit, respectively. Therefore path rising-smooth

circuits is a subclass of segment-rising-smooth circuits. To prove this theorem, it

is sufficient to show that the SAF test generation of combinational circuits can

be reduced to the robust PDF test generation of Cδ
f , which is a subclass of path

rising-smooth circuits. Lemma 5.2.11 and Lemma 5.3.12 prove the theorem.

5.3.2 Non-robust testable SDFs

Definition 5.3.14. CLD
S

′ is a transformed circuit of CLD
S obtained by making

the S-edge of segment S a primary output.

Lemma 5.3.15. v2 is a test for the SA0 fault on the S-edge of S in the CLD
S for

segment S and v1 is a test for the SA1 fault on the S-edge of S in the CLD
S

′ if

and only if < v1, v2 > is a non-robust test for the S ↑ in CLD
S .

Proof. If part: Let < v1, v2 > be a non-robust test for S ↑ in CLD
S . Consider the

presence of SA0 on the S-edge of S in CLD
S under vector v2. From the definition

of non-robust test and SDF, each side-input of S is at a non-controlling value

under v2 and the difference at the ending point e of S under the presence of S ↑
is propagated to a primary output. Under the fault-free case, the S-edge of S is 1

after the application of v2. According to test condition, the SA0 fault is activated

and the fault effect thus propagates to the same output as the difference at e

does in the case of SDF in CLD
S . Hence v2 is a test for SA0 fault on S-edge of S

in CLD
S . Since v1 assigns 0 to the S-edge of CLD

S in order to initialize the S ↑, v1

activates the SA1 fault on the S-edge of S in CLD
S

′ and the fault effect propagates

to the primary output.

Only if part: CLD
S

′ and CLD
S are functionally and structurally equivalent except

that CLD
S has an extra output at the S-edge of S. Let v2 be a test for the SA0

on the S-edge of S in CLD
S and v1 be a test vector for the SA1 on the S-edge of S

in CLD
S

′. According to the test condition, 1 is assigned to the S-edge of S in CLD
S

and all the side inputs of gates along S in CLD
S are at non-controlling value. The

fault effect also propagates to a primary output under v2. This implies that the

difference of the transition caused by S ↑ taking place at the ending point e of S
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is observable at the primary output after applying < v1, v2 >. 0 is assigned to the

S-edge of S in CLD
S

′ under v1. Thus the S ↑ is initialized. Therefore, < v1, v2 >

is a non-robust test for S ↑ in CLD
S .

Lemma 5.3.16. The non-robust SDF test generation of combinational circuits

is equivalent to the SAF test generation of S-edge of segment leaf-dags, which is

τ -bounded.

Proof. Different from robust SDF test generation, segment-rising(falling)-smooth

transformation is not needed for the non-robust SDF test generation. The follow-

ing procedures explain the non-robust SDF test generation of the combinational

circuits C by using SAF test generation method verified by Lemma 5.3.11 that

shows the equivalence of the SDF test generation of a given combinational circuit

and its segment leaf-dag:

1. Perform the segment-leaf transformation for SDFs.

2. Generate CLD
S

′ from CLD
S .

3. Generate the second test vector v2 by the SAF test generation of SA0 (SA1)

on the S-edge of S in CLD
S .

4. Generate the first test vector v1 by the SAF test generation of SA1 (SA0)

on the S-edge of S in CLD
S

′.

5. Transform v1 and v2 into the non-robust two-pattern test < v1, v2 >.

Let n be the size of a given combinational circuit C. Let TSL, TmSA
C and TP denote

the time complexity of the segment-leaf transformation, double SAF test genera-

tion and the two-pattern test transformation. Let NSL, NmSA
C and NP denote the

problem size of the segment-leaf transformation, the double SAF combinational

test generation and the two-pattern test transformation, respectively. According

to Lemma 5.3.7 and Lemma 5.3.9, and also for NSL = n, n ≤ NmSA
C ≤ 4n and
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NP ≤ n. Therefore, the test generation complexity is

T nrSD
C (n) = TSL(NSL) + O(TmSA

C (NmSA
C )) + TP (NP )

= O(N2
SL) + O(τ(NmSA

C )) + O(NP )

≤ O(n2) + O(τ(4n)) + O(n)

= O(τ(n))

Theorem 5.3.17. The non-robust SDF test generation and the SAF test gener-

ation of combinational circuits are equivalent, which are τ -equivalent.

Proof. In order to show that the non-robust SDF test generation and the SAF

test generation of combinational circuits are equivalent, it is needed to prove the

conjecture that the SAF test generation of combinational circuits is equivalent

to the non-robust SDF test generation of a subclass of segment leaf-dags besides

proving Lemma 5.3.16. Since segment leaf-dag is a path leaf-dag when the starting

point and the ending point of S are also the primary input and the primary

output of the circuit, respectively, segment leaf-dags is a superclass of path leaf-

dags. Moreover, a robust testable segment delay fault is also a non-robust testable

segment delay fault but the converse is not true. Therefore, Lemma 5.2.11 and

Lemma 5.3.16 are sufficient to prove the theorem.

5.4. Path Delay Fault Test Generation Complex-

ity of the Acyclic Sequential Circuits

Based on the theoretical results in the previous section, the reducibility of the

PDF test generation to the SAF test generation of acyclic sequential circuits is

addressed in this section.
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5.4.1 Path Delay Fault Test Generation Complexity of the

Balanced Sequential Circuits

Definition 5.4.1. [16] Let G be a circuit graph of a balanced sequential circuit

SB. The following discussion considers only one output cone circuit SB
C of SB,

which is a strongly balanced structure. Let t(qi) be an integer value which can be

assigned to a vertex qi such that it satisfies the condition of the strongly balanced

structure.

t(vi) = t(vj) + w(a) ∀a(vi, vj). (5.1)

Let tmax and tmin be the maximum value and the minimum value among the

integer values assigned to the vertices of G, respectively. Let Ij (j = 1, 2, ..., p) be

a vertex, which corresponds to an input of the output cone circuit SB
C . A vector

TI = (α1, α2, ..., αp) such that αj = tmax − t(Ij) + 1 is said to be an input timing

vector of the output cone circuit SB
C . Let L be tmax − tmin + 2. Let < v1, v2 >

be a p-bit vector pair where a vector vl is (vl
1, v

l
2, ..., v

l
j, ..., v

l
p). A vector sequence

[xij ] of length L such that

xij =

⎧⎪⎨
⎪⎩

v1
j if i = αj

v2
j if i = αj + 1

don’t care otherwise

(5.2)

is said to be an extended vector sequence of < v1, v2 > with respect to TI .

A transformation M which transforms from < v1, v2 > into the extended vector

sequence with respect to TI is referred to as sequence transformation with respect

to TI .

Lemma 5.4.2. Let < v1, v2 > denote a two-pattern test of a given balanced

sequential circuit with size n. The time complexity of the sequence transformation

on < v1, v2 > is O(n2).

Proof. Let G be a circuit graph of a balanced sequential circuit with sequential

depth L − 2 and let < v1, v2 > be a pair of input vectors of p bits, where L ≤ n

and p ≤ n. Let NV denote the number of vertices in the circuit graph where

NV ≤ n.
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Sequence transformation (G, v1, v2) times

(at most)

FOR each vertex u NV +1

Assign to u an integer t so that

equation 5.1 is satisfied

END FOR

Compute input timing vector TI p

FOR j from 1 to p n

Compute αj

Compute i

Compute xij

END FOR

The pseudocode proves the lemma.

Theorem 5.4.3. [16] The test generation problem for PDF list F B of a balanced

sequential circuit SB can be reduced to the test generation problem for SDF list

F CB of its combinational equivalent C(SB).

According to Theorem 5.4.3, the PDF test generation of balanced sequen-

tial circuits is equivalent to the SDF test generation of its combinational equiv-

alent. The previous section shows that the SDF test generation of the com-

binational equivalent can be further reduced to the SAF test generation of its

segment-leaf-dag (for non-robust test) or its segment-rising(falling)-smooth cir-

cuit(for robust test). The following procedure generates a PDF test for a balanced

sequential circuit using SAF test generation.

1. Transform the given circuit into its combinational equivalent C(SB).

2. Follow the procedures of SDF test generation of the combinational circuits

for robust test and non-robust test. Let < v1, v2 > denote the resulting

two-pattern test.

3. Transform < v1, v2 > into the two-pattern test sequence using the sequence

transformation [16].

Based on Theorem 5.4.3, the theorems and lemmas of the SDF test gen-

eration of the combinational circuits, the following corollary is concluded.
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Corollary 5.4.4. The PDF test generation of the balanced sequential circuits

under rated clock and slow-fast-slow clock is equivalent to the SAF test generation

of combinational circuits, which is τ -equivalent.

5.4.2 Path Delay Fault Test Generation Complexity of the

Acyclic Sequential Circuits

In this sub-section, the test generation complexity for the internally balanced se-

quential circuits and acyclic sequential circuits is discussed. Two clocking schemes

are considered here, namely slow-fast-slow clock and rated clock. Slow-fast-slow

clocking scheme applies slow clock during justification and propagation while

rated clocking scheme requires system clock during all the phases of the test gen-

eration. Different from PDF test generation, only rated clocking scheme in SAF

test generation is considered. In the case of the acyclic sequential circuits, which

are not internally balanced, slow-fast-slow clock is assumed so that each PDF

P in SA corresponds to only one SDF S in its time expansion model (TEM)

CE(SA).

Definition 5.4.5. [26] Let SA be an acyclic sequential circuit, and let G =

(V, A, w) be the topology graph of SA. Let E = (VE , AE, t, l) be a TEG of G,

and let CE(SA) be the TEM of SA based on E. Let tmin be the minimum value

of labels assigned to vertices in E, and let d be the sequential depth of SA. Let

< v1
u, v

2
u > be a two-pattern vector at a primary input u ∈ VE in CE(SA). A

procedure transforming < v1
u, v

2
u > into the input pattern to the primary input

l(u) ∈ V of SA at time k (=0, 1, ..., d + 1) denoted as Il(u)(k) is said to be the

sequence transformation γ. That is, for each u,

Il(u)(k) =

⎧⎪⎨
⎪⎩

v1
u if k = t(u) − tmin

v2
u if k = t(u) − tmin + 1

don’t care otherwise

(5.3)

Such an input sequence with the length d + 2 is regarded as a two-pattern input

sequence.

Lemma 5.4.6. Let x and y denote two different primary inputs of CE(SA). To
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avoid conflicts during sequence transformation γ, v2
x = v1

y if l(x) = l(y) = z and

t(y) − t(x) = 1.

Proof.

Il(x)(k) =

⎧⎪⎨
⎪⎩

v1
x if k = t(x) − tmin

v2
x if k = t(x) − tmin + 1

don’t care otherwise

(5.4)

Il(y)(k) =

⎧⎪⎨
⎪⎩

v1
y if k = t(y) − tmin

v2
y if k = t(y) − tmin + 1

don’t care otherwise

Let l(x) = l(y) = z and t(y) − t(x) = 1. Then,

Il(y)(k) = Iz(k) = v1
y if k = t(y) − tmin = t(x) − tmin + 1

Since ll(x)(k) = lz(k) = v2
x if k = t(x) − tmin + 1, v2

x = v1
y.

Definition 5.4.7. Let x and y denote two different primary inputs of CE((S)A).

x and y are called pattern-dependency input pair (x, y) if l(x) = l(y) = z and

t(y) − t(x) = 1.

Definition 5.4.8. Given a segment leaf dag CLD
S ((S)A) of a TEM CE(SA) of

SA, the circuit can be transformed into a pattern-dependency circuit CPD
S (SA)

by the pattern-dependency transformation.

• In the case of non-robust test generation, duplicate CLD
S where the segment

leaf dag CLD
S become the second pattern partial circuit C2P while its du-

plicate become the first pattern partial circuit C1P . In the case of robust

test generation, perform the segment-rising-smooth (resp. segment-falling-

smooth) transformation.

• For each pattern-dependency input pair (x, y) of CE(SA), connect the cor-

responding x2P and y1P to form a new primary input called unified input

w. The resulting circuit is called pattern-dependency circuit CPD
S (SA).

The idea of pattern-dependency was introduced in [19].
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Definition 5.4.9. Given a pattern-dependency circuit CPD
S (SA). Let C1P and

C2P denote the first pattern partial circuit and the second pattern partial circuit

of CPD
S (SA), respectively. Let v1

1, v
1
2, ..., v

1
m of an m-bit vector v1 denote a vector

bit at each primary input of C1P of CPD
S (SA) or the stem of the primary input

fanout branches fed to C1P of CPD
S (SA) if the input is a unified input, respectively

where m is the number of vector bits. Let v2
1 , v

2
2, ..., v

2
m of an m-bit vector v2

denote a vector bit at each primary input of C2P of CPD
S (SA) or the stem of the

primary input fanout branches fed to C2P of CPD
S (SA) if the input is a unified

input, respectively where m is the number of vector bits. d(v1, v2) denote the

input vector of the pattern-dependency circuit CPD
S (SA).

In the following Lemmas 5.4.10 and 5.4.11, only rising SDF is discussed.

The lemmas and proofs for falling SDF can be derived by considering SA1 at the

S-edge of S2P and SA0 at the S-edge of S1P in CPD
S (SA).

Lemma 5.4.10. < v1, v2 > is a robust(resp. non-robust) test for the S ↑ in

CLD
S (SA) if and only if d(v1, v2) is a test for SA0 at the S-edge of the corresponding

segment S2P and SA1 at the S-edge of the corresponding S1P in CPD
S (SA) with

(resp. without) STS.

Proof. If part: Let d(v1, v2) be a test for SA0 at the S-edge of S2P and SA1 at

the S-edge of S1P in CPD
S (SA). S-edge of S2P is assigned a value 1 while S-edge of

S1P is assigned a value 0 under d(v1, v2). Based on the definition of the pattern

dependency transformation, this implies a rising transition is launched at the S-

edge of S under < v1, v2 > in CLD
S . According to the test condition, all the side

inputs along S2P are at the non-controlling values under the partial vector v2.

This satisfies condition 1 of the robust test and definition of the non-robust test

that the transition launched at the S-edge of S propagates to the ending point

of S under < v1, v2 >. With segment-transition-smoothers (STSs) in the case

of the robust test, the constants assigned to the primary inputs of CPD
S (SA) do

not propagate to the side-inputs of the OR gates along S2P under d(v1, v2). This

means no transitions are at the side inputs of the OR gates along S in CLD
S (SA)

under < v1, v2 >. Condition 2 of the robust test is satisfied. The fault effect of

SA0 at the S-edge of S2P is propagated to a primary output under the partial

vector v2. Thus the difference caused by S ↑ at the ending point of S propagates
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to the primary output under < v1, v2 >. Therefore, < v1, v2 > is a robust(resp.

non-robust) test for the S ↑ in CLD
S (SA).

Only if part: Let < v1, v2 > be a robust(resp. non-robust) test for the S ↑. The

S-edge of S is assigned a value 0 under vector v1 and 1 under vector v2. Thus

the SA0 at the S-edge of S2P and the SA1 at the S-edge of S1P in CPD
S (SA) are

activated under the vector d(v1, v2). The fault effect of SA1 at the S-edge of S1P

propagates to the primary output sed. The fault effect of SA0 at the S-edge of

S2P propagates to a primary output since all the side-inputs along S2P are at the

non-controlling values and the difference at the ending point of S2P propagate to

the primary output under d(v1, v2).

Lemma 5.4.11. Let P be a path in a given acyclic sequential circuit SA and

let S2P and S1P be the corresponding segments in its pattern-dependency circuit

CPD
S (SA). Let (v1, v2) be a pattern-dependency input pair. Let γL(v1, v2) denote

a two-pattern sequence of length L transformed from the two-pattern vector <

v1, v2 > by the sequence transformation γ. γL(v1, v2) is a robust(resp. non-robust)

two-pattern sequence for the P ↑ in SA with sequential depth L − 2 if and only

if d(v1, v2) is a test for SA0 at the S-edge of S2P and SA1 at the S-edge of S1P in

CPD
S (SA) with (resp. without) STS.

Proof. If part: Let d(v1, v2) be a test for SA0 at the S-edge of S2P and SA1 at

the S-edge of S1P in CPD
S (SA). From Lemma 5.4.10, < v1, v2 > is a robust(resp.

non-robust) test for the corresponding S ↑ in CLD
S (SA) and thus in CE(SA). Let

c be the combinational block in CLD
S (SA) that contains S ↑ is and let < v1

c , v
2
c >

be the two-pattern vector at the inputs Ic of c under < v1, v2 >. S ↑ is launched

and propagates to an output of c under < v1
c , v

2
c >. Therefore, the fault effect of

S ↑ is at the ending point of S. c in CE(SA) and l(c) in SA are logically same.

According to Lemma 5.4.10, there is no pattern conflict in transforming < v1, v2 >

into γL(v1, v2) since v1 and v2 are generated from the pattern-dependency circuit.

According to the sequence transformation γ, Il(c) = v1
c at time t(c)−tmin, Il(c) = v2

c

at time t(c)− tmin + 1. Therefore, the P ↑ in SA which corresponds to the S ↑ in

CE(SA) is launched and propagates to the output of l(c). The fault effect of S ↑
at the output of c propagates to a primary output o under < v1, v2 >. According

to Definition 5.4.5, the fault effect of the P ↑ propagates to the primary output

l(o) at time t(o) − tmin + 1 under the two-pattern input sequence γL(v1, v2).
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Only if part: Let γL(v1, v2) be the two-pattern test sequence for the P ↑.
According to Definition 5.4.5, γL(v1, v2) can be inverse transformed to a two-

pattern vector < v1, v2 > that activates the corresponding S ↑ in CE(SA) and

propagates the fault effect to a primary output by the inverse transformation γ−1.

Therefore, d(v1, v2) is a test for SA0 at the S-edge of S2P and SA1 at the S-edge

of S1P in CPD
S (SA).

Theorem 5.4.12. The PDF test generation of the internally balanced sequential

circuits under rated clock and slow-fast-slow clock is equivalent to the SAF test

generation of combinational circuits, which is τ -equivalent.

Proof. The following procedure for path delay fault test generation of an acyclic

sequential circuit with sequential depth d = L − 2 can be used as shown by

Lemmas 5.4.10 and 5.4.11.

1. Generate a TEM of SA;

2. For each P ↑ (resp. P ↓),

• Perform the segment-leaf transformation on CE(SA). The resulting

circuit CLD
S (SA) is called segment-leaf-dag.

• Perform the pattern-dependency circuit transformation. The resulting

circuit CPD
S (SA) is called pattern-dependency circuit.

• Perform the SAF test generation of SA0 (resp. SA1) at the S-edge

of S2P and SA1 (resp. SA0) at the S-edge of S1P in the pattern-

dependency circuit CPD
S (SA). Let d(v2, v1) denote the test obtained

respectively.

• Split d(v1, v2) into v1 and v2 according to the definition of d(v1, v2).

Transform < v1, v2 > into the two-pattern sequence γL(v1, v2) based

on Definition 5.4.5.

Let TSL, TPD, TmSA
C and TP denote the time complexity of the segment-leaf trans-

formation, the pattern-dependency circuit transformation, the double SAF test

generation and the two-pattern sequence transformation, respectively. Let NSL,

NPD, NmSA
C and NP denote the problem size of the segment-leaf transformation,

the pattern-dependency circuit transformation, the double SAF test generation
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and the two-pattern sequence transformation, respectively. According to Lemmas

5.3.7-5.3.9 and for NSL = n, n ≤ NPD ≤ 2n, 2n ≤ NmSA
C ≤ 6n − 5, NP ≤ n.

Therefore, the PDF test generation complexity is

T PD
IB (n) = TSL(NSL) + TPD(NPD) + O(TmSA

C (NmSA
C )) + TP (NP )

= O(N2
SL) + O(N2

PD) + O(τ(NmSA
C )) + O(N2

P )

≤ O(n2) + O(4n2) + O(τ(6n)) + O(n2)

= O(τ(n))

Therefore, the PDF test generation of internally balanced sequential cir-

cuits is equivalent to the SAF test generation of S-edges of pattern dependency

circuits, which is τ -bounded. To show that the PDF test generation of internally

balanced sequential circuits is τ -equivalent, it is needed to prove that the SAF

test generation of combinational circuits is equivalent to a subclass of internally

balanced sequential circuits. Since PDF test generation of balanced sequential

circuits is τ -equivalent and PDF test generation of internally balanced sequential

circuits is shown τ -bounded in the above-mentioned, the PDF test generation of

internally balanced sequential circuits is equivalent to the SAF test generation of

combinational circuits, which is τ -equivalent.

Theorem 5.4.13. The PDF test generation of the acyclic sequential circuits is

τ 2-bounded under slow-fast-slow clock.

Proof. Let TSL, TPD, TmSA
C and TP denote the time complexity of the segment-

leaf transformation, the pattern-dependency circuit transformation, the double

SAF test generation and the two-pattern sequence transformation, respectively.

Let NSL, NPD, NmSA
C and NP denote the problem size of the segment-leaf trans-

formation, the pattern-dependency circuit transformation, the double SAF test

generation and the two-pattern sequence transformation, respectively. Let SA

denote a given acyclic sequential circuit. The size of its TEM CE(SA) is (d+1)n

where d is the sequential depth. [11,12] illustrated an acyclic sequential circuit

of size n that goes through duplications and the size increases up to Θ(n2) under

TEM representation. Lemmas 5.4.10 and 5.4.11 shows the equivalence of the PDF

test generation of a given acyclic sequential circuit and the SAF test generation of
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Figure 5.6. (a) An acyclic sequential circuit. (b) Its time expansion model. (c)
Its pattern-dependency circuit.
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its pattern dependency circuit. For n ≤ NSL ≤ (d+1)n, n ≤ NPD ≤ 2((d+1)n),

2n ≤ NmSA
C ≤ 6((d + 1)n), NP ≤ n. Therefore, the PDF test generation com-

plexity is

T PD
A (n) = TSL(NSL) + TPD(NPD) + TmSA

C (NmSA
C ) + TP (NP )

= O(N2
SL) + O(N2

PD) + O(τ(NmSA
C )) + O(N2

P )

= O(d2n2) + O(4d2n2) + O(τ(6dn)) + O(n2)

= O(τ 2(n)) for d = O(n)

If d = 0, the PDF test generation of these acyclic sequential circuits is τ -

equivalent. As shown in [11,12], the SAF test generation of acyclic sequential

circuits is τ 2-bounded. Therefore, the PDF test generation and SAF test gener-

ation of acyclic sequential circuits are τ 2-bounded.

[11,12] stated that the SAF test generation of acyclic sequential circuits

is not τ -equivalent under TEM. In other words, the following is still an open

problem.

Conjecture 5.4.1. [11, 12] The SAF test generation of acyclic sequential circuits

is not τ -equivalent.

By using the same example of acyclic sequential circuit in [1], the following

theorem is proved.

Theorem 5.4.14. The PDF test generation of acyclic sequential circuits is not

τ -equivalent under TEM with slow-fast-slow clock.

For PDF test generation, there might be also other PDF test generation

models for acyclic sequential circuits besides TEM. Consequently, the following

conjecture is concluded.

Conjecture 5.4.2. The PDF test generation of acyclic sequential circuits is not

τ -equivalent.

Example 5.4.1. Figure 5.6 shows the transformations of an acyclic sequential

circuit to represent its PDF test generation problem based on SAF test generation.

Note that only one PDF is considered, that is in block 21, under slow-fast-slow

clock.
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Besides the PDF test generation under slow-fast-slow clock, there are anal-

ogous issues for the case under rated clock testing and they remain open problems.

Open Problem 1. Is the PDF test generation of acyclic sequential circuits τ 2-

bounded under rated clock?

Open Problem 2. Is the PDF test generation of acyclic sequential circuits not

τ -equivalent under TEM with rated clock?

Open Problem 3. Is the PDF test generation of acyclic sequential circuits not

τ -equivalent under rated clock?

Open Problem 4. Is the PDF test generation of acyclic sequential circuits under

rated clock equivalent to the SAF test generation of acyclic sequential circuits?

5.5. PDF Test Generation Complexity of Cyclic

Sequential Circuits

Generally, PDF test generation (Figure 5.7) for a cyclic sequential circuit involves

the following three phases.

1. Initialization. In this phase, an input sequence is derived so that a signal

transition is produced at the origin of the path.

2. PDF excitation. PDF excitation means the transition is propagated

through the path. A two-pattern vector is derived to activate a PDF.

3. Error propagation. In this phase, an input sequence is derived to al-

low observation of the value at the destination flip-flop of the path (if the

destination is a primary output, this step is not needed.)

Definition 5.5.1. Let P and P ′ denote a path in a given cyclic sequential circuit

SC and the corresponding path in its combinational part c. A duplex combina-

tional circuit CD
P (SC) for P (Figure 5.8) of a cyclic sequential circuit S can be

obtained by the following transformation:
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• Perform the single-path-leaf transformation for P ′ on c. The inputs of c

corresponding to the outputs of the flip-flops in SC are called the pseudo

inputs while the outputs of c corresponding to the inputs of the flip-flops

in SC are called the pseudo outputs. The resulting single-path leaf-dag is

denoted by cLD
P ′ .

• Duplicate cLD
P ′ . The single-path leaf-dag cLD

P ′ and its duplicate are named

as the first partial circuit c1 and the second partial circuit c2.

• Connect the pseudo outputs of c1 to the corresponding pseudo inputs of

c2 to form an iterative logic array of single-path leaf-dag of size 2. The

new connections between c1 and c2 are called pseudo interconnections and

a pseudo interconnection is labeled as QDi while a resulting pseudo input

and pseudo output are labeled as Qi and Di respectively, corresponding to

flip-flop i in SC . Note that the path P in SC corresponds to two segments

Sc1 and Sc2 in CD
P (SC). A primary input and a primary output of c1 is

denoted by I1j and O1k, respectively while a primary input and a primary

output of c2 is denoted by I2j and O2k.

Definition 5.5.2. Let P ↑ denote a rising PDF in a given cyclic sequential circuit

SC . A duplex combinational circuit CD
P (SC) for P can be transformed into a path-

rising-smooth duplex circuit(resp. path-falling-smooth duplex circuit) CPRS
S (SC)

(resp. CPFS
S (SC)) for the corresponding segment Sc2 by the following procedure:

• Let QOR (resp. QAND) denote the OR gates (resp. AND gates) along Sc2

corresponding to P ↑ (resp. P ↓). A gate may have no parity, 0, 1 or

both parities. A side-input to an OR gate (resp. AND gate) in QOR (resp.

QAND) has parity 1 (resp. 0). Perform a reverse topological traversal from

the transitive fanout of all pseudo interconnections, to determine the parity

of all gates along the side-paths to Sc2. The parity is complemented across

a NOT gate. If some fanouts of a gate have parity 1 and others have parity

0, the gate is assigned both parities.

• Duplicate gates so that each resulting gate has parity of either nothing, 0

or 1 but not both.
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– Traversing from pseudo output or primary output gm on P , for each

gate hj with a parity (parities) and with a successor gate that is off

path and without parity, hj and the connections of its immediate pre-

decessor gates are duplicated once and its duplicate h′
j has no parity.

For each immediate successor gate hj+1 of hj that has no parity, the

connection from hj to hj+1 is replaced by the connection from h′
j to

hj+1.

– Traversing from pseudo output or primary output gm, each gate hj

with both parities and the connections to its immediate predecessor

gates are duplicated once and assigned parity 1 while its duplicate h′
j

is assigned parity 0. For each immediate successor gate hj+1 of hj

that has parity 0 (1 if there is an inversion between hj and hj+1), the

connection from hj to hj+1 is replaced by the connection from h′
j to

hj+1.

• Insert to the fanout branch of a second circuit primary input I2j a segment-

transition-smoother STS(I2j , I1j) if the fanout branch has an immediate

gate with parity 0 or 1. At the fanout branch of a pseudo interconnection

QDi, insert a segment transition-smoother STS(QDi, Qi) if the QDi has

an immediate gate with parity 0 or 1.

Lemma 5.5.3. < v1, v2 > is an input sequence that robustly excites a PDF P ↑
(resp. P ↓) of a sequential circuit SC in present state s1 if and only if s1 ∼ v1 ∼ v2

is a test for SA0 at the S-edge of Sc2 with an input constraint of 0 at the S-edge

of Sc1 in the corresponding duplex combinational circuit CPRS
S (SC).

Proof. If part: s1 ∼ v1 ∼ v2 is a test for SA0 at the S-edge of Sc2 with an input

constraint 0 at the S-edge of Sc1. In the fault free case, S-edge of Sc1 and S-edge

of Sc2 have different values under s1 ∼ v1 ∼ v2. This means < v1, v2 > initializes

the corresponding P ↑. The value at the ending points of Sc2 and Sc1 are 0 and

1 respectively under s1 ∼ v1 ∼ v2. All the side-inputs of the gates along Sc2 are

at the non-controlling values. Thus, all the side-input of gates along P are at the

non-controlling value under v2. Segment transition-smoother guarantees that the

transition at a flip-flop or a primary input does not propagate to the side-inputs

of OR gates along P under < v1, v2 >. Therefore, < v1, v2 > robustly excites
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P ↑.
Only If part: < v1, v2 > robustly excites P ↑. All side inputs of gates along

P are at the non-controlling values. The value at the S-edge of Sc2 is different

from that at the S-edge of Sc1. This excites the SA0 at the S-edge of Sc2 and put

a constraint 0 to the S-edge of Sc1. According to the definition of robust PDF,

the side inputs of gates along Sc2 are at the non-controlling value. This satisfies

the test condition. Therefore, s1 ∼ v1 ∼ v2 is a test for SA0 at the S-edge of Sc2

with an input constraint of 0 at the S-edge of Sc1.

Lemma 5.5.4. < v1, v2 > is an input sequence that non-robustly excites a PDF

P ↑ (resp. P ↓) of a sequential circuit SC in present state s1 if and only if

s1 ∼ v1 ∼ v2 is a test for SA0 at the S-edge of Sc2 with an input constraint

of 0 at the S-edge of Sc1 in the corresponding path-rising-smooth duplex circuit

CPRS
S (SC).

Proof. If part: s1 ∼ v1 ∼ v2 is a test for SA0 at the S-edge of Sc2 with an

input constraint 0 at the S-edge of Sc1. In the fault free case, S-edge of Sc2 and

S-edge of Sc1 have the different values under s1 ∼ v1 ∼ v2. This initializes the

P ↑. The value at the ending points of Sc2 and Sc1 are 0 and 1 respectively under

s1 ∼ v1 ∼ v2. All the side-input of gates along P are at the non-controlling value.

Therefore, < v1, v2 > non-robustly excites P ↑.
Only If part: < v1, v2 > non-robustly excites P ↑. All the side inputs of

gates along P are at the non-controlling values. The value at the S-edge of Sc2

is different from that at the S-edge of Sc1, which is 1 and 0 respectively. This

excites the SA0 at the S-edge of Sc2 and put a constraint 0 to the S-edge of Sc1.

According to the definition of PDF, the side inputs of gates along Sc2 are at non-

controlling value. This satisfies the test condition. Therefore, s1 ∼ v1 ∼ v2 is a

test for SA0 at the S-edge of Sc2 with an input constraint of 0 at the S-edge of

Sc1.

Lemma 5.5.5. The PDF excitation is equivalent to the SAF test generation of

S-edges of path-rising-smooth duplex circuits, which is τ -bounded.

Proof. Pseudo-transformation transforms the kernel of a given cyclic sequential

circuit so that the PDF activation can be done by combinational test generation.

To activate a PDF in a given sequential circuit SC, for each PDF
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1. Derive the duplex combinational circuit CD(SC).

2. Derive the path-rising-smooth duplex circuit CPRS
S (SC) (for robust test).

3. Perform the SAF test generation of SA0 at the S-edge of Sc2 with an input

constraint 0 at the S-edge of Sc1. Let s1 ∼ v1 ∼ v2 denote the test obtained.

4. Transform s1 ∼ v1 ∼ v2 into an input sequence < v1, v2 > for the PDF

activation.

Based on Lemmas 5.5.3-5.5.4, the PDF excitation can be modeled by the SAF

test generation. Let TD(ND), TPRS(NPRS), T SAF
c (NSAF

c ) and TP (NP ) denote the

time complexity of the duplex combinational circuit derivation, the path-rising-

smooth duplex circuit derivation, the SAF test generation and the two-pattern

test transformation. Let n denote the size of a given cyclic sequential circuit SC .

To derive a duplex combinational circuit, it takes O(n2) according to Definition

5.5.1. After the derivation, the size of the resulting circuit is at most 4n. The

procedures of transforming a CD into a CPRS
S involve only the first partial circuit

C1 of CD. The process takes O(n2) as explained in Definition 5.5.2. The size of

the resulting circuit is at most 8n. Therefore, the time complexity of the PDF

excitation is

T PD
E = TD(ND) + TPRS(NPRS) + O(T SAF

c (NSAF
c )) + TP (NP )

= O(n2) + O(4n2) + O(τ(8n)) + O(n)

= O(τ(n)).

Definition 5.5.6. A combinational circuit C with a SAF f can be transformed

into a cyclic sequential circuit Scδ
f (Figure 5.9) by cyclic δ transformation :

S1. Let o1, ..., op denote the primary outputs of C. Let c1, ..., cp denote the XOR

function of each primary output of C and the corresponding primary output

of the faulty circuit Cf . Let G(C, Cf) be the circuit realizing c1 OR ...OR

cp.
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Figure 5.7. PDF test generation for cyclic sequential circuit.

Figure 5.8. A duplex combinational circuit.
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S2. Connect the output of G(C, Cf) to a two-input AND gate. The output O

of the AND gate A is fed back to the AND gate through an inverter I.

Figure 5.9. A cyclic sequential circuit Scδ
f .

Lemma 5.5.7. v is a test for SAF f in a combinational circuit C if and only if

< v, v > excites the PDF IAO ↑ or IAO ↓ in the corresponding cyclic sequential

circuit Scδ
f .

Proof. Under < v, v >, all the side-inputs are at stable non-controlling values.

Therefore, the transition along IAO can be propagated to the flip-flop and thus

the PDF is excited.

Theorem 5.5.8. The PDF excitation is τ -equivalent.

Proof. To prove that the PDF excitation is τ -equivalent, in addition to Lemma

5.5.5, it is sufficient to prove that the SAF test generation of combinational

circuits can be transformed into the PDF excitation of cyclic sequential circuits.

Therefore, Lemmas 5.5.5 and 5.5.7 prove it.

For easily testable sequential circuits, the PDF test generation complexity

depends on the time complexity of the justification and the state differentiation.

If the time complexity is less than or equivalent to τ(n), the cyclic sequential

circuits is τ -equivalent. Therefore, the following corollary is concluded.
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Corollary 5.5.9. The PDF test generation under rated clock and slow-fast-slow

clock and SAF test generation of t-time-bounded testable circuits are τ -equivalent

(resp. τ 2-bounded) if t = τ(n) (resp. t = τ 2(n)).

Corollary 5.5.10. The PDF test generation under rated clock and slow-fast-

slow clock and SAF test generation of l-length-bounded testable circuits are τ 2-

bounded if l = O(n).

5.5.1 PDF Test Generation and SAF Test Generation of

the State-Shiftable Finite-State-Machine Realizations

Formally, a finite state machine FSM is defined as a 5-tuple (I, ST, O, DEL, GAM)

where I is a set of input symbols, ST is a set of states, O is a set of output sym-

bols, DEL : I × ST → ST is the next-state function, and GAM is the output

function[35]. A state-shiftable finite state machine [23] is a machine that

possesses

1. transfer sequences of length at most [log2 m] to carry the machine from

state s0 to state si for all i, and

2. distinguishing sequences of length [log2 m], which are arbitrary input se-

quences consisting of 2 input symbols, where m denotes the number of

states.

Figures 5.10(a) and (b) show the state diagrams and state tables for a distributive

SSFSM.

A sequential circuit that is realized from the SSFSM is called SSFSM re-

alization. In this section, two easily testable classes of state-shiftable finite-state-

machine (SSFSM) realizations, namely two-column SSFSM realizations with ob-

servable shifting logic (2COS-SSFSM) and two-column distributive SSFSM real-

izations are introduced. The latter class contain a submachine called distributive

SSFSM.

Definition 5.5.11. Distributive SSFSM is a two-column SSFSM realization

with different pairs of input symbols for each state. Let the input symbols of

two-column for state sj be denoted by γ0(sj) and γ1(sj), respectively. Let ε0 and
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Figure 5.10. State diagrams and state tables for SSFSM and distributive SSFSM.
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ε1 denote the input symbols of a two-column SSFSM, which has same degree

with the distributive SSFSM. For each j, the next state function δ is such that

δ(ε0, sj) = δ(γ0(sj), sj) and δ(ε1, sj) = δ(γ1(sj), sj).

Figures 5.10(c) and (d) show the state diagrams and state tables for a

distributive SSFSM.

The test generation complexity of these classes and the relationship of

their PDF test generation and SAF test generation are addressed. Only the slow-

fast-slow clock is considered and thus the circuit under test is fault-free during

justification and differentiation. By this assumption, the PDF test generation

is expected to be easier or equivalent to the SAF test generation for these two

classes.

Definition 5.5.12. Two-column SSFSM realizations with observable

shifting logic (2COS-SSFSM) is an SSFSM realizations that satisfies the fol-

lowing conditions:

C1. There exists a two-column submachine of SSFSM of degree m, where m =

O(n) and n is the size of the 2COS-SSFSM. Let the the input symbols of

the two-column be denoted by ε0 and ε1.

C2. Let C0 and C1 denote the input combinations (cubes) of ε0 and ε1, respec-

tively, after the input assignments. The logic that is equivalent to C0 OR

C1 is called shifting logic and is a fanout of each next state function Di and

the output Oss of SSFSM, where 1 ≤ i ≤ m − 1. The shifting logic SL is

made observable.

SL = C0 OR C1

D0 = C0 OR F0
...

Di = (C0 OR C1) AND Qi−1 OR Fi
...

Dm−1 = (C0 OR C1) AND Qm−2 OR Fm−1

Oss = (C0 + C1) AND Qm−1 OR FOss

Qi (resp. Di) is an output (resp. input) of flip-flop bit i. Gate sharing is

permitted during the synthesis. A OR B (resp. A AND B) means both
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logics are ORed (resp. ANDed) together. Figure 5.11 shows the general

block diagram of a 2COS-SSFSM.

Figure 5.11. General block diagram of a two-column SSFSM realization with
observable shifting logic.

To generate an SAF test of a 2COS-SSFSM, a constraint is put on the

derivation of excitation state, that is the input vectors of C0 and C1 as the test

vectors are prioritized.

Theorem 5.5.13. The PDF test generation under slow-fast-slow clock and SAF

test generation of 2COS-SSFSM is equivalent, which are τ -equivalent.

Proof. PDF test generation: The process consists of three steps, including

PDF activation, justification and differentiation. In PDF activation, the input

sequence < v1, v2 > is derived. Let the excitation state be denoted by se. Ac-

cording to Theorem 5.5.8, the running time of PDF activation is Θ(τ(n)), which

is reducible to the SAF activation (the derivation of excitation state for an SAF).

Since slow-fast-slow clock is used, there is no fault effect during justification and

differentiation. Therefore, any excitation state is justifiable by an input sequence
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consisting of ε0 and ε1 with length at most m − 1 while a pair of faulty and

fault-free next states after the PDF activation can be differentiated by any input

sequence consisting of ε0 and ε1 with length at most m−1, where m is the degree

of SSFSM. Obviously the PDF test generation is τ -equivalent.

SAF test generation: In the following, several cases of faults are discussed.

For each case, the justification sequence is an input sequence consisting of ε0 and

ε1 with length at most m−1. If the fault is activated and propagates to one of the

flip-flops before the circuit reaches the excitation state, the current state is made

an excitation state. Since shifting logic SL is observable, all the faults propagate

to SL are detectable. For each testable fault f in the fanout-free region, it is

guaranteed to be detectable without fault masking during the shifting operation

once the fault effect propagates to a flip-flop. Let the fault effect denoted by d̄

that propagates to Qh after SAF activation where 0 ≤ h ≤ m − 1.

Dh+1 = SLQh + Fh+1

For SL = 1 during shifting operation,

Dh+1 = d̄ + Fh+1

Note that no other fault effects propagate to Fh+1 as f is in the fanout-free

region and Fh+1 has a fault-free value 0 during the shifting operation (SL = 1).

Therefore Dh+1 = d̄

The fault effect is propagated to Dh+2, Dh+3, ..., Dm−1 and then output Oss for m

is the degree of SSFSM. For example, the output of AND gate g is in fanout-free

region (Figure 5.11).

In generating tests for other faults which are in fanout region, we can assume

the shifting operation is always working for SL is observable. Let’s discuss the

faults in the fanout region other than those at the stem of Qk for 0 ≤ k ≤ m− 1.

During the phase of SAF activation, any input cubes contained by C0 or C1 are

prioritized as the input pattern to excite the fault f . If one of them is a test, the

fault effect that propagates to a flip-flop must be d̄ as discussed in the following.

Di = (C0 + C1) AND Qi−1 OR Fi
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Fi has fault-free value 0 during shifting operation. In addition, shifting logic SL

and Qi−1 are fault free. Therefore the fault effect propagates to Fi must be d̄

after SAF activation if there exists an input cube that is contained by C0 or C1

and excites the fault f . During differentiation,

Qi = d̄

Di+1 = d̄ + Fi+1

Since this is done by shifting operation where SL = 1 and each stem of Qk for

0 ≤ k ≤ m−1 is fault-free, if the fault f is activated again during differentiation,

it will propagate to Fi+1 as d̄, which has the same polarity as the fault effect during

SAF activation. Therefore, fault masking does not happen during differentiation.

For the faults at the stems of Qk where 0 ≤ k ≤ m − 1 and let Qk = Qi−1,

boolean difference is used to prove that the polarity of fault effect is also always

same during shifting operation.

Di = (C0 + C1)Qi−1 + Fi

= (C0 + C1)Qi−1 + RQ̄i−1Gi + SQi−1Hi + F ′
i

F ′
i does not contain literal Qi−1. Gi and Hi are the disjunctions of the cubes that

contain literals Qj for j �= i−1. R and S are the disjunctions of input cubes that

do not contain and are not contained by C0 or C1. For Qi−1 s-a-0,

h = Qi−1

Di = (C0 + C1)h + Rh̄Gi + ShHi + F ′
i

h
dDi

dh
= (h(C0 + C1 + SHi) + hF ′

i ) ⊕ (hRGi + hF ′
i )

= Qi−1(C0 + C1) + Qi−1HiS + Qi−1GiR by redundance law

The similar proof can be done for the case where Qi−1 s-a-1. Note that the fault

effect of s-a-0 (resp. s-a-1) d (resp. d̄) propagates to Di as d (resp. d̄) if the vectors

contained by Qi−1(C0 + C1) or Qi−1HiS is applied while propagates to Di as d̄

(resp. d) if the vectors contained by Qi−1GiR is applied. During SAF activation,

the input cubes contained by C0 or C1 is prioritized. Therefore, if there exists
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an input pattern contained by C0 or C1, the fault effect that propagates to a

flip-flop during SAF activation is d, i.e. Di = d. Let the fault effect propagate

to Qi−1 after SAF activation of a fault f in the fanout region and let the input

cube that activates the fault denoted by Xc. During the phase of differentiation,

the fault effect being shifted is not masked because only the fault effect of the

same polarity may appear at Fj for j ≥ i under input sequence consisting of Xc.

Therefore, by giving the input cubes contained by C0 and C1 a priority to be

an input vector to excite the fault, fault masking does not happen during state

differentiation. In the case where no input cubes that are contained by either C0

or C1 excite the fault during SAF activation, the fault is not excited during the

phase of differentiation and thus the fault masking does not occur. Let TE , TJ and

TD denote the running time of SAF excitation, justification and differentiation

respectively.

T SA
2COS(n) = TE + TJ + TD

= τ(n) + O(m − 1) + O(m − 1)

= τ(n) + O(n) + O(n) for m=O(n)

= Θ(τ(n))

However, it is still unsolved for the case under rated clock.

Open Problem 5. Are the PDF test generation under rated clock and the SAF

test generation of two-column SSFSM realizations with observable shifting logic

equivalent?

Definition 5.5.14. Two-column distributive SSFSM (2CD-SSFSM) is SS-

FSM realizations that fulfills the following conditions:

C1. There exists a two-column submachine of SSFSM of degree m, where m =

O(n) and n is the size of the 2CD-SSFSM. Let the the input symbols of the

two-column be denoted by ε0 and ε1.

C2. There exists a distributive submachine of SSFSM over the columns other

than those of ε0 and ε1. The number of columns is 2N−1 + 2 where N is an

integer.
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C3. There exists an input symbol c of the distributed submachine of SSFSM

and a state sj for 0 ≤ j ≤ m − 1 such that sk = δ(c, sj) and sk �= δ(ε0, sj),

sk �= δ(ε1, sj) for k �= j and 0 ≤ k ≤ m − 1.

C4. Let C0 and C1 denote the input combinations of ε0 and ε1 respectively after

the input assignment. C0 and C1 are two-bit assignments, one bit of which

is different to each other. E.g. C0 = ab′ and C1 = ab where a and b are

variables for primary inputs. The similar bit of C0 and C1 is complement

to other input combinations.

SHIFT = C0 + C1 D0 = C0 OR F0
...

Di = (C0 + C1) AND Qi−1 OR Fi
...

Dm−1 = (C0 + C1) AND Qm−2 OR Fm−1

Oss = (C0 + C1) AND Qm−1 OR FOss

Qi (resp. Di) is an output (resp. input) of flip-flop bit i. Gate sharing is

permitted during the synthesis. A OR B (resp. A AND B) means both

implicants are ORed (resp. ANDed) together.

Figure 5.12 shows the general block diagram of a 2CD-SSFSM.

Theorem 5.5.15. The PDF test generation under slow-fast-slow of the two-

column distributive SSFSM is τ -equivalent while the SAF test generation com-

plexity of the same class is τ 2-bounded.

Proof. PDF test generation: Same as the proof of PDF test generation in

Theorem 5.5.13

SAF test generation: In the following, several cases of faults are discussed.

For each case, the justification sequence is an input sequence consisting of ε0 and

ε1 with length at most m−1. If the fault is activated and propagates to one of the

flip-flops before the circuit reaches the excitation state, the current state is made

an excitation state. The realization of logic C0+C1 is eventually an input, namely

SHIFT that is ANDed with Qi−1. Let’s first discuss about the faults at SHIFT.

Shifting operation fails when a s-a-0 occurs at SHIFT or when a s-a-0 occurs at the

output of (SHIFT AND Qi−1). The latter is always activated and differentiated
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Figure 5.12. General block diagram of a two-column distributive SSFSM realiza-
tion.
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in shifting operation since the fault location is in the fanout-free region and the

shifting operation of all the more significant flip-flops are still working. Looking

in the former case where the fault is at the stem of SHIFT, the shifting operation

of the circuit fails. However, the distributive shifting operation is intact. First,

the SAF activation is performed at running time τ(n). To differentiate a pair

of fault-free and faulty states after SAF activation, the fault effect at a flip-flop

is propagated to the output Oss by searching the input sequence on its iterative

logic array of size at most m − 1. Since m = O(n), the running time of the

differentiation is O(τ 2(n)). For s-a-1 at the stem of SHIFT, it is obviously easy

to test since during differentiation (SHIFT=1), the fault is not activated again.

Let’s discuss about the faults in the fanout-free region. For each testable fault f

in the fanout-free region, it is guaranteed to be detectable without fault masking

during the shifting operation once the fault effect propagates to a flip-flop. Let

the fault effect denoted by d̄ that propagates to Qh after SAF activation where

0 ≤ h ≤ m − 1.

Dh+1 = (SHIFT )Qh + Fh+1

For SHIFT = 1 during shifting operation,

Dh+1 = d̄ + Fh+1

Note that no other fault effect propagates to Fh+1 as f is in the fanout-free region

and Fh+1 has a fault-free value 0 during the shifting operation (SHIFT = 1).

Therefore, Dh+1 = d̄

The fault effect is propagated to Dh+2, Dh+3, ..., Dm−1 and then output Oss for m

is the degree of SSFSM. For example, the output of AND gate g is in fanout-free

region (Figure 5.12).

Let’s discuss the faults in the fanout region other than those at the stem of Qk for

0 ≤ k ≤ m − 1. During the phase of SAF activation, any input cubes contained

by SHIFT are prioritized as an input pattern to excite the fault f . If one of them

is a test, the fault effect that propagates to a flip-flop must be d̄ as discussed in
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the following.

Di = (SHIFT ) AND Qi−1 OR Fi

Fi has fault-free value 0 during shifting operation. In addition, shifting logic

SHIFT and Qi−1 are fault free. Therefore the fault effect propagates to Fi must

be d̄ after SAF activation if there exists an input vector that is contained by

SHIFT and excite the fault f . During differentiation,

Qi = d̄

Di+1 = d̄ + Fi+1

Since this is done by shifting operation where SHIFT = 1 and each stem of

Qk for 0 ≤ k ≤ m − 1 is fault-free, if the fault f is activated again during

differentiation, it will propagate to Fi+1 as d̄, which has the same polarity as the

fault effect during SAF activation. Therefore, fault masking does not happen

during differentiation. For the faults at the stems of Qk where 0 ≤ k ≤ m − 1

and let Qk = Qi−1, boolean difference is used to prove that the polarity of fault

effect is also always same during shifting operation.

Di = (SHIFT )Qi−1 + Fi

= (SHIFT )Qi−1 + RQ̄i−1Gi + SQi−1Hi + F ′
i

F ′
i does not contain literal Qi−1. Gi and Hi are the disjunctions of the cubes that

contain literals Qj for j �= i−1. R and S are the disjunctions of input cubes that

do not contain and are not contained by SHIFT. For Qi−1 s-a-0,

h = Qi−1

Di = (SHIFT )h + Rh̄Gi + ShHi + F ′
i

h
dDi

dh
= (h(SHIFT + SHi) + hF ′

i ) ⊕ (hRGi + hF ′
i )

= Qi−1(SHIFT ) + Qi−1HiS + Qi−1GiR by redundance law

The similar proof can be done for the case where Qi−1 s-a-1. Note that the fault

effect of s-a-0 (resp. s-a-1) d (resp. d̄) propagates to Di as d (resp. d̄) if the
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vectors contained by Qi−1(SHIFT ) or Qi−1HiS is applied while propagates to

Di as d̄ (resp. d) if the vectors contained by Qi−1GiR is applied. During SAF

activation, the input cubes contained by SHIFT is prioritized. Therefore, if there

exists an input pattern contained by SHIFT, the fault effect that propagates to

a flip-flop during SAF activation is d, i.e. Di = d. Let the fault effect propagate

to Qi−1 after SAF activation of a fault f in the fanout region and let the input

cube that activates the fault denoted by Xc. During the phase of differentiation,

the fault effect being shifted is not masked because only the fault effect of the

same polarity may appear at Fj for j ≥ i under input sequence consisting of

Xc. Therefore, by giving the input cubes contained by SHIFT a priority to be

an input vector to excite the fault, fault masking does not happen during state

differentiation. In the case where no input vectors contained by either SHIFT

excite the fault f , the fault is not excited during the phase of differentiation and

thus the fault masking does not occur. Let TE , TJ and TD denote the running

time of SAF excitation, justification and differentiation. Therefore,

T SA
2CD(n) = TE(n) + TJ + TD

= τ(n) + O(m − 1) + O(τ((m − 1)n))

= τ(n) + O(n) + O(τ 2(n)) for m = O(n)

= O(τ 2(n))

However, the work cannot conclude that the SAF test generation com-

plexity of the two-column distributive SSFSM realizations is not τ -equivalent

although it seems to be correct.

Conjecture 5.5.1. The SAF test generation of the two-column distributive SS-

FSM realizations is not τ -equivalent.

The PDF test generation complexity of the two-column distributive SS-

FSM realizations under rated clock is still an open problem.

Open Problem 6. Is the PDF test generation of the two-column distributive

SSFSM realizations τ -equivalent under rated clock?
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5.6. Conclusion

The relationships between the PDF test generation and SAF test generation of

several existing classes of circuits have been described in this chapter. The PDF

test generation of internally balanced sequential circuits under rated clock and

slow-fast-slow clock is equivalent to the SAF test generation of combinational

circuits. On the other hand, the PDF test generation of the acyclic sequential

circuits are τ 2-bounded under slow-fast-slow clock. It is shown that under TEM

with slow-fast-slow clock the PDF test generation is not τ -equivalent. The PDF

test generation under slow-fast-slow clock and the SAF test generation of two-

column SSFSM realizations with observable shifting logic are equivalent to the

SAF test generation of the combinational circuits while for two-column distribu-

tive SSFSM realizations, its PDF test generation under slow-fast-slow clock is

τ -equivalent but its SAF test generation is τ 2-bounded. The PDF test genera-

tion of acyclic sequential circuits and cyclic sequential circuits is discussed under

the assumption of slow-fast-slow clock. The discussion of PDF test generation of

sequential circuits under rated clock remains an open problem. The conjectures

and the open problems are summarized as follows. Note that slow-fast-slow clcok

and rated clock are simplified as sfs and rated, respectively.

Conjecture 5.4.2 T PD,sfs
A (n) �= τ(n)

Open problem 1 T PD,rated
A (n) = O(τ 2(n))?

Open problem 2 T PD,rated
A,TEM (n) �= τ(n)?

Open problem 3 T PD,rated
A (n) �= τ(n)?

Open problem 4 T PD,rated
A (n) = T SA

A (n)?

Open problem 5 T PD,rated
2COS (n) = T SA

2COS(n) = T sSA
C = τ(n)?

Conjecture 5.5.1 T SA
2CD(n) �= τ(n)

Open problem 6 T PD,rated
2CD (n) = τ(n)?
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Chapter 6

Classification of Sequential

Circuits Based on Acyclic Test

Generation Complexity

6.1. Introduction

The test generation of acyclic sequential circuits has been shown to be τ 2-bounded

[11,12] using time expansion model (TEM) [18]. In other words, the test genera-

tion complexity is at most the square of combinational test generation complexity,

which is regarded as not difficult. This chapter introduces a new class of sequential

circuits with acyclic test generation complexity. The new class is called acyclically

testable sequential circuits whose test generation complexity of the new class is

bounded by a circuit property called thru function. [33] has introduced a class

of circuits called partially strong testable circuits based on thru function but the

target circuit is datapath only and test generation complexity was not discussed

explicitly. [34] also considered existing thru functions in a scan technique but

those thru functions are activated by primary inputs only. The new class that

is defined in this chapter covers some sequential circuits that are cyclic. In an

acyclically testable sequential circuit, the signals that activate a thru function

are either the signals at primary inputs or the signals at registers. Based on

the properties of input dependency, thru tree dependency and the depth of thru

trees, two subclasses of acyclically testable sequential circuits, namely acyclically
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testable sequential circuits type A and acyclically testable sequential circuits type

B [28], are identified. By introducing stronger conditions, a subclass of acycli-

cally testable sequential circuits type B is defined[29]. It is named acyclically

testable sequential circuits type C. This chapter also introduces a test generation

procedure and an analysis of the test generation complexity of acyclically testable

sequential circuits. This is followed by a design-for-testability (DFT) method to

augment an arbitrary sequential circuit into an acyclically testable sequential cir-

cuit. An experiment on benchmark circuits is conducted to show the effectiveness

of the DFT method. Finally, the chapter is concluded.

6.2. Acyclically Testable Sequential Circuits

This section defines a circuit representation called R-graph. Using R-graph, new

concepts of circuit properties are introduced. These circuit properties include thru

function, thru tree, thru tree dependency, input dependency and k-consistency.

Based on these properties, the class of acyclically testable sequential circuits

whose test generation is equivalent to the test generation of acyclic sequential

circuits is defined. The relationship between the class of acyclically testable

sequential circuits and acyclic sequential circuits are shown in Figure 6.1. Fur-

thermore, three classes of sequential circuits are categorized as the subclasses of

acyclically testable sequential circuits based on varying circuit properties.

Figure 6.1. The relationship between acyclic sequential circuits and acyclically
testable sequential circuits.
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Definition 6.2.1. Let X, Y and Z be a set of boolean variables respectively in

a circuit where X ∩ Y ∩ Z = ∅. A thru function tX→Y is a boolean formula in

conjunctive normal form such that

• the boolean connectives of the formula consist of ∧ (AND), ∨ (OR) and ¬
(NOT);

• the boolean variables Z of the formula and X consist of register outputs

and primary inputs while Y consists of register inputs and primary outputs;

• the signals at X transfer to Y if Z has an assignment that makes the thru

function ’true’ or active (tX→Y = 1);

Example 6.2.1. Figure 6.2(a) shows that without depending on the signals at the

output X of feedback register r, Y can be justified by only U with thru function

tU→Y active. Figure 6.2(b) presents another example circuit with a multiplexer

MUX. Signals at I transfer to L when K = 0.

Figure 6.2. The use of thru functions

Definition 6.2.2. Two thru functions ti→j and tl→m are said to be dependent

if they cannot be active at the same time.
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Example 6.2.2. Figure 6.3 shows two functions tI1→O1 and tI3→O1 that are not

dependent. In other words, thru functions t1 can be active at the same time.

Figure 6.4(a) shows two functions tI1→O1 and tI3→O1 that are dependent because

signals at I1 and I3 do not transfer to O1 simultaneously. Figure 6.4(b) illustrates

another example circuit that consists of three multiplexers. Thru function ti→o =

¬p ∧ ¬q and thru funtion tk→o = ¬p ∧ q are dependent as shown by the boolean

formula in each thru function.

Figure 6.3. Not dependent thru functions.

Figure 6.4. Dependent thru functions.

R-graph represents the topology of circuits by grouping flip-flops (FFs)

into registers and including the information about the thru functions available in
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the logic. R-graph is used to introduce the new concepts of the circuit properties

including thru function, thru tree, thru tree dependency and input dependency.

Definition 6.2.3. A circuit representation called R-graph is a directed graph

G = (V, A, w, r, t) that has the following properties.

1. Let FFi denote a flip-flop. Let pre(FFi) = {FFj|FFj c−→FFi} (resp. suc(FFi) =

{FFj|FFi c−→FFj}) where c is a combinational path. v ∈ V is a primary in-

put or primary output or register that consists of a maximal set of flip-flops

such that pre(FFp) = pre(FFq) and suc(FFp) = suc(FFq) for all FFp, FFq

in the set of flip-flops;

2. (vi, vj) ∈ A denotes an arc if there exists a combinational path from the

register corresponding to vi to the register corresponding to vj ;

3. w : V → Z+ (the set of positive integers) defines the number of flip-flops in

each register corresponding to a vertex;

4. r : V → {h, ∅} defines type of a register where the register is a hold register

v if r(v) = h. Else, it is a regular register. Note that r(w) = ∅ if w

corresponds to a primary input or primary output;

5. t : A → T
⋃{∅, 1} (T is a set of thru functions) where t(u, v) = ∅ if there is

no thru function for (u, v) ∈ A and t(u, v) is a thru function that transfer

signals from the output of register u or primary input u to the input of

register v or primary output v. If t(u, v) = 1 (also called identity thru

function), the signal values are transferred from u to v through a wire logic

(not a gate logic) directly. Note that identity thru function is always active.

Example 6.2.3. Figure 6.6 shows the R-graph of the sequential circuit S1 of

Figure 6.5. The notation CLB in Figure 6.5 means combinational logic block

that include the information of logic connection in the block. Black registers are

registers with hold functions while others are regular registers. Register R2 is

a hold register. The thru functions t(I→K), t(L→N), t(O→P ) and t(Q→S) which are

the thru functions extracted from the high level netlist of S1, are included in its

R-graph. According to the R-graph, R1, R2 and R3 form a loop while R5 forms

a self-loop.
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Figure 6.5. Sequential circuit S1.

Figure 6.6. R-graph of S1.

If a thru function transfers signal from a register outside a loop or a primary

input to a register inside the loop, the thru function can be used to justify the

register in a loop with a signal from the register or the primary input outside the

loop within one clock cycle but without depending on any signal in the loop. In

other words, the loop is broken logically by the thru function. However, a thru

function is not sufficient to guarantee that the register in the loop can be justified

with any signal within the signal range of normal operation. The following shows

an example where a thru function cannot justify a signal to a register in a loop.

Example 6.2.4. Let E (resp. G) denote a 4-bit variables consiting of bits e3,

e2, e1 and e0(resp. g3, g2, g1 and g0). Figure 6.7 shows a sequential circuit that

has two 4-bit adder where C = A + B and F = D + I and a stuck-at-1 fault at

i3. There is a thru function tE→G = ¬SEL that transfers signals from E to G
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Figure 6.7. The limitation of thru function in justification.

Figure 6.8. The limitation of thru function in propagation.

when SEL = 0 within one clock cycle without depending on the signals at the

output of feedback register R2 at I. However, if the range of the signals that are

justifiable by the thru function is studied carefully, it is obvious that the thru

function cannot justify some signals that are in the range of the signals at G in

normal operation. In this example, the signal range at E in normal operation is

from 8 to 15. If the thru function is used to justify G, the justifiable signal range

at G is from 8 to 15. Thus, the stuck-at-1 cannot be activated. However, if the

following steps are done, the stuck-at-1 can be activated after four clock cycles.

• First, D is assigned 8 and then tranfered to G through the thru function

with SEL = 0;
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• At the next clock cycle, D is assigned 9 with SEL = 1. Note that the signal

G is now 1;

• After one clock pulse at R2, I is justified with 1 and the stuck-at fault is

activated.

Thru function does not guarantee the justification of every signal within

the range of normal operation. Similarly, thru function does not guarantee the

propagation of every signal within the range of normal operation.

Example 6.2.5. Figure 6.8 shows a circuit where the stuck-at-1 fault (sa1) can

be activated by assigning signal 0 from primary input u through thru function

t1 with SEL1 = 1. When the fault effect propagates through thru function t2

to the output of flip-flop c after one clock cycle, the fault effect disappears as it

is masked by the constraint 0 at the input of AND gate y. However, if the fault

effect first propagates to the output of flip-flop b, the fault effect can be observed

at z without depending on any thru function.

Therefore, a concept called thru tree is introduced in this chapter. Thru

tree consists of a set of thru functions connected in a form of rooted tree that

starts from primary inputs and ends at a primary output.

Definition 6.2.4. Let R-graph GR = (V, A, w, r, t) represent a given sequential

circuit S. A thru tree is a subgraph of the R-graph such that

1. it is a rooted tree;

2. there is only one sink (root), which is corresponding to a primary output;

3. the sources are vertices that correspond to primary inputs;

4. each arc is labeled with a thru function.

Figure 6.9. The only thru tree of S1.
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Figure 6.9 shows the only thru tree of S1, which is also a path whose

arcs are labelled with thru functions. In the thru tree, each register is justifiable

from a primary input and is observable at a primary output through a series of

thru functions if each thru function in the tree is activated by a signal whose

corresponding vertex is not in the thru tree. If a thru function in a thru tree is

activated by a signal of the vertex which is also in the same thru tree, the thru

function does not guarantee the justification and propagation. The following

shows an example where a contradiction takes place.

Example 6.2.6. Figure 6.10 shows another example circuit S2 and its R-graph.

Figure 6.11 shows a thru tree of S2. Let t1 = y and t2 = c and t3 = ¬v. In order

to justify register c using the thru tree, all the thru functions t1, t2 and t3 must

be active. However, t2 depends on c to become active while c is depending on

thru function t2 for justification from primary inputs x and w without depending

on feedback a and c. The interdependency between justifying register c and

activating thru function t2 occurs. Therefore, justification of register c is not

guaranteed.

To avoid the interdependency, it is essential to define the concept of the

dependency between a thru tree and the register that activates a thru function

in the thru tree as well as the dependency between two thru trees. Then, the

concept is based in the definition of acyclically testable sequential circuits.

Definition 6.2.5. If Vti is a set of vertices that activate a thru function ti in a

thru tree Tj, Tj is said to be dependent on Vti. Furthermore, if Vti includes a

vertex in a thru tree Tk, Tj is said to be dependent on Tk.

Example 6.2.7. Figure 6.12 are a sequential circuit S3, its R-graph and its thru

trees T1 and T2. From its R-graph and thru trees, T1 is dependent on I3 while

T2 is dependent on R2 and I1. Furthermore, T2 is dependent on T1 since R2

and I1 are included in T2.

Another issue to be discussed here is input dependency. While a thru

function tx→y is being used to justify y, x is fixed at the signals that are needed

to justify y. If x is needed to justify y and another signal, for example z, at the

same time, z may not be justified since x is fixed to justify y through the thru

function. Again, justification is not guaranteed.
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Figure 6.10. S2 (a) and its R-graph (b).

Figure 6.11. A thru tree of S2.
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Figure 6.12. Sequential circuit S3.
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Definition 6.2.6. Let GR be the R-graph of a sequential circuit S, and let B be

a set of thru trees in GR. Let (u, v) be a set of all paths starting at u and ending

at v. Two distinct paths p1, p2 ∈ (u, v) have input dependency if the following

conditions are satisfied.

i. the first arc of one of the paths is different from the first arc of another

path;

ii. the first arc of at least one of the paths is labeled with a thru function in a

thru tree in B;

iii. each path contains at most one cycle that starts from and ends at v;

iv. if the first arc of a path p1 (resp. p2) does not have a thru function in a

thru tree in B, all vertices except the first vertex and the last vertex are not

included in any thru tree in B. Else if the first arc of a path p1 (resp. p2)

has a thru function in a thru tree in B, all vertices except the first vertex,

the second vertex and the last vertex are not included in any thru tree in

B;

v. p1 and p2 have same length;

Example 6.2.8. Figure 6.13 shows an example circuit S4 with thru functions t0,

t1, t2 and t3 and its R-graph. Figure 6.14 shows two of the paths from R-graph

where the first arc of path x → v → v is labeled with t1 and both paths are

of same length. Suppose v and w have to be justified 1 respectively in order

to excite a fault in CLB2. To justify v, x has to be assigned 1 one clock cycle

before. However, if x needs to be 0 in order to generate 1 at w using the whole

logic in CLB1, a conflict takes place. Thus, the fault cannot be excited using

thru functions t0 and t1 for justification of v.

Input dependency can be resolved by hold registers with certain condi-

tions. The following shows one example how a hold register resolves an input

dependency.

Example 6.2.9. Circuit S5 in Figure 6.15 has an input dependency between

two paths, R1 → R4 → PO and R1 → R5 → PO. The two paths with input
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Figure 6.13. S4 (a) and its R-graph (b).

dependency is shown in the aspects of graph and time expansion model in Figure

6.16. Circuit S6 in Figure 6.17 is same as S5 except register R5 of S6 is a hold

register. By holding R5 at time T2, input dependency between paths R1 →
R4 → PO and R1 → R5 → PO can be resolved. This is illustrated in Figure

6.18.

Thru tree dependency has to be resolved in test generation process. Thru

tree dependency takes place when the signal of a register is used to activate a

thru function and justify another register simultaneously.

Definition 6.2.7. Let GR be the R-graph of a sequential circuit S, and let B be
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Figure 6.14. Two paths that have input dependency.

a set of thru trees in GR and let ati ∈ GR be an arc with thru function ti. For

each pair of paths pm and pn, pm and pn have thru tree dependency if

i. pm is a path that starts from the sink vertex u of arc ati and ends at a

vertex v;

ii. pn is a path that starts from a vertex w in Vti and ends at v;

iii. pm and pn are the paths where each path is either a simple path or a path

that contains a cycle starting from and ending at v, and each vertex, except

the first vertex and the last vertex, is not included in any thru tree in B;

iv. |pm| < |pn|.

Example 6.2.10. Figure 6.19 is a sequential circuit with hold registers u, w, x

and z. Note that signal at register z at time 4 is used to justify CLB1 and at

the same time activate thru function t0 at time 4 in Figure 6.20. This is because

there is a thru tree dependency between paths x → x and z → u → x.

Thru tree dependency is also resolvable by hold registers.
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Figure 6.15. Sequential circuit S5.
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Figure 6.16. Input dependency in S5.
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Figure 6.17. Sequential circuit S6 with hold register R5.
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Figure 6.18. Resolution of the Input dependency in S6.
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Figure 6.19. S7 (a) and its R-graph (b).
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Figure 6.20. Time expansion model of S7.
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The number of thru trees that depend on each other in an acyclically

testable sequential circuit is one of the factors that bound its test generation

complexity to τ 2-bounded. Therefore, a dependency graph is introduced to rep-

resent the property of the dependency and the number of thru trees that depend

on each other.

Definition 6.2.8. Let GR be the R-graph of a sequential circuit S, and let B

be a set of thru trees in GR. The dependency graph of B is a directed graph

GD = (VD, AD) such that

i. vertex v ∈ VD is a thru tree in B;

ii. (vi, vj) ∈ AD denotes an arc if there exists a vertex (of GR) in thru tree vi

that activates a thru function in thru tree vj ;

Example 6.2.11. Figure 6.21 shows the dependency graph of T1 and T2 of S3.

Figure 6.21. Dependency graph of T1 and T2 of S3.

Based on the concepts of thru function, thru tree, thru tree dependency

and input dependency, three classes of acyclically testable sequential circuits are

detailed in the following subsections.

6.2.1 Acyclically Testable Sequential Circuits Type A

Acyclically testable sequential circuits type A is a class of acyclically testable

sequential circuits that does not have input dependency as well as thru tree

dependency [28].

Definition 6.2.9. Let R-graph GR = (V, A, w, r, t) represent a given sequential

circuit S. S is called to be acyclically testable if GR contains a set of disjoint

thru trees such that the following conditions are satisfied.
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1. There exists a set TT of thru trees that cover all the vertices of a feedback

vertex set;

2. Let Vti be a set of all vertices that activate a thru function ti. For any thru

function ti in each thru tree Tj in TT , the following conditions are satisfied.

i. Vti does not include any vertex of Tj ;

ii. Vti does not include any register vertex that is not included in any thru

tree. Note that Vti can include an input vertex or output vertex that

is not included in any thru tree;

iii. All the register vertices in Tj and Vti are hold registers;

3. Let Ti and Tj be two different trees in TT .

i. For each pair of thru function ti in Ti and tj in Tj , Vti and Vtj are

disjoint;

ii. If Ti (resp. Tj) is dependent on Tj (resp. Ti), Tj (resp. Ti) is not

dependent on Ti (resp. Tj), and

iii. If Ti is dependent on Tj , |pi| ≥ |pj| for each pair of pi and pj such that

pi (resp. pj) is a path starting from vertex ui in Ti (resp. vertex uj in

Tj) and ending at vertex v with at most one cycle starting from and

ending at v, where |pi| (resp. |pj|) denotes the length of path pi (resp.

pj);

4. For each pair of reconvergent paths p1 and p2, p1 and p2 does not have input

dependency;

5. For each pair of paths p1 and p2, p1 and p2 does not have thru tree depen-

dency.

6.2.2 Acyclically Testable Sequential Circuits Type B

Different from acyclically testable sequential circuits type A, acyclically testable

sequential circuits type B are allowed to have input dependency and thru tree de-

pendency with conditions that there exists a set of hold registers that can resolve
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the input dependency and thru tree dependency [28]. As a tradeoff between the

input dependency (resp. thru tree dependency) and test generation complexity,

the multiplication of the maximum length of paths in the dependency graph and

the maximum depth of thru trees in the sequential circuit is to be bounded by a

constant.

Definition 6.2.10. Let R-graph GR = (V, A, w, r, t) represent a given sequential

circuit S. S is called to be acyclically testable if GR contains a set of disjoint

thru trees B such that the following conditions are satisfied.

1. B is a set of thru trees that satisfies the following conditions.

i. The thru trees in B cover all the vertices of a feedback vertex set; and

ii Let the maximum depth of thru trees in B be Dmax. Let the maximum

length of paths in the dependency graph of B be Lmax. Dmax × Lmax

is bounded by O(1);

2. Let Vti be a set of all vertices that activate a thru function ti. Let ati ∈ A

be an arc with thru function ti. For any thru function ti in each thru tree

Tj in B, the following conditions are satisfied.

i. Vti does not include any vertex of Tj ;

ii. Vti does not include any register vertex that is not included in any thru

tree in B. Note that Vti can include an input vertex or output vertex

that is not included in any thru tree in B;

iii. The sink vertex of arc ati in Tj and the register vertices in Vti are

corresponding to hold registers;

iv. For each pair of paths pm and pn, if pm and pn have thru tree de-

pendency then there exists a hold register vertex x (r(x) = h) that

satisfies either Condition A or Condition B.

(A) i. x is on pm but not pn, and x �= u; and

ii. Let pk be a path that starts from x and ends at v. Let pp be

the subpath of pm that starts from x and ends at v. |pp| ≥ |pk|
for all pk.
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(B) i. x is on pn but not pm, and x �= w; and

ii. Let pk be a path that starts from x and ends at v. Let pp

denote the subpath of pn that starts from x and ends at v.

|pp| ≥ |pk| for all pk.

|pm| (resp. |pn|, |pk|) denotes the length of path pm (resp. pn, pk);

3. Let Ti and Tj be two different trees in B.

i. For each pair of thru function ti in Ti and tj in Tj , Vti and Vtj are

disjoint;

ii. If Ti (resp. Tj) is dependent on Tj (resp. Ti), Tj (resp. Ti) is not

dependent on Ti (resp. Tj), and

4. For each pair of reconvergent paths p1 and p2 that start from u and end at

v, there exists a hold register vertex w on p1 such that the length of the

subpath of p1 that starts from w and ends at v is equal or longer than the

length of pk for all pk if p1 and p2 have input dependency where pk denotes

a path that starts from w and ends at v.

6.2.3 Acyclically Testable Sequential Circuits Type C

In [29], a subclass of acyclically testable sequential circuits type B is intro-

duced. This class is called acyclically testable sequential circuits type C, which

has stronger conditions. A property called k-consistency is introduced. Then,

the class of acyclically testable sequential circuits type C is defined based on

k-consistency.

Definition 6.2.11. Let R-graph GR = (V, A, w, r, t) represent a given sequential

circuit S. A set of thru tree B in GR is said to be k-consistent with GR if the

following conditions are satisfied.

i. The dependency graph of B is acyclic;

ii. All thru trees in B are disjoint;
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iii. Let the maximum depth of thru trees in B be Dmax. Let the maximum

length of paths in the dependency graph of B be Lmax. Dmax × Lmax is

bounded by k;

iv. Any vertex that activates a thru tree Ti in B is either an input vertex or a

hold register vertex in B, and activates no other thru tree Tj in B;

v. For each pair of reconvergent paths p1 and p2 that start from u and end

at v, there exists a hold register vertex w on p1 but not on p2 such that

w is not the second vertex x of p1 and the length of the subpath w → v

of p1 is equal to or longer than the length of any other path pk that starts

from w and ends at v if all vertices on p1 and p2 except u, v and x are not

included in any thru tree in B and either of the following Conditions a and

b is satisfied.

a. p1 and p2 are of equal length and the first arc (u, x) on p1 is labeled

with a thru function of a thru tree in B; or

b. p1 is equal to or shorter than p2 and the first arc (u, x) on p1 activates

the thru function coming to the vertex x.

Definition 6.2.12. A sequential circuit S is said to be k-acyclically testable

if the R-graph GR of S contains a set of thru trees B that is k-consistent with GR

and covers all the vertices of a feedback vertex set of GR. A sequential circuit S

is said to be acyclically testable if S is k-acyclically testable for some constant

k.

Example 6.2.12. S3 is an acyclically testable sequential circuit. Its ATEG will

be showed in the following subsection.

Since an acyclic sequential circuit is an acyclically testable sequential cir-

cuit with empty feedback vertex set according to definitions of acyclically testable

sequential circuits, a sequential circuit is acyclically testable if it is acyclic but

the converse is not correct. Therefore, the following theorem is concluded.

Theorem 6.2.13. The class of acyclically testable sequential circuits is a proper

superset of the class of acyclic sequential circuits. (Figure 6.22)
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Figure 6.22. Relationship between acyclically testable sequential circuits and
acyclic sequential circuits.

6.3. Time Expansion Model

Time expansion model (TEM) has been introduced in [30] as a test generation

model for acyclic sequential circuits based on time expansion graph (TEG). A

topology graph is a directed graph of circuit representation where a vertex v

denotes a combinational logic block while an arc (u, v) represents a connection

from combinational logic block u to combinational logic block v. The authors

defined time expansion graph (TEG) for the topology graph of a given acyclic

sequential circuit. To facilitate the discussion of test generation model for acycli-

cally testable sequential circuits, the time expansion graph (TEG) that is used to

derive a time expansion model for a given acyclic sequential circuit represented

by R-graph is redefined.

Definition 6.3.1. Let S be an acyclic sequential circuit and let GR = (V, A, w, h, t)
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be the R-graph of S. Let GT = (VE, AE , T, l) be a directed graph, where VE is

a set of vertices, AE is a set of arcs, T is a mapping from VE to a set of integer

and l is a mapping from VE to the set of vertices in R. If graph GT satisfies

the following five conditions, graph GT is said to be a time-expansion graph

(TEG) of GR.

C1 (Input/Output and register preservation): The mapping l is a surjective,

i.e., ∀v ∈ V, ∃u ∈ VE , s.t.v = l(u).

C2 (Logic preservation) Let u be a vertex in GT . For any direct predecessor

v(∈ pre(l(u))) of l(u) in GR where v �= l(u), there exists a vertex u′ in GT

such that l(u′) = v and u′ ∈ pre(u). Here, pre(v) denotes the set of direct

predecessors of v.

C3 (Time consistency) For any arc (u, v) (∈ AE), there exists an arc (l(u), l(v))

such that T (v) − T (u) = 1 if l(u) corresponds to a register or a primary

input and l(v) corresponds to a register. T (v)−T (u) = 0 if l(u) corresponds

to a register and l(v) corresponds to a primary output.

C4 (Time uniqueness) For any pair of vertices u, v (∈ VE), if T (u) = T (v) and

if l(u) = l(v), then the vertices u and v are identical, i.e., u = v.

C5 (Hold consistency): For any arc (u, v) in GT , if T (v) − T (u) = 1 and

l(v) = l(u) = w, w is a hold register (r(w) = h) that is in hold mode at

T (u) and the number of predecessors of v is one.

Definition 6.3.2. Let S be an acyclic sequential circuit, let GR = (V, A, w, h, t)

be the R-graph of S, and let GT = (VE, AE , T, l) be a TEG of GR. The combi-

national equivalent CE(S) obtained by the following procedure is said to be the

time expansion model (TEM) of S based on GT .

1. For each time frame, replace each vertex with a connection without a regis-

ter and replace each arc with the combinational logic block where the cor-

responding combinational path (represented by the arc) is located. Each

combinational logic block appears at most once at each time frame.

2. A logic gate in each logic block is removed if it is not reachable to any input

of other logic blocks.
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Figure 6.23. Example of time expansion model.(a) Acyclic sequential circuit S8.
(b) R-graph of S8. (c) Time expansion graph of S8. (d) Time expansion model
of S8.
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Example 6.3.1. Figure 6.23(b) shows the R-graph of one of the acyclic sequen-

tial circuit S8 in Figure 6.23(a). Its time expansion graph (TEG) and its time

expansion model (TEM) are derived in Figure 6.23(c) and 6.23(d).

6.4. Acyclically-Extended Time Expansion Model

This section introduces a test generation model called acyclically-extended time

expansion model (ATEM) to perform the test generation on acyclically testable

sequential circuits. The procedure of test generation is also described. In the

following text, the vertex that corresponds to a primary input (resp. primary

output) is called input vertex (resp. output vertex) while the vertex that cor-

responds to a register (resp. flip-flop) is called register vertex (resp. flip-flop

vertex). First, acyclically-extended time expansion graph (ATEG) is defined.

Some properties of ATEG are introduced. Based on ATEG and the properties,

ATEM is redefined.

Definition 6.4.1. Let S be an acyclically testable sequential circuit with acyclic

test thru trees B and let GR = (V, A, w, h, t) be the R-graph of S. The acyclically-

extended time expansion graph (ATEG) GA = (VA, AA, T, l) with respect

to B is a directed graph that satisfies the following conditions.

C1 (Input/Output and register preservation): The mapping l is a surjective,

i.e., ∀v ∈ V , ∃u ∈ VA, s.t. v = l(u).

C2 (Logic preservation for fault excitation phase): Let u be a vertex in GR. For

any direct predecessor v(∈ pre(u)) of u in GR, there exists vertices w and

x in GA such that l(w) = u, l(x) = v, x ∈ pre(w) and |pre(w)| = |pre(u)|.
Here, pre(w) (resp. pre(u)) denotes the set of direct predecessors of w

(resp. u) and |pre(w)| (resp. |pre(u)|) denotes the number of all direct

predecessors of w (resp. u).

C3 (Thru tree for justification and propagation): Let u be a vertex in a thru

tree Ti in B in GR. Let W ⊂ pre(u) be a set of all direct predecessors of u

in Ti. Let tj be a thru function on all incoming arcs of u in Ti and Vtj be a

set of vertices that activate tj . For each u in Ti in B in GR, there exists a

vertex v in GA which satisfies the following conditions.
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i l(v) = u;

ii For each vertex x in pre(v), the following conditions are satisfied.

a. If there exists a vertex w′ in W such that l(x) = w′ then x /∈ pre(z)

for any z where l(z) is a vertex included in any other thru tree Tk

except Ti and x /∈ pre(y) such that l(y) = l(x);

b. Let Tk be a thru tree that is activated by l(x). If l(x) = l(v), then

|pre(v)| = 1 and x /∈ pre(z) for any z where l(z) �= l(v) and l(z)

is a vertex that is not included in thru tree Tk;

c. If l(x) ∈ Vtj , then x /∈ pre(z) for any z where l(z) �= l(x) and l(z)

is a vertex that is not included in thru tree Ti.

|pre(v)| is the number of vertices in pre(v).

C4 (Time consistency): For any arc (u, v) (∈ AA), there exists an arc (l(u), l(v))

such that T (v) − T (u) = 1 if l(u) corresponds to a register or a primary

input and l(v) corresponds to a register. T (v)−T (u) = 0 if l(u) corresponds

to a register and l(v) corresponds to a primary output.

C5 (Time uniqueness): For any pair of vertices u, v (∈ VA), if T (u) = T (v) and

if l(u) = l(v), then the vertices u and v are identical, i.e., u = v.

C6 (Hold consistency): Let u be a vertex in GA. Let v (∈ pre(u)) be a prede-

cessor of u. If |pre(u)| < |pre(l(u))| and l(u) = l(v) = w, then r(w) = h

and |pre(u)| = 1.

C7 (Input Independency): Let u, v be two vertices in GA. Let pi and pj be a

pair of reconvergent paths that start from u and end at v. Let w be a vertex

on pi such that u ∈ pre(w). Let x be a vertex on pj such that u ∈ pre(x).

For each pair of paths pi, pj where w �= x, |pre(w)| = |pre(l(w))| and

|pre(x)| = |pre(l(x))|.

The following three examples are used to explain condition C3.

Example 6.4.1. Figure 6.24(a) shows the time expansion models of S3 that does

not satisfy condition C3(ii)(a). Condition C3(ii)(a) tells that if a vertex w′ at

time m is used to justify another vertex u at time m + 1, then w′ cannot be
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used simultaneously to activate a thru function at time m. In Figure 6.24(a),

I1 at time 3 (corresponding to w′ at time m) is used to justify R2 at time 4

(corresponding u at time m + 1) but at the same time I1 is used to activate thru

functions t1 and t4. This violates Condition C3(ii)(a).

Example 6.4.2. Condition C3(ii)(b) tells that if a vertex r = l(x) is in HOLD

mode at time m, r cannot be used to justify signal for any thru tree through a

thru function at time m. But r can be used to activate a thru function in a thru

tree at time m. In Figure 6.24(b), R2 is in hold mode at time 2 (corresponding

to r at m). At time 2, R2 is used to activate thru functions t1. At the same time,

R2 is used to justify the value of O2 at 3. This violates Condition C3(ii)(b).

Example 6.4.3. Condition C3(ii)(c) tells that when a vertex r = l(x) at time m

is used to activate a thru function going to vertex u at time m+1, r cannot be used

to justify signal for any thru tree through a thru function at time m. But r can

be in HOLD mode. For example, Figure 6.24(c) shows that R2 (corresponding to

r) is activating thru function t1 at time 3 and at the same time R2 is justifying

R5. But these two events are not allowed to happen at the same time.

As the first step of designing a test generation procedure for acyclically

testable sequential circuits, the logic for hold function is assumed fault free. The

tests for these faults can be generated separately and the test generation proce-

dure for these faults will be considered in the future works. To guarantee the test

generation for faults in thru functions, each register in the feedback vertex set

are regarded as having reset function.
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Figure 6.24. Time expansion models of S3 that violates C3.
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Definition 6.4.2. Let S be a given acyclically testable sequential circuit. The

acyclically-extended time expansion model (ATEM) of S is the combi-

national equivalent obtained by the following procedure.

1. For each time frame, replace each vertex with a connection without a regis-

ter and replace each arc with the combinational logic block where the cor-

responding combinational path (represented by the arc) is located. Each

combinational logic block appears at most once at each time frame.

2. A logic gate in each logic block is removed if it is not reachable to any input

of other logic blocks.

3. Each input that corresponds to an output of a register is assigned don’t

care value.

Example 6.4.4. Figure 6.25 shows the ATEM of S3 with respect to output O2.

Figure 6.25. ATEM for S3.

6.5. Test Generation Procedure

For each stuck-at fault in a given acyclically testable sequential circuit, the test

generation process is done as follows using ATEM test generation algorithm.

Multiple fault modeling of [31] is considered.
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Step 1 Generate an acyclically-extended time expansion model (ATEM) of the

sequential circuit.

Step 2 Transform the combinational equivalent ATEM into its multiple fault model.

Step 3 Apply combinational ATPG on the multiple fault model.

Step 4 Derive the test sequence from the test pattern obtained from the test gen-

eration on the multiple fault model of the ATEM.

Theorem 6.5.1. The ATEM test generation algorithm can identify redundancy

and all testable faults.

Theorem 6.5.2. The test generation complexity of the acyclically testable se-

quential circuits is τ 2-bounded.

6.6. Design for Testability Method

In this section, a design for testability(DFT) method to augment a given se-

quential circuit into an acyclically testable sequential circuit is introduced. The

DFT method performs some operations on R-graph and it is designed to induce

minimum area overhead. The procedure consists of the following three steps.

Step 1 Identify the vertices of minimum feedback vertex set (MFVS).

Step 2 Identify existing thru trees.

Step 3 Group the vertices of MFVS into two groups, G1, G2 and G3 as follows.

3.1 Group a vertex u into G1 if it corresponds to a register or input/output

that activate a thru function. If the vertex is in an existing thru tree

Ti, group all the vertices in Ti in G1. If G1 has only input/output, G1

is made empty.

3.2 Group the remaining register vertices in MFVS into G2.

3.3 Group the remaining input/output vertices into G3.

Step 4 For each group of G1 and G2, the following is done.
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4.1 Check that at least one input vertex and one output vertex exist in the

group. If the group does not have input vertex (resp. output vertex),

one input vertex (resp. output vertex) is taken from G3. If G3 does

not have one, a new vertex is added into the group.

4.2 Group each vertex (except output vertex) into a group called potential

source if the vertex does not have an outgoing arc labeled with a thru

function.

4.3 Group each vertex (except input vertex) into a group called potential

destination if the register vertex does not have an incoming arc labeled

with a thru function.

4.4 For each vertex u in the group of potential source, introduce a new

outgoing arc labeled with a new thru function tnew to connect u to

a vertex v in the group of potential destination. u and v are taken

out from the groups of potential sources and potential destination,

respectively.

4.5 Repeat 4.4 until the group of potential destination is empty or the

group of potential desitination has only output vertices.

4.6 For each vertex u in the group of potential source, introduce a new

outgoing arc labeled with a new thru function tnew to connect u to an

output vertex v that does not have an incoming arc labeled with thru

functions. If the group does not have one, an output vertex is taken

from G3 to the group. If G3 does not have one, a new output vertex

is introduced to the group.

Step 5 If G1 is not empty, each register in G1 and G2 is augmented into a hold

register. For other register vertices in MFVS, each register is augmented

into a register with reset function.

Step 1 is done by using an exact algorightm for selecting partial scan flip-flops

introduced in [32]. All the new thru functions tnew introduced in the DFT method

are same. For example tnew = r means the new thru function is activated when

r = 1 where r can be an existing primary input or a new primary input.
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6.7. Case Studies

In the case studies, experiments are conducted on RTL benchmark circuits, which

are datapaths of varying bit width. Our DFT method is applied on the data-

paths of GCD, LWF, JWF, and MPEG and compare the area overhead of the

augmented circuits with that of the full scanned circuits and the partial scanned

circuits. Partial scanned circuits are the circuits whose minimum feedback set

of flip-flops are scanned so that the augmented circuits are acyclic. Thus, the

circuits modified with partial scan and with our DFT method have same test

generation complexity. Table 6.1 presents the characteristics of the benchmark

circuit. Table 6.2 shows the fault coverage and fault efficiency of each benchmark

circuit. Each fault testable in the partial scan designed circuits is also testable in

the corresponding circuit augmented by our DFT method, and vice versa. Table

6.3 shows the area overhead where one unit of area corresponds to the size of

an inverter and pin overhead. It shows that the area overhead of the benchmark

circuits augmented by our method is less than that of the full scanned circuits

and the partial scanned circuits. The pin overhead in our method comes from

the reset function and extra input to control the new thru functions. Table 6.4

tells that the test generation time for the original circuits is large while the test

generation time for the partial scan designed circuits as well as the acyclically

testable sequential circuits is small. Table 6.4 also gives the information that the

test application time of the circuits under our augmentation is more than the

original circuits’ but less than the partial scan.

Table 6.1. Characteristics
Original

B/mark #Flip-flops Area #Primary inputs #Primary outputs
GCD 48 1383 40 19
LWF 80 1763 39 32
JWF 224 5925 106 80

MPEG 1928 46772 499 128
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Table 6.2. Number of faults, fault efficiency and fault coverage

Original Full scan Partial scan Our method
B/mark FC(%) FE(%) FC(%) FE(%) FC(%) FE(%) FC(%) FE(%)
GCD 99.75 99.75 100 100 100 100 100 100
LWF 99.94 99.94 100 100 100 100 100 100
JWF 98.70 98.70 100 100 100 100 100 100

MPEG 84.80 84.80 100 100 100 100 100 100

Table 6.3. Area and pin overhead

Full scan Partial scan Our method
B/mark Area(OH%) Pin OH Area(OH%) Pin OH Area(OH%) Pin OH
GCD 1719(24.30) 3 1495(8.10) 3 1415(2.31) 1
LWF 2323(31.76) 3 1875(6.36) 3 1798(1.99) 2
JWF 7493(26.46) 3 6485(9.45) 3 5957(0.54) 2

MPEG 60268(28.85) 3 47612(1.80) 4 47556(1.68) 2

6.8. Conclusion

A new class called acyclically testable sequential circuits has been introduced.

The test generation complexity of the acyclically testable sequential circuits is

τ 2-bounded. On the other hand, acyclically testable sequential circuits are at-

speed testable. The DFT method to augment an arbitrary sequential circuit

into an acyclically testable sequential circuit has been introduced. Experimental

results showed that the area overhead of the resulting augmented circuits is less

compared to the partial scan designed circuits. Complete fault efficiency is also

achieved and the test generation time is low. Moreover, the test application

time is less than the test application time of the full scanned circuits and partial

scanned circuits.
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Table 6.4. Test generation time and test application time

Test generation time(s) Test application time (clock cycles)
B/mark Original Full Partial Our Original Full Partial Our

scan scan method scan scan method
GCD 87.19 0.02 0.19 0.43 159 6124 3334 815
LWF 49.02 0.02 0.06 0.40 59 4049 1444 196
JWF 1689.14 0.08 0.50 13.48 103 17100 12488 1648

MPEG 2646.42 0.18 12.05 33.91 114 162035 31822 9690
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Chapter 7

Conclusion and Future Works

7.1. Conclusion

τk notation has been introduced in order to clarify the test generation com-

plexity. Based on this notation, balanced sequential circuits, strongly balanced

sequential circuits, internally balanced sequential circuits have been shown to be

τ -equivalent while the class of acyclic sequential circuits has been shown to be

τ 2-bounded. FSR scan technique was introduced. The test generation complex-

ity for FSR scan designed circuits and scan designed circuits were shown to be

equivalent to the circuit kernels of each design. A case study for which FSR

scan design has lower test application time. We introduced several classes of eas-

ily testable cyclic sequential circuits including l-length-bounded testable circuits

and l-length-bounded validity-identifiable circuits with l = O(n), t-time-bounded

testable circuits and t-time-bounded validity-identifiable circuits with t = τ(n)

or τ 2(n), state-shiftable FSM realizations and counter-cycle FSM realizations.

The case studies indicate that state-shiftable FSM realization can be better than

its corresponding counter-cycle FSM realization and its corresponding full scan

designed circuit in certain cases while full scan designed circuit has better result

than its corresponding counter-cycle FSM realization in certain cases.

The relationships between the PDF test generation and SAF test genera-

tion of several existing classes of circuits have been described in this paper. The

PDF test generation of internally balanced sequential circuits under rated clock

and slow-fast-slow clock is equivalent to the SAF test generation of combinational

144



circuits. On the other hand, the PDF test generation of the acyclic sequential

circuits are τ 2-bounded under slow-fast-slow clock. It is shown that under TEM

with slow-fast-slow clock the PDF test generation is not τ -equivalent. The PDF

test generation under slow-fast-slow clock and the SAF test generation of two-

column SSFSM realizations with observable shifting logic are equivalent to the

SAF test generation of the combinational circuits while for two-column distribu-

tive SSFSM realizations, its PDF test generation under slow-fast-slow clock is

τ -equivalent but its SAF test generation is τ 2-bounded.

A new class called acyclically testable sequential circuits has been intro-

duced. The test generation complexity of the acyclically testable sequential cir-

cuits is τ 2-bounded. On the other hand, acyclically testable sequential circuits are

at-speed testable. The DFT method to augment an arbitrary sequential circuit

into an acyclically testable sequential circuit has been introduced. Experimen-

tal results showed that the area overhead of the resulting augmented circuits is

less compared to the partial scan designed circuits. Complete fault efficiency is

also achieved and the test generation time is low. Moreover, the test application

time is less than the test application time of the full scanned circuits and partial

scanned circuits.

7.2. Future Works

Several future works are identified. In Chapter 4, synthesis for testability methods

were done by hand on five mcnc benchmark circuits. Automation is foreseen as

a task that can show the effectiveness of the SFT methods on the larger circuits.

In Chapter 5, several classes of easily testable sequential circuits have been

identified and discussed theoretically but experiment is not done on benchmarks

circuits. A design for testability method can be designed based on the definitions

of the classes of easily testable sequential circuits. On the other hand, only the

test generation complexity for sequential circuits with robust and non-robust

faults was studied. The work can be extended to cover functional sensitizable

and functional unsensitizable path delay faults, as well as transition faults.

The PDF test generation of acyclic sequential circuits and cyclic sequential

circuits was discussed under the assumption of slow-fast-slow clock. The discus-
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sion of PDF test generation of sequential circuits under rated clock remains an

open problem. The conjectures are summarized as follows.

1. Proving that the class of acyclic sequential circuits with stuck-at faults is

not τ -equivalent.

2. Proving that the class of acyclic sequential circuits with path delay faults

is not τ -equivalent.

3. Proving that the SAF test generation of the two-column distributive SSFSM

realizations is not τ -equivalent.

Regarding 1, the test generation complexity for acyclic sequential circuits with

stuck-at faults and path delay faults was proved to be τ 2-bounded under time

expansion model. It has not yet been proved to be not τ -equivalent. The following

are the open problems identified in Chapter 5.

1. Is the PDF test generation of acyclic sequential circuits τ 2-bounded under

rated clock?

2. Is the PDF test generation of acyclic sequential circuits not τ -equivalent

under TEM with rated clock?

3. Is the PDF test generation of acyclic sequential circuits not τ -equivalent

under rated clock?

4. Is the PDF test generation of acyclic sequential circuits under rated clock

equivalent to the SAF test generation of acyclic sequential circuits?

5. Are the PDF test generation under rated clock and the SAF test generation

of two-column SSFSM realizations with observable shifting logic equivalent?

6. Is the PDF test generation of the two-column distributive SSFSM realiza-

tions τ -equivalent under rated clock?

In Chapter 6, a test generation procedure is done on the acyclically testable

sequential circuits under the assumption that the logic related to the hold function

of a register is fault free. As a future work, a test generation method should be
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designed to generate tests for the faults related to the hold function. Furthermore,

it is currently assumed that hold functions are activated only by primary inputs.

But this also should be relaxed so that hold functions are activated by PIs and

registers, in the same way as activating thru functions. The case study was

only conducted on the datapath circuits. It should be extended to the circuits

consisting of datapath and controller.
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