
NAIST-IS-DD0361214

Doctoral Dissertation

Formal Models for XML Access Control

and Aspect-Oriented Programs

beyond Regular Languages

Isao Yagi

September 8, 2006

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Isao Yagi

Thesis Committee:

Professor Hiroyuki Seki (Supervisor)

Professor Minoru Ito (Co-supervisor)

Professor Shunsuke Uemura (Member)

Associate Professor Yuichi Kaji (Co-supervisor)

Formal Models for XML Access Control

and Aspect-Oriented Programs

beyond Regular Languages∗

Isao Yagi

Abstract

Recently, information systems including computer and network systems have

become quite large according to striking development of information technologies.

As systems using these technologies tend to be complicated, system designers of-

ten face unintended consequences of program execution. One of the solutions of

such problems is formal modeling of systems. Given a simple formal model of a

system, we can understand its complicated behavior more easily, and formal anal-

ysis and verification of the system become possible. In this thesis, we endeavor to

provide formal models for access control in XML databases and execution control

in systems based on Aspect-Oriented Programming (AOP). XML access control

and AOP are emerging areas that have received much attention from both re-

searchers and practitioners, and the models for them have not been established

yet. We model both systems based on formal language theory, which is simple

and many analyzing algorithms are known.

In Chapter 2, we propose a formal model for XML database access control

and define a static analysis problem for access control. Given an access control

policy and a query expression, static analysis determines whether the query does

not access any elements nor attributes that are prohibited by the policy. In

a related work, policies and queries were modeled as regular sets of paths in

trees. However, the model cannot accurately represent some policies. We model

∗ Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0361214, September
8, 2006.

i

both a policy and a query as tree automata, and a policy is provided with two

alternative semantics; AND-semantics and OR-semantics. We investigate the

computational complexities of the static analysis problems in AND-semantics and

OR-semantics and show that they are solvable in quadratic time and EXPTIME-

complete, respectively. We show that our query model is sufficiently general by

showing that the expressive power of our model is strictly stronger than Neven’s

query automata. We also discuss a consistency problem of policies in schema

transformation of XML databases and show that the problem is decidable.

In Chapter 3, we propose A-LTS, a simple model of aspect-oriented programs,

based on labeled transition systems. The model is especially concerned with

the recursion of weaving advices, which is not considered in related works. We

investigate the expressive power of A-LTS and show that it is strictly stronger

than finite state machines and strictly weaker than pushdown automata (PDA).

Then we compare in detail the expressive power of A-LTS with a few subclasses

of PDA (or equivalently of context-free grammars): classes of deterministic PDA

and linear grammars. We also discuss the relationship between A-LTS and the

pointcuts of AspectJ, a well-known AOP language, and confirm that they can be

represented by A-LTS.

Keywords:

formal language theory, formal model, XML database, access control, tree au-

tomaton, aspect-oriented programming, labeled transition system, pushdown au-

tomaton

ii

XMLアクセス制御とアスペクト指向プログラムに

対する正規言語を超える表現能力をもった

形式モデルの提案∗

八木 勲

内容梗概

近年，情報技術の著しい発展に伴い，大規模な情報システムが構築されるよ
うになった．このようなシステムは，高度な機能を持つ反面，動作が複雑になる
ため，システム開発者の予期しない振る舞いを行うことがある．この問題を解決
する方法の 1つとして，システムの形式モデル化がある．システムを簡潔な形式
モデルで表すことで，複雑な動作を把握しやすくなり，システムの形式検証にも
利用することができる．本論文では，XMLデータベースのアクセス制御，およ
び，アスペクト指向プログラム (AOP) の実行制御の形式モデル化を試みた．こ
れらの技術は，研究者，開発者の双方から注目されている分野であるが，そのモ
デルは未だ確立されていない．本研究では，簡潔で，かつ，様々な性質が知られ
ている形式言語理論に基づいて，これらをモデル化する．
第 2章では，XMLデータベースのアクセス制御に対する形式モデルを提案し，

アクセス制御の静的解析問題について考察する．静的解析問題とは，アクセス制
御ポリシ（以下，ポリシと呼ぶ）と問い合わせが与えられたとき，ポリシによっ
てアクセスが禁止された要素または属性へのアクセスが発生しないかどうかを，
問い合わせ実行前に調べることをいう．既存研究では，ポリシおよび問い合わせ
を木中のパスの正規集合でモデル化しているが，この方法では正確に表現できな
いポリシが存在する．本論文では，ポリシおよび問い合わせを木オートマトンで
モデル化し，ポリシに 2つの意味論（AND意味論，OR意味論）を与えた．そし
て静的解析問題の時間計算量が，AND意味論の下では 2乗オーダであり，OR意
味論の下では決定性指数時間完全であることを示した．また，提案した問い合わ

∗ 奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-
DD0361214, 2006年 9月 8日.

iii

せモデルの表現能力が，Nevenらの query automaton より真に大きいことを示し
た．さらに，XMLデータベースのスキーマ変換におけるポリシの整合性問題に
ついて議論し，この問題が決定可能であることを示した．
第 3章では，ラベル付き遷移システムに基づいた，アスペクト指向プログラ

ムのモデル A-LTS を提案する．A-LTSは，既存モデルでは考慮されていないア
ドバイスの再帰性を特に考慮している．そして，A-LTSの表現能力が有限状態機
械の表現能力より真に大きく，プッシュダウンオートマトン（PDA）の表現能力
より真に小さいことを示した．さらに，PDA（および，文脈自由文法）のサブク
ラスである，決定性 PDAと線形文法との表現能力の比較も行った．最後に，よ
く知られたAOP言語であるAspectJのポイントカットとA-LTSの関係を議論し，
それらがA-LTSによって表現可能であることを示した．

キーワード

形式言語理論，形式モデル，XMLデータベース，アクセス制御，木オートマト
ン，アスペクト指向プログラミング，ラベル付き遷移システム，プッシュダウン
オートマトン

iv

List of Publications

1 Journal Papers

(1) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Static Analysis Using

Tree Automata for XML Access Control, Computer Software, Vol.23, No.3,

pp.51–65, July 2006.

2 International Conferences (Reviewed)

(1) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Static Analysis Using

Tree Automata for XML Access Control, Automated Technology for Verifi-

cation and Analysis – Third International Symposium, ATVA2005, Taipei,

Taiwan, October 2005, Proceedings, LNCS3707, pp.234–247, Oct. 2005.

3 Workshops

(1) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Formal Model of Aspect-

Oriented Programs Based on Labeled Transition Systems, Technical Report

of IEICE, SS2003–46, pp.1–6, Mar. 2004 (in Japanese).

(2) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Static Analysis Using

Tree Automata for XML Access Control, The Seventh JSSST Workshop on

Programming and Programming Languages (PPL2005), p.43, Mar. 2005 (in

Japanese).

(3) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Static Analysis Using Tree

Automata for XML Access Control, Technical Report of IEICE, SS2005–18,

pp.1–6, June 2005.

(4) Isao Yagi, Yoshiaki Takata and Hiroyuki Seki: A Static Analysis Using Tree

Automata for XML Access Control, Proceedings of the Second Symposium

on Science and Technology for System Verification, AIST–PS–2005–017,

pp.33–51, Oct. 2005.

v

Acknowledgements

During the course of this work, I have received help from many individuals. First,

and foremost, I would like to thank my supervisor Professor Hiroyuki Seki for his

continuous support, encouragement and guidance of the work. Also foremost,

I would like to thank Professor Shunsuke Uemura and Professor Minoru Ito for

their invaluable comments and helpful suggestions concerning this thesis. I also

wish to thank Associate Professor Yuichi Kaji for his valuable comments.

I am very grateful to Assistant Professor Yoshiaki Takata for his valuable

comments and discussions throughout the work.

Finally, I would like to thank all the members of Seki Laboratory.

vi

Contents

List of Publications . v

Acknowledgements . vi

1. Introduction 1

2. Static Analysis using Tree Automata for XML Access Control 5

2.1 Introduction . 5

2.2 Preliminaries . 7

2.2.1 Trees . 7

2.2.2 Tree Automata . 8

2.3 Access Control Model based on Tree Automata 10

2.3.1 Charged Alphabet . 10

2.3.2 Query Automata . 11

2.3.3 Policy Automata . 13

2.3.4 Example . 15

2.3.5 Validity of Query to Access Control Policy 16

2.4 Static Analysis . 22

2.4.1 Problem Statement . 22

2.4.2 Decision Algorithm . 23

2.5 Discussion on query model . 26

2.6 Consistency Problem of Policies in Schema Transformation 29

2.6.1 Problem Statement . 32

2.6.2 Decidability of the Problem 33

2.7 Conclusion of Chapter 2 . 35

vii

3. Formal Model of Aspect-Oriented Programs and Its Expressive

Power 36

3.1 Introduction . 36

3.2 Framework of AOP . 38

3.3 Basic design of program model . 39

3.4 Program model A-LTS . 40

3.4.1 Labeled transition system 40

3.4.2 A-LTS . 41

3.4.3 Formal semantics of A-LTS 42

3.5 Expressive power of A-LTS . 44

3.5.1 Equivalence of models . 44

3.5.2 Comparisons with FSM and PDA 46

3.6 A-LTS and AspectJ . 53

3.6.1 AspectJ . 53

3.6.2 Discussion . 54

3.7 Conclusion of Chapter 3 . 55

4. Conclusion 56

References . 58

viii

List of Figures

2.1 A schema of tree-structured documents 9

2.2 A run of Mt . 9

2.3 An unranked tree and its corresponding binary tree 10

2.4 A sample query in Murata et al. [25] 12

2.5 A sample policy . 15

2.6 A part of the policy of a newspaper browsing system 16

2.7 Consistency problem of policies 32

3.1 Sample aspect-oriented program 39

3.2 A-LTS Framework . 40

3.3 A-LTS recognizing {ambm | 0 < m}. 43

3.4 TSPR for PR in Figure 3.3 . 44

3.5 A-LTS recognizing L2 . 47

3.6 A-LTS recognizing L3 . 47

3.7 A-LTS recognizing L5 . 48

3.8 Deterministic PDA recognizing L1 49

3.9 Deterministic PDA recognizing L2 49

3.10 Deterministic PDA recognizing L4 50

3.11 Deterministic PDA recognizing L7 50

3.12 Relationship between LA-LTS and well-known classes of languages 51

ix

Chapter 1

Introduction

Recently, information systems including computer and network systems have be-

come quite large according to striking development of information technologies.

As systems using these technologies tend to be complicated, system designers

often face unintended consequences of program execution. For example, the be-

havior of a system with exception handling is much complicated, and design-

ers seldom notice wrong control flows until the flows actually take place. In a

database with a large number of users, an access control policy may become

complex, and sometimes a user who should be prohibited from accessing specific

data in the database may unintentionally be allowed accessing them. One of the

solutions of such problems is formal modeling of systems. Given a simple formal

model of a system, we can understand its complicated behavior more easily, and

formal analysis and verification of the system become possible. In this thesis, we

endeavor to provide formal models for access control in XML databases and exe-

cution control in systems based on Aspect-Oriented Programming (AOP). XML

access control and AOP are emerging areas that have received much attention

from both researchers and practitioners, and the models for them have not been

established yet. We model both systems based on formal language theory, which

has the following advantages:

• Models based on formal language theory are simple and easy to analyze.

• Relationship between subclasses of formal languages has widely been inves-

tigated.

1

• Many algorithms such as boolean operations (union, intersection, comple-

ment on languages) and emptiness test are known.

For XML access control, we provide a model based on tree automata and discuss

a static analysis of an access control and its computational complexity. We also

show that the expressive power of our model is more general than Neven’s query

automata [27]. For AOP, we provide a model based on pushdown automata

(PDA) and compare the expressive power of our model with subclasses of PDA.

XML database access control XML is now becoming the de facto stan-

dard for data exchange format and is also widely used as a schema language

for database of structured documents (XML database). Since a schema defined

by XML is more complex than traditional database schema such as relational

database schema, a few query languages specialized to XML database are being

developed such as XPath [7] and XQuery [6]. Access control is one of the most im-

portant technologies for database security, and several models for XML database

access control have been proposed [5, 10, 17, 25]. Usually, an access control policy

(e.g., ‘a professor can read every record of student files,’ and ‘a student can read

the record of her/himself only.’) is provided to a database management system

(DBMS) in advance. When a query is issued, DBMS checks whether the query is

valid for the access control policy. That is, DBMS determines whether the query

is accessing only the portion that the policy permits to access. If the query is

valid, then DBMS permits the access, and the query is aborted otherwise. In this

kind of runtime access control process, DBMS is required to determine whether

or not the access is granted by the policy whenever an element or attribute in an

XML database is being accessed, and this process sometimes brings non-negligible

overhead to DBMS. Static analysis, which decides whether a query is always valid

for (or always against) a policy without examining an actual database, is effec-

tive in overcoming this problem. For example, Murata et al. [25] have shown an

empirical results that 65% of the pairs of queries and policies does not require

runtime access check.

Especially for XML databases, Murata et al. [25] discuss the static analysis

problem that, given an access control policy AP , an XML schema S and a query

R, decides whether the query R is always valid for (or always against) the policy

AP in any XML databases conforming the schema S. In their setting, both

2

a policy and a query are given as XPath expressions and a schema is given as

a regular tree grammar (or equivalently, a tree automaton). Then, three finite

automata on strings are constructed by extracting regular expressions from these

XPath expressions and the tree automaton, and the static analysis problem is

reduced to the set-inclusion problem for regular string languages. They also

present experimental results on static analysis of XMark queries and show their

method is efficient and has enough scalability. They mentioned that they did not

use tree automata because decision procedures for tree automata need more time

and space complexity than string automata. However, using regular expression

as approximation of XPath expression and tree automaton loses information on

the structure of the original tree. For example, we cannot distinguish the first

son labeled with tag ‘a’ and the second son labeled with the same tag ‘a’ in the

regular expression approximation. A more concrete discussion is provided in the

following chapter.

In Chapter 2, we propose a static analysis method based on tree automata

theory. Both a policy and a query are modeled as tree automata, and a policy is

provided with two alternative semantics; AND-semantics and OR-semantics. We

investigate the computational complexity of the static analysis problem. We show

that our query model is sufficiently general by showing that the expressive power

of our model is strictly stronger than Neven’s query automata. We also discuss a

consistency problem of policies in schema transformation of XML databases and

show that the problem is decidable.

Aspect-Oriented Programming AOP is a new programming paradigm ad-

dressing the shortcomings of Object-Oriented Programming (OOP). OOP is not

always suitable for describing functions and operations that cannot be encapsu-

lated within a single class of objects (e.g., logging and synchronizing). These

functions and operations are called crosscutting concerns because they straddle

more than one class. AOP introduces a new module unit “aspect” for describing

a crosscutting concern as a single module. In AOP, any procedure describing a

crosscutting concern can be inserted into a specific execution point of a program.

Each execution point where a procedure can be inserted is called a join point,

and the inserted procedure is called an advice. When an advice is inserted into a

program, we say the advice is woven into a basic program. The set of join points

3

to which a specific advice should be connected is called a pointcut. An aspect

is a pair of an advice and a pointcut.

AOP programs sometimes act contrary to a programmer’s intention because

aspects are tangled with a basic program. One direction to solve this problem

is the formal modeling of AOP programs. Several works on formal modeling of

AOP have been done; however, a simple, clear, and widely accepted formal model

has not been established yet.

In Chapter 3, we propose A-LTS, a simple model of aspect-oriented programs,

based on labeled transition systems. The model is especially concerned with

the recursion of weaving advices, which is not considered in related works. We

investigate the expressive power of A-LTS and show that it is strictly stronger

than finite state machines and strictly weaker than pushdown automata (PDA).

Then we compare in detail the expressive power of A-LTS with a few subclasses

of PDA (or equivalently of context-free grammars): classes of deterministic PDA

and linear grammars. We also discuss the relationship between A-LTS and the

pointcuts of AspectJ and confirm that they can be represented by A-LTS.

4

Chapter 2

Static Analysis using Tree

Automata for XML Access

Control

2.1 Introduction

In this chapter, we propose a formal model for access control of XML databases

and provide a static analysis method for XML access control based on tree au-

tomata theory. Static analysis determines whether a given query does not access

any elements nor attributes that are prohibited by a given policy, for reducing the

cost of runtime check made by DBMS. Following Murata et al. [25], we consider

the node level (or element level) fine-grained access control.

We first model both an access control policy and a query by tree automata

(TA), called a policy TA and a query TA, respectively. For this purpose, we

introduce a charged alphabet to distinguish permission/denial in a policy and

access/non-access in a query in a simple and uniform way. For simplicity, database

schema is not considered in this thesis: A schema defined by DTD or XML schema

can be represented by a tree automaton, and it is easy to incorporate a schema

as a part of a problem instance in our setting. Next, a static analysis problem

is defined based on the tree languages accepted by a policy TA and a query

TA. We introduce two alternative semantics, AND-semantics and OR-semantics.

Generally, an access control policy may contain conflicts, e.g., one rule says that

5

a student file is allowed to read while another rule says no [19, 16]. These two

semantics provide alternative conflict resolution strategies (if any conflict occurs

in a policy). Intuitively, a query is valid for a policy in AND-semantics if for every

tree t, every possible run of the query on t meets all the individual policies for t.

A query is valid for a policy in OR-semantics if for every tree t, every possible run

of the query on t meets one of the individual policies for t. Finally, we investigate

the computational complexity of the static analysis problem and show that the

problem in AND-semantics is solvable in square time while the problem in OR-

semantics is EXPTIME-complete. Also we discuss the generality of the proposed

model of query by comparing it with Neven’s two-way query automata [27] and

show that the expressive power of our model is strictly stronger than Neven’s

one.

Next, we discuss a consistency problem of policies in schema transformation

of XML databases. Let t be an instance of a schema S and t′ be an instance of

a schema S ′ obtained from t by schema transformation. Also let P and P ′ be

a policy for S and one for S ′, respectively. The problem determines whether P ′

protects all the information in t′ that P protects in t. The statement “P ′ protects

all the information in t′ that P protects in t” means that if an access instance τ

for t that is prohibited by P (i.e. τ is not valid for P), then an access instance

τ ′ for t′ that is equivalent to τ in some sense is prohibited by P ′. We define the

consistency problem based on tree transducers [9] and show that it is decidable.

Related Works Several access control models for XML databases have been

proposed [5, 10, 17, 25] but static analysis has not been discussed except Mu-

rata et al. [25]. Our model has two alternative semantics (AND-semantics and

OR-semantics) for a database administrator to choose an appropriate conflict res-

olution strategy according to the database under consideration. For a traditional

database, more sophisticated conflict resolution methods are proposed [19, 16].

The static analysis problem discussed in this chapter can also be considered

as a model checking problem for infinite state systems. Model checking methods

have been proposed for infinite state systems such as pushdown system (PDS),

Petri Net and Process Rewrite Systems [21, 12, 30]. Most of these works are

based on automata theory over strings. For example, LTL model checking for

PDS can be solved by reducing it to the decision problem on the reachability set

6

of the given PDS, which is known to be a regular string language. The analysis

method proposed in this chapter uses tree automata instead of automata on

strings so that more accurate analysis can be performed by taking tree structure

information into consideration.

Several formal models for XML query processing have been proposed (e.g.,

[14, 15, 27]). For example, Hosoya et al. [15] defines a query sublanguage (XDuce)

on top of a general-purpose host language. As the whole system becomes Turing

complete in such an approach, an abstract system (e.g., type system) is usually

defined for static analysis. A two-way query automaton [27] is one of the well-

designed automata-theoretic model for XML query. The model in Neven et al. [27]

is non-Turing complete as well as our model while we show in this chapter that

the expressive power of our model is strictly stronger than the one of their model.

Martens et al. consider a type-checking problem that statically verifies whether

the output of a given schema transformation of any documents of a given input

type always conforms to a given output type and clarify the computational com-

plexity of the problem when a transformation is defined by a top-down unranked

tree transducer [20]. The consistency problem of policies in schema transfor-

mation defined in this chapter can be considered as an extended variant of the

type-checking problem.

2.2 Preliminaries

2.2.1 Trees

Each XML document can be represented by a tree, whose internal nodes corre-

spond to the elements and the attributes in the XML document and the leaf nodes

correspond to the contents of the elements. Such a tree is an unranked tree, which

is a tree in which the number of children of a node is not bound. In this chapter,

we consider only the structure of documents and ignore the nodes corresponding

to the actual values contained within the elements and the attributes; that is, we

only consider trees in which every node is labeled the name of an element or an

attribute.

We assume that we are given a finite alphabet Σ and each node label is chosen

7

from Σ. A tree in which each node is labeled a symbol in Σ is called a Σ-tree.

The set of unranked Σ-trees is denoted by TΣ. Formally, the unranked Σ-trees

are defined as strings which represent the tree structure. TΣ is the smallest set of

strings over Σ and the parenthesis symbols ‘(’ and ‘)’ such that for every σ ∈ Σ

and w ∈ T ∗
Σ, σ(w) is in TΣ (T ∗

Σ is the Kleenean closure of TΣ). We abbreviate σ()

to σ. The set of nodes or positions of a tree t is denoted by Dom(t). The root

node of t is denoted by root(t). For every tree t and every u ∈ Dom(t), the label

of u in t is denoted by labt(u).

2.2.2 Tree Automata

A nondeterministic tree automaton (NTA) [9, 24, 26] M = (Q, Σ, δ, F) is a 4-tuple

where

• Q is the finite set of states,

• Σ is the alphabet,

• δ : Q × Σ → 2Q∗
is the transition function such that δ(q, a) is a regular

language over Q, and

• F ⊂
= Q is the set of accepting states.

A run of M on a Σ-tree t is a labeling λ : Dom(t) → Q such that for every

v ∈ Dom(t) and its children v1, . . . , vn, λ(v1) . . . λ(vn) ∈ δ(λ(v), labt(v)). A run

is accepting if and only if the root is labeled with an accepting state. The set of

Σ-trees accepted by M is denoted by L(M) and we say that M recognizes the

tree language L(M). A tree language is regular if it is recognized by some NTA.

Let ‖M‖ be the description length of M .

For example, consider a schema of tree-structured documents illustrated in

Figure 2.1. The set of trees conforming the schema is recognized by an NTA Mt

defined as follows. Note that the value of δ(q, a) for each q ∈ Qt and a ∈ Σt is

denoted by a regular expression (which allows the operator ‘+’ that means one

or more repetition). The empty string is denoted by ε.

Mt = (Qt, Σt, δt, Ft) where

• Qt = {qt, qp, qs, qd},

8

title paragraph paragraph

sectiontitle

document

section

. . .

. . .

title paragraph paragraph. . .

Figure 2.1. A schema of tree-structured documents

title paragraph

sectiontitle

document

section

title paragraph paragraph

q
d

q
t

q
t

q
t

q
s

q
p

q
p

q
s

q
p

a sample tree t a run of Mt on t

Figure 2.2. A run of Mt

• Σt = {document , title, section, paragraph},

• δt(qp, paragraph) = ε,

δt(qt, title) = ε,

δt(qs, section) = qtqp
+,

δt(qd, document) = qtqs
+,

δt(q, a) = ∅ for any other pair of q ∈ Qt and a ∈ Σt, and

• Ft = {qd}.

By this definition, L(Mt) is the set of trees whose root labeled document has

a leaf child labeled title as well as one or more children labeled section, and each

child of the root labeled section has a leaf child labeled title as well as one or

more leaf children labeled paragraph. Figure 2.2 shows a sample tree t and a run

of Mt on t.

It is known that every unranked tree can be converted into a binary tree [26].

Let tbin be the binary tree obtained by this conversion from an unranked tree

t. Each node v of an unranked tree t has exactly one corresponding node vb of

9

e f g

b

a

dc
e

g

b

a

c

df

ε

ε

Figure 2.3. An unranked tree and its corresponding binary tree

tbin. The left child and the right child of vb represent the eldest child of v and

the immediately following sibling of v, respectively. If v has no child but has a

younger sibling, then the left child of vb is labeled ε. If v has a child but has no

younger sibling, then the right child of vb is labeled ε (Figure 2.3).

We can convert an NTA M = (Q, Σ, δ, F) for unranked trees into an NTA

Mb for binary trees such that L(Mb) = {tbin | t ∈ L(M)} and ‖Mb‖ is at most

O(‖M‖2), if δ(q, a) is given as a finite automaton over Q for any q ∈ Q and

a ∈ Σ. Hence, for simplicity, we consider only tree automata for binary trees.

The transition function of a tree automaton for binary trees is restricted to δ :

Q×Σ → 2{ε}∪(Q×Q). Note that we use unranked trees in examples for readability.

Similar to regular string languages, regular tree languages have the following

good properties.

Lemma 1 (Sections 1.3 and 1.7 of [9]). For a tree t and a regular tree language

L, membership (t ∈ L?) and emptiness (L = ∅?) are decidable. The class of

regular tree languages is closed under boolean operations. Thus, for regular tree

languages L1 and L2, inclusion (L1 ⊂= L2?) is also decidable.

2.3 Access Control Model based on Tree Automata

2.3.1 Charged Alphabet

For a given alphabet Σ, let Σ+,− be the alphabet whose elements are the symbols

in Σ augmented with the positive and the negative signs (‘+’ and ‘−’); that is,

Σ+,− = Σ× {+,−}. Σ+,− is called the charged alphabet of Σ. For readability, we

10

write the augmented symbol (a, +) as a+ and (a, −) as a−. Let Σ+ = {a+ | a ∈ Σ}
and Σ− = {a− | a ∈ Σ} (i.e., Σ+,− = Σ+ ∪ Σ−). Each Σ+,−-tree is called a

charged tree. The uncharged tree of a charged tree τ is the tree obtained from

τ by removing all + and − from the node labels of τ . The uncharged tree of

τ ∈ TΣ+,− is denoted by uc(τ). An equivalence relation ≈uc over TΣ+,− is defined

as τ1 ≈uc τ2 if and only if uc(τ1) = uc(τ2). Note that we defined a Σ-tree as a

string consisting of symbols in Σ and the parenthesis symbols in Section 2.2.1.

In the rest of this chapter, we sometimes use the string notation of trees.

Example 1. Let τ1 = a+(b−(c+d−)e+) and τ2 = a+(b+(c−d−)e−). Then uc(τ1) =

uc(τ2) = a(b(c d)e) and thus τ1 ≈uc τ2.

2.3.2 Query Automata

A query tree automaton (query TA for short) MR = (QR, Σ+,−, δR, FR) is an NTA

where Σ+,− is the charged alphabet of a given alphabet Σ.

Intuitively, a query TA MR specifies the set of nodes accessed by the query for

each XML document. For instance, assume that τ ∈ L(MR) and t = uc(τ). This

means that when we apply the query to the XML document represented by t, the

query accesses every node u of t such that labτ (u) ∈ Σ+ and does not access any

node v such that labτ (v) ∈ Σ−. For example, a+(b−(c+d−)e+) ∈ L(MR) means

that the query accesses exactly the nodes labeled by a, c, and e when it is applied

to the tree a(b(c d)e). Note that when we say “a query accesses a node,” we mean

that the query reads (or updates, etc.) the contents of the node, not the label of

the node. In this chapter, only this kind of accesses is controlled by policies, and

a query always can examine the label of each node regardless of a policy.

We can say that a charged tree τ represents a pair of a Σ-tree t and a subset

of nodes of t accessed by a query, and we call τ an access instance. If there

exist τ1 and τ2 in L(MR) such that uc(τ1) = uc(τ2) = t, then one of the accesses

represented by τ1 and τ2 is nondeterministically chosen.

Figure 2.4 is a sample query taken from Murata et al. [25], which is writ-

ten in XQuery. We model this query by a query TA described below. As the

same as in Murata et al. [25], we consider only XPath location expressions oc-

curring in the FLWR expression (which consists of a FOR, LET, WHERE, and

11

<TreatmentAnalysis>

{

for $r in document(‘‘medical_record’’)/record

where $r/diagnosis/pathology/@type = ‘‘Gastric Cancer’’

return

$r/diagnosis/pathology, $r//comment

}

</TreatmentAnalysis>

Figure 2.4. A sample query in Murata et al. [25]

RETURN clause) of the query. This query contains the following XPath location

expressions. (Note that /record is substituted for variable $r.) We consider that

the query accesses the nodes pointed by these location expressions and does not

access any other nodes.

• /record

• /record/diagnosis/pathology/@type

• /record/diagnosis/pathology

• /record//comment

Let Σ be the alphabet of the XML database that is the target of the query,

i.e., {record , diagnosis , pathology , comment , @type} ⊂
= Σ. A query TA which

models the query should accept any τ ∈ TΣ+,− such that for each node u of uc(τ),

labτ (u) ∈ Σ+ if and only if u is pointed by one of the above location expressions.

We can define such a query TA Mq. Note that for any τ ∈ TΣ− , there exists a

run λ of Mq such that λ(root(τ)) = qF , by the third line of the definition of δq.

Thus Mq accepts any τ ∈ TΣ− such that labuc(τ)(root(uc(τ))) 6= record 1 .

Mq = (Qq, Σ
+,−, δq, Fq) where

1 Note that a query TA does not represent the computation steps of an actual query, but
represents the set of nodes that the query accesses. That is, we only consider charged trees
that are accepted by a query TA and do not consider the computation steps of it.

12

• Qq = {qA, qR, qF , qD, qR1, qP},

• δq(qA, record+) = qR
∗,

δq(qA, x−) = qF
∗ for ∀x ∈ Σ − {record},

δq(qF , y−) = qF
∗ for ∀y ∈ Σ,

δq(qR, diagnosis+) = qD
∗,

δq(qR, comment+) = qR1
∗,

δq(qR, z−) = qR1
∗ for ∀z ∈ Σ − {diagnosis , comment},

δq(qR1, comment+) = qR1
∗,

δq(qR1, u
−) = qR1

∗ for ∀u ∈ Σ − {comment},
δq(qD, pathology+) = qP

∗,

δq(qD, comment+) = qR1
∗,

δq(qD, v−) = qR1
∗ for ∀v ∈ Σ − {pathology , comment},

δq(qP , @type+) = qR1
∗,

δq(qP , comment+) = qR1
∗,

δq(qP , w−) = qR1
∗ for ∀w ∈ Σ − {@type, comment},

δq(q, a) = ∅ for any other pair of q ∈ Qq and a ∈ Σ+,−, and

• Fq = {qA}.

The reader might think that there is a gap between the definition of query

automata and XML query in real world: A query is naturally considered as a

mapping from an input tree t to a subset of nodes in t selected by the query. In

Section 2.5, we will compare our model with an existing model that encodes a

query in a more direct way.

2.3.3 Policy Automata

An access control policy determines the set of nodes that a user is allowed to

access for a given tree. Murata et al. modeled a policy as a regular set of paths

in a tree [25]. However, some policies cannot be represented by their model. For

example, consider a policy that prohibits a user from accessing any subtree rooted

by a node v labeled c if there exists a node labeled h among the descendants of

v. This policy models a policy such that if a section of an article is labeled

confidence, then a user is prohibited from accessing any node in the chapter that

13

includes the confidential section. This policy should include the charged trees in

Figure 2.5. In the policy specification language introduced in Murata et al. [25],

this policy can be specified by the following three rules.

• (s, +r, //*)

• (s, −r, //c[.//h])

• (s, −r, //c[.//h]//*)

The first rule means that subject s is allowed to access the nodes pointed by

the XPath location expression (which points every node in a tree)2 . The second

and third rules denote prohibition. A rule for prohibition for a node overrules

any rules for permission for the same node. We show that this policy cannot be

represented accurately by the model in Murata et al. [25]. In the model, each

location expression in such rules is modeled as a regular expression. For example,

the location expressions in the above rules are modeled as Σ∗Σ, Σ∗c, and Σ∗cΣ∗Σ,

respectively (i.e., the predicate [.//h] is conservatively approximated by ‘true’).

It means that a user is prohibited from accessing any node pointed by a path

denoted by Σ∗cΣ∗ in the approximated policy. Thus any node in the subtree

rooted by a node labeled c cannot be accessed, even if the node does not have a

descendant labeled h.

To solve this problem, we model a policy as a tree automaton. An access

control policy tree automaton (policy TA for short) MAP = (QA, Σ+,−, δA, FA) is

an NTA where Σ+,− is the charged alphabet of a given alphabet Σ. A policy TA

MAP specifies the set of nodes which a user is permitted to access for each XML

document. When we apply the policy to a tree t and if there is a charged tree

τ ∈ L(MAP) such that uc(τ) = t, then the policy permits a user to access every

node u of t such that labτ (u) ∈ Σ+ and prohibits him or her from accessing any

node v of t such that labτ (v) ∈ Σ−.

When we provide a database with access control, the following two cases may

exist.

• We would like to prohibit users from accessing some data in a database

2 The letter ‘r’ in the second component means ‘read’.

14

d e

a

cb

f g

+

+

++

+

+

+

d e

a

cb

f g

−

−

−−

−

+

+

h−

Figure 2.5. A sample policy

where most of its data are open to public. That is, we may specify a policy

consisting of prohibition rules.

• We would like to permit users to access some data in a closed database.

That is, we may specify a policy consisting of permission rules.

To model these cases, we provide a policy TA with two alternative semantics:

AND-semantics and OR-semantics. In AND-semantics, every charged tree τ1 in

a query (i.e., L(MR)) has to be valid for all charged trees τ2 such that τ1 ≈uc τ2

in the policy (i.e., L(MAP)). In OR-semantics, every charged tree τ1 in a query

has to be valid for at least one charged tree τ2 such that τ1 ≈uc τ2 in the policy.

AND-semantics models the former case, while OR-semantics models the letter

case. Formal definitions of AND-semantics and OR-semantics are provided in

Section 2.3.5.

2.3.4 Example

A policy of a newspaper browsing system is given by a policy TA as an example.

For readability, we use unranked (not binary) trees and tree automata in this

section. A newspaper browsing system which distributes electronic newspapers

on the Web may have the following policy.

The system permits users to read exactly one article which they would

like to read among all articles, and prohibits them from reading the

other articles at the same time.

15

newspaper+

article article article

newspaper newspaper++

+ - - article article article- + - article article article- - +

Figure 2.6. A part of the policy of a newspaper browsing system

The policy can be represented by an (infinite) set of charged trees. Figure

2.6 is a part of the policy that consists of charged trees for a newspaper with

three articles. We use OR-semantics in this example, i.e., each query should be

valid for at least one of these charged trees. Thus, the user is permitted to access

exactly one article among all the three articles. The policy TA of this system is

as follows.

Mn = (Qn, Σ
+,−
n , δn, Fn) where

• Qn = {q0, q1, q2},

• Σn = {newspaper , article},

• δn(q1, article
+) = ε,

δn(q2, article
−) = ε,

δn(q0, newspaper+) = q2
∗q1q2

∗,

δn(q, a) = ∅ for any other pair of q ∈ Qn and a ∈ Σ+,−
n , and

• Fn = {q0}.

2.3.5 Validity of Query to Access Control Policy

In Section 2.3.3, we stated two alternative intuitive semantics of a policy TA.

In this section, we define them formally. For the rest of this chapter, we fix an

alphabet Σ. First we define a partial order ¹ over TΣ+,− , and then define the two

semantics of a policy TA using ¹ in Definition 3.

Definition 1. For charged trees τ1 and τ2 in TΣ+,− , τ1 ¹ τ2 if and only if the

following two properties hold.

• uc(τ1) = uc(τ2).

16

• For every node u of τ1, if labτ2(u) ∈ Σ+, then labτ1(u) ∈ Σ+.

Proposition 1. The relation ¹ is a partial order over TΣ+,−.

Intuitively, τ1 ¹ τ2 means that τ2 is obtained from τ1 by changing the sign +

of zero or more nodes into −. If τ1 is in the language of a policy TA and τ2 is in

the one of a query TA, then τ1 ¹ τ2 means that all the accessed nodes represented

by τ2 is permitted by τ1.

Example 2. If τ1 = a+(b+c+) and τ2 = a+(b−c+), then τ1 ¹ τ2. However,

if τ1 = a+(b+c−) and τ2 = a+(b−c+), then τ1 6¹ τ2, because the sign of the

node labeled by c in τ1 is − while the sign of the corresponding node in τ2 is +.

Similarly, τ2 6¹ τ1 for the latter example.

We overload the symbol ¹ for a partial order over {+,−} for convenience.

Definition 2. A partial order ¹ over {+,−} is defined as + ¹ − and − 6¹ +.

AND-semantics and OR-semantics of a policy TA are defined as follows us-

ing ¹.

Definition 3. 1. MR is valid for MAP in AND-semantics if and only if ∀τ1 ∈
L(MR), ∀τ2 ∈ L(MAP), τ1 ≈uc τ2 ⇒ τ2 ¹ τ1.

2. MR is valid for MAP in OR-semantics if and only if ∀τ1 ∈ L(MR),∃τ2 ∈
L(MAP), τ2 ¹ τ1.

Example 3. Let τ1 = a+(b−c+) and τ2 = a+(b+c−) as in the latter case of

example 2. We consider each combination of three policies (∅, {τ1}, {τ1, τ2}) and

two queries ({τ1}, {τ1, τ2}). The validity of MR to MAP in AND-semantics is

summarized in the following table.

L(MAP)

∅ {τ1} {τ1, τ2}
L(MR) {τ1} valid valid not valid

{τ1, τ2} valid not valid not valid

In a similar way, the validity of MR to MAP in OR-semantics is summarized

in the following table.

17

L(MAP)

∅ {τ1} {τ1, τ2}
L(MR) {τ1} not valid valid valid

{τ1, τ2} not valid not valid valid

For convenience, we define the following relations and operations over the

subsets of TΣ+,− . As stated in Lemma 2, v and vA characterize OR-semantics

and AND-semantics, respectively. L↑ is intuitively the set which contains all

upper-bounds (with respect to ¹) of each τ ′ ∈ L, while L↑A is the set which

contains all upper-bounds of each equivalent class defined by ≈uc in L. L↓ is

the set of the minimal elements (with respect to ¹) in L. The minimum (resp.

maximum) of the cardinality of each equivalent class defined by ≈uc in L is

denoted by min(L) (resp. max(L)).

Definition 4. Let L, L1, and L2 be subsets of TΣ+,−. We define the following

relations and operations.

• L1 v L2 ⇔ ∀τ2 ∈ L2,∃τ1 ∈ L1, τ1 ¹ τ2.

• L1 vA L2 ⇔ ∀τ2 ∈ L2, ∀τ1 ∈ L1, τ1 ≈uc τ2 ⇒ τ1 ¹ τ2.

• L↑ = {τ | τ ′ ¹ τ for ∃τ ′ ∈ L}.

• L↑A = {τ | τ ′ ¹ τ for ∀τ ′ ∈ L such that τ ≈uc τ ′}.

• L↓ = {τ ∈ L | there is no τ ′ ∈ L such that τ ′ � τ}.

• min(L) = mint∈TΣ
|{τ ∈ L | uc(τ) = t}|.

• max(L) = maxt∈TΣ
|{τ ∈ L | uc(τ) = t}|.

By the definition, the following lemma holds obviously. This lemma charac-

terizes the two semantics by v and vA.

Lemma 2. MR is valid for MAP in OR-semantics if and only if L(MAP) v
L(MR). MR is valid for MAP in AND-semantics if and only if L(MAP) vA

L(MR).

18

In the following, we discuss the relationship between the two semantics. As

stated in Theorem 1, Theorem 2, and Corollary 1, the expressive power of OR-

semantics is properly stronger than AND-semantics. Theorem 2 shows a nec-

essary and sufficient condition for a given policy TA in OR-semantics to have

an equivalent policy TA in AND-semantics. However, the problem to determine

whether this condition holds is EXPTIME-complete, as shown in Theorem 3.

Moreover, Corollary 2 and Theorem 7 in Section 2.4 imply that constructing a

policy TA in AND-semantics that is equivalent to a given policy TA MAP in

OR-semantics requires exponential time to ‖MAP‖ in general.

Lemma 3. L↑A v L′ if and only if L vA L′.

Proof. It is sufficient to show that the following two statements are equivalent.

1. ∀τ2 ∈ L′, ∃τ1 ∈ L↑A, τ1 ¹ τ2.

2. ∀τ2 ∈ L′, ∀τ3 ∈ L, τ3 ≈uc τ2 ⇒ τ3 ¹ τ2.

(1 ⇒ 2) Assume that statement 1 holds and let τ2 ∈ L′. By statement 1, ∃τ1 ∈
L↑A, τ1 ¹ τ2 (and thus τ1 ≈uc τ2). By the definition of L↑A, τ3 ≈uc τ1 ⇒ τ3 ¹ τ1

for ∀τ3 ∈ L. Assume that τ3 ∈ L and τ3 ≈uc τ2. Then, τ3 ≈uc τ1 and τ3 ¹ τ1 ¹ τ2.

(2 ⇒ 1) Assume that statement 2 holds. By the definition of L↑A, L′ ⊂
= L↑A.

Thus, statement 1 holds by letting τ1 = τ2.

Lemma 4. If L is regular, then L↑A is also regular.

Proof. Let M = (Q, Σ+,−, δ, F) be an NTA such that L = L(M). We construct

an NTA MA = (QA, Σ+,−, δA, FA) such that L(MA) = L↑A as follows.

• QA = Q × {0, 1},

• FA = F × {1},

• δA is the function such that for each qA ∈ QA and aA ∈ Σ+,−, δA(qA, aA)

is the smallest set satisfying the followings for any q, q1, q2 ∈ Q, a ∈ Σ,

s1, s2 ∈ {+,−}, and d1, d2 ∈ {0, 1}.

– δA((q, 0), as1) 3 ε if δ(q, as2) 3 ε and s2 ¹ s1.

– δA((q, 1), a+) 3 ε if δ(q, a−) 3 ε.

19

– δA((q,max(d1, d2)), a
s1) 3 (q1, d1)(q2, d2) if δ(q, as2) 3 q1q2 and s2 ¹ s1.

– δA((q, 1), a+) 3 (q1, d1)(q2, d2) if δ(q, a−) 3 q1q2.

Note that max(d1, d2) denotes the larger value of d1, d2 ∈ {0, 1}.

Intuitively, MA behaves as follows. For any τ1 ∈ TΣ+,− , τ1 ∈ L↑A if and only

if there exists a tree τ2 ∈ L such that τ2 ≈uc τ1 and τ2 6¹ τ1; that is, there exists

a node v of τ1 such that labτ1(v) ∈ Σ+ and labτ2(v) ∈ Σ−. To accept such τ1, MA

simulates a run of M on a tree τ2, by ignoring the positive and negative signs

of the node labels, and by the second component of each state, MA indicates for

each node v of τ2 that labτ1(v) ∈ Σ+ and labτ2(v) ∈ Σ− or a descendant of v

fulfills this property. When this property holds on v, there exists a run λ of MA

such that the second component of λ(v) is 1. Thus, MA exactly accepts τ2 ∈ L↑A.

By Lemma 1, L↑A is regular, since L↑A is regular.

Theorem 1. For any policy TA MAP in AND-semantics, we can convert it into

an equivalent policy TA M ′
AP in OR-semantics.

Proof. By Lemma 3, L(MAP) vA L(MR) if and only if L(MAP)↑A v L(MR) for

any query TA MR. By Lemma 4, we can obtain a policy TA M ′
AP such that

L(M ′
AP) = L(MAP)↑A.

Lemma 5. If L is regular, then L↓ is also regular.

Proof. Let L↑P = {τ ∈ TΣ+,− | τ ′ � τ for ∃τ ′ ∈ L}. We can construct an NTA

that recognizes L↑P in a similar way to the NTA that recognizes L↑A in the proof

of Lemma 4. Since L↓ = L − L↑P , L↓ is also regular if L is regular.

Theorem 2. For any policy TA MAP in OR-semantics, max(L(MAP)↓) ≤ 1 if

and only if there is a policy TA M ′
AP in AND-semantics that is equivalent to

MAP .

Proof. (⇒) Let L(M ′
AP) = L(MAP)↓ ∪ (TΣ− − h (L(MAP))), where h is a homo-

morphism such that h (a+) = h (a−) = a− for every a ∈ Σ.

(⇐) Assume that max(L(MAP)↓) > 1. Then there are τ1, τ2 ∈ L(MAP) such

that τ1 ≈uc τ2, τ1 6= τ2, and there is no τ ∈ L(MAP) that satisfies τ � τ1 or

τ � τ2. Let L(MR1) = {τ1, τ2} and L(MR2) = {τ1 u τ2}, where τ1 u τ2 is the

20

greatest lower bound3 (with respect to ¹) of {τ1, τ2}. Then L(MAP) v L(MR1)

and L(MAP) 6v L(MR2), since there is no τ ∈ L(MAP) such that τ ¹ τ1 u τ2 � τ1.

However, for any L′ ⊂
= TΣ+,− , L′ vA L(MR1) implies L′ vA L(MR2). Therefore

there is no policy in AND-semantics that is equivalent to MAP .

Corollary 1. There is a policy TA in OR-semantics such that there is no equiv-

alent policy TA in AND-semantics.

Proof. The policy TA Mn in Section 2.3.4 is an example. Let τ1 = n+(a+a−) and

τ2 = n+(a−a+) in the proof of Theorem 2 (newspaper and article are abbreviated

to n and a, respectively).

Lemma 6. The problem to determine whether a given NTA MAP over Σ+,−

satisfies max(L(MAP)) ≤ 1 is solvable in polynomial time.

Proof. We construct an NTA M over Σ that recognizes the following language.

L(M) = { t ∈ TΣ | There exist some τ1, τ2 ∈ L(MAP)

such that t = uc(τ1) = uc(τ2) and τ1 6= τ2 }

L(M) = ∅ if and only if max(L(MAP)) ≤ 1.

M with ‖M‖ = O(‖MAP‖2) can be constructed as follows. Let MAP =

(Q, Σ+,−, δ, F). M is defined as M = (Q ∪ (Q×Q), Σ, δ′, F × F), where δ′ is the

function such that for each q ∈ Q ∪ (Q × Q) and a ∈ Σ, δ′(q, a) is the smallest

set satisfying the followings for q1, q2, . . . ∈ Q and s, s′ ∈ {+,−}.

• q1q2 ∈ δ′(q3, a) if q1q2 ∈ δ(q3, a
s).

• q1q2 ∈ δ′(〈q3, q4〉 , a) if q1q2 ∈ δ(q3, a
+) and q1q2 ∈ δ(q4, a

−).

• 〈q1, q2〉 q3 ∈ δ′(〈q4, q5〉 , a) if q1q3 ∈ δ(q4, a
s) and q2q3 ∈ δ(q5, a

s′).

• q1 〈q2, q3〉 ∈ δ′(〈q4, q5〉 , a) if q1q2 ∈ δ(q4, a
s) and q1q3 ∈ δ(q5, a

s′).

Since the emptiness problem is solvable in polynomial time, this lemma holds.

Theorem 3. The problem to determine whether a given policy TA MAP in OR-

semantics has an equivalent policy TA in AND-semantics is EXPTIME-complete.

3 τ1 u τ2 is a charged tree such that uc(τ1 u τ2) = uc(τ1) = uc(τ2) and for every node u in
τ1 u τ2, labτ1uτ2(u) ∈ Σ− if and only if labτ1(u) ∈ Σ− and labτ2(u) ∈ Σ−

21

Proof. We can construct an NTA that recognizes L(MAP)↑P (defined in the proof

of Lemma 5) in polynomial time to ‖MAP‖. Thus, an NTA M↓ that recognizes

L(MAP)↓ = L(MAP) − L(MAP)↑P can be constructed in exponential time to

‖MAP‖. By Lemma 6, the problem to determine whether max(L(MAP)↓) ≤ 1 is

solvable in polynomial time to ‖M↓‖, that is exponential to ‖MAP‖.
This problem is EXPTIME-hard because the following problem known as

EXPTIME-complete (Theorem 14 in [9]) can be transformed to the problem.

Regular Tree Language Non-Universality (RTLNU)

Input: An NTA M over a finite alphabet Σ.

Output: L(M) 6= TΣ?

Let M be an instance of RTLNU and Σ be the alphabet of M . We choose an

element a in Σ and fix it. For M and a, we construct an NTA MAP over Σ+,−

that recognizes the following tree language.

L(MAP) = { a+(a+ τ) | τ ∈ TΣ+ and uc(τ) ∈ L(M) }
∪ { a−(a+ τ) | τ ∈ TΣ+ }
∪ { a+(a− τ) | τ ∈ TΣ+ }

MAP can be constructed in polynomial time to ‖M‖, and max(L(MAP)↓) ≤ 1 if

and only if L(M) = TΣ. Thus this theorem holds.

2.4 Static Analysis

2.4.1 Problem Statement

The static analysis problem in AND-semantics (resp. OR-semantics) for MR and

MAP is defined as follows.

Input: A query TA MR and a policy TA MAP over the same charged alphabet

Σ+,−.

Output: “YES” if MR is valid for MAP in AND-semantics (resp. OR-semantics)

and “NO” otherwise.

By Theorem 1, it is sufficient to give an algorithm for the problem in OR-

semantics. We propose such an algorithm and discuss the time complexity of it.

22

2.4.2 Decision Algorithm

We show that the static analysis problem in OR-semantics is decidable (Theorem

4), using the following Lemmas 7 and 8. By these lemmas, we can reduce the

static analysis problem in OR-semantics to the set-inclusion problem of regular

tree languages.

Lemma 7. L1 v L2 ⇔ L2 ⊂= L1↑.

Proof. L2 ⊂= L1↑ implies τ2 ∈ L1↑ for ∀τ2 ∈ L2. By the definition of L1↑, τ1 ¹ τ2

for some τ1 ∈ L1, and thus L1 v L2. The converse can be shown by the reverse

way.

Lemma 8. If L is regular, then L↑ is also regular.

Proof. Let M = (Q, Σ+,−, δ, F) be an NTA such that L = L(M). We define

M↑ = (Q, Σ+,−, δ↑, F) as follows. For each q ∈ Q and a ∈ Σ,

• δ↑(q, a−) = δ(q, a+) ∪ δ(q, a−), and

• δ↑(q, a+) = δ(q, a+).

We can easily show that L(M↑) = L↑.

Theorem 4. The static analysis problem for MR and MAP in OR-semantics is

decidable.

Proof. L(MAP)↑ is regular by Lemma 8 and thus L(MR) ⊂= L(MAP)↑ is decidable

by Lemma 1. Therefore, this theorem holds by Lemma 2 and Lemma 7.

From the proof of Theorem 4, we obtain the following algorithm for solving

the static analysis problem in OR-semantics.

Algorithm 1 Perform the following two steps in this order.

1. Construct an NTA Mb such that L(Mb) = L(MR) ∩ L(MAP)↑.
2. Decide whether L(Mb) = ∅ or not.

Next, we consider the time complexity of the problem. By the following two

lemmas, Algorithm 1 can be performed in O(‖MR‖ · ‖N‖) time where N is an

NTA such that L(N) = L(MAP)↑.

23

Lemma 9 (Section 1.3 of [9]). For NTAs M1 and M2, we can construct an NTA

M such that L(M) = L(M1) ∩ L(M2) and ‖M‖ = O(‖M1‖ · ‖M2‖).

Lemma 10 (Theorem 11 in [9]). For an NTA M , emptiness of L(M) is decidable

in O(‖M‖) time.

On the other hand, Step 1 of Algorithm 1 would require the construction of

an NTA N such that L(N) = L(MAP)↑; however, its size would be exponential

to ‖MAP‖ in general4 . In fact, the problem is EXPTIME-complete in general as

shown below.

Theorem 5. The static analysis problem in OR-semantics is EXPTIME-complete.

Proof. We can construct an NTA N such that L(N) = L(MAP)↑ and ‖N‖ =

O(c‖MAP ‖) for some constant c > 1. Thus the problem is in EXPTIME by

Lemma 9 and Lemma 10. EXPTIME-hardness can be shown by transforming

RTLNU problem (in the proof of Theorem 3) to the static analysis problem.

From a given instance M of RTLNU, we construct MAP as the same as M except

that its alphabet is Σ+ and it uses a+ ∈ Σ+ instead of each a ∈ Σ. We let

MR be an NTA such that L(MR) = TΣ+ . Obviously, MR is valid for MAP in

OR-semantics if and only if L(MAP) = TΣ+ , i.e., L(M) = TΣ.

Theorem 5 can be strengthened as follows.

Theorem 6. The static analysis problem in OR-semantics is EXPTIME-complete

even if the policy TA MAP is required to satisfy either

1. max(L(MAP)) ≤ 1, or

2. 1 ≤ min(L(MAP)).

Proof. 1. The theorem in this case can be proved as the same as Theorem 5,

since MAP in the proof of Theorem 5 satisfies max(L(MAP)) ≤ 1.

4 If M↑
AP constructed from MAP in the proof of Lemma 8 is bottom-up deterministic (Section

1.1 of [9]), then the size of N is the same order of ‖MAP ‖. However, M↑
AP is not bottom-up

deterministic in general even if MAP is so.

24

2. After constructing MR and MAP according to the proof of Theorem 5, we

construct an NTA M ′
AP such that L(M ′

AP) = L(MAP)∪ TΣ− and ‖M ′
AP‖ =

O(‖MAP‖). M ′
AP is equivalent to MAP in OR-semantics and satisfies 1 ≤

min(L(M ′
AP)).

Corollary 2. The static analysis problem in OR-semantics is EXPTIME-complete

even if the policy TA MAP is required to have an equivalent policy TA in AND-

semantics.

In contrast to OR-semantics, the static analysis problem in AND-semantics

can be solved in polynomial time, as stated in Theorem 7.

Lemma 11. (L↑A)↑ = L↑A.

Proof. It is obvious by the definition of L↑A.

Theorem 7. The time complexity of the static analysis problem for MR and MAP

in AND-semantics is O(‖MR‖ · ‖MAP‖).

Proof. By Theorem 1, this problem is equivalent to deciding whether L(MAP)↑A v
L(MR), which is equivalent to L(MR) ⊂= (L(MAP)↑A)↑ = L(MAP)↑A by Lemma 7

and Lemma 11. Thus, in Step 1 of Algorithm 1, it is sufficient to construct an NTA

Mb such that L(Mb) = L(MR)∩L(MAP)↑A. As is the way of constructing L↑A in

Lemma 4, we can directly construct an NTA MA from MAP (without determiniza-

tion and explicit complementation) such that L(MA) = L(MAP)↑A and ‖MA‖ =

O(‖MAP‖). Therefore, this theorem holds by Lemma 9 and Lemma 10.

As stated in Theorem 8, the static analysis problem in OR-semantics under

a particular condition is solvable in polynomial time by reducing the problem

to the one in AND-semantics. However, the problem to determine whether this

condition holds is EXPTIME-complete, as shown in Theorem 9.

Theorem 8. The static analysis problem in OR-semantics is solvable in polyno-

mial time if the policy TA MAP is required to satisfy min(L(MAP)) =

max(L(MAP)) = 1.

25

Proof. When min(L(MAP)) = max(L(MAP)) = 1, L(MAP) v L if and only if

L(MAP) vA L for any L ⊂
= TΣ+,− . Therefore the answer to the problem in OR-

semantics is the same as the one in AND-semantics and is solvable in polynomial

time by Theorem 7.

Theorem 9. The problem to determine whether an NTA MAP over Σ+,− satisfies

min(L(MAP)) = max(L(MAP)) = 1 is EXPTIME-complete.

Proof. According to the proof of Theorem 5, construct MAP from an instance

M of RTLNU problem. Then L(M) = TΣ if and only if min(L(MAP)) =

max(L(MAP)) = 1.

2.5 Discussion on query model

Formal models for XML query processing can be divided roughly into two ap-

proaches. The first approach defines a query sublanguage on top of a general-

purpose host language. The whole system becomes Turing complete and an

abstract system (e.g., type system) is usually defined for static analysis (e.g.

[15]). The other approach provides a non-Turing complete model based on tree

automata theory, mainly by neglecting data manipulation. Among the latter

approach, we take Neven’s two-way query automaton [27], which is one of the

well-designed automata-theoretic models for XML query: Decidability and com-

plexity of fundamental problems such as emptiness, containment as well as their

expressive power compared to formal logic have been clarified for the model.

Here, we compare our model with Neven’s model and show that the expressive

power of our model is strictly stronger than Neven’s one. Note that in this sec-

tion we only consider mechanisms for selecting a subset of nodes (e.g., by labeling

‘+’) in each tree, and do not consider the difference between AND-semantics and

OR-semantics.

The vocabulary of monadic second-order logic (MSO) over an unranked al-

phabet Σ consists of first-order variables x, y, z, . . . (possibly with subscripts) rep-

resenting a node, second-order variables X,Y, Z, . . . representing a set of nodes,

constant root, successor function representing a child of a node (for a node u, ui

represents the i-th child of u), Oσ (the set of nodes of which labels are σ), logical

26

connectives ∨,∧,¬,⇒, and quantifiers ∃,∀. For details of monadic second-order

logic, see Section 3.3 of [9] and [34] for example.

Let MSO(X1, . . . , Xn) denote the set of MSO formulas ψ(X1, . . . , Xn) with

at most n distinct second-order free variables X1, . . . , Xn. An MSO(X1, . . . , Xn)

formula ψ = ψ(X1, . . . , Xn) is interpreted in a tree t with n designated subsets

U1, . . . , Un of nodes; the satisfaction relation (t, U1, . . . , Un) |= ψ(X1, . . . , Xn)

holds if ψ evaluates to true in tree t when substituting Ui into Xi (1 ≤ i ≤ n).

The structure (t, U1, . . . , Un) can alternatively be represented by a tree t′ over the

extended alphabet Σ× {+,−}n such that labt′(u) = (σ, c1, . . . , cn) indicates that

labt(u) = σ as well as u ∈ Ui if ci = +, and u 6∈ Ui if ci = −. For example,

(f(a, b), {ε}, {1, 2}) is represented by f+−(a−+, b−+). Note that Σ × {+,−} =

Σ+,− in our notation.

For an MSO(X1, . . . , Xn) formula ψ, let L(ψ) = {t′ | t′ |= ψ} ⊂
= TΣ×{+,−}n ,

which is called the tree language defined by ψ. A tree language L ⊂
= TΣ×{+,−}n

is definable in MSO(X1, . . . , Xn) if there exists an MSO(X1, . . . , Xn) formula ψ

such that L = L(ψ). The following is a well-known equivalence property between

tree automata and MSO.

Theorem 10 (Theorem 3.6 in [34]). A tree language over Σ×{+,−}n is regular

if and only if it is definable in MSO(X1, . . . , Xn) over Σ.

As an immediate corollary, we have:

Corollary 3. A tree language over Σ+,− is regular if and only if it is definable

in MSO(X) over Σ.

In Neven et al. [27], a two-way deterministic query automaton (2DQA) is

defined as a formal model for XML query. Although both Neven et al. and this

chapter incidentally use the same term ‘query automata,’ a query automaton in

this chapter is merely a tree automaton while Neven et al.’s query automaton is

a tree transducer which emits a subset of nodes of an input tree rather than a

simple acceptor.

A 2DQA is a tuple A = (Q, Σ, F, s, δ, λ) where Q is the set of states, Σ is

the input alphabet, F ⊂
= Q is the set of accepting states, s ∈ Q is the initial

state, δ is the transition function, and λ is the selection function from Q × Σ

to {+,−}. 2DQA A starts at the root of an input tree t with the initial state

27

s and deterministically traverses t either downward or upward according to δ.

More precisely, δ consists of down transitions δ↓ : Q × Σ → Q∗, up transi-

tions δ↑ : (Q × Σ)∗ → Q, and stay transitions δ− : (Q × Σ)∗ → Q∗. Note

that when A moves downward from a node u, states are assigned to all chil-

dren of u according to δ↓ (i.e., the control forks to every child of the current

node). Likewise, an upward transition to a node v is possible only when states

are assigned to all children of v. A node may be visited more than once with

possibly different states. We say that A selects a node u if during the tra-

verse u is visited with a state q such that labt(u) = σ and λ(q, σ) = +. Let

L(A) = {(t, U) | U is the set of nodes of t selected by A for input t}, which is

called the query (or tree language) computed by A.

In Neven et al. [27] the expressive power of 2DQA is compared with the

following subclass of MSO formulas: Let MSO(x) denote the set of MSO formulas

ψ(x) with at most one first-order free variable x. For a tree t and a node u in t,

we write (t, u) |= ψ(x) if ψ evaluates to true in tree t when substituting u for x.

Also, let L(ψ) = {(t, U) | U = {u | (t, u) |= ψ(x)}}, which is called the language

defined by ψ. A tree language L ⊂
= TΣ+,− is definable in MSO(x) if there exists

an MSO(x) formula ψ(x) such that L = L(ψ).

Theorem 11 (Theorem 5.18 in [27]). A tree language over Σ+,− is computed by

a 2DQA if and only if it is definable in MSO(x) over Σ.

It is also known that a first-order variable can be simulated by a second-

order variable [34]. For the converse direction, observe that for every 2DQA A

over Σ and every t ∈ TΣ, L(A) contains exactly one (t, U) by definition. This

property does not always hold for a language defined in MSO(X). For example,

{(a, {ε}), (a, ∅)} for a constant a ∈ Σ, which is denoted as {a+, a−} in our nota-

tion, is definable in MSO(X) but is not definable in MSO(x). Summarizing, the

following strict inclusion holds.

Theorem 12. The class of tree languages over Σ+,− computed by 2DQA is prop-

erly included in the class of regular tree languages over Σ+,−.

This theorem implies that our characterization of XML queries by regular tree

languages over a charged alphabet (Σ+,−) is strong enough to subsume Neven’s

natural formalization of queries based on two-way tree automata with outputs.

28

2.6 Consistency Problem of Policies in Schema

Transformation

In this section, we discuss a consistency problem of policies in schema trans-

formation of XML databases. Let Φ be a transducer that nondeterministically

translates any instance t of a schema S into an instance t′ of another schema

S ′, and let P and P ′ be a policy for schema S and one for S ′, respectively. In-

tuitively, this problem determines whether P ′ protects all the information in t′

that P protects in t. The statement “P ′ protects all the information in t′ that

P protects in t” means that if an access instance τ for t (i.e. uc(τ) = t) is pro-

hibited by P (i.e. τ is not valid for P), then an access instance τ ′ for t′ which

is equivalent to τ in some sense is prohibited by P ′ as well. Assuming that Φ

defines a correspondence between nodes in t and nodes in t′, τ ′ is derived from τ

according to the correspondence; that is, every node u of t′ that corresponds to

a node of t labeled + (resp. −) in τ is also labeled + (resp. −) in τ ′. Let Φ+,−

be a transducer that translates τ into such τ ′. We consider that Φ is nondeter-

ministic, and thus Φ+,− is also nondeterministic. We model the nondeterministic

function Φ+,− as a mapping that maps an access instance τ into the set of all

the access instances nondeterministically obtained by applying Φ+,− to τ . Note

that, this nondeterminism is necessary since we replace conditionals depending

on data values with nondeterminism when we introduce a formal model Φ for

real world XML transducers such as XSLT. This situation is similar to the fact

that we need nondeterminism when we model XML queries by tree automata in

Section 2.3.2. When τ is not valid for P , any elements of Φ+,−(τ) should not be

valid for P ′, because any nondeterministically chosen access instance in Φ+,−(τ)

should be prohibited by P ′. Therefore, this problem is defined as the problem

that determines whether any elements of Φ+,−(τ) are not valid for policy P ′, for

every access instance τ that is not valid for policy P .

Since XML documents are represented by tree structures, we model a trans-

ducer by a tree transducer. A tree transducer is an NTA extended by a function

for translating an input tree s ∈ TΣ into another tree s′ ∈ TΣ. In this thesis, since

XML documents are represented by binary trees, we use transducers mapping a

binary tree to binary trees.

29

Before we define tree transducers, some words are defined. A term is a tree

that consists of symbols in Σ and variables. A term is linear if each variable

occurs at most once in it. A linear term is also called a context. The set of

contexts over Σ containing n variables x1, . . . , xn is denoted by Cn(Σ). C1(Σ)

is also denoted by C(Σ). For a context C ∈ Cn(Σ), the expression C[t1, . . . , tn]

means a term obtained by substituting ti for xi in C for 1 ≤ i ≤ n.

Definition 5 (Section 6.4.2 of [9]). A (nondeterministic top-down) tree trans-

ducer over an alphabet Σ is a 4-tuple Φ = (Q, Σ, Qi, ∆) where

• Q is the finite set of states,

• Σ is the alphabet. Note that the rank of each input symbol in Σ is either 0

or 2 and each input symbol except ε is overloaded for rank 0 and 2,

• Qi ⊂= Q is the set of initial states,

• ∆ is a set of transduction rules in the following form:

– q(f(x1, x2)) → u[q1(xi1), . . . , qp(xip)] where f ∈ Σ, u ∈ Cp(Σ), q, q1, . . . , qp ∈
Q, and xi1 , . . . , xip ∈ {x1, x2}.

– q(f) → u where f ∈ Σ, u ∈ C0(Σ), q ∈ Q.

Let t, t′ ∈ TΣ∪Q. The move relation → is defined as follows:

t → t′ ⇔



∃q(f(x1, x2)) → u[q1(xi1), . . . , qp(xip)] ∈ ∆,

∃C ∈ C(Σ ∪ Q),

∃u1, u2 ∈ TΣ,

t = C[q(f(u1, u2))],

t′ = C[u[q1(v1), . . . , qp(vp)]] where vj = uk if xij = xk.
→∗ is the reflexive and transitive closure of →.

We consider that Φ defines the function that returns the following set for given

Σ-tree t. (This function is also denoted by Φ.)

• Φ(t) = {u ∈ TΣ | ∃q ∈ Qi, q(t) →∗ u}.

For a given tree transducer Φ over Σ, we define a tree transducer Φ+,− over

Σ+,− which represents a correspondence relation between an access instance for

a Σ-tree t and access instances for Σ-trees in Φ(t).

30

Definition 6. For a tree transducer Φ = (Q, Σ, Qi, ∆), a tree transducer Φ+,− =

(Q, Σ+,−, Qi, ∆
′) is defined as follows.

• For a context u ∈ Cp(Σ) and s ∈ {+,−}, us is a context such that Dom(u)

= Dom(us) and for all node v in u,

– If labu(v) = g ∈ Σ, then labus
(v) = gs.

– If labu(v) is a variable, then labus
(v) = labu(v).

Intuitively, us is the context obtained from u by labeling s to every node

except a variable.

• ∆′ is the smallest set satisfying the followings:

– For a rule q(f(x1, x2)) → u[q1(xi1), . . . , qp(xip)] ∈ ∆ and s ∈ {+,−},
q(f s(x1, x2)) → us[q1(xi1), . . . , qp(xip)] ∈ ∆′.

– For a rule q(f) → u ∈ ∆ and s ∈ {+,−}, q(f s) → us ∈ ∆′.

Example 4. Let Φ1 = (Q1, Σ1, Q1
i , ∆

1) where Q1 = {q0, q1, q2, q3, q4},
Σ1 = {doc, title, chap, sec, par}, Q1

i = {q0}, and ∆1 consists of the following

rules.

• q0(doc(x1, x2)) → doc(title(ε, q1(x1)), q2(x2)),

• q1(chap(x1, x2)) → sec(q3(x1), q1(x2)),

• q1(ε) → ε,

• q2(ε) → ε,

• q3(par(x1, x2)) → par(q2(x1), q3(x2)),

• q3(par) → par, and

• q3(ε) → ε.

Intuitively, Φ1 is a transducer that adds a title node as a child of a doc node

and translates a chap node in an input tree into a sec node in the output tree.

31

τ
Φ (τ)

+,-

Not valid for MAP
in Not valid for MAP

out

Figure 2.7. Consistency problem of policies

Given an unranked charged tree

τ = doc+(chap+(par+par−)chap−(par−)),

Φ+,−
1 obtained from Φ1 outputs

Φ+,−
1 (τ) = doc+(title+sec+(par+par−)sec−(par−)).

(For readability, unranked (not binary) trees are used here.)

Below we formally define the consistency problem and show that it is decid-

able.

2.6.1 Problem Statement

Here we define the consistency problem of policies formally. First, we define

validity of an access instance τ to policy TA MAP in OR-semantics in a similar

way to the validity of a query TA in Definition 7, and then define the consistency

problem in Definition 8.

Definition 7. Access instance τ ∈ TΣ+,− is valid for policy TA MAP in OR-

semantics if and only if τ ′ ¹ τ for some τ ′ in L(MAP).

Definition 8. The consistency problem of policies is defined as follows(Figure 2.7).

Input: A policy TA M in
AP , a policy TA M out

AP , and a tree transducer Φ.

Output: “YES” if the following condition holds, and “NO” otherwise. For any

charged tree τ that is not valid for M in
AP in OR-semantics, any elements of

Φ+,−(τ) are not valid for M out
AP in OR-semantics.

The following is an instance of the problem that results in “NO”. Let L(M in
AP) =

{a+(b+c+d−), a+(b+c−d+)} and L(M out
AP) = {a+(b+c+e+)}. Let τ1 = a+(b−c+d+)

and Φ+,− be a tree transducer obtained from an input Φ such that Φ+,−(τ1) =

32

{a+(b−c+e+)}. Then the answer for this problem is “NO”, because τ1 is not valid

for M in
AP and a+(b−c+e+) ∈ Φ+,−(τ1) is valid for M out

AP .

The consistency problem in AND-semantics can be defined similarly and can

be reduced to the one in OR-semantics by Theorem 1. Thus, we focus on the

problem in OR-semantics.

Instead of the consistency problem, it would be more desirable if we could

solve a policy transformation problem to construct, given a policy TA M in
AP and a

tree transducer Φ, a policy TA M out
AP that (at least) satisfies the “YES” condition

described in Definition 8. However, solving the policy transformation problem

seems difficult since it is known that a tree transducer does not always preserve

regularity [22] and thus Φ+,−(M in
AP) is not always regular. Of course, the empty

tree language is a conservative approximation of Φ+,−(M in
AP), but such a policy is

meaningless in real world. Hence, we have to construct a sufficiently large (hope-

fully maximal) regular subset of Φ+,−(M in
AP) to solve the policy transformation

problem in a meaningful way.

2.6.2 Decidability of the Problem

In this section, we show that the consistency problem is decidable. First, we state

a few properties of a mapping (and its inverse) that maps a tree to a set of trees.

Definition 9. Let Σ be an arbitrary alphabet and Φ : TΣ → 2TΣ be a mapping

that maps a Σ-tree to a set of Σ-trees. Then we extend the domain of Φ to the

power set 2TΣ of Σ-trees, and we define the inverse mapping Φ−1 of Φ, as follows:

• Φ(L) =
∪

t∈L Φ(t).

• Φ−1(L) = {t | Φ(t) ⊂= L}.

Lemma 12. Φ and Φ−1 that are defined by Definition 9 satisfy the following

properties, where L1 and L2 are subsets of TΣ.

• Φ(L1) ⊂= L2 ⇔ L1 ⊂= Φ−1(L2)．

Proof. It is known that the pair (Φ, Φ−1) is a Galois connection [33]. Therefore

the following properties hold.

33

1. L1 ⊂= L2 ⇒ Φ(L1) ⊂= Φ(L2). (Monotonicity of Φ)

2. L1 ⊂= L2 ⇒ Φ−1(L1) ⊂= Φ−1(L2). (Monotonicity of Φ−1)

3. L1 ⊂= Φ−1(Φ(L1))．

4. Φ(Φ−1(L2)) ⊂= L2．

(⇒) By 2, Φ(L1) ⊂
= L2 ⇒ Φ−1(Φ(L1)) ⊂

= Φ−1(L2). By 3, Φ−1(Φ(L1)) ⊂
=

Φ−1(L2) ⇒ L1 ⊂= Φ−1(L2).

(⇐) By 1, L1 ⊂= Φ−1(L2) ⇒ Φ(L1) ⊂= Φ(Φ−1(L2)). By 4, Φ(L1) ⊂= Φ(Φ−1(L2)) ⇒
Φ(L1) ⊂= L2.

We can reduce the problem into the set-inclusion problem for tree languages

as follows.

Lemma 13. The following two statements are equivalent.

1. For any charged tree τ that is not valid for M in
AP in OR-semantics, any

elements of Φ+,−(τ) are not valid for M out
AP in OR-semantics.

2. Φ+,−(L(M in
AP)↑) ⊂= L(M out

AP)↑.

Proof. 1. ⇔ ∀τ(τ 6∈ L(M in
AP)↑ ⇒ ∀τ ′ ∈ Φ+,−(τ), τ ′ 6∈ L(M out

AP)↑)
⇔ ∀τ(τ ∈ L(M in

AP)↑ ⇒ Φ+,−(τ) ⊂= L(M out
AP)↑)

⇔ Φ+,−(L(M in
AP)↑) ⊂= L(M out

AP)↑

It is known that the tree transducers have the following good property.

Lemma 14. Φ(L1) ⊂
= L2 is decidable for any regular tree languages L1 and L2

and a tree transducer Φ.

Proof. It is known that Φ−1(L2) is regular if L2 is regular (Theorem 49 in [9],

[20]). Thus, by Lemma 12, Φ(L1) ⊂= L2 is decidable.

We obtain the following theorem by Lemma 13 and Lemma 14.

Theorem 13. The consistency problem is decidable.

34

2.7 Conclusion of Chapter 2

In this chapter, we proposed a formal model for XML database access control

based on tree automata and defined a static analysis problem for access control.

By introducing the notion of charged alphabet, we can concisely and uniformly

formalize the distinction of permission/denial in a policy and access/non-access

in a query. Also, we provided two alternative semantics, AND-semantics and OR-

semantics, and showed that the static analysis problems in AND-semantics and

OR-semantics are solvable in square time and EXPTIME-complete, respectively.

Our query model was compared with Neven’s query automata [27] and the ex-

pressive power of our model was shown to be strictly stronger than Neven’s one.

We also proposed a consistency problem of policies in schema transformation and

showed that the problem is decidable.

35

Chapter 3

Formal Model of

Aspect-Oriented Programs and

Its Expressive Power

3.1 Introduction

In this chapter, we propose a simple and general model of aspect-oriented pro-

grams called A-LTS and analyze its expressive power. The proposed model

is very simple and is specified as a set of finite state machines (FSMs). The

model can represent recursive weaving of state machines, which is not consid-

ered in related works, and therefore the class of systems obtained by weaving is

a proper superset of the class of FSMs. We show that the expressive power of

A-LTS is strictly stronger than FSM and strictly weaker than pushdown automa-

ton (PDA) under language equivalence, bisimulation, and isomorphism. Then we

compare in detail the expressive power of A-LTS with a few subclasses of PDA (or

equivalently of context-free grammars): classes of deterministic PDA and linear

grammars. Finally, we state the relationship between the pointcuts of A-LTS and

AspectJ[3], which is one of the well-known AOP languages.

In Section 3.3, we mention the design principle of A-LTS, followed by a for-

mal definition of A-LTS in Section 3.4. In Section 3.5, we compare the expressive

power of A-LTS with the FSM and PDA under language equivalence, bisimula-

tion, and isomorphism. In Section 3.6, we state the relationship between pointcuts

36

of A-LTS and AspectJ. Finally, we give a conclusion and future works in Section

3.7.

Related Works Douence et al. [11] proposed a formal model of aspect-oriented

programs based on a functional language Haskell. Their framework is based on

the following simple principles:

• Points of interest of program execution are modeled as events.

• Each pointcut is specified as a pattern of event sequences.

• When an execution trace of a program matches a pointcut, the advice as-

sociated with the pointcut is executed.

However, the formal semantics of the pattern language, which is defined by the

number of equations, is not simple, so it is not easy to use in formal verifications

and other applications. Moreover, only a mechanism for selecting advice at each

execution step is proposed, and one for weaving advices into a basic program is

not described. Nakajima et al. [28, 29] proposed an aspect-oriented extension of

UML State Diagrams. Their framework follows the above three principles and

inherits the clarity of State Diagrams. Moreover, the constructs of pointcuts are

simple but powerful: one can specify a pointcut such as “any configuration where

a component state machine M is in a specified state s and when an event e just

occurs.” Switching between the basic program and a woven advice is represented

by general-purpose control primitives, which can stop and resume any component

state machine. However, the recursion of the suspension of state machines is not

concerned, and thus the state space of the whole model is still finite.

Other areas of computer science such as database and security investigate

technologies resemble AOP, especially active database and history-based access

control.

An active database [31] consists of a set of active rules and a database instance.

An active rule usually has the form of ECA (event-condition-action), which means

that ‘when a specified event occurs, a specified action should be performed on

the current database instance if a specified condition is satisfied.’

The access control technology most related to AOP is history-based access

control (HBAC). The origin of HBAC is stack inspection, which is now broadly

37

used as dynamic access control infrastructure in Java and C]. However, stack

inspection has a problem: the stack does not retain security information on the

called methods with which execution is finished. To solve this problem, a few

access control methods have been proposed [1, 13, 32]. The common features of

these works include that execution history is not always forgotten, even if the

surrounding method execution is completely finished. Schneider [32] defines an

enforceable security policy as a prefix-closed nonempty set of event sequences.

He also defines security automata, which exactly recognize enforceable policies.

However, the expressive power of security automaton is Turing powerful and thus

too large. Fong [13] introduces several subclasses of security automata and com-

pares their expressive power. In particular, [13] defines shallow history automata

with finite state space and shows that the class of policies recognized by shallow

history automata is incomparable with stack inspection.

Both security automata and our proposed model take automata-theoretic ap-

proaches. The main difference between them is that in HBAC, once the execution

history of a controlled program does not match a given security policy (i.e., a given

pattern), the execution of the program is aborted. Hence, it is impossible for a

finite-state security automaton including a shallow history automaton to simulate

recursive weaving.

3.2 Framework of AOP

An aspect-oriented program consists of one basic program (a program to which

advices are woven) and zero or more aspects. In AOP, any procedure describing a

crosscutting concern can be inserted into a specific execution point of a program.

Each execution point where a procedure can be inserted is called a join point,

and the inserted procedure is called an advice. An aspect is a pair of an advice

and a pointcut, which is a specification of the set of join points to which the

advice should be connected. Figure 3.1 is an example of aspect-oriented program

written in AspectJ. The pointcut “call(bp.m())” in the aspect “asp” represents

join points where a method call to a method “void m()” of class “bp” in the

basic program is made. The advice of “asp,” which is given the prefix “before,”

will be inserted before the join points specified by the above pointcut. Thus the

38

class bp {

 // main
 public static void main(String[] arg) {

 // method call to m
 m() ;

 }

 // method m
 public void m() {
 :
 :
 }

}

Basic Program

aspect asp {

 before call(bp.m()) {
 System.out.println("Test") ;
 }

}

Aspect

1
2

4

3

advice

pointcut

Figure 3.1. Sample aspect-oriented program

string “Test” is outputted before the method call to “m().” The execution order

is 1 → 2 → 3 → 4 in Figure 3.1. Other primitives used for pointcuts in AspectJ

will be described in Section 3.6.1.

3.3 Basic design of program model

A program (or a fragment of a program) is modeled as a labeled transition

system (LTS), which defines a set of possible sequences of atomic actions (called

events). Both a basic program and each advice are modeled as finite LTSs,

i.e., finite state machines (FSMs).

A join point where an advice is connected is determined by the following

mechanism, which is similar to the one in [11]. There are two parallel synchronized

virtual machines: main thread and monitor. The main thread is used for the

execution of a basic program and advices, and at first it invokes the basic program.

The monitor observes the event sequence performed by the main thread, deciding

whether the sequence matches each pointcut. When it matches pointcut Pi, the

monitor tells the main thread to join advice Ai, which is associated with Pi.

After the execution of Ai is finished, the main thread resumes the execution of

the program that was running just before Ai was invoked.

Each pointcut is defined as a pattern of event sequences (or equivalently, a

39

Σ−{c,d}

B

a
P1 Σ−a

a

a

b Σ−a

c
Pn

Σ−d

Σ

d
d

...

b

A1

An

...

b

a

c c

b

a

b

main thread

monitor

observing
the event sequence

requesting the execution
of Ai when the sequence

matches with Pi

basic
program

advices pointcuts

Figure 3.2. A-LTS Framework

set of event sequences). When an event sequence starting at the beginning of

a whole program matches a pointcut, the advice associated with the pointcut is

invoked. In our model, a pointcut is defined by a deterministic finite automaton.

The execution of each advice terminates when control reaches a specified final

state. Since a finite automaton can be regarded as an LTS with specified final

states, we model each basic program, pointcuts, and advices as an LTS with final

states.

3.4 Program model A-LTS

An A-LTS is a tuple of a basic program, n pointcuts, and n advices. An A-LTS

specifies a single infinite LTS.

3.4.1 Labeled transition system

In this chapter, we use LTSs with final states as the fundamental constructs. Each

basic program, pointcuts, and advices is modeled as a finite LTS with final states.

In a basic program and an advice, a final state is regarded as a terminating point

of execution. A pointcut is used as a language acceptor. That is, for pointcut Pi,

every event sequence from the initial state to a final state represents a join point

40

specified by Pi.

Definition 10. A labeled transition system with final states on alphabet

Σ is a 5-tuple

L = (Σ, QL,→L, IL, FL),

where QL is a finite or an infinite set of states, →L (⊂= QL × Σ × QL) is a

transition relation, IL(∈ QL) is an initial state, and FL(⊂= QL) is a set of final

states.

We denote (q1, a, q2) ∈ →L as q1
a→L q2.

Let QL, →L, IL, and FL denote the set of states, the transition relation, the

initial state, and the set of final states of an LTS L, respectively. We assume that

the alphabets of all LTSs are the same and denoted by Σ.

Definition 11. An LTS L is deterministic if for all q ∈ QL and a ∈ Σ, there

exists exactly one q′ ∈ QL such that q
a→L q′.

3.4.2 A-LTS

Definition 12. A-LTS is a (2n + 1)-tuple of finite LTSs

PR = (B,P1, A1, P2, A2, . . . , Pn, An),

where n ≥ 0. B is a basic program, P1, . . . , Pn are pointcuts, and A1, . . . , An

are advices. They should satisfy the following constraints:

• Each pointcut is deterministic.

• QB, QA1 , . . . , QAn are pairwise disjoint.

• The initial states are not final states for B,P1, . . . , Pn, A1, . . . , An.

An intuitive semantics of an A-LTS is as follows. First, the execution of B

starts. When the event sequence starting at the beginning of B (time 0) matches

pointcut Pi; that is, the sequence is accepted by Pi, the execution of B is sus-

pended and advice Ai is invoked. After that, when the event sequence from time

0 grows according to the execution and matches pointcut Pj, the execution of Ai

41

is suspended, and advice Aj is invoked. In this way, executions of advices are in-

serted recursively. When control reaches a final state of an advice, the suspended

execution of the basic program or an advice is resumed. A-LTS terminates when

control reaches a final state of the basic program.

When an event sequence simultaneously matches more than one pointcut,

all advices associated with them are executed in a specific order. This order is

defined by the indexes of pointcuts and advices. When a sequence simultaneously

matches both Pi and Pj for i < j, Ai is invoked first, and Aj is invoked just after

Ai terminates.

3.4.3 Formal semantics of A-LTS

First we define some terminologies. The formal semantics of A-LTS is given in

Definition 13. In the following, we fix an A-LTS PR = (B,P1, A1, . . . , Pn, An).

• For arbitrary set X, let X∗ be the set of all finite sequences of elements in

X. Let ε be the empty sequence. The singleton sequence that consists of

element x is denoted by x itself. ξ : ν denotes the concatenation of two

sequences, ξ and ν.

• Let Q = QB∪QA1∪· · ·∪QAn . Note that by Definition 12, QB, QA1 , . . . , QAn

are pairwise disjoint. Let M : Q → {B,A1, . . . , An} be a mapping that

maps q ∈ Q to the LTS to which q belongs. For example, M(q) = B if

q ∈ QB.

• A mapping AD : QP1 × · · · × QPn → Q∗ is defined as follows.

AD(q1, . . . , qn) = IAi1
: IAi2

: . . . : IAim
,

where 1 ≤ i1 < i2 < · · · < im ≤ n and {i1, i2, . . . , im} = {i | qi ∈ FPi
}.

Intuitively, AD(q1, . . . , qn) represents the list of the initial states of advices

that should be started when each pointcut Pi goes to qi. The order of the

initial states in AD(q1, . . . , qn) corresponds to the execution order of the

advices.

42

1 2
a

B

3 4
a

P1 (Σ
*a)

b

b a

5 6
a

A1

7
b

b

PR = (B, P1, A1)

Figure 3.3. A-LTS recognizing {ambm | 0 < m}.

• A mapping EF : Q → Q∗ is defined as follows.

EF (q) =

{
ε if q ∈ FM(q),

q otherwise.

Definition 13. The formal semantics of an A-LTS PR is defined as the following

LTS TSPR.

TSPR = (Σ, Q∗ × QP1 × · · · × QPn ,→PR, (IB, IP1 , . . . , IPn), FPR),

where FPR = {(ε, q1, . . . , qn) | qi ∈ QPi
for 1 ≤ i ≤ n} and →PR is defined by the

following inference rule.

s
a→M(s) s′ qi

a→Pi
q′i (1 ≤ i ≤ n)

(s : ξ, q1, . . . , qn)
a→PR (AD(q′1, . . . , q

′
n) : EF (s′) : ξ, q′1, . . . , q

′
n)

Figure 3.3 shows an A-LTS PR recognizing {ambm | 0 < m}. An A-LTS PR

recognizes L if L is the set of sequences each of which brings TPR to a final state

(cf. Definition 17). Figure 3.4 is the TSPR for the A-LTS PR in Figure 3.3. A

double circle denotes a final state. When PR in the initial configuration reads

a, B and P1 enter final states. Thus B is terminated and A1 starts. Next, A1

can read either a or b. If A1 reads a, then P1 is entering a final state again, and

thus A1 is newly invoked. A1 is recursively invoked m times just after PR reads

am. When a newly invoked A1 reads b, it simply terminates. Since P1 enters

a non-final state whenever PR reads b, A1 is not invoked at that time. Each

suspended A1 can only read b, which terminates A1. Just after PR reads ambm,

all the suspended A1 terminates.

43

a
1, 3

5, 4

5:6, 4

5:6:6, 4

ε, 3

6, 3

6:6, 3

a

a

a ...

b

b

b

b

b

b...

Figure 3.4. TSPR for PR in Figure 3.3

3.5 Expressive power of A-LTS

In this section, we compare the expressive power of A-LTS with the other state

transition models, such as FSM and pushdown automaton (PDA). For two classes

C1 and C2 of state transition models, “C2 includes C1” (C1 ⊂= C2) if for any model

M1 in C1, there exists some model M2 in C2 that is equivalent to M1. “C1 is

equivalent to C2”(C1 = C2) if C1 ⊂= C2 and C2 ⊂= C1.

There are a few different definitions of equivalence between the two models

[23]. We use three different definitions of equivalence: isomorphism, bisimulation,

and language equivalence. These equivalences have the following properties:

• Two models are bisimilar if they are isomorphic.

• Two models are language equivalent if they are bisimilar.

3.5.1 Equivalence of models

We define the three equivalences (isomorphism, bisimulation, and language equiv-

alence) between two LTSs as follows.

Definition 14 (Isomorphism). LTSs L1 and L2 are isomorphic if there exists a

bijection R : QL1 → QL2 with the following properties.

(a) For any states s1, s
′
1 ∈ QL1 and any event a ∈ Σ, s1

a→L1 s′1 if and only if

R(s1)
a→L2 R(s′1).

44

(b) For any s ∈ QL1, s ∈ FL1 if and only if R(s) ∈ FL2.

Definition 15 (bisimulation relation). For any pair of LTSs (L1, L2), a relation

R ⊂
= QL1 ×QL2 is a bisimulation relation on (L1, L2) if for every (s1, s2) ∈ R

and a ∈ Σ, R satisfies the following properties.

(a) If s1
a→L1 s′1, then there exists some s′2 ∈ QL2 such that (s′1, s

′
2) ∈ R and

s2
a→L2 s′2.

(b) If s2
a→L2 s′2, then there exists some s′1 ∈ QL1 such that (s′1, s

′
2) ∈ R and

s1
a→L1 s′1.

(c) s1 ∈ FL1 if and only if s2 ∈ FL2.

Definition 16 (bisimulation). LTSs L1 and L2 are bisimilar if a bisimulation

relation exists R on (L1, L2) such that (IL1 , IL2) ∈ R.

The behavior of two models are identical if they are bisimilar. Note that the

usual definition of bisimulation relation does not require property (c) of Defini-

tion 15, because the relation is defined on LTSs without final states. However,

Definition 15 coincides with the usual definition if L1 and L2 satisfy the following

properties.

(1) At least one transition exists from every non-final state. (In the case of

A-LTS, there exists at least one transition from every non-final state of a

basic program and advices.)

(2) There is no transition from final states. (Every A-LTS satisfies this property

by Definition 13.)

Definition 17. For an LTS L, Lang(L) ⊂= Σ∗ is defined as follows.

Lang(L) = {a1a2 . . . an ∈ Σ∗ | There exist s0, . . . , sn ∈ QL

such that IL = s0 and si−1
ai→L si (1 ≤ i ≤ n) and sn ∈ FL}.

Lang(L) is called the language of L. We say that L recognizes a set S ⊂
= Σ∗ if

and only if S = Lang(L). For any sequence w ∈ Lang(L), we say L accepts w.

Definition 18 (Language equivalence). LTSs L1 and L2 are language equiva-

lent if Lang(L1) = Lang(L2).

45

3.5.2 Comparisons with FSM and PDA

An FSM is an LTS with a finite number of states. The class of languages rec-

ognized by FSMs equals the class of regular languages. The class of languages

recognized by pushdown automata (PDA) equals the class of context-free lan-

guages.

Now we discuss the expressive power of A-LTS. We denote the classes of

A-LTSs, FSMs, and PDAs as A-LTS, FSM, and PDA, respectively. Below we

will show that A-LTS ⊂
= PDA and FSM ⊂

= A-LTS under isomorphism and PDA

6⊂= A-LTS and A-LTS 6⊂= FSM under language equivalence (Theorem 15). Let

LA-LTS, REG, and CFL be the classes of languages recognized by A-LTSs, FSMs,

and PDAs, respectively. We will show that CFL 6⊂= LA-LTS and LA-LTS 6⊂= REG,

which imply PDA 6⊂= A-LTS and A-LTS 6⊂= FSM under language equivalence.

We also discuss a relation among LA-LTS and two subclasses of CFL: the classes

of deterministic context-free and linear languages. A PDA is deterministic

if no more than one transition exists from every configuration reachable from

the initial configuration. A language recognized by a deterministic PDA is a

deterministic context-free language. A linear context-free grammar (or

a linear grammar) is a context-free grammar in which at most one non-terminal

symbol can occur on the right-hand side of every production. A linear language

is a language generated by a linear grammar. Let DCFL and Llinear be the classes

of deterministic context-free and linear languages, respectively.

Now we define the following eight context-free languages to discuss the inclu-

sion relation between classes of languages.

• L1 = {ambm | 0 < m}

• L2 = {ambmcndn | 0 < m, 0 < n}

• L3 = {ambn | 0 < m ≤ n ≤ 2m}

• L4 = {ambn | 0 ≤ n ≤ m, 0 < m}

• L5 = {akbkcmdn | 0 < m ≤ n ≤ 2m, 0 < k}

• L6 = {ambn | 0 < m, n ∈ {0,m, 2m}}

46

1 2a

B

6 7a

A21

8

3

b

c
b

PR2=(B,P21,A21,P22,A22)

9 10
c

P22

a,b,d

a,b,d c
A22

4 5
a

P21

b,c,d

b,c,d a

11 12c 13d

d

Figure 3.5. A-LTS recognizing L2

1 2a

B

3 4
a

P3

b

b a

5 6a

A3

7 8b b
b

b
b

PR3=(B,P3,A3)

Figure 3.6. A-LTS recognizing L3

• L7 = {ambnckdk | 0 ≤ n ≤ m, 0 < m, 0 ≤ k}

• L8 = {ambnckdk | n ∈ {0,m, 2m}, 0 < m, 0 ≤ k}

Lemma 15. L1, L2, L3, L5 ∈ LA-LTS.

Proof. As mentioned in Section 3.4.3, the A-LTS in Figure 3.3 recognizes L1.

Figures 3.5, 3.6, and 3.7 show A-LTSs recognizing L2, L3, and L5, respectively.

A-LTS PR2 in Figure 3.5 is obtained from PR in Figure 3.3 by adding P22 and

A22, which resemble P21 and A21 and guarantee that the numbers of cs and ds

are identical. PR3 in Figure 3.6 is obtained from PR in Figure 3.3 by replacing

advice A1 with A3, which nondeterministically consumes one or two bs for each

a. A3 thus guarantees that PR3 exactly accepts ambn such that m ≤ n ≤ 2m.

PR5 in Figure 3.7 is a combination of PR2 and PR3.

47

1 2a

B

6 7a

A51

8

3

b

c
b

PR5=(B,P51,A51,P52,A52)

9 10
c

P52

a,b,d

a,b,d c

11 12c

A52

14d

d

4 5
a

P51

b,c,d

b,c,d a

13d
d

d

Figure 3.7. A-LTS recognizing L5

To show that some languages are not in LA-LTS, we use the following lemma.

Lemma 16. If A-LTS PR accepts sequence w, then no pointcuts of PR accept

w.

Proof. We show the contraposition. Let w be a sequence accepted by some point-

cut of PR. When the event sequence starting at time 0 becomes w, the advice

corresponding to the pointcut that accepts w is invoked. Since any state precisely

when an advice is invoked is not a final state of PR by Definition 13, PR does

not accept w.

Lemma 17. Let L be the language of an A-LTS PR such that L′ − {ε} ⊂
= L

for some prefix-closed language L′. Then a constant m exists that satisfies the

following condition. If uw ∈ L, u ∈ L′, |u| ≥ m and w ∈ Σ∗, then u can be

decomposed into u = xyz such that |y| > 0 and |xy| ≤ m and xykz for any k ≥ 0

also belongs to L.

Proof. By Lemma 16, no pointcuts of PR accept any u ∈ L′ − {ε}. Therefore,

since L′ is prefix-closed, no advices of PR are invoked while PR reads a fixed

sequence u ∈ L′ − {ε}. Let m be the cardinality of QB × QP1 × · · · × QPn . Fix

a sequence uw ∈ L such that u ∈ L′ and |u| ≥ m, and also fix an accepting

execution of PR while reading uw. Then for the first part of the execution of

PR while reading u, at least one configuration exists of PR that the execution

48

(b,a)/ε (ε,Z)/Z
31 2

(a,Z)/aZ
(a,a)/aa (b,a)/ε

Figure 3.8. Deterministic PDA recognizing L1

(b,a)/ε (c,Z)/cZ (d,c)/ε (ε,Z)/Z
51 2 3 4

(a,Z)/aZ
(a,a)/aa (b,a)/ε (c,c)/cc (d,c)/ε

Figure 3.9. Deterministic PDA recognizing L2

visits twice or more, and an execution obtained by removing or repeating the

part between the occurrences of the same configuration is also a valid accepting

execution of PR. Letting y be the fragment corresponding to the pumped part,

we obtain this lemma.

Lemma 18. L4, L6, L7, L8 6∈ LA-LTS.

Proof. Note that each of these languages includes a+, which equals a∗ − {ε} and

a∗ is prefix-closed. Assuming that each of the languages is recognized by an A-

LTS, then we can show a contradiction to Lemma 17 by selecting uw = ambm for

L4 and L7 and uw = amb2m for L6 and L8 for the constant m in Lemma 17.

Lemma 19. L1, L2, L4, L7 ∈ DCFL and L3, L5, L6, L8 6∈ DCFL.

Proof. Figures 3.8, 3.9, 3.10, and 3.11 are deterministic PDAs that recognize L1,

L2, L4, and L7, respectively. In these figures, each circle denotes a control state,

and each double circle denotes a final state. The label on each transition specifies

a triple (a, g)/w where a is either an event or ε, g is a stack symbol at the top

of the stack, and w is a sequence of stack symbols to which the top of the stack

will be replaced [18]. Z is the start symbol of the stack. A deterministic PDA M

accepts sequence w if M enters a final state just after reading w.

49

(a,Z)/aZ
1 2

(a,a)/aa

3

(b,a)/ε

(b,a)/ε

Figure 3.10. Deterministic PDA recognizing L4

(a,Z)/aZ (c,Z)/cZ
(ε,Z)/Z

7

1 5

(c,c)/cc

2

(a,a)/aa

3

(b,a)/ε

6
(d,c)/ε(b,a)/ε

(c,a)/ca
(ε,a)/a

(d,c)/ε

Figure 3.11. Deterministic PDA recognizing L7

We prove L3 6∈ DCFL by contradiction. Assume that a deterministic PDA

exists that recognizes L3. Then we can construct a PDA that recognizes the

following L′
3 using a technique shown in [18, p.196]．

L′
3 = {ambnck | ambn ∈ L3, ambn+k ∈ L3}

= {ambnck | 0 < m ≤ n ≤ n + k ≤ 2m}.

However, L′
3 6∈ CFL by the pumping lemma for context-free languages. Therefore,

L3 6∈ DCFL.

In a similar way, if a deterministic PDA exists that recognizes L5, then we can

construct a PDA that recognizes L′
5 = {akbkcmdnel | akbkcmdn ∈ L5, akbkcmdn+l ∈

L5} = {akbkcmdnel | 0 < k, 0 < m ≤ n ≤ n+l ≤ 2m}. Let h be a homomorphism

such that h(a) = h(b) = ε，h(c) = a，h(d) = b，and h(e) = c. Then h(L′
5) = L′

3.

Since CFL is closed under homomorphism, L′
3 must be in CFL, contradicting the

above fact that L′
3 6∈ CFL. Therefore, L5 6∈ DCFL．

We prove L6 6∈ DCFL by contradiction. Assume that L6 ∈ DCFL. Since

DCFL is closed under intersection with a regular language, L′
6 = L6 ∩ a∗b+ =

{ambn | n ∈ {m, 2m}, 0 < m} ∈ DCFL. From a deterministic PDA recognizing

L′
6, we can construct a nondeterministic PDA that recognizes L′′

6 = {ambnck |

50

CFL

DCFL

Llinear

LA-LTS

REG

(8)

(1)

(2)

(3) (4)

(5)

(6)

(7)

Figure 3.12. Relationship between LA-LTS and well-known classes of languages

m > 0, n ∈ {m, 2m}, n + k ∈ {m, 2m}}. However, L′′
6 6∈ CFL by the pumping

lemma for context-free languages. Therefore, L6 6∈ DCFL.

Since L8 ∩ a∗b+ = L′
6 and DCFL is closed under intersection with a regular

language, L8 6∈ DCFL.

Lemma 20. L1, L3, L4, L6 ∈ Llinear and L2, L5, L7, L8 6∈ Llinear.

Proof. Following linear grammars G1, G3, G4, and G6 generate L1, L3, L4, and

L6, respectively.

• G1 = ({S}, {a, b}, {S → ab | aSb}, S)

• G3 = ({S}, {a, b}, {S → ab | abb | aSb | aSbb}, S)

• G4 = ({S}, {a, b}, {S → a | ab | aS | aSb}, S)

• G6 = ({S,A,B,C}, {a, b}, {S → A | B | C, A → aA | a, B → aBb |
ab, C → aCbb | abb}, S)

We can easily show that L2, L5, L7, L8 6∈ Llinear by the pumping lemma for

linear languages [18].

Lemma 21. L1 6∈ REG.

Proof. We can show this lemma by the pumping lemma for regular languages.

51

Lemma 22. FSM ⊂
= A-LTS under isomorphism and REG ⊂

= LA-LTS.

Proof. An FSM is an A-LTS without pointcuts and advices. Therefore, FSM ⊂
=

A-LTS under isomorphism, which implies REG ⊂
= LA-LTS.

Figure 3.12 shows the relationship between LA-LTS and the classes discussed

above. The following Theorem 14 states that each subset (1)–(8) in Figure 3.12

is not empty.

Theorem 14. The following sets of languages are not empty.

1. (LA-LTS ∩ DCFL ∩ Llinear) − REG

2. (LA-LTS ∩ DCFL) − Llinear

3. (LA-LTS ∩ Llinear) − DCFL

4. (DCFL ∩ Llinear) − LA-LTS

5. LA-LTS − (DCFL ∪ Llinear)

6. DCFL − (LA-LTS ∪ Llinear)

7. Llinear − LA-LTS ∪ DCFL

8. CFL − (Llinear ∪ LA-LTS ∪ DCFL)

Proof. By Lemmas 15, 18, 19, 20, and 21, L1, L2, . . . , L8 belong to set 1, 2, . . . ,

8, respectively.

The following theorem is the main result of this section.

Theorem 15. FSM ⊂
= A-LTS ⊂

= PDA under language equivalence, bisimulation,

and isomorphism.

Proof. By Lemma 22, FSM ⊂
= A-LTS under isomorphism. By Theorem 14, none

of the subsets (1), (2), (3), and (5) is empty. Therefore, A-LTS 6⊂= FSM under

language equivalence. For any A-LTS PR, there exists a PDA isomorphic to PR,

whose set of control states is QP1 × · · · × QPn and the set of stack symbols is

Q. Therefore, A-LTS ⊂
= PDA under isomorphism. By Theorem 14, none of the

subsets (4), (6), (7), and (8) is empty. Therefore, PDA 6⊂= A-LTS under language

equivalence.

52

3.6 A-LTS and AspectJ

In this section, we discuss the relationship between the pointcuts of A-LTS and

AspectJ, which is one typical AOP language.

3.6.1 AspectJ

AspectJ is an AOP language based on Java. A program in AspectJ consists of a

set of classes and aspects. An aspect consists of pointcuts and advices. The main

constructs of pointcuts are as follows.

• call(m) – the set of method calls to m.

• execute(m) – the execution of the body of method m.

• cflow(p) – the set of all join points subsequent to any join point jp specified

by pointcut p.

• get(f) – the set of execution points at which the value of data field f is

used.

• set(f) – the set of execution points at which a value is assigned to data

field f .

Note that for call and execute pointcuts, the execution of the whole body of

method m is regarded as a single join point. There are operators to make a

pointcut from other pointcuts. For example, a pointcut P1 ||P2 specifies join

points that matches either P1 or P2. A pointcut P1 && P2 specifies join points

that matches both P1 and P2.

For each advice, one of the three keywords {before, after, around} as well

as a pointcut is given. Before/after denotes that the advice should be inserted

before/after each join point specified by the pointcut. Around denotes that each

join point specified by the pointcut should be replaced with the advice. For

example, when we want to execute an advice before every method call to a method

proc, we specify pointcut “before call(proc)” for the advice.

53

3.6.2 Discussion

First, we model a basic program and advices written in AspectJ as follows. Event

set of a program is the set of join points and other related actions. For example,

call to a method and assignment to a data field are regarded as events. A basic

program and advices are defined as processes executing events in a specific order.

As stated above, in AspectJ, the execution of the whole body of a method is

regarded as a single join point. However, if we consider this join point as an

atomic event, then we cannot represent the recursion of method call. Therefore,

we consider the start and end points of the execution of a method to be distinct

events.

Next, we describe the correspondence between each pointcut in AspectJ and

a pointcut in A-LTS. Let callm be an event that represents the call to method

m and returnm be an event that represents the return from m. Pointcut “before

call(m)” of AspectJ is denoted as a regular language Pcallm = Σ∗callm in A-LTS.

Pointcut “after call(m)” is represented as Σ∗returnm . For Pcallm , an advice is

inserted just after the event callm occurs, i.e., the method call has just processed

and the body of m has just started. Thus Pcallm does not exactly correspond to

“before call(m).” To solve this problem, we introduce an event beforecallm that

represents the execution point just before the execution of the method call to m,

and we define the pointcut as Σ∗beforecallm .

We can consider pointcuts that execute, get, and set in a similar way. If one

wants to exactly express “before execute/get/set,” then she needs to define events

that represent the points just before execute/get/set similarly to before call.

Next we consider pointcut “cflow(pc).” Let Ppc be a pointcut of A-LTS rep-

resented by a regular language that represents pc. Then “after cflow(pc)” is

represented as Ppc + PpcΣ
∗Σjp, where Σjp is the set of all events that correspond

to join points. Similarly, “before cflow(pc)” is represented as Ppc + PpcΣ
∗Σbjp

where Σbjp
is the set of all events just before each event that corresponds to a

join point.

Using cflow and the combining operators || and &&, we can describe compli-

cated pointcuts, e.g., shown in the following table.

54

pointcuts regular expressions

call(m) || call(n) Σ∗(callm + calln)

cflow(call(m) || call(n)) && get(v) Σ∗(callm + calln)Σ∗getv

cflow(cflow(call(m)) && get(v)) && set(v) Σ∗callmΣ∗getvΣ
∗setv

Since these complicated pointcuts in AspectJ can be represented by regu-

lar expressions, we consider that modeling a pointcut as a regular language is

appropriate.

3.7 Conclusion of Chapter 3

In this chapter, we proposed a simple formal model of AOP A-LTS. We com-

pared the expressive power of A-LTS with FSM and PDA under language equiv-

alence, bisimulation, and isomorphism. As a result, we showed the relationship

among a few subclasses of context-free languages and the class of the languages

of A-LTSs, shown in Figure 3.12, and FSM ⊂
= A-LTS ⊂

= PDA under language

equivalence, bisimulation, and isomorphism. Finally, we stated the relationship

between pointcuts in A-LTS and in AspectJ, one typical AOP language.

55

Chapter 4

Conclusion

In this thesis, we proposed language-based formal models for XML access control

and Aspect-Oriented programming to understand complicated behavior of them

more easily.

In Chapter 2, a formal model for XML database access control based on

tree automata was proposed and a static analysis problem for access control

was defined. By introducing the notion of charged alphabet, we can concisely

and uniformly formalize the distinction of permission/denial in a policy and

access/non-access in a query. Also, we provided two alternative semantics, AND-

semantics and OR-semantics, and showed that the static analysis problems in

AND-semantics and OR-semantics are solvable in square time and EXPTIME-

complete, respectively. Our query model was compared with Neven’s query au-

tomata [27] and the expressive power of our model was shown to be strictly greater

than Neven’s one. We also proposed a consistency problem of policies in schema

transformation and showed that the problem is decidable. Implementation of an

analysis tool and empirical evaluation of the proposed method are left as future

studies.

In Chapter 3, we proposed a simple formal model of AOP A-LTS. We com-

pared the expressive power of A-LTS with FSM and PDA under language equiv-

alence, bisimulation, and isomorphism. As a result, we showed the relationship

among a few subclasses of context-free languages and the class of the languages

of A-LTSs, shown in Figure 3.12, and FSM ⊂
= A-LTS ⊂

= PDA under language

equivalence, bisimulation, and isomorphism. Finally, we stated the relationship

56

between pointcuts in A-LTS and in AspectJ, one typical AOP language. As fu-

ture works, we will compare the expressive power of A-LTS with other models;

e.g., context free processes [35] and recursive state machines (RSM) [4, 2]. More-

over, we will discuss a verification of A-LTS using model checking proposed by

[4, 2], because we conjecture that A-LTS is a subclass of RSM. Benedikt et al. [4]

discussed the complexity of the verification of a few subclass of RSM. Following

their results, we will try to find an upper and a lower bound of the complexity of

the verification of A-LTS. Finally, since A-LTS only models single-threaded pro-

grams, we will extend it to multithreaded programs. If we model multithreaded

programs as a set of PDAs that can communicate their states to one another,

then it can simulate Turing machines, i.e., it is too powerful and most problems

for the model are undecidable. However, it is not known whether a set of A-LTSs

that can communicate their state to one another can simulate Turing machines.

On the other hand, if we model a multithreaded program as a set of PDAs that

do not communicate with one another, then its language is a shuffle of CFLs,

which is not a CFL in general but most decision problems for it is still decidable.

The language of a set of A-LTSs that do not communicate with one another is

also not a CFL in general. Further investigation into the expressive power of a

set of A-LTSs that do or do not communicate with one another is needed.

57

References

[1] M. Abadi and C. Fournet: Access control based on execution history, Net-

work & Distributed System Security Symposium, 107–121, 2003.

[2] R. Alur, K. Etessami and M. Yannakakis: Analysis of recursive state ma-

chines, 13th Conference on Computer Aided Verification (CAV 2001), LNCS

2102, 207–220, 2001.

[3] AspectJ Team, http://aspectj.org/

[4] M. Benedikt, P. Godefroid and T. Reps: Model checking of unrestricted hi-

erarchical state machine, 28th International Colloquium on Automata, Lan-

guages and Programming (ICALP 2001), LNCS 2076, 652–666, 2001.

[5] E. Bertino, S. Castano, E. Ferrari and M. Mesiti: Author-X: A Java-based

system for XML data protection, IFIP WG 11.3 Working Conf on Database

Security, 2000.

[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie and

J. Simeon: XQuery 1.0: An XML query language. W3C working draft 16

august 2002, http://www.w3.org/TR/xquery/, 2002.

[7] J. Clark and S. DeRose: XML Path Language (XPath) version 1.0. W3C

Recommendation, http://www.w3.org/TR/xpath, 1999.

[8] E. M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 2000.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, D.

S. Tison and M. Tommasi: Tree automata techniques and applications,

http://www.grappa.univ-lille3.fr/tata, 1997.

[10] E. Damiani, S. D. C. di Vimercati, S. Paraboschi and P. Samarati: Secur-

ing XML documents, 7th International Conference on Extending Database

Technology (EDBT 2000), LNCS 1777, Springer-Verlag, 121–135, 2000.

[11] R. Douence, O. Motelet and M. Sudholt: A formal definition of crosscuts,

The 3rd International Conference on Metalevel Architectures and Separation

of Crosscutting Concerns (REFLECTION 2001), LNCS 2192, 170–186, 2001.

58

[12] J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon: Efficient algorithms

for model-checking pushdown systems, Computer Aided Verification, 12th

International Conference (CAV2000), LNCS 1855, Springer-Verlag, 232–247,

2000.

[13] P. W. Fong: Access control by tracking shallow execution history, IEEE

Security & Privacy, pp.43–55, 2004.

[14] G. Gottlob, C. Koch, R. Pichler and L. Segoufin: The complexity of XPath

query evaluation and XML typing, JACM, 52(2), 284–335, 2005.

[15] H. Hosoya and B. C. Pierce: XDuce: A typed XML processing language,

ACM Transactions on Internet Technology, 3(2), 117–148, 2003.

[16] M. Koch, L. Mancini and F. Parisi-Presicce: Conflict detection and resolu-

tion in access control policy specifications, Foundation of Software Science

and Computation Structures (FOSSACS 2002), LNCS 2303, Springer-Verlag,

223–237, 2002.

[17] M. Kudo and S. Harada: XML document security based on provisional au-

thorization, 7th ACM Conference on Computer and Communication Security

(CCS 2000), ACM Press, 87–96, 2000.

[18] P. Linz: An Introduction to Formal Languages and Automata, Jones and

Bartlett Publishers, 196–198, 2001.

[19] E. C. Lupu and M. Sloman: Conflicts in policy-based distributed systems

management, IEEE Transactions on Software Engineering, 25(6), 852–869,

1999.

[20] W. Martens and F. Neven: Frontiers of tractability for typechecking simple

XML transformations, Proceedings of the 23rd ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database System (PODS 2004), ACM

Press, 23–34, 2004.

[21] R. Mayr: Process rewrite system, Information & Computation, 156, 264–286,

1999.

59

[22] T. Milo, D. Suciu and V. Vianu: Typechecking for XML transformers, Pro-

ceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database System (PODS 2000), ACM Press, 11–22, 2000.

[23] M. Mukund: From global specifications to distributed implementations, in

B. Caillaud et al., editors, Synthesis and Control of Discrete Event Systems,

Kluwer Academic Publishers, 19–35, 2002.

[24] M. Murata, D. Lee and M. Mani: Taxonomy of XML schema languages

using formal language theory, ACM Transactions on Internet Technology,

5(4), 2005, http://www.cs.wpi.edu/˜mmani/publications.html.

[25] M. Murata, A. Tozawa and M. Kudo: XML access control using static

analysis, 10th ACM Conference on Computer and Communication Security

(CCS2003), ACM Press, 73–84, 2003.

[26] F. Neven: Automata theory for XML researchers, SIGMOD Record, 31(3),

39–46, 2002.

[27] F. Neven and T. Schwentick: Query automata over finite trees, Theoretical

Computer Science, 275, 633–674, 2002.

[28] S. Nakajima and T. Tamai: A proposal of aspect-oriented state diagram,

IPSJ SIG Technical Report, 2005-SE-149, 1–8, 2005, in Japanese.

[29] S. Nakajima and T. Tamai: Aspect-oriented design using UML state diagram

and its verification, 22nd JSSST Conference, 2005, in Japanese.

[30] N. Nitta, Y. Takata and H. Seki: An efficient security verification method

for programs with stack inspection, 8th ACM Conference on Computer and

Communication Security (CCS2001), ACM Press, 68–77, 2001.

[31] N. W. Paton and O. Diaz: Active database systems, ACM Computing Sur-

veys, 31(1), 63–103, 1999.

[32] F. B. Schneider: Enforceable security policies, ACM Transactions on Infor-

mation & System Security, 3(1), 30–50, 2000.

60

[33] Y. Tanabe, T. Takai and K. Takahashi: A survey of verification tools using

abstraction, Technical Report, PS-2003-007, Research Center for Verifica-

tion and Semantics, National Institute of Advanced Industrial Science and

Technology, Dec., 2003, in Japanese.

[34] W. Thomas: Languages, Automata, and Logic, Handbook of Formal Lan-

guages, 3, Springer-Verlag, 389–455, 1997.

[35] I. Walukiewicz: Pushdown processes: games and model checking, 8th Con-

ference on Computer Aided Verification (CAV ’96), LNCS 1102, 62–74, 1996.

[36] I. Yagi, Y. Takata and H. Seki: A static analysis using tree automata for

XML access control, 3rd International Symposium on Automated Technol-

ogy for Verification and Analysis (ATVA2005), LNCS 3707, Springer-Verlag,

234–247, 2005.

61

