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Probabilistic approach to unsupervised

representation learning in dynamic

environments∗

Jun-ichiro Hirayama

Abstract

Learning useful representation of multivariate data is one of the principal

themes of unsupervised learning. Basic techniques includes the principal compo-

nent analysis (PCA) and the independent component analysis (ICA), and there

have also been proposed more advanced ones often extending these basic tech-

niques. In this thesis, I investigate particular extensions of such “representation

learning” techniques to be capable of difficult non-stationary contexts, particu-

larly focusing on specific problems in which some difficulties arises for previous

methods due to dynamic natures of environment.

In the former part of this thesis, I propose a new extension of probabilis-

tic/noisy independent component analysis (ICA), so as to address a difficult non-

stationarity that may occur in real-world contexts of blind source separation

(BSS) problem, such that each source signal abruptly appears or disappears with

time. I employ a special type of hidden Markov and hidden semi-Markov models

to realize a dynamic switching of source variables in the framework of probabilis-

tic ICA. I derive an effective approximation of Bayesian inference for this model

based on the variational Bayes (VB) method. In simulation experiments using

artificial and realistic source signals, I demonstrate the superior performance of

the proposed method to existing ones, especially in uncertain situations.

∗Doctoral Dissertation, Department of Bioinformatics and Genomics, Graduate School of In-
formation Science, Nara Institute of Science and Technology, NAIST-IS-DD0461031, February
20, 2007.

i



In the latter part, I investigate an online feature extraction problem, par-

ticularly focusing on such situations that the environment is not stationary but

dynamically changing, sometimes even abruptly. In this difficult non-stationary

context, an appropriate control of adaptability/stability of a learning model is

the key for rapid adaptation to the environmental changes. Focusing on feature

extraction task by means of the probabilistic PCA (PPCA), I propose two online

learning schemes that have such a character, based on the previously-proposed

online variational Bayes (VB) method: One is based on an explicit formulation of

probabilistic novelty detection by a mixture of PPCA model, the other is a princi-

pled approach using the hierarchical Bayes method based on a new interpretation

of the online VB presented in this thesis. I demonstrate their availabilities in sim-

ulation experiments. In addition, I also discuss the biological implication of the

proposed learning models, especially with hypothesizing their possible realization

in brain.

While the methods proposed in this thesis have been developed as general

statistical techniques to analyze and process stochastic data that inherently have

dynamic natures, their high performances demonstrated in the simulation exper-

iments indicate the future availabilities for specific real-world problems. Thus,

I finally discuss the potential applications of the proposed methods with also

discussing open issues remained for future developments of these methods.

Keywords:

Representation learning, dynamic environment, blind source separation, online

feature extraction, independent component analysis, online Bayesian learning
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Chapter 1

Introduction

1. What is representation learning?

In many data analysis or processing tasks emerged in the field of machine learn-

ing, observations often have such property that their complex, redundant or noisy

natures prevent an efficient processing or a direct interpretation of meaningful

signals therein. Learning systems should, then, transform the original data into

another representation that have a simple and compact character and/or can re-

veal the hidden signals. This is sometimes a principal purpose of that task by

itself and, if not so, is often a key requirement for such systems to make the

task successful. If one assume that no additional information other than those

data (inputs) is used to learn the representations, this becomes an issue of un-

supervised learning. Unsupervised learning is a type of learning which in general

aims at finding underlying structure of inputs, by distinguishing from noise, par-

ticularly without further receiving any target outputs (as in supervised learning)

or rewards for the system’s outputs from the environment (as in reinforcement

learning). Although many tasks of unsupervised learning, such as clustering, vi-

sualization, data compression, density estimation and outlier/novelty detection,

can be regarded as to learn another useful representation of original data in a

general meaning, in this thesis I ordinary mean the term “representation” in a

limited sense as the transformed quantitative values that varies on a continuous
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domain 1 — thus, for example, clustering is not the method to find data represen-

tation in this sense, since it transforms the data into discrete qualitative values,

i.e, class labels — and I refer to such types of learning to obtain quantitative

representation of data, particularly in the framework of unsupervised learning,

as “representation learning.” Those issues within supervised or reinforcement

learning schemes are also interesting, but is not considered in this thesis.

Basic techniques of representation learning includes factor analysis (FA), prin-

cipal component analysis (PCA) and independent component analysis (ICA) [52].

Both FA and PCA are standard multivariate statistical methods. ICA is rather a

new technique but recently have been quickly popularized. These basic methods

commonly seek to find a set of basis vectors in the input domain (sometimes

implicitly), that is, to describe an input as a linear combination of basis vectors.

Both the basis vectors and their coefficients for each input are determined from

data; the coefficients are then the new representation of each input. These basic

techniques (and also the other advanced ones) have recently been understood in

a unifying framework of probabilistic generative modeling, especially with latent

variable models [83, 13]. Observations often have such a character that they can

be well described by some unobserved quantities, which can be regarded as certain

instances of random variables, called latent variables. These variables sometimes

correspond to actual physical values, but also can be defined in a virtual or an

abstract sense. Representing such a data-generating process involving latent vari-

ables by means of probabilistic latent variable models, one can achieve learning

and inference on unknown quantities in a consistent manner. FA was originally

this type of methods, and PCA and ICA have also been formulated as latent

variable models [92, 52]. Importantly, furthermore, this unifying framework have

facilitated the recent advances in representation learning. There have recently

been proposed extensive kinds of techniques in this area, including many variants

and extensions of the basic techniques (e.g., [73, 57, 94, 51, 61, 23, 46, 16]).

1But sometimes I use this term in a more general sense to denote the total way to describe
the original data according to the transformed quantities.
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2. Motivation and overview

Previous methods of representation learning, such as PCA and ICA, are mainly

static techniques ignoring any dynamic aspect of the inputs. However, in cases

of time-series inputs in real-world problems, the statistical characteristics often

change dynamically. Consider the learning systems such as humans, animals, or

well-sophisticated intelligent robots that successfully operates in the real world.

The statistical property of sensory inputs to these systems varies with time as

reflecting the dynamic nature of environment, while they will be able to accommo-

date the changes to obtain appropriate internal representations of sensory inputs.

It is not straightforward, however, to address such situations by standard, static

techniques of representation learning. This principally motivate the studies in

this thesis. In an engineering viewpoint, developing dynamic kinds of representa-

tion learning have basal importance to build a learning system that is adequate

for operating in the real world. Furthermore, in a biological viewpoint, theoretical

advances in such directions would facilitate the understanding of the function and

the implementation of sensory representational systems in brain, as is often the

way of theoretical/computational neuroscience [27, 81, 32]. As an initial step to

build and understand a learning system that is adequate for operating in the real

world, this thesis investigates dynamic kinds of representation learning methods.

In this thesis, I focus on two specific application domains, i.e., blind source

separation and feature extraction, in each of which a particular difficulty arises

from dynamic nature of the real-world environment. I propose two kinds of

learning models respectively for the two problem domains, and demonstrate them

within the rather specific context. It should be noted that, however, the scope of

these learning models is is not necessarily limited to these particular problems.

Below I briefly describe these problems and the specific difficulties arising in

dynamic contexts with providing the overview of this thesis. In each of the

two problem domains, the latent variables behind inputs will have meanings as

source signals to be separated from their noisy mixtures, or feature vectors to be

extracted from original inputs, respectively. The term latent variable is used as

a general term, while it will be rephrased like source or feature depending on its

context.
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2.1 Blind source separation with non-stationary source ap-

pearances

Among the recent advances in representation learning, ICA and its related meth-

ods are of particular importance for their theoretical significance and broad appli-

cability. While the scope of ICA is fairly general and thus it has been successfully

applied to various engineering problems, the central motivation for developing

ICA have historically been from a specific engineering problem in the field of

signal processing. This is known as the blind source separation (BSS), which is

a problem of recovering unknown source signals from their observed mixtures,

where the detail of mixing process is unknown as the term ‘blind’ suggests. A

popular illustration of BSS is the “cocktail-party problem.” In a cocktail party,

where many persons are simultaneously speaking, one can only observe the mix-

tures of original speech signals that is of most interests (with often involving

other noises). The task here is to separate the original source signals only from

the mixture signals recorded in multiple microphones, without knowing the actual

mixing process. Assuming mutual independence among the source signals, stan-

dard ICA try to find a basis representation of the observed mixtures so that the

coefficients become mutually independent and thus can be regarded as recovered

source signals.

Source signals emerged in real-world problems often have such a difficult non-

stationarity that each source signal abruptly appears or disappears, so that the

sources being active at a moment dynamically changes with time. Most ICA

methods, however, assume that a fixed set of source signals consistently exists

throughout the time-series to be examined. The performance of source separation

by the previous ICA methods thus will be degrade in such kinds of situations,

especially when the situation is noisy and thus uncertain. To overcome this prob-

lem, in Chap. 2, I propose a new extension of ICA which automatically switches

active subset of sources to accommodate the non-stationary appearances of source

signals. A particular difficulty of this problem is due to the character that the

problem structure changes with time in effect, in that the latent variables of in-

terest are different for each context among all the potential ones. This requires

a dynamic kind of model selection (or variable selection, more specifically) to

be realized in a dynamic manner. The approach in this thesis is to incorpo-
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rate a principled way of dynamic variable selection into a previous probabilistic

formulation of (noisy) ICA.

2.2 Online feature extraction with accommodating envi-

ronmental changes

In the fields of pattern recognition, a preliminary task to transform original data

into another representation that is useful for subsequent recognition task is called

the feature extraction [12], where the resultant quantities are called the features.

Since the character of features strongly affect the recognition performance, finding

appropriate features is an important issue for recognition systems. In practice,

feature extraction is sometimes achieved by hand based on expert knowledges

about the data-generating process and also about what the appropriate features

are for the specific problem. However, one often do not have enough knowledges to

achieve it, and it is not necessarily straightforward to obtain appropriate features

from primitive form of data even if one has enough knowledges.

Representation learning can provide a systematic solution of feature extraction

in unsupervised manners, which is important for such cases that one do not have

enough knowledge or ability to extract appropriate features faithfully by hand.

In particular, PCA has conventionally been applied for feature extraction (see,

for example, [93]), especially as a technique of dimensionality reduction, i.e., to

obtain a small number of basis vectors to describe the inputs, with retaining

original information as much as possible. In addition, ICA also have recently

been used for feature extraction, which try to find features that are mutually as

independent as possible. Although the capability of these methods are sometimes

limited due to the lack of specific knowledges depending on the problems, they

have significant importance for their broad applicability.

When one consider about the real-world applications in dynamic contexts, an

important issue of feature extraction is to achieve it in an online manner, that

is, to process the inputs incrementally at each time point without retaining the

past inputs. Such types of learning are called online learning. Online learning

has a practical advantage especially when the environment has a non-stationary

character, since it has a potential to address environmental changes if one rea-
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sonably set a meta-parameter that determines the speed of adaptation to new

inputs. How to control the meta-parameter is, however, quite a difficult question.

The changes occurred in realistic environments are sometimes not gradual but

abrupt. Even if features have been appropriately extracted in a certain period

that was regarded as almost stationary, an abrupt change at the next time point

would quickly makes the features obsolete. For such difficult non-stationarities,

it becomes crucial for real-world online learning systems to control the meta-

parameter with appropriately reflecting the environmental changes. In the latter

part of this thesis, focusing on a effective realization of online Bayesian learning,

online variational Bayes (VB) [87], I propose two schemes to control the meta-

parameter therein to address changing environments (Chapter. 3). One is based

on an explicit formulation of probabilistic novelty detection by means of proba-

bilistic mixture model, the other is a principled approach using hierarchical Bayes

method, specifically with a new interpretation of online VB framework. I employ

a probabilistic version of PCA as a specific instance of representation learning

model, and validate it in simulation experiments of online feature extraction. It

should be noted that, however, the issue of meta-parameter control in online VB

is rather a general issue and is not necessarily limited to representation learning.

A high ability to learn sensory representation, i.e., features of sensory inputs,

is a characteristic property of biological learning systems such as humans and

animals. The original motivation of the study of online representation learning

above is actually in understanding the principles of brain representation learning.

While this thesis is described mainly from an engineering viewpoint, its connec-

tion to biological systems is also an interesting topic and can be a important

contribution for the neuroscience field. Thus, I will also discuss the biological

implication of the proposed dynamic learning scheme in Chapter. 3, especially

with hypothesizing its potential implementation realized in brain.
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Chapter 2

Switching ICA

1. Introduction

There have been proposed many types of extensions of standard ICA which orig-

inally assumes that the mixing process is linear, involving no noise, and sources

have no temporal structures. These extensions were supposed, for example, to

incorporate noisy [67, 22, 50, 7, 59, 61] and/or nonlinear [57, 91, 2, 61] situations,

or to employ temporal information about the source signals. Such extensions have

recently attracted attention for their potential capabilities of performing source

separation effectively even when the standard ICA assumption does not hold.

To the best of our knowledge, however, there have been no studies of ICA

focusing on such situations that the sources being active at a moment dynami-

cally changes with time, which is one of the principal issues of this thesis. One

exception is that Amari et al. [4] have reported the applicability of their method,

natural-gradient-based ICA with a nonholonomic constraint, in a closely-related

situation. The learning rule for this method was not affected by abrupt changes

in the average magnitudes of source signals. This would allow source signals to

have zero magnitude for a certain period, i.e., the sources being temporally in-

active for the period. The performance of this method, however, can be poor

in the presence of noise. One reason is that this method does not explicitly as-

sume the existence of noise. Another reason is that the method ignores the signal

property, i.e., temporal continuity of active/inactive periods, since the method

was not designed for such situations. On the other hand, the present study is
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motivated by this particular case. In this chapter, we propse a new ICA method,

Switching ICA, to address such temporal switching of active sources especially

with the robustness against noise.

Several studies on noisy ICA previously have utilized temporal information to

improve BSS for non-stationary source signals [75, 9, 78, 21, 95, 89], many of which

employ the hidden Markov model (HMM) [79] to represent the temporal struc-

ture. These existing studies have tried to incorporate general non-stationarity

that may exist in source signals, whereas this thesis focuses on addressing the

special type of non-stationary situations, i.e., where the appearances of sources

changes with time. This is not very general but quite important in dealing with

various real-world signals. The new ICA method propsed in this thesis then em-

ploys a special type of HMM in order to incorporate such prior knowledge that the

source may abruptly appear or disappear with time. This special setting of the

HMM then provides an effect of variable selection in a dynamic way. This is the

key difference of the new method from the previous HMM-ICA, which has a more

general structure but no effect of variable selection. The new model is expected

to improve the reconstruction of source signals when they are actually switched

on and off temporally, and when there exists a certain amount of noise. It is also

expected that the improved estimation of source signals will lead to more accurate

estimation of the mixing matrix. Furthermore, we also investigate the use of an-

other temporal structure, a hidden semi-Markov model (HSMM) [36, 84, 58, 54],

as a potentially better model than the HMM to represent the duration of the

presence/absence of source signals.

The proposed method is formulated as a noisy ICA that is based on generative

models as in the previous studies [67, 22, 48, 7, 59, 97], with incorporating the

dynamic variable selection mechanism by means of HMM/HSMM as mentioned

above. Furthermore, as we employ Bayesian inference to estimate the new model,

the resultant Switching ICA algorithm is a kind of Bayesian ICA, which has

recently been investigated [66, 20, 19, 85, 21] for its several advantages over the

conventional maximum likelihood (ML), such as the ability to avoid over-learning,

a drawback of ML-based ICA [86]. The VB method [10] have also been used in

the previous studies of noisy ICA [66, 20, 19] including HMM-ICA [21].
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2. Model

2.1 Generative model

Let xj,t (j = 1, . . . , d) denote observations from d channels at time step t that

are linear mixtures of unknown and mutually independent source signals from

n channels, si,t (i = 1, . . . , n), plus Gaussian noise. The probabilistic generative

model of an observation vector xt = (x1,t, x2,t, . . . , xd,t)
T is then given by

xt = Ast + εt =
n∑

i=1

si,tai + εt, (2.1)

where st = (s1,t, s2,t, . . . , sn,t)
T is the source vector, a d×n matrix A = (a1,a2, . . . , an)

is the mixing matrix, and εt is the noise vector, which is assumed in this study

to be distributed as an isotropic Gaussian with a mean of zero and a variance

of β−1. The superscript T denotes the transpose. The d-dimensional vector ai

is referred to as an independent component-loading vector or a basis vector of

observations.

Consider that each source is in either an active state or an inactive state,

indicating whether the source is present or absent at each time step, respectively.

The source signal si,t is then represented as

si,t = zi,toi,t, (2.2)

where zi,t is an indicator variable, called a switching variable, which takes zero

or one, and oi,t is a random variable representing the original signal of source i.

If zi,t = 0, then the source si,t is inactive and consistently zero. In contrast, if

zi,t = 1, implying si,t = oi,t, then the source is active and provides the original

signal oi,t.

Let ζh (h = 1, . . . , 2n) represent each of 2n realizations of the indicator vec-

tor 1, zt = (z1,t, z2,t, . . . , zn,t)
T . For a specific realization of zt = ζh, the generative

model in Eq. (2.1) is written as

xt = Ahsh
t + εt =

nh∑
j=1

sh
j,ta

h
j + εt, (2.3)

1The manner of indexing each realization by h can be chosen arbitrarily.
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where sh
t = (sh

1,t, s
h
2,t, . . . , s

h
nh,t

)T is a collective vector of nh active sources, sh
j,t

is the j-th active source for zt = ζh, and Ah = (ah
1 ,a

h
2 , . . . , a

h
nh) is a d × nh

matrix, the j-th column of which is the column vector in A corresponding to

the j-th active source sh
j,t. In this chapter, the observations are assumed to be

preliminarily normalized as x̄t = 0 without loss of generality. There are now 2n

generative models, each of which has a different subset (and different number) of

sources as independent components. This is the basis of Switching ICA.

2.2 Modeling original signal of sources

The original signal of the i-th source, oi,t, as an MoG, is modeld as in previous

studies [67, 7, 97, 20, 66, 19], which is mainly for the existence of an analytical

solution for the posterior distribution. Although an MoG can represent various

kinds of distributions, including super-Gaussian and sub-Gaussian distributions,

in this study we employ the simplest version, a scale mixture [6] of two Gaussian

distributions, to well represent super-Gaussian signals. The parameters of scale-

MoG are determined simultaneously with the estimation of the mixing matrix

and the noise variance as in [67, 7]. The two-components scale-MoG density

function of oi,t is then given as

p(oi,t) = αiN(oi,t | 0, γ−1
1i ) + (1 − αi)N(oi,t | 0, γ−1

0i ), (2.4)

where αi is the mixing rate, and γi0 and γi1 are inverse variances of the two

Gaussians. The means are assumed to be zero. Although the use of this form is

for the sake of simplicity, an extension that employs a general form of MoG (as

in [7]) can be performed when such source distributions should be considered.

The distribution of source signals, conditional on the switching variable, is

given as follows. When zi,t = 1, the source si,t is equal to oi,t, suggesting the

original signal distribution given in Eq. (2.4):

p(si,t | zi,t = 1) = αiN(si,t | 0, γ−1
1i ) + (1 − αi)N(si,t | 0, γ−1

0i ). (2.5)

For all sources i = 1, 2, . . . , n, we collectively write α = (α1, α2, . . . , αn)T and γ =

{γ0,γ1}, where γ0 = (γ01, γ02, . . . , γ0n)T and γ1 = (γ11, γ12, . . . , γ1n)T . Eq. (2.5) is

also represented in a hierarchical form by introducing a latent variable yi,t ∈ {0, 1}

10



that indicates the two Gaussian components:

p(yi,t) = α
yi,t

i (1 − αi)
1−yi,t , (2.6a)

p(si,t | yi,t, zi,t = 1) = N(si,t | 0, γ−1
i,t ), (2.6b)

where γi,t = γ0i (if yi,t = 0) or γ1i (if yi,t = 1). On the other hand, the source si,t is

consistently zero when zi,t = 0. The conditional distribution is thus represented

as Dirac’s Delta distribution:

p(si,t | zi,t = 0) = δ(si,t), (2.7)

where δ(·) denotes Dirac’s Delta function. Because of the independence assump-

tion, the joint distribution of all of the n sources is given as a product of scale-

MoGs (Eq. (2.5)) for active sources and Dirac’s Delta distributions (Eq. (2.7)) for

inactive sources, for a given indicator allocation. Let s̄h
t = (s̄h

1,t, s̄
h
2,t, . . . , s̄

h
n̄h,t

)T

represent the collective vector of n̄h inactive sources, where s̄h
k,t is the k-th in-

active source for zt = ζh. We also define yt = (y1,t, y2,t . . . , yn,t)
T and yh

t =

(yh
1,t, . . . , y

h
nh,t

)T corresponding to st and sh
t , respectively. Furthermore, γh

0 , γh
1

and αh are defined to represent the MoG parameters of active sources. The joint

distribution of st conditional on zt = ζh is then given by

p(st | zt = ζh) =
∑
yh

t

αyh
t
Nnh(sh

t | 0,Vyh
t
)

n̄h∏
k=1

δ(s̄h
k,t), (2.8)

where

αyh
t

=
nh∏
j=1

(αh
j )

yh
j,t(1 − αh

j )
1−yh

j,t , (2.9a)

V −1
yh

t
= diag

(
γh

1,t, γ
h
2,t, . . . , γ

h
nh,t

)
. (2.9b)

Here, diag(·) denotes the diagonal matrix having specified values as its diagonal

elements, and γh
j,t = γh

0j (if yh
j,t = 0) or γh

1j (if yh
j,t = 1).

2.3 Markov assumption on switching dynamics

For real-world data, it is natural to assume a temporal continuity on each of

the active and inactive states. One practical way to incorporate such temporal
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dependence into the model is to employ a Markov process to model the dynamics

of the switching variables. In particular, in this study, strictly following the

assumption of mutual independence among sources, the Markov processes for n

sources are assumed to be independent of each other. The initial and transition

probabilities of the switching variables are then given by p(z1) =
∏n

i=1 p(zi,1) and

p(zt | zt−1) =
∏n

i=1 p(zi,t | zi,t−1), respectively, where we assume

p(zi,1) =

1 − πi if zi,1 = 0

πi if zi,1 = 1
, (2.10a)

p(zi,t | zi,t−1) =


ρ0i if (zi,t, zi,t−1) = (0, 0)

1 − ρ0i if (zi,t, zi,t−1) = (1, 0)

1 − ρ1i if (zi,t, zi,t−1) = (0, 1)

ρ1i if (zi,t, zi,t−1) = (1, 1)

. (2.10b)

Here, πi is the probability for the initial presence of the i-th source, and ρ0i,

ρ1i ∈ [0, 1] are the probabilities that the i-th source switches from active to

inactive and that the i-th source switches from inactive to active, respectively.

Figure 2.1 shows the transition diagram of this setting.

Figure 2.1. Transition diagram of active (z = 1) and inactive (z = 0) states.

The temporal structure assumed on the switching variables is the key aspect

of the Switching ICA model. By assuming the Markov dynamics on switching

variables, estimation for the state of the corresponding source signal, active or

inactive, is expected to be improved for such real-world signals that a source

signal continues to exist for a certain time after appearing and continues not to

exist for a certain time after disappearing. The parameters π = (π1, π2, . . . , πn)T

12



and ρ = {ρ0,ρ1}, where ρ1 = (ρ11, ρ12, . . . , ρ1n)T and ρ0 = (ρ01, ρ02, . . . , ρ0n)T ,

are unknown and must be estimated. The self-transition probabilities, ρ0i and

ρ1i, are automatically estimated within the range of [0.5, 1], under the assumption

that zi,t tends to remain at the same value, and the source signal then remains

active or inactive for a certain time. It should be noted that the Markov process in

Eq. (2.10) includes a special case of the lack of dynamics. That is, if ρ0i +ρ1i = 1,

then zi,t are independently distributed as p(zi,t = 0) = ρ0i and p(zi,t = 1) = ρ1i =

1− ρ0i for t = 1, 2, . . . , τ ; in contrast, if (πi, ρ0i) = (0, 1) or (πi, ρ1i) = (1, 1), then

zi,t is constant at zero or one, respectively, for t = 1, 2, . . . , τ , which corresponds

to the conventional assumption of stationary ICA.

To summarize the above description of our probabilistic generative model,

Fig. 2.2 illustrates a graphical model of the Switching ICA.

Figure 2.2. Graphical models. a) At the initial time step t = 1. b) Transition

from time step t − 1 to t. The solid square represents one time slice.
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3. Bayesian inference

In this section, we describe the Bayesian inference for the Switching ICA model

defined in the previous section, the algorithm of which follows the variational

Bayes (VB) method [8, 10].

3.1 Prior distribution

Let θ = {A, β}, φ = {α,γ} and ω = {π,ρ} represent the model parameters

involved in the observation process, scale-MoG source models and dynamical

processes, respectively. We assume that their prior distributions are given as the

following conjugate forms, p0(θ, φ, ω) = p0(θ)p0(φ)p0(ω):

p0(θ) = p0(A, β) = Nd×n

(
A | M 0, β

−1Id, G
−1
0

)
Ga(β | κ0, λ0), (2.11a)

p0(φ) = p0(α, γ) =
n∏

i=1

Be(αi | uαi
, wαi

)Ga(γ0i | uγ0i
, wγ0i

)Ga(γ1i | uγ1i
, wγ1i

),

(2.11b)

p0(ω) = p0(π,ρ) =
n∏

i=1

Be(πi | uπi
, wπi

)Be(ρ0i | uρ0i
, wρ0i

)Be(ρ1i | uρ1i
, wρ1i

),

(2.11c)

where Nd×n(· | ·, ·, ·), Ga(· | ·, ·) and Be(· | ·, ·) denote the matrix normal dis-

tribution, the Gamma Distribution, and the Beta distribution, respectively (for

definitions, see Appendix A).

3.2 Variational Bayes method

The VB method reformulates the Bayesian inference as a functional optimization

problem. The objective function, called the variational free energy, is defined as

a functional of a probability distribution q referred to as the trial distribution:

F [q(ξ, θ, φ,ω)] =

〈
log

p(X, ξ, θ,φ,ω)

q(ξ,θ,φ, ω)

〉
ξ,θ,φ,ω

, (2.12)

where X = (x1,x2, . . . , xT ) denotes the observation matrix, and ξ = {S,Y ,Z}
is the set of latent variables, with S = (s1, s2, . . . , sτ ), Y = (y1, y2, . . . , yτ ) and

14



Z = (z1,z2, . . . , zτ ). Here, 〈·〉ϕ denotes the expectation with respect to the trial

distribution, q(ϕ) 2. Equation (2.12) can be written as

F [q(ξ, θ, φ,ω)] = log p(X) − KL [q(ξ, θ, φ,ω) ‖ p(ξ,θ,φ, ω | X)] , (2.13)

where KL[·‖·] is the Kullbuck-Leibler (KL) divergence. Eq. (2.13) indicates that

the exact maximization of F with respect to q is equivalent to the minimization

of the KL divergence between q and the true posterior p, since the first term in

Eq. (2.13) does not depend on q.

The solution of the exact maximization of Eq. (2.12), i.e., q = p, however,

involves intractable integration (or summation) in many cases. To avoid this,

the VB method introduces a constraint on q, and then finds the q that best

approximates p. The constraint is usually given as a factorization of q that

assumes partial independence of unknown variables. In this study, we use the

constraint as

q(ξ,θ, φ, ω) ≈ q(ξ)q(θ,φ,ω), (2.14)

which allows us to obtain the closed-form solutions of q(ξ) and q(θ, φ,ω). The

maximization of Eq. (2.12) is then approximately performed by alternative max-

imization with respect to each of the two functions. According to [10], the two

solutions are given as

q(ξ) ∝ exp
(
〈log p(X, ξ | θ,φ,ω)〉θ,φ,ω

)
, (2.15a)

q(θ,φ, ω) ∝ exp
(
〈log p(X, ξ | θ,φ,ω)〉ξ

)
p0(θ,φ,ω), (2.15b)

where the normalization terms are omitted. Equations (2.15a) and (2.15b) can

also be written as follows, by employing the conditional independence among

variables assumed in the generative model. Equation (2.15a) can be represented

as

q(ξ) = q(S,Y , Z) =
1

Cξ

ψθ (X, S) ψφ (S,Y , Z) ψω (Z) , (2.16)

where ψθ (X,S), ψφ (S,Y ,Z) and ψω (Z) are defined as exp (〈log p(X | S,θ)〉θ),
exp(〈log p(S,Y | Z,φ)〉φ) and exp (〈log p(Z | ω)〉ω), respectively. Cξ is the nor-

malization term. Equation (2.15b) can be further factorized into the form q(θ, φ,ω) =
2Hereinafter, this notation will sometimes be omitted when it is clear from the context.
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q(θ)q(φ)q(ω) rigorously, where

q(θ) =
1

Cθ

ψS (X,θ) p0(θ), (2.17a)

q(φ) =
1

Cφ

ψS,Y,Z (φ) p0(φ), (2.17b)

q(ω) =
1

Cω

ψZ (ω) p0(ω). (2.17c)

Here, ψS (X, θ), ψS,Y,Z (φ) and ψZ (ω) are defined as exp (〈log p(X | S,θ)〉S),

exp(〈log p(S,Y | Z,φ)〉S,Y ,Z) and exp (〈log p(Z | ω)〉Z), respectively. Cθ, Cφ

and Cω are the normalization terms.

Equations (2.16) and (2.17) mutually interact through the calculation of

expectations. The expectations with respect to the model parameters, θ, φ and

ω, are easily calculated as conjugate forms of prior distributions in Eq. (2.11) (See

Appendix B.2 for details). In contrast, the expectation with respect to the latent

variables, ξ, is calculated in a more complicated manner, which is described in the

rest of this section. The alternate calculation of Eqs. (2.16) and (2.17) is called

the VB-EM algorithm [10] mainly as an analogy from the EM algorithm [28, 70],

where Eq. (2.16) is called the VB-E step and Eq. (2.17) the VB-M step. The

VB-EM algorithm converges to a local maximum of the variational free energy,

Eq. (2.12). In practice, we can avoid poor local maxima by using the standard

(noisy) ICA method to set initially the trial distributions and/or by comparing

multiple results from different initial conditions to select the best one with the

largest value of the variational free energy.

3.3 Inference on sources under a specific switching assump-

tion

Equation (2.16) shows that st and yt at a specific time step t are conditionally in-

dependent from those of the other time steps, given a specific indicator vectors zt,

since the temporal dependence is involved only in ψω(Z), which is cancelled out

in the calculation of q(S, Y | Z) = q(S, Y ,Z)/
∑

Y

∫
dSq(S, Y ,Z). Because of

this conditional independence, we can write q(S,Y | Z) =
∏τ

t=1 q(st, yt | zt) =
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∏τ
t=1 q(st | yt,zt)q(yt | zt), where

q(st,yt | zt) =
ψθ(xt, st)ψγ(st,yt,zt)ψα(yt, zt)∑

yt

∫
dst ψθ(xt, st)ψγ(st,yt,zt)ψα(yt, zt)

, (2.18)

and

q(st | yt,zt) =
q(st,yt | zt)∫

dst q(st, yt | zt)
=

ψθ(xt, st)ψγ(st,yt,zt)

l(xt, yt, zt)
, (2.19a)

q(yt | zt) =

∫
dst q(st, yt | zt) =

l(xt,yt,zt)ψα(yt)∑
yt

l(xt, yt, zt)ψα(yt)
, (2.19b)

with the notations: ψθ(xt, st) = exp(〈log p(xt | st,θ)〉θ), ψγ(st,yt,zt) = exp(〈log p(st |
yt, zt, γ)〉γ) and ψα(yt,zt) = exp(〈log p(yt | zt, α)〉α). The normalization term

in Eq. (2.19a), l(xt,yt,zt), is defined as

l(xt,yt,zt) =

∫
dst ψθ(xt, st)ψγ(st,yt,zt), (2.20)

which also acts as the marginal likelihood of yt given xt and zt in Eq. (2.19b).

The integral in Eq. (2.19b) can be analytically performed (see Appendix B.1).

Further calculation of Eq. (2.19a) yields (see Appendix B.1 for derivation)

q(st | yt,zt = ζh) = q(st | yh
t ,zt = ζh) = Nnh(sh

t | µ̂yh
t
, V̂yh

t
)

n̄h∏
k=1

δ(s̄h
k,t), (2.21)

where the hyperparameters are given by

V̂yh
t

=
(〈

β(Ah)TAh
〉

+
〈
V −1

yh
t

〉)−1

, (2.22a)

µ̂yh
t

= V̂yh
t

〈
βAh

〉T
xt. (2.22b)

Thus, the approximate posterior of source vector st conditional on zt is given in

the same form as Eq. (2.8):

q(st | zt = ζh) =
∑
yh

t

q(yh
t | zt = ζh)q(st | yh

t , zt = ζh) (2.23a)

=
∑
yh

t

α̂yh
t
Nnh

(
sh

t | µ̂yh
t
, V̂yh

t

) n̄h∏
i=1

δ(s̄h
i,t), (2.23b)
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where

α̂yh
t

= q(yh
t | zt = ζh) =

∑
ȳh

t

q(yt | zt = ζh). (2.24)

Note here that all of the conditional moments appearing in Eq. (2.22), 〈V −1
yh

t
〉,

〈β(Ah)TAh〉 and 〈βAh〉 for a given h, are obtained from the complete moments,

〈V −1
yt

〉 (≡ diag(〈γ1,t〉, 〈γ2,t〉, . . . , 〈γn,t〉)), 〈βATA〉 and 〈βA〉, for the case where

all of the n components exist. That is, 〈V −1
yh

t
〉 and 〈β(Ah)TAh〉 are obtained

respectively from 〈V −1
yt

〉 and 〈βATA〉 by eliminating the rows and columns that

correspond to inactive components in the h-th indicator allocation. Similarly,

〈βAh〉 is also obtained by eliminating certain columns of 〈βA〉.
Calculation of the approximate posterior for θ = {A, β}, Eq. (2.17a), requires

only the first and second posterior moments of st, 〈st〉 and 〈sts
T
t 〉. To calculate

the expectations with respect to st, first the conditional expectation with respect

to st given zt, 〈st〉st|zt and 〈sts
T
t 〉st|zt is evaluated, and then the expectation with

respect to the approximate posterior, q(zt), is taken, as presented below. Note

that, given a specific zt = ζh that involves zi,t = 0, the corresponding entries

of the conditional expectations (the i-th element of 〈st〉st|zt and the i-th row

and column of 〈sts
T
t 〉st|zt) become zero. Thus, we need only the calculations of

the non-zero entries thereof, which are given by the elements of the conditional

expectations with respect to sh
t :

〈sh
t 〉 =

∑
yh

t

α̂yh
t
〈sh

t 〉st|yt,zt=ζh
=

∑
yh

t

α̂yh
t
µ̂yh

t
, (2.25a)

〈sh
t (s

h
t )

T 〉 =
∑
yh

t

α̂yh
t
〈sh

t (s
h
t )

T 〉st|yt,zt=ζh
=

∑
yh

t

α̂yh
t

(
µ̂yh

t
µ̂T

yh
t

+ V̂yh
t

)
. (2.25b)

3.4 Forward-Backward inference on switching variables

To complete the calculation of expected sufficient statistics in the VB-E step,

we need the marginal distributions, q(zt) and q(zt, zt−1). Let e(xt, zt) be the

marginal likelihood of zt, which is given by the denominator in Eq. (2.19b).

Then, the approximate posterior of Z is given by

q(Z) = q(z1, z2, . . . , zT ) =
1

Cξ

e(x1,z1)ψπ(z1)
τ∏

t=2

e(xt, zt)ψρ(zt,zt−1), (2.26)
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where ψπ(z1) ≡ exp(〈p(z1 | π)〉π) and ψρ(zt, zt−1) ≡ exp(〈log p(zt | zt−1,ρ)〉ρ).

Here, Cξ is the normalization term that appeared in Eq. (2.16). Equation (2.26)

is equivalent to the standard form of the HMM. Thus, the marginals of interest,

q(zt) for t = 1, . . . , τ and q(zt+1,zt) for t = 1, . . . , τ − 1, can be calculated

exactly by using the Forward-Backward algorithm 3 [79]. The expectations in the

terms ψπ(z1) and ψρ(zt,zt−1) are calculated from q(π,ρ), whose derivations are

described in Appendix B.2. Using the resultant marginal distribution, q(zt), the

expectations about the source vector, 〈st〉 and
〈
sts

T
t

〉
, are obtained as explained

above, that is, the weighted means of conditional moments are:〈
sts

T
t

〉
=

∑
zt

q(zt)〈sts
T
t 〉st|zt , (2.27a)

〈st〉 =
∑
zt

q(zt)〈st〉st|zt . (2.27b)

The pairwise marginal, q(zt, zt−1), is used for calculating expectations that are

necessary for the trial distribution of dynamics parameters, q(ω) (see Appendix B.2).

3.5 Final estimates of unknown variables

After the convergence of the VB-EM algorithm, the estimates of all unknown vari-

ables are obtained from the resultant approximate posterior, q. Although many

types of estimators can be obtained from the posterior distribution, according to a

variety of loss criteria, we conveniently take the expected values as the estimators

for unknowns, because they are calculated in the VB-EM procedure. Only for

the switching variables, the maximum a posteriori (MAP) estimator is obtained:

ẑt = argmaxzt
q(zt). (2.28)

Since the MAP estimate ẑt is a binary vector, as is the true switching vector, it

is easier to interpret than the expected vector, which may take analog values.

3Cξ is also obtained by the Forward-Backward algorithm, practically as the product of the
scaling constant introduced to avoid any numerical underflow [79].
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4. Simulations

In this section, we compare the performance of Switching ICA (SwICA) with those

by three other methods. The first one is the natural-gradient ICA with a non-

holonomic constraint [4] (NG-N). The other two methods are modified versions

of SwICA. One is without temporal dynamics on the switching variables, referred

to as NoDyna; the other is without the Dirac’s Delta prior on the sources, which

is almost equivalent to the existing (Bayesian) HMM-ICA [21] and thus referred

to as HMM-ICA. In NoDyna, the switching variables, zi,t for t = 1, 2, . . . , τ , were

considered as independent Bernoulli samples p(zi,t = 1) = 1 − p(zi,t = 0) = ρzi

instead of obeying the Markov process in Eq. (2.10). That is, the n parameters,

ρzi for i = 1, 2, . . . , n, were simply estimated using a conjugate Beta distribution

in a similar manner to learning the dynamics parameters in the Markov process.

In HMM-ICA, the Dirac’s Delta conditional source model was replaced by the

scale-MoG in Eq. (2.4), where the MoG parameters therein were also assumed to

be unknown and were estimated.

To evaluate the performance, we use the average Source-to-Distortion Ratio

(aSDR) and Amari’s Performance Index (PI) [5], which measure the estimation

performance of source signals and the mixing matrix, respectively. Let s?
i and ŝi

represent the true and estimated source variables, not specifying the time index.

Then, aSDR is defined as

aSDR(dB) = 10 log10

(
1

n

n∑
i=1

(
1

|corr[ŝi, s?
i ]|

− 1

)−1
)

, (2.29)

where corr[·, ·] denotes the sample correlation coefficient. In this calculation, the

estimated sources were permuted so that the average of absolute correlations was

the largest. This measure is a slight modification of the Source-to-Distortion

Ratio proposed in [42]. When the absolute correlation for every i is high, aSDR

becomes high. In contrast, when the absolute correlation for every i is low, aSDR

becomes low. Next, let A? and Â be the true and estimated mixing matrices,

respectively. Then, PI is defined as

PI =
n∑

i=1

(
n∑

j=1

|uij|
maxk |uik|

− 1

)
+

n∑
j=1

(
n∑

i=1

|uij|
maxk |ukj|

− 1

)
, (2.30)
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where U = [uij] = Â
†
A? and † denotes the pseudo-inverse. This measure becomes

zero if the estimated mixing matrix Â correctly recovers the true mixing matrix,

except for the scale and the order of columns, otherwise it has a positive value.

In addition, we compute the signal-to-noise ratio (SNR) of the observations as

SNR(dB) = 10 log10

(
1

d

d∑
i=1

var[
∑n

j=1 A?
ijs

?
j ]

(β?)−1

)
, (2.31)

where β? is the true inverse variance of Gaussian noise, and var[·] denotes the

sample variance.

4.1 Artificially-generated sources

We first examined the case of artificially generated source signals. The numbers

of mixtures and potential source signals were set as d = n = 3, and the time-

series length was τ = 1000. The switching variables and source signals are shown

in Fig. 2.3. The bar graph at the top of each panel shows the value of the

true switching variables, z?
i,t for t = 1, 2, . . . , τ , where the white bands indicate

z?
i,t = 1 (active) and the black bands z?

i,t = 0 (inactive). The active source signals

were generated from the scale-MoG in Eq. (2.5). The source signals were then

artificially mixed with a mixing matrix, A?, plus Gaussian noises with various

noise levels to correspond to the SNRs of 0, 4, 8, 12, and 16. In the following,

A? is given as

A? =

−0.8321 0.4851 0.0316

0.5547 0.4851 −0.9482

0 0.7276 0.3161

 , (2.32)

where the norm of each column vector is normalized to be 1 for simplicity. To

conduct the VB inference for NoDyna, HMM-ICA and SwICA, we set the prior

hyperparameters at M 0 = 0, G0 = 0.01In, κ0 = λ0 = 1×10−3, and u· = w· = 0.5,

and iterated the VB-E and M steps 500 times. To initialize the trial distributions

in HMM-ICA and SwICA, we ran a noisy ICA without the latent dynamics or

the Dirac’s Delta prior, which was constructed by eliminating temporal dynamics

from HMM-ICA, and then assigned the resultant approximate posteriors as the

initial distributions. Each of the four algorithms was executed over 50 runs for
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Figure 2.3. The true source signals and switching variables. The bar graph at

the top of each panel indicates the value of the true switching variable z?
i,t, where

the white bands represent z?
i,t = 1 (active) and the black bands represent z?

i,t = 0

(inactive).
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each noise level, with application of different Gaussian noises for each run. The

simulation times by SwICA for one run was about 160 min on average, with the

Matlab program running on a Linux computer with a XEON 2.40-GHz CPU and

a memory of 1 GB.

Figure 2.4 shows examples of recovered source signals by the four algorithms

with SNR=8, where the compared result here is of the highest aSDRs for each

algorithm, each out of the 50 runs. Figure 2.5 also shows the variational free

energy for each algorithm except for NG-N. In Fig. 2.4, the bar graph illus-

trates the MAP estimates of the switching variables, where the white and black

bands indicate active and inactive, respectively. These panels show that SwICA

could effectively recover the original source signals that abruptly appeared or

disappeared with time, compared to the other algorithms. The reconstruction of

inactive periods by NG-N was heavily influenced by noise. This is also the case

with HMM-ICA, though the switching variables (which indicate either of the two

scale-MoG components in this case) were estimated successfully. NoDyna avoided

such unexpected reconstruction in the inactive periods – in comparison to NG-N

or HMM-ICA. The estimated signals in active periods, however, frequently have

smaller values than the true ones, and there still exist some artifacts in the inac-

tive periods. In contrast, Switching ICA successfully recovered the original source

signals as well as avoided artifacts in the inactive periods. It should be noted that,

however, the estimation of switching variables by SwICA still includes much fail-

ure, especially in the active periods. In Sec. 5, we will present a modification to

improve it.

Figure 2.6 shows a comparison of the four algorithms’ performance at different

noise levels. The left panels show the aSDRs, and the right ones the logarithm of

PIs. This figure illustrates that: 1) The performance of NG-N is lower than that

of SwICA, even at the highest SNR (at 16) in this experiment; 2) the performance

of HMM-ICA is comparable to that of SwICA at the higher SNRs (at 12 and 16),

while it degenerates with increasing noise (SNR=4 and 8); 3) the performance

of NoDyna is lower than SwICA at high SNRs (at 8, 12 and 16), but it becomes

comparable with a lower SNR (at 4); and finally, 4) SwICA exhibits a consistently

good performance both in source recovery and mixing matrix estimation, except

for the lowest SNR (at 0), where the four algorithms show comparable low-level

23



NG-N

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

time

NoDyna

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

time

HMM-ICA

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

time

SwICA

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

0 200 400 600 800 1000
-6
-4
-2
0
2
4
6

time

Figure 2.4. Examples of recovered source signals (and the switching variables

except for NG-N) by the four algorithms, where each is of the highest aSDR

among 50 runs. The bar graph denotes the MAP estimates of the switching

variables, where the black and white bands represent zero (inactive) signals and

one (active) signals, respectively. The order and the sign of each source were

appropriately adjusted, and each source was scaled such that the corresponding

column vector of the mixing matrix has a unit norm.

24



0 100 200 300 400 500

−3600

−3400

−3200

−3000

−2800
Fr

ee
 E

ne
rg

y

Iteration

NoDyna
HMM−ICA
SwICA

Figure 2.5. The variational free energy of the three algorithms, NoDyna, HMM-
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Figure 2.6. The performances at different noise levels for artificial source signals.

The left panel shows the aSDR and the right one the logarithm of PI, by the four

algorithms. An error bar represents the range between 10 percentile (lower) and

the 90 percentile (upper).
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performances.

A case with an unknown number of sources

In the experiment above, it was assumed that the total number of sources pre-

sented in the given time-series is known. The total number of sources, however,

is not necessarily known in real-world problems. In our SwICA, such a situation

would be handled by preparing a model with a larger n, where some redundant

sources are expected to be estimated as inactive for all t = 1, 2, . . . , τ . To exam-

ine this nature, we prepared mixture signals by using only the first two source

signals (and the first two column vectors in the mixing matrix of Eq. (2.32)) in

the previous experiment, while the model assumed n = 3 (overestimated) instead

of n = 2 (true). The two algorithms HMM-ICA and SwICA were performed

along 1, 000 learning steps. The other settings were the same as in the previ-

ous one. Figure 2.7 shows the results of the highest aSDR. While HMM-ICA

accidentally recovered artifact signals in the inactive periods, SwICA could suc-

cessfully avoid them; actually, it completely switched off the third signals, s3,t

for all t = 1, 2, . . . , τ , in this result. The mixing matrices estimated by the two

algorithms were:

Â =

−0.8312 0.4605 −0.4447

0.5559 0.4979 −0.5682

−0.0108 0.7349 0.6923

 (HMM-ICA), (2.33a)

Â =

−0.8328 0.4969 0

0.5535 0.4888 0

−0.0086 0.7171 0

 (SwICA), (2.33b)

where the third column was effectively suppressed by SwICA. Figure 2.8 shows the

histograms of the variances of recovered si,· over 20 runs. This result indicates

that SwICA successfully and robustly suppresses irrelevant sources and hence

recovers the original number of sources in this experiment.

An overcomplete case

We also investigated the case in which the number of active sources is larger

than that of the mixture signals (n > d). In such an overcomplete case, the BSS
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Figure 2.7. Examples of recovered source signals and the estimated switching

variables by HMM-ICA and SwICA in the case that the number of true source

signals is two, but the model over-estimates it a priori as three.

27



0 0.01 0.02 0.03 0.04 0.05 0.060

10

20

Va
r(s

3)

0 0.01 0.02 0.03 0.04 0.05 0.060

10

20

Va
r(s

3)

SwICA

HMM−ICA

Figure 2.8. Histograms of the variances of the third source signals, s3,·, which

were estimated by HMM-ICA (upper panel) and SwICA (lower panel). In this

simulation, the number of true source signals was two, and thus the third source

signal should be estimated as being zero or close to zero. In the lower panel, the

bin width is set smaller than in the upper one, to make it easier to see that the

variance by SwICA is likely the zero value almost exactly.
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becomes quite difficult. We examined a simple setting here, in which the source

signals (n = 3) in Fig. 2.3 was mixed into two observation signals (d = 2), with

A? =

(
−0.8321 0.7071 0.0333

0.5547 0.7071 −0.9994

)
. (2.34)

We compared the two algorithms NoDyna and SwICA, each of which was repeated

20 times with the application of different Gaussian noises. The SNR was set at 16.

Figure 2.9 shows a typical example of source and switching variables estimated by

the two algorithms. Figure 2.10 shows the correlation coefficients between the true

and estimated sources (as posterior expectations) and the accuracy of the MAP

estimates of switching variables, by the two algorithms. These results indicate

that the dynamics model employed in SwICA, rather than that in NoDyna is

effective at providing prior knowledge to recover the original signals and their

presence/absence even in this difficult overcomplete case.
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Figure 2.9. Examples of source signals and the switching variables estimated by

NoDyna and SwICA in the overcomplete case.
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Figure 2.10. The overcomplete case. Left: The correlation coefficient between the

true and the estimated source signals. Right: The accuracy of MAP estimates of

the switching variables.

4.2 Realistic audio sources

Next, we evaluate the performance of Switching ICA for more realistic source

signals, where the scale-MoG source model does not necessarily represent well

the true source-generation process. Consider a situation in which two persons

are in conversation with music playing in the background. Most of the time, the

number of signals at any moment is one or two because one person is usually

silent while the other person is speaking. However, three simultaneous source

signals may sometimes occur like when the two speakers speak over each other.

To simulate such a situation, we prepared the source signals as depicted in the

left-hand panel of Fig. 2.11. The three waveforms denote two speech signals and

one music signal (a singing voice). The original data were taken from the SpEAR

database [96]. The sampling rate was reduced from 16 kHz to 0.5 kHz to reduce

the sample size in order to produce a shorter simulation time. Although such an

extremely low sampling rate may not be realistic, it is still sufficient for testing the

fundamental performance of the proposed method. The total length of the down-

sampled signals was τ = 1, 000. Some part of the original signals (the last 400

steps of the first signal and the first 400 steps of the second signal) were explicitly

set at zero to simulate the above situation. They were also pre-processed such

that each source signal in the active periods had a zero mean and unit variance.
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The source signals were then artificially mixed into a three-channel observation

time-series (d = n = 3) using the mixing matrix in Eq. (2.32) while applying

Gaussian noises at various SNRs. The other experimental settings were the same

as those in Sec. 4.1.
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Figure 2.11. The case of realistic audio signals. Left: True source signals. Right:

Estimated source signals and their presence/absence, estimated by SwICA.

Figure 2.12 compares the results obtained by the four algorithms over 50 runs.

With low SNRs such as 0, 4 and 8, SwICA showed superior performance over the

other three algorithms. NoDyna no longer showed comparable results, as seen

in Fig. 2.6. With a high SNR (= 16), however, HMM-ICA performed better

than SwICA, which is a major difference from Fig. 2.6. One possible reason

for this difference is the discrepancy between the assumed and true models for

active sources. With a high SNR, where the model discrepancy becomes large, the

limited representation capacity of SwICA (which is a special model of HMM-ICA)

may have led to such degenerate performance.
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Figure 2.12. The performance at different noise levels in the case of realistic audio

source signals. The left panel shows the aSDR and the right one the logarithm

of PI, by the four algorithms. An error bar represents the range between the 10

percentile (lower) and the 90 percentile (upper).

5. Extension to semi-Markov switching

The Markov setting on the switching variables (Sec. 2.3) implicitly assumes that

the duration of each active or inactive state is distributed as geometric 4, i.e.,

the probability of staying in a same state exponentially decreases with time.

Although the Markov setting provides an effective inference procedure based on

the Forward-Backward algorithm, the geometric assumption is not very consistent

with many real-world phenomena, in which a source signal is likely to keep active

or inactive for a certain time period once it has turned into one of them. The

simulation results in Sec. 4.1 actually showed that the estimated states of each

source tend to switch more frequently between active and inactive than the true

sources do. Thus, we expect that the estimation of active/inactive states of true

source signals would improve (with some increase in the computational cost) by

employing a temporal structure that can accommodate another types of duration

distribution representing such a situation more appropriately. In this section,

4The duration for a specific state in a Markov process is distributed as the geometric dis-
tribution: p(d) = (1 − ρ)ρd−1, where d denotes the duration and ρ denotes the self-transition
probability of the state.
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we describe a simple extension of our Markov-based Switching ICA, and present

simulation results.

A hidden semi-Markov model (HSMM) [36, 84, 58, 54] is effective in avoiding

the geometric duration of HMMs. Johnson [54] reviewed several types of HSMM

that had been proposed mainly in the field of speech recognition. One conven-

tional way to construct an HSMM is to employ an explicit model of durations via

parametric distribution, such as multinomial or Gamma distributions. However,

this often incurs a heavy computational cost. Another practical way, which is

employed in this section, is to control the duration distribution of single states

implicitly by expanding a state of HMM into a Markov-chain of multiple states.

This type of HSMM is computationally tractable, while it has been empirically

shown to have sufficient ability to represent realistic duration distributions [54].

Along this line, we refine the Markov dynamics described in Sec. 2.3 to have a

semi-Markov property by the following simple modification. We first introduce a

phase variable, mi,t, that takes a discrete value, and define an augmented switch-

ing variable as z̃i,t = (zi,t,mi,t). If we newly consider a Markov chain on z̃i,t, the

duration distribution of zi,t = 0 or 1 (irrespective to mi,t) is no longer geomet-

ric. For simplicity, we assume mi,t takes a binary value, 0 or 1, and the Markov

process on z̃i,t is assumed to have a limited number of parameters 5. Figure 2.13

shows the transition diagram of the four states of z̃i,t. The initial probability is

given as

p(z̃i,1) = p(zi,1,mi,1) =

0.5(1 − πi) if zi,t = 0

0.5πi if zi,t = 1
. (2.35a)

The transition probabilities are given as follows. Let ρi(z) = ρ1−z
0i ρz

1i, then, if

mi,t−1 = 0,

p(zi,t, mi,t | zi,t−1,mi,t−1 = 0) =


ρi(zi,t−1) if mi,t = 0, zi,t = zi,t−1

1 − ρi(zi,t−1) if mi,t = 1, zi,t = zi,t−1

0 otherwise

, (2.36)

5In the current setting, the number of parameters is actually the same as in the original
Markov dynamics.
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and if mi,t−1 = 1,

p(zi,t, mi,t | zi,t−1,mi,t−1 = 1) =


ρi(zi,t−1) if mi,t = 1, zi,t = zi,t−1

1 − ρi(zi,t−1) if mi,t = 0, zi,t 6= zi,t−1

0 otherwise

. (2.37)

Figure 2.14 shows an example of duration distributions for the Markov (geomet-

ric) and the semi-Markov processes 6. In the semi-Markov model, the duration

probability does not simply decrease with time, but increases with time to a peak

and then falls with a heavy tail.

Figure 2.13. Transition diagram of the augmented switching variable z̃ = (z,m)

in the semi-Markov model. The transition from active (z = 1) to inactive (z = 0)

or from inactive to active, occurs only if the phase variable is m = 1.

The simple setting of this semi-Markov model alters the original algorithm

only in the following points. First, we now carry out the Forward-Backward

calculation on z̃t instead of on zt, assigning the same evidence e(xt,zt) for z̃t

that have the same zt realization. We note that the computational cost in this

calculation can be reduced to some extent by carefully considering the structure

6The probability distribution of durations in the semi-Markov model is given by

p(d) =

(
0

1 − ρ

)T (
ρ 0

1 − ρ ρ

)d−1 (
1
0

)
,

where d and ρ respectively denote the duration period and the self-transition parameter.
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Figure 2.14. Example of duration distributions. The dotted and solid lines cor-

respond to the Markov and semi-Markov dynamics, respectively, with the same

self-transition parameter, ρ = 0.99.

of Markov chains in Fig. 2.13, in which the large parts of the transition matrix

have zero values. Second, after the Forward-Backward calculation, the marginals,

q(zt) and q(zt,zt−1), should be calculated by marginalizing mt. Finally, the

variational free energy should be modified appropriately so as to correspond to

the semi-Markov chain. Other parts of the learning algorithm are the same as in

the original SwICA.

Figure 2.15 shows estimation results by the semi-Markov modification of

Switching ICA (SwICA-SM). In this simulation, SwICA-SM is initialized based on

the result by Markov-SwICA (SwICA-M). The other simulation setting was the

same as in Sec. 4.1. The result is of the highest aSDR out of 50 runs, at SNR = 8.

By comparing it with the result by SwICA-M in Fig. 2.4, the switching variables

were recovered more clearly. Figure 2.16 shows that the estimation of switching

variables was actually improved from that by SwICA-M at various SNR levels

(such as 4, 8 and 12). Figure 2.17 shows the estimation performance of source

signals and mixing matrix by SwICA-SM in comparison to that by SwICA-M.

Although the performance was at a comparable or slightly inferior level to that

of SwICA, the performance was still higher than those of the other algorithms

such as NoDyna and HMM-ICA.
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Figure 2.15. Examples of recovered source signals and the switching variables by

the semi-Markov extension of SwICA. The result in this figure can be compared

with the results by the other algorithms in Fig. 2.4.

36



0 4 8 12 160.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

SNR(dB)

Ac
cu

ra
cy

 o
f e

st
im

at
ed

 Z

NoDyna
HMM−ICA
SwICA
SwICA−SM

Figure 2.16. The accuracy of MAP estimates of switching variables by NoDyna,

HMM-ICA, SwICA(-M) and SwICA-SM. The dotted horizontal line denotes the

accuracy when the sources are estimated as always being active.
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Figure 2.17. The performance of SwICA-SM at different noise levels compared to

that of SwICA. The left panel shows the aSDR and the right one the logarithm

of PI, by the four algorithms. An error bar represents the range between the

10 percentile (lower) and the 90 percentile (upper). These panels show that the

performance of SwICA-SM is comparable to or slightly inferior to that of SwICA.
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6. Discussion

In our experiments, the proposed Switching ICA exhibited high performance in

the situations where sources dynamically switch on and off with time, especially

when some amount of noise was present. The results in Sec. 4.4 showed that

the Dirac’s Delta prior in conjunction with the Markov dynamics is useful for

robust estimation of source signals and their presence/absence. That method

was shown to be robust also in the cases when the total number of sources was

overestimated or actually larger than that of the mixtures. The two algorithms,

the ones without Dirac’s Delta (HMM-ICA) and without dynamics (NoDyna),

were found to be ineffective in our experiments. Our results revealed that the

Dirac’s Delta prior is effective at relatively low SNRs for suppressing unnecessary

reconstruction of source signals in inactive periods, while the temporal dynamics

is needed at higher SNRs where the difference between the assumed (i.i.d.) and

the true (non-i.i.d.) processes would matter. This is typically observed when

comparing the switching variables estimated by NoDyna and SwICA in Fig. 2.4.

In addition, we showed that the semi-Markov extension is also beneficial for more

accurate estimation of switching variables, with a comparable performance to the

original Markov model in source separation and mixing matrix estimation. The

accurate estimation of active/inactive states would be useful for application to

recognition tasks such as speaker identification from audio signals.

The Markov version of our Switching ICA can be regarded as a special case

of HMM-ICA, such that the variance of one conditional source model is set to

the zero limit. Thus, at least in principle, HMM-ICA should be capable of per-

forming comparably with SwICA if the model parameter could approach an ideal

one. In our experiments, however, the performance of HMM-ICA was found to be

inferior to that of SwICA, except for the case of audio sources in the presence of

a relatively high SNR. One potential reason for this degradation is that the learn-

ing process of HMM-ICA could be highly variable due to the redundant model

capacity (which leads to a large parameter space to be explored). The solution

would then be affected more than SwICA by, for instance, noise, small sample

sizes, or inappropriate initialization conditions. If we have sufficient amount of

data or a more effective initialization scheme, then the performance of HMM-

ICA may improve to a level comparable with that of SwICA. The results may
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be further improved by longer simulations based on a more careful convergence

judgment, even though each trial could be seen as roughly converged in Fig. 2.5.

If we cannot prepare such improved situations in practice, however, the special

SwICA method is much more advantageous, as shown in our experiments, by

avoiding the potential variability and non-robustness of the HMM-ICA method.

The original version of HMM-ICA is, on the other hand, effective at incorporat-

ing a more general non-stationarity of (active) source signals. Accordingly, solid

contributions of the present study are to incorporate the inactive source model

into the general HMM-ICA model and to introduce the semi-Markov dynamics

into the non-stationary ICA context. We also note that a similar approach based

on Markov-Delta setting has recently been investigated to model audio signals

particularly in the time-frequency domain [35].

Switching ICA also has a close relationship to other existing principles. First,

the use of Dirac’s Delta prior to effectively suppress irrelevant parts of the model

is actually an essential idea of the Bayesian variable selection [37, 40, 38, 17] usu-

ally employed in multiple regression problems, which use a similar prior (usually

a mixture of a Gaussian and a Dirac’s Delta) on the regression coefficient. The

SwICA model can be regarded as a dynamic version of the Bayesian variable

selection, by incorporating the Markov (or semi-Markov) property into the prior.

We note that the variational free energy criterion [10], which is a conventional

method of model selection in the VB framework, cannot be utilized for this pur-

pose, since it does not accommodate the case in which the model structure may

change within a single dataset. Second, if we assume no dynamics on the switch-

ing variables (which is exactly the case of NoDyna), the source prior in SwICA

becomes a kind of sparse prior, which has a high density at zero and a heavy

tail, utilized in problems of learning overcomplete representations [73, 59, 74].

The difficulty with such overcomplete situations is the existence of indetermi-

nacy in recovering source signals, then its resolution requires appropriate prior

knowledge of the original sources. In Sec. 4.1, it was shown that the temporal

information, as well as the sparseness, can be useful for recovering source signals

in overcomplete cases. Although previous studies of the sparse representation

usually consider i.i.d. data instead of time-series signals, the proposed method

will be useful when considering, for example, sequential images like video images,
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since sparseness-based methods have been successfully applied to static images

without temporal structure.

Although our Switching ICA was shown to be effective in various cases consid-

ered in our experiments, there still can be situations where its BSS performance

may be insufficient and there is room for improvement. First, the Switching

ICA model assumes each source signal have no temporal dependence in active

periods. When active sources by themselves have clear temporal structures, the

performance of Switching ICA would not be enough and could be improved by

carefully addressing the temporal structure. One potential approach to this issue

is to model the active sources by HMM with a general structure; in this case,

the model is an extension of usual HMM-ICA which incorporates the inactive

source model (with or without the semi-Markov dynamics). Second, the switch-

ing variables are assumed to be mutually independent from each other. This is a

natural setting in the context of ICA, while it is an interesting issue to incorpo-

rate a higher-order correlation among the sources (as in [51]), by introducing a

mutual dependence among the switching variables. In audio cases, for example,

the appearance of each speaker is often not independent from those of the other

speakers as in conversation of multiple persons. In such cases, the performance of

our Switching ICA would degrade, especially in noisy situations. To investigate

extensions of Switching ICA to such situations is remained for our future study.

A major drawback of the Switching ICA is its high computational cost. In

this study, we employed a rather naive implementation of computing posterior

distributions in the VB-E step. The cost will then grow exponentially with the

number of potential sources, n, and so is intractable when n is large. The reason is

twofold. First, the joint posterior distribution of all of the n sources, Eq. (2.23b),

will have an intractable number of components when nh is large. Second, the

Forward-Backward calculation for the switching vector zt, which possibly takes

one of 2n states, also becomes intractable for a large n. The same difficulty also

arises in the semi-Markov model. A popular and accessible way to reduce such an

exponential cost of joint posterior computations is to employ the naive mean-field

approximation for the source posterior as in [7], which make the cost to a poly-

nomial order. A more advanced mean-field approach investigated in [47] would

also be useful to improve the accuracy of naive mean-field approximation. Alter-
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natively, Monte Carlo techniques may be employed, as reported in the Bayesian

variable selection literature [37, 40, 38, 17], specifically by using the sequential

Monte Carlo [30] for estimating the underlying dynamic processes. In addition

to the naive implementation of VB-E step, there is an another cause that may

slower the computational speed. As reported recently in [77], the convergence of

VB-EM often becomes quite slow in low-noise situations, due to the strong pos-

terior dependence between latent variables and model parameters. To overcome

this problem, some techniques that have been proposed to improve the conver-

gence of EM, such as a gradient-based optimization or a heuristic procedure (both

suggested in [77]), would be available.
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Chapter 3

Balancing plasticity and stability

of online Bayesian learning

1. Introduction

Online learning is a framwork of learning, in which the learning model attempts

to adapt to new inputs incrementally without retaining the series of past inputs.

This is in contrast to batch learning which is executed after all the inputs are

given and retaining the past inputs in the memory. Online learning thus requires

less memory than batch schemes, and learning can be started even when only part

of the data has been observed, both of which are important properties in practice.

Recently, Sato [87] have proposed an online variational Bayes (VB) method that

is an effective online learning scheme based on Bayesian inference. The Bayesian

framework naturally incorporates a principled way of model selection and poten-

tially avoids overlearning phenomena that may degrade the learning performance.

Although an exact implementation of Bayesian inference is usually intractable,

VB methods [8, 71], which were originally developed as a batch-type learning

scheme, provide an effective approximation. The VB methods also can naturally

accommodate probabilistic models that involve latent variables. The online VB

method is an alternative to the standard VB within online learning scenarios.

Besides the above basic advantages of online learning, an important character

is its potential to adapt to changing environments by properly adjusting a meta-
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parameter that controls the balance of plasticity and stability1 of the learning

model. In an early stage after an environmental change, the learning model

should exhibit high plasticity (and low stability) to accelerate the learning to

quickly assimilate the new inputs; in contrast, it should shift to lower plasticity

(and higher stability) in the subsequent stage to gradually decrease the learning

speed to stabilize it and realize a proper stochastic approximation. Although

a number of studies have concentrated on such adaptive control mechanisms of

online learning [3, 25, 90, 69, 88, 68], no study has paid special attention to online

VB learning. In this chapter, we propose two methods to control the balance of

plasticity and stability of learning model in the online VB framework.

Online VB involves a meta-parameter, called forgetting factor, which can be

regarded as to modulate the weights or cofidence on past inferences about latent

variables. In the standard formulation of the online VB method, only the ex-

pected sufficient statistics are explicitly maintained at each time step to estimate

model parameters, where these values are incrementally updated according to a

new datum. The forgetting factor regulates the speed of this updates indirectly,

and thus determine the balance between the plasticity and stability. To address

environmental changes, the forgetting factor at each time step should be appro-

priately scheduled with reflecting the changes, while the occurrences of changes

are explicitly unknown in usual.

The two methods proposed in this chapter are both to control the forgetting

factor in adaptive manners, with estimating environmental changes, but are re-

alized by two different architectures. In the first one, dynamic control of the

forgetting factor is realized by two steps: First, probabilistic novelty detection

is performed to evaluate the posterior probability of environmental changes; and

then, the forgetting factor at the moment is determined based on the posterior

probability, i.e., evaluated degree of novelty, in a simple way. In Sec. 3, we de-

scribe the proposed method of probabilistic novelty detection based on a simple

mixture model, and also a specific scheduling scheme of the forgetting factor

according to the novelty. In the second one, a hierarchical Bayes technique natu-

rally integrate the two steps in the first approach within a theoretically-consistent

framework. We show that the online VB learning can be interpreted as a special

1These terms follow Grossberg’s “plasticity/stability dilemma” [43].
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type of incremental Bayes updating in Sec. 4, with treating the forgetting factor

as a hyperparameter of prior belief at each time step. The scheduling of forgetting

factor is then acheived by a hierarchical Bayes inference based on this new fact.

The two framework proposed in this chapter are quite general and can be po-

tentally applied to many kinds of probabilistic unsupervised models. The princi-

pal interest in this chapter, however, is in representation learning, particularly in

its application to online feature extraction in dynamic environments. We thus em-

ploy one simple probabilistic model for representation learning, the probabilistic

principal component analysis (PPCA) model [92]. The two online learning mod-

els are validated through computer simulations using both artificial and realistic

datasets, focusing on the task of feature extraction from sequential inputs with

accommodating environmental changes. Furthermore, while this chapter describe

these issues mainly from an engineering viewpoint, the work in this chapter is

originally started from a question how a brain learn appropriately internal rep-

resentations, or the features, of sensory inputs in changing environments. Thus

we also discuss briefly the biological implication of the proposed dynamic learn-

ing scheme especially with hypothesizing its potential implementation realized in

brain.

2. Online VB for probabilistic PCA

2.1 Probabilistic PCA

PPCA is a probabilistic generative model with latent variables, such that its

maximum likelihood (ML) estimation is equivalent to the usual PCA [92]. PPCA

for an n-dimensional observed variable xt ∈ <n is given by

xt = Wyt + µ + ξt, ξt ∼ Nn

(
ξt | 0, σ2

xIn

)
, (3.1)

where t denotes the discrete time or the sample index. yt ≡ (yt,1, · · · , yt,m)T ∈
<m (m ≤ n) is a latent variable corresponding to a principal component score,

which is generated independently at each time step from a standard Gaussian

distribution. The superscript T denotes the transpose. ξt ∈ <n is a white noise
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and Np(· | ·, ·) denotes a p-dimensional Gaussian density function 2. In is an

n × n identity matrix, and σ2
x (σ2

x > 0) is an observation noise variance which

is assumed to be a known constant for simplicity. W ≡ (w1, · · · ,wm) ∈ <n×m

is the principal component loading matrix, where wj ∈ <n(j = 1, · · · ,m) is

a principal component vector. µ ∈ <n is the expected observation. With the

notations: Θ ≡ (W , µ) ∈ <n×(m+1) and ỹt ≡
(
yT

t , 1
)T ∈ <(m+1), Eq. (3.1) is

rewritten as

xt = Θỹt + ξt, ξt ∼ Nn

(
ξt | 0, σ2

xIn

)
. (3.2)

2.2 Online VB learning

The model parameter Θ can be inferred using an online variational Bayes (VB)

method [87]. Let (X1:t, Y1:t) ≡ {(xτ , yτ ) | τ = 1, . . . , t} be a sequence of observa-

tions and corresponding latent variables. The objective of the Bayesian inference

is to obtain a posterior distribution of unknown variables, p(Y1:t,Θ | X1:t), when

given observation variables X1:t. For this purpose, an online variational free en-

ergy with a time-dependent forgetting factor λ(s) ∈ [0, 1] (s = 1, . . . , t) is defined

by

F λ [q] (t) = T λ(t)Lλ(t) − H(t) (3.3a)

Lλ(t) = η (t)
t∑

τ=1

(
t∏

s=τ+1

λ (s)

)
E

[
log

p (xτ ,yτ | Θ)

qτ (yτ |xτ )

]
(3.3b)

H(t) = E

[
log

qθ (Θ | X1:t)

p (Θ)

]
, (3.3c)

where q (Y1:t,Θ | X1:t) is a trial distribution to approximate the true posterior

distribution p(Y1:t,Θ | X1:t), and E[·] denotes the expectation over the trial

distribution q. Online VB usually assumes a factorized form of

Furthermore, p(Θ) is the prior distribution of Θ. T λ(t) ≡
∑t

τ=1

(∏t
s=τ+1 λ (s)

)
is an effective data number and η(t) ≡ 1/T λ(t) is the normalization term. The

online VB method for PPCA is derived as a sequential maximization process of

the variational free energy (3.3). When a datum xt is observed at time t, F λ is

2Np (x | m,Σ) ≡ (2π)−p/2 |Σ|−1 exp
[
−1

2 (x − m)T Σ−1 (x − m)
]
, where x ∈ <p is a ran-

dom vector. m ∈ <p and Σ ∈ <p×p are a mean vector and a covariance matrix, respectively.
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maximized with respect to qt in the online VB-Estep while qτ (τ = 1, . . . , t − 1)

and qθ are fixed. In the next step, called the online VB-Mstep, F λ is maximized

with respect to qθ while qτ (τ = 1, . . . , t) is fixed. These two steps are executed

every time a new datum is observed. The solutions of the two steps at time t can

be obtained as closed forms:

qt(yt | xt) =
exp

(
EΘ [log p(xt,yt | Θ)]

)∫
dyt exp

(
EΘ [log p(xt,yt | Θ)]

) , (3.4a)

qθ(Θ | X1:t) =
exp

(∑t
τ=1

(∏t
s=τ+1 λ (s)

)
Eyτ

[log p(xτ , yτ | Θ)]
)
p0(Θ)∫

dΘ exp
(∑t

τ=1

(∏t
s=τ+1 λ (s)

)
Eyτ

[log p(xτ ,yτ | Θ)]
)
p0(Θ)

,

(3.4b)

where EΘ[·] and Eyτ
[·] denote expectations over trial distributions q(Θ) and

q(yτ ), respectively.

2.3 Forgetting factor and learning rate

The original VB method [8, 14, 71] can be regarded as a special case of the online

VB method, in which λ(s) = 1 for all s and the E and M steps are applied in a

batch manner after all data are observed. Instead of storing all observed data,

however, the online VB method needs only to maintain the expected sufficient

statistics; this scheme is more natural for learning by animals than the batch one.

The expected sufficient statistics are defined by

〈f(x,y)〉 (t) = η(t)
t∑

τ=1

(
t∏

s=τ+1

λ (s)

)
E [f(xτ , yτ )] , (3.5)

where f(xt, yt) is given by a quadratic function of xt and ỹt in the case of PPCA

(see Appendix C.1 for details). This calculation can be done incrementally as

〈f(x, y)〉 (t) = (1 − η(t)) 〈f(x, y)〉 (t − 1) + η(t)E [f(xt,yt)] , (3.6)

where the normalization term η(t) acts as the learning rate to control the speed

of updating 〈f(x,y)〉 (t). η(t) can also be calculated incrementally, because its

reciprocal T λ(t) is given by the following step-wise equation

T λ(t) = 1 + λ(t)T λ(t − 1). (3.7)
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Even if such a step-wise calculation is used, it is shown that the online VB method

achieves a stochastic approximation of the Bayesian inference if scheduling like

λ(s)
s→∞−→ 1 is used [87].

Forgetting factor λ(t) controls the balance between plasticity and stability of

online VB learning. According to Eq. (3.7), a large λ(t) allows the effective data

number T λ(t) to increase, after which the learning rate η(t) becomes small. In

contrast, a small λ(t) makes T λ(t) small, and as a result, η(t) becomes large. The

learning rate η(t) regulates the updating speed of sufficient statistics as shown

in Eq. (3.6), so that it directly balances the plasticity and stability of the online

learning process. In a dynamic environment, then, λ(t) should be a rather small

values so as to make η(t) large (high plasticity) when the environment changes,

while it should be close to one during stationary periods so as to make η(t) small

(high stability).

3. Novelty-based scheduling using mixture model

3.1 A mixture of PPCA

Let zt ∈ {0, 1} be an indicator variable regarded as a latent variable. The prob-

abilistic generative model of the simple version of MPPCA is given by

xt = Θỹt + ξt + ztζt, ξt ∼ Nn

(
ξt | 0, σ2

xIn

)
, ζt ∼ Nn

(
ζt | 0, σ2

ζIn

)
. (3.8)

The third term is the additional noise, where σ2
ζ is a constant noise variance and

is known. The joint probability distribution for a triplet (xt,yt, zt) is given by

p (xt,yt, zt = 0|Θ,m) = (1 − r)Nm (yt|0, Im)Nn

(
xt|Θỹt, σ

2
xIn

)
, (3.9a)

p (xt,yt, zt = 1|Θ,m) = rNm (yt|0, Im)Nn

(
xt|Θỹt, σ

2
ε In

)
, (3.9b)

here σ2
ε = σ2

x + σ2
ζ . Here, the principal component dimensionality m is explicitly

expressed. The prior probability for the index variable, P (zt = 1) = 1 − P (zt =

0) = r, is assumed to be known such to represent the a priori knowledge of the

occurrence probability of environmental changes.

Since the two PPCA components, (3.9a) and (3.9b), have the same parameter

Θ except for different Gaussian noises, an environmental change can be detected
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according to the following principle. Consider a situation where the model pa-

rameter Θ has been estimated from the previous observations xt−1, xt−2, . . . and

then a new observation xt is given. If xt is generated in the current environment,

it can be described sufficiently by the component (3.9a) with the regular noise

variance σ2
x, thus the posterior probability of zt = 1 becomes small. If xt is gen-

erated in a novel environment, it can be regarded as an outlier in the component

(3.9a). In this case, the observation can be described better by the component

(3.9b) having a larger noise variance σ2
ε , thus the posterior probability of zt = 1

becomes large. Accordingly, the posterior probability of zt = 1 can be viewed as

a confidence of environmental change between time steps t − 1 and t.

3.2 Novelty-based scheduling of forgetting factors

Based on the posterior probability of zt, which informs of the occurrence of envi-

ronmental changes, our online learning is able to regulate the learning dynamics

by scheduling λ(t) as

λ (t) = (1 − α) λ (t − 1) + α(1 − qt(zt = 1)), (3.10)

where qt(zt = 1) denotes the posterior probability of zt = 1 at time t. α (0 <

α < 1) is a smoothing constant to reduce an excessive sensitivity to outliers

that may appear even in a static environment. When an environment changes, a

temporal increase of qt(zt = 1) results in the decrease of λ(t). This means that

an environmental change induces an increase of the ACh level, and facilitates

the learning by placing more weight on the recent data than the previous data.

qt(zt = 1) = 0 for any t implies λ(t)
t→∞−→ 1 from any λ(0), so that the online

VB learning achieves stochastic approximation of the Bayesian inference if the

environment continues to be stationary.

Although the scheduling by Eq. (3.10) makes λ(t) low after an environmental

change is detected, subsequent learning requires that λ(t) gradually increases in

order to conduct proper online learning in the new environment. However, λ(t)

often fails to recover and remains low because qt(zt = 1) is apt to be high due to

the unfaithful model that exists at the beginning of the new environment, which

becomes serious especially in a high-dimensional case. We therefore introduce

a refractory period (RP) into the scheduling, in order that λ(t) recovers after
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dropping to almost zero in response to an environmental change; if λ(t) is below

a threshold φ at time t = t0, qt(zt = 1) in Eq. (3.10) is explicitly replaced by 0

during t = t0 + 1, . . . , t0 + ν, where φ and ν are constant parameters. The effect

of RP is shown in the simulation in Section 3.4.

3.3 A criterion for online model selection

Since the indicator variable zt is added to the set of latent variables, our online

VB learning for the MPPCA is modified into a sequential maximization of the

following online variational free energy F λ
m [q] (see Appendix C.1):

F λ
m [q] (t) = T λ

m(t)Lλ
m(t) − Hm(t) (3.11a)

Lλ
m(t) = ηm (t)

t∑
τ=1

(
t∏

s=τ+1

λm (s)

)
E

[
log

p (xτ , yτ , zτ | Θ,m)

qτ (yτ , zτ |xτ ,m)

]
(3.11b)

Hm(t) = E

[
log

qθ (Θ | X1:t,m)

p (Θ | m)

]
, (3.11c)

where Z1:t ≡ {zτ | τ = 1, . . . , t}. The trial distribution, q (Y1:t, Z1:t,Θ | X1:t, m),

is factorized as qθ (Θ | X1:t,m)
∏t

τ=1 qτ (yτ , zτ | xτ ,m). The other notations are

the same as those in Section 2.1, except that the dependence on the principal

component dimensionality m is explicitly noted here.

When the principal component dimensionality m is unknown, our online VB

learning can estimate it within the framework of hierarchical Bayesian infer-

ence. In the general online VB learning [87], an MAP estimator of m is ap-

proximately obtained by m∗ = argmaxmF λ
m[q] after applying the VB learning

to models with m = 1, · · · , n, under the assumption that the prior distribution

p(m) (m = 1, · · · , n) is non-informative. In our online VB scheme, however, the

online variational free energy F λ
m[q] is dependent on the effective data number

T λ
m(t), which may vary among m = 1, . . . , n, because T λ

m(t) is dependent on λ(t)

(see Eq. (3.7)) and λ(t) is dependent on the model’s representation ability. To

conduct an appropriate model selection, the influence of the effective data number

in each model, m = 1, . . . , n, should be normalized:

F̃ λ
m [q] (t) =F λ

m [q] (t)/T λ
m(t) = Lλ

m(t) − Hm(t)/T λ
m(t). (3.12)
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Although determining the principal component dimensionality based on this cri-

terion is heuristic, it works well as can be seen in the next section.

3.4 Simulations

Our learning model introduced in the previous section was evaluated using two

types of computer simulations, which employed synthesized and real data sets.

Synthesized data

The basic features of our approach were examined by using simple two-dimensional

synthesized data. A two-dimensional vector xt was generated according to Eq. (3.2)

at each time step t, where the actual parameter Θ = (W ,µ) was usually fixed

but occasionally changed. The known constants were set as follows: σ−2
x =

10−2, σ−2
ζ = 10−6, r = 0.001, α = 0.05, and γ = 0.001. In this simulation, the RP

described in Section 3.2 was not used.

First, we assumed a situation in which the principal component dimensionality

m of actual data is known as m = 1. The actual parameters at each time step

were: Θ =
(

5 10
−1 10

)
for t = 1, . . . , 200,

(
1 −10
5 10

)
for t = 201, . . . , 400, and( −3 −10

3 −10

)
for t = 401, . . . , 600. Figure 3.7 shows learning processes under the

following three conditions: 1) the forgetting factor was fixed at λ(t) = 1 for any

t; 2) fixed at λ(t) = 0.8 for any t; and, 3) λ(t) was scheduled by Eq. (3.10).

Only the direction of the estimated principal component vector, represented as

the angle from the x1-axis, is shown in this figure. The estimator of the learning

model is given as the expectation 3 of the model parameter over the trial posterior

distribution. When the forgetting factor λm(s)(s = 1, . . . , T ) was set at constant

of 1, the estimator closely approached the true value in a stationary environment,

but it could not follow environmental changes. When the forgetting factor was

set at a smaller constant of 0.8, the estimator could alter its value in response to

environmental changes, but a high variance remained. Because of this variance,

the estimator could not be improved in a stationary environment even when the

3In our case, the posterior distribution is Gaussian, thus the parameter expectation is iden-
tical to its mean.
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Figure 3.1. The direction of the estimated principal component vector and mod-

ulatory variables. The horizontal axis denotes the time step t. In the top panel,

the estimator is shown in the three cases of λ(t) = 1.0, λ(t) = 0.8, and λ(t) is

controlled by the proposed scheduling scheme. Only the direction of the principal

component vector, the angle from the x1-axis, is shown. A mark ‘◦’ represents a

real value in each time step. The middle and bottom panels show the time series

of λ(t) and η(t), respectively.
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Figure 3.2. Normalized variational free energy F̃ λ
m(t) (upper panel, in a log scale)

and the MAP estimator m∗ (lower panel) in each time step. A mark ‘◦’ and the

solid line in the lower panel denote the actual principal component dimensionality

and the MAP estimator, respectively.

time elapsed. When the forgetting factor was regulated by our method, on the

other hand, the inference exhibited high performance. Namely, the estimator

could alter its value just after the environment change, while it was improved in

a stationary environment as the number of observed data increased. The figure

also shows the modulation of λ(t) and η(t), which makes the learning flexible as

described above.

Next, we assumed a situation in which the actual principal component di-

mensionality m was unknown. The dimensionality was usually fixed but occa-

sionally changed such that m = 1 for t = 1, . . . , 200 and t = 401, . . . , 600, and

m = 2 for t = 201, . . . , 400. The actual parameter at t = 201, . . . , 400 was set

at Θ =
(

1 −5 −10
5 1 10

)
and those at the other time steps were the same as

above. Figure 3.8 shows the normalized online variational free energy F̃ λ
m(t) for

the models with m = 1 and m = 2, and the MAP estimator m∗. Note that

F̃ λ
m(t) is shown on a log scale here. The figure indicates that the normalized

online variational free energy F̃ λ
m(t) is a suitable criterion for model selection in
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Figure 3.3. The first five eigenfaces (first to fifth from left to right) extracted by

the standard PCA from the frontal (upper row) and half-profile (lower row) face

images.

this case, and hence the principal component dimensionality can be estimated

appropriately in an online fashion.

Real data: face images

Assuming that a representational system is used for our recognition of images,

our approach was evaluated also by using a data set of realistic face images. The

data set used here consists of 100 gray-scale photographs of frontal faces and 100

of half-profile faces, registered in Yale Face Database B [39]. The subjects in

this data set were six males and one female in various lighting conditions. We

standardized the images such that all the images contained 49 × 41 pixels, and

the centers of eyes for frontal views and the centers of faces for half-profile views

took the same coordinate. The pixel values were normalized to be within [0, 1],

thus each image was represented as a 2,009-dimensional vector of normalized pixel

values. Basis vectors (principal components) extracted from a set of face images

using PCA were called “eigenfaces” [93]. Figure 3.3 shows the first five eigenfaces

extracted from the frontal and half-profile face images, and Figure 3.4 shows the

largest 20 eigenvalues in the two subsets.

The learning process was divided into two phases. In the first phase, 100

observations were randomly selected from the frontal faces and sequentially pro-

vided to the learning model. This phase is called the “frontal condition.” In

the next phase, called the “half-profile condition,” 100 observations were selected
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Figure 3.4. The eigenvalues of the frontal and half-profile face images, which

were obtained by the standard PCA. The largest 20 (out of 2,009) are shown in

descending order. The horizontal axis denotes indices for basis vectors.

from half-profile faces. The known constants were set as: σ−2
x = 60, σ−2

ζ = 5, r =

0.001, α = 0.02, and γ = 0.001. The scheduling of the forgetting factor described

in Section 3.2 was used with or without the RP, where φ = 0.05 and ν = 30.

First, our scheduling scheme of λ(t) and the effect of the RP were examined.

The principal component dimensionality m was fixed at 14. Figure 3.5 shows the

obtained first eigenface with the largest norm during the online learning process

with the RP. In the latter half of the frontal condition, at t = 60 and 90, the

eigenface successfully captured the features of frontal faces. The eigenface was

then modified quickly into that of half-profile faces at t = 130, 150 and 180,

through a transient phase like at t = 110. The figure also shows the learning

processes with or without the RP, which are evaluated in comparison with the

result by usual PCA. The eigenface obtained by our online learning without

the RP did not approach that by the usual PCA; in contrast, that with the

RP behaved well as the time elapsed within both the frontal and half-profile

conditions. The time courses of η(t) and λ(t) are also shown in this figure. In the

case with the RP, η(t) and λ(t) shift in time to properly adapt to the condition

change.

Next, we compared the models with different m, such as m = 5, . . . , 30, where
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Figure 3.5. Top row: the first eigenface obtained during the online learning pro-

cess. Appropriate representation was acquired under the frontal and subsequent

half-profile conditions. The other four rows, from the second to the bottom: the

angle between the first basis vector (i.e., with the largest norm) obtained in our

learning and that by the standard PCA, the distance between the estimated mean

vector and the true mean, λ(t) and η(t), where each dash or solid line denotes

the case without the refractory period (RP) or with the RP, respectively. A set

of dashed vertical lines in each panel denotes the time steps at which the first

eigenfaces on the top row are displayed.
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the scheduling by Eq. (3.10) was applied with the RP and the same constant

parameters as used in the previous simulation. Figure 3.6 shows the normalized

online variational free energy F̃ λ
m[q] and the MAP estimator m∗ for various m

values in our online learning process. After convergence in the frontal condition,

m∗ was estimated as 9 and also as 9 in the subsequent half-profile condition.

These results were consistent with that by the usual PCA; Fig. 3.4 implied that

only about 10 bases were significant out of 2,009 bases under both conditions.
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Figure 3.6. Normalized online variational free energy F̃ λ
m[q](t) and the MAP

estimator of principal component dimensionality m∗. The inset in the upper

panel is a magnified image of the dashed rectangle. m∗ was estimated as 9 after

about t = 25, which was consistent with the result of the standard PCA in Fig.

3.4 that implied only about ten bases were significant out of 2,009.
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4. Forgetting factor adaptation based on hierar-

chical Bayes

4.1 Online VB is a special type of incremental Bayes

Instead of directly calculating the VB-M step equation (3.4b), here we show that

the online VB can be regarded as a special type of incremental Bayes, that is,

the posterior belief of model parameter at time step t, q
(t)
θ , can be recursively

calculated according to a new datum based on the previous belief q
(t−1)
θ . For

notational simplicity, let ψτ (xτ ,Θ) ≡ Eyτ
[log p(xτ , yτ | Θ)] and Ψt(X1:t,Θ) ≡∑t

τ=1

(∏t
s=τ+1 λ (s)

)
ψτ (xτ ,Θ). Eq. (3.4b) is then written as

q
(t)
θ (Θ | X1:t) =

exp
(
Ψt(X1:t,Θ)

)
p0(Θ)∫

dΘ exp
(
Ψt(X1:t,Θ)

)
p0(Θ)

. (3.13)

Superscript (τ) denotes that trial distribution is maximized using observations

available at time τ , x1, . . . , xτ . Also, the trial distribution at previous time step

t − 1 is given by

q
(t−1)
θ (Θ | X1:t−1) =

exp
(
Ψt−1(X1:t−1,Θ)

)
p0(Θ)∫

dΘ exp
(
Ψt−1(X1:t−1,Θ)

)
p0(Θ)

. (3.14)

Note especially that each of the old quantities, {Ψτ (X1:τ ,Θ) | τ = 1, 2, . . . , t−1},
do not changes through the new VB-EM step at time step t, even though it de-

pends on qτ (yτ ) which is also a target quantity of free energy maximization: As

described in Sec. 2.2, the online VB-E step performed between the two maximiza-

tion steps, Eq. (3.14) at time t−1 and Eq. (3.13) at time t, is temporally localized

so that it does not change the past inference of the latent variable and the forget-

ting factor. Only the new inference qt(yt) is calculated in VB-E step at time step

t, while the previous trial distributions qτ (yτ ) (τ = 1, . . . , t − 1) and forgetting

factors λ(s) (s = 1, . . . , t − 1) are thus fixed at time t; and then Ψt−1 (X1:t−1,Θ),

which includes the expectations with respect to qτ (yτ ) (τ = 1, . . . , t − 1), does

not change.
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The quantity Ψt has the following relation:

Ψt(X1:t,Θ) =
t∑

τ=1

(
t∏

s=τ+1

λ (s)

)
ψτ (xτ ,Θ) (3.15a)

= ψt (xt,Θ) + λ(t)
t−1∑
τ=1

(
t−1∏

s=τ+1

λ (s)

)
ψτ (xτ ,Θ) (3.15b)

= ψt (xt,Θ) + λ(t)Ψt−1 (X1:t−1,Θ) (3.15c)

By substituting this into Eq. (3.13), we obtain

q
(t)
θ (Θ | X1:t) =

exp (ψt (xt,Θ)) exp(Ψt−1(X1:t−1,Θ))λ(t)p0 (Θ)∫
dΘ exp (ψt (xt,Θ)) exp(Ψt−1(X1:t−1,Θ))λ(t)p0 (Θ)

(3.16a)

=
exp (ψt (xt,Θ)) q

(t−1)
θ (Θ | X1:t−1)

λ(t) p0 (Θ)1−λ(t)∫
dΘ exp (ψt (xt,Θ)) q

(t−1)
θ (Θ | X1:t−1)

λ(t) p0 (Θ)1−λ(t)
. (3.16b)

where we used the fact that the denominator of Eq. (3.14) does not depend on

Θ. Thus, the VB-M step can be achieved in an incremental manner:

q
(t)
θ (Θ | X1:t) =

exp(Eyt
[log p(xt,yt | Θ)])q̃

(t−1)
θ (Θ | X1:t−1; λ(t))∫

dΘ exp(Eyt
[log p(xt, yt | Θ)])q̃

(t−1)
θ (Θ | X1:t−1; λ(t))

, (3.17)

where a modified trial distribution q̃θ is defined as

q̃
(t−1)
θ (Θ | X1:t−1; λ(t)) ∝ q

(t−1)
θ (Θ | X1:t−1)

λ(t)p0(Θ)1−λ(t), (3.18)

where the normalization term is omitted. Eq. (3.17) suggests that the online

VB method is equivalent to the incremental Bayesian inference with a special

setting of the prior. This is a new theoretical result of this study. After a new

observation xt is given at time t, Eq. (3.17) incrementally updates the previous

posterior belief q
(t−1)
θ into the new posterior q

(t)
θ using the Bayes rule, similarly

to conventional incremental Bayesian updates; q̃
(t−1)
θ is regarded as an improved

prior belief based on currently available observations X1:t−1 at time t−1, starting

from the initial prior belief p0. The differences between the incremental update

of Eq. (3.17) and the conventional one are: in Eq. (3.17), log-likelihood term

log p(xt, yt | Θ) is replaced by its expectation with respect to latent variable yt,

and a forgetting factor is introduced to attenuate previous belief q
(t−1)
θ and to

partially restore initial prior belief p0.
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4.2 Recursive learning rule for PPCA

In this section, the observations are assumed to be normalized to have a zero mean

in a preprocessing stage. This is just for simplicity, and can be done without loss

of generality. The expected mean vector µ in the generative model of Eq. (3.1) is

then set to zero vector, so that only the basis matrix W is the model parameter

to be learned. In this section, we use a conjugate prior for W :

p0(W ) = Nn×m

(
W | M 0, In,G−1

0

)
, (3.19)

where Nn×m (· | ·, ·, ·) is the matrix normal distribution (see Appendix A).

The recursive update equation of Eq. (3.17) for PPCA then results in only

two updatings of hyperparameters, since the trial distribution of W is obtained

as a Gaussian. Now let q
(t)
θ (W | X1:t) = Nn×m(W | M̂ t, In, Ĝ

−1

t ), and then the

learning rule is derived as

Ĝt = σ−2
x

〈
yty

T
t

〉
+ λ(t)Ĝt−1 + (1 − λ(t))G0, (3.20a)

M̂ t = M̂ t−1 +
{

σ−2
x xt 〈yt〉

T + (1 − λ(t)) M 0G0

− M̂ t−1

(
σ−2

x

〈
yty

T
t

〉
+ (1 − λ(t))G0

)}
Ĝ

−1

t , (3.20b)

where 〈·〉 denotes expectation with respect to trial distribution q. Note that

this learning rule directly updates the hyperparameters of the trial distribution,

although they were indirectly updated through the online maintenance of the

expected sufficient statistics in Sec. 3.

4.3 Hierarchical Bayes inference

In this section, we describe the hierarchical Bayesian method to schedule λ(t),

utilizing the above illustration of the online VB learning. According to Eq. (3.17),

λ(t) can be regarded as a hyperparameter of conditional prior q̃
(t−1)
θ in the incre-

mental updates of trial distribution qθ. Although λ(t) is not a model parameter,

one can still perform an inference on λ(t) by seeing it as an unknown hyperpa-

rameter. Let L(xt, λ(t)) be the denominator of Eq. (3.17), and then L(xt, λ(t))

corresponds to the marginal likelihood of λ(t) given a new observation xt. If prior

p0(Θ) is noninformative, Eq. (3.18) infers the following: when new observation
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xt cannot be explained well under current belief q
(t−1)
θ , the marginal likelihood

L(xt, λ(t)) becomes large for a case that λ(t) ≈ 0, and hence a noninforma-

tive prior is used; on the contrary, when xt can be explained well under q
(t−1)
θ ,

L(xt, λ(t)) becomes large for a case that λ(t) ≈ 1, and hence the current belief is

used. Then, if the scheduling of λ(t) is performed to enlarge the marginal likeli-

hood, it is expected that λ(t) becomes low when the environment changes, while

it stays high during stationary periods. According to the hierarchical Bayesian

inference, therefore, the posterior distribution of λ(t) is obtained as

p(λ(t) | xt) =
L(xt, λ(t))p(λ(t))∫ 1

0
dλ(t) L(xt, λ(t))p(λ(t))

, (3.21)

where p(λ(t)) is a prior distribution of λ(t). With this posterior, the actual value

of λ(t) is estimated as its expectation:

λ̂(t) =

∫ 1

0

dλ(t) p(λ(t) | xt)λ(t). (3.22)

Practically, however, it is not so easy to calculate the integrals that appeared

in Eqs. (3.21) and (3.22). In addition, the evaluation of marginal likelihood

L(xt, λ(t)) also involves intractable integral in calculating the normalization con-

stant of Eq. (3.18) except for special cases with λ(t) = 0 or 1. In this study,

instead of addressing the integrals over the entire range of λ(t) ∈ [0, 1], we eval-

uate them only at the endpoints, λ(t) = 0 and 1. The estimator of λ(t) is thus

obtained by

λ̂(t) =

∫ 1

0
dλ(t)L(xt, λ(t))p(λ(t))λ(t)∫ 1

0
dλ(t)L(xt, λ(t))p(λ(t))

≈
∑

λ(t)∈{0,1} L(xt, λ(t))p(λ(t))λ(t)∑
λ(t)∈{0,1} L(xt, λ(t))p(λ(t))

.

(3.23)

4.4 Simulations

Two-dimensional synthesised data

The basic features of our approach were examined by using synthesized data. A

two-dimensional vector xt was generated according to Eq. (3.1) with m = 1 and

σx = 1. The number of observations was T = 600. True parameter W was fixed

in a short time period but occasionally changed as follows: W = (5,−1)T for
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Figure 3.7. Direction of estimated principal component vector in a single trial.

Horizontal axis denotes time step t. Panels show the estimator in three cases: 1)

λ(t) is controlled by our new scheduling scheme; 2) λ(t) = 0.9; and 3) λ(t) = 1.

Only the direction of the principal component vector, the angle from the x1-axis,

is shown. ‘◦’ represents the real value in each time step.
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Figure 3.8. Direction of estimated principal component vector (left column) and

estimation error, i.e., the angle between estimated vector and the true one (right

column). I performed 100 runs by individually preparing 100 different datasets

to learn. In the right column, the solid line denotes average over 100 runs, and

the dark shade represents errorbar (standard deviation).

t = 1, . . . , 200, (1, 5)T for t = 201, . . . , 400, and (−3, 3)T for t = 401, . . . , 600.

Prior hyperparameters M 0 and G0 were set as M 0 = 0 and G0 = 1 × 10−3In,

so that the prior became nearly noninformative. The initial hyperparameters of

the trial distribution, M̂ 0 and Ĝ0, were randomly set.

Figure 3.7 shows learning processes in the following three conditions: 1) our

new approach; 2) forgetting factor fixed at λ(t) = 0.9 for any t; and 3) fixed at

λ(t) = 1 for any t. The direction of the estimated principal component vector is

shown in this figure. Here, the estimator of W was given as its expectation, M̂ .

Using our hierarchical Bayesian scheduling of λ(t), the inference exhibited high

performance compared to the other two conditions. Namely, the estimator could
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Figure 3.9. Forgetting factor λ(t) averaged over same 100 runs as in Figure 3.8.

alter its value rapidly after environmental changes, while it was improved in a

stationary period as the number of observed data increased. In cases that the

forgetting factor λ(s) was set at a constant 1 for all s = 1, . . . , T (Condition 3),

the estimator gradually approached the target value during stationary periods,

but the approach speed was too slow. In contrast, in cases that λ(s) was set

at a smaller constant of 0.9 for all s = 1, . . . , T (Condition 2), the estimator

could alter its value in response to environmental changes, but a high variance

remained. Because of this variance, the estimator could not be improved even

when time elapsed in a stationary period.

Next, to see the stability of our new online VB learning, the simulation was

repeated for 100 runs. The observed dataset for each run was generated by

Eq. (3.1) individually with a random seed number. Figure 3.8 shows the learning

process (left column) and the estimation error (right column) averaged over 100

runs for each condition. Although the variance of estimator by our approach was

relatively large at the beginning of each stationary period, compared to the case

of λ(t) = 0.9, it grew smaller as the stationary period continued. Estimation

error also decreased to zero in our approach, while a small bias remained in the

case of λ(t) = 0.9. In the case of λ(t) = 1, the variance of initial values remained

throughout the learning process. Figure 3.9 shows the value of the forgetting

factor averaged over 100 runs scheduled by our hierarchical Bayesian scheme.

We also examined a situation where the model parameter gradually changes.

In this experiment, m = 1, T = 1, 000, σx = 1, and true parameter W was given

as follows: W was fixed at (5, 0)T in the initial phase with t = 1, . . . , 250, and then

gradually changes from (5, 0)T at t = 251 to (0, 5)T at t = 500 (by π/500 radian
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Figure 3.10. Direction of estimated principal component vectors and estimation

errors in the case of gradually-changing parameters. Left and right columns

respectively show the results of proposed method and the case with λ(t) = 0.9

(fixed). Top row: Typical examples of single runs. Middle row: The results of

100 runs, where the solid line denotes the average values, and the dark shade

represents errorbars (standard deviation). Bottom row: Estimation error, i.e.,

the angle between estimated vector and the true one.
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Figure 3.11. Forgetting factor λ(t) averaged over the 100 runs by proposed

method in the case of gradually-changing parameter.
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Figure 3.12. Original binary images corresponding to alphabetic characters, ‘A’,

‘B’, and ‘E’, from left to right. These images were used as principal component

vectors in the generative model, Eq. (3.1), to generate artificial datasets.

for every time step). It was then fixed again at (0, 5)T for t = 501, . . . , 750 and

finally gradually changes from (0, 5)T at t = 751 to (5, 0)T at t = 1, 000. Prior

hyperparameters were set as the same as above. We compared the two cases,

our new approach and the case of λ(t) = 0.9, by running each of them for 100

times with different initial hyperparameters of the trial distribution. Figure 3.10

shows typical example of single run (top row), learning process averaged over 100

runs (middle row) and the average estimation error (bottom row). This result

shows that the estimates of W by our proposed method is more accurate in the

stationary periods than those by the case of fixed λ(t), but is more biased in

the gradually changing periods. The biased estimates was probably due to the

approximation, Eq. (3.23), and thus it would be improved by using a more careful

approximation of it. Figure 3.11 shows the forgetting factor averaged over 100

runs scheduled by our hierarchical Bayesian scheme.

Artificially-generated alphabetic characters

Our approach was further evaluated by using a dataset of artificially generated

alphabetic characters, consisting of 600 grayscale images of 5 × 5 pixels. Each

image had a feature of 1) ‘A’, 2) ‘B’, or 3) ‘E’. We used the three binary orig-

inal images shown in Figure 3.12 as principal component vectors (n = 25), and

generated 200 observations for each original image according to Eq. (3.1) with

σx = 0.2. A learning process consisted of three stages, each of which corresponded

to one of the three features of data; 200 data points for each ‘A’, ‘B’, and ‘E’

were provided sequentially through the three stages. Example observations in the

learning, those of time steps 1, 51, 101, . . . , 551, are presented in Figure 3.13. In
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this simulation, prior hyperparameters were set as M 0 = 0 and G0 = 1×10−8In,

and so the prior was almost noninformative. M̂ 0 and Ĝ0 were set randomly.

Figure 3.14 shows five typical learning processes out of 100 runs; in each

the first principal components of time steps 1, 51, 101, . . . , 551 are presented. In

this figure, time steps 201 and 401 correspond to the changepoints from ‘A’ to

‘B’ and ‘B’ to ‘E’, respectively. The reversion of black and white occurred in

some runs because the signs of principal component vectors were irrelevant to

feature extraction. This result shows that the model learned appropriate basis

in stationary periods, while it could quickly change the basis to assimilate a new

feature when novel inputs were provided. Figure 3.15 shows estimation error (top

panel) and the forgetting factor (bottom panel) averaged over 100 runs.

Figure 3.13. Example observations in learning from time steps 1, 51, 101, . . . , 551

from right to left.

5. Discussion

In this chapter, we proposed two balancing scheme between plasticity and stability

of online VB learning to realize online representation learning, or more specifically

the feature extraction, in dynamic environments. A key to these scheme is the

dynamic scheduling of the forgetting factor λ(t). We proposed 1) a novelty-based

scheduling with introducing a method of probabilistic novelty detection based

on a mixture model, and 2) a hierarchical Bayesian way to adapt the forgetting

factor based on an interpretation of online varational Bayes as a special type

of incremental Bayes, which is new theoretical contribution of this study. The

simulation results showed that the proposed learning models were able to quickly

and robustly follow the abrupt changes of input statistics to be accommodated to

the new inputs, together with the model parameters being improved in stationary

periods. While both of them have been shown to be effective for online feature
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Figure 3.14. Five typical learning processes out of 100 runs, in each of which the

first principal components of time steps 1, 51, 101, . . . , 551 are presented.
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Figure 3.15. Estimation error (top panel) and forgetting factor (bottom panel)

averaged over 100 runs.
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extraction in changing environments, the second one, the hierarchical Bayesian

scheme, is more sophisticated, since it do not require additional mechanism like

outlier model explicitly as in the first one, where the novelty detection and the

novelty-based scheduling of λ(t) is naturally in a principled manner. Although the

exact calculation of the hierarchical Bayesian estimates of λ(t) is often intractable,

a simple approximation was shown to work well in the simulations, at least in the

case of abrupt environmental changes. The proposed scheme also works when the

environement gradually changes, but the estimates in such periods were shown

to be more biased than those by using fixed λ(t). This is probably due to the

rather crude approximation, Eq. (3.23), which implicitly ruled out the possibility

of intermediate belief (λ(t) ∈ (0, 1)). The results would be improved by using a

more accurate approximation of the hierarchical Bayes estimates.

The illustration of the online VB method as an incremental Bayesian inference,

Eq. (3.17), is not limited to the case of PPCA. The incremental Bayes update

in Eq. (3.17) can be employed for many kinds of models with latent variables,

as long as a further factorization of trial distribution of model parameters is not

necessary. The simple learning rule we derived for learning PPCA, Eq. (3.20),

can also be applied to other linear latent variable models with isotropic Gaussian

noise. Extension to allow a general covariance matrix in Gaussian noise is also

straightforward. Such models include generative models of independent compo-

nent analysis (ICA) [49, 7, 60] and sparse coding [72, 73]. In a future study, the

learning rule, Eq. (3.20), should be refined to deal with unknown noise variance

(or covariance matrix). When further factorization on the model parameters is

assumed, that is, more than two trial distributions for distinct subsets of model

parameters have to be updated in the online VB-M step, however, Eq. (3.17)

cannot be directly applied. In such a case, the mutual dependence of the param-

eter trial distributions would be an obstacle to individual updates of consistent

trial distributions. This problem can be resolved by introducing some additional

terms to eliminate mutual dependence from the learning rule; such an investiga-

tion remains as our future study.
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6. Biological implications

Since animals confront a flood of high-dimensional sensory inputs provided by

the environments surrounding them, it is crucial for animals’ brains to appro-

priately transform external information into internal representations. Although

those environments can be regarded as static for a short time, they are dynamic

over a long time period. To adapt to such a dynamic environment, a brain

needs to detect an environmental change and to quickly learn internal repre-

sentations necessary in a new environment. In this section, we briefly discuss

cortical representation learning in dynamic environments and on the functional

role of acetylcholine (ACh), which is a neuromodulatory chemical (for reviews

on computational neuromodulation, see [44, 34, 31]), in relation to the proposed

online learning models.

Cortical representations are probably mediated by neuronal populations. Up-

dating a cortical representation is then likely to require a regulation system that

broadly affects the population of related neurons. Since local synaptic modulation

like the one in the Hebbian learning is not proper by itself, it is natural to consider

that the diffusive effects of neuromodulatory chemicals are related to the regu-

lation system. Hasselmo [44] presented the following computational perspective

on the functional role of ACh, based on physiological facts: 1) a high ACh level

within a local circuit leads to a predominant influence of external stimuli, which

induces learning of new memories or representations; and 2) a low ACh level, in

contrast, leads to a predominant influence of local intrinsic activities, which cor-

responds to recalling of previously-learned information. Moreover, experimental

studies have reported that a high ACh level facilitates the plasticity of recep-

tive field and reorganization of representational maps [11, 55, 33, 15, 76]. These

works provided evidence that the learning of cortical representational system is

regulated by ACh.

The simulations in this chapter showed that our scheduling scheme of the

forgetting factor enabled the online VB learning to alter its dynamics in order to

re-learn new bases in novel environments. We can interpret the meta-parameters

involved in our online leanring model, with the analogy from the function of

ACh, as follows: a small λ(t) leading to a large η(t) induces the influence of

current information and facilitates the learning, by suppressing the influence of
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previously-learned information; in contrast, a large λ(t) leading to a small η(t)

encourages the predominant influence of previously-learned information when up-

dating the expected sufficient statistics. This view suggests the possibility that

the functional role of ACh is an inverse effect of the forgetting factor or the effect

of learning rate in our online learning, and then ACh modulates the dynamics

of representational learning. Several studies actually reported that cortical ACh

levels tend to increase when facing novel stimuli or environments [1, 65, 41]. This

fact also support the hypothetical view, since the increase of the learning rate in

response to detected novelty is a fundamental property of our model.

Our model implicitly assumes that ACh is regulated individually in each local

cortical area that corresponds to a local representational unit. Actually, it has

been suggested that ACh levels can be regulated selectively within local cortical

areas, while diffusive projections of the neuromodulatory system seemingly result

in a regulation over a wide range of areas [45, 82, 101]. A major group of choliner-

gic projection neurons in the central nervous system exists in a subcortical area,

the basal forebrain (BF), and the neurons project extensively to the cerebral cor-

tex. According to the anatomical studies by Zaborszky et al. [101, 102], it is

possible that the information processing by each local cortical area is regulated

by ACh separately from the other areas by means of parallelly-organized feed-

back loops via the BF. This selective feedback regulation of the cortical ACh

level supports our assumption because it can provide a possible implementation

of local regulation of representational learning. Zaborszky et al. [102] also re-

ported that the prefrontal cortex (PFC) is the major input source to the BF. The

PFC is closely involved with novelty detection [80, 24, 29], which is important in

detecting an environmental change.

A relate work have been done by Yu and Dayan [99], in which they suggested

that higher-level contextual information may control lower-level ACh release. In

their three-layer hidden Markov model, the posterior distribution of a top-level

“contextual” hidden state was approximated by means of its MAP estimator and

uncertainty, and the latter was supposed to be mediated by an ACh signal. The

ACh signal became top-down information such to modulate the representation of

the intermediate hidden state. In our model, the novelty information modulates

the ACh level, which can be interpreted as a form of top-down information like in
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[99] as well as the occurrence probability of an environmental change. However,

our model is different from their model in that we primarily focus on the role of

ACh in the learning of representational system, while Yu and Dayan [99] were

not concerned about learning. Although our model is also related to Yu and

Dayan’s subsequent work [100] that addressed the issue of learning, their focus

was still different to ours in the following way: First, Yu and Dayan’s factor

analysis model, in which the mean vector of a Gaussian hidden variable shifted

in time, focused particularly on the learning of this mean vector. The learning of

basis vectors, which was essentially important for obtaining appropriate internal

representations, was not explicitly addressed. Our model, in contrast, focuses

on the learning of a representational system with special interest in the learning

of basis vectors. Second, they advocated that norepinephrine (NE) reports a

novelty and drives the cortical ACh release, but our model intends to employ

another possibility that the feedback connections from the PFC via the BF report

a novelty and regulates local ACh levels as mentioned above. Last, we assumed

no dynamics for hidden variables in our model, unlike those introduced in Yu

and Dayan’s model. In regard to this point, extension and application to more

complex situations remain for our future study.

Hasselmo’s hypothesis [44] was based essentially on a physiological fact that

ACh suppresses intrinsic connections within a local neuronal population, while it

has no suppressing effect on afferent connections. In our online VB learning, the

ACh level, corresponding to the learning rate, regulates the dynamics of updating

the expected sufficient statistics which are maintained explicitly. A computational

role of intrinsic connections for the learning of representational system is implied

then as to allow the past inference to affect the current learning, through the

maintenance of the expected sufficient statistics. A similar idea was also employed

in a theoretical study of the population coding [98], which suggested a possible

computation of Bayesian-like incremental learning in the brain. On the other

hand, there exists a possible extension of our model to incorporating another role

of intrinsic connections. As in [26], correlation structures among hidden variables

may be due to the intrinsic connections.

We presented a heuristic criterion, the normalized online variational free en-

ergy F̃ λ
m, for determining the model structure. Although there has so far been
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no evidence of this criterion in a real brain, we expect that the framework of

hierarchical Bayesian inference can also help in our understanding of the biolog-

ical model selection processes. Reorganization of cortical representational map-

pings probably involves something like a model selection process, for example,

an increase or decrease in the number of associated neurons with specific sen-

sory stimuli [55, 76]. Mercado et al. [53] proposed a computational model of

reorganization of auditory maps using an SOM, in which the spatial extent of

ACh diffusion regulated the number of associated neurons simultaneously with

the learning of current input. This model indicated the possibility that ACh is

involved in such a model selection process. Moreover, some types of model selec-

tion processes are likely to require global modulatory effects. NE, whose effects

are wide-ranged compared to those of ACh [45, 101], can be involved in such

processes, because NE is also related to cortical plasticity [33] as is ACh.
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Chapter 4

Conclusion

1. Sumamry of this thesis

In this thesis, I proposed two kinds of learning models each of which was in-

tended to address 1) BSS with non-stationary appearance of source signals, and

2) online feature extraction within changing environments, respectively. These

two models were commonly based on probabilistic latent variable models, which

have recently been a basic framework for understanding representation learning

methods. Specifically, I employed the probabilistic (noisy) ICA and PCA as two

basic models to be extended.

In the former part of this thesis, I proposed the Switching ICA, which ex-

tended the previous probabilistic formulation of noisy ICA with incorporating

a dynamic variable selection by employing a special type of HMM/HSMM as

the source models. The HMM-based model can be regarded as a special type

of an existing HMM-ICA, with newly introducing an explicit model of inactive

source. As shown in Chapter 2, this special setting is quite effective when source

signals have non-stationary appearances, especially with some amount of obser-

vation noise. The method also worked well even in such difficult cases that the

number of total sources is unknown and overestimated, or is larger than that of

mixtures. In addition, an effective realization of semi-Markov Switching ICA is

also an important contribution of this study. The estimation of switching vari-

ables were improved by the semi-Markov model, which would be useful for further

recognition tasks. It is the first time, at least to my knowleges, to introduce a
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semi-Markov dynamics into a non-stationary ICA context.

In the latter part of this thesis, I proposed two online Bayesian learning mod-

els with specific application to the probabilistic PCA, both of which extended

the standard online variational Bayesian learning by means of adaptive regula-

tion of forgetting factors. One is based on probabilistic novelty detection using

mixture model, and the other employs a hierarchical Bayesian inference of for-

getting factors, based on a new interpretation of the online VB as a special type

of incremental Bayes updating. They provides a principled basis of online fea-

ture extraction within a difficult non-stationary situations. In the simulation

experiments in Chapter 3, each of these methods have been shown to be suc-

cessful in online feature extraction tasks. I also discussed its connection to the

representation learning systems in brain.

2. Future application and open issues

While the proposed methods have so far been demonstrated only in artificial

situations, their high performances presented in this thesis indicate their future

availabilies in real problems. First, in the broad range of applications that stan-

dard ICA methods have applied, Switching ICA would be a promising approach

to handle non-stationary cases where the performance of standard ICA degrades,

since the particular situation, such that each source abruptly switches on and off,

can occur universally in real-world BSS problems. As focused on in Chapter 2,

blind separation of audio sources would be a successful application of Switching

ICA. In other fields, for example, biomedical signals such as electroencephologram

(EEG) data likely have such a non-stationary charecter. In the case of EEG, cor-

tical signals from large brain areas are mixed into resultant data, where ICA have

been successfully applied to perform BSS to separate the original signals each of

which arise from local neuronal activations [62]. As the neuronal activations can

be naturally considered as having much relation to some sort of external/internal

events, the induced signals are likely to be dynamically switching on and off ac-

cording to the occurrence of corresponding events. This speculation indicates

the potential availabilities of Switching ICA to improve the analysis of EEG sig-

nals. Furthermore, signal separation from such biomedical measurements by using
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ICA is an appealing technique for realizing brain-computer interfaces (BCI) [63],

where BCI (a.k.a. brain-machine interfaces (BMI)) [56] is a direct communica-

tion channel between a human or animal brain and an external device and have

recently been an active research topic in the neurosicence field. In this sense, it

is also an interesting issue to investigate the capacity of Switching ICA as a fun-

damental tool for developing effective BCI systems. Second, the online learning

models proposed in this thesis provides an practical way to address unsystematic

changes of environmental properties in the context of online feature extraction.

This charecter becomes important for developing robust recognition systems that

operate in real situations. A visual system for face detection and tracking, for

example, have popularly used a PCA-like method as to obtain low-dimensional

representation of face images. Consider a vision system that successively inden-

tifies a unique person’s face and keeps tracking it. To make the performance

of PCA-based identification robust, it is important to dynamically update the

representation bases according to the environmental changes. In such cases, the

proposed methods are probably quite useful.

While the two kinds of methods proposed is thesis has described as to address

BSS and feature extraction, respectively, their scopes are not necessarily limited

to each of them, since such dynamic, non-stationary characters of data can be

emerged in various context of data analysis and processing problems occurred

in real situations. Even only focusing the two problems domains, general ideas

employed in one of the two learning models can be beneficial for the other problem

domain. Actually, the non-stationary appearance of latent variables, which was

addressed in the BSS context, is often the case in feature extraction. When a

vision system is monitoring a person’s face in a frontal view, for example, the

features of frontal face would sometimes partly disappear due to occlusions or

temporal changes in the head direction. On the other hand, the non-stationary

changes of bases themselves, which was focused within online feature extraction,

also occurs in non-stationary BSS context, since the position of speakers in a

cock-tail party, for example, sometimes changes with time. Applications of each

methods to other problem domains beyond the original ones are remained in the

future study. Furthermore, these indicate an interesting direction of a future

extension of the present work, that is, to combine the dynamic variable selection
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mechanism employed in Switching ICA with the adaptive control schemes of

forgetting factors in an online Bayesian learning model. This also an remained

issue for the future study.

I employed the probabilistic ICA and PCA as a basic model to be extended

in this thesis, each of which is an fundamental technique in BSS and unsuper-

vised feature extraction. The dynamic variable selection scheme and the dynamic

online learning schemes, however, have potentials to be incorporated into other

kinds of representation learning methods that is based on latent variable models.

Recently, an important variant of such methods, the latent Dirichlet allocation

(LDA) [16], have attracted attentions, which have originally developed in the

natural language processing field and recently been becoming popular in other

areas of machine learning. This can be regarded as a PCA-like method to analyze

multinomial dataset [18]. It will be an interesting direction to extend LDA to

address dynamic cases in a similar way of this thesis. Another interesting issue

is to employ the two proposed schemes collectively. The real-world environments

often involves both kinds of non-stationarities as considered in this thesis, that is,

the non-stationary appearance of latent variables and the abrupt changes in en-

vironmental characters. In this regard, it will be a promising approach to extend

basic representation learning methods by means of both the dynamic variable

selection and the dynamic online learning scheme.
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Appendix

A. Probabilistic distributions

A matrix normal distribution is defined as

Nd×n (A | M , V , K)

= (2π)−
dn
2 |K|−

d
2 |V |−

n
2 exp

(
−1

2
tr

[
(A − M )T V −1 (A − M ) K−1

])
,

where A ∈ <d×n, M ∈ <d×n, K ∈ <n×n, and V ∈ <d×d. Here, M denotes

the mean of A; K and V are two covariance matrices of A [64]. A Gamma

distribution is defined as

Ga(x | a, b) =
baxa−1

Γ(a)
exp(−bx), (4.1)

where x ≥ 0, a > 0 and b > 0. A Beta distribution is defined as

Be (r | u,w) =
Γ(u + w)

Γ(u)Γ(w)
ru−1(1 − r)w−1, (4.2)

where 0 < r < 1.

B. Appendix for chapter 3

B.1 Derivations of q(st | yt,zt) and l(st,yt,zt)

In the following derivation, we regard the inactive model of source signals p(si,t |
zi,t = 0) as a Gaussian N(si,t | 0, ε) with a small variance ε, which will take the

limit ε → 0 later. Let V t = diag(v1,t, v2,t, . . . , vn,t) where vi,t = γ−1
i,t (if zi,t = 1)
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or ε (if zi,t = 0), then

q(st | yt,zt)

∝ exp(〈log p(xt | st, A, β)〉A,β) exp
(
〈log p(st | yt,zt,γ)〉γ

)
(4.3a)

= (2π)−
d
2 exp (〈log β〉)

d
2 exp

(
−1

2

(
tr

[
〈βAAT 〉sts

T
t

]
− 2tr

[
〈βA〉T xts

T
t

]
+ tr

[
〈β〉xtx

T
t

]))
(2π)−

n
2 exp (〈log |V t|〉)−

1
2 exp

(
−1

2
tr

[
〈V t〉−1sts

T
t

])
(4.3b)

= (2π)−
d+n

2 exp

(
d

2
〈log β〉

)
exp

(
−1

2
〈log |V t|〉

)
exp

(
−1

2
tr

[
〈β〉xtx

T
t

])
× exp

(
−1

2

(
tr

[(
〈βAAT 〉 + 〈V t〉−1

)
sts

T
t

]
− 2tr

[
〈βA〉T xts

T
t

]))
(4.3c)

= (2π)−
d
2 exp

(
d

2
〈log β〉 − 1

2
〈log |V t|〉 −

1

2
tr

[
〈β〉xtx

T
t

])
× |V̂ t|−

1
2 exp

(
1

2
tr

[
V̂ tµ̂tµ̂

T
t

])
Nn(st | µ̂t, V̂ t), (4.3d)

where

V̂ t =
(
〈βAAT 〉 + 〈V t〉−1

)−1
, (4.4a)

µ̂t = V̂ t〈βA〉T xt. (4.4b)

Thus, q(st | yt, zt) has the Gaussian form:

q(st | yt, zt) = Nn(st | µ̂t, V̂ t). (4.5)

The normalization term, l(xt, yt, zt), can also be given as

l(xt, yt, zt) = (2π)−
d
2 exp

(
d

2
〈log β〉 − 1

2
〈log |V t|〉 −

1

2
log |V̂ t|

− 1

2
tr

[
〈β〉xtx

T
t

]
+

1

2
tr

[
V̂ tµ̂tµ̂

T
t

])
. (4.6)

Finally, by taking the limit ε → 0 with respect to the inactive sources under

zt = ζh, the corresponding rows and columns of V̂ t and the elements of µ̂t

become zeros. The Gaussian in Eq. (4.5) then degenerates such that each inactive

dimension has a zero mean and zero variance, which yields the Gaussian-Delta
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form given in Eq. (2.21). The limit of l(st, yt, zt) is also given as

l(xt,yt,zt) = (2π)−
d
2 exp

(
d

2
〈log β〉 − 1

2
〈log |Vyh

t
|〉 − 1

2
log |V̂yh

t
|

− 1

2
tr

[
〈β〉xtx

T
t

]
+

1

2
tr

[
V̂yh

t
µ̂yh

t
µ̂T

yh
t

])
. (4.7)

B.2 Approximate posteriors for model parameters

According to Eq. (2.17), the optimized trial posterior distributions q(A, β), q(α,γ)

and q(π, ρ), are given as follows.

Derivation of q(A, β)

Using the following notations (cf. [64]):

Rss = 〈SST 〉 + G0, (4.8a)

Rxs = X〈S〉T + M 0G0, (4.8b)

Rxx = XXT + M 0G0M
T
0 , (4.8c)

Rx|s = Rxx − RxsR
−1
ss RT

xs, (4.8d)

Equation (2.17a) can be calculated as

q(A, β)

∝ exp (〈log p(X | S,A, β)〉S) p0(A, β) (4.9a)

∝ β
dτ
2 exp

(
−β

2
tr

[〈
(X − AS) (X − AS)T

〉
S

])
× β

dn
2 exp

(
−β

2
tr

[
(A − M 0)

T (A − M 0) G0

])
βκ0−1 exp (−λ0β) (4.9b)

∝ β
d(n+τ)

2
+κ0−1 exp

(
−β

2
tr

[
AT ARss − 2AT Rxs

]
− β

2
tr [Rxx]

)
× exp (−λ0β) (4.9c)

= β
dn
2 exp

(
−β

2
tr

[(
A − RxsR

−1
ss

)T (
A − RxsR

−1
ss

)
Rss

])
× βκ0+ dτ

2
−1 exp

(
−

(
λ0 +

1

2
tr

[
Rx|s

])
β

)
. (4.9d)
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In Eq. (4.8), the sufficient statistics 〈S〉 and 〈SST 〉 are calculated as explained

in Sec. 3.3, using 〈S〉 = (〈s1〉 , 〈s2〉 , . . . , 〈sτ 〉) and 〈SST 〉 =
∑τ

t=1〈sts
T
t 〉. Now we

define the following quantities:

M̂ = RxsR
−1
ss , Ĝ = Rss (4.10a)

κ̂ = κ0 +
dτ

2
, λ̂ = λ0 +

1

2
tr

[
Rx|s

]
, (4.10b)

then, by normalizing Eq. (4.9d) with respect to A and β, the approximate pos-

terior q(A, β) is given in the same form as the prior distribution, p0(A, β), in

Eq. (2.11a):

q(A, β) = Nd×n(A | M̂ , β−1Id, Ĝ
−1

)Ga(β | κ̂, λ̂). (4.11)

Finally, the expectations required for the VB-E step, 〈βA〉 and 〈βATA〉, are

given as

〈βA〉 = β̂M̂ , (4.12a)

〈βATA〉 = β̂M̂
T
M̂ + dĜ

−1
, (4.12b)

where β̂ = κ̂/λ̂.

Derivation of q(α,γ)

Equation (2.17b) can be further factorized as q(α,γ) = q(α)q(γ), where

q(γ) =
1

Cγ

exp
(
〈log p(S | Y ,Z, γ)〉S,Y ,Z

)
p0(γ), (4.13a)

q(α) =
1

Cα

exp (〈log p(Y | α)〉Y ) p0(α). (4.13b)
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Cγ and Cα are the normalization terms (Cφ = CγCα). By regarding the inactive

model as having a small variance ε as in Sec. B.1, Eq. (4.13a) can be given as

q(γ) ∝ exp
(
〈log p(S | Y ,Z, γ)〉S,Y ,Z

)
p0(γ)

∝
T∏

t=1

exp

(
−1

2
〈log |V t|〉yt,zt

)
exp

(
−1

2

〈
sT

t V −1
t st

〉
st,yt,zt

)
×

n∏
i=1

γ
uγ0i−1

0i exp (−wγ0i
γ0i) γ

uγ1i−1

1i exp (−wγ1i
γ1i) (4.14a)

=
n∏

i=1

exp

(
−1

2

T∑
t=1

〈log vi,t〉

)
exp

(
−1

2

T∑
t=1

〈v−1
i,t s2

i,t〉

)

×
n∏

i=1

γ
uγ0i−1

0i exp (−wγ0i
γ0i) γ

uγ1i−1

1i exp (−wγ1i
γ1i) . (4.14b)

The expectations in Eq. (4.14b) are given as

〈log vi,t〉yi,t,zi,t
= (1 − 〈zi,t〉) log ε − 〈zi,t(1 − yi,t)〉 log γ0i − 〈zi,tyi,t〉 log γ1i,

(4.15a)

〈v−1
i,t s2

i,t〉si,t,yi,t,zi,t
= 〈zi,t(1 − yi,t)s

2
i,t〉γ0i + 〈zi,tyi,ts

2
i,t〉γ1i + (1 − 〈zi,t〉)ε−1. (4.15b)

where we use vi,t = (γ−1
i,t )zi,tε1−zi,t and γi,t = γ

1−yi,t

0i γ
yi,t

1i in Eq. (4.15a), and v−1
i,t =

zi,tγi,t + (1 − zi,t)ε
−1 and γi,t = (1 − yi,t)γ0i + yi,tγ1i in Eq. (4.15b). Now let

ûγ0i
= uγ0i

+
τ −

∑τ
t=1 〈yi,t〉
2

; ŵγ0i
= wγ0i

+
1

2

τ∑
t=1

〈
zi,t (1 − yi,t) s2

i,t

〉
, (4.16a)

ûγ1i
= uγ1i

+

∑τ
t=1 〈yi,t〉

2
; ŵγ1i

= wγ1i
+

1

2

τ∑
t=1

〈
zi,tyi,ts

2
i,t

〉
, (4.16b)

then, according to Eqs. (4.14b), (4.15), and (4.16),

q(γ) =
n∏

i=1

Ga(γ0i | ûγ0i
, ŵγ0i

)Ga(γ1i | ûγ1i
, ŵγ1i

). (4.17)

We note that, in Eq. (4.14b), any term including γ·i does not depend on ε, and

then ε is canceled out by the normalization when obtaining Eq. (4.17). The ex-

pectation of γ·i can be calculated as 〈γ·i〉 = ûγ·i/ŵγ·i . Updating rules for conjugate
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Beta distributions are rather straightforward. The approximate posterior for α

is given as

q(α) =
n∏

i=1

Be(αi | ûαi
, ŵαi

), (4.18)

where the posterior hyperparameters are given as the sum of the prior pseudo-

count and the expected count:

ûαi
= uαi

+
T∑

t=1

〈yi,t〉, (4.19a)

ŵαi
= wαi

+
T∑

t=1

〈1 − yi,t〉. (4.19b)

Finally, the expectations are calculated as

〈log αi〉 = ψ(ûαi
) − ψ(ûαi

+ ŵαi
), (4.20a)

〈log(1 − αi)〉 = ψ(ŵαi
) − ψ(ûαi

+ ŵαi
), (4.20b)

where ψ(·) denotes the digamma function.

Derivation of q(π,ρ)

The approximate posterior for π and ρ is also given in the conjugate form as

p0(π,ρ) in Eq. (2.11c):

q(π, ρ) =
n∏

i=1

Be(πi | ûπi
, ŵπi

)Be(ρ0i | ûρ0i
, ŵρ0i

)Be(ρ1i | ûρ1i
, ŵρ1i

), (4.21)

where, for i = 1, . . . , n,

ûπi
= uπi

+ 〈zi,1〉 , ŵπi
= wπi

+ 1 − 〈zi,1〉 , (4.22a)

ûρ0i
= uρ0i

+
τ∑

t=2

〈(1 − zi,t) zi,t−1〉 , ŵρ0i
= wρ0i

+
τ∑

t=2

〈zi,tzi,t−1〉 , (4.22b)

ûρ1i
= uρ1i

+
τ∑

t=2

〈zi,t (1 − zi,t−1)〉 , ŵρ1i
= wρ1i

+
τ∑

t=2

〈(1 − zi,t) (1 − zi,t−1)〉 .

(4.22c)
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The expected sufficient statistics are calculated from q(zt) and q(zt, zt−1), which

are obtained by the Forward-Backward algorithm in Sec 3.4. The expectations

required for the VB-E step are given by

〈log πi〉 = ψ(ûπi
) − ψ(ûπi

+ ŵπi
), (4.23a)

〈log(1 − πi)〉 = ψ(ŵπi
) − ψ(ûπi

+ ŵπi
), (4.23b)

〈log ρ0i〉 = ψ(ûρ0i
) − ψ(ûρ0i

+ ŵρ0i
), (4.23c)

〈log(1 − ρ0i)〉 = ψ(ŵρ0i
) − ψ(ûρ0i

+ ŵρ0i
), (4.23d)

〈log ρ1i〉 = ψ(ûρ1i
) − ψ(ûρ1i

+ ŵρ1i
), (4.23e)

〈log(1 − ρ1i)〉 = ψ(ŵρ1i
) − ψ(ûρ1i

+ ŵρ1i
). (4.23f)

B.3 Summary of updating rules

A summary of updating rules in the Switching ICA algorithm is given below.

1. VB-E step:

(a) Calculate 〈st〉st|yt,zt and 〈sts
T
t 〉st|yt,zt from q(st | yt,zt).

(b) Calculate 〈yt〉yt|zt from q(yt | zt), and obtain its normalization term,

e(xt,zt).

(c) Calculate 〈st〉st|zt and 〈sts
T
t 〉st|zt from q(yt | zt), 〈st〉st|yt,zt and 〈sts

T
t 〉st|yt,zt

(Eq. (2.25)).

(d) Calculate q(zt) and q(zt, zt−1) by the Forward-Backward algorithm

based on e(xt,zt).

(e) Calculate 〈st〉 and 〈sts
T
t 〉 from q(zt), 〈st〉st|zt and 〈sts

T
t 〉st|zt (Eq. (2.27)).

(f) Calculate 〈zi,ts
2
i,t〉 and 〈zi,tyi,ts

2
i,t〉 from q(zt), q(yt | zt), 〈s2

i,t〉st|yt,zt

(diagonals of 〈sts
T
t 〉st|yt,zt).

(g) Calculate 〈zi,t〉 and 〈zi,tzi,t−1〉 from q(zt) and q(zt, zt−1).

2. VB-M step:

(a) Update q(A, β) with 〈st〉 and 〈sts
T
t 〉.

(b) Update q(α,γ) with 〈yi,t〉, 〈zi,ts
2
i,t〉 and 〈zi,tyi,ts

2
i,t〉.
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(c) Update q(π,ρ) with 〈zi,t〉 and 〈zi,tzi,t−1〉.

(d) Calculate the expectations:

〈βA〉, 〈βATA〉 〈γ·i〉, 〈log αi〉, 〈log(1 − αi)〉, 〈log πi〉, 〈log(1 − π)〉,
〈log ρ·i〉, 〈log(1 − ρ·i)〉.

C. Appendix for Chapter 3

C.1 Online VB learning for MPPCA model

In this appendix section, we describe the implementation of the online VB learn-

ing for the model (3.8). In this implementation, we assume a natural conjugate

prior for p(Θ | m), given by

p (Θ|m) =
n∏

h=1

Nm+1

(
θh | eh, γ

−1Im+1

)
. (4.24)

Here, Θ≡(θ1, · · · ,θn)T , θh = (wh1, wh2, . . . , whm, µh)
T ∈ <(m+1), wij is the (i, j)-

element of matrix W and µj is the j-th element of vector µ. eh ≡ (δh,1, · · · , δh,m, 0)T ∈
<(m+1), δi,j is the Kronecker’s delta, and γ (γ > 0) is a constant inverse variance.

The mean of each principal component vector wj (j = 1, · · · ,m) over the prior

distribution (4.24) becomes orthogonal with the others, and its norm equals 1.

Since the principal component vectors are estimated as orthonormal bases when

there are no observed data, this prior distribution is suitable for PCA.

The algorithm of our online VB learning for the modified MPPCA is summa-

rized as follows.

1. Initialization phase:

Initialize the trial posterior of parameter, qθ(Θ|m), for each principal com-

ponent dimensionality, m = 1, · · · , n, such as to be equal to the prior

distribution:

qθ(Θ|m) =
n∏

h=1

Nm+1

(
θh | θ̂h, γ̂

−1V̂
)

, (4.25)

where θ̂h = eh, γ̂ = γ and V̂ = Im+1. Initialize λm(0) simply at λm(0) = 1

for each m.
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2. Inference phase:

After observing a datum xt at time step t, the following procedure is exe-

cuted.

(a) Online VB-Estep:

For each m = 1, · · · , n, F λ
m(t) is maximized with respect to qt(yt, zt |

xt,m). The solution does not depend on λm(s) (s = 1, · · · , t) and is

given by

qt(yt, zt = i|xt,m)

=
exp

[
E [log p(xt, yt, zt = i|Θ)]

]
∑

j∈{0,1}
∫

dyt exp
[
E [log p(xt, yt, zt = i|Θ)]

] , i = 0, 1. (4.26)

Based on this posterior distribution, the forgetting factor λm(t) is given

by equation (3.10). The effective data number T λ
m(t) and the learning

rate ηm(t) are updated by using the forgetting factor λm(t):

T λ
m(t) = 1 + λm(t)T λ

m(t), ηm(t) = 1/T λ
m(t). (4.27)

(b) Online VB-Mstep:

For each m = 1, · · · , n, F λ
m(t) is maximized with respect to qθ(Θ|X1:t, m).

The solution is given by

qθ(Θ|X1:t,m) =
n∏

h=1

Nm+1

(
θh | θ̂h, γ̂

−1V̂
)

, (4.28)

where

γ̂ =σ−2
x T λ

m(t)〈(1 − z)〉m(t) + σ−2
ε T λ

m(t)〈z〉m(t) + γ

(4.29)

V̂ =
1

γ̂

(
σ−2

x T λ
m(t)〈(1 − z)ỹỹT 〉m(t)

+ σ−2
ε T λ

m(t)〈zỹỹT 〉m(t) + γIm+1

)
(4.30)(

θ̂1, · · · , θ̂n

)T

=
1

γ̂

(
σ−2

x T λ
m(t)〈(1 − z)xỹT 〉m(t)

+ σ−2
ε T λ

m(t)〈zxỹT 〉m(t)
)
V̂

−1
. (4.31)
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〈f(x, y, z)〉m(t) is the expected sufficient statistics defined by

〈f(x,y, z)〉m(t) ≡ ηm (t)
t∑

τ=1

(
t∏

s=τ+1

λm (s)

)
E [f(xτ ,yτ , zτ )] . (4.32)

This weighted mean is calculated step-wisely, using that of the previous

time step t − 1:

〈f(x,y, z)〉m(t) =(1 − η(t))〈f(x,y, z)〉m(t − 1)

+ η(t)E [f(xt,yt, zt)] . (4.33)

(c) Obtaining the mean model parameter:

The expectation of parameter Θ over the trial posterior distribution,

Θ∗, has been obtained by equation (4.31), namely, Θ∗ =
(
θ̂1, · · · , θ̂n

)T

for each m = 1, . . . , n. The principal component dimensionality m is

then determined as its MAP estimator:

m∗ = arg max
m

F̃ λ
m(t). (4.34)
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