
NAIST-IS-DD0461032

Doctoral Dissertation

USB/IP: Universal Serial Bus Extension

over IP Network

Takahiro Hirofuchi

February 1, 2007

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Takahiro Hirofuchi

Thesis Committee:

Professor Hideki Sunahara (Supervisor)

Professor Suguru Yamaguchi (Co-supervisor)

Associate Professor Kazutoshi Fujikawa (Co-supervisor)

Associate Professor Eiji Kawai (Co-supervisor)

USB/IP: Universal Serial Bus Extension

over IP Network∗

Takahiro Hirofuchi

Abstract

In the ideal goal of distributed system technologies, users obtain optimized

computing environments dynamically composed of distributed hardware resources

over networks on-demand and seamlessly. A remote device technology is one of

the essential keys to this goal. It enables a system to be reconfigurable and

adaptable in its device usages for various conditions and purposes. Several re-

mote device technologies have been studied for many years. However, there is

still lacking a fully general and interoperable device access mechanism over IP

networks, though this is considered necessary for tackling the increasing diversity

of devices and computers. Most remote device technologies in operating systems

involve operating-system-specific abstractions in their mechanisms.

This dissertation proposes a network extension of USB, a multipurpose periph-

eral interface, via host controller virtualization in operating systems. It decouples

device requests and messaging from bus controls, and therefore enables remote

access requests and semantics to become the same as physically-attached local

devices; these are independent of operating systems and specific to their periph-

eral bus models. It is conducive to transparent access for various types of remote

devices in the same manner as local devices, with interoperability among different

operating systems.

However, since its peripheral interface is not intended to be extended over

networks, this research addresses inevitable semantics differences and problems

arising from its peripheral bus model. It clarifies feasibility and restrictions of the

network extension, as well as suggestions for the bus models and implementations.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0461032, February 1, 2007.

i

A network extension of the USB model is discussed in detail through the de-

velopment and evaluations of USB/IP (USB request over IP). Its design criteria

are presented to address performance issues as well as semantics alteration crite-

ria about time constraints, request scheduling, bandwidth, synchronization, and

request cancellation. Its I/O performance model is established through its imple-

mentation and evaluation, which achieves feasible I/O performance for all USB

devices under a LAN environment. A device sharing system is also developed

as one of the applications of the proposed mechanism, through which its impact

against the device management of operating systems is discussed.

Keywords:

Remote Device, Peripheral Bus, IP Network, Operating System, Device Driver,

Universal Serial Bus (USB), Host Controller, Virtualization

ii

Contents

1 Introduction 1

2 Remote Device Technologies 4

2.1 Architecture Components . 5

2.2 Taxonomic Criteria . 6

2.3 Related Work . 8

2.3.1 Peripheral I/O Bus . 8

2.3.2 Network-Attached-Peripherals Computer 11

2.3.3 Operating System . 11

2.3.4 Middleware and Application 16

2.4 Summary . 17

3 USB/IP 19

3.1 USB Design Model . 20

3.1.1 USB Per-Device Driver . 21

3.1.2 USB Core Driver . 22

3.1.3 USB Host Controller Driver 23

3.1.4 USB Request Block . 23

3.2 Requirement . 24

3.2.1 Semantics Alteration . 26

3.3 Design . 28

3.3.1 Virtual Host Controller Interface Driver 28

3.3.2 Protocol Data Unit Based on USB Request Block 29

3.3.3 Stub Driver . 29

3.3.4 Prototype Implementation 30

iii

CONTENTS

3.4 Evaluation . 32

3.4.1 Performance Evaluation of USB Pure Sink/Source 34

3.4.2 Performance Evaluation of USB Devices 44

3.4.3 Performance Evaluation under IPSec 49

3.5 Discussion . 51

3.5.1 Request Semantics . 51

3.5.2 Error Recovery . 54

3.5.3 Interoperability . 55

3.5.4 Dependability . 56

3.5.5 Naming . 57

3.6 Related Work . 57

3.6.1 iSCSI . 57

3.6.2 Software and Hardware for USB Device Sharing 58

3.6.3 KVM Switch and NAS . 58

3.6.4 Wireless USB . 59

3.7 Summary . 59

4 A Device Sharing System for USB/IP 61

4.1 Device Sharing Based on USB/IP 61

4.2 Requirements . 62

4.2.1 Location-Independent Handling 62

4.2.2 Device Ownership and Control 65

4.2.3 Device Management Redesign 65

4.3 Design . 66

4.3.1 Device Presentation . 66

4.3.2 Device Management Model 69

4.4 Implementation . 73

4.4.1 Strategy . 73

4.4.2 Overview . 76

4.4.3 Prototype Demonstration 79

4.5 Discussion . 80

4.6 Summary . 82

5 Open Issue 83

iv

CONTENTS

6 Conclusion 85

6.1 Contribution . 85

6.2 Futher Directions . 86

Acknowledgments 88

Availability 89

References 90

Appendix 101

Publications 108

v

List of Figures

3.1 USB Design Model . 22

3.2 USB/IP Design . 28

3.3 VHCI Driver Implementation . 31

3.4 USB/IP Application . 33

3.5 USB/IP Application Usage . 33

3.6 Experiment Environment . 34

3.7 Driver Behavior of Asynchronous Transfers 35

3.8 Execution Time of a URB . 36

3.9 Throughput from Model . 37

3.10 Throughput from Experiments . 38

3.11 Driver Behavior of Periodical Transfers 39

3.12 Mean Completion Intervals . 41

3.13 Time Series Data of Completion Intervals 41

3.14 Standard Deviations of Completion Intervals 42

3.15 USB/IP Model for Periodical Transfers 43

3.16 Output Example of USB Utility 44

3.17 Sequential Read/Write Throughput 46

3.18 Sequential Read/Write CPU Usage 46

3.19 Sequential Read/Write Throughput (RTT) 46

3.20 Random Seek Speed . 47

3.21 Create/Delete Speed . 48

3.22 Sequential Read/Write Throughput with IPSec 50

3.23 Sequential Read/Write CPU Usage with IPSec 50

4.1 Device View without USB/IP . 63

vi

LIST OF FIGURES

4.2 Device View with USB/IP . 64

4.3 Flat Device View for Device Sharing 64

4.4 Device Object Operations . 67

4.5 Device Object and Flat Device View 67

4.6 Device Management Model . 71

4.7 Delegation in Device Management 72

4.8 Delegation between Two Computers 73

4.9 Trust Management Concept . 74

4.10 Design Overview . 77

4.11 System Behavior (Local Request) 78

4.12 System Behavior (Remote Request) 78

4.13 Assertion Example . 79

4.14 Usage Example . 81

vii

List of Tables

3.1 Machine Specifications for Experiments 34

3.2 Specifications of Tested USB Hard Disk 45

A.1 Assertion Parameters . 107

viii

Chapter 1

Introduction

A computer is a machine that stores and processes data according to programs. A

device is defined as one of the components of a computer, through which various

data is inputted (outputted) to (from) the computer. A device, for instance,

means a storage device such as a hard disk drive or an optical drive, a human

interaction device such as a keyboard or a mouse, or a multimedia device such

as a camera or a speaker. In general, the concept of device access in operating

systems covers a wide range of interactions between a computer and a device;

in the closest level to hardware it means direct control of device hardware (e.g.,

register I/O of a disk controller), and in the furthest level it implies resource

usages of abstracted functions derived from device hardware.

Remote device access over networks brings efficient utilization of computer

resources and advanced usability. When a user can access remote devices over

networks, a computer can use other devices over external computer networks

rather than use only physically-attached devices through its peripheral interfaces.

Ideally, device access is not closed inside the computer, but opened to all the

network-accessible devices. A device is seamlessly provided to any computer on

demand regardless of its physical location. The physical relationship between a

computer and a device is at once decoupled and then dynamically recoupled over

networks for on-demand and efficient usages.

The advantages of remote device technologies in distributed systems are sum-

marized as the enhancement of reconfigurability and adaptability in regard to

device utilization:

1

Chapter 1. Introduction

Reconfigurability. The ability to provide computers with device hardware

and its derived resources dynamically and flexibly. A system can dynamically

reconfigure optimized utilization of devices against various conditions under dis-

tributed systems. For example, a computer can access remote devices of another

computer anytime without reconnecting them physically, even if the computer

moves to another place.

Adaptability. The capability of sustainable adaptation to changes in hard-

ware and software of devices and computers under distributed systems. A system

can follow technical changes without unnecessary modifications by an abstraction

between a remote device and a computer, since the abstraction decouples their

fixed relationship and advances flexibility of coordination. For instance, a file

sharing protocol used in a storage area network gives an absorbing layer of differ-

ences; even when a storage virtualization mechanism in a server host is changed,

a client host can still access the same storage through a common file sharing

protocol without any modification on the client side’s software.

Many remote device technologies have been studied over the years. However,

these technologies do not meet device generality and interoperability among op-

erating systems, though these attributes are considered necessary to address the

growing diversity of devices and computers. Actually, most remote device tech-

nologies are based on interfaces and semantics of operating systems. Even though

they extend device access semantics to be suitable for remote access via networks,

these technologies are essentially dependent on device abstraction performed by

operating systems. Their interoperability among different operating systems be-

comes impossible to achieve while fully preserving the same semantics as the local

devices.

This dissertation proposes a network extension mechanism of USB, a multipur-

pose peripheral interface with host controller support, which enables transparent

remote access to various types of devices in an interoperable manner among differ-

ent operating systems. A virtualized host controller decouples request messaging

to devices from bus controls, and enables remote device access to exploit the

same request messages and semantics as physically-attached local devices. The

request messages and semantics used for remote device access are basically not

operating-system-dependent but hardware-dependent, which is a straightforward

2

Chapter 1. Introduction

extension of peripheral bus models defined by specifications.

However, its peripheral bus model is designed for only physically-attached

devices; since the semantics of remote access cannot become fully the same as

those of local access, the proposed mechanism needs to address problems arising

from inevitable differences between local and remote semantics. Through its

design and implementation, this research explores the possibility and feasibility

of the proposed extension, and also clarifies its limitations and restrictions. It

discusses design criteria of the network extension mechanism as well as criticism

of peripheral bus models and implementations.

Chapter 2 reviews existing remote device technologies. They suggest hints

for an alternative remote device mechanism. In Chapter 3, the network exten-

sion mechanism is proposed. USB/IP is designed and implemented as a network

extension of the USB model. Its design criteria are discussed to address per-

formance issues as well as semantics alteration criteria (i.e., time constraints,

request scheduling, bandwidth, synchronization, and request cancellation). Sug-

gestions for the USB model and implementations are also discussed for suitable

support of the network extension. Chapter 4 presents the device sharing system

of the proposed mechanism to focus on its differences from other remote device

technologies in operating systems. The proposed remote device mechanism never

abstracts remote devices and multiplexes device access by itself. It should work

seamlessly with existing device access mechanisms to be incorporated into device

management of operating systems. Design criteria of its applications are clarified

through the development and experiences of the device sharing system. Chapter

5 discusses other multipurpose peripheral interfaces with host controller support,

and Chapter 6 concludes this dissertation.

3

Chapter 2

Remote Device Technologies

Nowadays, the variety of peripherals, computers, and software is dramatically in-

creased in a ubiquitous computing world. In days past, people used to think of a

computer’s peripheral as only a storage device, a printer, and a terminal console.

However, in recent years, various devices have been developed as computer pe-

ripherals that interact with the computers, and this trend will continue. A range

of computers has also become indispensable in our daily lives, used not only as

workstations but also as laptop computers, PDAs, smart phones, and home ap-

pliances. Various types of software for these computers have been developed and

customized in all the layers from operating system kernels to applications. On

the other side of this diversity, the technology that links and coordinates these

peripherals, computers, and software is strongly recommended to be de-fact or

standardized for interoperability. IP networks are widely deployed and are versa-

tile with network media including wired and wireless links. Some network media

are as fast and as broad as peripheral buses.

This thesis first discusses whether existing remote device technologies are suf-

ficient for the coming years. Remote device technologies have been developed

for specific purposes reflecting technical backgrounds from the past that are now

rapidly changing. It is considered essential that at least one mechanism of re-

mote device access meets the following requirements to address diversity and

interoperability in hardware and software.

• The technology can be applied to various types of devices. It should support

naturally emerging devices with new functions.

4

Chapter 2. Remote Device Technologies

• The technology uses IP network for its transport. It is the most general

protocol used for addressing and messaging of remote device access.

• The technology has natural interoperability between various operating sys-

tems and computers. It should be able to be a standardized technology.

In this chapter, system components and technical features of technologies are

first summarized, thereby presenting technical focuses for categorizing. Then,

existing remote device technologies are noted pointing out their design principles.

In this thesis, the term remote device architecture is used to present the big

perspective of technologies and classify them by their design principles.

2.1 Architecture Components

This section describes the major components of remote device architecture. To

review software and hardware technologies of remote device architecture, these

components are important to clarify its technical background and its purpose.

It should be remarked what type of technology is supposed to be a component

of it. Basically, these components are common to all kinds of architectures and

are implemented newly in a remote device technology or included naturally in a

target hardware or software technology.

Computer Hardware and System Software. Remote device technologies

are designed for target computer platforms (e.g., personal computers, mobile

computers, and cluster computers). Various computer platforms are available

supporting remote device access in several ways and have different requirements

and purposes for remote devices. Remote device architecture also tends to be

deeply dependent on operating system architecture. It is the most fundamental

mechanism of resource management on a computer.

Networking Mechanism. A networking mechanism interconnects comput-

ers and devices, sometimes transferring remote device I/O messages. It distin-

guishes remote device technologies. This mechanism covers network media, the

network interface of a computer, its device driver and network protocol stacks.

A peripheral bus sometimes works for interconnection between computers. Some

remote device mechanisms are designed by exploiting a general network protocol

5

Chapter 2. Remote Device Technologies

independent of network media, but others are fully-based on the special proto-

col of network media. The priority management mechanism of network traffic

sometimes facilitates efficient remote device I/O under shared networks.

Target Device. A remote device technology is designed for specific types

of target devices or not. Moreover, two types of remote devices exist; one type

is connected to networks between computers directly, and the other type is first

connected to a peripheral bus of a computer and then exported to other computers

over networks. Most client computers accessing remote devices do not see any

semantic differences between them. In the later case, a server computer needs to

have an arbitration mechanism between local access and remote access. In this

thesis, simply using remote device means both types of devices.

Device I/O Software. Various software mechanisms dedicate device I/O

in various system layers; close to hardware (i.e., device driver) or far from hard-

ware (i.e., userland application). Each system layer abstracts device I/O and

presents common interfaces to its upper layer. Through the I/O path of remote

device access, some system layers are implemented on a remote device side, and

others on a client side, thereby transferring abstracted I/O messages over net-

works. This abstraction scheme dominates the technical features of a remote

device technology.

The above components are fully related to the I/O path of remote device

access. They are indispensable to take a broad view of remote device architecture.

Other system components not related to remote device I/O directly, such as a

directory service and an authentication service, are not focused on to make the

scope of the discussion clear.

2.2 Taxonomic Criteria

This section describes possible design criteria that characterize remote device

architecture.

Functionality. A computer can access remote device functions through an

abstraction layer between them. The functionality of a remote device is dependent

on the method of abstraction. To take an example of a storage device, a file is

an abstracted form of a storage device. An application has an interface to a

6

Chapter 2. Remote Device Technologies

file via file operations (e.g., open, read, write, and close) to store and load

data. Block I/O is another abstracted form, which allows random block access

to any offset of a physical storage. In general, file abstraction is appropriate to

most userland applications, and block I/O abstraction is suitable for file system

drivers of operating systems and some database applications.

Sharing Scheme. A remote device is shared by multiple computers or not.

The method of device sharing depends on the device abstraction. Some remote

device technologies support concurrent access to one device, and others may allow

exclusive device sharing in a time-divisional way among computers.

Disconnected Operation. A remote device technology is designed for sud-

den or intended disconnection of a target device. Some remote device technologies

are based on the fact that their target devices are never disconnected. Other tech-

nologies may support disconnected operations, just stopping device usages safely

or actively allowing the same operations even when disconnected. Aggressive er-

ror recovery is sometimes implemented considering its target environment. If an

intelligent disconnected operation is indispensable to remote device access, the

abstraction of a target device is first carefully designed to support it.

Generality. A remote device technology covers various kinds of devices, or

only covers a special class of device. The technology may be designed for a specific

type of device to be optimized to its functionality. A more general mechanism is

also possible to support diverse devices. The generality is sometimes dependent

on the design of its peripheral interface and its device driver model.

Heterogeneity. A remote device technology is applied to various computers

and operating systems, or only to a specific computer and its operating system.

Since distributed systems are now composed of heterogeneous hardware and soft-

ware, interoperable technologies are desirable also for remote device access.

Performance. The I/O performance of remote devices should be sufficient

for actual usages. It is affected by network media, network conditions, processing

power of a remote device and a computer, and the method of device abstraction.

Some remote device technologies are supposed to be used under broad bandwidth,

and others may work under narrow bandwidth. The caching or pre-fetching

mechanisms are sometimes supported to increase I/O performance.

7

Chapter 2. Remote Device Technologies

Feasibility. It is the feasibility of a remote device technology for today’s

and the future real world. The difference of technical backgrounds is worthy of

consideration, that is, the time between when the technology was proposed and

the time when the technology is used. Most remote device technologies were de-

veloped many years ago and have been used for a long time. One of the reasons

is that these technologies have been feasible enough to be implemented and de-

ployed for contemporary hardware and software. The deployment feasibility of

remote device technologies should be reviewed from the viewpoints of hardware

cost, software complexity, modularity, maintenance cost, and extensibility.

2.3 Related Work

Many technologies in distributed systems work for accessing remote devices. In

this section, these technologies are categorized into four remote device architec-

ture categories. These categories are distinguished by their device abstraction

approaches, which are based on hardware and software of their targets.

2.3.1 Peripheral I/O Bus

A peripheral I/O bus provides remote device access to a degree.

USB, IEEE1394, and Bluetooth

In the last half of 1990s, multipurpose peripheral buses were developed to con-

nect computers and various devices, which were based on the progress of hardware

implementation technologies. USB (Universal Serial Bus) [24] is a peripheral in-

terface for most types of peripheral devices of a computer. A series of 125 us I/O

transactions are scheduled for data transfers to (from) devices, which includes

bulk data for storage devices (i.e., asynchronous transfer), sporadic data for in-

terruptive devices, and isochronous data for multimedia devices (i.e., synchronous

transfer). IEEE1394 [1] is a serial I/O bus which connects up to 63 nodes of com-

puters and devices in a tree or a daisy-chained topology. It supports synchronous

and asynchronous data transfer at 400 Mbps or 3.2 Gbps (IEEE1394b [2]). Each

transfer is scheduled by a data transfer cycle of 125 us. Bluetooth [14] is a radio

8

Chapter 2. Remote Device Technologies

communication technology that connects computers and devices by FHSS (Fre-

quency Hopping Spread Spectrum) in the 2.4GHz ISM (Industrial Scientific and

Medial) Band. A group of nodes synchronized to a frequency hopping sequence is

called a piconet, in which one master node communicates with up to seven slave

nodes. It supports synchronous and asynchronous data transfer at 1-2 Mbps

within a range of 100 meters.

USB, IEEE1394, and Bluetooth are considered to remote device technologies

that can provide computers with remote access to devices on a bus. These tech-

nologies allow computers to control devices directly without any abstraction for

remote access. I/O messages between a computer and a remote device are in-

dependent of operating system structure, and any computer with a peripheral

interface of this kind can access a remote device on a bus.

However, basically, a device is shared in an exclusive way except that some

IEEE1394 storage chips support concurrent access for shared storage applica-

tions such as cluster file systems (e.g., OCFS [30], GFS [89], and Lustre [22]).

Minimum disconnected operations are supported by bus hardware and its device

driver; an operating system is just notified of a node joining and leaving, and

applications need to handle them by themselves. Remote device access is limited

under physical link topologies.

SCSI

SCSI (Small Computer System Interface) [95] is a specification of hardware in-

terfaces and an I/O protocol family mainly used for connecting storage devices

to computers. It was intended to connect not only storage devices but also other

types of devices such as printers and scanners. Today, the market for the SCSI

interface is focused on storage access of high-performance computers because of

the advent of other low-cost interfaces. However, the SCSI command is widely

employed for storage access over various physical media, because the SCSI ar-

chitecture model makes logical I/O commands independent of transport media

(e.g., the SCSI parallel interface, Fiber Channel, and IP network [85]).

The SCSI technologies are considered as a remote device technology that pro-

vides remote access to storage devices over Fiber Channel network or IP network.

A storage device is abstracted by SCSI commands that are interoperable among

9

Chapter 2. Remote Device Technologies

operating systems. Multiple computers (initiators in SCSI) share one storage

device (target) concurrently, if supported. An intelligent disconnected operation

is not covered in this level.

IPMI

IPMI (Intelligent Platform Management Interface) [53] is an integrated platform

for monitoring and management of computer hardware. Hardware status, such as

mainboard temperatures and fan speeds, is monitored via an IPMB (Intelligent

Platform Management Bus) and aggregated into a BMC (Baseboard Management

Controller). An IPMB can be also connected externally to an ICMB (Intelligent

Chassis Management Bus) to correct other external computers’ statuses into the

BMC. The power supply of this system is independent of target computers in

order to monitor them all the time. A BMC is accessed from management pro-

grams in local or remote computers. For example, SNMP [16] is applicable to

access remote hardware status corrected by IPMI.

IPMI is focused on simple and low-speed devices such as sensors and BIOS

consoles. These devices can be easily abstracted by simple I/O messages and

transferred over hardware bus and IP networks. Its hierarchical design absorbs

the difference in physical topologies, and the specifications standardize its message

and interface to be interoperable between various vendors’ hardware.

I2O

I2O (Intelligent I/O) [88] is a peripheral interface specified by I2O SIG in 1996.

I/O processors are deployed on peripheral interface hardware, which process in-

terrupt handling and I/O transfers to improve I/O performance by offloading.

Device drivers of I2O are split into two parts, HDM (Hardware Device Module)

and OSM (Operating System Module), by specifying a common API and device

class (e.g., random block storage, tape storage, SCSI peripheral, and LAN). In

OSM, device class drivers are developed by operating system vendors, which are

independent of vendor’s implementation details of a class device. In HDM, lower

level drivers are developed by device vendors, which are close to hardware and

independent of class driver implementations by operating system vendors. This

10

Chapter 2. Remote Device Technologies

split driver model aimed to decrease driver development costs for both device

vendors and operating system vendors.

A host-independent communication model is designed between OSM and

HDM, and I/O messages are transferred by a transport mechanism. A PCI bus

is the only transport actually used for it. However, I2O SIG had a plan to define

transport layer support for ATM and Fiber Channel [78]. Although I2O did not

diffuse widely and its development seems to have stopped, interoperable device

access over networks could be supported by its architecture.

2.3.2 Network-Attached-Peripherals Computer

Multimedia computers composed of network-attached peripherals had been stud-

ied mainly until the middle of 1990s. They aimed to process real-time and large

multimedia data efficiently. Peripheral devices are physically connected to a high-

speed network with end-to-end QoS guarantee, and I/O data is transferred di-

rectly between devices without going through a processor node. ViewStation [96],

and Desk Area Network [42] utilize ATM. Early on, Netstation [32] employed the

ATOMIC high-speed switched LAN, which is the base of Myrinet [74], and later

switched to IP network [47, 69]. This architecture is also discussed for a mobile

multimedia computer with efficient energy management [41].

In these technologies, remote device access over a network is provided to pro-

cessor nodes. Compared with other remote device architecture, this approach is

distinguished by the fact that a computer itself is composed of available periph-

eral devices in the network and that devices are fully decoupled from peripheral

interfaces. Ideally, this approach makes it possible by further studies that an

ad-hoc computer is organized on demand adapting to situations of users and net-

works. However, in recent years, processing power and peripheral bus speed have

progressed so much that this computer architecture, because of an I/O bottleneck

of multimedia data, did not spread in the consumer market.

2.3.3 Operating System

In operating system research, remote device access has been studied for many

years. Since an operating system abstracts computer hardware to resources, all

11

Chapter 2. Remote Device Technologies

remote access to resources implies remote device access. For further discussion,

representative remote device technologies on operating systems are reviewed to

present how device hardware is abstracted to be accessible over networks.

LOCUS

LOCUS [99] is a distributed operating system proposed by University of Cal-

ifornia at Los Angels in 1983. It supports transparent data access through a

network-wide file system, automatic storage replication, transparent distributed

process execution, and UNIX compatibility. It allows transparent use of remote

devices in most cases, except for raw non-character (i.e., unbuffered block) de-

vices accessed by executing process remotely. Since LOCUS was developed before

the abstraction layer of file operations like Vnode [60] was introduced into UNIX,

remote access was implemented by each device driver.

V

The V kernel and the V distributed system [17] were developed by Stanford

University in the early 1980s. The V kernel is a micro-kernel operating system

that provides transparent IPC between distributed processes (known as threads in

later micro-kernel architecture) on machines in a local area network. The device

server is a pseudo-process that enables device access for other processes through

IPC. Since the V inter-kernel protocol is a transparent extension of the local V

kernel IPC, all remote device access is transparently possible by communicating

with a remote device server through the IPC. It supports Ethernet interfaces,

serial lines, mice, disks, and consoles through an object-based protocol (i.e., the V

I/O protocol). The V I/O protocol abstracts device I/O not as stream I/O but as

block I/O. A current file position is not maintained in a device server by specifying

target blocks in read and write operations in order to allow the operations to be

idempotent. As discussed in its paper, the use of the I/O protocol means that

the kernel specifies a service-level protocol rather than just defining transport

level communication. The base layer of device abstraction is restricted by the

I/O protocol. The device abstraction of remote device access is also affected by

this restriction.

12

Chapter 2. Remote Device Technologies

Sprite

Sprite [75] is an experimental network operating system designed for networked

uniprocessors and multiprocessors with large physical memories. It was developed

by the University of California at Berkeley from 1984 to the early 1990s. It

provides a transparent network file system, shared memory between processes

on single workstations, process migration between workstations, and the 4.3BSD

UNIX compatibility.

Separating I/O operations and naming in Sprite provides remote access to all

the resources easily such as peripheral devices and IPC channels as well as regular

files [100]. Sprite allows users transparent access to remote I/O devices via special

files on its file system, viewed as a single system image, regardless of a device’s

location. This mechanism is implemented by a kernel-to-kernel RPC facility and

a name space management technique called a prefix table. Remote device access

is performed by mapping the pathname of a remote device to attributes of a

remote object of the device, and then creating an open I/O stream to the object

from the attributes.

CHORUS

CHORUS [82] is a distributed operating system developed by INRIA in France

from 1979 to 1986 and by Chorus systems from 1987. CHORUS consists of a small

distributed real-time Nucleus and a set of subsystem servers. Nucleus is a micro-

kernel that supports location transparent message-passing, thread scheduling, and

virtual memory operations. A UNIX System V interface called CHORUS/MiX

was developed as a subsystem of CHORUS. Unlike other contemporary UNIX

subsystems in micro-kernel operating systems, UNIX drivers are encapsulated

into servers on Nucleus by the emulation of kernel functions for transparently

extending traditional UNIX services to be distributed [5]. For example, a remote

disk is accessed by sending an IPC message from the local server of a file system

driver to the remote server of its disk driver. This feature allows remote driver

access, co-existing subsystems, and dynamic loading and unloading of drivers, for

a fault tolerant storage system [59].

13

Chapter 2. Remote Device Technologies

Mach

Mach [4] is a micro-kernel operating system developed by Carnegie Mellon Uni-

versity from 1985. It aimed to be a scalable distributed system of heterogeneous

hardware, such as one to thousands of processors and various memory systems.

It supports integrated virtual memory management and interprocess communi-

cation, and multiple threads of control within one address space.

The I/O subsystem of Mach 3.0 [33] released in 1990 was redesigned to support

device-independent and location-independent drivers implemented in userland.

This approach reduces significantly the hardware-dependent code of the Mach

kernel and permits users to manage remote devices transparently. Since differ-

ent operating system environments on the Mach kernel have their own abstrac-

tions developed not by application programmers but by system programmers,

hardware-dependent drivers in the kernel provide the lowest level abstractions

possible. Device-independent drivers are classified into groups such as screen,

console, disk, tape, serial line, and Ethernet. Portability and code sharing are

greatly increased by this structure.

Solaris MC

Solaris MC [57] is a distributed system for a cluster of computers connected

by a high-speed interconnect, developed by Sun Microsystems in the mid-1990s.

It provides a single system image that appears to users and applications as a

single computer running the Solaris operating system. Its components are im-

plemented in C++ through a CORBA-compliant object-oriented system. It sup-

ports a location-transparent distributed file system with a caching mechanism

and remote process execution. These mechanisms are based on object-oriented

implementations and distributed techniques by the Spring OS [72], which was

formerly studied by Sun Microsystems in the early 1990s.

Remote device access among nodes is supported by its I/O subsystem, which

enables any I/O device to be accessed from any node without regard to the

physical attachment of devices to nodes. Applications on a node are able to access

devices as local devices even when the devices are physically attached to another

node. Drivers are dynamically loaded per node to which a device is physically

attached. Process context is assigned to the drivers accessed from remote nodes;

14

Chapter 2. Remote Device Technologies

this provides a logical equivalence between local and remote access in order to

utilize existing drivers without modification. Uniform device naming is achieved

on its file system, which replaces Vnode architecture through an object-oriented

interface [67].

Other operating systems and techniques

As described above, most operating systems for a single system image have ag-

gressive support of remote device access through their cluster-wide file systems for

remote process execution and process migration. Remote device support tends

to be noted in the explanation of these systems. VAX cluster [62] and OpenSSI

Linux [97] are other examples of this sort of system.

Micro-kernel operating systems with transparent IPC over network also tend

to have remote device support, by passing I/O messages to remote server threads

of device drivers and also by separating naming from I/O mechanisms. QNX [44]

and Inferno [98] are other examples, which are commercial products today for

embedded systems.

A lot of distributed file systems have been widely studied for long years [65].

Remote storage devices are accessed through the abstraction of a file on these

file systems. For example, NFS [92] and CIFS (Common Internet File System)

are the most widely-used network file systems. AFS [48] by Carnegie Mellon

University is known as a scalable distributed file system on local and wide area

networks. Coda [86], also developed by Carnegie Mellon since 1987, is a well-

known distributed file system focused on mobile computing. It utilizes not only

AFS techniques but also more advanced support for caching and disconnected

operation.

On the other hand, some file systems support not only regular files but also

special files such as device files and message pipes, consequently allowing remote

access to devices other than storage devices. Some of them were already described

above. RFS [81], included in AT&T System V Release 3.0 (SVR3) in 1987, is

another network file system that supports remote device access via device files

on the file system. It exploits the File System Switching and remote system call

mechanism in SVR3. Plan 9 [76], developed by Bell Laboratories since the mid-

1980s, strongly abstracts any computer resources as files. Compared with the

15

Chapter 2. Remote Device Technologies

UNIX systems, resources including devices are highly abstracted as files to be

controlled easily from users and applications, so that its distributed file system

allows remote device access by passing simple control and data messages to device

files. These messages are transferred by the light-weight network communication

protocol 9P. This design decision can be performed because Plan 9 is intended

to explore a new operating system model rather than to extend existing systems

with compatibility.

2.3.4 Middleware and Application

Middleware is a software platform that often exists between applications and un-

derlying platforms such as operating systems and hardware. It provides common

services and interfaces for applications to improve software productivity overall.

Although the term middleware is used in various ranges of context, a definition

is given in [8] as follows:

A middleware service is a general-purpose service that sits between

platforms and applications. (. . .) Middleware components have sev-

eral properties; they are generic across applications and industries,

they run on multiple platforms, they are distributed, and they support

standard interfaces and protocols.

Conventional middleware systems are customarily classified into four cate-

gories: remote procedure calls such as DCE RPC (Distributed Computing Envi-

ronment RPC) and Sun RPC [90], object-based middleware (e.g., CORBA [38],

DCOM (Distributed Component Object Model), and Java RMI (Remote Method

Invocation)), message-based middleware (i.e., data exchange systems by message

queues), and transaction processing monitors (i.e., database systems). Also, re-

cent middleware research addresses adaptability and reflection [83, 84]. These

techniques are applied to mobile computing [36], sensor networks [79], and net-

worked home appliances (e.g., UPnP [34], HAVi [40], Jini [70], and ECHONET

[28]).

These technologies can offer remote access to device-derived resources. Re-

mote devices are utilized through elaborated interfaces designed for features of a

16

Chapter 2. Remote Device Technologies

middleware system. As long as applications are built on the middleware system,

remote device access is possible in its manner of device resource abstraction.

In a broad sense, any network application is considered a remote device tech-

nology if it offers resource access over networks. For instance, VNC [80], RDP

(Remote Desktop Protocol), and X Windows System [87] are remote desktop

applications. LPD [50] and Internet Printing Protocol [63] are remote printing

technologies. Telnet [68] and SSH [102] are regarded as remote console technolo-

gies. HTTP [31] and FTP [77] are used for remote storage access.

2.4 Summary

This chapter presented diverse ranges of remote device access. It covered hardware-

level approaches, system software-level approaches, and application-level approaches.

In remote device technologies, a service interface of remote device access is based

on underlying hardware and software architecture.

Peripheral I/O buses provide remote device access. Coverage is often limited

by specifications of their physical media. However, SCSI and IPMI are designed

to be independent of transport media, so that they have the option of remote ac-

cess over an IP network. Since specifications define I/O interfaces and messages

well, peripheral I/O buses are interoperable among different computers and op-

erating systems. USB, IEEE1394, and Bluetooth are general-purpose serial I/O

buses with both synchronous and asynchronous transfers. They support not only

storage devices but also multimedia devices that require real-time data trans-

fers. Also, they are now widely available in the consumer electronics market.

Compared with software-based approaches to remote device access, the I/O bus

mechanisms seldom offer certain features such as concurrent access, aggressive

disconnect operations, and caching mechanisms, by themselves.

Multimedia computer systems were studied for efficient processing of large

real-time data. Peripheral devices are directly attached to networks where pro-

cessing units are available. This architecture involves the possibility of flexible

remote device access in distributed systems. However, there is a big architectural

gap from today’s computer architecture, which prevents achieving this computer

architecture in the near future. The technical issues that motivated these studies

17

Chapter 2. Remote Device Technologies

are now alleviated by the progress of hardware.

A lot of operating systems address remote device access by using their IPC or

RPC mechanisms to driver threads or driver procedures. Microkernel operating

systems can be extended flexibly by putting parts of their system components in

other processor nodes. They have the possibility to make device access reconfig-

urable and adaptable in distributed systems. However, basically, the methods of

device abstractions are deeply dependent on the structures of operating systems.

Even if remote device access for various devices is allowed by an operating sys-

tem, its I/O protocol is not interoperable between different operating systems,

except for some standardized protocols of storage. Although diverse operating

systems on various computers interact with an increasing number of devices, ex-

isting remote device access technologies on operating systems lack either device

generality or interoperability.

Middleware systems are widely used to provide uniform access and advanced

features for distributed resources. They can offer integrated services for remote

device access, such as I/O message transfers, naming, security, and discovery.

However, remote device access is given to only applications which exploit mid-

dleware systems. A lot of existing operating systems and applications not built

on them are out of the scope of their support. Network applications are regarded

as remote access to device-derived resources. However, these applications are not

general-purpose software that can support devices and usages other than their

targets.

Lacking is a flexible device access technology that enables remote access to

any devices smoothly for any computers and applications in an interoperable way

without any modification. Consequently, it is necessary to explore alternative

remote device access technology, which can provide reconfigurability and adapt-

ability of device usages for distributed systems.

18

Chapter 3

USB/IP

In operating systems, the I/O interfaces are based on their own semantics of

system design. If a remote device technology just extends the I/O interface of

an operating system straightforwardly, it lacks interoperability among different

operating systems. Mach 3.0, which allows transparent IPC, has an I/O interface

that provides seven remote procedure calls for device drivers. However, this

semantics is not applicable to other operating systems as it is, that is, fully specific

to its driver designs. The V kernel defines its I/O interface to be applicable for

remote access (i.e., block-based access and idempotent read operation). However,

this semantics also deeply depends on its system design, which is difficult to apply

to other operating systems for remote device access. For the same reason, RFS,

which fully extends the UNIX semantics, never becomes an interoperable solution

if implemented in other operating systems. Not only ioctl()-like operations 1

but also the designs of I/O interfaces essentially include parts specific to each

operating system.

In some remote device technologies, all operating systems give up keeping

their own semantics for remote device access (e.g., NFS). However, this approach

results in lacking the same semantics of remote devices as physically-attached

ones. Full functionality cannot be provided for remote device access. In particu-

lar, this deficiency is noticeable for the types of devices handled in different ways

inside operating systems; operating systems cannot bring out all functionality of

1For instance, device set status()/get status() in Mach 3.0, UioControl() in the V
kernel, and IoControl() in Sprite.

19

Chapter 3. USB/IP

devices in their own manner.

iSCSI is based on the transport-independent design of the SCSI architecture

model. However, a multipurpose peripheral bus that uses IP networks for its

transport is still lacking. Further studies are needed to discuss such peripheral

bus models and operating system support.

Through discussions about remote device technologies in operating systems,

the key to designs is considered to be the location (layer) of a network extension

mechanism in the peripheral I/O paths of operating systems. This thesis pro-

poses USB/IP, a network extension of the USB model. It is focused on its host-

controller-based peripheral interface and aims to extend physical bus topology

virtually by utilizing a virtual bus driver. Although some parts of its mechanism

are similar to straightforward remote procedure calls to remote device drivers,

it can avoid the potential complexity that sometimes exists in remote device

techniques when supporting diverse types of devices with interoperability among

different operating systems. In the proposed mechanism, the request types used

in remote device access are basically reduced to just two primitive ones; push-

ing out an I/O message to a device and getting it back. The I/O messages and

the method of messaging become essentially independent of the operating sys-

tems. The semantics of remote requests basically results in the same one as local

requests to physically-attached devices. 2

First, the design of the USB model is explained, and then its potential diffi-

culty in network extension is discussed. Next, its prototype design is presented,

which addresses inevitable semantics differences by preserving the USB model

as much as possible. Its performance evaluation is also described to show its

feasibility and performance models.

3.1 USB Design Model

USB (Universal Serial Bus) is one of the more sophisticated peripheral interfaces,

providing serialized I/O, dynamic device configuration and universal connectiv-

2In a strict sense, small semantic modifications for remote devices will be involved in the
design details. These are the keys for giving insight into the peripheral models and operating
systems for the network extension.

20

Chapter 3. USB/IP

ity. The USB 2.0 specification, announced in April 2000, specifies that a host

computer can control various devices using three transfer speeds (1.5 Mbps, 12

Mbps, and 480 Mbps) and four transfer types (Control, Bulk, Interrupt, and

Isochronous).

Data transmission using the Isochronous and Interrupt transfer types is pe-

riodically scheduled. The Isochronous transfer type is used to transmit control

data at a constant bit rate, which is useful for reading image data from a USB

camera or for sending sound data to a USB speaker. The shortest I/O transac-

tion interval supported using Isochronous transfers, called a microframe, is 125

us. The Interrupt transfer type negotiates the maximum delay allowed for a re-

quested transaction. This is primarily used for USB mice and keyboards, which

require a small amount of data to be sent periodically in a short interval.

The Control and Bulk transfer types are asynchronously scheduled into the

bandwidth remaining after the periodic transfers have been scheduled. The Con-

trol transfer type is used primarily for enumeration and initialization of devices.

In 480 Mbps mode, 20 % of the total bandwidth is reserved for Control transfer.

The Bulk transfer type is used for the requests that have no temporal restric-

tions, such as storage device I/O. This is the fastest transfer mode when the bus

is available.

The device driver model3 of USB is layered as illustrated in Figure 3.1. At

the lower layer, the granularity of operations is fine-grained; the data size and

temporal restriction of each operation are smaller than in the upper layer.

3.1.1 USB Per-Device Driver

USB Per-Device Drivers4 (PDDs) are responsible for controlling individual USB

devices. When applications or other device drivers request I/O to a USB device,

a USB PDD converts the I/O requests to a series of USB commands and then

submits them to a USB Core Driver in the form of USB Request Blocks (URBs).

A USB PDD uses only a device address, an endpoint address, an I/O buffer and

some additional information required for each transfer type, to communicate with

3In this thesis, some technical terms in the USB model are changed from the USB specifi-
cations for readers.

4Client Software in the USB specification.

21

Chapter 3. USB/IP

����������� ����������� ���������������	
����������
�	
�
��	
 ������	���������
�	
���	
���	
�����
	�
��	
���������
��	
 ����� !"���! ��#$%��&'�()(�**������������	���	�
��	
�

���!+,!"-�./�0!() 1(23"4�+3+'(-�./�0!()
������
�5	�
��	
�������
��	
 ������	���������
�	
�
��	
����	
����������
�	
���	
���	

6789:;<:=>?:<;>=:;@678AB@CDBEC;BFF:;<;>=:;@
Figure 3.1: USB Design Model

the device. USB PDDs do not need to interact with the hardware interfaces or

registers of the host controllers, nor do they modify the IRQ tables.

3.1.2 USB Core Driver

A USB Core Driver5 is responsible for the dynamic configuration and management

of USB devices. When a new USB device is attached to the bus, it is enumerated

by the Core Driver, which requests device specific information from it and then

loads the appropriate USB PDD.

A USB Core Driver also provides a set of common interfaces to the upper

USB PDDs and the lower USB Host Controller Drivers. A USB PDD submits a

USB request to the device via the Host Controller Driver. This request is in the

form of a URB.

A typical implementation supports request queueing to improve I/O perfor-

mance. A URB is allocated with its completion handler, and completion of a

request is notified by calling its handler. This is an asynchronous process from

the viewpoint of the I/O model.

5USB Driver (USBD) in the USB specification.

22

Chapter 3. USB/IP

3.1.3 USB Host Controller Driver

A USB Host Controller Driver (HCD) receives URBs from a USB Core Driver and

then divides them into smaller requests, known as Transfer Descriptors (TDs),

which correspond to the USB microframes. TDs are scheduled depending on

their transfer types and are linked to the appropriate frame lists in the HCD for

delivery. TDs for Isochronous or Interrupt transfer types are linked to the Periodic

Frame List and Bulk and Control transfer types are linked to the Asynchronous

Frame List. The actual work of the I/O transaction is performed by the host

controller chip.

3.1.4 USB Request Block

In the USB model, a USB Request Block6 (URB) presents USB device I/O in a

controller-independent form. It basically includes the following members:

• target device address

• target endpoint

• I/O buffer.

A URB is defined in an operating-system-dependant manner. However, the fol-

lowing members are normally associated with or included in it:

• direction (Input/Output)

• speed (1.5 Mbps/12 Mbps/480 Mbps)

• transfer type (Control/Bulk/Interrupt/Isochronous)

• payload size

• additional information (e.g., bandwidth management and miscellaneous

flags)

• completion handler.

6I/O Request Packet (IRP) in the USB specification

23

Chapter 3. USB/IP

A driver stack works as the following cycle:

1. A USB PDD converts I/O requests from another driver into URBs and

submits them to a USB HCD via the USB Core Driver.

2. The USB HCD transfers data as described by the URB.

3. After I/O of the URB is completed, the completion handler of the URB is

called in an interrupt context.

4. The USB PDD notifies the upper driver of the requested I/O completion.

Most USB driver stacks allow a USB PDD to enqueue multiple URBs simultane-

ously for I/O performance improvement.

3.2 Requirement

The proposed mechanism involves several design criteria and considerations to

maximize its benefits for remote device access. USB was not designed consid-

ering remote device access. The below criteria need to be tackled in its system

design. This research also shows the limitations of the USB model for the network

extension.

Full Functionality. All functions supported by remote devices should be

manipulated by operating systems. The extension mechanism should conceal only

bus differences and should not affect per-device operations. In kernel structure,

both locally-attached devices and remote devices should be positioned in the same

layer.

Network Transparency. This dissertation defines network transparency as:

“remote devices can be controlled by existing operating systems and applications

without any modification.” The extension mechanism should conceal its imple-

mentation details, and remote devices should be controlled by existing device

drivers and applications without modification. Ideally, other components of op-

erating systems and applications should not notice any difference between remote

devices and locally-attached ones.

Interoperability. The extension mechanism should be designed to be inter-

operable among different operating systems; it is based on the use of low-level

24

Chapter 3. USB/IP

I/O messages and messaging in the USB model, which are the same as those of lo-

cally attached devices. These protocols, which are defined by several standards,

are independent of operating system implementations, so that computers with

different operating systems have the possibility that they can share and control

devices remotely.

Generality. The extension mechanism should be designed to support all

types of transfers in the USB mode, so that all types of devices can be accessed

over IP networks in one extension mechanism.

Moreover, there are some issues that need to be considered when applying the

extension mechanism in practice:

Concurrent Access. In the proposed mechanism, a remote device is exclu-

sively accessed from computers; its mechanism does not provide special support

for concurrent device access from clients. In contrast, most remote device tech-

nologies are designed to support concurrent access to device-derived resources.

The proposed technology is implemented as an extension mechanism in the low-

est layer of an operating system; both types of remote device technologies can be

complementary to each other. The integration of both mechanisms is discussed

in the next chapter by developing a device sharing application based on USB/IP.

Performance. The I/O protocol of USB is not designed for transmission

over IP networks. Using these protocols over an IP network raises performance

degradation against network delay and jitters, which are much larger than a wire

cable of a peripheral bus. However, high-speed network technologies, such as

Gigabit Ethernet, are now able to provide bandwidth that is of the same order as

that of modern peripheral interfaces. In addition, the rapid progress of networking

technologies will alleviate many of these issues in the near future.

Semantics Gap. The extension mechanism also involves the problem of I/O

semantics: a peripheral interface, a peripheral device, and their device drivers

are not originally intended for network extension. If these designs have difficulty

being extended for remote access in a straightforward manner, the network ex-

tension needs to abstract physical device access and bridge semantics differences

between local and remote access. However, these efforts tend to hide the physical

interface of a remote device from operating systems, so that they cannot access

remote devices in a fully transparent manner as if physically-attached.

25

Chapter 3. USB/IP

3.2.1 Semantics Alteration

As in Section 3, the request semantics of USB/IP can basically be designed as

a straight extension of I/O messaging to physically-attached devices via host

controllers, thereby preventing the remote device mechanism from being contam-

inated by operating-system-dependent semantics. This means the remote device

mechanism essentially becomes interoperable among operating systems. However,

the design needs to be performed carefully for the criteria, since USB, designed

only for its media, is never intended to be extended over IP networks. Actually,

part of its remote request semantics is modified from the original USB model

inside operating systems.

Time Constraint

Some requests have time constraints on their completion; a request should be

completed by a host controller within a defined period. If a submitted request

is not completed within timeout, a procedure call in drivers will return an error

status. There is the possibility that timeout values in drivers and device firmware

need to be increased for network extension. This problem applies to all device

drivers, not only USB device drivers, and applications that interact with remote

USB devices.

Scheduling

The USB model defines the minimum request scheduling policy in a host con-

troller, in which periodical requests come in first before asynchronous ones with

minor exceptions.7 In addition, actual implementations of host controllers and

driver stacks perform more advanced scheduling policies to maximize the effi-

ciency of bus utilization and realtime processing [49]. However, such a request

scheduling does not apply to the network extension; a strict scheduling policy

designed for a physical host controller is difficult to achieve over networks, and

another mechanism will be required for efficient bandwidth usages of networks

and remote host controllers.

7A host controller reserves bandwidth for Control transfers: 10 % for Low/Full speed mode
and 20 % for High speed mode.

26

Chapter 3. USB/IP

Bandwidth

Periodical USB devices claim transfer bandwidth to a host controller; their em-

bedded descriptors show several options of transfer modes (configuration and in-

terface), one of which is selected by a device driver against available bandwidth.

For USB/IP, the available bandwidth for a remote device is a least common mul-

tiple of available bandwidth of a remote host controller and networks on its path.

Synchronization

The USB model has a synchronization mechanism of I/O sources (SYNCH FRAME),

however, which is rarely implemented or exploited in driver stacks. Since this

feature, not important for most USB devices, is more difficult to implement over

networks, its support is dropped in the remote semantics.

Request Cancellation

The USB model allows a device driver to cancel or abort a pending request; this

happens when, for instance, an application stops the usage of a device, a device is

disconnected, or a device driver is unloaded. In addition, when a device returns

an error code for a request to an endpoint, the request is aborted or retired,

other pending requests to the same endpoint are retired, and no further request

is accepted until its driver recovers the device and clears the halt state.8

Since the design details of interfaces and semantics about request handling are

implementation-dependent parts of the USB model, a driver stack implementation

may involve problems with the cancellation of a remote request, which are caused

by a timing gap between remote and local stacks. First, if an error occurs in a

remote device side, its driver may still submit new requests to a halted endpoint

until the error is notified to a virtual host controller. Second, the cancellation of a

request cannot be directly notified to a remote host controller driver; although a

request pending in a client side can be cancelled synchronously, a request already

sent to the remote host cannot be cancelled synchronously from a device driver.

These issues will be noticeable in the case that the request semantics in a driver

stack are not appropriate to be extended over networks.

8Section 5.3.2 Pipes in [24]

27

Chapter 3. USB/IP

Figure 3.2: USB/IP Design

3.3 Design

The design of USB/IP is illustrated in Figure 3.2.

3.3.1 Virtual Host Controller Interface Driver

To implement the network extension of USB, a Virtual Host Controller Interface

(VHCI) driver is developed as a virtual bus driver. The VHCI driver is the

equivalent of a USB HCD and is responsible for processing enqueued URBs. A

URB is converted into a USB/IP request block by the VHCI driver and sent

to the remote machine that has target USB devices. In the remote machine, a

software mechanism decodes incoming USB/IP requests, extracts the URBs, and

then submits them to physically-attached USB devices.

Any interface differences between directly-attached USB devices and remote

USB devices are completely hidden by the HCD layer. USB PDDs, other drivers,

and applications can use remote USB devices in exactly the same way. Once a

USB Core Driver enumerates and initializes the remote USB devices, unmodi-

fied USB PDDs and applications can access the devices as if they were locally

attached.

The VHCI driver emulates the USB Root Hub’s behavior, so when a remote

28

Chapter 3. USB/IP

USB device is connected to a client host over the IP network, the VHCI driver

notifies the USB Core Driver of the port status change. The USB/IP driver

ensures that USB device numbers are translated between the client device number

and the server device number.

3.3.2 Protocol Data Unit Based on USB Request Block

An IP network typically has a significantly larger transfer delay and more jitter

than a USB network. In addition, the native I/O granularity of USB is too small

to effectively control USB devices over an IP network. The Isochronous transfer

type needs to transmit 3 KB of data in every microframe (125 us), and the Bulk

transfer type needs to transmit 6.5 KB of data in a microframe. Therefore, to

transfer USB commands over an IP network efficiently, USB/IP is designed to

encapsulate a URB (not a TD) into IP packets. This technique minimizes these

timing issues by concatenating a series of USB I/O transactions into a single

URB. For example, using the Isochronous transfer type, by combining 80 I/O

transactions that are executed every microframe into a single URB, the packet

can be delayed until 10 ms, while still maintaining an I/O granularity of 125 us.

Similarly, using the Bulk transport type, a URB that has a 100 KB buffer can be

used to transfer 200 I/O transactions containing 512 B of data each.

These issues, while important for slower networks, are minimized by new net-

work technologies, such as Gigabit Ethernet. The bandwidth of Gigabit Ethernet

is significantly greater than the 480 Mbps used by USB 2.0, so it is possible to

apply the URB-based I/O model to control remote USB devices over such a net-

work. The evaluation of the use of URBs for USB/IP is written in more detail in

Section 3.4.

3.3.3 Stub Driver

In this design, which aims to fit existing driver stacks, a Stub driver is added

as a new type of USB PDD in the server side, which redirects USB requests

to physically-attached devices. Since a Stub driver is implemented as a nor-

mal USB device driver, not as a special HCD driver or a modified USB core

driver, its implementation becomes greatly simplified and independent of host

29

Chapter 3. USB/IP

controller hardware. However, the USB requests that also change the status main-

tained in the driver stack need to be intercepted, so that data maintained by the

USB Core Driver can be updated correctly, such as SET ADDRESS, CLEAR HALT,

SET INTERFACE, and SET CONFIGURATION.

To implement the server side by a Stub driver, a USB driver stack needs to

support non-blocking request queueing and a way of updating status consistently

in both a device and drivers. In addition, it is appropriate that the stack allows a

PDD to be bound to “a” USB device, not only to a logical interface in a device.

3.3.4 Prototype Implementation

The USB/IP implementation on Linux uses a common API of a USB core driver

in both client and server sides. First, a USB PDD submits a URB by

usb submit urb(struct *urb, ..) of the USB Core Driver. After small san-

ity checks, usb submit urb() calls the urb enqueue(struct *urb, ..) of the

VHCI driver. The urb enqueue() translates a URB into a USBIP CMD SUBMIT

PDU (Protocol Data Unit) (described in Appendix) and then transmits it to a

remote Stub driver. Next, the Stub driver receives the USBIP CMD SUBMIT PDU,

creates a new URB from it, and then submits the URB to a real USB host con-

troller by usb submit urb(). After the requested I/O of the URB is completed,

the Stub driver sets up a USBIP RET SUBMIT PDU that includes the status of

I/O and input data if available, and then transmits it to the VHCI driver. Fi-

nally, the VHCI driver notifies the USB PDD of the completion of the URB.

Also, a USBIP CMD SUBMIT PDU can be canceled by a USBIP CMD UNLINK PDU

as described in the Appendix. Figure 3.3 illustrates the components of the VHCI

driver.

The semantics issues described in Section 3.2.1 are currently implemented as

follows:

• Time Constraint. No timeout values in device drivers are increased. To

minimize overhead of the network extension, URBs are transferred to en-

large I/O granularity over networks. In addition, the prototype is designed

carefully without unnecessary memory copy.

• Scheduling. In Linux, a USB HCD needs to provide a request queue spe-

30

Chapter 3. USB/IP

Figure 3.3: VHCI Driver Implementation

cific to each endpoint and process queues for periodical endpoints before

asynchronous ones, except a special endpoint. Since a VHCI driver can ag-

gregate remote devices attached to different hosts, the scheduling designed

for a physical host controller is not applicable for it. Instead, it prototype

implementation creates a request queue and its network transport for each

remote device, even though remote devices are exported from the same host.

• Bandwidth. In Linux, available bandwidth of a host controller is checked

when a USB driver starts I/O transfers. The overcommit of requests in a

physical host controller is prevented by its USB driver stack in a server side;

this results in an error code in a request. In addition, some USB PDDs also

detect insufficiency of bandwidth by returned I/O messages and elapsed

time. In the prototype, a VHCI driver emulates a host controller of High

Speed (480 Mbps) support, and passes an error code about bandwidth from

the server side to a USB PDD.

• Synchronization. The prototype does not implement this feature, al-

though only a vendor-specific driver of an audio device exploits it to specify

transaction timing in a millisecond order.

• Request Cancellation. The recent Linux USB driver stack provides an

asynchronous interface to cancel a URB; its success or failure is notified

31

Chapter 3. USB/IP

asynchronously to a caller of usb unlink urb(). The cancellation interface

for USB HCDs is also an asynchronous call (i.e., urb dequeue()). The

prototype implements the cancellation of a request by exploiting these in-

terfaces. However, the early version of the prototype developed for Linux

kernel 2.4 could not implement this feature correctly, since a USB HCD in

its USB stack also needs to implement a synchronous call to cancel a URB.

Transmission of all URBs over the IP network is via the TCP protocol. How-

ever, to avoid buffering delays and transmit the TCP/IP packets as soon as possi-

ble, the Nagle algorithm [73] 9 is disabled. The current USB/IP implementation

does not use UDP for any communication. This is because the characteristics

of transmission errors for USB and UDP/IP are quite different. Though the

host controller does not resubmit failed Isochronous transactions, USB PDDs

and devices expect that most transactions succeed. Also, transaction failures sel-

dom occur in USB unless there is some physical problem with devices or cables.

Therefore, in general, the transport layer for URBs must guarantee data arrival

and retransmit lost packets in order.

The current implementation of USB/IP supports the Linux Kernel 2.6 series.

The VHCI driver and the Stub driver are implemented as loadable kernel modules.

Tools used to negotiate requested devices and set up TCP/IP connections are all

in userland.

As a practical application of USB/IP, a device sharing system for LAN en-

vironments has been developed. (Figure 3.4). For service discovery, Multicast

DNS [19] and DNS Service Discovery [18] are used to manage the dynamic de-

vice name space in a local area network. An example usage of this application is

illustrated in Figure 3.5. This section focuses primarily on the implementation

of USB/IP. An application of USB/IP for device sharing is given in Chapter 4.

3.4 Evaluation

This section describes the characteristics of the USB/IP implementation. In par-

ticular, several experiments were carried out to measure the USB/IP performance.

9This algorithm states that no small packets will be sent on the connection until the existing
outstanding data is acknowledged.

32

Chapter 3. USB/IP

Figure 3.4: USB/IP Application

(Device Sharing for LAN)

% devconfig list list available remote devices

3: IO-DATA DEVICE,INC. Optical Storage
: IP:PORT : 10.0.0.2:3000
: local_state : CONN_DONE
: remote_state : INUSE
: remote_user : 10.0.0.3
: remote_module: USBIP

2: Logitech M4848
: IP:PORT : 10.0.0.2:3000
: local_state : DISCONN_DONE
: remote_state : AVAIL
: remote_user : NOBODY
: remote_module: USBIP

% devconfig up 3 attach a remote DVD Drive
% ...
% ... mount/read/umount a DVD-ROM
% ... play a DVD movie
% ... record data to a DVD-R media
% ...
% devconfig down 3 detach a remote DVD Drive

Figure 3.5: USB/IP Application Usage

33

Chapter 3. USB/IP

Table 3.1: Machine Specifications for Experiments

CPU Intel Pentium III 1 GHz
Memory SDRAM 512 MB
NICs (client/server) NetGear GA302T
NICs (NIST Net) NetGear GA620
USB 2.0 Interface NEC µPD720100

Figure 3.6: Experiment Environment

The computers used for the evaluation are listed in Table 3.1. To emulate various

network conditions, the NIST Net [15] package on Linux Kernel 2.4.18 was used.

A client machine and a server machine were connected via a NIST Net machine,

as shown in Figure 3.6. Both the client and server machines run Linux Kernel

2.6.8 with the USB/IP kernel modules installed.

3.4.1 Performance Evaluation of USB Pure Sink/Source

In the first evaluation, a pure sink/source USB device is used rather than a real

USB device in order to identify the performance characteristics of USB/IP itself.

34

Chapter 3. USB/IP

Figure 3.7: Driver Behavior of Asynchronous Transfers

A USB peripheral development board with a Cypress Semiconductor EZ-USB

FX2 chip [25] was programmed to be a sink/source for the USB data. The

firmware and test device driver were implemented as a USB PDD for the experi-

ments.

Bulk Transfer. The I/O performance of USB/IP depends to a large de-

gree on network delay and the data size of the operation being performed. The

second evaluation derived a throughput model for USB/IP from the results of

the experiments, and then determined a set of criteria for optimizing USB/IP

performance.

The first step of the evaluation was to measure the USB/IP overhead for

USB requests of the Bulk transfer type. As Figure 3.7 shows, the test driver

submits a Bulk URB to the remote source USB device, waits for the request to

be completed, and then resubmits the request continuously. As shown in the

figure, the enqueued URBs are transferred to the server’s HCD between 1 and 2,

and vice versa between 3 and 4. The execution time for processing a URB in the

35

Chapter 3. USB/IP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

E
xe

cu
tio

n
T

im
e

(m
s)

URB Data Size (KB)

USB/IP Performance for Bulk Source Device

direct
RTT=0ms
RTT=1ms
RTT=2ms
RTT=3ms
RTT=4ms
RTT=6ms

Figure 3.8: Execution Time of a URB

client for various values of URB data size and network round trip time (RTT)

was measured using the Time Stamp Counter (TSC) register available on Intel

Pentium processors. Note that when NIST Net sets the network RTT to 0 ms,

the actual RTT between the client and server machines is 0.12 ms, as determined

by ping.

The results are shown in Figure 3.8. From the graph, it can be seen that

the relationship between the execution time of URBs and different data sizes is

linear with a constant gradient. The CPU cost for the USB/IP encapsulation is

quite low at only a few percent. TCP/IP buffering does not influence the results

because the TCP NODELAY socket option is used. From the graph, the execution

time toverIP for data size s is given by

toverIP = aoverIP × s + RTT .

where aoverIP is the gradient value for the different RTTs. The throughput thpt

is then

thpt =
s

toverIP
=

s

aoverIP × s + RTT
. (3.1)

A regression analysis shows aoverIP is 6.30e-2 ms/KB with a y-intercept for the

0 ms case of 0.24 ms. The throughput modeled by Equation (3.1) is shown in

36

Chapter 3. USB/IP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

K
B

/s
)

URB Data Size (KB)

Throughput from Model

RTT=0ms
RTT=1ms
RTT=2ms
RTT=3ms
RTT=4ms
RTT=6ms

Figure 3.9: Throughput from Model

Figure 3.9. The actual throughput from the experiments is illustrated in Figure

3.10, showing that the throughput of the model is fully substantiated by the

experimental results. Therefore, within the parameter range of the experiments,

this model is an accurate estimate of throughput for different URB data sizes and

network RTTs.

In the directly-attached case, adirect is 3.51e-2 ms/KB with a y-intercept of 0.07

ms. This implies a relatively constant throughput of approximately 28.5 MB/s

except for quite small URB data sizes. This value is also determined largely by

the performance of the host controller. The host controller in these experiments

can process 6 or 7 Bulk I/O transactions per microframe (125 us). In 480 Mbps

mode, one Bulk I/O transaction transfers 512 B of data to a USB device. In this

case, the throughput is equal to (7 × 512B)/125us = 28MB/s .

To summarize these experiments, the appropriate URB data size under var-

ious network delays has been estimated. The experiments have also confirmed

that when multiple URBs were queued simultaneously, the throughput of Bulk

transfer is dependent on the total data size of simultaneously-queued URBs. To

maintain throughput when there is some network delay, USB PDDs should either

enlarge each URB data size, or increase the queuing depth of URBs. Moreover,

37

Chapter 3. USB/IP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

K
B

/s
)

URB Data Size (KB)

Throughput from Experiments

RTT=0ms
RTT=1ms
RTT=2ms
RTT=3ms
RTT=4ms
RTT=6ms

Figure 3.10: Throughput from Experiments

in situations when a large number of URBs are queued asynchronously, and there

is substantial network delay, the TCP/IP window size must also be increased to

ensure that the network pipe remains full.

Isochronous Transfer. This section examines the performance of USB/IP

when employing the Isochronous transfer type. To ensure transfers for USB

devices meet the Isochronous requirements, starvation of transaction requests

must be avoided in the host controller. To achieve this, the USB driver model

allows USB PDDs to queue multiple URBs simultaneously. In the case of USB/IP,

it is also important to select a URB queuing depth that matches the likely delays

introduced by the IP network.

For this test, the firmware and a test device driver for an Isochronous source

device were developed. The device and drivers are configured as follows:

• A transaction moves 512 B data in one microframe (125 us).

• A URB represents eight transactions.

In this case, the completion handler of the URB is called every 1 ms (125us × 8).

This 1 ms interval was chosen to be small enough so that it would be possible

to examine the isochrony of USB/IP. In general, the interval of completion is set

to approximately 10 ms, which is an acceptable trade-off between smoothness of

38

Chapter 3. USB/IP

Figure 3.11: Driver Behavior of Periodical Transfers

39

Chapter 3. USB/IP

I/O operations and the processing cost. Figure 3.11 shows the detail of the driver

behavior in the experiments. The USB PDD sets up each URB with the pointer

to an I/O buffer for eight transactions, and then queues the multiple URBs. The

host controller then keeps pending I/O buffers on the Periodic Frame List, and

the completion handler is called every 1 ms. The HCD moves the input data to

the USB PDD periodically. If there are no pending I/O buffers in the Periodic

Frame List, the host controller does not copy data and Isochronous data will be

lost.

For a directly-attached source device, and the USB PDD submitting only

one URB, the completion interval was 11.1 ms because of request starvation.

When the USB PDD submitted two or more URBs simultaneously, the completion

intervals were 1 ms, with a standard deviation of approximately 20 ns for any

queuing depth.

Figure 3.12 illustrates the mean completion intervals for various network RTTs

and the queuing depths of submitted URBs for USB/IP. This shows that even

under some network delays, the USB PDD is able to achieve 1 ms completion in-

tervals, provided that an adequate queuing depth is specified. For example, when

the network delay is 8 ms, the appropriate queuing depth is 10 or more. Figure

3.13 shows the time series of completion intervals in this case. Immediately after

the start of the transfer, the completion intervals vary widely because the host

controller does not have enough URBs to avoid starvation. Once enough URBs

are available, the cycle becomes stable and the completion intervals remain at 1

ms. Figure 3.14 shows the standard deviations of the completion intervals. With

sufficient URBs, the measured standard deviation is less than 10 us, including

the NIST Net’s deviations [15]. These values are less than one microframe in-

terval (125 us) and adequate for most device drivers. This is the case for the

Linux kernel 2.6 series, where process scheduling is driven by jiffies, which are

incremented every 1 ms. TCP/IP buffering has no impact on the timing, since

the socket option TCP NODELAY is set.

USB/IP periodic transfers are illustrated in Figure 3.15. In this case, the USB

PDD in the client host queues 3 URBs, which are completed every x ms. For

the corresponding periodic completions in the server, the host controller must

always keep multiple URBs queued. Therefore, with a queuing depth q, the time

40

Chapter 3. USB/IP

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20

C
om

pl
et

io
n

In
te

rv
al

 (
m

s)

Queuing Depth

Completion Intervals of Isochronous URBs

RTT=0ms
RTT=1ms
RTT=2ms
RTT=3ms
RTT=4ms
RTT=6ms
RTT=8ms

RTT=10ms
RTT=12ms
RTT=14ms
RTT=16ms

Figure 3.12: Mean Completion Intervals

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

C
om

pl
et

io
n

In
te

rv
al

 (
m

s)

time (ms)

Completion Intervals

RTT=8ms, QueuingDepth=10

Figure 3.13: Time Series Data of Completion Intervals

RTT=8ms, Queuing Depth=10

41

Chapter 3. USB/IP

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

S
ta

nd
ar

d
D

ev
ia

tio
n

(m
s)

Queuing Depth

Standard Deviations of Completion Intervals

RTT=0ms
RTT=1ms
RTT=2ms
RTT=3ms
RTT=4ms
RTT=6ms
RTT=8ms

Figure 3.14: Standard Deviations of Completion Intervals

in which the next URB is pending is

tnpending = (q − 1)x − RTT > 0.

The appropriate queuing depth q can then be calculated by

q >
RTT

x
+ 1. (3.2)

Comparing Figure 3.12 and Equation (3.2) shows the required queuing depth of

URBs in the experiments.

To summarize these experiments, USB PDDs with periodic transfers must

queue multiple URBs to at least the depth q of Equation (3.2) to ensure a con-

tinuous stream of I/O. In the wide area networks where there is significant jitter

or packet loss, q should be increased to ensure a sufficient margin is available.

The result can be also applied to Interrupt transfer type URBs, which specify

the maximum delay of completion. This examination continues for common USB

devices over an IP network in Section 3.4.2.

42

Chapter 3. USB/IP

�����
����	
�����
���	

����������	
�����
���	
�	�
� �
��
����
�����
��
�
�����

�� � �
!�"
#$%&'%()*+,

����
���"
- . /.- /

Figure 3.15: USB/IP Model for Periodical Transfers

43

Chapter 3. USB/IP

Figure 3.16: Output Example of USB Utility

usbview shows that a remote USB device is connected to a computer.

3.4.2 Performance Evaluation of USB Devices

This section examines the USB/IP characteristics for common USB devices. All

USB devices tested can be used as USB/IP devices. Figure 3.16 shows a client

host attached to a remote USB camera through the VHCI driver. In this case,

the USB device viewer usbview [61] sees the device descriptors as if the camera

were locally attached. The only difference apparent between USB and USB/IP is

that the host controller is VHCI. USB PDDs can also control their corresponding

remote USB devices without any modification. In LAN environments, the perfor-

mance degradation of USB/IP is negligible. Specific details of the performance

of each kind of USB/IP device are described in more detail below.

USB Bulk Device. USB storage devices (e.g., hard disks, DVD-ROM drives,

and memory drives), USB printers, USB scanners and USB Ethernet devices all

use the USB Bulk transfer type. All these devices are supported by USB/IP. For

USB storage devices, it is possible to create partitions and file systems, perform

44

Chapter 3. USB/IP

Table 3.2: Specifications of Tested USB Hard Disk

Product Name IO-DATA HDA-iU120

Interface USB 2.0/1.1, iConnect

Capacity 120 GB

Rotation Speed 5400 rpm

Cache Size 2 MB

mount/umount operations, and perform normal file operations. Moreover, it is

possible to play DVD videos and to write DVD-R media in a remote DVD drive,

using existing, unmodified, applications. As described in Section 3.4.1, the US-

B/IP performance of USB Bulk devices depends on the queuing strategy of Bulk

URBs. The original USB storage driver of Linux Kernel 2.6.8 has been tested to

show its effectiveness for USB/IP.

The experimental setup for this test was the same as that described in Section

3.4.1. NIST Net was used to emulate various network delays. The Bonnie++

1.03 [23] benchmarks were used for an ext3 file system on a USB hard disk. The

disk specifications are shown in Table 3.2. The Bonnie++ benchmarks measure

the performance of hard drives and file systems using file I/O and creation/dele-

tion tests. The file I/O tests measure sequential I/O per character and per block,

and random seeks. The file creation/deletion tests execute creat/stat/unlink

file system operations on a large number of small files.

Figures 3.17 and 3.18 show the sequential I/O throughput and the correspond-

ing CPU usage for USB and USB/IP, respectively. Figure 3.19 shows sequential

I/O throughput by USB/IP under various network delays. For character write

and block write, the throughput obtained by USB/IP when NIST Net’s RTT is

0 ms (0.12 ms by ping) is approximately 77 % of the throughput obtained by

USB. Rewrite speeds are 66 %, character read 79 %, and block read 54 % of that

obtained by USB, respectively. Since the CPU usage for USB/IP is less than that

for USB, the bottleneck primarily results from insufficient queuing data size for

the I/Os to the remote hard disk.

The Linux USB storage driver is implemented as a glue driver between the

45

Chapter 3. USB/IP��������������	
������
��
�	����

�������������������������
�
������	
� �
���������� ���
��� ��	����	
� ��	����������� !"�#!$%&'

()* +�
����,,��-�,,��-�,,��-
Figure 3.17: Sequential Read/Write Throughput��������������	
������	���

���������
����������
���

��� !"#$%�& ��� !"'()#*& +!��� ! +!%,"#$%�& +!%,"'()#*&
-./0 1�
��23445��3446��3447��
Figure 3.18: Sequential Read/Write CPU Usage��������������	
���	���
����

���
� � � � � �� ������������� �!�"#$%

&'(�
������	
��
����)*������
����	����	
��	��)*����
Figure 3.19: Sequential Read/Write Throughput (RTT)

46

Chapter 3. USB/IP��������������	
��	���������
���������
���������������

� � � � � �� ��������� !"#$ %#&'(
)*+, 	��������

Figure 3.20: Random Seek Speed

USB and SCSI driver stacks. For the SCSI stack, the USB storage driver is

a SCSI host driver. A SCSI request with scatter-gather lists is repacked into

several URBs, which are responsible for each scatter-gather buffer. The Linux

USB storage driver does not support the queuing of multiple SCSI requests.

Therefore, the total I/O data size of URBs submitted simultaneously is the same

as each SCSI request size. In the case of block write, this is approximately 128

KB. This queuing data size is small for USB/IP under some network delays,

as discussed in Section 3.4.1. To optimize the sequential I/O throughput for

USB/IP, a reasonable solution is for the USB storage driver to provide SCSI

request queuing.

The throughput of random seek I/O by USB/IP is illustrated in Figure 3.20.

This test runs a total of 8000 random lseek operations on a file, using three

separate processes. Each process repeatedly reads a block, and then writes the

block back 10 % of the time. The throughput obtained by USB for this test is

167 KB/s. The throughput difference between USB and USB/IP is much smaller

than that of sequential I/Os. The CPU usage in both the USB and USB/IP cases

is 0 %. This is because the bottleneck for random seek I/O is the seek speed of

the USB hard disk itself and is slower than that of read/write I/Os. The rational

speed of the USB hard disk tested is 5400 rpm and its seek speed is approximately

10 ms.

Figure 3.21 shows the speed of file creation and deletion operations by USB/IP

under various network delays. The speeds obtained by USB are 682 op/s for

47

Chapter 3. USB/IP��������������	
��
�	����������
������������������������

� � � � � �� ���������
�� !"#$"% &�'(����	�
�	���	�)��
�	��������

Figure 3.21: Create/Delete Speed

sequential creation, 719 op/s for random creation, and 2687 op/s for file deletion.

In all these cases, the CPU usage was over 90 %. The difference between USB

and USB/IP is quite small, and the results of each test are almost constant

under various network delays. The bottleneck for the file creation/deletion tests

is predominantly the CPU resources.

USB Isochronous Device. USB multimedia devices, such as USB cameras

and USB speakers, use the USB Isochronous transfer type to transmit data at

periodic intervals. A USB camera (which uses the OmniVision OV511 chip) and

a USB Audio Class speaker have been tested. These devices work completely

transparently using USB/IP on a LAN. Users were able to demonstrate video

capture from the camera and successfully played music using the speaker system.

The Linux USB Audio Class driver employs multi-buffering by submitting 2

URBs simultaneously, where each URB is responsible for 5 ms of transactions.

Equation (3.2) shows this driver will work with a remote USB audio device pro-

vided that the network delay is 5 ms or less. For larger network delays, it is still

possible to use a remote audio device by increasing the completion interval for

each URB. The main drawback with this is that it can result in degraded I/O

response.

USB Interrupt Device. USB Human Input Devices, such as USB keyboards

and USB mice, use the USB Interrupt transfer type to transmit data at periodic

intervals, in a similar manner to interrupt requests (IRQs). Other devices also use

48

Chapter 3. USB/IP

the Interrupt transfer type to notify hosts of status changes. On a test LAN, users

were able to demonstrate the correct operation of such devices using USB/IP for

both consoles and the X Window System.

Most USB HID drivers submit only one URB with a completion delay of

10 ms. After the URB processing is completed, the driver resubmits the URB.

The drivers read the interrupt data, which is accumulated in the device endpoint

buffer, every 10 ms. Under large network delays, it is possible that the device

endpoint buffer may overflow. When network delays approach 100 ms, there is

likely to be significant degradation in the performance of these devices. The

former problem can be resolved by queuing more URBs so that endpoint buffer

overflow is prevented. The latter problem is an underlying issue that results from

attempting human interaction over a network.

3.4.3 Performance Evaluation under IPSec

Support for authentication and security schemes is sometimes an important part

for practical applications. As most of USB/IP is currently implemented in the

kernel (to avoid memory copy overhead), it is logical to employ an existing kernel-

based security mechanism. IPSec [56], which provides a range of security services

at the IP layer, is one of the most suitable technologies for this purpose. IPSec

provides the following functionality: access control, connectionless integrity, data

origin authentication, protection against replay attacks (a form of partial sequence

integrity), confidentiality (encryption), and limited traffic flow confidentiality.

Figures 3.22 and 3.23 show the results of the I/O benchmark described in

Section 3.4.2, but with IPSec ESP (Encapsulating Security Payload) employed

for all traffic between the client and the server. The hash algorithm used is

HMAC-SHA1 and the encryption algorithms are AES-CBC, Blowfish-CBC, and

3DES-CBC, respectively. Since encryption entails a significant CPU overhead,

the performance degradation compared to non-encrypted transfer is quite high.

In the case of AES-CBC encryption, the performance is less than 50 % of that

obtained without IPSec. To achieve significantly higher throughput, such as

would be necessary for embedded computers, some form of hardware acceleration

is required. The optimization criteria, described in Section 3.4.1, may also be

applied to determine the likely impact of IPSec overhead on the operation of

49

Chapter 3. USB/IP

��������������	
������
��
�	����
�������������������������
�
������	
� �
���������� ���
��� ��	����	
� ��	����������� !"�#!$%&'()* +�
���,��-��./-01�1���2��3�01�14+/-01�1

Figure 3.22: Sequential Read/Write Throughput with IPSec

��������������	
������	���
�������������

���������
�
������	
� �
����� ���� !��
��� !�	"���	
� !�	"�� ����#$%& '�
���(�)�*��+,*-�� �./���-��',*-�

Figure 3.23: Sequential Read/Write CPU Usage with IPSec

50

Chapter 3. USB/IP

USB/IP. Its security mechanism is dealt with more fully in actual applications.

3.5 Discussion

This section discusses experiences and considerations through the design and

implementation of the proposed mechanism and its actual usages.

3.5.1 Request Semantics

As for the request semantics discussed in Section 3.2.1 and 3.3.4, the USB model

and USB implementations need to be ameliorated also for supporting USB/IP.

Time Constraint

All USB devices tested in the LAN worked correctly without modifying timeout

values in drivers; USB implementations use timeout values with sufficient margins

for physically-attached devices. However, these constant timeout values defined

according to the USB model cannot fit all network conditions with larger latencies

than the tested LAN. Timeout values in drivers, including drivers higher than

USB drivers, should be adjusted for a target network, and optionally determined

dynamically for its network condition. In addition, the request queueing of USB

and upper drivers also needs to be adjusted according the performance criteria

described in Section 3.4.

Scheduling

Since the prototype did not employ advanced scheduling mechanisms found in

USB implementations, periodical transfers were sometimes affected by other asyn-

chronous transfers to a server host, even though the sufficient amount of request

queuing was conducted; the playback quality of a USB camera sometimes became

worse when a remote USB HDD on the same host was accessed. On the server

host, requests are arranged to a host controller according to the scheduling policy

of the USB stack. However, the receiving and sending of requests for remote hosts

are now performed by kernel threads, which are equally run by a process sched-

uler. In addition, network packets are also queued equally regardless of USB

51

Chapter 3. USB/IP

transfer types. An analysis of system behaviours in detail and improvements

of the current implementation are considered as open issues to be addressed in

future work.

Bandwidth

USB driver stacks are differently implemented regarding their bandwidth manage-

ment of host controllers, since the USB model does not define its design details.

Linux kernel 2.6 reserves necessary bandwidth when a periodical request is sub-

mitted, Microsoft Windows first reserves required bandwidth when a device is

attached, and BSD kernels does not yet fully have this feature. In addition, a

USB PDD can dynamically select a suitable device configuration in which nec-

essary bandwidth is narrower, when an application requests it, or the USB PDD

detects overcommits or excessive latencies of requests.

In the prototype, some USB devices keep working correctly when network

bandwidth is narrowed by NIST Net, because of the “robustness” of drivers and

devices; for instance, a driver for a USB camera automatically changes its con-

figuration to capture a smaller screen size, and a USB DVD recorder successfully

finishes recording with a protection mechanism on hardware. Since USB imple-

mentations sometimes cannot guarantee strict I/O scheduling, most device drivers

work under unstable transfer conditions. 10

However, to extend the USB model and its implementations more appropri-

ately over networks, the following criteria regarding bandwidth management are

summarized:

• A USB device should have several configurations11 with different amounts of

bandwidth. Basically, this configuration mechanism for physically-attached

devices is considered applicable to USB/IP, which allows a USB PDD to se-

lect an appropriate configuration for available bandwidth and user requests,

as well as to enqueue sufficient requests against a network latency.

• A USB device with asynchronous transfers should be designed to work cor-

10The major part of I/O scheduling is performed by software. There is the possibility that the
scheduling is disordered because of various causes (e.g., system overload and inferior hardware).

11This means configurations and alternative interfaces in USB terms.

52

Chapter 3. USB/IP

rectly without sufficient bandwidth. This is not specific to USB/IP; since,

in the USB model, Bulk transfers are never scheduled if no bandwidth is

available.

• If a bandwidth reservation mechanism works in a target network, a USB

driver stack should reserve necessary bandwidth when a device is attached.

In addition, if possible, a USB driver stack allows a USB PDD to query

available bandwidth and network latency via a procedure call, so that the

USB PDD can select an appropriate configuration and request queueing.

The design of USB/IP is based on the idea that as many of its mechanisms

are implemented in end nodes as possible, thereby enabling them to be used in

existing networks without any intelligent Ethernet switch and IP router. The

experiments showed, as far as appropriate request queueing was performed by

drivers, that most USB devices were correctly operative over IP networks. How-

ever, a network QoS technology, if available, will more greatly improve the stabil-

ity and performance of USB/IP by its bandwidth reservation and priority packet

queuing.

Request Cancellation

For the prototype, no problem has been found regarding the cancellation of a

request in usages; since it occurs very frequently when stopping or changing

transfers, without being implemented correctly it could not be used in actual

usages.12 However, it still does not complete the semantics of the Linux USB

stack; in the USB stack, when an endpoint is halted because of an error of a

request, a USB HCD must stop processing the request queue of the endpoint,

and a USB PDD should retire all pending requests in the queue. And, any

further requests to the endpoint need to be rejected at their submission to the

driver stack. However, the VHCI driver of the prototype may accept such further

requests, since the error of an endpoint is notified of a VHCI driver with a network

latency.

In most cases, this does not result in a harmful behavior; in the server side,

12This was one of the most difficult parts in the prototype implementation.

53

Chapter 3. USB/IP

these requests (even if newly submitted to the halted endpoint)13 are rejected by

the driver stack with an error code, and the requests are not actually performed

in a host controller. However, there may be a possibility that this semantics

causes a problem in some circumstances.

Regarding this point, a USB stack should be designed as follows:

• A USB HCD needs to support only asynchronous canceling of a request;

if the function call of request cancel is defined as a synchronous call (i.e.,

search pending requests and unlink a request without any sleeping), it is

impossible to implement the function call for canceling a pending request

in a server side, since it needs to sleep for waiting the result of unlinking in

the server side.

• One of the possible approaches to consistent semantics is considered as

follows: A USB HCD accepts new requests to a halted endpoint, but it

only appends them to its stopped queue of the endpoint and waits for their

unlink requests from a USB PDD. A USB PDD has the same semantics.

This approach resolves the latency issue regarding the notification of an

error by consistent semantics; the requests that reach a Stub driver after

being notified of an error are just linked to the stopped queue, in the same

manner as pending requests submitted before being notified of the error.

All requests in the queue are retired by receiving their unlink request from

a USB PDD via a VHCI driver.

The semantics of request queuing and its cancellation are implementation-

dependent in detail, so that more investigation is required on this point when

porting the prototype to other operating systems.

3.5.2 Error Recovery

The error recovery methodology employed by USB/IP exploits the semantics of

error recovery in the USB protocol. A dropped TCP/IP connection to a remote

13In another possible design, the Stub driver keeps the requests but does not submit them to
the driver stack; it emulates the stopping of the queue for them and waits for their unlinking
requests from the VHCI driver.

54

Chapter 3. USB/IP

USB device is detected by both the VHCI driver and the Stub driver. The VHCI

driver detaches the device, so it appears that the device has been disconnected,

and the Stub driver resets the device. As with directly-attached USB devices that

are disconnected suddenly, some applications and drivers may lose data. This re-

covery policy is appropriate in LAN environments, because sudden disconnection

of TCP/IP sessions seldom occur. In addition, this error recovery policy greatly

simplifies the USB/IP implementation. To use USB/IP with more unstable net-

work environments, such as mobile networks, a more aggressive transport scheme

is required.

If the USB model is extended to be more suitable for USB/IP, the following

alterations are presented:

• Idempotent requests for devices are marked by drivers (e.g., defined by spec-

ifications), so that their retries can be possible in an extension mechanism.

For instance, most requests reading embedded descriptors are idempotent

for devices. If their transfers fail, these requests can be retransmitted by

an extension mechanism, without notifying drivers of their errors.

Moreover, their results become cached in a VHCI driver to improve perfor-

mance, thereby enabling it to quickly complete the same requests without

sending them to remote hosts.

• In addition, the USB model defines more detailed guidelines about imple-

mentations of a driver stack to clarify what requests are idempotent for

remote operating systems.

The suspend and resume functionality of the USB model are considered ap-

plicable, in order to preserve a USB connection even when networks become

unreachable within the semantics of the USB model.

3.5.3 Interoperability

Although operating systems have similar USB driver stacks, their structure and

semantics are different in detail as mentioned so far. However, an interoperable

implementation in other operating systems is basically possible and now ongo-

ing in the open source community of USB/IP. Special care should be devoted to

55

Chapter 3. USB/IP

implementation-dependent parts of the USB model; for instance, queuing seman-

tics in both USB PDD and HCD interfaces, special requests that update status in

kernel, and bandwidth allocation mechanisms14, as well as driver implementation

rules such as necessary locking and execution contexts.

A userland implementation of a Stub driver or part of a VHCI driver is possible

with an extension of a USB stack; most operating systems support programming

interfaces for userland USB drivers to a degree, such as usbfs in Linux and ugen

in BSD kernels. However, these interfaces are less powerful to implement a Stub

driver, since they currently lack asynchronous request queueing and isochronous

transfers. In addition, some device status maintained in kernel cannot be possibly

updated through these interfaces. A memory copy between userland and kernel

will involve performance degradation.

3.5.4 Dependability

In the proposed mechanism, all access to remote devices is first processed in de-

vice drivers in the same manner as physically-attached devices. Device drivers

must be designed to be robust against faulty devices. If a faulty device is at-

tached, an operating system needs to keep working correctly against its harmful

behavior. Recoverable driver designs have been studied in order to enable a kernel

to recover a driver fault dynamically. For instance, Nooks [94, 93] recovers and

rolls back isolated drivers by a protect execution technique and a shadow copy

of the driver state. It works in a monolithic operating system. MINIX 3 [43]

has explicit recovering mechanisms from critical driver failures by a reincarnation

server and a backup data store. It isolates drivers by its microkernel architecture.

However, it is difficult to apply these mechanisms to a virtual bus driver. The

virtual bus driver does not know the contents of I/O requests and the general-

ization of rollback is difficult for all types of devices. In a monolithic operating

system, since device drivers are deeply coupled with each other, the restarting of

parts of drivers is basically difficult without large modification of its kernel. As

another approach, it is possible that a virtual machine technology be applied for

isolating I/O paths to remote devices. There are some studies to improve driver

dependability by a virtual machine monitor. The virtual machine monitor based

14This feature may not be implemented fully in an operating system, such as BSD kernels.

56

Chapter 3. USB/IP

on the L4 microkernel allows distinct device drivers to reside in separate virtual

machines [64]. An isolation technique used in Xen enables unmodified device

drivers to be executed in driver-specific virtual machines [35].

3.5.5 Naming

In remote device technologies, great care has been devoted to achieving flexi-

ble resource naming in both local and remote hosts. Previous research [100, 67]

has pointed out that naming and I/O mechanisms should be decoupled as much

as possible for flexible naming management. The proposed mechanism separates

naming and I/O essentially; while I/O messages are common for all hosts no mat-

ter how operating systems work, each host preserves its existing naming scheme

even for virtually-attached devices. An operating system can assign names to re-

mote devices in its own way, regardless of what names are assigned to the devices

in remote hosts. An example of remote device naming in an operating system is

presented in a later chapter. Remote device naming in networks can be designed

by application developers for their purpose and target environments, consider-

ing the guarantee of uniqueness for devices that may be attached and detached

physically.

3.6 Related Work

This section notes related technologies of USB/IP.

3.6.1 iSCSI

iSCSI [85] is designed to transport SCSI packets over a TCP/IP network and pro-

vide access to remote storage devices. This protocol is commonly regarded as a

fundamental technology for the support of SANs (Storage Area Networks). iSCSI

is the extension of a SCSI bus over an IP network, and the protocol has been de-

signed to ensure network transparency and interoperability. The main limitation

of iSCSI is that it supports only storage devices. USB/IP has the advantage that

all types of devices, including isochronous devices, can be controlled over IP net-

works. However, iSCSI is more suitable for storage access than USB/IP because

57

Chapter 3. USB/IP

its I/O granularity is larger than that of a USB storage driver. Recent iSCSI

studies, exploring complex interaction between storage and networking drivers,

will share performance analysis methodologies and improvement schemes with

USB/IP, such as TCP congestion controls and transport encryption mechanisms.

3.6.2 Software and Hardware for USB Device Sharing

Network-enabled USB hubs are developed by companies like Digi, Keyspan, and

Silex. These hubs employ proprietary USB extension technologies and provide

remote access to USB devices attached to ports on the hub, though in a somewhat

limited manner. For example, Digi’s AnywhereUSB [52] supports only USB Bulk

and Interrupt devices operating at 12 Mbps in a LAN environment. Most USB

storage devices, which operate at 480 Mbps, and USB isochronous devices are

not supported. Proprietary software products of remote USB access are also

developed by Intellidriver, FabulaTech, and Eltima Software. In this chapter, the

I/O model of USB/IP has been presented through the experiments. It shows

optimization strategies that will enable USB/IP to operate effectively even under

larger network delays. The evaluation has shown that, in LAN environments,

all the tested devices work perfectly with the original device drivers. USB/IP

supports all types of USB devices operating at up to 480 Mbps. It can be said

that the academic paper [45, 46] and the open source code of USB/IP contributed

to some of these proprietary products.

3.6.3 KVM Switch and NAS

As one of the applications of USB/IP, it is possible to develop device switch-

ing software like existing KVM (Keyboard, Video, and Mouse) switches. These

switching appliances have a virtual USB keyboard and mouse inside to always

emulate these attachments to computers. This approach is also appropriate to

the device switching software of USB/IP. USB/IP can provide all kinds of USB

devices with fairly direct access over IP networks, which are now deployed every-

where by diverse media. This advantage has enormous potential for useful appli-

cations. A practical application of the USB/IP technology is now in progress to

share a device more easily between computers.

58

Chapter 3. USB/IP

There are a number of network appliances which export the resources of spe-

cific USB devices to an IP network. Some NAS appliances share an attached

USB storage device via NFS or CIFS. In addition, some home routers have USB

ports that can be used to share connected USB printers or USB webcams. These

appliances, which employ abstracted protocols15, do not support the low-level op-

erations which a required to allow the remote devices to operate in a transparent

manner.

3.6.4 Wireless USB

A new technology under development is Wireless USB [3], which employs UWB

(Ultra Wide Band) to provide expanded USB connectivity. This technology aims

to eliminate USB cables altogether, however the effective communication range

is limited to 10 meters. The implementation of Wireless USB is very similar to

the physical layer of USB, so this technology will complement USB/IP. This will

allow USB/IP to be used for Wireless USB devices, and enabling USB/IP to

provide remote device access with virtually any IP network infrastructure.

3.7 Summary

In this chapter, a network extension mechanism of USB was proposed, which

allowed operating systems interoperable remote access to peripheral devices with

full functionality. USB, a multipurpose peripheral interface based on host con-

troller hardware, enables operating systems to decouple messaging to their de-

vices from bus controls inside its kernels; messaging to devices, which is essentially

based on its peripheral bus model, is independent of operating systems, so that

the proposed mechanism aims to exploit it also for transparent remote device

access among different operating systems. In the proposed mechanism, periph-

eral devices are never abstracted for remote access and raw device hardware is

exported over IP networks to target computers. However, USB is not originally

designed to be extended as the proposed mechanism; this study needed to ex-

plore its possibility and limitation against its peripheral bus model and their

15Operations specific to device hardware do not tended to be supported.

59

Chapter 3. USB/IP

implementations.

USB/IP was designed and implemented carefully to meet full functionality,

network transparency, interoperability, and generality. It allowed a range of re-

mote USB devices to be used from existing applications without any modification

of the application or device drivers. A range of experiments was undertaken to

establish that the I/O performance of remote USB devices connected using US-

B/IP was sufficient for actual use. The performance characteristics of USB/IP

were also determined, and optimization criteria for IP networks were developed.

There are three primary design criteria related to performance that need to

be considered in order to effectively support the transfer of fine-grained device

control operations over IP networks. First, for asynchronous devices (known as

bulk devices), the device driver must queue enough request data to ensure max-

imum throughput for remote devices. Second, synchronous devices (known as

isochronous devices), require a smooth I/O stream. To achieve this, the appro-

priate number of requests must be queued to avoid starvation of requests at the

physical device. However, this is a trade-off, because a large queue size reduces

the response of each device. Finally, most situations require the response to a

request to arrive within a certain time. In some situations, it is possible to relax

the restriction by modifying a device driver or an application.

Moreover, through experiments and considerations of its development and ac-

tual usages, additional design criteria were raised from request semantics differ-

ences between local and remote device access; especially about time constraints,

scheduling, bandwidth, synchronization, and cancellations of requests. As in dis-

cussions, USB/IP implementations need to devote special care and mechanisms to

these points. Also, the USB model and its implementations need to be extended

for more suitable support of the network extension.

60

Chapter 4

A Device Sharing System for

USB/IP

A device sharing system among computers has been developed as one of the ap-

plications of USB/IP. As discussed in the previous chapters, the proposed mecha-

nism extends device connections virtually over IP networks without any abstrac-

tion. Operating systems can access remote devices as they are. It has significant

advantages for full functionality, network transparency, generality, and hetero-

geneity. On the other hand, other remote device technologies in the software

level abstract a device to resources suitable for sharing device-derived functions

over networks. These abstractions multiplex hardware access from computers

in the resource-provider side. In USB/IP, the multiplexing of hardware access

is never offered by itself; only a client operating system is responsible for it.

This chapter proposes a device-sharing system based on USB/IP that provides

users with seamless device access the same as switching peripheral cables among

computers. It is intended to show how a device and device-derived resources

are presented to users as well as how the device-sharing system is modeled in a

consistent manner with existing device management of operating systems.

4.1 Device Sharing Based on USB/IP

USB/IP can be a reconfigurable device access technology in distributed systems,

which enables computers to change peripheral topologies by request virtually

61

Chapter 4. A Device Sharing System for USB/IP

regardless of their physical locations. I/O requests on a peripheral bus are trans-

ferred over IP networks to redirect raw device access between computers. A

virtual bus driver implemented as a peripheral bus driver emulates remote device

attachment in the lowest level of kernel, so that most drivers and applications

can also work for remote devices without any modification as if they were directly

attached. It can basically support all types of devices on a peripheral bus and

can be applied to most operating systems and computers.

One of the possible applications of USB/IP is a device-sharing system among

computers. Users can share their peripheral devices with each other through IP

networks without any physical reattachment of devices, like a peripheral cable

is virtually passed to another person by request. A more advanced sharing sys-

tem enables users to gather devices from other computers regardless of physical

locations and to set up a custom-made computing environment on demand any-

where. Various device sharing systems can be developed by utilizing peripheral

bus extension in combination with other distributed technologies.

To discuss essential technical elements for these systems, the target of a device-

sharing system is focused on casual device sharing between users in mind. It is

intended to show what technical components are required for such systems and

how devices are presented to computers and users through management tech-

niques among computers and also inside a single computer.

4.2 Requirements

The fundamental and distinctive requirements for USB/IP device-sharing systems

are discussed here.

4.2.1 Location-Independent Handling

The location-independent handling of peripheral devices is required for seamless

device sharing. Whether a device is attached physically or virtually, most drivers

and applications never see the difference between two types of attachment. Once

connected, a physical peripheral topology is concealed inside bus drivers. How-

ever, before connected, a user is still bothered about the location of a target

device. If the user wants to use a remote device attached to another computer,

62

Chapter 4. A Device Sharing System for USB/IP

Figure 4.1: Device View without USB/IP

he needs to set up a new virtual connection for it. USB/IP itself enables only

remote device access from computers as shown in Figures 4.1 and 4.2. Users still

need to be concerned about the distribution of the physical bus.

Instead, the device sharing system should be able to provide flat device views

of users through which both remote and local devices are handled in the same

manner (Figure 4.3). The flat device handling allows operating systems to cus-

tomize the device views of users according to its management policy, regardless

of physical locations. For example, the system presents an integrated virtual bus

that allows access to any device on demand or by request for a user.

This separation of the methods of device access and presentation is a funda-

mental mechanism for advanced sharing features. For instance, first, each user

can have his original scope of devices beyond networks. It contains both remote

and local devices depending on conditions. A context-aware presentation is also

possible by reflecting the attributes of devices and users. A sharing system can

dynamically show a user only available devices in the room where he exists now.

It can be developed with a directory server or a group communication technology

such as multicast and peer-to-peer. Second, a session can be defined to abstract

a series of device connections for a device usage. A pairing of a device and a

computer can be recorded in a session server, so that virtual or physical connec-

63

Chapter 4. A Device Sharing System for USB/IP

Figure 4.2: Device View with USB/IP

Figure 4.3: Flat Device View for Device Sharing

64

Chapter 4. A Device Sharing System for USB/IP

tions between them are always established automatically. This enables persistent

device usages even though a device or a computer is moved to another place. It is

also possible that a pairing of a user and devices is maintained for a working set

of devices. The user obtains the same computing environment at any computer.

4.2.2 Device Ownership and Control

The device sharing on the system needs to be a straightforward extension of the

physical device usages. Actually, all devices are sometimes owned by a user or

a group of users. Since an owner of a device is responsible for its usages, the

owner can decide whether or not others can use his shared device and when they

should stop using it. Though devices in the system are handled in the same

manner regardless of locations, the owners’ controls over devices still need to be

preserved in conformity to physical topologies and their policy. The system needs

to address the consistency of device sharing between actual and virtual peripheral

topologies as well as the flexibility of usages.

4.2.3 Device Management Redesign

The device management of operating systems should be redesigned to support de-

vice sharing based on USB/IP. A USB/IP device-sharing system shares not only

device-derived resources but also device connections themselves among comput-

ers. An operating system has resource management mechanisms for processes

and users. However, such mechanisms cannot fully address the issues related to

sharing of device connections because they are designed for only resources made

from already connected devices.

Existing device management mechanisms lack the flexible control of device

attachment. A system policy should be able to allow or disallow the device

attachment driven by entities on an operating system, so that non-privileged en-

tities can control a device flexibly as far as the system policy allows. Moreover,

the system must work correctly when it allows non-privilege device controls. In

most operating systems, the attachment of a device and its resource allocation

are intended to be performed by only administrative privileges. This limitation

is also imposed to virtual attachment by USB/IP. Since there is no access con-

65

Chapter 4. A Device Sharing System for USB/IP

trol mechanism for device attachment, users cannot import and export devices

without administrative privileges.

The system needs some arbitration mechanisms to share device attachment

among computers. Device attachment is basically considered as an atomic re-

source that cannot accept concurrent access from multiple computers. It requires

exclusive access among entities inside and outside a computer.

4.3 Design

This section summarizes the key idea of the device sharing system based on

USB/IP.

4.3.1 Device Presentation

In order to present the location-independent handling of devices in a straight-

forward manner from the real world, the system introduces a device object with

three operations as a basic object into fundamental device management. It cor-

responds to a device attached to a computer, which is a straight presentation of

a basic unit of resources shared in the system. A device object is manipulated

through its operations by a subject on the system. A subject is a basic unit that

can obtain a device object and use the resources derived from it. It corresponds

to a user, a process, or a computer; these are entities on an operating system,

which may get a device connection and control it exclusively (Figures 4.4 and

4.5).

A device object is exclusively assigned to one subject. However, this relation-

ship is changed dynamically by operations to device objects in the system. A

subject can manipulate a device object through three operations as follows:

Acquire A subject requests a device object. When a subject invokes this

operation, the system decides whether the operation is allowed or not. If

allowed, the operation succeeds. The device is newly assigned to the subject,

and the previous subject that had the device gives it back. Otherwise, the

operation fails.

66

Chapter 4. A Device Sharing System for USB/IP

Figure 4.4: Device Object Operations

Figure 4.5: Device Object and Flat Device View

67

Chapter 4. A Device Sharing System for USB/IP

Release A subject releases a device object if the subject has it. Then, the

system assigns it to another subject.

Set Condition A subject can make an attempt to set permission for other

subjects to get the device. The permission is composed of condition descrip-

tions that define how the subject tries to allow other subjects’ acquisition of

devices. It is described by parameter values that show attributes of devices

and subjects. The permissions defined by subjects are incorporated into

the device assignment decision that the system makes.1

Exclusive Access

The system splits device management into two levels; one is device hardware

attachment, and the other is device-derived resources from it. The former is

controlled by the system, and the latter by a subject. This enables the straight-

forward abstraction of device hardware for exclusive access management as well

as the flexibility of device usages. A device object is assigned to one subject

exclusively. This decision is performed by the system according to permissions.

Once the device is assigned to the subject, the subject is fully responsible for the

control of the device; the subject can abstract the device for use. It can bind

device drivers and use resources derived from it. It can also export the resources

to share them. The system is responsible for exclusive access of raw device hard-

ware 2. However, device-derived resources can be concurrently accessed as the

subject intended. To implement this idea, the device management mechanism of

an operating system needs to be changed as described in a later section.

Condition Description

The system provides subjects with flexible condition description, so that dis-

tributed devices are managed efficiently under various situations. An acquisition

1Actually, this operation is considered as a sort of delegation of the privilege of getting a
device object exclusively. Section 4.3.2 discusses this point with the privilege management of
device usages on an operating system.

2Not raw device access in UNIX.

68

Chapter 4. A Device Sharing System for USB/IP

condition is described by the following parameters. The system evaluates condi-

tions and decides the assignment of a device object. This procedure is described

in Section 4.3.2. A subject can put a priority value into a condition to exercise a

management policy with its strength.

Subject Attributes Parameters that specify a subject or a group of sub-

jects. For example, the system allows “computers in a room” to acquire a

shared device.

Device Attributes Parameters that specify a device object or a group of

device objects. For instance, a user wants to specify “a keyboard on my

desk” to share it among computers.

Current Status Parameters that reflect current status of an assignment.

For instance, an elapsed time value enables a subject to give a device to

another subject with a time limit.

Priority A value to set priority of a condition for flexibility. It is also used

for privilege delegation in the device management of an operating system

as in Section 4.3.2.

4.3.2 Device Management Model

The overview of device management on an operating system is illustrated in

Figure 4.6. A domain is a key conceptual mechanism that loosely isolates a

raw device and its derived-resources from other subjects, so that a subject can

be fully responsible for a device object. A subject can bind drivers and share

resources with other subjects. Other subjects cannot access them without the

arbitrary control by the subject. A domain also works for preventing the subject

from violating other privileged resources, and enables non-privileged entities to

control device attachment flexibly as the system allows.

The device management on an operating system is divided into two parts;

one part is responsible for device attachment by the system, and another is for

resource management by a subject. Because of this decoupling, the system can

handle the exporting of a device to another computer in the same way as the

providing of the device to a local subject on it. Also, exclusive access is achieved

69

Chapter 4. A Device Sharing System for USB/IP

flexibly; while a device is exclusively assigned to a subject according to a system

policy and its request, device-derived resources can be shared as the subject

intends.

System Behavior

When a subject requests the acquisition of a device, the system starts to pre-

pare the target device, which may involve a new virtual connection to another

computer. After the device becomes available on the system, it checks whether

this request is approved or not, according to available conditions with subject at-

tributes, device attributes, and current status. If approved, the device is provided

to the subject and then the subject manages it. In the case that the subject is

another computer, the system exports the device to it. If disapproved, this at-

tachment is canceled; a virtual connection is dropped or a physical connection is

ignored.

When a device is attached to a computer without any request, the system

checks whether the device can be connected or not in the same way as the above

with a default policy; the computer is a subject for assignment decision.

Delegation Chain

Conditions are evaluated as a delegation chain to the subject that requests the

acquisition of a device, so that the system can preserve existing privilege manage-

ment on an operating system as much as possible. For example, an administrative

user or process needs to control device usages on the system more strongly than

normal users. As far as an administrative user allows, a normal user can utilize

devices and export them.

A more administrative subject on an operating system has stronger privileges

for devices. It gives its privileges to less administrative subjects conditionally

according to condition descriptions by invoking Set Condition operations of device

objects. If a subject has a privilege of a device, it can utilize the device exclusively,

give the privilege to other less administrative subjects conditionally, and cancel

the device assignment of less administrative subjects for taking it back.

Figure 4.7 shows how this mechanism works. Each subject can invoke Set

condition operation to allow other subjects to acquire devices. When a subject

70

Chapter 4. A Device Sharing System for USB/IP

Figure 4.6: Device Management Model

71

Chapter 4. A Device Sharing System for USB/IP

Figure 4.7: Delegation in Device Management

invokes the Acquire operation of a device object, the system evaluates all con-

ditions on delegation paths from the most administrative subject to the target

subject.

Figure 4.8 is an actual example that illustrates delegation flows between two

computers. User F succeeds in the acquisition of Device X exported from Com-

puter P. In this case, both computers have individual device management mecha-

nisms. In Computer P, Device X was requested for acquisition by Device Manager

D in Computer Q. To check whether this request was approved or not, Computer

P evaluated condition descriptions on the delegation chain to Device Manager D.

In Computer Q, condition descriptions from Device Manager D to User F were

evaluated as a delegation chain. Consequently, Computer P checked whether its

device could be exported to Computer Q, and Computer Q checked whether the

device could be imported for User F.

72

Chapter 4. A Device Sharing System for USB/IP

Figure 4.8: Delegation between Two Computers

4.4 Implementation

A prototype system of device sharing based on USB/IP was implemented.

4.4.1 Strategy

Device Attachment Uniqueness

In order to generate a unique device object identifier, the system identifies a

device object by its attachment, not by its hardware itself, since an operating

system lacks a general method to identify each peripheral device. A unique serial

number is not embedded in most consumer devices. Even if embedded, there is

no guarantee of its uniqueness. Also, most devices lack a nonvolatile memory

area, to which a computer writes a generated identifier. For instance, if a device

is unplugged from a computer and plugged in again, the computer does not

understand that the same device is attached again in a general way.

A device object identifier on the system is composed of three parts: a host

identifier, a bus topology identifier, and the time when it is attached to the

73

Chapter 4. A Device Sharing System for USB/IP

Figure 4.9: Trust Management Concept

host. The device management mechanism of an operating system is modified to

generate device identifiers correctly, recording device attachment time, so that it

becomes globally unique to differentiate device objects.

Trust Management

Trust management is utilized to implement privilege delegation in device man-

agement on operating systems. Trust Management, first introduced by Policy-

Maker [10], is an authorization management framework that makes the decision

to allow a principal (e.g., user or application) to do something. While X.509 cer-

tificates and PGP bind a public key with a principal’s name, trust management

binds a public key directly with an operation that a principal is permitted to

do. A principal issues a new assertion3 and signs it by its private key, so that it

can delegate part of its authority to other principals4. As figured in Figure 4.9,

since an assertion includes an authorizer and licensees specified by their public

keys, a trust management system can confirm delegation chains without finding

trust paths of public keys. Authorized operations in an assertion (P, Q, R, and

S) are described in a machine-readable form. Basically, a compliance checker and

an assertion language are provided to develop applications of trust management

easily.

3A formatted text that describes the operations principals are allowed to perform.
4An authorizer still has the same authority.

74

Chapter 4. A Device Sharing System for USB/IP

Though there are other trust management systems (e.g., SPKI [29], REF-

EREE [21], QCM [39], and SD3 [55]), a prototype implementation of the pro-

posed system utilizes KeyNote [9, 11]. KeyNote defines the syntax of assertions

and provides a compliance checker with signature verification. Its syntax meets

assertion monotonicity; deleting an assertion never causes a disapproved action

to become approved. The result of a compliance check is a compliance value that

presents how a request should be handled by an application; this corresponds

to the priority of a delegation chain. It is used as an authorization mechanism

in some applications [13]; for example, a distributed file system [71], an IPSec

policy control mechanism [12], and a distributed firewall [54]. The benefits of

trust management for the prototype system are summarized as follows:

• Developing a new delegation mechanism for the system is avoided.

• Any subject can issue a new assertion anytime only with the target public

key in a decentralized manner. This action corresponds to the Set Condi-

tion.

• Each operating system can enforce its system policy independently.

• An electrically-signed assertion can be transferred via non-encrypted trans-

port and stored to non-encrypted storage.

• Lacking an assertion never causes the increase of a compliance value. Even

though the system fails to collect all related assertions, the result does not

violate a system policy.

In the prototype system, a subject prepares other subjects’ public keys by

other mechanisms, such as PKI, PGP’s web of trust, or out-of-band.

Resource Isolation

The concept of a domain can be implemented in several ways depending on the

degree of resource isolation and the feasibility against commodity operating sys-

tems. 5 A design issue is raised by the fact that most operating systems lack

5This discussion relates to the system dependability of peripheral bus extension noted in
Section 3.5.4.

75

Chapter 4. A Device Sharing System for USB/IP

consistent handling of device-derived resources. An operating system abstracts a

device into to various resources in multiple levels. However, device drivers provide

different resource interfaces and interact with each other complexly. The total

resource isolation from the lowest level is difficult to resolve.

One possible approach is to exploit driver separation mechanisms for com-

modity operating systems [93, 94, 35, 64, 37]. They separate driver execution

environments by a protect domain, a virtual machine monitor, or a micro-kernel

system. These mechanisms require driver-specific modifications from all drivers

on I/O paths.

Another approach is to utilize virtual machine mechanisms [6, 27, 91], thereby

allowing an independent system for a domain. For example, UML [27], which

runs a Linux kernel as userland processes, enables the system to isolate all driver

behaviors derived from a device into a virtual machine. It is basically possible

to create a virtual machine for a domain by developing a userland management

mechanism without large modifications of kernel code.

In contrast, more passive approaches are also possible based on the idea that

matured operating systems are implemented carefully to be dependable; a device

I/O is basically separated from others in a single kernel, and only the interfaces to

resources should be managed for isolation. The system separates resource name

space for each domain and makes up for access control to resources. A kernel

extension mechanism [101] for security policy enforcement [66] will be exploited

for customizing system calls to device-derived resources.

The prototype system, developed for Linux, allows the private name space of

device files for each subject as a domain. Though this does not support the con-

cept of a domain completely for various devices and abstractions, it is intended to

be focused on the design discussions by demonstrating the first usable prototype.

4.4.2 Overview

The overview of the device management mechanism is illustrated in Figure 4.10.

It utilizes the hot plugging support of an operating system and avoids the modifi-

cation of its kernel as much as possible. USB/IP is employed as one of the remote

device technologies for it. Its transport is encrypted by TLS [26] and IPSec [56]

by request. For the prototype implementation, Multicast DNS [19] is exploited

76

Chapter 4. A Device Sharing System for USB/IP

Figure 4.10: Design Overview

for a flat device view of a user. As a Set Condition operation, a user issues an

assertion of KeyNote and registers it to the system. A user also unregisters it for

revocation.

The system works in the same manner for both Acquire requests from a local

and remote subject as illustrated in Figures 4.11 and 4.12. When the system gets

the request from a local subject, it collects subject information (e.g., its public

key, UID, and GID) and device object information (e.g., device object identifier,

the public key of its exporting host, retrieved device attributes, and its status),

and then evaluates delegation chains with available assertions and a system policy.

If approved, the system sets up its private device files for the subject. All device

files derived from the device are created only in the subject’s namespace.

When the system gets the request from a remote subject, it also collects sub-

ject information, device object information, then checks delegation chains. Since

this case means the subject is the other computer requesting Acquire, subject

information includes its IP address and its public key. If approved, the device is

exported to it. Then, the system of the other computer will also check whether

the Acquire operation from its local subject is approved or not.

Assertion parameters are defined for the system, which are based on the dis-

cussion in Section 4.3.1. (See Table A.1 in Appendix.) An example assertion

is illustrated in Figure 4.13. The condition description allows that peripheral

devices used for presentation are temporarily leased to the mobile computer of a

guest. As far as the mobile computer is connected to a local area network of the

naist.jp domain, it can temporarily connect the VGA device (0711:0902) and

77

Chapter 4. A Device Sharing System for USB/IP

Figure 4.11: System Behavior (Local Request)

Figure 4.12: System Behavior (Remote Request)

78

Chapter 4. A Device Sharing System for USB/IP

Figure 4.13: Assertion Example

the speaker device (08bb:2702) exported by a device server (192.168.0.100).

For one hour, the priority value is 3. After that, the value becomes undefined

(minimum), and the server will take back the devices.

4.4.3 Prototype Demonstration

The prototype system was implemented by Ruby 1.8.4 and KeyNote 2.3 on Linux

Kernel 2.6.16.5. Hot plugging events and driver binding events from kernel were

captured via a userland device event manager (udev v088). The USB/IP imple-

mentation was improved to be able to change driver bindings and target subjects

dynamically.

The prototype system was tested among computers in a LAN environment.

The administrator of each computer defined its system policy that described

how locally-attached devices could be assigned to subjects and also how remote

devices could be assigned to local subjects. These procedures corresponded to Set

Condition by a subject in the device sharing model. Once a device was physically

attached to a computer, the computer advertised it to other subjects by exploiting

79

Chapter 4. A Device Sharing System for USB/IP

a Multicast DNS daemon.

Figure 4.14 illustrates a usage example. First, a user listed devices available to

him and then tried to acquire the 7th device (OV511+ WebCam). This request

was approved by both systems (i.e., exporting and importing sides), and the

requested device was attached to the localhost for the user as the 4th device.

As the output of tree shows, the system created private device files for subjects

under the /dmd/user/ directory. For instance, the subject root had one device

named as usb 3-1.1.2 1145544020@10.0.0.3, which was abstracted to 3 private

device files (bus usb 006006, scd0, and sg0). In the prototype system, changing

device assignment required a few seconds at most. The main part of this latency

was the initialization process of USB drivers.

A user wrote new assertions for his friends with their public keys and passed

the assertions to the licensees by e-mails or an Internet messenger. Then, his

friends registered received assertions to the systems of their computers in order

to use devices allowed by the user.

The prototype implementation works correctly as intended by the system

design. It achieved the concept of the proof of the device sharing system in a

primitive way. It does not provide an intelligent device view customized for each

subject, a complete resource isolation mechanism, and an advanced user interface.

However, these features will be implemented in actual applications optimized for

their purposes.

4.5 Discussion

The system exploits KeyNote to implement privilege delegation quickly for the

prototype. It greatly reduces implementation cost for it. However, issuing its

assertion correctly as intended is difficult for most users; it needs to get a public

key of a target, write a condition according to its format, sign it electrically, and

pass it to appropriate hosts. This procedure should be simplified in a practical

system by sophisticated tools. Another aspect of KeyNote is that a user cannot

easily know what authority is currently given to him. It provides no way of

knowing except by performing a compliance check with parameters, even though

all assertions can be seen.

80

Chapter 4. A Device Sharing System for USB/IP

Figure 4.14: Usage Example

81

Chapter 4. A Device Sharing System for USB/IP

Some USB drivers need to fix their errors in order to avoid kernel panics when

dynamically changing their assignments, which seem to be not well-tested regard-

ing detachment in usages. This motivates more aggressive resource isolation as

noted in Section 4.4.1. Also, most applications do not handle the disappearance

of a device well, sometimes hanging up in the worst case. The useful notification

framework of device release is desirable to pursue the appropriate handling of

detachment.

4.6 Summary

A device sharing system was presented as one of the applications based on US-

B/IP. USB/IP enables raw access of remote devices without any abstractions.

The multiplexing mechanism of device access is not provided by itself. This fea-

ture is very different from other remote device technologies designed to share

multiplexable resources derived from a device. Therefore, this chapter was in-

tended to show a fundamental system model for USB/IP device sharing and to

give basic design criteria for advanced practical systems. In the system, devices

are location-independently managed by three primitive operations and incorpo-

rated into existing operating systems by a device-derived resource isolation tech-

nique and a privilege delegation mechanism. A prototype system was operated

correctly as proof of this concept; users shared devices flexibly among computers

with policy enforcement, regardless of their physical locations.

82

Chapter 5

Open Issue

The hardware and software models of Bluetooth and IEEE1394, which are other

multipurpose peripheral interfaces based on host controller hardware, are quite

similar to that of USB. These request semantics to an attached device, which are

operating-system-independent, are basically applicable to access remote devices

without large modifications, by request redirection mechanisms over networks in

operating systems.

For the Bluetooth interface, a virtual bus driver can be implemented as a

host controller driver. Actually, an emulation driver of a host controller is already

available for test purposes, which will be used for developing the Bluetooth virtual

bus driver. For the IEEE1394 interface, the CSRs (Control Status Registers) of a

host controller interface will be emulated for a virtual host controller driver. Most

I/O requests are just redirected to a remote device and some requests related to

bus status need to be intercepted and modified for emulation.

Although, basically, the proposed mechanism is considered applicable to them,

other considerations are raised from differences of their models and implemen-

tations. The resource allocation mechanism of the IEEE1394 model is more ag-

gressive than that of the USB model. A host controller arbitrates bus utilization

with other nodes and reserves bandwidth for isochronous transfers. This means

its network extension mechanism first acquires necessary bandwidth in both a

remote host controller and a network, and then keeps it while a device is used.

In addition, multimedia devices and applications of IEEE1394 tend to be more

latency-sensitive than those of USB. On the other hand, the USB model allows

83

Chapter 5. Open Issue

implementations to select device modes dynamically against available bandwidth

even when a device is in use. This part of its model can also be applicable to the

network extension of the proposed mechanism.

A driver stack should not be implemented to support only specific types of

host controllers, especially attached to a PCI bus. A virtual bus driver can be

developed without emulating PCI bus behavior as found in VMMs, so that its

implementation becomes greatly simplified, since it needs to emulate only the

logical status of a host controller. In addition, an allocation of a DMA-capable

buffer is slightly costly in some architecture. For instance, in an IEEE1394 stack

in Linux, class drivers perform PCI-specific DMA operations in several places.

The Bluetooth bus extension was discussed in [51], which bridged separated

piconets to access remote Bluetooth devices by TCP/IP. ACL (Asynchronous

Connection Less) and SCO (Synchronous Connection Oriented) links were estab-

lished over a network by emulating the device of the other piconet and redirecting

data packets. Its performance degradation was acceptable in the tested network.

Also, the IEEE1394 bridging by Ethernet was studied in [58]. These studies

showed performance feasibility and bus emulation techniques. Compared with

these studies about the bridging of a peripheral bus, the proposed mechanism

is focused on seamless remote device access from operating systems. It has a

virtual bus driver to integrate remote devices seamlessly. Although these periph-

eral buses as well as USB, are not originally designed to be extended over IP

networks, the experiments showed non-abstracted raw devices could be accessed

under today’s networking technologies in a feasible manner to a degree.

84

Chapter 6

Conclusion

This thesis is motivated by the ideal goal of distributed system technologies; users

obtain optimized computing environments dynamically composed of distributed

hardware resources over networks on-demand and seamlessly. Obviously, a re-

mote device technology is one of the essential keys to this goal, which enables the

system to be reconfigurable and adaptable in its device usages for various condi-

tions and purposes. Although many remote device technologies have been studied

over the years, there is still lacking a fully general and interoperable device ac-

cess mechanism over IP networks. This feature is considered necessary to tackle

the increasing diversity of devices and computers in the coming future. Most re-

mote device technologies developed in operating systems are based on interfaces

and semantics inside their kernels, thereby involving operating-system-dependent

structure and semantics in their extension mechanisms.

6.1 Contribution

This dissertation has proposed a network extension mechanism of USB, one of

the multipurpose peripheral interfaces by host controller hardware; it decouples

request messages and semantics to devices from bus controls, and also exploits

them for remote device access in the same manner as internal access to physically-

attached devices. Since its remote device mechanism becomes a natural exten-

sion of the peripheral bus model, it is basically independent of operating system

structure and semantics, and therefore interoperable among different operating

85

Chapter 6. Conclusion

systems.

However, since the peripheral bus model and its implementations are not

intended to be extended over IP networks, this research has tackled problems

arising from the inevitable semantics differences in the extension mechanism. It

has clarified its feasibility and usability as well as its limitation and restrictions.

Its prototype has been carefully designed to meet full functionality, network

transparency, interoperability, and generality of remote devices, as well as to

resolve semantics differences in its network extension.

The experiments have shown that it achieves sufficient performance in a local

area network for all types of devices. Its performance model has been established

regarding request queuing mechanisms and network latencies.

The experiences and considerations through its development and actual usages

have shown that its network extension mechanism resolves semantics differences

to a degree; it devoted special care to them in its implementation and exploits

parts of the semantics of the USB model.

The experiences and considerations have pointed the way to further alter-

ations of the USB model and its implementations, since their current designs

cannot fully meet the requirements of being extended over networks, especially

regarding time constraints, request scheduling, bandwidth management, and re-

quest cancellation.

In addition, this dissertation has presented a device sharing system that in-

corporates the network extension and device management of operating systems

in a consistent manner. It has shown that the network extension, which never

abstracts device resources and multiplexes device access in its mechanism, can be

applied to a practical application through close coordination with other device

management mechanisms.

6.2 Futher Directions

The discussion about USB/IP has been performed through its prototype imple-

mentation for the Linux USB stack as well as careful investigations to other USB

stacks in operating systems. However, there still remains a slight possibility of the

necessity for further discussions about interoperability among different operating

86

Chapter 6. Conclusion

systems and also suggestions for the USB model. In addition, more general-

ized considerations can be performed for other multipurpose peripheral interfaces

through implementations of network extension via host controller virtualization.

These studies will offer insight into future peripheral architecture that supports

IP-network-based transport.

The proposed mechanism raises the necessity of QoS management in networks

to improve its performance and stability. Although this dissertation has been

primarily focused on its network extension mechanism inside end nodes, further

studies about arbitration mechanisms of network transport are motivated for

suitable support of fine-grained request messages of peripheral interfaces.

It also brings up new motivation of isolation mechanisms in an operating

system. First, since a major part of remote device access is handled by device

drivers, it is desirable that driver I/O paths are guaranteed to be independent with

each other in order to avoid performance degradation by a slow path. Second, the

importance of driver dependability is more attained1, because a faulty device may

be attached virtually without a visual check. Third, if the system appropriately

isolates device-derived resources, it can allow more flexible device usages for non-

privileged entities.

1An empirical study [20] showed device drivers tend to involve most bugs of operating system
errors. This fact also motivates the enhancement of driver dependability.

87

Acknowledgments

Acknowledgments

First, I especially want to thank my family for encouragement, understanding,

and warm support during long years. Without their understanding, I could not

start my new academic activity in information science at Nara Institute of Science

and Technology.

I would like to thank my supervisor Professor Hideki Sunahara for having

accepted me as a student member of Laboratory of Internet Architecture and

Systems and also for all his powerful support for my academic activity.

I would like to show my appreciation to Professor Suguru Yamaguchi who

gave me warm and aggressive comments for my research. These comments were

very precious for me.

I would like to thank Associate Professor Kazutoshi Fujikawa for his kind

guidance for my academic activity.

I would like to thank Associate Professor Eiji Kawai who kindly taught me

the nuts and bolts of researches.

My sincere gratitude also goes to all members of the laboratory for their

kindhearted advices and help. I enjoyed totally five years with them.

Moreover, I also thank contributors who tried my software actively and sent

me detailed feedbacks. I was very encouraged by e-mails from users and devel-

opers, who gave me the chances of exciting challenges.

88

Availability

Availability

The USB/IP implementation is available under the open source license GPL. The

information is at http://usbip.naist.jp/ . It has been developed with feed-

backs from users and developers. In December 2005, its code was experimentally

merged into the official development repository of the Linux kernel.

Actually, all USB devices work correctly and stably over IP networks in LAN

environments. IP Only Server [7] by IBM Haifa Research Laboratory notes that

USB/IP can be used for their proposed computer system that accesses all periph-

erals over IP networks. The USB/IP implementation attracts users’ attention for

embedded computers that have the limitation of peripheral interfaces. The ap-

plication to a virtual machine is also discussed for physical device access from a

guest operating system, such as Xen [6] and User Mode Linux [27]. Developers of

thin client systems consider adopting the USB/IP implementation for the general

support of USB devices in a terminal computer.

89

References

References

[1] IEEE Std 1394-1995. IEEE Standard for a High Performance Serial Bus.

IEEE, August 1996.

[2] IEEE Std 1394b 2002. IEEE Standard for a High Performance Serial Bus

– Amendment 2. IEEE, December 2002.

[3] Agere Systems, Inc., Hewlett-Packard Company, Intel Corporation, Mi-

crosoft Corporation, NEC Corporation, Koninklijke Philips Electronics

N.V., and Samsung Electronics Co., Ltd. Wireless universal serial bus

specification, revision 1.0, May 2005.

[4] Michael J. Accetta andRobert V. Baron andWilliam J. Bolosky andDavid

B. Golub andRichard F. Rashid andAvadis Tevanian andMichael Young.

Mach: A new kernel foundation for UNIX development. In Proceedings

of the USENIX Summer Conference, pages 93–113. USENIX Association,

1986.

[5] François Armand. Give a process to your drivers. In Proceedings of the

EurOpen Autumn 1991 Conference. EurOpen, September 1991.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art

of virtualization. In Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles, pages 164–177. ACM Press, 2003.

[7] Muli Ben-Yehuda, Oleg Goldshmidt, Elliot K. Kolodnerand Zorik Machul-

sky, Vadim Makhervaks, Julian Satranand Marc Segal, Leah Shalev, and

Ilan Shimony. IP only server. In Proceedings of the USENIX Annual Tech-

nical Conference, pages 381–386. USENIX Association, 2006.

[8] Philip A. Bernstein. Middleware: A model for distributed system services.

Communications of the ACM, 39(2):86–98, 1996.

[9] Matt Blaze, Joan Feigenbaum, Joan Ioannidis, and Angelos D. Keromytis.

The KeyNote trust-management system version 2. RFC 2704, September

1999.

90

References

[10] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-

agement. In Proceedings of the 1996 IEEE Symposium on Security and

Privacy, pages 164–173. IEEE Computer Society Press, 1996.

[11] Matt Blaze, Joan Ioannidis, and Angelos D. Keromytis. DSA and RSA key

and signature encoding for the KeyNote trust management system. RFC

2792, March 2000.

[12] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Trust management

for IPsec. ACM Transactions on Information and System Security, 5(2):95–

118, 2002.

[13] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Experience with

the KeyNote trust management system: Applications and future directions.

In Trust Management: First International Conference, iTrust 2003, Lecture

Notes in Computer Science, pages 284–300. Springer Berlin, 2003.

[14] Bluetooth SIG, Inc. Specification of the Bluetooth system version 2.0 +

EDR, November 2004.

[15] Mark Carson and Darrin Santay. NIST Net: A Linux-based network emula-

tion tool. ACM SIGCOMM Computer Communication Review, 33(3):111–

126, 2003.

[16] Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall, and James R. Davin.

Simple network management protocol (SNMP). RFC 1157, May 1990.

[17] David Cheriton. The V distributed system. Communications of the ACM,

31(3):314–333, 1988.

[18] Stuart Cheshire and Marc Krochmal. DNS-based service discovery. Internet

Draft, August 2006.

[19] Stuart Cheshire and Marc Krochmal. Multicast DNS. Internet Draft, Au-

gust 2006.

[20] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. An empirical study of operating systems errors. In Proceedings of

91

References

the Eighteenth ACM Symposium on Operating Systems Principles, pages

73–88. ACM Press, 2001.

[21] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and

Martin Strauss. REFEREE: Trust management for Web applications. Com-

puter Networks and ISDN Systems, 29(8–13):953–964, 1997.

[22] Cluster File Systems, Inc. Lustre: A scalable, high-performance file system,

November 2002.

[23] Russell Coker. Bonnie++. http://www.coker.com.au/bonnie++/.

[24] Compaq Computer Corporation, Hewlett-Packard Company, Intel Corpo-

ration, Lucent Technologies Inc., Microsoft Corporation, NEC Corporation,

and Koninklijke Philips Electronics N.V. Universal serial bus specification,

revision 2.0, April 2000.

[25] Cypress Semiconductor Corporation. EZ-USB FX2. http://www.cypress.

com/.

[26] Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol

version 1.1. RFC 4346, April 2006.

[27] Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th

Annual Linux Showcase and Conference, pages 63–73. USENIX Associa-

tion, October 2000.

[28] ECHONET CONSORTIUM. The ECHONET specification, version 2.11,

April 2002.

[29] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas,

and Tatu Ylonen. SPKI certificate theory. RFC 2693, September 1999.

[30] Mark Fasheh. OCFS2: The Oracle clustered file system, version 2. In

Proceedings of the Linux Symposium, pages 289–302. Linux Symposium,

July 2006.

92

References

[31] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk, Larry

Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol

– HTTP/1.1. RFC 2616, June 1999.

[32] Gregory G. Finn. An integration of network communication with work-

station architecture. ACM SIGCOMM Computer Communication Review,

21(5):18–29, 1991.

[33] Alessandro Forin, David Golub, and Brian Bershad. An I/O system for

Mach 3.0. In Proceedings of the USENIX MACH Symposium, pages 163–

176. USENIX Association, November 1991.

[34] UPnP Forum. UPnP device architecture 1.0, version 1.0.1, December 2003.

[35] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield,

and Mark Williamson. Safe hardware access with the Xen virtual machine

monitor. In The first Workshop on Operating System and Architectural

Support for the on demand IT InfraStructure, October 2004.

[36] Abdulbaset Gaddah and Thomas Kunz. A survey of middleware paradigms

for mobile computing. Technical Report SCE-03-16, Department of Systems

and Computing Engineering, Carleton University, July 2003.

[37] Shantanu Goel and Dan Duchamp. Linux device driver emulation in Mach.

In Proceedings of the USENIX Annual Technical Conference, pages 65–74.

USENIX Association, 1996.

[38] Object Management Group. Common object request broker architecture:

Core specification, version 3.0.3, March 2004.

[39] Carl A. Gunter and Trevor Jim. Policy-directed certificate retrieval. Soft-

ware - Practice and Experience, 30(15):1609–1640, 2000.

[40] HAVi, Inc. The HAVi specification, version 1.1, May 2001.

[41] Paul J.M. Havinga. Mobile Multimedia Systems. PhD thesis, University of

Twente, February 2000.

93

References

[42] Mark Hayter and Derek McAuley. The desk area network. ACM SIGOPS

Operating System Review, 25(4):14–21, October 1991.

[43] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.

Tanenbaum. MINIX 3: a highly reliable, self-repairing operating system.

ACM SIGOPS Operating Systems Review, 40(3):80–89, 2006.

[44] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the

Workshop on Micro-kernels and Other Kernel Architectures, pages 113–126.

USENIX Association, April 1992.

[45] Takahiro Hirofuchi, Eiji Kawai, Kazutoshi Fujikawa, and Hideki Sunahara.

USB/IP - a peripheral bus extension for device sharing over IP network.

In Proceedings of the FREENIX Track: 2005 USENIX Annual Technical

Conference, pages 47–60. USENIX Association, April 2005.

[46] Takahiro Hirofuchi, Eiji Kawai, Kazutoshi Fujikawa, and Hideki Sunahara.

USB/IP: A transparent device sharing technology over IP network. IPSJ

Transactions on Advanced Computing System, 46(SIG 12 (ACS 11)):349–

361, August 2005.

[47] Steve Hotz, Rodney Van Meter, and Gregory G. Finn. Internet protocols for

network-attached peripherals. In Proceedings of the Sixth NASA Goddard

Conference on Mass Storage Systems and Technologies. IEEE Computer

Society Press, March 1998.

[48] John H. Howard, Michael L. Kazar, Sherri G. Meneesand David A. Nichols,

M. Satyanarayananand Robert N. Sidebotham, and Michael J. West. Scale

and performance in a distributed file system. ACM Transactions on Com-

puter Systems, 6(1):51–81, 1988.

[49] Chih-Yuan Huang, Tei-Wei Kuo, and Ai-Chun Pang. QoS support for

USB 2.0 periodic and sporadic device requests. In Proceedings of the 25th

IEEE International Real-Time Systems Symposium, pages 395–404. IEEE

Computer Society Press, 2004.

[50] Leo J. McLaughlin III. Line printer daemon protocol. RFC 1179, August

1990.

94

References

[51] Masaaki Inami. A wired extension method for Bluetooth networks. Mas-

ter’s thesis, Japan Advanced Institute of Science and Technology, 2004. In

Japanese.

[52] Inside Out Networks. AnywhereUSB. http://www.ionetworks.com/.

[53] Intel, Hewlett-Packard, NEC, Dell. IPMI - intelligent platform management

interface specification second generation v2.0, February 2004.

[54] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and

Jonathan M. Smith. Implementing a distributed firewall. In Proceedings

of the 7th ACM Conference on Computer and Communications Security,

pages 190–199. ACM Press, 2000.

[55] Trevor Jim. SD3: A trust management system with certified evaluation. In

2001 IEEE Symposium on Security and Privacy (SP 2001), pages 106–115.

IEEE Computer Society Press, May 2001.

[56] Stephen Kent and Karen Seo. Security architecture for the Internet proto-

col. RFC 4301, December 2005.

[57] Yousef Y. A. Khalidi, José M. Bernabéu-Aubán, Vlada Matena, Ken

Shirriff, and Moti Thadani. Solaris MC: A multi computer OS. In Proceed-

ings of the USENIX Annual Technical Conference, pages 191–204. USENIX

Association, 1996.

[58] Kenji Kikuchi. IEEE1394-IEEE802.3 transparent bridges for home network.

Master’s thesis, Japan Advanced Institute of Science and Technology, 2002.

In Japanese.

[59] Sunil Kittur, François Armand, Douglas Steel, and Jim Lipkis. Fault toler-

ance in a distributed CHORUS/MiX system. In Proceedings of the USENIX

Annual Technical Conference, pages 219–228. USENIX Association, 1996.

[60] Steve R. Kleiman. Vnodes: An architecture for multiple file system types

in Sun UNIX. In Proceedings of the USENIX Summer Conference, pages

238–247. USENIX Association, June 1986.

95

References

[61] Greg Kroah-Hartman. usbview. http://sf.net/projects/usbview/.

[62] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. VAXclus-

ters: a closely-coupled distributed system. ACM Transactions on Computer

Systems, 4(2):130–146, 1986.

[63] Carl Kugler, Harry. Lewis, and Tom Hastings. Internet printing protocol

(IPP): Requirements for job, printer, and device administrative operations.

RFC 3239, February 2002.

[64] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified

device driver reuse and improved system dependability via virtual machines.

In Proceedings of the Sixth Symposium on Operating System Design and

Implementation, pages 17–30. USENIX Association, December 2004.

[65] Eliezer Levy and Abraham Silberschatz. Distributed file systems: concepts

and examples. ACM Computer Survey, 22(4):321–374, 1990.

[66] Peter Loscocco and Stephen Smalley. Integrating flexible support for se-

curity policies into the linux operating system. In Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference, June 2001.

[67] Vlada Matena, Yousef A. Khalidi, and Ken Shirriff. Solaris MC file system

framework. Technical Report TR-96-57, Sun Microsystems Laboratories,

October 1996.

[68] Alex McKenzie. Telnet protocol specifications. RFC 495, May 1973.

[69] Rodney Van Meter, Gregory G. Finn, and Steve Hotz. VISA: Netstation’s

virtual internet scsi adapter. ACM SIGOPS Operating System Review,

32(5):71–80, December 1998.

[70] Sun Microsystems. Jini architecture specification, version 1.2, December

2001.

[71] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John Ioannidis, An-

gelos D. Keromytis, and Jonathan M. Smith. Secure and flexible global

file sharing. In Proceedings of the FREENIX Track: 2003 USENIX Annual

Technical Conference, pages 165–178, 2003.

96

References

[72] James G. Mitchell, Jonathan Gibbons, Graham Hamilton, Peter B. Kessler,

Yousef Y. A. Khalidi, Panos Kougiouris, Peter Madany, Michael N. Nelson,

Michael L. Powell, and Sanjay R. Radia. An overview of the Spring sys-

tem. In Proceedings of COMPCON, pages 122–131. IEEE Computer Society

Press, February 1994.

[73] John Nagle. Congestion control in IP/TCP internetworks. RFC 896, Jan-

uary 1984.

[74] VITA Standards Organization. Myrinet-on-VME protocol specification,

draft 1.1, August 1998.

[75] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N.

Nelson, and Brent B. Welch. The Sprite network operating system. Com-

puter, 21(2):23–36, 1988.

[76] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,

Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing

Systems, 8(3):221–254, 1995.

[77] Jon Postel and Joyce Reynolds. File transfer protocol. RFC 959, October

1985.

[78] Ian Alexander Pratt. The User-Safe Device I/O Architecture. PhD thesis,

King’s College University of Cambridge, 1997.

[79] Reconfigurable Ubiquitous Networked Embedded Systems. Survey of mid-

dleware for networked embedded systems. Technical Report IST-004536-

RUNES, University College London, July 2005.

[80] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy

Hopper. Virtual network computing. Internet Computing, 2(1):33–38, 1998.

[81] Andrew P. Rifkin, Michael P. Forbes, Richard L. Hamilton, Michael Sabrio,

Suryakanta Shah, and Kang Yueh. RFS architectural overview. In USENIX

Summer Conference Proceedings, pages 248–259. USENIX Association,

June 1989.

97

References

[82] Marc Rozier, Vadim Abrossimov, Francois Armand, Ivan Boule, Michel

Gien, Marc Guillemont, Frederic Herrmann, Claude Kaiser, Sylvain Lan-

glois, Pierre Leonard, and Will Neuhauser. Overview of the Chorus dis-

tributed operating system. In Proceedings of the Workshop on Micro-kernels

and Other Kernel Architectures, pages 39–69. USENIX Association, April

1992.

[83] S. Masoud Sadjadi and Philip K. McKinley. A survey of adaptive middle-

ware. Technical Report MSU-CSE-03-35, Department of Computer Science

and Engineering, Michigan State University, December 2003.

[84] Farshad A. Samimi and Philip K. McKinley. A survey of kernel-middleware

interaction in support of cross-layer adaptation in mobile computing. Tech-

nical Report MSU-CSE-04-44, Department of Computer Science and Engi-

neering, Michigan State University, October 2004.

[85] Julian Satran, Kalman Meth, Costa Sapuntzakis, Mallikarjun Chadalapaka,

and Efri Zeidner. Internet small computer systems interface (iSCSI). RFC

3720, April 2004.

[86] Mahadev Satyanarayanan. Scalable, secure, and highly available distributed

file access. Computer, 23(5):9–18, 20–21, 1990.

[87] Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans-

actions on Graphics, 5(2):79–109, 1986.

[88] I2O SIG. Intelligent I/O (I2O) architecture specification (draft version

1.5d), March 1997.

[89] Steven R. Soltis, Grant M. Erickson, Kenneth W. Preslan, Matthew T.

O’Keefe, and Thomas M. Ruwart. The global file system: A file system for

shared disk storage, November 1997.

[90] Raj Srinivasan. RPC: Remote procedure call protocol specification version

2. RFC 1831, August 1995.

[91] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualiz-

ing I/O devices on VMware workstation’s hosted virtual machine monitor.

98

References

In Proceedings of the USENIX Annual Technical Conference, pages 1–14.

USENIX Association, 2001.

[92] Sun Microsystems. NFS: Network file system protocol specification. RFC

1094, March 1989.

[93] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the re-

liability of commodity operating systems. ACM Transactions on Computer

Systems, 23(1):77–110, 2005.

[94] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers.

Nooks: an architecture for reliable device drivers. In Proceedings of the

10th workshop on ACM SIGOPS European workshop, pages 102–107. ACM

Press, 2002.

[95] T10/1161D. Information Technology - SCSI Architecture Model - 3 (SAM-

3). ANSI/INCITS, September 2004.

[96] David L. Tennenhouse, Joel Adam, David Carver, Henry Houh, Michael

Ismert, Christopher Lindblad, Bill Stasior, David Wetherall, David Bacher,

and Teresa Chang. The ViewStation: a software-intensive approach to

media processing and distribution. Multimedia Systems, 3(3):104–115, 1995.

[97] The OpenSSI Clustering Project. OpenSSI (single system image) clusters

for Linux. http://www.openssi.org/.

[98] Vita Nouva Holdings Limited. Inferno. http://www.vitanuova.com/

inferno/index.html.

[99] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg

Thiel. The LOCUS distributed operating system. In Proceedings of the

Ninth ACM Symposium on Operating Systems Principles, pages 49–70.

ACM Press, 1983.

[100] Brent Welch. A comparison of the Vnode and Sprite file system architec-

tures. In Proceedings of the USENIX File System Workshop, pages 29–44,

May 1992.

99

References

[101] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg

Kroah-Hartman. Linux security modules: General security support for the

linux kernel. In Proceedings of the 11th USENIX Security Symposium, pages

17–31. USENIX Association, 2002.

[102] Tatu Ylonen and Chris Lonvick. The secure shell (SSH) protocol architec-

ture. RFC 4251, January 2006.

100

Appendix

Appendix

USB/IP Protocol Data Unit

The protocol data unit format in usbip-0.1.4 is quoted from code. First, a basic

header is defined. It is common to all types of PDU.

/*

* USB/IP request headers.

* At now , we define 4 request types:

*

* - CMD_SUBMIT transfers a USB request.

* - RET_RETURN transfers a result of a USB request.

* - CMD_UNLINK transfers an unlink request of a pending USB request.

* - RET_UNLINK transfers a result of an unlink request.

*

*/

/*

* A basic header followed by other additional headers.

*/

struct usbip_header_basic {
#define USBIP CMD SUBMIT 0x0001

#define USBIP CMD UNLINK 0x0002

#define USBIP RET SUBMIT 0x0003

#define USBIP RET UNLINK 0x0004

__u32 command ;

__u32 busnum ;

__u32 devnum ;

__u32 seqnum ; /* sequential number which identifies URBs */

__u32 pipe ;

} __attribute__ ((packed)) ;

usbip header basic includes, command (PDU type), busnum (destination bus),

devnum (destination device), seqnum (sequence number), and pipe (I/O type).

A USBIP CMD SUBMIT PDU transfers a USB request to a remote Stub driver.

Its result is returned by USBIP RET SUBMIT. A USBIP CMD UNLINK PDU transfers

a unlink request of a pending request. When receives it, the Stub driver cancels

the request as soon as possible. Its result is returned by USBIP RET UNLINK. This

cancel scheme is described later in detail.

101

Appendix

/*

* An additional header for a CMD_SUBMIT request.

*/

struct usbip_header_cmd_submit {
__u32 transfer_flags ;

__s32 transfer_buffer_length ;

__s32 bandwidth ;

__s32 start_frame ;

__s32 number_of_packets ;

__s32 interval ;

unsigned char setup [8] ; /* CTRL only */

}__attribute__ ((packed)) ;

/*

* An additional header for a RET_SUBMIT request.

*/

struct usbip_header_ret_submit {
__s32 status ;

__s32 actual_length ; /* returned data length */

__s32 bandwidth ;

__s32 start_frame ; /* ISO and INT */

__s32 number_of_packets ; /* ISO only */

__s32 error_count ; /* ISO only */

}__attribute__ ((packed)) ;

/*

* An additional header for a CMD_UNLINK request.

*/

struct usbip_header_cmd_unlink {
__u32 seqnum ; /* URB’s seqnum which will be unlinked */

}__attribute__ ((packed)) ;

/*

* An additional header for a RET_UNLINK request.

*/

struct usbip_header_ret_unlink {
__s32 status ;

}__attribute__ ((packed)) ;

usbip header cmd submit shows an I/O request and precedes output data if

available. transfer buffer length shows its I/O data size.

usbip header ret submit shows a result of the I/O request and precedes input

data if available. The actual data size performed in the device is returned by

actual length.

bandwidth and start frame are reserved entries. In the Linux driver stack,

the former prevents the overcommit of requests and the later offers I/O source

102

Appendix

synchronization. Currently, the USB/IP implementation does not handle them

specially (See Section 3.3.4).

/* the same as usb_iso_packet_descriptor but packed for PDU */

struct usbip_iso_packet_descriptor {
__u32 offset ;

__u32 length ; /* expected length */

__u32 actual_length ;

__u32 status ;

}__attribute__ ((packed)) ;

usbip iso packet descriptor shows additional information for an Isochronous

request. offset and length split the following I/O data into more fine-grained

data in a constant interval.

/*

* All usbip requests use a common header to keep code simple.

*/

struct usbip_header {
struct usbip_header_basic base ;

union {
struct usbip_header_cmd_submit cmd_submit ;

struct usbip_header_ret_submit ret_submit ;

struct usbip_header_cmd_unlink cmd_unlink ;

struct usbip_header_ret_unlink ret_unlink ;

} u ;

}__attribute__ ((packed)) ;

All PDU use a common header to keep code simple in the prototype.

These headers are based on the Linux driver stack. Basically, driver stacks in

operating systems are quite similar, though different in detail. The protocol de-

tail will be redesigned developing compatible implementations in other operating

systems.

USB/IP Request Cancel

The cancel scheme of an I/O request is quoted from prototype code.

103

Appendix

/*

* vhci_rx gives back the urb after receiving the reply of the urb.

* If an unlink pdu is sent or not , vhci_rx receives a normal

* return pdu and gives back its urb.

* For the driver unlinking the urb , the content of the urb is not

* important , but the calling to its completion handler is important;

* the completion of unlinking is notified by the completion handler.

*

* CLIENT SIDE

*

* - When vhci_hcd receives RET_SUBMIT ,

*

* - case 1a). the urb of the pdu is not unlinking.

* - normal case

* => just give back the urb

*

* - case 1b). the urb of the pdu is unlinking.

* - usbip.ko will return a reply of the unlinking request.

* => give back the urb now and go to case 2b).

*

* - When vhci_hcd receives RET_UNLINK ,

*

* - case 2a). a submit request is still pending in vhci_hcd.

* - urb was really pending in usbip.ko

* and urb_unlink_urb () was completed there.

* => free a pending submit request

* => notify unlink completeness by giving back the urb

*

* - case 2b). a submit request is *not* pending in vhci_hcd.

* - urb was already given back to the core driver.

* => do not give back the urb

*

* SERVER SIDE

*

* - When usbip receives CMD_UNLINK ,

*

* - case 3a). the urb of the unlink request is now in submission.

* => do usb_unlink_urb ().

* => after the unlink is completed , send RET_UNLINK.

*

* - case 3b). the urb of the unlink request is not in submission.

* - may be already completed or never be received

* => send RET_UNLINK

*/

104

Appendix

USB/IP Usage Example

The following examples are quoted from README in usbip-0.1.4.

- SERVER SIDE (physically attach your USB devices to this host) -

trois:# insmod (somewhere)/usbip.ko

trois:# usbipd -D

In another terminal, let’s look up what usb devices are physically attached to

this host. We can see a usb storage device of busid 3-3.2 is now bound to

usb-storage driver. To export this device, we first mark the device as

"exportable"; the device is bound to usbip driver. Please remember you can not

export a usb hub.

trois:# bind_driver --list

List USB devices

- busid 3-3.2 (04bb:0206)

3-3.2:1.0 -> usb-storage

- busid 3-3.1 (08bb:2702)

3-3.1:1.0 -> snd-usb-audio

3-3.1:1.1 -> snd-usb-audio

- busid 3-3 (0409:0058)

3-3:1.0 -> hub

- busid 3-2 (0711:0902)

3-2:1.0 -> none

- busid 1-1 (05a9:a511)

1-1:1.0 -> ov511

- busid 4-1 (046d:08b2)

4-1:1.0 -> none

4-1:1.1 -> none

4-1:1.2 -> none

- busid 5-2 (058f:9254)

5-2:1.0 -> hub

Mark the device of busid 3-3.2 as exportable.

trois:# bind_driver --usbip 3-3.2

** (process:24621): DEBUG: 3-3.2:1.0 -> none

** (process:24621): DEBUG: write "add 3-3.2" to /sys/bus/usb/drivers/usbip/match_busid

** Message: bind 3-3.2 to usbip, complete!

trois:# bind_driver --list

List USB devices

- busid 3-3.2 (04bb:0206)

3-3.2:1.0 -> usbip

(snip)

Iterate the above operation for other devices if you like.

105

Appendix

- CLIENT SIDE -

First, let’s list available remote devices which are marked as exportable in

the server host.

deux:# insmod (somewhere)/vhci_hcd.ko

deux:# usbip --list 10.0.0.3

- 10.0.0.3

1-1: Prolific Technology, Inc. : unknown product (067b:3507)

: /sys/devices/pci0000:00/0000:00:1f.2/usb1/1-1

: (Defined at Interface level) / unknown subclass / unknown protocol (00/00/00)

: 0 - Mass Storage / SCSI / Bulk (Zip) (08/06/50)

1-2.2.1: Apple Computer, Inc. : unknown product (05ac:0203)

: /sys/devices/pci0000:00/0000:00:1f.2/usb1/1-2/1-2.2/1-2.2.1

: (Defined at Interface level) / unknown subclass / unknown protocol (00/00/00)

: 0 - Human Interface Devices / Boot Interface Subclass / Keyboard (03/01/01)

1-2.2.3: OmniVision Technologies, Inc. : OV511+ WebCam (05a9:a511)

: /sys/devices/pci0000:00/0000:00:1f.2/usb1/1-2/1-2.2/1-2.2.3

: (Defined at Interface level) / unknown subclass / unknown protocol (00/00/00)

: 0 - Vendor Specific Class / unknown subclass / unknown protocol (ff/00/00)

3-1: Logitech, Inc. : QuickCam Pro 4000 (046d:08b2)

: /sys/devices/pci0000:00/0000:00:1e.0/0000:02:0a.0/usb3/3-1

: (Defined at Interface level) / unknown subclass / unknown protocol (00/00/00)

: 0 - Data / unknown subclass / unknown protocol (0a/ff/00)

: 1 - Audio / Control Device / unknown protocol (01/01/00)

: 2 - Audio / Streaming / unknown protocol (01/02/00)

4-1: Logitech, Inc. : QuickCam Express (046d:0870)

: /sys/devices/pci0000:00/0000:00:1e.0/0000:02:0a.1/usb4/4-1

: Vendor Specific Class / Vendor Specific Subclass / Vendor Specific Protocol (ff/ff/ff)

: 0 - Vendor Specific Class / Vendor Specific Subclass / Vendor Specific Protocol (ff/ff/ff)

4-2: Texas Instruments Japan : unknown product (08bb:2702)

: /sys/devices/pci0000:00/0000:00:1e.0/0000:02:0a.1/usb4/4-2

: (Defined at Interface level) / unknown subclass / unknown protocol (00/00/00)

: 0 - Audio / Control Device / unknown protocol (01/01/00)

: 1 - Audio / Streaming / unknown protocol (01/02/00)

Attach a remote usb device!

deux:# usbip --attach 10.0.0.3 1-1

port 0 attached

Show what devices are attached to this client.

deux:# usbip --port

Port 00: <Port in Use> at Full Speed(12Mbps)

Prolific Technology, Inc. : unknown product (067b:3507)

6-1 -> usbip://10.0.0.3:3240/1-1 (remote bus/dev 001/004)

6-1:1.0 used by usb-storage

/sys/class/scsi_device/0:0:0:0/device

/sys/class/scsi_host/host0/device

/sys/block/sda/device

Detach the imported device.

deux:# usbip --detach 0

port 0 detached

106

Appendix

Assertion Parameters

Table A.1 is assertion parameters defined for the prototype sharing system in

Section 4.4.2.

Table A.1: Assertion Parameters

uid subject UID

gid subject GID

host subject host name

af address family

ip subject IP address

peerkey subject public key

devhost origin host

bus bus name

busid device identifier on the bus

time attachment time

idVendor USB vendor ID

idProduct USB product ID

bDeviceClass USB class ID

bDeviceSubClass USB subclass ID

bDeviceProtocol USB protocol ID

manufacturer USB manufacturer name

product USB product name

serial USB serial number (if available)

bInterfaceClassN USB the Nth interface class ID

bInterfaceSubClassN USB the Nth interface subclass ID

bInterfaceProtocolN USB the Nth interface protocol ID

mode LocalDev, ExportDev, RemoteDev

lease time elapsed time from the last acquisition

107

Publications

Publications

Journal

• Takahiro Hirofuchi, Eiji Kawai, Kazutoshi Fujikawa, and Hideki Sunahara.

USB/IP: A Transparent Device Sharing Technology over IP Network. IPSJ

Transactions on Advanced Computing System, 46(SIG 12 (ACS 11)):349–

361, August 2005.

International Conference

• Takahiro Hirofuchi, Eiji Kawai, Kazutoshi Fujikawa, and Hideki Sunahara.

USB/IP - A Peripheral Bus Extension for Device Sharing over IP Network.

In Proceedings of the FREENIX Track: 2005 USENIX Annual Technical

Conference, pages 47–60. USENIX Association, April 2005.

Technical Report

• Takahiro Hirofuchi, Eiji Kawai, Yutaka Nakamura, Kazutoshi Fujikawa, and

Hideki Sunahara. The Proposal of a Device Control Framework with USB

over IP for Realizing IP Device Space. In IPSJ SIG Technical Reports, 2003-

UBI-2, pages 117–112. Information Processing Society of Japan, November

2003. In Japanese.

• Takahiro Hirofuchi, Yutaka Nakamura, Eiji Kawai, Kazutoshi Fujikawa, and

Hideki Sunahara. A Device Access Method over Network by Extending USB

Driver Stack of Linux. In IPSJ SIG Technical Reports, 2003-OS-93, pages

41–48. Information Processing Society of Japan, March 2003. In Japanese.

Award

• USB/IP - A Peripheral Bus Extension for Device Sharing over IP Network.

FREENIX Track Best Paper Award: 2005 USENIX Annual Technical Con-

ference. USENIX Association, April 2005.

108

Publications

• USB/IP: A Transparent Device Sharing Technology over IP Network. IPSJ

Digital Courier Funai Young Researcher Award. Information Processing

Society of Japan, April 2006.

109

