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Learning and Decision-Planning in
Partially Observable Environments*1

Hajime Fujita

Abstract

ln the real world, information about the environment depends on unreliable inputs
received through sensory equipment. All living creatures and intelligent systems,
therefore, must learn their policy and make decisions based on such imperfect infor-
mation obtained by the interaction with the underlying environment. Learning and
decision-making in partially observable situations are indispensable mechanisms in
realistic environments, and problems with controlling computer systems under uncer-
tainty, as well as experiments to reveal how such mechanisms operate in the brain,
have received significant attention as imperative issues in diverse communities such
as engineering, information science and cognitive psychology over the past few years.

This dissertation presents research results about learning and decision-planning in
partially observable environments. As studies for controlling autonomous agents, we
propose mode1-based reinforcement learning (RL) schemes for large-scale multi-agent
problems with partial observability. Games constitute a challenging domain of RL
for acquiring strategies, because most of them include multiple players and many
unobservable variables in a large state space. The difhculty of solving such realis-
tic multi-agent problems with partial observability arises mainly from the fact that
the computational cost for the estimation and prediction in the whole state space,
including unobservable variables, is too expensive. To overcome this intractability
and enable an agent to learn in an unknownenvironment, an effective approximation
method is required with explicit learning of the environmental model. This disserta-
tion applies our methods in particular to the card game of "Hearts." This game is
a we11-defined example of an imperfect information game, and can be approximately
formulated as a partially observable Markov decision process (POMDP) for a single
learning agent. To reduce the computational cost, we use effective approximation
techniques in which the heavy integration required for the estimation and prediction
can be approximated by an averaged state or a plausible number of samples. Com-
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puter simulation results show that our methods are effective in solving such a dincult
partially observable multi-agent problem.

As studies for modeling human behavior, we demonstrate the performance of a
probabilistic model for human decision-making and estimation processes in a par-
tially observable environment. Since theoretical POMDP studies have indicated that
optimal decision-planning under partially observable situations has computational
difnculties, it is speculated that the human brain avoids the dinculties with some
effective approximation for estimating unobservable states and making decisions. To
reveal how the decision-making mechanism with the approximate estimation process
operates in the brain, we explore the possibility that our mode1-based RL framework
is implemented in the human brain. Behavioral experiments using a virtual mazewere
carried out to thirteen normal subjects. Because the subjects could not observe their
real position in the maze but obtain partial observation, it is important for solving the
problem effectively to estimate the unobservable real positions based on the observa-
tion sequence. Model-based analyses show that our model can reproduce the subjects'
behaviors with high accuracy, and indicate that humans estimate unobservable states
based on the framework of the incremental Bayes estimation.

Keywords: Partially observable Markov decision process (POMDP) , Reinforcement
learning (RL), Card game Hearts, Behavior mode1.



部分観測環境における学習と意思決定に関する研究*2

藤田肇

内容梗概

実世界では,周囲を取りまく環境に関する情報は感覚器官を通して知覚できる不完全な

入力に依存するため,生物や知的システムは,環境との相互作用を通して得られた部分的

な観測系列に基づいて学習と意思決定を行わなければならない.したがって,部分観測状

況における学習と意思決定を担う機構は実環境で不可欠であり,近年様々な研究分野でこ

の本質的な機構を理論的･実験的に解き明かす試みがなされている.

本学位論文では,部分観測環境での方策学習と意思決定に関する研究結果について述べ

る.まず,部分観測性を持つ大規模な未知環境におけるモデル同定型強化学習法を提案す

る.本手法に基づく強化学習エ-ジェントは,部分観測性,マルチエ-ジェント系,大規

模な状態空間という3つの困難な条件を持つ環境において意思決定と方策の学習を行う.

想定した条件を満たす応用課題としてカ-ドゲ-ム"Hearts"を取り上げ,提案手法に基

づいてこの実環境における戦略の獲得を目指す.このゲ-ムでは,相手が所持するカ-ド

は観測できないため,各プレイヤ-にとって部分観測状況となる.そのため,各エ-ジェ

ントは観測できないカ-ドの分布を,明にあるいは暗に推定しなければならない.また,

4人対戦用の競合型ゲ-ムであるため,複雑なマルチエ-ジェント系となる.したがっ

て,環境の-部である相手プレイヤ-のモデルを同定した上で,効果的に行動予測を行う

必要がある.さらに,通常の52枚のカ-ドを用いるこのゲ-ムは,巨大な状態空間を持

つ.したがって,方策を決定するために必要な,予測と推定に伴う計算困難性を回避する

ために,効果的な近似解法が必要になる.本研究では,この予測と推定に関わる2種類の

近似アルゴリズムを提案する.第-の手法は,平均場近似法の考え方を応用したものであ

り,第二の手法は,サンプリング法を利用したものである.これらの手法に基づく学習

エ-ジェントの性能を計算機シミュレ-ションにより評価した.その結果,上級レベルの

強さを持つル-ルベ-スエ-ジェントよりも優れた戦略を獲得でき,本手法が複雑な部分

観測環境における強化学習法として有用であることが示された.

次に,部分観測環境におけるヒトの意思決定モデルを提案する.部分観測環境での最適

意思決定問題は計算論的に困難であることが分かっており,ヒトは実世界で非観測状態の

推定や方策決定などの計算に近似的な処理を行っていると考えられる.本研究では,部分

観測状況におけるヒトの意思決定過程を解明するために,先の研究で提案した計算モデル

の脳内実現の可能性を探る.ここでは, 13人の被験者に対して部分観測迷路課題を課し

*2奈良先端科学技術大学院大学情報科学研究科情報生命科学専攻博士論文, NAIST-IS-DDO461034,
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た.被験者は迷路内において自身の周囲に関する限られた観測を得ることができるが,真

の絶対位置を知ることはできない.したがって,課題を効率よく達成するためには,部分

的な観測情報から迷路内における自身の位置と頭の向きを推定する必要がある.提案モ

デルは,部分観測迷路課題に対する被験者の意思決定過程を適切に説明できると同時に,

逐次ベイズ推定に基づく非観測状態の推定を,ヒトが脳内で実現している可能性を示唆

する.

キーワード:部分観測マルコフ決定過程,強化学習,カ-ドゲ-ムHearts,行動モデル
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Notation

+ S: the state set
. st: astateattimet
+ A: the action set
. at: an action at time t
+ 0: the observation set
. ot: an observation at time t
¥ R(): the reward function
. rt: arewardat timet
. B: the belief space
' B: the approximated belief space

. bt: a beliefstate at time t
+ X: the internal stat,e set
¥ xt: an internal state at time t, where xt - (yt,ct)
. yt: a state at time t, which is estimated by the subjects
+ C: the confidence set
. ct: a confidence of the subjects for their state estimation

. T: the discount factor
¥ V(): the value function
¥ Vi(): the value function at i-th iteration step
¥ V*(): the optimal value function
¥ O(): the approximated state value function

¥ Q(): the action value function
¥ Q*(): the optimal action value function
. 7T: aPOlicy

. 7T*: an OPtimal policy

+ T: the termination time

¥ p(bt, at): the reward function over the belief space, defined in equation (2.5)

¥ 7-(bt, at, ot+1): the state estimator function (the belief update function), defined

in equation(2.6)



¥ cri: an lSf-dimensional hyper-plane

. ri: the set of cyi hyper-planes at i-th iteration step

¥ rtT: the parsimonious set of hyper-planes, which is suncient to represent the
value function Vi ()

. JM: the set ofmemory states

. mt: amemorystate at timet

+ 6t: anTD errorat timet

. M: the number of agents in the commonenvironment
¥ si: astateattimetforagenti(i-0,... ,M)

¥ a;: an action at time t for agent i
¥ o;: an observation at time t for agent i
¥ 4,i: a strategy for agent i
' 6i: a strategy for agent i, which is approximated by the learning agent

¥ Ht: a history at time t, representing Ht - ((ot,-), (ot-1,at-1),... , (01,a1))

¥ ht: a partial history at time t, representing ht - ((ot, -), (ot-1,at-1))

. htk: a truncated history with k-1ength at time t, representing
htk - ((ot,-), (ot_l,at-1),... , (Ot-k+1,at-k+1))

¥ Ut(Ht, at): the utility function at time t, defined in equation (4.2)
+ N: the number of samples for the current state
+ K: the number of samples for the next state
¥ 3t, gt+1: a SamPled state and a sampled next state, respectively
¥ Bfj), BfT1: a j-th sampled state and a k-th sampled next state, respectively
. ai,(k): ac.nslituent oftheactionsequence (a1,(k),... , aM,(k)) E AM(3fj), at, 3fT1)

¥ 6;: a sampled observation
' 6i,(3'): a j-th sampled observation

¥ Tm: a constant denoting the assumed action randomness
¥ TkL: a COnStant denoting the assumed action randomness of agent i's policy

¥ (.): the expectation symbo1
¥ AM(st,at,ot+1): the set of possible sequences of opponents' actions

(at1,... ,atM) in which the state st reaches the next state whose obser-

vation is ot+1, after the action at.
¥ 6%;(at, Ht): an expected observation for agent i, defined in equation (3.7)
¥ Fi(oi, ai; bi), Fi(qti, ,i., bi): an assumed utility oftaking action ai for an obser-

vation o;
. pt: an input of a value function at time t

¥ qt%: an input of i-th action predictor at time t



¥ ri: an output of i-th action predictor at time t

¥ s: a state sequence, representing s - (s1,... ,ST+1)

¥ a: an action sequence, representing a - (a1,... ,aT)

¥ o: an observation sequence, representing o - (o1,... ,OT)

¥ r: a reward sequence, representing r - (r1,... ,rT)

¥ x: an internal state sequence, representing x - (x1,... ,XT+1)

¥ y: an estimated state sequence, representing y - (y1,... ,yT+1)

¥ 0: the internal state transition, representing O = (Oij - P(xL+1 - jlxt -
i,at)Ii-1,...,LXl,j-1,...,EXf).

¥ q: the action selection probability of the subjects, representing J = (Jik -
P(at-klxt-i)li-1,...,IXl,k-1,...,lAF)

. Ns: the number ofreal states st+1 Which do not violate the observation obtained
at time (t+1)

. Na: the number of executable actions
¥ Nexp: the number of exploratory actions
¥ N.pt: the number of optimal actions
. ec: a parameter defining the dynamics of the confidence
¥ eexp: a parameter defining the action selection probability in the exploratory

mode
¥ e.pt: a parameter defining the action selection probability in the exploitation

mode
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Chapter 1

lntroduction

This dissertation presents research results about learning and decision-planning in
partially observable environments. In the real world, environments often have partia1
observability: a decision-maker cannot directly access internal states of the environ-
ment, and can obtain only observations that contain partial information about the
states. Learning and decision-making problems in such a situation can be theoreti-
cally formulated as partially observable Markov decision processes (POMDPs). When
introducing this framework to realistic problems, however, serious computational dif-
ficulties arise because exact solutions require computing a policy over the entire belief
space. Not only the estimation process for a large number of unobservable states, but
also computing a policy depending on the estimation need too heavy computation
even with effective approximation methods. Only a few of POMDP studies, there-
fore, assumed a large-scale partially observable environment, and how humans deal
with such intractable problems in the real world is still almost unknown.

This thesis is about the research results of policy learning and decision-theoretic
planning in realistic partially observable environments. As studies for controlling
autonomous agents, it presents mode1-based reinforcement learning (RL) schemes
for large-scale multi-agent problems with partial observability, and the proposed RL
methods are in particular applied to a card game, "Hearts," a well-defined example
of a multi-player, competitive and partially observable game. As studies for modeling
humanbehavior, this thesis demonstrates the performance of probabilistic models for
humandecision-making process in a partially observable environment, and indicates
a possible implementation of the human brain.

l.1 Learning and decision-pJanning
ln the real world, humans and other living creatures survive by selecting actions

suitable for satisfying their physiologic cravings. Under the situation in which some
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kind of reward, such as food or money proportional to the enciency of an action, are
provided from an environment as a resulting evaluation of the action, the simplest
optimality can be defined as taking the action that yields the largest reward. Animals,
therefore, try to learn the association amongthe rewarding effect from the discrepancy
between what it predicted would happen and what actually happened, based on trial
and error. In the research field of psychology, this associative learning is regarded as a
fundamental principle for all living things, and the modification of voluntary behavior
based on the reward is called operant conditioning. Thorndike (1911) observed the
behavior of cats trying to escape from a home-madepuzzle box; although the cats took
a long time to escape when first constrained in the box, ineffective responses occurred
less frequently and successful responses occurred more frequently with experience.
This enabled the cats to escape in less time over successive trials. In general, of
several responses made to the same situation, those which are accompanied or closely
followed by satisfaction to the individual wil1, other things being equal, be more firmly
connected with the situation, so that, when it recurs, they will be more likely to recur,
and vice versa. Since the phenomenon describes the effect of reinforcing events on
the tendency to select actions, it is called the "Law of Effect" (Thorndike, 1911); it

is widely regarded as a basic principle underlying much behavior.
Many conditioning models under various conditions such as the Rescorla-Wagner

model (Rescorla & Wagner, 1972), a famous model of classical conditioning in which
animals are theorized to learn from the association of pairing stimuli, have been pre-
sented to describe reasonable ideas in terms of a learning and decision-making process
for single trial tasks. Although these models could predict experimental results of the
conditional learning according to simple mathematical equations, and have been re-
garded as effective computational models to explain learning processes of animals,
they could not deal with decision-theoretic planning for delayed reward tasks in a
multiple time scale; for example, considering the situation in which one achieves a
great success due to a constant efFort, even if the effort itself is nothing less than pun-
ishment, the total reward is maximized because the subsequent success is regarded
as a large reward. That is, humans and other higher-order living creatures can de-
termine an immediate action by considering a delayed reward expected in the future.
The conventional conditional learning models for single trial tasks are not applicable
to delayed-reward and multiple-step tasks. To deal computationally with learning
and decision-making of higher order of living creatures, therefore, it is necessary to
consider behavior models by assuming the general setting in which they maximize
the cumulative reward that can be obtained by taking sequential actions over mul-
tiple steps. To analyze and interpret such behavior based on the reward sequence,
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the learning theory based on trial and error has been studied in diverse fields in the
psychology of learning.

In the research field of engineering, on the other hand, the optimal control problem
of designing a controller to minimize a measure of a dynamical system's behavior over
time, has been widely studied. One example is the problem of the optimal torque
to control a robot arm. Such problems have not essentially included the concept of
learning, but have been studied by solving analytically linear equations. As one of the
approaches to this problem, Bellman (1957a) defined a functional equation, nowoften
called the Bellman equation, by introducing the concepts of a dynamical system's
state and of an optimal return function. The class of methods for solving optimal
control problems by solving this equation came to be known as dynamic programming
(DP), where the return function is a function which returns an expected cumulative
return for a particular control in a certain state. DP algorithms solve optimal control
problems based on iterative calculation of the optimal return function according to the
Be11man equation: when sequential returns are provided for control signals under the
situation that discrete states transit stochastically, which is formulated as a Markov
decision process (MDP) (Bellman, 1957b), the optimal controller which maximizes
the expected cumulative return can be obtained by iterative optimization between the
controller and the return function. With the progress of learning theory based on trial
and error in psychology, the DP devised in the field of engineering has been promoted
to reinforcement learning (RL) (Sutton & Barto, 1998) as a new framework for solving
problems of determining an optimal action sequence in unknownenvironments.

1.2 Reinforcement rearning
RL is regarded as the first field to seriously address the computational issues that

arise when learning from interaction with an environment to achieve long-term goals.
In an MDP environment whose dynamics is unknown for an agent, problems whose
solution is defined as acquiring the optimal policy that maximizes the expected cu-
mulative reward can be solved by an RL method. In other words, in a situation that
environmental states whose process satisfies the Markov property change according to
an unknownprobability distribution, a policy to maximize the expected accumulative
reward can be obtained based on an RL algorithm. Since the policy is improved based
on trial-and-error learning, two important aspects included in the Law of Effect apply
to the learning scheme of RL: first, it is selectiona1, which means trying alternatives
and selecting a better solution among them by comparing their results; and second,
it is associative, which means the solution found by selection is associated with a

.3
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particular situation. By these two distinct aspects, RL is distinguished from other
learning schemes in the machine learning field: supervised learning is associative but
not selectional because the correct answer is given for learning, and natural selection
in evolutionary methods is an example of a selectional process, but it is not associa-
tive. Based on the RL theory, through the selectional and associative process, that
is, trying various alternatives in each situation and remembering which action yields
the best performance in a particular situation, the optimal decision-making can be
attained even in an unknownenvironment.

Various approaches have been proposed, and their performances and convergence
conditions have been widely discussed in the theoretical research field of RL. In partic-
ular, temporal difference (TD) learning, developed by Sutton (1988) with inspiration
from the concept of animal learning psychology and artificial intelligence research,
has largely influenced the wide research area of learning and control. TD learning is
an iterative stochastic approximation algorithm based on the prediction error of the
expected cumulative reward, which does not require knowledge of the environmen-
tal model. Many powerful algorithms such as Q-learning (Watkins & Dayan, 1992)
and Actor-Critic method (Barto, Sutton, & Anderson, 1983) have been proposed by
applying the framework, and have been analyzed theoretically in terms of applicabi1-
ity, required computational time, converging proofs and relationship to other studies,
under various conditions. In addition, many researches have attempted realistic prob-
lems as the application of such theoretical studies. Examples include robot controls
with multiple degrees of freedom such as working robots (Mori, Nakamura, & Ishii,
2004; Collins, Ruina, Tedrake, & Wisse, 2005; Ueno, Nakamura, Takuma, Shibata,
Hosoda, & Ishii, 2006), a stand up robot (Morimoto & Doya, 2001) and an acrobot
(Nishimura, Yoshimoto, & Ishii, 2004), and high-dimensional problems in dynamic
environments such as the elevator dispatch problem (Crites, 1996; Crites & Barto,
1996a, 1996b), a channel-a11ocation task for a cellular telephone system (Singh &
Bertsekas, 1996), and playing Backgammon (Tesauro, 1994) have been studied as
applications of the RL field.

In physiology fields such as neuroscience, on the other hand, the study of the neural
substrates for reward-based learning has been strongly influenced by computational
theories. In recent work, such theories have been increasingly integrated into exper-
imental design and analysis; for example, Schultz et al. (1997) suggested that the
phasic responses of midbrain dopamine neurons recorded from primates behaving for
rewards resemble the prediction error used in TD learning for choosing advantageous
actions, and Barraclough et a1. (2004) suggested that the predicted mechanism of the
prefrontal cortex, which receives projection from dopamine neurons, plays important
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roles in solving complex decision-making problems. Such computational approaches
make possible the study of the neural substrates of inherently subjective quantities

that the models purport to quantify, such as the "value" or "utility" of an action,
meaning the degree of reward that a subject expects to receive for executing that

action (Daw & Doya, 2006). The theory of reinforcement learning, therefore, plays

an important role as the theoretical basis of reward-based learning in diverse fields of

research.

1.3 Partial]y observable problems
ln an MDP formulation, an arbitrary state in an environment is observable for

learning agents; the environmental state, which is an input to the agents' policy, is
assumed to be available for computing an optimal policy. In general decision-planning
problems, however, all information for making an optimal decision is not necessarily
given to the agent; the agent cannot directly access the environmental state, and
can obtain only observations which contain partial information about the state. For
example, in localization problems in which an autonomous mobile robot localizes its
actua1 1ocation in various environments, the robot can obtain information around the
current location just using input devices such as cameras placed at various points in
the environment, but it is infeasible to prepare such external devices over its large
moving domain in advance. The robot, therefore, should identify its location based
only on the information obtained from mobile devices on the robot itself, but such
information is often partial, since a mobile camera can provide not an absolute position
in the environment but a limited scene around the robot, or such a sensory input may
be unreliable due to background noise. If there is much uncertainty in the current
location due to partial observability, it is difRcult to determine an optimal moving
direction for achieving the original goal. The problem, obtaining an optimal decision-
making policy under the situation where only partial information about the real state
of the environment is available to the agent, is called a partially observable problem,
and manyRL researchers in the machine learning community are nowdevoting much
attention to this problematic field.

If the policy is determined only from an immediate observation based on conven-
tional RL algorithms for MDP environments, without estimating an internal state
explicitly or implicitly, it does not usually achieve the global policy (Chrisman &
Littman, 1993; Singh, Jaakkola, & Jordan, 1994; Littman, 1994b), because the ob-
servation does not satisfy the Markov property; for example, in the same situation as
the autonomous robot above, optimal control can no longer be expected using only

-

.)
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the immediate sensory input, which contains much uncertainty. One wayto overcome
this problem is to resolve the uncertainty by estimating the real state of the underly-
ing system based on an assumed probabilistic model for an observation process. Such
a framework which contains the estimation process of the unobservable state and
learning the policy is called a partially observable Markov decision process (POMDP)
(Astrom, 1965; Smallwood & Sondik, 1973; Sondik, 1978; Monahan, 1982; Lovejoy,

1991; White, 1991; Kaelbling, Littman, & Cassandra, 1998), and many algorithms

based on this framework have been proposed (Peshkin, Meuleau, & Kaelbling, 1999;

Loch & Singh, 1998; McCallum, 1993; Whitehead & Lin, 1995; Nikovski & Nour-

bakhsh, 2000). In particular, various approaches in which the posterior distribution

of unobservable states, now often called a belief state, is updated by the Bayes rule

have been studied (Littman, Cassandra, & Kaelbling, 1995; Brafman, 1997; Boutilier

& Poole, 1996; Pineau, Gordon, & Thrun, 2003; Theocharous & Mahadevan, 2002.,

Thrun, 2000; Chrisman, 1992; Yoshimoto, Ishii, & Sato, 2003).

Since the belief state is a sufhcient statistic which summarizes all information neces-
sary for optimal action selection, this formulation gives rise to the standard approach
to solving POMDPs, but several long-standing issues still remain. First, learning of
the value function over the belief space is difncult even with an effective approximation
(Hauskrecht, 2000); optimization of the value function requires heavy computation,
because its input is a continuous probability distribution and usually has high dimen-
sionality, meaning that the problem is transformed into an equivalent, completely
observable MDP with a continuous state space consisting of all possible belief states.
Second, an environmental model and the number of real states are required for ex-
plicitly estimating unobservable states; environmental information is used to calculate
the belief state. These difhculties thus make dealing with various POMDP problems
infeasible. Solving partially observable problems, therefore, has been regarded as a
crucially difncult domain in this learning and decision-making research field.

Humans,on the other hand, are familiar with solving large-scale and complex par-
tia11y observable problems; for example, in conversation, even if one cannot observe
what opponents think or intend in their thoughts and their feelings or backgrounds,
but can perceive only tone, expression, appearance and context of the conversation,
it is possible to communicate with others smoothly by estimating such hidden in-
formation based on partial observations. That is, we cope with the computational
dinculties ingeniously. Howthis mechanism operates in the human brain, however,
is still almost unknown(Yoshida & Ishii, 2006); it is important to consider a possible
hypothesis based on a reasonable computational model.
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1.4 Contents of dissertation
This dissertation presents research results about learning and decision-planning in

partially observable environments. As studies for controlling autonomous agents, it
deals in particular with the card game "Hearts" (Perkins, 1998; Pfahringer, Kaindl,
Kramer, & Furnkranz, 1999; Sturtevant & White, 2006), a four-player, competitive
and partially observable game, and presents automatic strategy-acquisition schemes
for this game based on the framework of model-based RL. Many card games have
general properties: they are large-scale, multi-agent, and partially observable. Most
cannot be played alone (that is, they are in a multi-agent setting), and cards in
another player's hand or undealt cards are unobservable to each player (meaning a
partially observable situation). Card games have, consequently, been studied as wel1-
defined test-beds for strategy acquisition problems in the real world. In dealing with
partially observable games (Chang, Ho, & Kaelbling, 2003; Dah1, 2002; Nair, Marsella,
Tambe, Pynadath, & Yokoo, 2003; Hansen, Bernstein, & Zilberstein, 2004; Emery-
Montemerlo, Gordon, Schneider, & Thrun, 2004), three difBculties arise: the first is to
estimate the distribution of unobservable states based on the history of observations;
the second is to predict the opponent agents' actions based on any acquired models;
and the third is to cope with the computational intractability stemming from the
huge state space. A card game with partial observability, therefore, is a challenging
target to study. Computer simulation results show that our methods are effective in
solving such a difncult partially observable multi-agent problem.

As studies for modeling human behavior, this dissertation demonstrates the per-
formance of probabilistic models for human decision-making process in a partially
observable environment. Since theoretical POMDP studies have indicated that opti-
mal decision-planning under partially observable situations has computational din-
culties, it can be speculated that the human brain avoids the dinculties with some
effective approximation for estimating unobservable states and making decisions. To
reveal how the decision-planning mechanism with the estimation process operates in
the brain, these studies explore the possibility that our mode1-based RL framework
presented above is implemented in the human brain. Behavioral experiments using a
virtual mazewere carried out to thirteen normal subjects. Because the subjects could
not observe their real position in the maze but obtain partial observation, it is im-
portant for solving the problem effectively to estimate the unobservable real positions
based on the observation sequence. Analysis results show that our model can repro-
duce the subjects' behaviors with high accuracy, and indicate that humans estimate

7
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unobservable states based on the framework of the incremental Bayes estimation.
This dissertation is organized as follows: Chapter 2 provides a brief review of rele-

vant background about POMDPs and previous works on various approaches. Chap-
ters 3 and 4 describe two types of the model-based RL method. Chapter 5 presents
probabilistic models for describing the human decision-making process, and Chapter
6 gives a summary of the dissertation with a brief discussion and an outline of future
works.



9

Chapter 2

Preliminary

This chapter introduces the basic framework of partially observable Markov deci-
sion processes (POMDPs), and presents a brief summary of previous studies in this

research area. POMDPs were first introduced to the control theory and operations
research communities (Astrom, 1965; Smallwood & Sondik, 1973; Sondik, 1978; Mon-

ahan, 1982; Lovejoy, 1991; White, 1991) as a framework to make optimal decisions in

stochastic dynamical systems with hidden variables. This framework was later con-
sidered by the artificial intelligence community as a principled approach to planning
under uncertainty (Kaelbling et al., 1998). The last part of this chapter reveals the

relationship between our studies and previous POMDP research.

2.1 Basic framework

This section establishes the basic terminology and essential concepts, and then
introduces exact solutions exhibited by the value iteration algorithm, which have
been proposed for POMDP planning problems.

2.1.1 Constituents

A standard POMDP framework consists of the following six constituents.

. State space S
The environment is defined by aset S - (s1,... , slSl).fdistinct states. A state
s E S should retain all relevant information about the environment compactly
for optimal action selection. Although the number of states [SI may be finite,
countably infinite or continuous, wefocus on discrete state spaces with a finite
numberof states throughout this dissertation.

. Action space A
Agents existing in the environment have a set A - (a1,... ,alAl).f distinct
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actions, and select an action a E A according to the agents' policy 7T, in every
time step. Although the number of actions lAI may be also finite, infinite or

continuous, we assume that it is a discrete state space with a finite number of

actions.

. Observation space O
The environment has a set O - (o1,... ,olOl).f distinct observations, and

provides information about the underlying state to the agents, through an
observation o E O after every action a. The observation space O, assumed to
be discrete and finite, is the same as the state space S in MDPs, whereas it is
not in POMDPs.

¥ Transition functionT:SxAxS- [0,1]
The state of the environment is influenced by the agents' actions, and changes
with uncertainty according to the transition function T: such a stochastic dy-
namics is represented as the probability distribution P(st+1lst, at), where t
indicates a discrete time step. Note that this transition function satisfies the
Markov property in which the next state st+1 depends not on past states and
actions but only on the pair of a current state st and action at.

¥ Observation functionO :Sx Ax O- [0,1]
The agents perceive an observation with uncertainty according to the obser-
vation function O after taking an action in a certain state: such a stochastic
process is modeled by the probability distribution P(ot+1 Ist+1, at).

+ Reward functionR:SxAxS)R
A reward function R defines the goal of a learning problem, which maps the
tuple of a state, an action and a next state into a numerical value r E R,
indicating the intrinsic desirability of that state.

The POMDP framework provides a general learning and decision-planning model for
acting optima11y in partially observable domains. It often assumes a complete and
correct world model, with s,tochastic state transitions, imperfect state tracking and
a reward structure, but can also include learning of the model components (Shani,
2004).

These constituents, represented by the tuple (S, A, 0,T, 0, R), define the proba-

bilistic environment. The POMDP framework assumes that the environmental dy-

namics T, O and R are stationary for the agent; these dynamics do not change over
time. Because we assume problems in which there are multiple learning agents in a
commonenvironment, this stationary assumption cannot be applied due to the inter-
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action among the agents. In this dissertation, however, the environment is regarded
as stationary for the learning agent, under the assumption that there is a single learn-
ing agent, and our methods are then directly applied to a multi-agent problem; in the
computer experiments described in Chapters 3.3 and 4.3, we show several acceptable
results in dynamic environments.

2.1.2 Beliefstate and va[ue functions

ln POMDP problems, the objective of each agent is to acquire an optimal policy
7T* maXimizing an expected future reward; the objective function is defined as the
expectation of the sum of the immediate reward over time:

E1;Ttrt] , (2.1,

where O 5; T < 1 is a discount factor which bounds the sum in a finite value, and E7T
is the expectation symbol under the assumption that actions are selected according
to the policy 7T. Although we focus in this chapter on the discounted infinite-horizon
model, its formulation can be applied to the finite-horizon case by modifying the
objective function; equation (2.1) can be written in this case as

Elgrt] , (2.2,

where T denotes termination time. In later chapters, we use the finite-horizon model
for our application problem.

The state st is not observable for each agent, and only the observation ot, which
contains partial information about the state, is available. If the policy is determined
only from an immediate observation, without estimating a hidden state explicitly or
implicitly, it does not usua11y converge to a global optimal policy (Singh et a1., 1994;
Kaelbling, Littman, & Moore, 1996), because the observation does not satisfy the
Markov property. One way to overcome this problem is to use the history of the
agent's experience Ht - ((ot,-), (ot-1,at-1),... , (01,a1)). Because it is difRcult,

however, to maintain such a naive history with a limited memory capacity, a belief
state b(st) is often used (Astrom, 1965). Since the belief state summarizes the history
as a probability distribution over S, it is a suncient statistic with the Markov property,
which is updated upon every new observation according to the incremental Bayes
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formula:

b(st+1) = P(st+1lHt+1) -
P(otJst+l, at) =stES P(st+llst, at)P(stlHt)

=st.1ES P(ot+1lsw, at) =stES P(st+1lst, at)P(stIHt)

(2.3)

Note that the next belief state b(st+1) Can be obtained from the current one b(st)
recursively. The optimal policy that maps a belief state into an action becomes a
solution of a continuous space belief-state MDP.

The tiger problem
To demonstrate the concept of a belief state, we use a simple partially observable

problem, "The tiger problem," introduced by Kaelbling et al. (1998). An agent is
standing in front of two closed doors; behind one of the doors is a treasure box
(reward), and behind the other is a tiger (penalty). The agent cannot perceive the
real position of the tiger but can listen to sounds from behind the closed doors with
incomplete accuracy; there is a chance that the agent hears the tiger's roar from the
wrong door. A - (LEFT, RIGHT, LISTEN) are executable actions for the agent,
and O - (LEFT, RIGHT) are observations obtained by taking the LISTEN action.
The rewards rt for opening the door with the treasure box, for opening the door
with the tiger and for taking the LISTEN action are +10, -100 and -1, respectively.
The LISTEN action does not change the tiger's position, but the LEFT and RIGHT
actions, that is, opening either door, are followed by a state transition with a uniform
probability; in other words, the episode is terminated by opening a door, and then
another episode is initialized randomly. The probability that the agent can obtain

the correct observation is p - 0.85.
Assuming that the tiger is equally likely to be behind either door, the initial belief

state of the agent is [0.5, 0.5], where the first dimension of the belief vector represents
the probability of the tiger being behind the left door. If the agent takes the LISTEN
action and observes LEFT, then the belief state is updated as [0.85, 0.15]. If it takes
the LISTEN action and observes LEFT again, then the belief state is updated as
[o.97, 0.03]; the agent confirms its conviction that the tiger is behind the left door by

obtaining LEFT observations for the second consecutive time.

A belief-state MDP for the infinite-horizon discounted case satisfies the standard

fixed-point equation, called the Bellman equation:

v*(bt) - aTEaXQ*(bt,at), (2Aa)

Q*(bt,at) - p(bt,at) +7 E p(bt'1lbt,at)V*(bt'1), (2Ab)
btEB
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where bt and bt+1 are abbreviations of the belief state b(st) and b(st+1), reSPeCtively,
and B denotes the belief space. V'(bt) is the optimal value function ofthe beliefstate
bt, which represents the maximumof the expected cumulative reward in equation
(2.1), and Q*(bt, at) is the optimal action-value function, often called the optimal Q-
function, which represents the maximumof the expected cumulative reward starting
from a belief state bt, taking the action at, and thereafter acting optimally. p(bt, at)
is the expected one-step reward:

p(bt,at) - Ep(st,at)b(st) - = = R(st,at}t'1)P(st'1Lst,at)b(st), (2.5)
stES stESst+1ES

where p(st, at) denotes an immediate reward expected with respect to the transition
probability: p(st,at) - =st.1ESR(st,at,st+1)P(st+1Jst,at). Since the next belief

state bt+1 is calculated given the current belief state bt, the new observation ot+1
and the action at according to equation (2.3), the probability P(bt+1Lbt, at, ot+1) is

deterministic:

P(bt+1lbt,at,ot+1) -

(

1 for a certain state bt+1,
O otherwise,

(2.6)

and the upper case in equation (2.6) is here defined as the state estimator function
7-(bt, at, ot+1). With this function, the optimal Q-function in equation (2.4) can be

modified by taking a summation over all possible states and observations:

Q*(bt,at) -p(bt,at)+T E = p(ot-HIst,at)b(st)V*(T(bt,at,ot.1)). (2.7)
ot+1EOsteS

The optimal policy 7r' : B - A is defined as the value-maximizing action:

7T*(bt) - argmax Q*(bt,at).
atEA

(2.8)

The objective of each agent is to acquire an optimal policy by calculating the optimal
Q-function explicitly or implicitly.

2.1.3 Va[ue iteration

The dinculty of obtaining an optimal policy by optimizing the value function arises
mainly from the fact that an iterative optimization algorithm, such as value iteration
(Bellman, 1957a), must be repeated infinitely over the continuous belief space. Smal1-
wood and Sondik (1973), fortunately, found the piecewise-linear and convexproperties
of value functions: under the condition that an initial value function Vo is piecewise
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O Be]ief space l

Fig. 2.1: Convex and piecewise-1inear representation of a value function for a contin-
uous belief state with LSl - 2. The value function can be represented by the upper
surface of the cr-vectors associated with an action, defining the best immediate policy
assuming optimal behavior for the following (i - 1) steps.

linear and convex, the i-th value function obtained after the i-th number of update
steps is also a finite, piecewise-1inear and convex function,

vi(bt) - aTEarXIE b(st)ai(St), (2.9)
stES

where cyi is a vector of size LSl and ri is a finite set of vectors cri. Figure 2.1 shows
a graphical representation of these convex and piecewise-linear properties, for an
example in which the number of real states lSl is two. Note that each ck-VeCtOr
is associated with an action which defines the immediate policy assuming optimal
behavior for the following (i - 1) steps. Based on the properties, the i-th value
function with the i-horizon finite solution set ri Can be computed from (i - 1)-step
vectors cki-1 E ri-1:

Vi(bt) maXatEA
p(bt, at) ' Tot=oai-TEarXt-1 q(ai-1) , (2.10a)

q!(cti-1) - E = p(st'1lst,at)P(ot'lLst,at)cti-1(Sw)b(st). (2.10b)
stESst+1ES

This computation process leads to a piecewise-linear and convex value function Vi
represented by a finite set of linear functions cki E ri. Since the properties enable
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us to obtain the next value function in a finite number of iterations, because a finite
number of ck-VeCtOrSis enumerated in every single update, the optimal value function
in equation (2A) or its approximation can be obtained using dynamic programming
(DP) techniques such as the value iteration. Note, however, that the piecewise-linear
and convex properties do not imply piecewise linearity of the optimal solution V*.

Solving POMDP problems based on DP algorithms exhibits two kinds of computa-
tional difnculty. First, it is difncult to calculate the next belief state according to the
Bayes rule in equation (2.3). Since the calculation includes two summations, the com-
putational complexity of POMDP algorithms grows in proportion to ISI2. second,
expensive computation is required to update the value function over the continuous
belief state. Since the set ri may include useless ct-vectors which are not constituents
of a parsimonious set r; (Zhang, 1995) consisting only of dominant vectors, such vec-
tors should be removed froma redundant set ri. In the simplest approach to keep the
set parsimonious, ca11ed the enumeration algorithm (Sondik, 1971; Monahan, 1982),
the pruning process is performed at every single update by the following three steps:
the first step is to enumerate all possible vectors Vcki-1 E ri-1; the second is to evalu-
ate their usefulness for representing the value function Vi; and the last is to select only
useful vectors and construct a parsimonious set rtT. The computational complexity
of a single update of this algorithm is L4llFi-1IIOI, because there are ]Al distinct al-

ternatives to take the action and permutations of each vector cki-1 0f size lOl. In the
worst case, therefore, the computational cost to obtain the exact solution according
to the belief-state MDP formulation can be evaluated as O(lSl2lAllI'i_1l[oI); even for
simple POMDPs, the problem of finding the optimal policy for the finite-horizon case
is PSPACE-hard (Papadimitrious & Tsitsiklis, 1987) and for the discounted infinite-
horizon case may not even be computable (Madani, Hanks, & Condon, 1999), due to
the exponential growth with the increase in the number of observations.

Due to the heavy computational cost, the cause of the essential difnculty for solv-
ing POMDPs, it is important to improve enciency by keeping the size of the linear
function set as small as possible at every iteration step. There are two approaches for
computing useful linear functions: the first is the extension of the enumeration algo-
rithm (Sondik, 1971; Monahan, 1982) described above; and the second is to perform
the value update on a single belief state (Sondik, 1971; Smallwood & Sondik, 1973).

The recent principal insight in the extensions of the first approach is that the
pruning process of useless ct-vectors can be interleaved directly with the enumeration
process; the dominated vectors are early pruned in each set of partially constructed
linear functions (Zhang & Liu, 1997; Cassandra, Littman, & Zhang, 1997; Zhang
& Lee, 1998). The resulting value function is the same, but the algorithm is more
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efncient because it discards useless vectors before constructing the full set of linear
functions. Algorithms based on the second approach use the fact that each belief
state has a region over the belief space in which its a-vector is maximal (Cheng,
1988; Pineau et al., 2003); the corresponding belief state of each region is called a
witness point (Kaelbling et al., 1998). Such algorithms search in each value iteration
step the complete belief simplex for a minimal set of witness points which generate
the parsimonious set of ck-VeCtOrSfor the next horizon value function. These solutions
typically require linear programming for finding the set of witness points, and are
therefore costly in high dimensions. Zhang and Zhang (2001) argued that value
iteration still converges to the optimal value function, if exact value iteration steps are
interleaved with approximate value iteration steps in which the new value function is
an upper bound to the previously computed value function. This results in a speedup
of the total algorithm; however, linear programming is also required to ensure that
the newvalue function is an upper bound to the previous one over the complete belief
simplex.

Although various sophisticated algorithms exhibited by exact value iteration have
been proposed as described above, the serious computational dinculty for obtaining
the exact solution is inevitable even with the two types of devices, and this makes
solving POMDP problems with only a few dozen states impractical; some effective
approximations are essentially required. Practical solutions for solving POMDPs
can be classified here into (I) value-function and belief-state approximation and (II)
policy approximation. Existing solutions in case (I) obtain an approximate policy by
optimizing the value function over the belief space with the explicit computation of
the belief state, by using some heuristic approximations. Most algorithms in this case
assumethat the environmental model is known for the agents, after which the value
iteration technique in equation (2.10) is applied. Solutions in case (II), on the other
hand, do not calculate the belief state explicitly but resolve the partial observability
by using certain kinds of memories, and then a policy is directly optimized. We
introduce the algorithms of case (I) in Section 2.2 before describing those of case (II)
in Section 2.3, and reveal the relationship of our studies to previous work in Section
2A.

2,2 Va[ue-function and belief-state approximation
To estimate the unobservable states, this class of algorithms attempts to optimize

the value function over the belief space with the explicit belief update. Such algo-
rithms can be further classified into: (I-a) solutions with value-function approxima-
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tion; (I-b) solutions with belief-space approximation; and (I-c) solutions with both

value-function and belief-space approximation. To avoid the computational difnculty,
research in the POMDP area has focused on various heuristic approximation meth-

ods., practical algorithms use approximation methods for either the value function
or the belief space or both, which are described in Section 2.2.1, Section 2.2.2, and

Section 2.2.3, respectively. This class of algorithms is for the agents to require the en-
vironmental model; algorithms introduced in the following section assume the correct

world model, unless otherwise stated.

2.2.1 Value-function approximation

The main idea used by this class of algorithms is to approximate the optimal value
function V : B - IRwith a function O : B ) R defined over the complete belief state

space B. There have been many attempts to compute approximate value functions
heuristically. Some popular algorithms are introduced here: completely observable
MDP approximations; unobservable MDP approximations; curve-fitting approxima-
tions; and EM-based algorithms.

Completely observabFe MDP approximations
The simplest way to obtain a policy in partially observable environments is to learn

the value function over the state space S under the assumption that the environment
is completely observable; the approximation methods based on this assumption are
called completely observable MDP approximations. According to the most likely state
(MLS) heuristic method (Nourbakhsh, Powers, & Birchfield, 1995; Ishii, Yoshida, &
Yoshimoto, 2002), the agents select an action with the maximuma posteriori (MAP)

estimation:

7T(bt) - argmax Q(st*,at),
(7tEA

sL* - argmaX b(st).
stES

Since this approach ignores the possibility that the agent is in other states, the per-
formance of the policy may deteriorate when the MAP estimation is incorrect. Other
approaches with this type of approximation, therefore, calculate the expectation of
the state value with respect to the current belief state:

O(bt) - Eb(st)V(st),
steS

V(st) maXatEA
p(st,at)+T = P(st'1lst,at)V(st.1)

st+1ES
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called MDP approximation (Lovejoy, 1993), or the expectation of the state-action
value with respect to the current belief state:

v(bt) - aTEaXsE;b(st)Q(st,at),

Q(st,at) - p(st,at)+T E p(st'1lst,at)V(st'1),
st+1ES

called QMDP approximation (Littman et al., 1995).
Although the agents with this class of approximation exhibit good performance,

even in such a large-scale problem, they do not take any action to resolve the partial
observability because no uncertainty is considered on subsequent future steps due to
the completely observable assumption. Since it is important to take exploratory ac-
tions when the variance of the belief state is large, the performance based on these
heuristics may deteriorate. This problem, called certainty equivalence in control the-
ory (Doucet, Freitas, & Gordon, 2001) or dual control in adaptive control literature
(Cassandra, 1998), can be solved by the following two approaches: the first is to
perform a deep look-ahead prediction (Murphy, 2000); and the second is to use the
entropy of the belief state (Cassandra, 1998; Ishii et al" 2002). Cassandra (1998)
demonstrated a switching algorithm between an exploration and exploitative policies
by calculating the entropy of the belief state. Ishii et a1. (2002) proposed a control
method of exploitation-exploration meta-parameters in a model-based RL formula-
tion for switching between these trade-off policies, according to the entropy of the
belief state, with an exploration bonus. This latter idea is promising not only for
making the agents effective at control but also for considering a model of the human
brain.

Hauskrecht (2000) proposed a similar method based on the completely observable
MDP approximation, called fast-informed bound approximation. A different point
fromother approximations is that it partly incorporates observation efFects into the
estimation of action values by calculating expected observation:

O(bt) - aTEaXE b(st)Q(st,at),
stES

Q(st,at) - p(st,aL) '"otFEOatTlaEXA E p(s-1,Ot.1Lst,at)Q(s-1,a-1).
st+1ES

Since this method changes the order of summations (it calculates the summation over
the observation before calculating the summation over the current state), the action
selection depends on the expected observation probabilities. Although the computa-
tional cost of the fast-informed bound method is more expensive than that of other
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MDP approximation methods due to the computation over the observation space, its
control quality is better than that of others; Hauskrecht (2000) showed promising

experimental results in a reasonably-sized problem. This method can be interpreted
as a hybrid model between the exact solution and the MDP approximation.

Unobservab[e MDP approximations
The completely observable MDP approximation assumes complete observability of

underlying states to obtain simpler value updates. The other extreme is to ignore a11
observations available to the agents; an MDP with no observation is called unobserv-
able MDP. Hauskrecht (2000) proposed a value-function approximation method with
the idea of the unobservable MDP. In this method, the value function is modified to

Oi(bt) - max
atEA

(

p(bt,at) +Tnm_aEXÊ = p(st'1lst,at)b(st)Q(stn,at.l)
atTlaEXAsSs stFES P(st.1.St, at,b(st,Q(s-, at.l, ).

^

The resulting Vi retains the piecewise-linear and convex properties. Note that the
summation over the observation space is removed by the unobservable MDP assump-
tion. Although the computational cost of the exact value update increases exponen-
tially as the number of the observation increases, the number of ck-VeCtOrSCOnSisting
of the approximate value function Oi is at most lAIIFi_lL and the complexity of the

approximate update grows linearly. The computation time for a single update can be
evaluated as O(lSI2lAllFi-1l). Since the problem of finding an optimal solution for

the unobservable MDP remains intractable, however, this approximation technique is
usually not so useful (Hauskrecht, 2000).

Curve-fitting approximations
The exhaustive value update in equation (2.10) may be inefncient, because it is

performed over the entire belief space under the implicit assumption that each be-
1ief state is regarded as equal. To solve this problem, each value update should be
performed in proportion to the frequency of the encountered belief state - the idea
of simulation-based algorithms in which the value functions are optimized from real
experiences obtained by the interaction with the environment is beneficia1. Geffner
and Bonet (1998) applied this idea to learning in finite-horizon POMDP problems, by
monitoring the current belief state and performing the value iteration for the current
point in belief state space.

The idea of this on-1ine approach can be applied to learning a parametric model
for the value function; a differentiable continuous function f(bt; 0) with parameter O
approximates the values of the corresponding belief state, instead of remembering all
belief-value pairs, so that the parametric function can fit the real value function in
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terms of error-minimizing. Littman et al. (1995) proposed a simple approach in which
the Q-function represented by linear functions Q(bt, at) - 4(0). bt is optimized so as
to minimize a least-squares error using stochastic gradient ascent. This approach
is similar to the LSTD algorithm in the RL research area for MDP environments
(Bradtke & Barto, 1997). Parr and Russel1 (1995) proposed a similar algorithm,
called SPOVA, using simulation to estimate gradients for updating the approximate
function:

O(bt) - E(bt.cy)kl ,
aEr

(2.15)

where k is a smoothing parameter. Artificial neural networks can also be used to
approximate the value function with a factored belief representation (Rodriguez, Parr,
& Koller, 1999), described in Section 2.2.3.

EM-based algorithms
Although algorithms based on the belief-state MDP formulation require the envi-

ronmental model for the explicit computation of the belief update in equation (2.3),
it may be impractical in real world settings. Problems in which the environmental
model is unknown for the agent should be solved with system identification. A natural
approach is to use a hidden Markov mode1 (HMM), which is a well-known stochas-
tic model for learning discrete-state dynamics of the environment with hidden state
variables. Chrisman (1992) examined the simple approach using an HMM, ca11ed
utile distinction memory algorithm, with the estimation of dimension required for
problem-solving. Using the belief state calculated by the HMM, the value function is
approximated by using the QMDP method (Littman et a1., 1995). Yoshimoto et a1.

(2003) applied this idea to algorithms for solving problems with continuous spaces
by using the Kalman fi1ter. Although both methods gave good results in several
experiments, learning models in maximizing an observation likelihood is not neces-
sarily related to the policy performance. Wepresented, on the other hand, a similar
HMM-based method using a likelihood function defined over a reward sequence (Fu-
jita, Nakamura, & Ishii, 2006); the environmental model is estimated, given reward
sequences obtained by interactions with the environment while acquiring its policy,
such that rewards increase. The details of our approach are described in Section 2.3.1.

2.2.2 BeLief-space approximation

There has been a class of algorithms which find lower dimensional representations of
the belief space; they approximate the continuous belief space B with some tractable
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space B. These approaches deal with POMDP problems by finding an appropriate

sub-dimensional manifold of the belief space before learning the value function over
the sub-dimensional space, V : B + R. Some popular algorithms are introduced here.

Factored representation
To find a tractable subspace, most studies exploit certain types of problem structure

to make the belief state representation more compactly by using a Bayesian network.
The Bayesian network can represent the state of the system in a set of random vari-
ables. A two time-slice dynamic Bayesian network (DBN) represents the system at
two time steps, and the conditional dependencies between random variables from time
t to time (t + 1) can be represented by edges in a directed acyclic graph (Dean &
Kanazawa, 1989). If the target problem has an available structure as the conditional
dependencies, the belief state can, therefore, be represented as a distribution over a
certain subset of the state variables.

Boyen and Koller (1998) developed an approximation scheme for representing the
belief state by using DBN. They found that such DBN representation may cause error
accumulation, which leads to the belief state approximation diverging. Projections
of the DBN which produce independent sets of state variables result in converging
belief states, which a11ows recovery from errors. These projections can be estimated to
construct DBNs which perform well under a specified reward criterion. Poupart and
Boutilier (2000) proposed the value-directed compression method, which considers a
sequence of linear projections to find the smallest linear sub-dimensional manifold that
is both consistent with the reward function and invariant with respect to transition
and observation parameters. Since the algorithm finds a linear projection of the belief
space, exact POMDP planning can be achieved directly in the projected space, and
the fu11 value function recovered through inverse projection.

Using prhcipa[ component analysis
Roy and Gordon (2003) proposed an alternative algorithm which uses exponential-

family principal component analysis to project high-dimensional beliefs to a low-
dimensional non-linear subspace. This approach can genera11y achieve more compact
compression than linear compression techniques, due to its non-linear projection. Al-
though the grid-based algorithms may be suitable to planning over a non-linear sub-
space, such planning is much morecomplicated than that over the linear compression
subspace.
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2.2.3 Value-function and berief-space approximation

The last idea is to approximate both the value function V : B - R and the contin-
^uous belief space B with a function O and some tractable space B, respectively, and

to learn the approximate value function V : B - R over the reduced space B. There

have been several studies to achieve this.

Grid-based approximations
The value function can be approximated by values associated with each belief point

bi (i - 1,... , lGL) inafiniteset G - (btl,... ,biGI), inwhichthepointsaredistributed

according to an arbitrary grid pattern over the continuous belief space. Given a set
^ofgrid points G, the value at each bL E G can be defined as

v(bt) - max
atEA

p(bt,at) +T = P(ot'1Lbt,at)v(T(bt,at,ot'1))
ot+1EO

(2.l6)

If T(bt, at, ot+1) is a constituent of the set G, then V(7-(bt, at, ot-H)) is defined by the

value backups, otherwise V(7-(bt, at, ot+1)) is approximated using an interpolation rule

suchas

LGI
v(T(bt,at,ow)) - =^(i)V(bi),

i=1

(2.17)

where ^(i) 2 0 and =!G=[1 ^(i) - 1. The calculation for the interpolation function in

equation (2.17) can be achieved by linear programming techniques, and this process
produces a convex combination over grid points. The approximated value function
O(bt) can be obtained by performing the value iteration only for a finite set of grid

points.
The most efFective way of constructing a grid set is controversia1. Lovejoy (1991)

used a fixed-resolution regular grid over the entire belief state. Although value inter-
polations based on a triangulation concept can be calculated quickly by considering
only neighboring grid points, the number of grid points grows exponentially with
the dimensionality of the belief, and hence this fails to scale for large state spaces.
Hauskrecht (1997) and Brafman (1997) used variable-resolution non-regular grids,
which can increase resolution in areas of poor accuracy by adding new grid points
based on a simulation technique. Although this reduces the number of grid points
with similar accuracy, the computational cost for calculating the interpolation func-
tion increases, because grid points diverge due to biased placement. Zhou and Hansen
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(2001) proposed a grid-based algorithm using variable-resolution regular grids which
achieve both fast interpolation and increased resolution in the necessary areas. This
algorithm, however, also fails to scale well for large state spaces due to the exponential
growth of the number of grid points.

Samplhg-based representation
Thrun (2000) demonstrated that the sequential Monte Carlo technique (Doucet

et al., 2001) is beneficial for performing approximate belief state tracking in environ-
ments with continuous state spaces and action spaces. The algorithm has a trade-off
between approximate accuracy and running time, depending on the number of sam-
ples; the approximate belief state converges to the true belief state as the number
of samples increases, for an arbitrary model. The value function is approximated
by a function approximator with a nearest neighbor method in which the distance
metric is the Kullback-Leibler divergence between sets of belief states smoothed by a
Gaussian kernel. Poupart et al. (2001) analyzed the approximation error of the value
function incurred by using a sequential Monte Carlo technique, and developed an
adaptive scheme for determining the number of samples according to the probability
of selecting an optimal action.

Curve-fitting approximation with factored representation
Rodriguez et al. (1999) used the factored belief representation described in Sec-

tion 2.2.2 for belief state tracking with various approximators of the value function.
They demonstrated that the SPOVA method, described in Section 2.2.1, and an ar-
tificial neural network including the factored representation can work well in several
problems.

2.3 Policy approximation
Most methods described so far in this chapter focus on estimating the value function

over the continuous belief state before extracting a policy. An alternative approach
is to search a policy space directly without optimizing the value function. Because
it may be necessary for an optimal action selection over an infinite horizon to retain
complete sequences of past experiences, the agents need an infinite memoryto store
information accumulated over infinite time, instead of calculating the belief state. An
arbitrary policy, therefore, can be represented as an infinite policy graph. Since it
is infeasible, however, to deal with such an infinite space due to computational lim-
itation, we may then reduce the search to policies with a finite memory. With this
approximation, every policy for an arbitrary POMDP problem with discrete finite
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spaces can be represented as a finite policy graph, or finite state machine (FSM)
model (Platzman, 1980). The idea of this model is the most general one in policy
approximation approaches; other models can be interpreted as its special cases. We
therefore first introduce algorithms using an FSM model. An advantage of this class
of algorithms is that the agents require no environmental model; the algorithms intro-
duced in the following section do not assume the correct world mode1, unless otherwise
stated.

2.3.1 Finite state machine

A finite state machine (FSM) model consists of a nnite set of memorystates Ju -
(m1,... ,mIJul), afinite set ofobservations O - (o1,... ,o[OI), afinite set ofactions

A - (a1,... ,aIAL), a transition function T : Ju X O - Ju maPPing a current

memorystate to the next memorystate given an observation, and an output function
7T : Ju - A mapping a current memorystate to the action. An FSM controller
can be evaluated by constructing the value function. Platzman (1980) found that
the value function for the FSM contro11er from a memorystate mt is linear, and the
contro11er can be evaluated by solving a set of linear equations. After the evaluation,
the FSM controller is improved by modifying the structure of the state machine.
Hansen (1998) proposed an efFective policy iteration algorithm using FSM contro11ers
with the computation of the belief state under the assumption that the environmental
model is known for the agent. Empirical results showed that this approach converges
faster than exact value iteration in large-scale domains, because it often requires fewer

iterations.
The FSM model can be generalized to a stochastic mode1: the transition function T

is represented as a probability distribution P(mt+1 lmt, ot), and the output function
7T is also represented as a probability 7T(Ot, mt, at) = P(atLmt, ot). In the stochastic
FSM model, the problem can be formulated as the maximization of the objective
function in equation (2.1) with respect to the joint distribution:

P7T(s,a,o,-)

T
-p(s1)P(m1)P(o1) nP(ot'1lst, at)P(st'1lst, at)P(mt'1Lmt, ot)7T(Ot,mt, at)

-[p(s1,P(ol, t91Pt(:.1.St,at,P(s-1.St, at,] [P(-1, t@lP(-t.1.-t, Ot,•`t, -t, at,]

-W(s,o)Aq(a,o,y),

where s - (s1,...,ST+1), m - (m1,...,mT+1), a - (al,...,aT), and
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Fig. 2.2: Architecture of the finite state machine (FSM) controller.

left: The architecture of the FSM controller. The current memorystate is provided
to the output function with an immediate observation.

right: An example of a four-state FSM transition with two observations. Nodes
and arcs represent memory states and transitions conditioned on observations, re-
spectively. Since a current memorystate is provided to the output function as input
information, there are stochastic associations between each memorystate and control
action.

o - (o1,... ,OT) denote a sequence of real states, memory states, actions taken by

the agent and observations obtained from the environment, respectively. W(s, o) is
the environmental mode1, and A7T(a, o, m) is the agent's policy represented by an

FSM controller. Figure 2.2 illustrates the architecture of the FSM model. Given
the fixed number of memory states lJul, parameters of the stochastic FSM model,
P(mt+1Emt, ot) and 7T(Ot, mt, at), Can be directly learned by calculating a gradient

ascent; Meuleau et a1. (1999a, 1999b) proposed a direct learning algorithm of FSM

controllers based on a gradient method. Aberdeen and Baxter (2002) used a similar
approach; they called a memory state of the FSM contro11er an internal state, to

emphasize a mechanism in which the agent modifies the dynamics of the memory
system. Shelton (2001) applied an importance sampling technique to train an
FSM controller in off-line manner. Poupart and Boutilier (2004) proposed a hybrid

algorithm, called the bounded policy iteration, which combines insights from both

exact policy search and gradient search.
An alternative approach for training FSM controllers is to use the maximumlikeli-

hood (ML) inference (Hartley, 1958; Dempster, Laird, & Rubin, 1977). We proposed

a learning method according to the ML inference (Fujita et a1., 2006) whose likelihood
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function is defined as

p(rla,o;0,q) - Ep(-,rla,o;0,q)

m
T

-Ep(m1) Ilp(rtimt, at)P(mt'1[mt, at, Ot), (2.18)
m t=1

where r - (r1,... ,rT) is a sequence of rewards. Our aim was to obtain the pa-

rameters O and q, related to the memory state transition and observation processes,

respectively, based on the maximumlikelihood inference so that the likelihood func-
tion in equation (2.18) is maximized. More concretely, 0 = (Oij - P(mL+1 -

jlmt-i,at,ot)li-1,...,lyl,j-1,...,lyl),q=(Jik -P(rt-kLmt -i,at)Li-

l,",lyl,k - 1,...,l7u. Since all the agent must do to solve problems is to es-
timate the Markov chain over a statistic variable related to rewards, we assumed
that the rewards are dependent not on the pair of a real state and an action but
on the pair of a memory state and an action. The agent, therefore, estimated the
dynamics of the memory state P(mt+1Lmt, at, ot) based on the ML inference, given
reward sequences obtained by interactions with the environment; the reward sequence
is regarded as the series of observations, and the expectation-maximization (EM) in-
ference was carried out to estimate the dynamics. By assuming that all variables take
discrete values, weused the multinomial model; the EM inference was then performed
by the input/output hidden Markov model (HMM) (Bengio & Frasconi, 1996). After
the estimation process for the dynamics of the memory state, the agent learned its
policy P(atlmt) based on a conventional RL algorithm for MDP environments.

To evaluate the performance of our method, we applied it to a partially observable
problem, "The Tiger Problem", described in Section 2.1.2. In this experiment, the
agent estimated a memorystate model using the data generated from 500 episodes
in an environment where an action was selected randomly at each time step. To
improve the policy, the REINFORCE algorithm (Williams, 1992), which is a type of
policy-gradient-based RL algorithm, was used. We restricted the maximumnumber
of actions to ten so that the agent could not take the LISTEN action for all time,
and assumed that the number of internal states was five: lJMl - 5. Figure 2.3
represents a memorystate model estimated by the agent. Arrows represent transitions
with a maximumprobability when the agent selects the LISTEN action; each arrow
is pointing toward mw- argmaxmt.1P(mtJmt,at - LISTEN,ot). LEFT and
RIGHT in the figure represent observations obtained by taking the LISTEN action.
Table 2.1 shows action selection probabilities acquired by the RL algorithm for the
estimated model. Note that the performance of the agent has two factors: validity
of the internal state model and performance of the policy acquired for the mode1.
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Fig. 2.3: The state transition when the agent takes the LISTEN action, mt+1 -
argmax mt.1 P(mwlmt,at - LISTEN,ot), in the Tiger Problem withp - 0.85.

at

rnt
LISI E N L E F T R IG H T

l 0･999992 0･000003 0･000005

2 0･991126 0･000003 0･002871

3 0･999146 0･000000 0･000254

4 0･009600 0･000000 0･990400

5 0･002291 0･996109 0･000000

Table. 2.1: Action selection probability acquired by the agent in the Tiger Problem
withp - 0.85.

This Tiger Problem with p - 0.85 can be optimally solved by using 4-length history.

Since the transition in Fig. 2.3 has the same representation ability as 2-1ength history,
the agent based on our method could not achieve the exact optimal solution but a
sub-optimal one with faster learning speed than a naive history-based approach. We

also applied our method to the Tiger Problem with p - 0.80, after assuming that
the number of memory states is seven: IJMl - 7. Note that, in this setting, the

problem can be optima11y solved by using 7-length history. Figure 2A represents

a memorystate model estimated by the agent, which has the same representation
ability as 4-length history. Table 2.2 shows action selection probabilities acquired by
the RL algorithm for the estimated mode1. In both settings, the agent based on our

method can acquire an appropriate policy in this reasonably-sized partia11y observable

environment.

Twoissues, however, sti11 remain in this method. First, the number of memory
states should be estimated; in this work, the number of memorystates IJML is given
to the agent in advance, but it should be possible to estimate with the model estima-
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Fig. 2A: The state transition when the agent takes the LISTEN action, mt+1 -
argmax mt.1 P(mt+1ImL, at - LISTEN, ot), in the Tiger Problem with p - 0.80.

at

m t
L IS I E N L E F T R IG H T

l 0･999896 0 ･000002 0･000 102

2 0･9994 17 0 ･000568 0･0000 15

3 0･999985 0 ･000011 0･000004

4 l ･000000 0 ･000000 0･000000

5 0 ･999992 0･000008 0･000000

6 0 ･000529 0･000000 0 ･99946 1

7 0 ･006082 0･9929 17 0 ･000000

Table. 2.2: Action selection probability acquired by the agent in the Tiger Problem
withp- 0.80.

tion process. An appropriate number of memorystates can be gradually estimated by
increases or decreases in the state number with decision-making processes (Poupart

& Boutilier, 2004), or alternatively mixture models such as a Dirichlet process, non-
parametric Bayesian inference, may be beneficial for this issue. Second, the two sep-
arate phases, the model estimation phase by the maximumlikelihood inference and
the policy acquisition phase by an RL algorithm, should be unified; there are two ob-
jective functions optimized separately. Since this separation may prevent acquisition
of an optimal solution, the memory model should be estimated with reinforcement

learning of a policy on-1ine.

Each node of an FSM is associated with a corresponding distinct linear function in
the equivalent value function representation. In the case exemplified as Figure 2.1, for
example, a policy defined by the value function is equivalent to that represented by



2.3 Policy approximation 29

the FSM controller with four memorystates, because there are four dominant linear
functions. Kaelbling et al. (1998) showed that an FSM controller can be obtained by
solving the belief state MDP before constructing an FSM model by converting each
linear function of a convergent value function into a memory state with a correspond-
ing immediate action.

2.3.2 Reactive memoryless po[icy

A special case of an FSM model, which is the simplest alternative in other models,
is to learn a policy over the observation space instead of the state space, by applying
methods for completely observable MDPs such as the classical Q-1earning (Watkins
& Dayan, 1992) or TD learning (Sutton, 1988), computing Q(ot,at) rather than
Q(st, at). These policies are known as memoryless or reactive, as they react to the
latest observation solely without keeping track of past observations; the memoryless
policy is the same as an FSM controller with one memorystate. Since the observation
space does not satisfy the Markov property, direct application of the conventional
MDP algorithms results in poor performance. In these methods, however, there is
no need to estimate the unobservable states, making it easy to define the policy in
MDP formulation. Many early studies, therefore, analyzed the detailed properties of
the memoryless policy in theoretical research. Littman (1994a) provided a theoretical
proof that the general problem of finding the optimal deterministic memoryless policy
is NP-hard and presented a simple branch-and-bound heuristics for computing the
policy. He also suggested that it is important to use an external memoryarchitecture;
this idea was promoted for approaches with an external memorybit by Peshkin et al.
(1999), described in the next section.

Singh et al. (1994) showed that a stationary stochastic memoryless policy can per-
form arbitrarily better than a stationary deterministic memoryless policy*1 , with sat-
isfactory examples being constructed, such as a McCallum's (1993) maze. They also
indicated that direct application of the Q-learning and TD learning over the obser-
vation space maysuffer fromthe perceptual aliasing property in partially observable
environments, because these algorithms do not learn a suitable observation value but
converge to different types of solutions. That is, the observation value V(ot) obtained
by the TD learning, whose TD error is defined as 6t - R(ot,at) +TV(ot+1) - V(ot),
diverges from the optimal value V*(ot), where R(ot, at) is an immediate reward ob-

*1 They also argued an interesting point about game theory? namely that the reason why the
optimal strategies in zero-sum games are stochastic is the same as that for stochastic policies
in POMDPs: the lack of knowledge of the opponent's action constitutes the unobservable
states.
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tained by taking an action at given the observation ot.
Loch and Singh (1998) demonstrated empirically that eligibility traces (Singh &

Sutton, 1996) over the observation space can work well in several environments, be-
cause they allow an observation-action pair to access what happens manytime steps
later, bridging the divergence to certain information about the quality of an action.
They did not, however, compare the performance of the eligibility traces with other
algorithms such as the Monte Carlo method (Sutton & Barto, 1998). Baird and Moore
(1998) showed that the hybrid memoryless algorithm incorporating both searches in
the space of policies and of value function, called the VAPS algorithm, converges for
partially observable environments in which a memoryless policy exists. They too did
not, however, compare their method with other algorithms.

2.3.3 Memory-based algorithms

Searching a memoryless policy space often yields a poor contro11er, because the value
function whose representation is an equivalent to the corresponding FSM controller
is approximated by a single linear function; it is too loose an approximation for most
partially observable problems. Studies of the reactive memoryless policy provided a
theoretical limitation for such algorithms. Researchers nowfocus on approaches in
which the estimation of the unobservable states is based on some kind of memory.
Since any memorymechanismcan be interpreted as memorystates of an FSM model,
a11 memory-based approaches are essentially identical to the FSM method.

Finite memory
The simplest approach other than the reactive memoryless policy is to use the last k

observations as input to the policy. The size of the observation history in such a naive
approach is fixed for all observation sequences. Lin and Mitche11 (1992) proposed
a finite history-based method, called Window-Q, to learn the Q-function Q(htk, at)

by using an artificial neural network, where the input of the function is the k-step
history htk - ((ot, -), (ot-l,at-1),... , (Ot-k+1,at-k+1)). McCallum (1996) proposed

a sophisticated history-based method using the k nearest neighbor algorithm, called
nearest sequence memory(NSM). An agent based on the NSM method remembers

past information by using an instance Tt, where the instance is defined as a tuple:
Tt - (Tt_1, at, rt, Ot+1). An action value on an instance Tt is calculated as the average

of action values on k instances nearest to the instance Tt, in which the similarity metric
between instances is defined in a recursive manner. Estelle (2003) examined the NSM
approach to learn faster than Q-learning with a fixed memorywindow as the problem

size increases.
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Fig. 2.5: Architectures of the external memoryand recurrent neural network.

left: The architecture of the external memory. The output of the agent's policy is
stored to the external memoryxt, and is then fed back in the next time step to the
policy as the input with the new observation.

right: The architecture of the recurrent neural network. Since the output of the
neural network is fed back to a previous layer of the network in the next time step, it
has an external memorymechanism.

The finite memorywith a flat structure can be arranged to a finite sufBx memory
with a tree structure. Ron et a1. (1994) proposed a finite history-based method
using probabilistic sufnx automata with an adaptive length, in which the history is
represented as a path through the tree starting at the root, with the latest information
mapped to the root. McCallum (1996) promoted this idea to the utile sufnx memory
algorithm, which incorporates the data structure of the sunx tree into the NSM
method, and further developed the UTREE algorithm where the observation is treated
as a vector, and different branches can be created depending on the value of specific
components of the history.

External memory
Littman (1994a) argued that the agent should have someexternal memories to keep

past events, where the term 'external' indicates a mechanism in which the agent can-
not modify its dynamics, whereas the FSM controller modifies the transition probabi1-
ity of the memory state; the external memoryexhibits in the same way as a working
memory.A point of difference between algorithms using the external memoryand
the history-based method is that the output of the agent's policy is stored to the
external memoryxt, after which it is fed back in the next time step to the policy as
the input with the new observation; the agent acquires a policy 7T giVen an immediate
observation ot and an external memoryxt. The external memoryis then expected
to compensate for the partial observation. Figure 2.5 (1eft) represents the architec-
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ture of this external memoryapproach. Peshkin et al. (1999) demonstrated that the
SARSA (Sutton & Barto, 1998) and VAPS (Baird & Moore, 1998) algorithms with the
external memoryarchitecture work well in several partially observable environments.

Lin and Mitchel1 (1992) proposed similar algorithm, called Recurrent-Q, learning
action values for an immediate observation by using a recurrent neural network. Since
the output ofthe neural network is fed back to a previous layer ofthe network, it has an
external memorymechanism within its hidden layer. Figure 2.5 (right) represents the
architecture of the Recurrent-Q approach. A different point from the simple external
memoryapproach is that, since a neural network acquires connections between layers
based on the back-propagation algorithm, an effective feedback system which can
compensate for the partial observation can be acquired so that the error between the
true action value and an estimated value is minimized.

2.4 Discussion

The major targets of the studies described in Chapters 3 and 4 are large-scale
and multi-agent problems with partial observability; there are multiple agents in a
commonlarge-scale, partia11y observable environment, and they are in a cooperative
or competitive situation. For solving such difRcult realistic problems, no solution
exhibited by exact value iteration can be applied, because the value function over the
entire belief space has an intractable complexity in large-scale problems.

In the RL method presented in Chapter 3, the value function learns over an ex-
pected observation; this is similar to the reactive memoryless approach in which the
agent determines its action based on an immediate observation. As described in
Section 2.3.2, however, 1earning the value function without estimating unobservable
states may lead to the difnculty of obtaining an accurate value due to the perceptual
aliasing property, and the resulting policy may exhibit only poor performance. The
expected observation, therefore, includes the estimation process within its representa-
tion to compensate for the unobservable information. Such an expected observation
is an approximate representation of the belief state, which is calculated by changing
the order of summations; it calculates the summation over the observation before cal-
culating the summation over the next state. The action selection, therefore, depends
on an averaged point; this approximation idea is similar to the fast-informed bound
approximation, described in Section 2.2.1.

In the RL method presented in Chapter 4, on the other hand, weuse completely ob-
servable approximation, described in Section 2.2.1; the agent tries to approximate the
value function in the underlying state space, instead of the observation or belief state
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Fig. 2.6: History of POMDP research. The algorithms for POMDP problems can
be classified broadly into two categories: first, the value-function and belief-state
approximation (including exact algorithms); and second, the policy approximation.
Solutions in the first category learn the value function over the continuous belief space
with the explicit computation of the belief state, and this formulation is generally
called belief-state MDP. Solutions in the second category search the policy space
directly with the finite space assumption, and any algorithm can be generalized as
an FSM mode1. Our POMDP-RL methods, presented in Chapters 3 and 4, can be
classified mainly into the first category. Several ideas used by solutions in the second
category, however, are also applied to our methods.

space. POMDP problems are then solved based on expectation of the value function
with respect to the belief state. This is, therefore, similar to QMDP (Littman et al.,
1995), except that our method does not maintain the Q-function explicitly but calcu-
1ates the utility function by one-step-ahead prediction based on the acquired mode1.
To calculate the utility function, estimation and prediction must be performed; the
estimation is to calculate an expectation over possible unobservable current states
whose probabilities are proportional to the belief p(stLHt), and the prediction is to
calculate an expectation over possible next states and observations whose probabilities
are proportional to the transition probability p(st+1 lst, at) and observation probabil-
ity p(ot+1 lst, at), respectively. Integration in these expectations is almost impossible
because most challenging problems have a large number of states; for example, card
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games using an ordinary 52-card deck have 52!/(13!)4 2 1028 states if every combina-

tion of 52 cards is considered. In our method, this heavy integration is approximated
by a sampling technique. This methodology is then similar to Thrun's (2000) method
in which approximate belief state tracking is performed by using a sequential Monte
Carlo technique, or to the grid-based approximation methods, both described in Sec-
tion2.2.3.

Since the environmental model is unknown for the agent, the learning agent based
onour RL methods acquires the model directly by multiple action predictors., the state
transition of usual multi-agent games depends on opponent agents' actions. The agent
learns the policy of each opponent agent explicitly by the corresponding predictor
from past experiences, and determines its action based on the acquired opponent
agents' policies. Our method, therefore, is a mode1-based approach (Sutton, 1990;
Moore & Atkeson, 1993; Doya, Samejima, Katagiri, & Kawato, 2002), described in
Section 2.2.1. Throughout this dissertation, the environment is regarded as stationary
for the learning agent, under the assumption that there is a single learning agent,
and the proposed POMDP-RL methods are then applied to multi-agent problems:
most of this dissertation, it is assumed that there is only one learning agent in the
environment. When there are multiple learning agents, the environmental dynamics
can be influenced by learning of the other agents. The environment, therefore, does
not primarily satisfy a stationary Markov assumption even for underlying states,
and so cannot be properly formulated as a POMDP. In an ordinary approach, the
multi-agent problems should be dealt with by other appropriate frameworks such
as game theory (Fudenberg & Tirole, 1991), which aims at providing solutions to
problems of selecting optimal actions in non-stationary multi-agent environments;
the optimal solution for all agents is known as a Nash equilibrium. Although it is
not dincult to obtain the equilibrium solution for zero-sum two-player games such
as poker, it is intractable to do so in genera1-sum multi-player games with partia1
observability such as the game IIearts, because the highly complicated cooperative
or competitive relationship among the multiple agents causesdifnculty in calculating
an analytic solution. Most studies about acquiring an optimal policy in multi-agent
environments, therefore, have restricted their targets to simple problems with two
players (Stone & Veloso, 2000; Bowling & Veloso, 2000); a comprehensive examination
of multi-agent learning techniques applicable to general situations has not yet been
undertaken. It is thus assumed that the POMDP assumption is approximately valid
if the environmental model can be learned faster than it changes. To achieve this
fast learning, the learning agent makes the action predictors learn independently to
predict unknownbehaviors of the opponent agent. When one opponent agent changes
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its policy, this is enough to make the corresponding predictor adapt to the change.
Since it enables the agent to adapt to environmental changes quickly, our method,
formulated as a single-agent system, can be applied to multi-agent systems.

In Chapters 3 and 4, we use the following notations and assumptions. t indicates
an action turn of the learning agent. The variables (state, observation and action)
for agent i (i - 0,... ,M) are denoted by si,oi and ai,*2 where M is the number

of opponent agents and i - O signifies the learning agent; st, ot and at are the same
as sto,oP and atO, respectively, and st+1 is the same as stM+1. A strategy of agent
i (i - 1,... ,M) is denoted by bi, which corresponds to the action selection policy or

the policy parameters of the agent. We make two assumptions: first, agent i selects
its action ai based on an immediate observation o; according to its action selection
probability P(aiLoi, @i); and second, the other agents' strategies 4,i are fixed for the

time being, that is, there is only one learning agent in the environment, and hence
the environment is stationary. In the computer experiments described in Section 4.3,
however, wewill relax the second assumption and show several acceptable results in
dynamic environments with multiple learning agents.

*2 some games have partial observability in opponent players' actions ai (i - 1,... , M); for ex-
ample, in a game where players discard cards face down, each player cannot observe the actions.
Such unobservable actions, however, can be estimated if the cards discarded by the actions
are included in unobservable state st; the agent can select an action based on the estimated
actions. Since the agent can calculate likelihood as long as the actions contain some partial ob-
servation, our method, which estimates unobservable states based on likelihood information,
is applicable. Although we do not, in this dissertation, assume any partial observability in
opponent agents' actions, our method can thus be extended to deal with such situations.
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Chapter 3

Mode]-based Reinforcement Learning
for Partia[ly Observable Games with
Mean-field State Estimation

This chapter presents a model-based reinforcement learning scheme for large-scale,
multi-agent and partially observable environments with mean-field state estimation.*1

To overcome several computational dinculties, we use a mean-field-like analog ap-
proximation; the distribution of unobservable states is approximated by an expected
observation which includes the estimation process under the assumption that the un-
observable states are distributed with uniform probability. To adapt dynamic multi-
agent environments, the learning agent has multiple forward models for predicting
environmental behavior, and learns them independently. Computer simulation results
showthat our method is effective at solving a dincult partially observable multi-agent
problem.

3,1 Model

ln our RL method, the learning agent selects an action according to the soft-max

policy:

P(atlot) - exp((6t) (at)/Tm)
=atEA eXP((6t)(at)/Tm) '

(3.1)

where Tmis a constant which denotes the assumed action randomness. (6t)(at) de-
notes an expected TD error, which is defined as a residual error between a value of
the current observation and the sum of an expected immediate reward and a value of

*1 The contents ofthis chapter appear in our papers (Ishii, Fujita, Mitsutake, Yamazaki, Matsuda,
& Matsuno, 2005; Fujita, Matsuno, & Ishii, 2003).
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the next observation with respect to the predictive distribution:

(6t)(at) - (R(ot+1))(at) +T(V(ot+1))(at) - V(ot),

where

(f(ot'1))(at) = E p(ot'1lat,Ht)f(ot'1).
ot+1EO

(3.2)

(3.3)

R(ot+1) denotes an immediate reward at time step t, T denotes a discount factor*2,

and V is the value function over the observation space. Learning the value function
without estimating unobservable states may causedifnculty in obtaining an accurate
value due to the perceptual aliasing property in partially observable environments;
the same observation may comefromdifferent states whose state values should be
different, but the value function defined on the observation space cannot detect the
difference between the values, and this intractable property may prevent the value
function from converging to a global optimum (Singh et al., 1994; Kaelbling et al.,
1996). In our method, therefore, we use a feature extraction technique so that the
observation ot contains partial information about unobservable states within low di-
mensionality; the details of this technique are described in Section 3.2. Although
optimization of the value function, whose input is a probability distribution (that
is, belief state) over the high-dimensional state space, is too complex and requires
heavy computation, learning the value function over the observation space with the
estimated information of the unobservable states is an effective method, especially for

large-scale POMDP problems.
The predictive distribution of the next observation P(ot+1 (at, Ht) in equation (3.3)

can be given by

p(ot.1lat,Ht)- E p(ot'1Lst'1) E p(st'1Lst,at)P(stlHt). (3A)
st+1eS steS

Note here that this calculation in equation (3.4) includes two summations; in large-
scale partially observable problems, this causes an important dinculty in addition to
the optimization of the value function. Since there are M opponents' actions within
the transition from a state st to the next state st+1 in multi-agent problems, the
transition probability P(st+1 Lst, at) in equation (3A) is represented by using the rea1

*2 our study mainly aims at dealing with finite-horizon problems? but could be applied to infinite-
horizon problems whose objective function is defined in equation (2.1), because our method is
basically an extension of the classical value iteration algorithm.
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action selection probability P(a;Io;, bt) of agent i:

P(st+1lst, at)
ilI ^I

= E np(si'1lsi,ai)n = p(ailoi,@i)p(oilsi). (3.5)
(st1,... ,5.tM)ESM (at1,... ,atM)EAM j-O i-1 oiEO

In many multi-agent games with partial observability, the environmental dynamics
are deterministic and have two properties:

(i) the state si+1 can be uniquely determined given a state si and an action ai,
that is, P(si+1[si,ai) is l for a certain state sr, otherwise O; and

(ii) the observation oi can also be determined without any ambiguity given a state
si, that is, P(oilsi) is l for a certain observation oi, otherwise O.

Under these properties and equation (3.5), equation (3.4) is simplified to

inI

p(ot'lEat,Ht) - = P(stlHt) E np(aiLoi,bi). (3.6)
steS (atl,... ,atM)EAM(st,at,ot+1) i-1

where AM(st, at, ot+1) denotes the set of possible sequences of opponents' actions
(at1,... , atM) in which the state st reaches the next state whose observation is ot+1,

after the action at. Once the predictive distribution of the next observation in equa-
tion (3.6) is calculated, the action selection based on the TD error expected with
respect to the distribution, which contains the estimation process of the unobservable
states and the prediction process of the environmental dynamics, can be achieved by
the soft-max selection rule in equation (3.1).

Calculating the predictive distribution, however, presents three problems:

(a) the summations over possible current states st and possible opponents' actions
at1'... ' atM have computational intractability because there are so many can-

didates in a large-scale problem;
(b) the computation for constructing the belief state P(stlHt) over possible current

states is intractable due to the large state space and high dimensionality; and
(c) the prediction of opponent agents' actions is dincult because the action selec-

tion probability of opponent agent P(ailoi, 4,i), which constitutes a part of the

environmental dynamics, is unknown for the learning agent and may change in
a multi-agent setting.

To solve the computational intractability problems (a) and (b), we use a mean-
field-1ike analog approximation. Since the observation of each opponent agent oi
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depends on the unobservable state st, in the straightforward calculation without any
approximation, the action selection probability P(ailoi, 4,i) should be calculated for

all possible observations oi expected with respect to the posterior probability of all
possible unobservable states P(st lHt).

To avoid such exhaustive enumeration of the current state st, in our method,
the computation of equation (3.6) is approximated using the expected observation
bi(at, Ht), by the following three steps: the first step is to estimate the probability
p(oilat, Ht); the second step is to calculate the expected observation bi(at, HL) for

agenti:

bi(at,Ht) = E oip(oilaL,Ht), (3.7)
o;EO

with details ofthese two steps described in Section 3.2; and the last step is to calculate
equation (3.6) with the following expected observation:

^I

p(ot.1lat,Ht) ,y E Ilp(ai16i(at,Ht),bi). (3.8)
(at1,... ,atMIEAM(st,at,ot+1) i=1

The expected observation 6i(at, Ht) contains the history information Ht, and it in-
cludes the estimation process of the unobservable states, as in calculating the belief
state p(stLHt); this approximation can simultaneously solve problem (b). Note, how-
ever, that the approximation process does not retain the complete propagation of the
belief state, because the expected observation in equation (3.7) is calculated under
the assumption that the unobservable states are distributed with uniform probability
in each time step. According to deterministic property (ii) described above, an obser-
vation for opponent agents o; is determined without any ambiguity given a possible
state si, and the stochastic process of the environment depends on the opponents'
observations. In our method, the process is approximated as an alternative stochastic
process which depends on an analog observation in equation (3.7). This approxima-
tion may cause bias; the environmental dynamics estimated by equation (3.8) deviates
from the real environmental one due to the estimation error between the real obser-
vation oi and the expected observation 6i(at, Ht). The summation over the current
state, however, is no longer required; since all possible observations are summarized
to the expected observation as a central value, the calculation of the summation can
be removed. To solve the latter difnculty in problem (a), that is, the computational
intractability for summation over possible opponents? actions at1)...? atM' we use a

pruning technique, the details of which are described in Section 3.2.
To solve problem (c), the learning agent uses action predictors. Since there are

Mopponents' actions within the one-step transition in multi-agent problems, the
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environmental dynamics is approximated by M action predictors; i-th action predictor
(i - 1,... ,M) approximates the action selection probability of the i-th opponent
agent p(aiEoi, @i):

P(a;Io;,@t) ;y P(a;lo;,@t) -
exp(Fi(oi, ai; bi)/TiL)

=a3EA eXP(Fi(oi, ai; 6i)/Ti1) '
(3.9)

where Fi(oi, ai; 6i) denotes an assumed utility of taking action ai for an observation
oi, and Tit is a constant denoting the assumed randomness of agent i's policy. 6i

is not the real strategy bi by agent i but a strategy approximated by the i-th ac-
tion predictor. The predictive distribution in equation (3.6) can be calculated by
using the action predictor in equation (3.9), but in the actual computation process
of our approximation method, equation (3.9) is not calculated but the action selec-
tion probability of the i-th opponent agent, whose input is the expected observation
P(ail6i(at, Ht), @i), is:

P(a;l6;(at,Ht),@t) -
exp(Fi(6i(at, Ht), ai; bi)/Tit)

=a3EAeXP(Fi(6i(at, Ht), ai; ai)/Ti1)
(3.10)

Once the action selection probability is estimated by the corresponding action pre-
dictor in equation (3.10), the decision-making based on the TD error expected with

respect to the predictive distribution can be attained with the mean-field-1ike analog

approximation.
The approximation techniques described above enable us to solve large-scale and

partially observable problems. Our method provides, for example, an effective solution

to multi-agent problems whose underlying state space is discrete, including various
multi-agent games.

3.2 Function approximators and feature extraction
ln the previous preliminary study, the input and the output of the value function

were the current naive observation ot and the corresponding numerical value V(ot),
respectively (Matsuno, Yamazaki, Matsuda, & Ishii, 2001). This implementation,
however, makes the input dimension equal to or larger than the number of cards, a
high dimensionality that causes the performance of the RL agent to deteriorate due
to the large and redundant representation. To achieve effective learning in a realistic
problem, therefore, weuse a feature extraction technique; for our specific application,
the game Hearts, the high-dimensional observation ot is converted to a 25-dimensional
input pt according to the following representation:
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¥ pt[1]: the number of club cards which have been already played in the current
game, or in the learning agent's hand,

¥ pt[2]: same as pt[1], but the suit is diamonds,
¥ pt[3]: same as pt[2], but the suit is spades excepting +Q, +K and +A,
¥ pt[4], pt[5] and pL[6]: the probability where the opponent agent i (i - 1,2,3)

has +Q, respectively,
¥ pt[7]: a status for +K,
¥ pt[8]: a status for +A,
¥ pt[9] to pt[21]: a status for each ofheart cards, and
¥ pt[22] to pt[25]: a bit sequence.

Since the most important card is +Q in the game Hearts, weallocate three dimensions
to represent its predictive distribution. The game's rules provide us with the following

information:

1. Ifagent i did not play a spade card when a leading card was a spade card in a
past trick of the current game, pt[i + 3] is zero.

2. pt[4] +pt[5] +pt[6] - 1.

Under limitation from these two kinds of information, the probability that agent i
has +Q, pt[i + 3], is calculated as a uniform probability. The statuses of +K, +A,
or heart cards, take -1, O or l, which represent the cases when the card has a1-
ready been played in the current game, when it is in the opponent agent's hand,
or when it is in the learning agent's hand, respectively. The bit sequence repre-
sents the playing order in the current trick; for example, when the learning agent is
the second player in the current trick (the t-th playing turn of the learning agent),
(pt[22],pt[23],pt[24],pt[25]) - (0, 1,0, 0). Note that the value function depends not
only on the immediate observation ot but partly on the estimation of the unobserv-
able state; pt [4] , pt [5] and pt [6] represent an estimated distribution of the unobservable
card, +Q, and pt[7] to pt[21] represent an estimated status ofthe important cards. In
the actual process, V(ot) and V(ot+1) in equation (3.2) are replaced with V(pt) and

V(pt+1) , reSPeCtively, according to the above feature extraction.
The expected observation bi(at, Ht) for agent i, which is an input of the action

predictor, has also high dimensionality. To reduce the dimensionality and achieve
effective learning in the realistic problem, the expected observation bi(at, Ht) is con-

verted to a 26-dimensional input qti according to the following representation:

¥ qti[1]: the expected number of club cards in agent i's hand which are weaker
than the strongest card already played in the current trick (only if the leading
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card is a club, otherwise zero),
¥ qti[2]: the expected number of club cards in agent i's hand which are stronger

than the strongest card already played in the current trick (only if the leading

card is a club, otherwise the expected number of club cards in the agent i's
hand),

¥ qti[3]: same as qti[1], but the suit is diamonds,

¥ qti[4]: same as qti[2], but the suit is diamonds,
¥ qti[5]: same as qti[1], but the suit is spades excepting +Q, +K and +A,

¥ qti[6]: same as qti[2], but the suit is spades excepting +Q, +K and +A,
¥ qti[7]: an expectation value in which +Q is in agent i's hand.
¥ qti[8]: an expectation value in which +K is in agent i's hand.

¥ qti[9]: an expectation value in which +A is in agent i's hand.
¥ qti[10] to qti[22]: an expectation value in which each heart card is in agent i's

hand, and
¥ qti[23] to qti[26]: a bit sequence.

Let Cti(+Q) be a binary value, taking either l or O, which represents whether agent

i has, for example, +Q or not just before its t-th turn, respectively. An expectation
value of the binomial variable Cti(+Q) is the same as the probability that agent i has

+Q:

eti(+Qlat,HL) - P(Cti(+Q) - 1lat,Ht).

The game's rules provide us with the following information:

(3.11)

1. Agent i does not have a card ofthe suit, if agent i did not play a card whose

suit is the same as that of a leading card in a past trick of the current game.
2. Agent i may have all possible cards (excepting cards in the learning agent's

hand and cards that have already been played in the current game).

Under limitation from these two kinds of information, we assume that the unobserv-

able cards are distributed with uniform probability to each opponent agent's hand.
eti(a-cardlat, Ht) E [0, 1], representing an expectation value for which "a-card" is in

agent i's hand, is then calculated with respect to the distribution. qti[1],... , qti[6] are
calculated using eti(42lat, Ht),... , eti(+Jlat, Ht), and qti[7],... , qti[22] correspond to
eti(+Qlat, Ht),... , eti(c)AIat, Ht), respectively; qti can be obtained by calculating the

^.

estimated card probability Ctt. The bit sequence is the same as pt.
Given an extracted input qti, the utility function Fi of agent i returns a

26-dimensional output vector rg each of whose dimensions represents:
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¥ rW]: the merit value where agent i plays an arbitrary club card which is weaker
than the strongest card in the current trick,

¥ ri[2]: the merit value where agent i plays the weakest club card (among the
remaining club cards) which is stronger than the strongest card in the current
trick,

¥ ri[3]: the merit value where agent i plays a club card (neither the weakest
nor the strongest among the remaining club cards) which is stronger than the
strongest card in the current trick,

¥ rti[4]: the merit value where agent i plays the strongest card (in remaining club
cards) which is stronger than the strongest card in the current trick,

¥ ri[5]: same as ri[1], but the suit is diamonds,
¥ ri[6]: same as ri[2], but the suit is diamonds,
¥ ri[7]: same as ri[3], but the suit is diamonds,
¥ ri[8]: same as ri[4], but the suit is diamonds,
¥ ri[9]: the merit value where agent i plays an arbitrary spade card (except +Q,

+K and +A) which is weaker than the strongest card in the current trick,
¥ ri[10]: the merit value where agent i plays an arbitrary spade card (except +Q,

+K and +A) which is stronger than the strongest card in the current trick,
¥ ri[11]: the merit value where agent i plays +Q,
¥ ri[12]: the merit value where agent i plays +K,
¥ ri[13]: the merit value where agent i plays +A, and
¥ rti[14] to ri[26]: the merit value where agent i plays each heart card.

The merit value represents a tendency where agent i plays the corresponding card;
the larger the merit value, the more likely the agent is to play the card.

According to the above feature extraction technique, the action selection probabil-
ity of agent i is calculated by the following four steps: first, the expected observation
bi(at, Ht) is obtained by calculating the estimated card probability eti of each card for

agent i; second, the expected observation 6i(at, Ht) is converted to the extracted and
hence compressed 26-dimensional input qti(at, Ht) according to the above representa-
tion, but note that qLi(at, Ht) is directly obtained without calculating eti in the actual

implementation, and this integrated calculation corresponds to the computation in
equation (3.7); third, the utility function Fi returns the compressed 26-dimensional
output rg given the input qti(at, Ht); and fourth, the i-th action predictor calculates

the action selection probability:

p(rglqti(at,Ht), bi) -
exp(Fi(qti(at, Ht), ri; 6i)/Tit)

=ai.EA,. eXP(Fi(qti(at, Ht), ri., bi)/TiL) '
(3.12)
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where Aj denotes the set of possible actions for agent j. Note that the utility
Fi(6i(at,Ht),ai;ai) in equation (3.10) is replaced with Fi(qti(at,Ht),ri;ii) by the
feature extraction. The action selection probability P(rilq3(at, Ht), bi) in equation

(3.12) consists of a 26-dimensional vector each of whose dimensions represents an
occurrence probability ri, which is different from the primitive action ai. The action
selection probability for a compressed action rti is, therefore, converted to that of a

primitive action a;.
When there are so many possible opponents' actions, the computational difnculty

described in the latter part of problem (a) arises. To overcome this problem, we
use a pruning technique whereby an action a; whose merit value is smaller than the
difFerence of the mean and the standard deviation (s.d.) of the merit values over the
possible actions, (mean)-(s.d.), is pruned, and further prediction from the action is

eliminated. In other words, a state transition due to an action whose merit value is
fairly sma11 is ignored; this pruning technique enables us to avoid the computational
difnculty and to obtain an efhcient computation of the summation in equations (3.3)
and(3.8).

Feature extraction conducted by considering the properties of the target problem
allows us to reduce the dimensionality and improve the learning efBciency. Large-scale
realistic problems, however, still have huge state spaces and high dimensionality; for
example, there are about 1012 possible inputs qti for the action predictor. This causes

dinculty in learning the action selection model directly from a limited number of
learning samples, by using a simple table lookup approach such as a multinomial
model, due to the large number of effective parameters in the lookup table. To
overcomethis difnculty, we use function approximators for the value function and
action predictors. A function approximator can approximate an input-output relation
as a non-linear regression model with a reasonable number of parameters, and it
enables the agent to use its generalization ability for unknown situations.

The value function is approximated by a normalized Gaussian network (NGnet)
(Sato & Ishii, 2000) with the feature extraction technique for its input. In this study,
the NGnet V(pt) is trained so as to learn the relationship between a compressed input
pt and the expected cumulative reward according to the same learning method as that
of the critic learning in the actor-critic algorithm:

V(pt) - V(pt) + r7c6t,

where r7c denotes a learning rates, and 6t is the TD error defined as

6t - R(pt+1) +TV(pt+1) - V(pt),

(3.13)

(3.14)
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where the immediate reward is defined as R(pt) - n when the agent gets n penalty
points (n may be O) between the t-th and (t+ 1)-th play, and the discount factor T is
1.O in our application.

The utility function Fi in equation (3.l2) is also represented by the NGnet with

the feature extraction for its input and output. The NGnets are trained according
to four steps: first, the actual observation o-i for agent i is available after one game

has finished; second, the 52-dimensional observation vector 6; is converted to the
compressed 26-dimensional input q7; third, the 26-dimensional output rl; is calculated
from the actual action a;; and fourth, these two vectors, the input q7 and output r-i,
are given to the NGnet for the supervised learning. The output vector r-ticonsists of

elements of l or O; the target value of the dimension corresponding to the actually
taken action ai is 1, otherwise O. Although the parameters of the NGnet are tuned
so that the output represents non-negative values (from O to 1) in each dimension,
the utility function does not directly represent the probability. In other words, the
summation over possible actions of agent i is not always l because the set of possible
actions Aj may depend on the state st. We thus use the soft-max normalization in
equation (3.12) after removing impossible actions.

3.3 Computer simulations
we applied our RL method to the card game Hearts,*3 which is a wel1-defined ex-

ample of large-scale and multi-agent problems with partial observability. To evaluate
our method, we carried out computer simulations where an agent trained by our RL
method played against rule-based agents which have 50 general rules for playing cards
from their hands.*4 The performance of an agent can be evaluated by the acquired
penalty ratio, which is the ratio of the penalty points acquired by the agent to the
total penalty points of the four agents. If the four agents have equal strength, their
penalty ratio averages O.25. The rule-based agent is an experienced-level player of
the game Hearts. The acquired penalty ratio was OAl when the three rule-based
agent played against one random agent, which is a reference agent for the absolute

*3 Throughout this dissertation? we assumed that there are M opponent agents intervening be-
tween the t-th and (t + 1)-th action turns of the learning agent. In the game Hearts, however,
if the leading players of the t-th turn and of the (t + 1)-th turn are different, the number of
intervening agents is not M - 3. Nonetheless, the above explanation can easily be extended to
such a case. The details of the game's rules used in our experiments are described in Appendix
B.

*4 The observation process of the rule-based agents is deterministic, and our action predictors use
this fact (see equation (3.8)). Although the action selection process of the rule-based agents
is also deterministic, our action predictors assume that it is probabilistic and the stochastic
process is approximated as the soft-max policy in equation (3.12).
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evaluation of the agents' strength, where it played cards from its hand at random; in
other words, the random agent acquired about 2.1-fold penalty points of rule-based

agents on average.

3.3.1 Single agent learning in stationary environment

Figure 3.1 shows the result when the agent trained by our method cha11enged the
three rule-based agents. Each point represents the average of the penalty ratio for the
2,000 games over 20 1earning runs, each consisting of 120,000 training games. After
about 80,000 games playing with the three rule-based agents, our RL agent came
to acquire a smaller penalty ratio than the rule-based agents; the RL agent became
stronger than the rule-based agents, which is statistically significant as shown in the
upper panel in Fig. 3.1. By observing the results of each learning run (data not
shown), we found that the automatic strategy acquisition was robustly achieved by
our RL method. In our preliminary study, an agent trained by our model-based RL
method could not beat the rule-based agents after 5,000 training games (Matsuno
et a1., 2001). The present RL method is similar to our previous preliminary model-
based RL method in principle, but includes the feature extraction techniques used
in the value function and the three action predictors. Since the techniques reduced
the dimensionality of the function approximators, the learning process was largely
accelerated, and then sufncient training games could be carried out so that learning
of the agent converged.

In the first experiment described above, our RL method was applied to the problem
under the POMDP assumption that there is only one learning agent in the stationary
environment. In the following, we apply our method directly to multi-agent environ-
ments where there are multiple learning agents making the environment dynamic.

3.3.2 Multi-agent learning in dynamic env]'ronments

Figure 3.2 shows the result when one learning agent trained by our RL method, one
learning agent based on the actor-critic algorithm, and two rule-based agents played
against each other. Since performance may be influenced by seat position (that is, an
agent may have an advantage/disadvantage based on its seat position if the agents
have different strengths), the seat position of the fow agents was fixed throughout the
training run, because its influence is negligible in 2,000 averaged games. To clarify
the advantage of our RL method, an actor-critic agent also uses the same feature
extraction techniques for its actor and critic. As a result, the actor-critic agent with
the feature extraction technique learns much faster than an actor-critic agent without
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Fig. 3.1: Computer simulation result in an environment consisting of one learning
agent trained by our RL method and three rule-based agents.

upper pane1: P-values of the t-test where the null hypothesis is "the RL agent has
the same strength as the rule-based agents" andthe alternative hypothesis is "the RL
agent is stronger than the rule-based agents." The test was done independently at
each point on the abscissa. The horizontal line denotes the significance level of 1%.
After about 80,000 training games, the RL agent was sigmificantly stronger (p < 0.01)
thanthe rule-based agents. The non-parametricWilcoxon's rank-sumtest also showed
a similar result (not shown).

lower panel: The abscissa denotes the numberof training games andthe ordinate
denotes the penalty ratio acquired by each agent. Weexecuted 20 1earning runs, each
consisting of 120,000 training games. Each point represents the average for the 2,000
games over the 20 runs. The discount factors l in equations (3.2) and (3.14) were
both 1.0, the constants T,n andTL in equations (3.1) and (3.12) 'were both 1.0, and
the learning rate rlc in equation (3.13) was 1.0. These parameters were heuristically
det ermined.
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the feature extraction (Matsuno et al., 2001) (data not shown). Although the average
penalty ratio of our RL agent became smaller than those of the rule-based agents after
about 50,000 training games, the learning agent trained by the actor-critic algorithm
improved little and its performance remained much worse than that of other agents.
This result implies that our mode1-based approach based on the POMDP formulation
is more elRcient than a model-free approach, that is, the actor-critic algorithm.

Figure 3.3 shows the result when two learning agents trained by our RL method
and two rule-based agents played against each other. The seat position of the four
agents was fixed throughout the training run. After about 50,000 training games,
both of the two learning agents became stronger than the rule-based agents, which is
statistically significant as the upper panel in Fig. 3.3, even in this dincult multi-agent
setting.

These two simulation results, Figs. 3.2 and 3.3, show that our RL method can be
applied to the concurrent learning of multiple agents in a multi-agent environment.
This applicability is partly attributed to the fast learning by the encient function
approximators. In our RL method, the learning agent has action predictors which
approximate the policy of each opponent agent. When one opponent agent changes
its policy, it is enough to make the corresponding predictor adapt to the change.
Since this enables the agent to adapt quickly, our RL method becomes applicable to
complex multi-agent settings where the Markov property fails.

3.3.3 Validation match against human player

Although the learning agents trained by our RL method became stronger than
the rule-based agents, the experiments above cannot eliminate the possibility that
the RL agents got a specific strategy to the rule-based agents; the RL agents may
adapt just a certain situation. To validate the general strength of the learning agent,
wecarried out evaluation games with the human player, who is the designer of the
rule-based agent. Figure 3.4 shows the result when two RL agents trained by our
method, one rule-based agents and the human player played together, with fixed seat
positions. One hundred evaluation games in both learning runs were played before
learning and after 10,000, 30,000, 50,000, 70,000 and 90,000 training games, and these

training games were carried out with three rule-based agents; one rule-based agent
was then replaced by the human player in each evaluation games. The learning run
wasexecuted twice, as depicted by each point in Figure 3A, representing a mean over
200 games. This result shows that the learning agents successfully acquired a general
strategy to become as strong as the human player.
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Fig. 3.2: Computer simulation result in anenvironment consisting of one learning
agent trained by our RL method, one learning agent trained by the actor-critic algo-
rithm, andtworule-based agents.

upper panel: P-valuesof the t-test where the null andalternative hypotheses are the
sameas in the previous experiment (Fig. 3.1). After 60,000 training games, the RL
agent became significantly stronger than the rule-based aSents, but the agent trained
by the actor-critic algorithm did not (P-values are not shown because they remained
around1).

1ower panel: The abscissa andthe ordinate denote the same as in Fig. 3.l, but the
scale of the ordinate is larger here. We executed 20 learning runs, each consisting
of 100,000 training games. The parameter mlues andother experimental setup were
also the same.
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Fig. 3.3: Computer simulation result in an environment consisting of two learning
agents trained by our RL method andtworule-based agents.

upper pane1: P-values of the t-test where the nu11 and alternative hypotheses are
the same as in the previous experiment (Fig. 3.1). After 50,000 training games, the
two RL agents were significantly stronger than the ru1e-based agents.

lower panel: The abscissa and the ordinate denote the same as in Fig. 3.1. We
executed 20 1earning runs, each consisting of 80,000 training games. The parameter
values and other experimental setup were also the same.
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Fig. 3A: Computer simulation result when two learning agents trained by our RL
method, one humanplayer and one rule-based agents, played together. One hundred
evaluation games were carried out before learning and after lO,000, 30,000, 50,000,
70,000 and90,000 training games(with three rule-based agents). We repeated the
training andevaluation runs twice. The abscissa andthe ordinate denote the same
as in Fig. 3.1. Each point denotes the average of 200 (2 x 100) evaluation games.
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3.4 Discussion

ln our RL method, calculating the expectations to cope with uncertainty is not
required for obtaining the expected TD error, because such calculation is contained
in the action prediction by using the action predictors with the expected observation
6t;(at, Ht) which partly incorporates the estimation of unobservable states through

the feature extraction technique. Since the belief state is summarized as the expected
observation, which can be interpreted as an averaged state, our approach enables
us to reduce the computation time., this idea in which a probability distribution is
approximated as an expectation value by changing the order of summations is similar
to the fast-informed bound approximation, described in Section 2.2.1. This method
mayproduce a bias in estimating the expected TD error due to the assumption that
the opponent agent determines its action, based not on its real observation o;, but
on the expected observation 6i(at, Ht) estimated from the observation history of the
learning agent according to equation (3.7). Since, however, our target is to deal
with realistic POMDP problems consisting of a huge number of states, reducing the
computation time is crucial. The computer simulation results showed that our RL
method is applicable to such a realistic problem and also to more difBcult problems
with multiple agents.

Existing algorithms have not attained the level of human players, unlike in perfect
information games like Tesauro's TD-gammon(Tesauro, 1994). A possible reason is
that the transition over the observation space of imperfect information games does not
satisfy the Markov property, and the conventional RL methods developed for MDP
problems are not suitable for such non-Markovian problems, which is demonstrated
in Fig. 3.2 by using the actor-critic algorithm.

There have been many multi-agent RL studies applied to simplified problems
(Littman, 1994a; Hu & Wellman, 1998; Nagayuki, Ishii, & Doya, 2000; Salustowicz,

Wiering, & Schmidhuber, 1998; Sandholm & Crites, 1995; Sen, Sekaran, & Hale,
1994; Tan, 1993), and some studies attempted to solve realistic problems like the

elevator dispatch problem (Crites, 1996; Crites & Barto, 1996a, 1996b), which,

however, suggested that the performance was not good when there was unobservable
information. Our study aimed at presenting an RL method applicable to large-scale

partia11y observable problems with multiple agents, and wehave successfully created
an experienced-level player of the game IIearts. To overcome the partial observability

which occurs inevitably in multi-agent problems, the learning agent estimates the
unobservable state variables with the several approximation techniques, and to
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cope with the multi-agent property, it has multiple forward models to predict the
environmental behavior, and they are trained individually. When one opponent
agent changes its policy, this is enough to make the corresponding predictor adapt to
the change. Since our method enables the agent to adapt to environmental changes
quickly, when formulated as a single-agent POMDP problem, it can be applied to
multi-agent problems. The experimental results demonstrated that our RL method
can be applied to a realistic multi-agent problems with partial observability.

Although the expected observation 6i(at, Ht) contains the estimation of the un-
observable states based on the history information, it does not propagate the belief
information, because the expected observation in equation (3.8) is calculated under
the assumption that the unobservable states are distributed with uniform probabil-
ity. In addition, this mean-field-like analog approximation may cause the deviation
to approximate the real distribution of the unobservable states, especially when the
distribution has multiple local peaks in a sparse space. This indicates less uncertainty
in the environment. Such an analog approximation with no belief propagation may
cause the estimation accuracy of the utility value to deteriorate; consequently, we
plan to explore more effective techniques in our next work.
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Chapter 4

ModeL-based Reinforcement Learning
for Partially Observab[e Game with
Samp]ing-based State Estimation

This chapter presents an alternative approach to a mode1-based reinforcement learn-
ing for the same target as that of the previous chapter.*1 As discussed in Section 3A,

there are two crucial problems in our approach: first, the estimated distribution of
unobservable states may deviate from the real distribution due to the estimation error
incurred by using the analog approximation; and second, the estimation process does
not propagate belief information over time due to the uniform assumption. They may
cause estimation error of the action values, and the performance of the agent may de-
teriorate even with less uncertainty in the environment. To solve these problems, we
use a sampling technique in which the heavy integration required for estimation and
prediction can be approximated by using a plausible number of samples. Computer
simulation results show that the new RL method based on a sampling method can
solve the remaining problems and attain a dramatic improvement over the previous
One.

4.1 Model

ln our RL method, the agent selects an action according to the greedy policy:

7T(Ht) - argmax U(Ht, at), (4.1)
at

where U(Ht,at) is the utility function at time step t. This function is defined as
an expectation of a one-step-ahead future value with respect to the belief state and

*1 The contents of this chapter appears in our papers (Fujita & Ishii, 2005, 2006, 2007).
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transition probability:

u(Ht,at) - = P(stlHt) = P(st'1lst,at)[R(st,at,st'1)+7V(st'1)], (4.2)
stES st+1ES

where R(st, at, st+1) denotes an immediate reward at time step t, and V(st+1) denotes
the state value function of the next state st+1. T denotes a discount factor. In large-
scale problems, it is difncult to learn the value function over the belief space, because
optimization of the value function, whose input is a probability distribution over the
high-dimensional state space, is too complex and requires heavy computation. We
then use the completely-observable approximation (Littman et al., 1995); the agent
maintains the state value function so that the self-consistency equation holds on the
underlying MDP, and calculates the state-action value by a one-step-ahead prediction
(the second summation in equation (4.2)). After that, it calculates the history-action
utility as an expectation of the state-action utility with respect to the belief state
(the first summation in equation (4.2)), under the knowledge that the optimal value
function for the belief space can be approximated well by a piecewise linear and convex
function (Smallwood & Sondik, 1973).

The calculation of the utility function, however, includes three dilnculties:

(a) the summations in equation (4.2) over possible current states st and next states
st+1 have computational intractability because there are so many state candi-
dates in a realistic problem;

(b) the computation for constructing the belief state P(st lHt) over possible current
states is intractable due to the large state space and high dimensionality; and

(c) the prediction of possible next states is difncult because the environmental
model P(st+1lst, at) is unknown for the learning agent and may change in a
multi-agent setting.

Someeffective approximations, therefore, are required for avoiding the above difncu1-
ties. Note that these problems above are the same as the problems in our previous
study (Ishii et a1., 2005, described in Chapter 3).

To avoid the computational intractability problem (a), we use sampling-based ap-
proximation; the learning agent obtains independent and identically distributed (i.i.d.)
random samples, 3t and 3t+1, Whose probabilities are proportional to the belief state
p(stIHt) and the environmental model P(st+1Lst, at), respectively. Note here that
each sampled 3t+1 depends on a certain sampled Bt. The utility function in equation
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(4.2) can then be approximated as

u(Ht,at) - gP(Bf"IHt) fp(sfi,113fj,,at) [R(3f",at,3!i,1) '7V(Bfi,1)]. (4.3)

j-1 k-1

Samples of the current state 3t can be obtained by sequential Monte Carlo meth-
ods such as particle filtering (Gilks, Richardson, & Spiegelhalter, 1996); samples
of the previous state 3t-1, Whose probability is proportional to the previous belief
state P(st-1lHt-1), are diffused into the next time step according to equation (2.3).
This process is repeated N times, and the agent obtains estimated current states
(Bfj)lj - 1,... ,N). Samples of the next state Bt.1 are Obtained by a simple sam-

pling technique; K samples are drawn from the environmental model P(st+1lst, at)
given a sampled current state 3t and an action at. This sampling is repeated K times,
and the agent obtains predicted next states (B!i)1Fk - 1,... ,K) for each of N pos-

sible current states. The two summations in equation (4.2) are thus simultaneously
approximated by using KN samples in equation (4.3). In large-scale and multi-agent
problems, however, this naive sampling approach is ins&cient due to dilhculties (b)
and (c); we then need further devices, as described below.

To avoid dinculty (b), we do not deal with the whole history Ht but use a one-
step history ht - ((ot, -), (ot-1, at-1)), Which leads us to make a simplification (A):
a belief state represents a simple one-step prior knowledge about states, but does
not carry the complete likelihood information. The history Ht contains two kinds
of information. The first is about impossible states at the t-th turn; for example,
in the game Hearts, if an agent played V9 after a leading card 43 in a past trick,
the agent no longer has any club cards at the t-th turn and any state in which
this agent holds club cards is impossible (cf. Appendix B). The second is about
likelihood, considering the characteristics of the opponent agents; for example, in the
same situation as above, it is unlikely for the agent to have any heart card higher
than C)9. Although the belief state P(stlHt), which is a suncient statistic for the
history Ht, should involve these two kinds of information, we partly ignore the latter
kind by replacing the whole history Ht with a one-step history ht; namely, the belief
state P(stlHt) is approximated by the partial belief state P(stlht). Although this
simplification enables us to estimate unobservable states easily, it may lead to bias in
the estimation of the complete belief state; in this approximation,

p(stlHt) ;W(stEht) cx E p(st-l)P(otEst)P(stlst-l, at-1), (4.4)
St-1

weassumeuniform distribution for the previous unobservable states P(st-1), Whereas
the complete belief state P(stlHt) contains the previous information P(st_1 EHt_1) by
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performing an exact belief propagation. Note, however, that this partial belief state
attains a one-step belief propagation, unlike the previous study (Ishii et al., 2005,
described in Chapter 3). No impossible state, on the other hand, is considered in light
of the former type of information, but each possible state has a one-step likelihood
between the (t - 1)-th and t-th time steps. Although the maintenance of likelihood
over a11 possible states requires heavy computation and a large amount of memoryin
manyrealistic problems, even with the sampling approximation, this simplification
enables us to estimate internal states easily at each time step.

To solve problem (c), the learning agent uses action predictors, which is the same as
our previous approach described in Chapter 3. Since there are M opponents' actions
within the transition from a state st to the next state st+1 in multi-agent problems,
the transition probability P(st+1[St, at) in equation (4.2) is represented by using the
real action selection probability P(ai[oi, bi) of agent i:

P(st+1Lst, at)
^I ^I

= E np(s3'+1[si,a3')n = P(ailoi,@i)p(oilsi). (4.5)
(st1,... ,stM)ESM (at1,... ,atM)EAM j-O i=1 o;EO

In many multi-agent games with partial observability, the environmental dynamics
are deterministic and have two properties:

(i) the state si+1 can be uniquely determined given a state si and an action ai,
that is, P(si+1lsi,ai) is l for a certain state si+1, otherwise O; and

(ii) the observation oi can also be determined without any ambiguity given a state
si, that is, P(oi[si) is l for a certain observation oi, otherwise O.

Note that these properties above are the same as those of our previous study. Under
these properties, equation (4.5) is simplified to

^I

p(st.1lst, at) - E np(ailoi, bi), (4.6)
(at1,... ,atM)EAM(st,at,st+1) i=1

where AM(st, at, st+1) denotes the set of possible sequences of opponents' actions
(at1,... ,atM) in which the state st reaches the next state st+1 after the action at.
According to property (i), given a current state st and an action at, determining the
next state st+1 is the same as determining opponent agents' actions (at1,... , atM). For

obtaining samples of the next state gt+1, therefore, the agent predicts all opponent
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agents' actions at1,... , atM. A sample path for equation (4.6) is now given by

^I

p(gt'll3t,at) - nP(ai[bi,d),
i=1

59

(4.7)

where 3t+1 is the sampled next state so that it is consistent with the current state 3t,
the action aL and the opponent agents' actions (at1,... ,atM) E AM(3,at,3t+1), and
the observation 6i of agent i is uniquely determined (that is, constant) by the current
state 3t, the action at and the previous opponents' actions at1,... , ai-1 according to

property (ii).
Since the action selection probability P(aiFoi, bi) of opponent agent i is unknown

for the learning agent, as described in problem (b), the agent uses action predictors;
each action predictor learns the action selection model of the corresponding opponent
agent. The real environmental model in equation (4.7) is then approximated by M
action predictors:

i4I

p(3t+1Lgt,at) FW(Bt'1LBt,at,6) - np(ail6%;,ai),
i=1

(4.8)

where 6 - (61,... , 6M). The action selection probability ofthe i-th opponent agent,

p(aiLoi,bi), is approximated by the i-th action predictor (i - 1,... ,M); 6i in equa-

tion (4.8) is not the real strategy bi by agent i but a strategy approximated by the i-th

action predictor. Since each action predictor is realized as a function approximator,
6i denotes, in effect, its parameters (see section 4.2). The agent predicts that the i-th

opponent agent selects an action a; according to the soft-max policy:

P(a;lo;,4,%) -
exp(Fi(oi, ai; 6i)/Tit)

=a3EAeXP(Fi(oi, a3'; 6i)/Tit) '
(4.9)

where F%(o;, a;) denotes an assumed utility of taking action ai for an observation oi,
and TL is a constant which denotes the assumed randomness of agent i's policy.

Using the above two devices to deal with problems (b) and (c), equation (4.3) is
nowfurther approximated as

u'Ht,at' - fp'3fj,lht' fBp'ai,(k,'6i,(j,,ii' [R'Bfj,,at,3fi,1'.TV'3fi,1'] ,

j-1 k-1i-1

(4.10)

by replacing the belief state P(3fj) lHt) and the environmental model P(B!i)1
^

S

with the partial belief state P(3ij) Iht) and the action predictors P(3!Tll3fj), at,

(j)
t l

.&
at)

)-
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IILM=1 P(ai,(k)l6i,(j), bi), respectively, where ai,(k) is a constituent of the action se-

quence (a1,(k),... , aM,(k)) E AM(3ij), at, B!T1). According to equation (4A), samples

of the current state 3t are obtained by the following four steps: the first step is to
sample the previous state St*_1 aCCOrding to uniform distribution so as not to violate
the whole history Ht (no impossible state being sampled); the second step is to cal-
culate the action selection probability P(aLILoLl, 6i) for the action aLl aCtually

taken by agent i according to equation (4.9) and to iterate this step for all opponent
agents' actions aL1,... , atM_1;the third step is to calculate the one-step likelihood
p(3t*I3t*_1, at_1, 8) according to equation (4.8) and obtain a sample of the current

state 3t* given the previous state gt*_1, the previous action at-1 and the opponents'
actual actions at1_1,... , atM_l;and the last step is to accept 3t. as 3fj'1) with proba-

bility p - min
P(3tTIBt*_1,at-1,@)

p(B(3)lBf'l)1,at-1,8)

)

, otherwise 3t* is rejected. These four steps are

repeated N times, and the agent obtains estimated current states (3fj) Lj - 1,... , N).

The samples of the ctment state 3t include only a one-step likelihood information
(simplification (A)); in the first step above, samples of the previous state 3t*J are
obtained by uniform sampling, ignoring the previous history. For approximating a
large-scale posterior by using a limited number of samples, this uniform prior sam-
pling is a plausible approach, because the complete posterior belief is likely to be
very sparse and many possible states tend to have similar probability. In addition,
in problems whose state space is discrete with a deterministic observation process,
samples Bt inconsistent with an actual observation ot necessarily disappear; for exam-
ple, if an agent played V9, all state candidate in which another agent has C)9 are no
longer usefu1. In large-scale and high-dimensional problems such as the game Hearts,
especially, very few samples remain after each observation; this causes difnculty in
performing the incremental maintenance of complete belief states by using a limited
number of samples according to equation (2.3). The learning agent then discards
the previous information P(st-11Ht-1) and obtains new samples St'_l With uniform
probability P(st_1), before calculating a one-step likelihood. Although this sampling
technique may lead to bias in the estimation of the belief state due to ignoring the
previous history Ht_1, Simplification (A) nonetheless provides us with an effective
approximation to make intractable problems easier.

Samples of the next state 3t+1 are Obtained by a simple sampling technique. K
samples are drawn by the fo11owing three steps: the first step is to calculate the action
selection probability for the opponent agent i according to equation (4.9); the second
step is to select a possible action ai according to the action selection probability, and
the first and second steps are iterated alternately for all opponent agents; and the last
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step is to compute the next state 3t+1 given the estimated current state Bt, the action
at and the opponent agents) actions at1,... ,atM. These three steps are repeated K
times, and the agent obtains predicted next states (Bfi)lLk - 1,... ,K), with the

learned mode1, for each of the N possible current states.
The three approximations described above (the sampling technique, partial belief

state and action predictor) enable us to solve large-scale and partially observable prob-
lems. Our method, for example, provides an effective solution to multi-agent problems
whose underlying state space is discrete, including various multi-agent games.

4.2 Function approximators with feature extraction
ln large-scale problems, the state space often has high dimensionality. In card

games, for example, the state st is a 52-dimensional vector each of whose dimensions

represents the status of the corresponding card. This high dimensionality causes the
performance of the RL agent to deteriorate due to the large and redundant represen-

tation. To achieve effective learning in a realistic problem, therefore, it is beneficial
to use feature extraction techniques, by considering the properties of the target prob-

lem, for the input and output of the value function and action predictors. Here, just
sameas our previous study (Ishii et al., 2005, described in Section 3.2 in the previous
chapter), we explain the feature extraction techniques used to apply our approach to

a specific domain: the card game Hearts.

To reduce the dimensionality, the 52-dimensional state st is converted to a 36-
dimensional input pt according to the fo11owing representation:

¥ pt[8 x i+ 1]: the number ofclub cards inthe agent i's (i -0,1,2,3) hand,

¥ pt[8 x i+2]: same aspt[8 x i+ 1], but the suit is diamonds,

¥ pt[8 x i+3]: same aspt[8 x i+ 1], but the suit is spades excepting +Q, +K
and+A,

¥ pt[8 x i+4]: a binary value for +Q,
¥ pt[8 x i+5]: a binary value for +K,

¥ pt[8 x i+6]: a binary value for +A,
¥ pt[8 x i + 7]: the number of heart cards in the agent i's hand which are weaker

than the strongest card in the current trick (only if the leading card is a hart,
otherwise zero) ,

¥ pt[8 x i+8]: the number ofheart cards in the agent i's hand which are stronger

than the strongest card in the current trick (only if the leading card is a hart,
otherwise the number of all heart cards in the agent i's hand), and

¥ pt[33] to pt[36]: a bit sequence.
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The binary values of +Q, +K and +A take either l or O, which represent whether agent

i has the card or not, respectively. Since these three cards are the most important
in the game Hearts, we allocate one dimension to each card. Because heart cards are

also important, we a11ocate twice as manydimensions to heart cards as to other suits.
The bit sequence represents the playing order in the current trick. For example, when
the learning agent is the second player in the current trick (the t-th playing turn of the

learning agent), (pt[33],pt[34],pt[35],pt[36]) - (0, 1, 0, 0). When the next state st+1

is obtained by the sampling process, equation (4.10) can be calculated by replacing
V(st+1) With V(pt+1) aCCOrding to the above feature extraction.

The observation ouor agent i is also a 52-dimensional vector; each dimension of

the observation vector represents an observable status of the corresponding card such
that each status represents whether the card has already played or not. To reduce

the dimensionality, the 52-dimensional observation o; is converted to a 26-dimensional
input qti according to the fo11owing representation:

¥ qi[1]: the number of club cards in the agent i's hand which are weaker than the

strongest card already played in the current trick (only if the leading card is a

club, otherwise zero),
¥ qti[2]: the number of club cards in the agent i's hand which are stronger than

the strongest card already played in the current trick (only if the leading card
is a club, otherwise the number of all club cards in the agent i's hand),

¥ qti[3]: same as qti[1], but the suit is diamonds,

¥ qi[4]: same as qi[2], but the suit is diamonds,

¥ qti[5]: same as qti[1], but the suit is spades excepting +Q, +K and +A,
¥ qti[6]: same as qti[2], but the suit is spades excepting +Q, +K and +A,

¥ qti[7].. a binary value for +Q,
¥ qti[8]: a binary value for +K,

¥ qti[9]: a binary value for +A,
¥ qti[10] to qti[22]: a binary value for each heart card, and

¥ qii[23] to qti[26]: a bit sequence.

The binary values of +Q, +K, +A and heart cards are defined similar to pt. Since
the statuses of these cards are important for predicting the next action in the game

Hearts, we allocate one dimension to each card. The bit sequence is the same as pt.
Given an extracted input qti, the utility function Fi of agent i returns a

26-dimensional output vector rl each of whose dimensions represents:

¥ ri[1]: the merit value where agent i plays an arbitrary club card which is weaker

than the strongest card in the current trick,
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¥ rg[2]: the merit value where agent i plays the weakest club card (among the
remaining club cards) which is stronger than the strongest card in the current

trick,
¥ ri[3]: the merit value where agent i plays a club card (neither the weakest

nor the strongest among the remaining club cards) which is stronger than the
strongest card in the current trick,

¥ rti[4]: the merit value where agent i plays the strongest card (in remaining club

cards) which is stronger than the strongest card in the current trick,
¥ ri[5]: same as ri[1], but the suit is diamonds,
¥ ri[6]: same as ri[2], but the suit is diamonds,
¥ ri[7]: same as ri[3], but the suit is diamonds,
¥ ri[8]: same as ri[4], but the suit is diamonds,
¥ ri[9]: the merit value where agent i plays an arbitrary spade card (except +Q,

+K and +A) which is weaker than the strongest card in the current trick,
¥ rti[10]: the merit value where agent i plays an arbitrary spade card (except +Q,

+K and +A) which is stronger than the strongest card in the current trick,
¥ rti[11]: the merit value where agent i plays +Q,
¥ ri[12]: the merit value where agent i plays +K,
¥ ri[13]: the merit value where agent i plays +A, and
¥ ri[14] to rti[26]: the merit value where agent i plays each heart card.

The merit value represents a tendency where agent i plays the corresponding card;
the larger the merit value, the more likely the agent is to play the card (see equations
(4.9) and (4.11)). The output representation ri is the same as that of our previous
study described in Chapter 3, while the input representation qti is different due to the
difference of the estimation process.

According to the above feature extraction technique, the action selection proba-
bility of agent i is calculated by the following four steps: first, the observation oi
for agent i can be obtained when the state st is given by the sampling process; sec-
ond, the 52-dimensional observation vector oi is converted to the extracted and hence
compressed 26-dimensional input qtt according to the above representation; third, the
utility function Fi returns the compressed 26-dimensional output ri given the input

qt%; and fourth, the i-th action predictor calculates the action selection probability:

P(r;Iqtt, @t) -
exp(Fi(qti, ,i; bi)/Tit)

=afEA3 eXP(Fi(qt7, ri-; ii)/Ti1) '
(4.11)

where A' denotes the set ofpossible actions for agent j. Note that the utility Fi(oi, ai)
in equation (4.9) is replaced with Fi(qti, ,i) by the feature extraction. The action
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selection probability P(rl lqt%, 4,%) in equation (4.11) consists of a 26-dimensional vector
each of whose dimensions represents an occurrence probability rtt, which is different
from the primitive action ai. The action selection probability for a compressed action

rg is, therefore, converted to that of a primitive action a;.
The feature extraction conducted by considering the properties of the target prob-

lem allows us to reduce the dimensionality and improve the learning enciency. Large-
scale realistic problems, however, still have huge state spaces and high dimensionality;
for example, there are about lO12 possible inputs qti for the action predictor. This

causes dinculty in learning the action selection model directly from a limited number
of learning samples, by using a simple table lookup approach such as a multinomial
model, due to the large number of effective parameters in the lookup table. To over-
comethis difnculty, we use function approximators for the value function and action
predictors. A function approximator can approximate an input-output relation as a
non-linear regression model with a reasonable number of parameters, and it enables
the agent to use its generalization ability for unknown situations.

The value function is approximated by a normalized Gaussian network (NGnet)
(Sato & Ishii, 2000) with the feature extraction technique for its input. The NGnet
V(pt) is trained so as to learn the relationship between the compressed input pt and
the cumulative reward via the following three steps: first, the real state slt and the
discounted cumulative reward (return) Rt - =tTftTiR(si, ai, Si.1) for each time t

are available after one game has finished, where the immediate reward is defined as
R(st,at,st+1) - n Whenthe agent gets n penalty points (n may be O) between the
t-th and (t + 1)-th play; second, the 52-dimensional state vector s-t is converted to
the compressed 36-dimensional input p-t according to the above feature extraction;
and third, these two values, the input vector p-t and the corresponding scalar output
jit, are given to the NGnet for supervised learning, that is, the NGnet is updated so
as to approximate the return according to the Monte Carlo RL method (Sutton &
Barto, 1998). The discount factor T is 1.O in our application. The property that the
sequence of the real state can be available for learning is specific for manycard games.
Nevertheless, several POMDP algorithms would be applicable to learn the state value
function in various partially observable environments (Hauskrecht, 2000) , for example
by calculating the expectation of the value function with respect to the belief state.
The NGnet showed the smallest TD error and achieved the fastest learning in our
problem compared with other function approximators*2 ; this is partly attributable to

'2 we compared three function approximators in their approximation ability for the problem: nor-
malized Gaussian network (NGnet), multi-1ayered perceptron (MLP) and radial basis function
(RBF).
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the fact that it is a piece-wise linear model with multiple Gaussian connections, and its
learning is based on the on-line EM algorithm whose coordinate-ascent optimization
is often faster than simple gradient methods.

The utility function Fi in equations (4.9) and (4.11) is represented by a multi-

layered perceptron (MLP) with the feature extraction for its input and output. The
MLPs are trained according to the four steps similar to those for the NGnet: first, the
actual observation o-3for agent i is available after one game has finished; second, the
52-dimensional observation vector 6i is converted to the compressed 26-dimensional

input q7; third, the 26-dimensional output r-ttis calculated from the actual action a;;
and fourth, these two vectors, the input q7 and output r-t%,are given to the MLP, that
is, it is trained by supervised learning based on the error back-propagation method.
The output vector r-ttconsists of elements of l or O; the target value of the dimen-
sion corresponding to the actually taken action a; is 1, otherwise O. Although the
parameters of the MLP are tuned so that the output represents non-negative values
(from O to 1) in each dimension, the utility function does not directly represent the

probability. In other words, the summation over possible actions of agent i is not
always 1, because the set of possible actions Aj may depend on the state st. Wethen
use the soft-max normalization in equation (4.11), after removing impossible actions.
An MLP showed the best prediction accuracy in our problem compared with other
function approximators; this is partly because it is a global nonlinear model and has
an adequate representation ability in this problem whose input and output have high
dimensionality.

To achieve effective learning, using feature extraction suited for target problems and
using function approximators are crucial. Sturtevant and White (2006), for example,
examined features of the game Hearts to avoid +Q and heart cards, and constructed a
feature representation suited for playing the game. Weused a similar idea; it enables
the agent to understand the important information by taking advantage of the game's
properties, and to improve the learning speed and approximation ability of function
approximators.

4.3 Computer simuJations
Weapplied our RL method to the card game Hearts, which is a well-defined example

of large-scale and multi-agent problems with partial observability. To evaluate our
method, we carried out computer simulations where an agent trained by our RL
method played against rule-based agents which have 66 general rules for playing cards
from their hands. The performance of an agent can be evaluated by the acquired
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penalty ratio, which is the ratio of the penalty points acquired by the agent to the
total penalty points of the four agents. If the four agents have equal strength, their
penalty ratio averages O.25. The rule-based agent used in this study is stronger than
the previous one (Ishii et al., 2005, described in Section 3.3 of the previous chapter),
due to the improvement in the rules; comparisons between the previous rule-based
agent and the current rule-based agent are summarized in Table 4.1. Although the
previous rule-based agent was an "experienced"-level player, the current rule-based
agent has almost the same strength as a human Hearts player; when this rule-based
agent challenged a human player, the acquired penalty ratio was O.256 (Table 4.1).
The learning agent based on our previous RL method then remained weaker than this
rule-based agent even after 100,000 training games (data not shown).

Since the outcome of this game tends to depend on the initial card distribution (for
example, an expert player with a bad initial hand may be defeated by an unskilled
player), we prepared a fixed data set for the evaluation; the data set is a collection
of initial card distributions for 100 games, each of which was generated randomly in
advance. In the evaluation games, the initial cards were distributed according to this
data set. Since performance is influenced by seat position (that is, an agent may
have an advantage/disadvantage based on its seat position if the agents have different
strengths), we rotated the agents' positions for each initial hand to eliminate this
bias; each of the 100 evaluation games was repeated four times with the four types of
seating position. The performance of each agent, therefore, is evaluated by the 400
fixed and unbiased games. Note that learning of the agent was suspended during the
evaluation games. Each learning run comprised several sets of 500 games, in which
initial cards were distributed to the four agents at random and seat positions of the
agents were determined randomly. In each learning run, accordingly, 400 evaluation
games and 500 learning games were alternated.

4.3.1 Sing[e agent learning in stationary environment

Figure l shows the result when the agent trained by our method challenged the
three rule-based agents. Each point and error bar represent the average and standard
deviation of the penalty ratio, respectively, for the 400 evaluation games over 17
learning runs. The penalty ratio of the RL agent decreased as learning progressed,
and after 5,000 training games the agent became significantly stronger than the rule-
based agents. Since the agent showed a better performance than the rule-based agents
after only several thousand training games, the new RL method based on a sampling
method showed a dramatic improvement over the previous one, both in learning speed
and in strength; our previous RL agent required about twenty times as manytraining
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Fig. 4.1: Computer simulation result in an environment consisting of one learning
agent trained by our RL method and three rule-based agents.

upper panel: P-valuesof the t-test where the null hypothesis is "the RL agent has
the same strength as the rule-based agents" andthe alternative hypothesis is "the RL
agent is stronger than the rule-based agents". The test was done independently at
each point on the abscissa. The horizontal line denotes the significaJICe level of 1%.
After 5,000 training games, the RL agent was significantly stronger (p < 0.01) than
the rule-based agents.

lower panel: The abscissa denotes the numberof traiming games and the ordinate
denotes the penalty ratio acquired by each agent. Weexecuted 17 1earning runs, each
consisting of 5,500 training games. Each point and error bar represent the average
and standard deviation, respectively, for the 400 evaluation games over the 17 runs.
The discount factor T in equation (4.2) was 1.0, the constant Til in equation (4.11)
was 1.0, andthe numbers of samplesin equation (4.10) wer6 N - 80 andK - 20.
These parameters were heuristica11y determined.
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V S . P re V lO u S C u r re n t

R a n d O m (a l O ･1 9 8 1 0 ･0 0 2 (b ) 0 ･1 8 1 1 0 ･0 0 6

A n O I h e r r u le - b a S e d (C ) 0 ･2 0 0 1 0 ･0 0 0 (C ) 0 ･2 0 0 1 0 ･0 0 0

H u m a n P la y e r (J ) 0 ･2 1 5 1 0 ･0 0 6 (e ) 0 ･2 5 6 1 0 ･0 0 5

Table. 4.1: Comparison of the previous rule-based agent with the current rule-based
agent. We carried out experiments in the fo11owing five types of setting: (a) one
random agent and three previous rule-based agents, (b) one random agent and three
newrule-based agents, (c) two previous rule-based agents and two newrule-based
agents, (d) one human player and three previous rule-based agents, and (e) one human
player and three new rule-based agents. The random agent, which played cards from
its hand at random, is a reference agent for the absolute evaluation of the agents'
strength. The human player is the designer of both of the rule-based agents. Three
runs for each of the above five experiments were carried out with the same data set as
in the figures below, namely, 400 evaluation games. The values in each cell represent
the mean and standard deviation of the acquired penalty ratio over the three runs.
In setting (c), there is no variance because the previous and new rule-based agents
play in a deterministic manner. Note that the acquired penalty ratios of the current
rule-based agent are smaller than those of the previous one; the current rule-based
agent is thus stronger than the previous one.

games until learning converged. Although the three rule-based agents have the same
rules, there is a distinct difference in their performances. This comes from the fact
that the relative seat position was not changed (even with the rotation) during the
evaluation games; the rule-based agent which showed the worst performance was
always opposite the RL agent, and the agent which showed the best performance was
always at the left side. Although the evaluation is unbiased, the agents' strength is
biased (the RL agent is weaker than the rule-based agents before learning, but stronger
after 5,000 training games), so that the trajectories of the learning curves diverged
from each other. Figure 4.2 shows frequency distributions of penalty points for the
RL agent and the rule-based agent in the same experiment as Figure 4.1. After 5,500
training games, the frequency of penalty points obtained by the rule-based agent
is mainly distributed over higher penalty points than that of the RL agent. The
frequencies of the RL agent for incurring 4 and 5 penalty points, on the contrary,
markedly increased after the training games. This result suggests that the agent
learned the policy so as to avoid many penalty points by instead receiving relatively
few penalty points. This figure then supports the previous observation; the RL agent
could acquire a good policy by interacting with the environment. We obtained a
similar result to that shown in Figures 4.1 and 4.2 by using another evaluation data
set (data not shown).
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Fig. 4.2: Frequency distributions of penalty points obtained by the RL agent and the
rule-based agent, before learning and after 5,500 training games.

left: The abscissa denotes the penalty point number and the ordinate denotes the
frequencies of penalty points acquired by the RL agent. The vertical dashed line
represents the boundary between incurring '23 or less' and '23 or more' penalty points.
The total frequencies at the right side of the boundary are 117 and 80 before learning
and after 5,500 training games, respectively.

right: The representation is the same as in the left panel except that the ordinate
denotes the frequencies of penalty points acquired by the rule-based agent. The total
frequencies at the right side of the boundary are 99 and 124 before learning and after
5,500 training games, respectively.

When the RL agent challenged the three rule-based agents used in our previous
work (Ishii et al., 2005, described in Chapter 3), it showed an improved performance
from the beginning of learning and fina11y became better than the rule-based agents;
this is why wedeveloped the newrule-based agent, which is stronger than the previous
one. The improvement by our newRL method is attributed to the following two facts.
First, the ability to approximate the utility function in equation (4.2) was improved
by replacing the analog approximation method with a discrete sampling-based one.
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In our previous work, to calculate the utility function, we applied the mean-field-like
analog approximation to the problem, whose state space is discrete, by changing the
order of summations; we calculated the summation over the current state with the
approximation before calculating the summation over the next state. In this study,
on the contrary, the summations are calculated in a straightforward way with the
sampling-based approximation; each sampled state represents a discrete state, and
therefore our newapproximation is more suitable than the previous one. This enables
us to calculate the expectation with a higher accuracy. Second, the expected future
reward could be evaluated more accurately by the state value function. In our previous
work, wemadethe value function learn over the observation space. Although this is an
effective method for large-scale POMDP problems, it is difRcult to obtain an accurate
value due to the perceptual aliasing property in partially observable environments;
the same observation may comefromdifferent states whose state values should be
different, but the value function defined on the observation space cannot detect the
difference between the values. In this study, in contrast, the learning agent predicts
possible next states and evaluates a value from the value function defined on the state
space. This enables the agent to perform accurate value prediction. The ideas used
in our previous work were adequate for an environment with moderate complexity,
constituted by the previous rule-based agents, but the limitation of that method
precluded a more remarkable result. In this study, we have improved the old model
so that the method works well within only several thousand training games, even in
the harder environment constituted by the stronger rule-based agents.

4.3.2 Mu]ti-agent [earning in dynamic environments

ln the experiment described above, our RL method was applied to the problem
under the POMDP assumption that there is only one learning agent in the stationary
environment. In the following, we apply our method directly to multi-agent environ-
ments where there are multiple learning agents, making the environment dynamic.

Figure 4.3 (left) shows the result when one agent trained by our RL method, one
agent trained by the REINFORCE algorithm (Wi11iams, 1992), a policy gradient-
based RL method, and two rule-based agents played against each other. Note that
our RL agent sat at the left side of the REINFORCE agent. The REINFORCE agent
learned an action selection probability P(atLot) with a feature extraction technique
applied to its 52-dimensional input and output; an observation ot was converted to
a 25-dimensional input whose representation of each dimension was the same as that
in our previous work, and its output was also converted to a 26-dimensional output
whose representation was the same as that of the action predictor in our current
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Fig. 4.3: Computer simulation result in an environment consisting of one learning
agent trained by our RL method, one learning agent trained by another algoritlm,
and two ru1e-based agents.

1eft panels: Computer simulation result in an environment consisting of one learning
agent trained by our RL method, one learning agent trained by the REINFORCE
algorithm, and two rule-based agents.

right panels: Computer simulation result in anenvironment consisting of one learn-
ing agent trained by our RL method, one learming agent trained by the actor-critic
algoritlm, and two rule-based agents.

upper panels: P-values of the t-test where the nul1 and alternative hypotheses are
the same as in the previous experiment (Fig. 4.1). After 3,500 training games, the RL
agent became signincantly stronger thanthe rule-baBed agents, but the agent trained
by another algorithm did not, in both experiments (P-values are not shown because
they remained around 1).

1ower panels: The abscissa andthe ordinate denote the same as in Fig. 4.1, but
the scale of the ordinate is larger here. We executed 15 1earning runs,each consist-
ing of 4,000 training games in both experiments. The parametervalues andother
experimental setups were also the same.
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study (see section 4.2). Since these feature extraction processes are similar to those
in our RL method, which take advantage of the game's properties, we could evaluate
the agents' performance in a comparable condition. As a result, the penalty ratio of
the REINFORCE agent did not decrease and its performance remained much worse
than other agents, whereas the agent trained by our RL method showed a better
performance than the rule-based agents after 3,500 training games in this multi-agent

setting.
Figure 4.3 (right) shows the result when one agent trained by our RL method, one

agent based on the actor-critic algorithm (Barto et al., 1983), a well-known generalized
policy-iteration RL method, and two rule-based agents played against each other.
Again, our RL agent sat at the left side of the actor-critic agent. The critic module
of the actor-critic agent learned the value function defined on the observation space
V(ot) with the same feature extraction technique applied to its input as that of
the previous experiment (Fig. 4.3, left). The actor module also used the same one
applied to its input and output as that of the action predictor in our current study;
the actor determines its action at based on a utility function for which the input is
a 26-dimensional observation and the output is a 26-dimensional utility value. The
penalty ratio of the actor-critic agent did not decrease as in the previous experiment,
whereas the agent trained by our RL method became significantly stronger than the
rule-based agents after 3,500 training games.

These results are attributed to two points. The first is the disadvantage of learning
over the observation space: as described above, it is difRcult to obtain a good perfor-
mancewithout solving ambiguity in partially observable problems, even with effective
feature extraction. The second is the limitation of model-free approaches: those such
as the REINFORCE and actor-critic methods are easy to apply to various problems,
including POMDPs, but it is in fact hard to achieve a good result in complex multi-
agent environments with highly restricted observations. Our experimental results
show that our model-based RL method with sampling-based state estimation could
overcomesuch difhculties, and then achieved a better performance than conventional

RL methods.
It would be impractical to apply other existing RL methods to our problem. For

example, using the LSTD algorithm (Bradtke & Barto, 1997) for Hearts would be
infeasible, because it is very difncult to obtain a least-square solution in a large state
space, due to the inevitable sparseness of learning samples. Using belief-state POMDP
methods is also difncult, even with an appropriate approximation (Hauskrecht, 2000) ,
because learning over the belief space is computationally heavy in large-scale prob-
1ems, as discussed in section 2. On the contrary, our method can solve such problems.
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Fig. 4.4: Computer simulation result in anenvironment consisting of one learning
agent trained by our RL method, one learning agent trained by our previous method,
and two ru1e-basedagents.

upper pane1: P-values of the t-test where the null andalternative hypotheses are
the same as in the previous experiment (Fig. 4.1). After 3,500 training games, the
RL agent became signiBcantly stronger than the rule-based agents, but the previous
RL agent did not (P-values are not shown because they remained around1).

1ower panel: The abscissa and the ordinate denote the same as in Fig. 4.1, but the
scale of the ordinate is larger here. Weexecuted 16 1earning runs, each consisting of
4,000 trainlng games. The parameter values and other experimental setups were also
thesame.
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Figure 4A shows the result when one agent trained by our RL method, one agent
trained by our previous RL method, and two rule-based agents played against each
other. As before, the new RL agent sat at the left side of the previous RL agent. The
penalty ratio of the new RL agent decreased as learning progressed, and after 3,500
training games the agent showed a better performance than the rule-based agents. On
the other hand, the averaged penalty ratio of the previous RL agent did not decrease
and it remained much weaker than the other agents. This result shows that our new
agent can acquire a better policy than the previous one through a direct match.

Figure 4.5 shows the result when two RL agents trained by our method and two
rule-based agents played against each other. The RL agent indicated by the dashed
line sat at the left side of the other RL agent with the solid line. The penalty ratios
of both RL agents decreased as learning progressed, and after 5,000 training games
both agents came to acquire a smaller penalty ratio than the rule-based agents. The
setting of this experiment is more challenging than the previous experiments (Figs.
4.3, 4A), because the learning speed of a learning agent trained by the newRL method
is much faster than that of an agent trained by other methods. In other words, the
environmental dynamics changes more rapidly. Even with this difRcult multi-agent
setting, the RL agents could adapt to the change, and showed good performance.
This ability is attributed to the fast learning that occurs when three action predictors
are used.

4.3.3 Validation matches against human p[ayer and commercial software

To validate the general strength of the learning agent, we carried out evaluation

games with the human player, who is the same person evaluated in Table 4.1. Figure
4.6 shows the result when one RL agent trained by our method, two rule-based agents
and the human player played together, with the RL agent sitting next to the human
player. We used another evaluation data set for 25 games with seat rotation (that

is, 100 games), and the learning run was executed twice. Each point of Figure 4.6,
therefore, represents a meanover 200 games for the evaluation games.*3 one hundred

evaluation games in both learning runs were done before learning and after 1,000,

2,000, 3,000, 4,000 and 5,000 training games, and these training games were carried

out with three rule-based agents; one rule-based agent was then replaced by the human
player in each evaluation phase. This may cause the action predictor to deviate from
the human player's action selection model, due to the difference between the strategy

*3 To prevent the human player from remembering the fixed card distributions? the order of the
evaluation games was shufned in each evaluation on the abscissa.
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Fig. 4.5: Computer simulation result in anenvironmentconsisting of two learning
agents trained by our RL method and two rule-baBed agents.

upper pane1: P-values of the t-test where the null andalternative hypotheses are
the same as in the previous experiment (Fig. 4.1). After 5,000 training games, the
two RL agents were signincantly stronger than the rule-based agents.

1ower panel: The abscissa andthe ordinate denote the same as in Fig. 4.1. We
executed 18 learning runs,each consisting of 5,500 training games. The parameter
values andother experimental setups were also same.
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estimated by the action predictor in the training phase and the strategy of the human
player in the evaluation phase. The action predictor, nonetheless, could have come
to predict a standard card playing by its generalization ability from playing against
the rule-based agents with general strategies, and such a standard card prediction
worked we11 in playing with the human player. Figure 4.6 shows that the RL agent
successfully acquired a good strategy which is comparable to or slightly better than
that of the human player.

To examine the general strength of the learning agent in a fair manner, wecarried
out a validation match using commercial Hearts software (Freeverse-Software, 2004);
this software was once used to demonstrate the Hearts agent developed by Sturtevant
(2003), the strongest I{earts program in the field of artificial intelligence. When three
agents of this commercial software played against the random agent and the same
humanplayer as in Table 4.1 and Figure 4.6, the averaged penalty ratios of each
agent over 200 games were O.187iO.009 and O.259 iO.010, respectively; the strength
of the commercial agent is the almost same as our rule-based agent used in this study
(see the results of settings (b) and (e) in Table 4.1)*4. The RL agent played 100

games against the commercial software agents after learning through 5,000 training
games with our rule-based agents, and werepeated this experiment twice; that is, the
performance of the RL agent was evaluated by 200 evaluation games. The averaged
penalty ratio of the RL agent was O.239iO.012 in the evaluation games, stronger than
the commercial agent. Although this result is comparable to that of the previous study
(Sturtevant, 2003), in which the agent did not learn but used a hand-tuned evaluation
function with a pruning technique as an expert system, the aims and contributions of
our study are different fromthis previous work. They are summarized as the following
two points: the first is to develop a reinforcement learning algorithm applicable to
large-scale multi-agent environments with partial observability; and the second is to
apply our method to the card game Hearts, which exemplifies such an environment,
and to demonstrate that the agent trained by our RL algorithm attains a comparable

performance to the human player.

*4 since the interface of our simulation program is different from that of the commercial software,
the evaluation games were carried out by manually inputting cards played by the commercial
agents into our program; the strengths were evaluated under the initiative of the commercial
software. Since, for this reason, the initial card distribution was not fixed but distributed
randomly,the exact comparison of the penalty ratios with those in Table 4.1 may be difBcult.
These results, however, show that there is only a small difference in the strengths between the
current rule-based agent and the commercial agent.
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Fig. 4.6: Computer simulation result when one learning agent trained by our RL
method, one humanplayer and two rule-based agents played together. One humdred
evaluation games were done before learning and after 1,000, 2,000, 3,000, 4,000 and
5,000 training games (with three rule-based agents). We repeated the training and
evaluation runs twice. The abscissa and the ordinate denote the same aB in Fig. 4.1.
The parameter values were also the same.Each point denotes the aNerage Of 200 (2
x 100) evaluation games.
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4.4 Discussion

Our RL formulation provides a general solution for partially observable games which
can be solved by sequential decision-making based on the estimation of unobservable
states and the prediction of the unknown environmental dynamics; for example, it
could be applied directly to other trick-taking card games such as Hoist, Contract
Bridge, Gin Rummyand Napoleon. To apply our method to other games, however,
there are two noteworthy points: first, the feature extraction described in Section
4.2 should be modiBed according to properties of the target problem so that effective
learning can be achieved; and second, additional action predictors should sometimes
be prepared because somegames include cooperative relations among the players as
well as competitive relations. Although it is difncult to apply our method directly
to other games like strategic computer games, due to their larger state space and
morecomplicated relations than the card games, our basic formulation and ideas are
available; the game could be dealt with by our approach if the scale of the problem is
appropriately reduced. Our method thus allows the agent to act and learn in various
large-scale and multi-agent problems with partial observability. Hearts is an example
application with the essential property and is thus suited to the evaluation of our
method. When it is applied to other applications, many small details may have to
be changed for the specific problem, but our essential ideas are consistent. Note,
however, that we have used several specific properties to games; for example, since
the state transition P(sr lsi, ai) and observation process P(oilsi) are deterministic,
the prediction of the opponent agents' actions can be simplified as equation (4.7). For
applying our method to more general POMDP problems, such deterministic properties
should be relaxed. Even in probabilistic situations, our sampling-based method with
the simplified belief calculation would be effective.

Thrun (2000) proposed the Monte Carlo POMDP; it estimated unobservable states
using the Monte Carlo method, which is similar to our method because all summa-
tions were approximated by a plausible number of samples in a partially observable
problem. In the problem setting, however, the environmental model was given to
the agent, and the state space was reasonably sized so that the simple Monte Carlo
integration worked well. If an adequate number of samples could be obtained from
the given distribution, then the summations were approximated with high accuracy,
and it was possible to deal with the propagation of belief states. On the contrary,
in the problem of the game Hearts, the environmental model is unknown and it is
necessary to approximate the integration process with some types of devices. This
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article shows that a sampling technique with model identification works well for a
large-scale problem whose state space is discrete. We have not used complete belief
maintenance throughout the game process, but have calculated a one-step belief, be-
cause a good incremental approximation of the belief is not easy with a restricted
computer resource for problems whose observation process is deterministic.

Ginsberg (2001) designed an automatic player of the card game "Bridge," which
called GIB, the most powerful computer program for the game. It used the same
QMDP approximation as that of our RL scheme, and the unobservable card distri-
bution was also estimated by a sampling technique. Since, however, possible card
allocation was sampled from the uniform distribution under the assumption that the
unobservable cards are distributed with uniform probability, this estimation process
does not include any belief information. Therefore, though the agent could take an
optimal action so that the expected return was maximized by calculating the utility
value of each possible action using the samples, a large number of samples is required
for selecting every single action, and this may cause a long computational time in
large-scale problems. On the other hand, in our technique, the effective sampling
process can be attained by calculating the partia1 1ikelihood information according to
the acquired environmental mode1. This enables us to solve larger problems.

The dynamics of the game Hearts can be represented by products of opponent
agents' action probabilities, as in equation (4.8). In our method, the policies of

opponent agents are estimated by corresponding action predictors, and the utility
function in equation (4.2), which is necessary for action selection by the agent, is
calculated based on these predictors. Since such a mode1-based approach is effective
in unknownand partially observable environments, manyeffective methods have been
proposed (Chrisman, 1992; Whitehead & Lin, 1995; Nikovski & Nourbakhsh, 2000;
Yoshimoto et al., 2003). This may, however, make the problem more dincult and
complicated than model-free approaches, for two reasons: first, the computational
cost for learning of the model with the estimation process is expensive in general
problems; and second, if learning of the model fails, it may work against the estimation
and policy acquisition processes, and vice versa, because they rely on each other. On
the other hand, in our method, learning of the model is independent of the estimation
or learning of the value function; each predictor is trained by available information,
which is given at the end of each game, according to the supervised learning method.
Learning of the model then always goes well, and policy learning accelerates with the
improvement of prediction. Predictors are prepared for each opponent agent, and they
are learned independently. When one opponent agent changes its policy, it is enough
to make the corresponding predictor adapt to the change. Since this enables the agent
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to adapt quickly, our RL method becomes applicable to complex multi-agent settings
where the Markov property fails*5.

Our RL method is based on the Monte Carlo RL method (Sutton & Barto, 1998)
in learning of the value function. When wecarried out the same experiment as shown
in Figure 4.1 without learning of the value function, the policy of the agent was not
improved (data not shown). The value function, therefore, should be learned properly
for a large state space. In general, however, it is dincult to learn the value function
effectively for a large-scale and high-dimensional problem like Hearts, even with func-
tion approximators, because the number of parameters increases exponentially; this
is known as the curse of dimensionality. If a large problem can be reduced by being
divided into multiple subproblems with a hierarchical structure (Barto & Mahadevan,
2003), the agent will be able to learn more effectively.

*5 To evaluate the adaptability of the action predictor in a dynamic environment, wecarried out
an additional experiment; this is shown in Appendix C.
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Chapter 5

Human Decision-P[anning with
Exploratory and Exploitative
Strategies in a PartiaL]y Observable
Environment

This chapter demonstrates the performance of a probabilistic model for the human
decision-making and estimation process in a partially observable environment. Since
theoretical POMDP studies have indicated as presented in the previous chapters that
optimal decision-planning in partially observable environments has computational dif-
ficulties, the human brain copes with such difnculty based on someingenious mech-
anism, because we are familiar with solving complex partially observable problems.
To reveal how this mechanism operates in the human brain, this study presents prob-
abilistic modeling approaches for higher-order cognitive process implemented in the
brain and decision-making process based on the cognition, in partially observable en-
vironments. Model-based analyses show that our models can reproduce the subjects'
behaviors with high accuracy, and indicate that humans estimate unobservable states
based on the framework of the incremental Bayes estimation.

5.1 Experiments
ln this study, we carried out behavioral experiments using a virtual maze, as shown

in Figure 5.1(A). The task objective of our experiments is to reach a goal from a

starting position in as few trials as possible. Thirteen normal subjects (11 males
and 2 females, ages 23-28) participated in the experiments, and brain images of the
subjects were simultaneously taken using functional Magnetic Resonance lmaging
(fMRI). Our experimental setting was approved by the ethical committee of Advanced
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Fig. 5.1: Experimental design and wiable dependencies of our model. (A) The
partial1y observable mazeused in the experiment; it is enclosed in wa11s, and there is
no crossroad and dead end; (B) anexampleof the wireframe observation given to the
subjects; since an immediate observation does not necessarily determine the subject 's
position andbody orientation due to the perceptual aliasing property, it is essential
to estimate them andto resolve uncertaintybased on the observation sequence; (C)
anexampleobservation sequence in a goal-search (GS) task; (D) anexample stimulus
sequence in a visuo-motor (VM) task; (E) block design for fMRI imaging; instruction
periods (IN) were inserted between GS and VMtasks, and (F) variable dependencies
of our model in time series sequence, where the circles denote unobservable variables
and the squares denote observable ones for the experimenters.

Telecommunications Research lnstitute lnternational, Japan andal1 subjects fully
consented to the participation prior to our experiment.

The subjects carried out two sessions in the same mazeas that shown in Figure
5. 1 (A) , and each session comprised several sets of a goal-search task andavisuo-motor
task. The subjects were required to cope with the task as manytimes as possible in
each session, where maximumnumberof trials was 300.*1 In the goal-search tasks, the
subjects tried to reach the instructed goal from anunknownstarting position, shown
in Figure 5.1(C); the goal position was shown in a 2-dimensional mazemapat the
beginning of each goa1-search task, but the starting position was not. The subjects
could not observe their real position in the maze, but obtain partial observation; they
observed only a 3-dimensional wireframe observation in each trial, which represented
the presence or absence of a wal1 in each 6-grid in front of the subject, as shown in
Figure 5.1(B). To solve the problem effectively, therefore, it is important to estimate
unobsermbleself positions and body orientations based on the obseI.Vation sequence.

*1 The tasks were aborted even in the middle of an active session; only the data for completed
blockS were used for analyses.
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The visuo-motor tasks were control tasks; the same observations and actions as those
in the previous goa1-search task were displayed, as shown in Figure 5.1(D), and the
subjects were required to reproduce all sensori motor events in the previous task,
according to the observations and actions presented by three kinds of arrows. These
two tasks, goal-search and visuo-motor, were alternated with instruction periods,
shown in Figure 5.1(E).

At the beginning of each goal-search task, a goal position was provided for 4 seconds,
and an initial observation at an unknownstarting position was presented. To reach
the goal, the subjects selected one of three actions, forward move, left turn and right
turn, by a button press action within 1.8 second. Note that the forward movechanged
subjects' positions to a place in front of them, but the left and right turns did not;
the subjects turned to the correspond direction while staying in the same position.
The intertrial interval was fixed at 2 seconds with the observation displayed for that
interval time before the next trial began. The goal mark was displayed upon arrival at
the goal, and an instruction period was inserted for 4 seconds before a visuo-motor task
wasstarted. Although the start and goal positions were different between each block
and session, the minimum number of steps and branches was almost the same over
all blocks (12j=2 steps and 4j=1 branches). Every subject was familiar with the maze
structure due to their receiving sdcient training prior to the experiment, where they
learned the correspondence between an arbitrary state and a correct observation so
that their performance reached a satisfactorily high 1eve1. Wethen assumed that the
subjects did not fail to estimate their current unobservable position and orientation
when getting enough information and time to determine them.

5.2 Model

ln this study, we assume that the subjects take a stochastic action at E A based
on their internal states xt - (yt,ct) E X, where yt E S and ct E C denote a state
(combination of a position and a body orientation) estimated by the subjects and
a confidence for the state estimation, respectively. Note that the estimated state
yt includes 196 candidates by considering four orientations on each position in the
7 x 7 grid and the confidence ct takes two values for representing conjidence (ct - 1)
or no conPdence (ct - 0). Figure 5.1(D) shows the variable dependencies of our
model. Sequence of subject's internal states, actions taken by the subjects, observa-
tions obtained from the maze are denoted by x - (x1,... ,XT+1), a - (a1,... ,aT)

and o - (o1,... ,OT), reSPeCtively, where T is the termina1 (goal arrival) time. The
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1ikelihood function is then given as

T
l(0,q)-Ep(a,x;o,q) -p(xl)Enp(aLlxt)P(xtJxt,at). (5.1)

x c t=1

0ur aim is to obtain the parameters O and J, related to the internal state transition
and observation processes, respectively, based on the maximumlikelihood inference,
so that the likelihood function in equation (5.1) is maximized. More concretely,
0=(Oij-P(xt+1-jlxt-i,at)ti-1,...,rXl,j-1,...,[X[),q=(Jik-P(at-

klxt - i)Ii - 1,...,1Xl,k - 1,...,lAl). Note, however, that hyperparameters 6 -

(ec, eexp, e.pt) were actually calculated, which define the parameters O and q. First,
under a factorization assumption P(xt+1lxt, at) - P(yt+1lyt, at)P(ct+1Iyt, ct, at), the

transition probability O is defined as

1. if ot'+1 - 6t+1, then P(yt+1Lyt,at) - 1, where yt+1 is the next state reached

from yt by an action at, or O for the other next states, and
2. ifot*+1 i 6t+1, then P(yt+1lyt,at) - 1/Ns, where yt+1 is an arbitrary next state

whose observation ot+1 is consistent with an actual observation ot*+1, Or O for

the other next states.
Here, ot*+1 and bt+1 denote an actual observation at time (t + 1) and an observation

at 9t+1 Which is a predicted next state determined from the estimated current state
9t and action at, respectively, and Ns denotes the number of next states which do not
violate the actual observation ot*+1. The initial distribution P(y1) is uniform for all

states yl Whose observation corresponds to the actual observation o;. The model of

the state transition can be explained as follows: if an actual observation ot*+1 is the
sameas a predicted observation 6t+1, the subject becomes convinced of the current
estimation 9t and movesit to the next state 9t+1 With probability 1 (case 1), otherwise

the subject makes uniform estimation of the unobservable state to the states whose
observation is consistent with the actual one (case 2). Next, P(ct+1 lyt, ct, at) is defined

aS

3. ifot*+1 - 6t+1, then

(a) ifct - 0, then P(ct+1Lyt,ct,at) - 1-ec for ct+1 - 0, or ec for ct+1 - 1,

and

(b) ifct - 1, thenP(ct+1lyt,ct,at) -O for ct+1 -0, or l forct+1 - 1,

4. ifot*+1 i 6t+1, then

(a) ifct -0, thenP(ct+1lyt,ct,at) - 1 forct+1 -0, orOforctn - 1, and

(b) ifct - 1, thenP(ct+1Iyt,ct,at) - 1 forct+1 -0, or Oforct+1 - 1.
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The initial distribution P(c1) is l for c1 - 0, or O for c1 - 1. Note that the initial
distribution of the internal state P(x1) is given by P(x1) - P(s1)P(c1). The model

of the confidence transition can be explained as follows: if the actual observation ot'+1
is the same as the predicted observation 6t+1, the subject changes his/her confidence
from no conPdence to conPdence with probability ec (case 3a), or keeps it with prob-

ability 1 (case 3b), otherwise the subject does not get the confidence (case 4a) but
rather loses it immediately with probability 1 (case 4b).

Second, the observation process q is defined as

5. if ct - 0, then P(atlxt) - (1 - eexp)/Nexp, where at is an exploratory action,

or P(atlxt) - eexp/(Na - Nexp), where at is a non-exploratory action, and
6. if ct - 1, then P(atLxt) - (1 - e.pt)/N.pt, where at is an optimal action, or

P(atExt) - e.pt/(Na - N.pt), where at is a non-optimal action.

Here, Nexpand N.pt denote the number of exploratory actions and that of optimal
actions, respectively. The exploratory action is defined as a forward movementor a

turn to any non-wall direction. At a turning point toward the right-hand side, for
example, a forward moveand a left turn are non-exploratory actions, but a right turn

is a unique exploratory action; Nexp- 1 in this example. At a T-junction, Nexp- 2,
but at a state where there is no wall in three directions, a forward movethat brings 3-
grid information is assumed to be a unique exploratory action. The optimal action is

defined as an action to follow the shortest path to the goa1. At many states, N.pt - 1,
but at states which have multiple shortest paths, N.pt - 2.

In the above mode1, the hyperparameters 6 - (ec, eexp, E.pt) Which maximize the

likelihood function in equation (5.1) are simply given by

E=
(N2)

(N1) + (N2)'
(5.2)

where e corresponds to any of ec, eexp, E.pt. Nl and N2 denote the numbers of event
occurrences related to each parameter, and (.) denotes expectation with respect to the
posterior distribution of the unobservable state xt. Weobtain the maximumlikelihood
estimates ec - 0.9451, Eexp - 0.0079, e.pt - 0.0100 by using the forward-backward

algorithm in the HMM framework; these parameter values are quite reasonable.



86 Chapter 5 Human Decision-Planning in Partially Observable Environments

5.3 Resu[ts

Given the maximumlikelihood estimates 6*, the model can predict the actions

at+1 - argmaX P(at+1Ia1:t)
at+1

-= p(at'1lxt'1) Ep(xt'1lxt,at)P(xtla1:t),
Xt+1 Xt

(5.3)

where at+1 denotes a predicted action. The posterior distribution P(xtla1:t) in equa-
tion (5.3) can be calculated as P(xtla1:t) - P(xt,a1:t)/=xt P(xt,al:t), Where the

joint distribution P(xt, a1:t) is obtained by the forward algorithm in the HMM frame-
work. Weevaluated the model by calculating the concordance rate:

P=
#(at+1;t-1:T-1)

T-1 '
(.r,J)

where the numerator is the number of trials in which the predicted action at+1 is
the same as the actual action at*+1 from time l to (T - 1); equation (5A) denotes
the rate of concordance: at+1 - at*+1, OVer t - 1,... ,T- 1. This concordance

rate was calculated with the leave-one-out validation method via the following three
steps: the first step is to remove an action sequence ak - (af,... ,aE.) of the k-th
block from the complete action data a - (a1,... , aN), where N denotes the number

of action sequences; the second step is to obtain the maximumlikelihood estimates
6* according to equation (5.2) by using the data of (N - 1) blocks; and the last
step is to calculate the concordance rate pk for the action sequence ak according

to equation (5A). These three steps were iterated N times for a11 action sequences,
and the averaged concordance rate (p) - k =%y=1Pk was calculated. The averaged

concordance rate calculated by the above procedure was (p) - 0.8621, that is, the
model can reproduce about 86.291o of the behaviors taken by the subjects in the
partially observable maze task.

About l3.8% of actions deviated from the mode1's predictions. This deviation may
arise from two factors: the time requirement for the button-press action within only
1.8 seconds and irrational tendencies of human action selection. First, we assume in
this study that the subjects do not fail to estimate their current unobservable state,
if enough information and time is available, because all subjects are familiar with the
mazestructure due to their receiving sutRcient training prior to the experiment. If,
therefore, the subject can identify his/her state from the observation sequence, the
following actions must be optimal according to the mode1.*2 Because of the time

*2 Nonetheless) the error rate eopt exists in the action selection process? as shown in case 6.
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restriction for action selection, however, the subject may fail to select an optimal
action or to estimate the unobservable state even with the adequate ability for correct
estimation. Second, for example, if the subjects detect that the instructed goal is
behind their back, most subjects do not turn around at the same position, but rather
select an indirect route with forward moves. These facts imply that the assumption
is slightly strong in that it does not explain such irregular behaviors, and this leads
to deterioration of the concordance rate. A higher accuracy, about 9597o, would be
attained if such irregular behaviors were removed from the data.

Figure 5.2 shows routes and transition processes of the internal state for two dif-
ferent subjects, in the setting whose start and goal positions were the same. Figures
5.2(a) and (c) for each subject represent an actual route followed by the subjects and
the changing process ofthe estimated state, respectively. Figures 5.2(b) and (d) repre-
sent the time-series of P(ct - OIa1:T) and P(ytla1:T), reSPeCtively.*3 The dotted lines
in Figwe 5.2(b) denote times when an estimated confidence at at time t is different
froman estimated one at+1 at time (t+1); at+1 i at, where et - argmaxct P(ct(a1:T),
and the dotted lines in Figure 5.2(d) denote times when an estimated state 9t at
time t is different from an estimated one 9t+1 at time (t + 1); 9t+1 i bt, where
9t - argmaxyt P(ytla1:T). Note that the arrows' colors in (a) and (c) correspond
to the lines' colors in (b) and (d), respectively; for example, the gray lines in Figure
5.2(a) represent periods when the model estimated that the subject had no confidence,
at-0.

According to the analysis of subject A's behaviors shown in the upper panel of
Figure 5.2, this subject was supposed to have made a correct estimation by chance,
from the beginning of the task. There were, however, manyconsistent states with
actual observations, and the subject was not convinced of the state estimation till
t - 4. By obtaining the observation where the subject selected forward actions
from the starting position and a right turn at the end of the forward path (at the
fourth trial), he/she was supposed to acquire confidence. According to the analysis
of subject B's behaviors shown in the lower panel of Figure 5.2, on the contrary, the
subject was supposed to have retried an estimation for every inconsistent observation
against his/her predicted one. When the subject went around the lower right-hand
corner of the maze before coming back to the starting position, he/she was supposed
to acquire confidence and then take the shortest path to the goal.

*3 since the posterior distribution P(xtla1:T) Can be calculated by the forward-backward al-
gorithm in the HMM framework, the distribution of a confidence ct and a state yt can be
calculated as P(ct - OIa1:T) - =yt,ct=1P(xtla1:T) and P(ytla1:T) - =ct P(xtla1:T), re-
spectively.
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Fig. 5.2: The routes andtransition processes of the internal state for two different
subjects, in the setting whose start and goal positions were the same. S and G in
the mazedenote the positions of the start andgoal, respectively. Subject A took the
shortest path and arrived at the goal in 11 trials. Subject B, on the otheI. hand,went
around the lower right-hand co=.ner of the maze and acquired confidence after coming
bad to the start position. The circled numbers in (c) denote the. changingnumbers
of the state estimation. This subject arrived at the goal in 23 trials.
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Wecarried out the imaging regression analysis in which brain images obtained by
using fMRI were analyzed by a regression function defined on the model. The analysis
implicates the neural correlates involved in exploratory and exploitative behavioral
models in partially observable domains; this result is shown in Appendix D.

5.4 Discussion

Wedemonstrated the performance of an HMM-based probabilistic model of hu-
mandecision-making and estimation process during a partially observable maze task,
and showed the associated brain activity by evaluating the behavioral performance
of subjects in the maze, with taking brain images simultaneously using functional
Magnetic Resonance lmaging (fMRI). The model enabled us to analyze the behaviors
of thirteen subjects for the maze task, based on the maximumlikelihood inference,
under the assumption that the subjects take a stochastic action according to their
internal states, and to estimate a cognitive load related to uncertainty resolution and
decision-making processes by means of a regression analysis. The results showed that
our model based on the estimation of the internal states according to the probabilistic
mode1-based approach can reproduce the subjects' behaviors with high accuracy and
the imaging regression analysis based on the model implicated the neural correlates
involved in exploratory and exploitative behavioral modes.

Since the model reproduces the estimation process based on the incremental Bayes
formulation, the results, which are consistent with findings of previous researches,
imply the possibility that humans estimate hidden information by performing the
incremental belief update based on the Bayesian probabilistic inference. Although
this implication is feasible, three issues still remain. First, since we focus in this model
on the human estimation process of unobservable states, the action selection model
is then defined as a simple sub-optimal reactive policy depending on the confidence
variable. It is, however, impractical to assume that the subjects take such reactive
responses to immediate stimuli. We improve, therefore, the decision-making model
under the assumption that they determine their actions based on reward prediction,
and in our future work, present a value-based decision-making model to describe
subjects' behaviors more precisely. Second, the decision-making process presented in
this dissertation is defined so that the action selection depends on the internal state,
and the parameters for this action selection is calculated along with the estimation of
the internal state, based on the action sequences of the subjects. This approach is not
direct modeling of a human behavior, but just a search of the most-1ikely point over
a restricted parameter space. In a statistical modeling, the human decision-making
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process should be strictly determined based on a feasible mechanism, that is, the
value-based action selection. Last, although our current model includes the confidence
variable and it discriminates between exploitative and exploratory behavioral modes,
the model does not deal sunciently with the exploitation-exploration problem. Our
future work will include using a mechanism for solving the problem.
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Chapter 6

Conc[usion

This dissertation explores the possibility that learning and decision-making in the
real world require the following three factors: the first is to estimate hidden informa-
tion with effective approximation techniques; the second is to predict environmental
behavior by learning its dynamics; and the last is to evaluate action values based
on the estimation and prediction. To demonstrate the importance of these factors,
wehave carried out several studies using two-sided approach: theoretical approaches
with computer simulations and modeling approaches with a behavioral experiment.
This chapter gives a summary of contributions in this dissertation and an outline of
future work.

6.1 Contributions
ln theoretical studies for controlling autonomous agents, we developed newmodel-

based RL schemes for large-scale multi-agent environments with partial observability.
It is necessary for learning and decision-making in such environments to estimate
unobservable states and predict opponents' actions. The computational cost for such
processes, however, increases exponentially with the enlargement in the scale of the
environment, so it is infeasible to estimate all possible current states and predict all
possible next states in realistic problems. We therefore developed two types of de-
vices to avoid the exhaustive state enumeration for the estimation and prediction.
First, we proposed the mean-field-1ike analog approximation, described in Chapter 3.
This method approximated a belief state as an expected observation which contains
the estimation process of unobservable states within its representation. Opponents
agents' actions subsequent from the expected observation can be predicted accord-
ing to the corresponding behavior model represented by the action predictor. This
approximation idea has enabled usto alleviate the heavy integrations effectively and
showed a good performance in the application to a real card game, Hearts, which is a
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typical example of such difncult environments. Our approach, however, maycause the
deviation to approximate the real distribution of the unobservable states due to the
following two facts; first, this technique represents the distribution of possible discrete
states as an analog averaged point; and second, it does not propagate belief infor-
mation over time due to the uniform assumption. The approximation error incurred
by these two properties may prevent the learning agent from evaluating the action
value accurately, and lead to deterioration of its performance. Second, therefore, we
used a sampling-based approximation technique with one-step belief maintenance, in
which the heavy integration required for the estimation and prediction can be ap-
proximated by using a plausible number of discrete samples, presented in Chapter 4.
This alternative approach succeeded to improve the performance due to removing the
evaluation error of the action value. This result implies that the sampling-based state
estimation is better than the mean-field one for controlling the autonomous agent in
realistic partially observable environments, and maybe more practical for considering
the human estimation process of hidden information.

According to the theoretical findings, in studies for modeling human decision-
making process of the partially observable maze task, we presented a probabilistic
model, described in Chapter 5. To reveal the human estimation process, we pre-
sented the HMM-based probabilistic model, which used incremental Bayes fi1ter for
the estimation of unobservable states, and showed the possibility that humans esti-
mate hidden information based on the belief update according to the Bayesian prob-
abilistic inference, under the assumption that the subjects take reactive actions to
immediate stimuli. This result indicates that humans estimate unobservable states
based on the framework of the incremental Bayes estimation.

6.2 Futureworks
Whenconsidering a probabilistic model available to learning and decision-planning

in realistic environments and practical for describing the human behavior, several
ideas of previous theoretical POMDP research introduced in Chapter 2 are beneficia1.

First, it is a promising approach to exploit certain types of problem structure to
make the value function and/or the belief state representation more compactly by
using a dynamic Bayesian network, described in Section 2.2.2; for example, to estimate
the current state in the partially observable maze, it is feasible to focus attention on
a subregion based on hierarchical features such as "facing a northerly or southerly
direction" or "being at an outer or inner region of the maze", before estimating the
detailed current state. The estimation accuracy and required computational cost may
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be improved by using distinct features with hierarchical structure; we plan to deal
with this hierarchical formulation for the belief update.

Second, the idea to use memory states of the FSM model introduced in Section
2.3.1 is beneficial. Since the memory state can be an essential feature necessary
to learning and decision-making, it is important for solving realistic problems to
convert the primitive belief space to an effective feature space represented by the set
of memorystates, according to a projection scheme such as the principal component
analysis described in Section 2.2.2. Although we used a similar scheme as the feature
extraction technique described in Sections 3.2 and 4.2, this was completely based
on a heuristics process; we also plan to explore the automatic feature projection
technique with dimension estimation using non-parametric Bayesian inference in our
future work. Since the belief update is performed over the feature space, the approach
based on this idea can be interpreted as a hybrid solution between the belief-state
MDP and the FSM mode1.

Last, the policy gradient RL approach with learning basis functions is important
for learning in partially observable environments. Although our current studies focus
relatively on decision-planning processes, our future work will include more effec-
tive learning schemes, based on the policy gradient RL method with learning basis
functions, which are conducted over the feature space with hierarchical structure.
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Appendix B

Hearts

The game of Hearts is played by four players and uses an ordinary 52-card deck.
There are four suits - spades(+), hearts(C)), diamonds(0), and clubs(4) - and there
is an order ofstrength within each suit (decreasing from A, K, Q,... , 2). There is no

strength order among the suits. Cards are distributed to the four players so that each
has 13 cards at the beginning of a game. After that, according to the rules below,

each player plays a card in clockwise order. When each of the four players has played

a card, it is called a trick; each player plays a card once in a trick. The first card
played in a trick is called the leading card and the player who plays this card is called
the leadin9 Player. A single game ends when 13 tricks have been carried out.

¥ In the first trick, A2 is the leading card, so that the player holding this card is

the leading player.
¥ Except for the first trick, the winner of the current trick becomes the leading

player of the next trick.
' Each player must play a card of the same suit as the leading card.

¥ If a player does not have a card ofthe same suit as the leading card, he or she

can play any card. When a heart is played in this way for the first time in a
game, the play is called breaking hearts.

' Until breaking hearts occurs, the leading player may not play a heart. If the

leading player has only hearts, it is an exceptional case and the player may lead
with a heart.

¥ After a trick, the player who has played the strongest card of the same suit as
the leading card is the winner of that trick.

' Each heart equals a one-point penalty and the +Q equals a 13-point penalty,
so the total number of penalty points is 26. The winner of a trick receives a11

of the penalty points of the cards played in the trick.
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According to the rules above, a single game is played, and at the end of a game, the
penalty points of each player are determined as the sum of the received points. The
lower the points, the better. This game, therefore, represents a competitive situation
because each player has to avoid penalty points by pushing them to the opponents.
For simplicity, shooting the moonis removed from our setting.
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Appendix C

Prediction accuracy

To examine the adaptability of the action predictors in a dynamic environment,
wecalculated the Kullback-Leibler (KL) divergence between the real empirical ac-
tion probability, P(ailoi, 4,i), and the action probability approximated by the agent,
p(aifoi, 6i), by changing the environment every 100 training games. Wecarried out

the experiment using four types of rule-based agents; their acquired penalty ratios
were (A) 0.206, (B) 0.193, (C) 0.186 and (D) 0.180 when they played against the

random agent. This experiment used four types of evaluation data sets, which are
collections of actions taken by the corresponding rule-based agent, each of which was

generated according to the agent's own rules within 1,000 games in advance. We
switched the rule-based agents in alphabetical order, (A), (B), (C) and (D), after

every 1,000 training games; the opponent agents gradually became stronger, and the
performance of the predictors was evaluated based on the data set from the cor-

responding agent. In this experiment, accordingly, 1,000 evaluation games and 100
training games were alternated, and three rule-based agents were replaced every 1,000

training games. Each point of Figure C.1 represents an average for 1,000 such eva1-
uation games over 10 learning runs. Although the performance deteriorated slightly
just after every switching of the rule-based agents, the action predictor could adapt

to the changes quickly, and its performance improved steadily as learning progressed
even in this dynamic environment. This result implies that the adaptability of our

action predictor is so fast that the POMDP assumption is approximately valid even
in dynamic environments constituted by multiple learning agents.
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Fig. C.1: The Kullback-Leibler (KL) divergence between the real empirical action
probqbility, P(aiLoi, @i), and the action probability approximated by the agent,
p(ailoi, bi). The abscissa denotes the number of training games and the ordinate
denotes the KL divergence. We executed 10 1earning runs, each consisting of 4,000
training games. The constant Ti in equation (4.11) was set at 1.0.



10;i

Appendix D

Brain activities

Functional images were obtained with EPIs using BOLD contrast on a 1.5-tesla
scanner (Magnetic Eclipse; Shimadzu Marconi, Kyoto, Japan). Volumes, acquired
in synchronization with stimulus presentation (TR: 2 sec), contained 20 slices each
measuring 5 mmin thickness. The first six (12 sec) EPIs in each session were not
evaluated as part of the scanning data to avoid Tl equilibrium effects. Each scanning
run began with a T1-weighted anatomical image acquisition (voxel size: 1 mm3).

According to our model, weassumed the subjects switch between exploratory (most
informative) and exploitative (optimal) strategies depending on their confidence in
the state estimation. These behavioral modes could be evaluated as P(ct - Ola1:T)
(Fig. 5.2(b)) and P(ct - 1La1:T), Which are marginalized over the unobservable state
variable st by averaging with respect to posterior probabilities for removing depen-
dencies on the sequence of the subjects' internal cognitive conditions. Using statistical
parametric mapping (SPM), we conducted a multiple regression analysis with these
probabilistic measures, called exploration and exploitation regression functions re-
spectively, to identify neural activities correlated with these behavioral modes. After
convolution with a hemodynamic response function, these functions were input to a
general linear convolution model of evoked hemodynamic responses in the usual way
to form statistical parametric maps. Wecalculated a group random effects statistic
from the combination of the individual correlation maps with statistical thresholds
at the voxel level of p < 0.001 (uncorrected) and at the cluster level of p < 0.05
(corrected).

For the exploration mode, we observed correlated activity in the fronto-polar pre-
frontal cortex (BA10; x,y,z - 0,54,14; Z - 4.24), bilateral inferior parietal cor-
tex (BA39/40; right: x,y,z - 62,-56,16; Z - 4.56, left: x,y,z - -44,-56,24;

Z - 4.53), and the posterior cingulate cortex (BA31; x,y,z - 2,-50,30; Z - 4.32)

(Fig. D.1A), which were more apparent than for the exploitation mode. For the

opposite contrast, we found significant activations in the regions of the cerebral cor-
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Fig. D.1: Brain areas that are more active in exploration than exploitation modes
(A) andin exploration thanexploitation modes (B).

tex, including the bilateral superior paJietal cortex (BA7; right: x, y, z - 32, -46, 48;

Z - 4.94, 1eft: x,y,z - -20,-56,62; Z - 4.78), bilateral premotor cortex (BA6;

right: x,y,z - 26,4,48; Z - 5.55, 1eft: x,y,z - -22,4,46; Z - 5.09), and ante-

rior cingulate cortex (BA32; x,y,z - 4, 18,44; Z - 5.13), andbasal ganglia areas
(bilateral putamen,caudate, andglobus pal1idus) (Fig. D.1B).

The fronto-polar cortex, the most rostral part of the prefrontal cortex, is known to
be activated during complex cognitive tasks, in particular those which involve multiple
competitive rules (Koechlin, Corrado, Pietrini, & Grafman, 2000; Strange, Henson,
Fhston, & Dolan, 2001), anda recent imaging study using a model-based analysis
(Yoshida & Ishii, 2006) suggested that this area is involved in the internal connict
amongmultiple candidates of the hidden state. The fronto-polar activity in our task
could reflect the uncertainty of state estimation which induces exploratory behaviors.
Behaviora1 andneuropsychological studies in lmmansindicate that multiple spatial
reference frames are used to guide behavior and that parietal cortex is central to the
construction of these egocentric spatial representations (Colby & Goldberg, 1999).
The cingulate cortex, which is the major cortical component of a distributed network
of spatial attention, was activated both in the exploration andexploitation. The



posterior part is known to be activated while the risky choice in a gambling task
(McCoy & Platt, 2005), and it is consistent with that exploratory behaviors could be
directed away from the goa1. The activation of the anterior part, however, which is
associated with the detection of behavioral errors (Braver, Barch, Gray, Molfese, &
Snyder, 2001) and response conflict (Botvinick, Nystrom, Fissell, Carter, & Cohen,
2001), was not observed with the exploration, and this might be attributable to
the subjects just selecting intuitive actions without conflict and not predicting the
next scene attentively. Wealso observed activation of the basal ganglia nuclei during
exploitation; these areas are knownto constitute parallel loops with the cortex, which
are important for controlling involuntary motion (Alexander, Delong, & Strick, 1986) ,
and may be involved in motor information processing directed to the goal (reward).
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