
NAIST-IS-DD461044

Doctoral Dissertation

Computation Theoretic Approaches in Intrusion

Detection and Access Control

Jing Wang

December 6, 2006

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Jing Wang

Thesis Committee:

Professor Hiroyuki Seki (Supervisor)

Professor Minoru Ito (Co-supervisor)

Associate Professor Yuichi Kaji (Co-supervisor)

Computation Theoretic Approaches in Intrusion

Detection and Access Control ∗

Jing Wang

Abstract

In this thesis, we focus on two problems in system security: the IDS (intrusion

detection system) partition deployment problem and the verification problem of

HBAC (history-based access control) programs. The common methodology used

in this thesis is computation theory. A version of the IDS partition deployment

problem can be captured as a special kind of matching problem in graph theory.

To solve the verification problem of HBAC programs, on the other hand, we use

the formal language theory, especially the theory of finite state automata and

context-free grammars.

In chapter 2, the IDS partition deployment problem is defined and an efficient

algorithm for a simplified version of the problem is proposed. The IDS partition

deployment problem is the problem of computing the number and deployment

positions of distributed IDSs and dividing a given attack scenario to minimize the

load of each IDS on a given network topology without sacrificing the detection

capability of the original attack scenario. We successfully reduce the deployment

problem to a newly introduced matching problem for weighted bipartite graphs.

It is shown that the deployment problem for any state transition IDS can be

solvable in deterministic polynomial time. We also prove a related problem, the

minimum IDS partition deployment problem, is NP-complete.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-

mation Science, Nara Institute of Science and Technology, NAIST-IS-DD461044, December 6,

2006.

i

In chapter 3, we first propose a formal model for Abadi-Fournet style access

control called HBAC program. We also show that the expressive power of HBAC

programs is stronger than programs with stack inspection. Next, we define the

security verification problem for HBAC programs. The verification problem is

reduced to the emptiness test of context-free languages. It is shown that the

problem is solvable in deterministic polynomial time under a reasonable assump-

tion while the problem is EXPTIME-complete in general. Finally, we propose a

few optimization techniques used in verification of HBAC programs. Experimen-

tal results show that practical HBAC programs can be verified within reasonable

time and space.

Keywords:

computer security, intrusion detection system, stack inspection, history-based

access control, verification, model checking, computation theory

ii

List of Publications

1. Journal Papers

(1) Jing Wang, Naoya Nitta and Hiroyuki Seki: “An Efficient Method for

Optimal Probe Deployment of Distributed IDS,” IEICE Transactions

on Information and Systems, E88-D(8), pp.1948–1957, Aug. 2005.

2. International Conference (Reviewed)

(3) Jing Wang, Yoshiaki Takata and Hiroyuki Seki: “HBAC: A Model for

History-based Access Control and Its Model Checking,” 11th European

Symposium on Research in Computer Security (ESORICS 2006), Lec-

ture Notes in Computer Science 4189, pp.263–278, Sept. 2006.

3. Workshops

(4) Jing Wang, Naoya Nitta and Hiroyuki Seki: “Towards an Optimal

Probe Deployment for Network IDS,” Technical Report of IEICE, SS2003-

31, Nov. 2003 (in Japanese).

(5) Jing Wang, Naoya Nitta and Hiroyuki Seki: “An Efficient Method

for Optimal Probe Deployment of Distributed IDS,” 2004 Symposium

on Cryptography and Information Security (SCIS2004), pp.1035–1040,

Jan. 2004 (in Japanese).

(6) Jing Wang, Yoshiaki Takata and Hiroyuki Seki: “A Formal Model for

Access Control Based on Execution History,” Technical Report of IE-

ICE, SS2004-63, March 2005.

(7) Jing Wang, Yoshiaki Takata and Hiroyuki Seki: “A Formal Model for

Access Control Based on Execution History and Its Model Checking,”

8th Programming and Programming Language Workshop (PPL2006),

p.183, March 2006.

(8) Jing Wang, Yoshiaki Takata and Hiroyuki Seki: “An Efficient Model

Checking Method for Programs with History-based Access Control,”

iii

Technical Report of IEICE, SS2006-38, pp.34–39, Aug. 2006.

iv

Acknowledgements

First, and foremost, I would like to thank Professor Hiroyuki Seki for his con-

tinuous support and encouragement and guidance of the work. Also foremost, I

would like to thank Professor Minoru Ito for his invaluable comments and helpful

suggestions concerning this thesis. I also wish to thank Associate Professor Yuichi

Kaji for his valuable comments. I would like to express my sincere gratitude to

Assistant Professor Yoshiaki Takata for his support and advice throughout the

research. I am very grateful to Assistant Professor Naoya Nitta at Konan Uni-

versity for his support and advice in an early stage of the research. Finally, I

would like to thank all the members of Seki laboratory.

v

Contents

List of Publications . iii

Acknowledgements . v

1 Introduction 1

2 An Efficient Method for Optimal Probe Deployment of Dis-

tributed IDS 8

2.1. Introduction . 8

2.2. Distributed Network-oriented IDS 9

2.3. IDS Partition Deployment Problem 10

2.3.1 Load Minimization . 11

2.3.2 Definition of IDS Partition Deployment Problem 12

2.3.3 Simplified IDS-PDP . 14

2.4. Approach to IDS-PDP . 16

2.4.1 Algorithm for Message Monitor Problem 16

2.4.2 Correctness of the Algorithm 22

2.4.3 Relation to the bipartite b-matching 26

2.5. Probe Number Minimization IDS-PDP 27

2.5.1 Definition of Probe Number Minimization IDS-PDP . . . 27

2.5.2 Complexity of Probe Number Minimization IDS-PDP . . . 28

2.6. Conclusion of chapter 2 . 30

3 HBAC: A Model for History-based Access Control and Its Model

Checking 32

vi

3.1. Introduction . 32

3.2. HBAC Program . 33

3.3. Comparison with Stack Inspection 40

3.4. Model Checking HBAC Program 42

3.5. Optimization of Model Checking Algorithm 47

3.5.1 Basic Idea . 47

3.5.2 Optimization 1: Rules with Reachable Symbols 48

3.5.3 Optimization 2: Precomputing Current Permissions 48

3.5.4 Optimization 3: Exact Computation of Current Permissions 50

3.6. Experiments . 52

3.7. Conclusions of chapter 3 . 55

4 Conclusion 57

References . 59

vii

List of Figures

1.1 A UDP race attack [38] . 4

1.2 A scenario of a UDP race attack 4

1.3 Decomposition of the scenario in Fig. 1.2 5

2.1 NetSTAT . 10

2.2 A structure of a probe . 11

2.3 Example of IDS-PDP . 12

2.4 An approach of IDS-PDP for state transition type IDS 15

2.5 Different solutions of message monitor problem and IDS-PDP for

the same instance . 16

2.6 Construction of a bipartite graph 17

2.7 A computation of matching . 21

2.8 An example of probe number minimization IDS-PDP 28

2.9 Reduction from Lvc to Lpids . 30

3.1 An HBAC program . 35

3.2 Chinese wall policy . 40

3.3 A basic program . 42

3.4 Method P [q, k] . 45

3.5 Method R[k, γj, q
′, k′] . 46

3.6 Method I . 46

3.7 Sample HBAC program. 50

3.8 Initial dependency graph for X1,{p1,p3,p4}. 51

3.9 Final dependency graph for X1,{p1,p3,p4}. 51

viii

3.10 On-line banking system . 53

3.11 Verification time for πc(k) and πo(k) 55

ix

List of Tables

2.1 Time complexity . 30

3.1 Modification of current permissions 37

3.2 Verification profiles of sample programs 54

x

Chapter 1

Introduction

Nowadays, with rapid growth of computer networks and diversity of computer

systems, our secret resources are exposed to various kinds of malicious behaviors

and attacks from both inside and outside of a system. Information and com-

puter security is an important research area, of which the aim is to protect users’

private information against those threats and to retain the safe and effective func-

tion of the system. Security technologies are roughly divided into two sub-areas,

namely, modern cryptographic technology and system security. The former, in-

cluding secret-key and public-key cryptographic systems, has been widely used in

today’s computer and network systems and many protocols based on cryptogra-

phy have been developed to make so-called e-business, e-trade and e-government

safer and more secure. System security, on the other hand, mainly concerns con-

trolling the behavior of a user, its process, and other related objects, based on the

system’s security policy in a few layers in the system such as the network, the op-

erating system, and the language runtime environment. Among others, intrusion

detenction and access control are major research topics in system security.

Intrusion Detection System (IDS) is a security protection mechanism that de-

tects malicious accesses to an intra-network or secret resources by monitoring the

traffic of a network, the state of a program, and so on. If the observed behavior

matches the pre-defined signature or deviates from the pre-defined normal be-

havior, then the IDS alarms us of the danger. As expained in detail below, IDSs

1

can be devided into host-based IDSs and network-based IDSs.

Access control has its origin in protection of resources such as files and devices

in operating systems based on file permission or access control lists (ACL). Re-

cently, this kind of control technology has been evolved very much. As explained

later, stack inspection is one of the well-known security protection mechanisms

in such runtime environments as the Java virtual machine and the Common Lan-

guage Runtime. History-based access control has also been introduced as an

extension of stack inspection to overcome the problems of the latter. However, it

is difficult to manually check whether these security protection mechanisms are

sufficient to assure the security of a system against malicious accesses when the

behaviors of the system and the attacker are complicated.

In this thesis, we focus on two problems in system security. One is the IDS

partition deployment problem and the other is the security verification problem of

HBAC programs. The common methodology used in this thesis is computation

theory. A version of the IDS partition deployment problem can be captured

as a special kind of matching problem in graph theory. We successfully reduce

the deployment problem to a newly introduced matching problem for weighted

bipartite graphs. To solve the seruity verification problem of HBAC programs, on

the other hand, we use the formal language theory, especially the theory of finite

state automata and context-free grammars. The verification problem is reduced

to the emptiness test of context-free languages.

In both of the topics, we first define the problems formally, describe the al-

gorithms to solve them and then analyse the computational complexity of these

algorithms as well as analysing the lowerbound of the complexity of the problems

themselves in the latter topic. In the rest of this chapter, the background and

research motivation will be explained in some detail.

IDS partition deployment problem. An Intrusion Detection System (IDS)

is a known mechanism that warns a network administrator whenever it detects a

misuse access by monitoring the entire network traffic or scanning server log files.

According to the underlying detection technique, IDSs are roughly divided into

2

anomaly detection type and misuse detection type. An anomaly detection IDS

detects a impersonaton of a legitimate user u by comparing the current behavior

of u on the network with the information in a behavior profile of u that has been

extracted in advance. On the other hand, a misuse detection IDS searches for

a misuse access of an anonymous user by comparing the user’s behavior with

known attack scenarios. An attack scenario defines what kind of event sequences

on a network or servers is misuse. According to the method used for expressing

attack scenarios, misuse detection IDSs are further divided into four classes[31]:

(1) single event, (2) event sequence, (3) state transition diagram, and (4) others.

Class (3) is wider than class (2) and class (2) is wider than class (1).

A misuse detection IDS that monitors network traffic is called a network-

oriented IDS (e.g., EMERALD[32], NetSTAT[38]). With respect to a network-

oriented IDS, sometimes it is unrealistic to detect all intrusions with a single host

because:

• when the network traffic becomes heavy, it becomes harder to monitor the

entire network traffic in real time with a single host;

• if the network events such as packets and messages related to an intrusion

are visible only in different links on the network, then we cannot detect the

whole intrusion with a single host (see the following example).

For these reasons, it is necessary for network-oriented IDSs that the detection

tasks should be distributed to several hosts while preserving detection capability.

For example, let us recall a UDP race attack shown in [38] (Figs.1.1 and 1.2).

There are four hosts, kubrick, fellini, chaplin and jackson on the network.

Kubrick, fellini and one network interface of chaplin are on link L1, and another

network interface of chaplin and jackson are on link L2. Fellini is a server that

provides an NFS service to kubrick. In this case, since authentication of a UDP-

based service such as NFS is based on the host address or host name, jackson

can execute a UDP race attack by the following message sequence:

1. First, kubrick sends a message m1 including an NFS request to fellini.

3

Figure 1.1. A UDP race attack [38]

2. Jackson sends to kubrick a message m3 the IP source address of which is

changed to fellini’s.

3. If kubrick receives m3, before the reply message m2 from fellini, then

kubrick will accept m3 as a legitimate reply.

Figure 1.2. A scenario of a UDP race attack

In Fig. 1.2, we show an attack scenario of a UDP race attack as a state

transition diagram based on [38]. Generally, an attack scenario is specified inde-

pendently from the properties of individual network. The states s1, s2, . . ., and

s6 of the attack scenario represent the snapshots of the security-relevant proper-

ties and resources of the network (e.g., file ownership, the states of the network

services, and so on). The state s1 is the initial state and s4 is a success state of

the attack. A transition between states is represented as a directed edge labeled

4

with a delivered message. In this thesis, for technical convenience, we regard the

set of all edge labels in each attack scenario as the set of all messages (denoted

as Γ in Fig. 1.2) delivered in the network rather than the set of signature actions

which are messages needed to complete the attack successfully. Hence, a loop is

placed at each state of a state transition diagram to preserve the meaning of the

attack scenario.

In the example shown in Figs. 1.1 and 1.2, since we can detect spoofing of

the message m3 only at link L2 on the delivery route of m3, an IDS should be

deployed on L2. Another IDS should be deployed on link L1 because only there

both the messages m1 and m2 can be detected. Hence, it is necessary to deploy

two IDSs on the network to detect the whole of the attack specified by the attack

scenario in Fig. 1.2. For these IDSs, the attack scenario in Fig. 1.2 is decomposed

into two subscenarios shown in Fig. 1.3. In this case, new messages m1′, m2′ and

m3′ are exchanged between the two IDSs to synchronize the detection tasks of

these IDSs. For example, the IDS deployed on link L1 monitors the message m1,

and sends message m1′ to the IDS deployed on link L2. If the IDS on L2 accepts

m1′ and monitors m3 in this order, then it sends a message m3′ to the IDS on

L1. If the IDS on L1 receives m3′ from the IDS on L2 and monitors m2, then it

warns a network administrator.

Figure 1.3. Decomposition of the scenario in Fig. 1.2

Although NetSTAT proposes a technique for decomposing attack scenarios

and allocating detection tasks to several distributed IDSs on a network, the al-

gorithm used in NetSTAT is based on heuristics [38] and is not always optimum.

5

In chapter 2, we formally define this problem as the IDS partition deployment

problem, and propose an efficient algorithm for a simplified version of the problem.

The IDS partition deployment problem is the problem of computing the number

and deployment positions of distributed IDSs and dividing a given attack scenario

to minimize the load of each IDS on a given network topology without sacrificing

the detection capability of the original attack scenario. The simplified version of

the problem is defined as a new graph theoretic problem by extracting out the

essential part of the original problem. We successfully reduce the deployment

problem to a newly introduced matching problem for weighted bipartite graphs.

It is shown that the deployment problem for any syate transition IDS can be

solvable in deterministic polynomial time. We also prove a related problem, the

minimum problem IDS partition deployment problem, is NP-complete.

Verification problem for HBAC programs. Stack inspection is now broadly

used as a dynamic access control infrastructure in such runtime environments as

the Java virtual machine [17] and the Common Language Runtime. However, it

has been pointed out that stack inspection is not sufficient for security assurance

since the stack does not retain security information on the invoked methods for

which execution is finished. To solve this problem, a few access control models

have been proposed [1, 15, 36]. Common feature of these works is that the his-

tory of execution such as method invocation and resource access is used for access

control, and the history is not always forgotten even if the surrounding method

execution is completely finished. Schneider [36] defines an enforceable security

policy as a prefix-closed nonempty set of event sequences, and also defines secu-

rity automata, which exactly recognize enforceable policies. Fong [15] introduces

several subclasses of security automata and compares the expressive power of

these subclasses. In particular, Fong defines shallow history automata with finite

state space, and shows that the class of policies recognized by shallow history

automata is incomparable with that of stack inspection. Another novel approach

is proposed by Abadi and Fournet [1]. As in stack inspection, a target system

for access control is an object-oriented recursive program: A set of permissions is

6

assigned statically (before runtime) to each method; current permissions are mod-

ified each time a method is invoked. Generally, current permissions can depend

on all the methods executed so far. This forms a contrast to access control based

on stack inspection, which completely cancels the effect of the finished method

execution. In [1], an implementation built on the top of C] runtime environment

is reported. However, formal verification methods for the model of [1] have not

been investigated, except [3].

In chapter 3, we propose a formal model for Abadi-Fournet style access con-

trol called HBAC program. An HBAC program is a directed graph where a node

represents a program point and an edge represents a control flow. We also show

that the expressive power of HBAC programs is stronger than that of programs

with stack inspection. We also define the security verification problem for HBAC

programs and show that the problem is solvable in deterministic polynomial time

under a reasonable assumption while the problem is EXPTIME-complete in gen-

eral. Finally, we propose a few optimization techniques used in verification of

HBAC programs. Experimental results show that practical HBAC programs can

be verified within reasonable time and space.

7

Chapter 2

An Efficient Method for Optimal

Probe Deployment of Distributed

IDS

2.1. Introduction

In this chapter, we formally define this problem as the IDS partition deployment

problem, and propose an efficient algorithm for a simplified version of the prob-

lem. The IDS partition deployment problem is the problem of computing the

number and deployment of distributed IDSs and dividing a given attack scenario

to minimize the load of each IDS on a given network topology without sacrificing

the detection capability of the original attack scenario. The simplified version of

the problem is defined as a new graph theoretic problem by extracting out the

essential part of the original problem.

The rest of the chapter is organized as follows. In section 3, we define the

IDS partition deployment problem and the simplified version of the problem. In

section 4, we design an algorithm which computes the optimal solution of the

simplified problem and we prove the correctness of the algorithm. In section 5,

we define the Probe number minimization IDS partition deployment problem, and

prove this problem is NP-complete. We provide conclusions and address future

8

work in section 6.

Related work:

Another problem concerned with misuse detection IDS is vulnerability anal-

ysis which verifies the safety of network system and attack scenarios. Gener-

ally, it is difficult to set up appropriate attack scenarios that can prevent both

false acceptance and false rejection in a misuse detection IDS[2]. Therefore, to

decide whether the attack scenarios are appropriately set up, verification tech-

niques [23][33] using model checking [8] are proposed. Model checking is one

of the automatic verification techniques which search the state space of a sys-

tem exhaustively to decide whether the system satisfies given specifications. It

also generates an execution sequence of the system as a counterexample if the

system does not satisfy one of the specifications. Ritchey et al. [33] propose a

method which decides by model checking whether a network system with vulner-

ability satisfies safety specifications, and outputs counterexamples as successful

attacks if the specifications are not satisfied. Furthermore, Jha et al.[23] propose

a method which extracts safe attack scenarios for IDS from all the successful

examples outputted by model checkers. However, in these researches, only single

event type attack scenarios are considered, and this type of attack scenarios do

not have enough detection capability. On the other hand, if we are allowed to

use a more powerful attack scenario such as USTAT [21] and NetSTAT [38], then

from the input of model checkers [23] [33] (i.e., state transition diagrams which

represent the behavior of the network and the successful states of attacks) we

can directly construct a safe attack scenario, and thus safety verification would

become meaningless.

2.2. Distributed Network-oriented IDS

IDSs are classified into host-oriented IDSs, which monitor the log files of the

operating system, and network-oriented IDSs, which monitor the network traffic

such as TCP/IP packets. Furthermore, according to the number of IDSs deployed

on the network, we can classify IDSs into stand-alone type and distributed type.

9

NetSTAT ([38]) is proposed as a network-oriented distributed IDS. In NetSTAT,

each deployed IDS is called a probe. NetSTAT detects a misuse access with each

probe analyzing the traffic based on distributed attack subscenario and sending

results to each other (Fig. 2.1).

Figure 2.1. NetSTAT

Since the most suitable deployment of probes on the network and decom-

position of an attack scenario greatly depend on the topology of the network,

NetSTAT provides a tool (Analyzer) to acquire such information from an origi-

nal attack scenarios and the topology of the network. However, the algorithm is

based on heuristics.

2.3. IDS Partition Deployment Problem

Before defining the IDS partition deployment problem, we should discuss what

are required for this problem. There are two objectives to decompose an attack

scenario and to allocate them to many probes:

1. the inevitability of message passing;

2. the load minimization.

10

The inevitability of message passing means that for a given network topology,

every message in the original attack scenario must be monitored at least one

probe under any routing condition. The load minimization is discussed in the

next section. In addition to these objectives, the following property must be

satisfied:

(3) the preservation of detection capability.

The preservation of detection capability means that the detection capability

should remain the same even if an attack scenario is decomposed.

2.3.1 Load Minimization

Many network-oriented IDSs consist of the message filter part, which extracts only

messages related to attack scenarios from the traffic, and the misuse detection

processing part, which performs misuse detection based on extracted messages

(Fig. 2.2). We can assume that the processing time of message filter part can be

Figure 2.2. A structure of a probe

ignored compared with the processing time of misuse detection processing part.

Now, let c denote the time needed by a certain IDS to perform misuse detection

on one message. If the number of messages extracted per unit time exceeds 1/c,

then it is impossible for this IDS to perform misuse detection in real time. On

the other hand, if we assume all different kinds of messages appear at the same

rate in ordinal traffic, then the number of the messages extracted per unit time

is proportional to the kinds of messages that should be monitored. Thus, in

this paper, we define the load minimization as the minimization of the maximum

number of the different kinds of messages which each probe monitors. A typical

11

Γ(Sin) = {α, β, γ, δ}

Σ(Sout
1) = {α} Σ(Sout

2) = {γ}

Σ(Sout
3) = {β} Σ(Sout

4) = {δ}

Figure 2.3. Example of IDS-PDP

case that minimizing the maximum number of the kinds of messages does not

mean minimizing the load is a case that few kinds of messages appear extremely

frequently in the network such as a situation under DoS (Denial of Service) attack.

However, we consider such a situation under Dos attack should be detected and

avoided by techniques completely different from the one discussed here, and we

do not take such a situation into account in this paper.

2.3.2 Definition of IDS Partition Deployment Problem

As mentioned in section 1, IDSs can be classified by the class of the attack

scenarios which can be handled. To make the IDS partition deployment problem

independent of the type of attack scenarios, in the following, we first define the

generalized IDS partition deployment problem. The topology of the network is

represented as an undirected graph T = (N,E) (Fig. 2.3), where the set N of

vertices represents the set of network interfaces provided by the hosts on which a

probe can be deployed, and the set E ⊆ N × N of edges represents a connection

relation between the interfaces. We denote the original attack scenario by Sin,

and the set of attack subscenarios which are distributed to probes by Sout =

{Sout
1 , Sout

2 , ..., Sout
n } where n = |Sout| (without concrete descriptions). A probe

12

deployment mapping a : {1, 2, ..., |Sout|} → N is an injection. For example in

Fig. 2.3, a(1) = n1 since Sout
1 is assigned to n1. The set of all messages contained

in the attack scenario S is denoted by Γ(S) and the set of all message sequences

detected by S is denoted by L(S). In addition, extending the definition of L,

for the set S of attack subscenarios, the set of message sequences detected by

cooperating subscenarios in S is also denoted by L(S). The source and destination

of each message are given by mappings r1, r2 : Γ(Sin) → N , respectively.

Definition 1 Generalized IDS partition deployment problem (IDS-PDP)

input : Sin, T, r1, r2

output : n, a, Sout,

where

• n = |Sout|,

• L(Sin) = L(Sout) (preservation of detection capability),

• max{|Γ(Sout
i)| | 0 < i ≤ n} is minimum (load minimization),

• if α ∈ Γ(Sout
i), then a(i) exists on every path of T from r1(α) to r2(α)

(inevitability of message passing).

Note that the meaning of the preservation of detection capability depends on

formulation of the attack scenario.

Example 2.3.1 In Fig. 2.3, we show an instance of IDS-PDP for the state tran-

sition type IDS. In a state transition type IDS, an attack scenario is given by

a state transition diagram. Sout = {Sout
1 , Sout

2 , Sout
3 , Sout

4 } and the deployment of

probes shown in Fig. 2.3 is a solution of this instance. For example, as scenario

Sout
3 monitors message β, Sout

3 is assigned to n3, which is on the path from source

n1 to destination n3 of β. The probes are cooperated as follows. If the probe

deployed at the host n1 monitors the message α, then the probe sends a syn-

chronous message τ1 to the probe deployed at the host n3. If the latter probe

receives τ1 and monitors the message β, then it sends a synchronous message τ2

to the probe deployed at the host n2. In this way, a sequence αβγδ of messages

13

can be detected by these four probes. As the number of the kinds of messages

monitored by Sout
1 , Sout

2 , Sout
3 and Sout

4 are 2, 3, 3 and 2, respectively, the maximum

load is 3. This satisfies the condition of the load minimization.

2.3.3 Simplified IDS-PDP

Without specifying the type of attack scenario in generalized IDS-PDP, the

preservation of the detection capability cannot be formally defined. However,

even if the formulation of the attack scenario is not specified, we can see that the

preservation of the detection capability condition requires the following condition

to hold:

Γ(Sin) ⊆
⋃
i

Γ(Sout
i).

Furthermore, by ignoring 1 the load yielded by the synchronization between

probes, we can define another type of IDS partition deployment problem in-

dependently of type of the attack scenarios as follows. Here, let the distribution

function Σ : Sout→ 2Γ(Sin), which assigns a subset of messages to each attack

subscenario, be a function such that Σ(Sout
i) = Γ(Sout

i)∩Γ(Sin) and if i 6= j then

Σ(Sout
i) ∩ Σ(Sout

j) = ∅.

Definition 2 Simplified IDS-PDP (Message monitor problem)

input : Γ(Sin), T , r1, r2

output : n, a, Σ,

where

• n = |Sout|,

• Γ(Sin) =
⋃
i

Σ(Sout
i),

• max{|Σ(Sout
i)| | 0 < i ≤ n} is minimum,

1Since the probability that a synchronization τ occurs between probes is exponentially de-

creasing in proportion to the length of message sequence from the initial state to τ in the attack

scenrio, we can ignore it.

14

Simplified IDS-PDP
(Message monitor problem)

Algorithm in [25] and [26]

T=(N,E) r,r S

output

Σ

output

Sa

Γ(S)
1 2

in

in

out

Figure 2.4. An approach of IDS-PDP for state transition type IDS

• if α ∈ Σ(Sout
i), then a(i) exists on every path of T from r1(α) to r2(α).

Example 2.3.2 Example 2.3.1 is also an instance of the message monitor prob-

lem. As an input, the set Γ(Sin) of the kinds of messages included in the scenarios

Sin is given. Σ and the deployment of probes shown in Fig. 2.3 is a solution of this

instance. Each message included in Sin is monitored by at least one subscenario

in Sout. As the numbers of the kinds of messages monitored by Sout
1 , Sout

2 , Sout
3

and Sout
4 are 1, 1, 1 and 1, respectively, the maximum load is 1.

In example 2.3.2, the deployment of probes determined by the message moni-

tor problem agrees with that by the generalized IDS-PDS. However they do not

always agree in general. In case of a single event type IDS, a solution of the gen-

eralized IDS-PDP just corresponds to a solution of the message monitor problem.

On the other hand, in case of the state transition type IDS, from Sin and a so-

lution Σ of the message monitor problem, we can compute the partition of the

attack scenario in polynomial time by using the algorithm presented in [24, 25](see

Fig. 2.4). The time complexity of the algorithm in [24, 25] is O(|N | ·R2), and the

number of synchronization messages generated by the algorithm is O(F ·|Γ(Sin)|),
where R is the number of the transitions of Sin and F is the number of the states

of Sin. However, in general, a solution obtained by this method is not always a

solution of the generalized IDS partition deployment problem (see Fig. 2.5).

15

Figure 2.5. Different solutions of message monitor problem and IDS-PDP for the

same instance

2.4. Approach to IDS-PDP

2.4.1 Algorithm for Message Monitor Problem

The approach proposed in this paper to solve the message monitor problem is as

follows.

1. First, we construct a bipartite graph G = (V +, V −, E ′) from the input

Γ(Sin), T = (N,E), and r1, r2 of the message monitor problem as follows.

Let deployment mapping ρ : Γ(Sin) → 2N be a mapping which maps a

given message m to the set of hosts which m inevitably passes through (it

is possible to compute ρ in T by depth first search in polynomial time).

• V − = Γ(Sin).

• V + =
⋃

m∈Γ(Sin)

ρ(m) ,

where V + ⊆ N , and V − ∩ V + = ∅.

• E ′ = {(vi, wi) | vi ∈ Γ(Sin), wi ∈ ρ(vi)}.

2. Second, for G, compute a minimum maximum overlapped matching defined

below.

16

Figure 2.6. Construction of a bipartite graph

Example 2.4.1 In Fig. 2.6, we show the bipartite graph constructed from the

input of the message monitor problem shown in Fig. 2.3.

• Let the messages α, β, γ and δ correspond to the vertices of V − in the

bipartite graph.

• Also, let the inevitably passed hosts n1, n2, n3 and n4 for the messages

correspond to the vertices of V + in the bipartite graph.

• Put edges between each message v of V − and each inevitably passed hosts

for v. For example, since the message δ must pass the host n2, n3 and n4,

the edges between δ and n2, n3 and n4 exist.

Note that for each vi ∈ V − there exists at least one edge which is incident to vi

since each message vi inevitably passes through its source r1(vi) and destination

r2(vi). In the rest of the paper, however, we allow the case that some vertices

in V − has no incident edge since our algorithm can find a minimum maximum

overlapped matching even in such a case.

Definition 3 Let G = (V +, V −, E ′) be a bipartite graph and v ∈ V + ∪ V − be

a vertex in G. The number of edges incident to v is called the degree of v and

written by deg(v). For a subset M of E ′, the number of edges which belong to

M and are incident to v is denoted as deg(v,M). A subset M of E ′ is called

a (n : 1)-matching and n is called the overlap of M in G if deg(v+,M)≤ n for

every v+ ∈ V + and deg(v−,M) ≤ 1 for every v− ∈ V −. When we are not

17

interested in n of a (n : 1)-matching M in G, we call M an overlapped matching

in G. A (n : 1)−matching M in G is maximal if there is no (n : 1)−matching

M ′ in G such that |M ′| > |M |. An overlapped matching M in G is maximum

if there is no overlapped matching M ′ in G such that |M ′| > |M |. A minimum

maximum overlapped matching in G is a maximum overlapped matching in G

such that the overlap is minimum. A vertex v+ ∈ V + (or v− ∈ V −) is M-free if

deg(v+,M) < n (or deg(v−,M) = 0).

Although a (n : 1)-matching is a special case of the b-matching[37], to our

purpose, it is sufficient to use (n : 1)-matching. Relation between the problem in

(n : 1)-matchings and the problem in b-matchings is discussed in section 4.3.

By definition, if both of a (n1 : 1)-matching M1 and a (n2 : 1)-matching M2

are maximal and n1 ≤ n2, then |M1| ≤ |M2|. Also, for two maximum overlapped

matchings M1 and M2, |M1| = |M2| holds. Since we only consider a finite bipartite

graph G, there always exists a minimum maximum overlapped matching in G.

Let G = (V +, V −, E ′) be the bipartite graph constructed from an instance

〈Γ(Sin), T = (N,E), r1, r2〉 of the message monitor problem and let M be a mini-

mum maximum overlapped matching in G. A solution 〈a, Σ〉 of the original prob-

lem can be obtained from M as follows: Let N ′ = {v+ ∈ V + | deg(v+,M) ≥ 1}
and m = |N ′|. A probe deployment mapping a is defined as an arbitrary bijection

from {1, . . . ,m} to N ′. The distribution function Σ is defined as Σ(Sout
i) = {v− |

(a(i), v−) ∈ M} for 1 ≤ i ≤ m. By definition, deg(a(i),M) = |Σ(Sout
i)|. Since M

is minimum maximum, the conditions of definition 3.2 are satisfied.

To our purpose, we extend the definition of M -augmenting path [34] as follows.

Definition 4 Let G be a bipartite graph and M be a (n : 1)-matching in G.

Then, a (n : 1)-M -alternating path in G is a path whose edges are alternately in

E ′\M and M . A (n : 1)-M-augmenting path in G is a (n : 1)-M -alternating path

such that both of its start edge and end edge are in E ′\M , and both of its start

vertex and end vertex are M-free.

Let G = (V +, V −, E ′) be a bipartite graph. In the following, we show a matching

algorithm of finding a minimum maximum overlapped matching. The algorithm

18

keeps track of a subset M of edges and a value k in internal variables. Intuitively,

k represents the current lower limit of the overlap of maximum overlapped match-

ings in G. In the following, an edge belonging to M is denoted as a solid line and

an edge belonging to E ′\M is denoted as a dashed line. The solution is the set

of solid lines when the algorithm halts. The algorithm runs as follows.

1. Let the initial value of k be d|V −|/|V +|e and all edges be dashed lines.

2. For every vertex in V −, perform the following steps (3), (4), (5).

3. Find a (k : 1)-M -augmenting path from a vertex in V − to a vertex in V +

with depth-first search ((d) of Fig. 2.7).

4. If a (k : 1)-M -augmenting path is found, then all dashed lines are changed

to solid lines and all solid lines are changed to dashed lines on the path,

which results in a new (k : 1)-matching M ′ with |M ′| = |M | + 1.

5. If such a path is not found, then k is increased by one, per from the step

(3) for the vertex specified by step (3).

function dfs(v :vindex; ρ :path) :path;

var z :vindex; p :↑edge; r :path;

begin

vertex[v].state :=visited;

p := vertex[v].adjlist; (adjacent vertex list of v)

while p 6= nil do begin

z := p ↑ .dest;

if vertex[z].state =novisit then

if z ∈ V + and vertex[z].sat < k and

p ↑ .edgestyle =dashedline then begin

add z to path ρ; return(ρ)

end;

if (z ∈ V + and vertex[z].sat = k and

p ↑ .edgestyle =dashedline) or

19

(z ∈ V − and p ↑ .edgestyle =solidline)

then begin

add z to path ρ; r := dfs(z, ρ);

if r 6= nil then return(r)

else delete v from path ρ

end;

p := p ↑ .next

end;

return(nil)

end;

(p ↑ .edgestyle denotes the style of the edge (v, z)).

procedure matching;

var i, j :vindex; r :path;

begin

k := d|V −|/|V +|e; let all edges be dashed lines; / ∗ step(1)

for each vertex i do vertex[i].sat := 0;

for each i ∈ V − do / ∗ step(2)

if vertex[i].adjlist 6= nil then begin

for each vertex j do

vertex[j].state :=novisit;

r := dfs(i,nil); / ∗ step(3)

if r 6= nil then begin / ∗ step(4)

dashed lines are changed to solid lines and

solid lines are changed to dashed lines in r;

vertex[i].sat := vertex[i].sat + 1;

vertex[end vertex of r].sat :=

vertex[end vertex of r].sat + 1;

end

else begin / ∗ step(5)

k := k + 1;

20

for each vertex j do

vertex[j].state :=novisit;

r := dfs(i,nil);

dashed lines are changed to solid lines and

solid lines are changed to dashed lines in r;

vertex[i].sat := vertex[i].sat + 1;

vertex[end vertex of r].sat :=

vertex[end vertex of r].sat + 1;

end

end

end;

Figure 2.7. A computation of matching

Example 2.4.2 In Fig. 2.7, we show the computation of matching algorithm for

a bipartite graph given in Fig. 2.6.

(a) Let the initial value k be 1 (since |V −| = |V +| = 4 and d|V −|/|V +|e = 1),

and all of the edges be dashed. At this time, all of the vertices of V − and

V + are M -free.

(b) For a M -free vertex α of V −, consider edges (α, n1) and (α, n2) incident to

α. Since both adjacent vertices n1 and n2 are M -free, we can choose either

21

(α, n1) or (α, n2). In this example, (α, n2) is chosen. Then change the type

of (α, n2) from dashed to solid. As a result, α and n2 become not M -free.

(c) Do the same as α for β. In this case, we choose (β, n3) and change the dashed

line to solid line. Thus, β and n3 become not M -free.

(d) For the M -free vertex γ, the edges incident to γ are (γ, n2) and (γ, n3).

Furthermore, n2 and n3, the adjacent vertices of γ, are not M -free. In this

case, we can find a (1 : 1)-M -augmenting path γn2αn1 from γ to a M -free

vertex of V + by depth first search.

(e) Change the dashed lines to the solid lines and the solid line to the dashed

line in the path γn2αn1. Then γ and n1 become not M -free.

(f) After all of the vertices of V − become not M -free, the solid lines in the bi-

partite graph is a minimum maximum overlapped matching {(α, n1), (β, n3),

(γ, n2), (δ, n4)}. Consequently, as a solution of this problem, four probes are

deployed in n1, n2, n3 and n4 and monitor the messages α, γ, β and δ,

respectively.

2.4.2 Correctness of the Algorithm

In this section, we show the correctness of the algorithm provided in the previous

section, and also analyze its time complexity. The first lemma shows a basic

property of (n : 1)-M -augmenting path.

Lemma 1 Let G = (V +, V −, E) be a connected bipartite graph and both M and

M ′ be (n : 1)-matchings. If E = M ∪ M ′,M ∩ M ′ = φ and |M ′| > |M |, then G

has a (n : 1)-M -augmenting path.

Proof. Since M and M ′ are (n : 1)-matchings, for all v+ ∈ V +, 0 ≤ deg(v+,M),

deg(v+,M ′) ≤ n hold, and for all v− ∈ V −, 0 ≤ deg(v−,M), deg(v−,M ′) ≤ 1

hold. Since |M ′| > |M | and G is a bipartite graph,∑
v+∈V +

deg(v+,M) <
∑

v+∈V +

deg(v+,M ′),

22

∑
v−∈V −

deg(v−,M) <
∑

v−∈V −

deg(v−,M ′).

Hence,

∃v+ ∈ V +, deg(v+,M) < deg(v+,M ′) ≤ n,

∃v− ∈ V −, deg(v−,M) < deg(v−,M ′) ≤ 1. (2.1)

That is, both V + and V − include at least one M -free vertex. Since G is a

connected graph, for an arbitrary M -free vertex v0 in V −, there exists a trail (a

path on which no edge appears more than once) from v0 to every M -free vertex

in V +. Let the longest one of these trails be v0v1...v2i−1. Note that v0 is in V −

and v2i−1 is in V +, Here, we prove that a (n : 1)-M -augmenting path with length

no more than 2i − 1 exists by the induction with i.

Basis) If i = 1, then (v0, v1) /∈ M . Thus, v0v1 is a (n : 1)-M -augmenting path.

Induction) Assume i > 1. Also, let a trail between v0 and a M -free vertex v′ in

V + with length 2i−1 be v0...v
′′′v′′v′. Delete all edges (v′′′, v′′), (v′′, v′) included in

all these trails from G. Then, the remaining graph is not connected, and let them

be G1, G2, . . . , Gm, where for each j(1 ≤ j ≤ m), let Gj = (V +
j , V −

j , Ej),Mj =

M ∩ Ej and M ′
j = M ′ ∩ Ej. Since v′′ ∈ V −, the numbers of edges deleted from

M ′ and that from M are the same, |∪jM
′
j| > |∪jMj| is satisfied. Thus, for some

connected component Gj, |M ′
j| > |Mj| is satisfied. Since Gj has at least one

M -free vertex both in V + and in V − by (1) and it includes v0 or v′ which satisfies

the above conditions. For, if Gj does not have v′, then there exists a pair of

deleted edges (v′′′, v′′), (v′′, v′) such that v′′′ is included in Gj. In this case v′′′ has

a trail to v0 with length 2i− 3 in Gj. Thus, the longest trail which connects two

M -free vertices included in Gj is shorter than 2i− 1. By induction hypothesis, a

(n : 1)-M -augmenting path with length no more than 2i − 1 exists. 2

The next lemma provides a condition for an overlapped matching to be max-

imal in terms of augmenting path, which is proved by using lemma 4.1.

Lemma 2 A (n : 1)-matching M of a bipartite graph G = (V +, V −, E) is maxi-

mal if and only if G does not include a (n : 1)-M-augmenting path.

23

Proof. First, we show the only if part. Let v0, v1, ..., v2i−1 be a (n : 1)-

M -augmenting path, and M1 = {(v2k−1, v2k) | 1 ≤ k < i} ⊆ M and M2 =

{(v2k−2, v2k−1) | 1 ≤ k ≤ i} ∩ M = ∅. Since M ′ = (M ∪ M2)\M1 is a (n : 1)-

matching of G and |M ′| = |M | + 1 holds, M is not maximal.

Second, we assume that M is not maximal and show that G includes a (n : 1)-

M -augmenting path. Let M ′(|M ′| > |M |) be a (n : 1)-matching, and consider the

subgraph G1 of G whose edges are (M ∪M ′)\(M ∩M ′). G1 contains at least one

connected graph G2 = (V +
2 , V −

2 , E2) such that |M ′
2| > |M2| where M2 = E2 ∩M

and M2
′ = E2 ∩ M ′. By lemma 4.1, G2 has a (n : 1)-M -augmenting path.

2

Definition 5 Let G be a bipartite graph and M be a (n : 1)-matching in G. A

(n : 1)-M-augmenting path v0v1 . . . v2k−1 is called normal if (1) v0 ∈ V −, (2)

every v2i−1 ∈ V + is not M -free (1 ≤ i < k), and (3) i 6= j implies vi 6= vj(0 ≤
i, j ≤ 2k − 1).

Lemma 3 Let G be a bipartite graph and M be a (n : 1)-matching in G. A

normal (n : 1)-M-augmenting path exists in G whenever a (n : 1)-M -augmenting

path exists in G.

Proof. We can construct a normal (n : 1)-M -augmenting path from a (n : 1)-

M -augmenting path v0v1 . . . v2k−1 in G as follows. (1) If a pair of vertices vi

and vj which satisfies vi = vj appears in the path, remove the path between vi

and vj, and construct a simple path v0...vivj+1...v2k−1. Let v2k′−1 be the M -free

vertex which occurs at first in V + along with the path obtained by (1). Then,

v0v1...v2k′−1 is a normal (n : 1)-M -augmenting path. 2

Lemma 4.3 is used for proving the following lemma, which claims that the

algorithm can find an augmenting path whenever it exists.

Lemma 4 Let G = (V +, V −, E) be a bipartite graph and M be a (n : 1)-matching

in G. If some (n : 1)-M-augmenting paths P started in v0 ∈ V − exists, then the

algorithm dfs outputs one of P . Otherwise, the algorithm eventually outputs nil.

24

Proof. dfs makes exactly one vertex visited by recursive call. Since the number

of vertices is limited, dfs halts. That is, dfs outputs a path and halts only if it

finds a normal (n : 1)-M -augmenting path. Consequently, if a normal (n : 1)-M -

augmenting path in G does not exist, equivalently by lemma 4.3, if a (n : 1)-M -

augmenting path does not exist, then dfs outputs nil.

Conversely, suppose that there exists a (n : 1)-M -augmenting path v0v1...v2k−1

in G. We show that dfs does not output nil by contradiction. Assume that dfs

outputs nil and halts. Then it visits all the vertices connected with v0 through a

normal augmenting path. Since v2k−1 is connected with v0 through v0v1...v2k−1,

v2k−1 has already been visited by dfs . However, since v2k−1 is M -free, whenever

dfs visits v2k−1, it outputs an augmenting path and halts. 2

The following theorem states the correctness of the algorithm, which can be

proved by using lemmas 4.2 and 4.4.

Theorem 1 For a given bipartite graph G = (V +, V −, E), the algorithm match-

ing always outputs a minimum maximum overlapped matching M in G and the

overlap k of M .

Proof. By induction on i = |V −|, we prove both the theorem and the claim

that every vertex in V − either is not M -free or has no incident edge when the

algorithm halts. Let v be the last visited vertex in V − by the algorithm matching.

Basis) The proof is similar to that of induction step. Hence we omit it here.

Induction) Let G′ be a subgraph of G which is obtained by removing v and

the set of edges incident to v from G. Let k′ and M ′ be the content of internal

variables k and M , respectively, when the algorithm begins to process v ∈ V −.

By induction hypothesis, M ′ be a minimum maximum (k′ : 1)-matching of G′.

There are two cases to consider. First, if v has no incident edge in G, then M ′ is

also a minimum maximum overlapped matching in G. In this case, dfs is never

called, and M ′ and k′ are outputted by matching. Second, if v has an incident

edge in G, then M ′ is not a maximum overlapped matching in G because M ′∪{e}
is also an overlapped matching where e is an edge incident to v. Hence, this case

25

is further divided into two cases. One case is that G has (k′ : 1)-matching M ′′s.t.

|M ′′| > |M ′|. Then by lemma 4.2, there is a (k′ : 1)-M ′-augmenting path σ in

G. By induction hypothesis, every vertex in V −\{v} either is not M ′-free or has

no incident edge. Hence, σ is started from v. By lemma 4.4, dfs can find σ and

consequently matching outputs (M ′\(E(σ) ∩ M ′)) ∪ (E(σ)\M ′)) as a maximum

overlapped matching, where E(σ) represents the set of all edges in σ. The other

case is that G has (k′′ : 1)-matching M ′′ s.t. |M ′′| > |M ′| and k′′ > k′. In this

case, it is sufficient to consider k′′ = k′ + 1 because for k′ + 1, every vertex in

V + is M ′-free. By lemma 4.2, there is a (k′ + 1 : 1)-M ′-augmenting path σ in G.

Similarly to the former case, dfs can find σ and consequently matching outputs a

maximum overlapped matching. 2

Lastly, we present the time complexity of the algorithm.

Theorem 2 The time complexity of the algorithm of message monitor problem

is O(|Γ(Sin)| · |N | · (|N | + |E| + |Γ(Sin)|)).

Proof. The time complexity of determining the mapping deployment is O(|Γ(Sin)|·
|N | · (|N | + |E|)). The time complexity of finding a minimum maximum over-

lapped matching is O(|Γ(Sin)|2 · |N |). Thus, the time complexity of the algorithm

of message monitor problem is O(|Γ(Sin)| · |N | · (|N | + |E| + |Γ(Sin)|)). 2

2.4.3 Relation to the bipartite b-matching

As stated before, (n : 1)-matching is a special case of b-matching. Since b-

matching has been researched widely for a long time, it is valuable to discuss

about relation between the the simplified IDS-PDP and the bipartite b-matching

problem.

• A maximal (n : 1)-matching is considered as a special case of the max-

imum weighted capacitated b-matching. No b-matching algorithm which

are specialized to (n : 1)-matching has been reported as far as we know.

26

More precisely, the optimization criterion which we want to obtain to solve

the simplified IDS-PDP is the “ minimum maximum overlapped” matching.

However, minimum maximum overlapped matching in (n : 1)-matching can-

not be directly defined in b-matching because b-matching has no parameter

corresponding to n.

• The simplified IDS-PDP can be solved by performing binary search based

on a general b-matching algorithm. However, the algorithm proposed in

this paper is more efficient than such a naive search method.

2.5. Probe Number Minimization IDS-PDP

As a problem concerned with IDS partition deployment problem, in this section,

we consider probe number minimization IDS-PDP which minimizes the number of

deployed probes instead of minimizing the maximum number of different messages

monitored by each deployed probe. In the following, we show that the problem

is NP-complete.

2.5.1 Definition of Probe Number Minimization IDS-PDP

A probe cannot be deployed on a certain kind of hosts such as a router. To take

such a situation into account, we let NΦ ⊆ N denote the set of all hosts on which

a probe can be deployed.

Definition 6 The probe number minimization IDS partition deployment prob-

lem.

input : Sin, T , r1, r2, NΦ

output : a, Sout , where

• L(Sin) = L(Sout),

• minimize n (n = |Sout|),

• a(i) ∈ NΦ holds for every i(1 ≤ i ≤ n),

27

• if α ∈ Γ(Sout
i), then a(i) exists on every path of T from r1(α) to r2(α).

Figure 2.8. An example of probe number minimization IDS-PDP

An example of the probe number minimization IDS-PDP is shown in Fig. 2.8.

It is a solution of the probe number minimization IDS-PDP that a probe is

deployed in n2 and monitors all of the messages.

2.5.2 Complexity of Probe Number Minimization IDS-PDP

The probe number minimization IDS partition deployment problem is an opti-

mization problem. Here, we consider it as a decision problem for a given probe

number. This problem is shown NP-complete.

Theorem 3 The probe number minimization IDS partition deployment problem

is NP-complete.

Proof. We denote the probe number minimization IDS partition deployment

problem by Lpids, and the vertex cover problem [16] by Lvc.

In the following, we first show that Lpids is in NP. Let the network topology

G′ = (N,E ′), the sources and the destinations (r1(1), r2(1)), ..., (r1(m), r2(m)) of

messages, and a positive integer k be given as an instance of Lpids.

• Nondeterministically guess a deployment of k probes on the hosts. The

computation time is O(k · log(|NΦ|))

28

• Check whether all of the messages are monitored by all probes deployed the

on hosts. The computation time is O(m · k · log(|NΦ|))

Now, we show how to reduce Lvc to Lpids in polynomial time. Let G = (V,E)

and k be an instance of Lvc, where V = {v1, v2, ...vn} and E = {e1, e2, ..., em}.
Then we construct from G an instance of Lpids as follows.

• G′ = (N, E ′), where

N = V ∪ {v′}(v′ /∈ V) and E ′ = {(vi, v
′) | vi ∈ V }.

• NΦ = V .

• Γ(S) = E.

• r1 = 〈(vi, vj) 7→ vi, (vi, vj) ∈ E〉.

• r2 = 〈(vi, vj) 7→ vj, (vi, vj) ∈ E〉.

• Sin = ({q0, q1, ..., qm}, {e1, e2, ..., em}, δ, q0, {qm}), where

q0, q1, ... and qm are states, q0 is an initial state, qm is a final state, δ is a

transition function.

An example of the conversion is shown in Fig. 2.9. We first add a new node v′,

and put the edges between v′ and all of the other nodes. Let the source and the

destination of each message corresponds to each edge in G. Then we construct

an instance of Lpids, where the new node is a host on which a probe can not be

deployed. This conversion can be performed in polynomial time in the size of G

and k.

We show that the above construction correctly reduces Lvc to Lpids. That is,

G has a vertex cover of size k if and only if G′ has a deployment of k probes.

(If) Suppose G′ has a deployment of k probes. Let N ′ be the set of probes

deployed on the hosts, note that v′ /∈ N ′ since NΦ = V . Since the source and

the destination of each message corresponds to each edge in G and every message

is monitored by a probe in N ′, every edge in G is covered by N ′.

29

Figure 2.9. Reduction from Lvc to Lpids

(Only if) Suppose G has a vertex cover V ′ of size k. Let e = (vi, vj) ∈ Γ(S) =

E be an arbitrary message. By the definition of r1 and r2, the unique path from

r1(e)(= vi) to r2(e)(= vj) is vi, v
′, vj. Since V ′ is a vertex cover, either vi ∈ V ′ or

vj ∈ V ′ holds. Thus, V ′ is a correct deployment of k probes for the constructed

instance.

2

Table 2.1. Time complexity
IDS partition deployment problem

Type of IDS Generalized Simplified probe Number
Single in O(n2)† NP-complete
State Transition solvable in O(n2) † NP-complete

†n = |N |+ |E| (T = (N,E) is an input graph). The size of the
attack scenarios is considered as constant.

2.6. Conclusion of chapter 2

We have defined a generalized IDS partition deployment problem which com-

putes the deployment of IDSs, the set of messages which should been monitored

by each IDS and a partition of an attack scenario. Furthermore, we simplified

this problem and designed an efficient algorithm which computes the optimal

30

solution of the problem. The complexities of the related problems are summa-

rized in table 2.1. For any state transition IDS, the IDS partition deployment

problem (simplified) can be solvable in P , and the probe number minimization

IDS partition deployment problem is NP-complete, while nontrivial upperbound

and lowerbound of the complexity of the generalized IDS-PDP are unknown at

present.

31

Chapter 3

HBAC: A Model for

History-based Access Control

and Its Model Checking

3.1. Introduction

In this chapter, we propose a formal model for Abadi-Fournet style access control,

called HBAC program (program with History-Based Access Control). An HBAC

program is a directed graph where a node represents a program point and an

edge represents a control flow. Next we show that the expressive power of HBAC

programs is stronger than that of programs with stack inspection. Also we define

the security verification problem for HBAC programs and show that the prob-

lem is solvable in deterministic polynomial time under a reasonable assumption

while the problem is EXPTIME-complete in general. Finally, we propose a few

optimization techniques used in verification of HBAC programs. Experimental

results show that practical HBAC programs can be verified within reasonable

time and space.

Related works. There have been studies on verification of history-based access

control [3, 4, 5, 11, 18]. The program model proposed in [4, 5] is a call-by-value λ-

32

calculus augmented with local policy defined as a regular language of events. For

each function (method) call, a new (but statically bound to the function) local

policy is imposed in a nested way. They propose a model checking algorithm

for a given program and a global security property by reducing the problem to

the traditional model checking problem for basic process algebra by removing

duplicated local policies caused by recursive calls. The access control mechanism

of [4, 5] is an extension of [36, 15] and differs from [1] and ours , i.e., their

model do not have explicit dynamic check on permissions. Another access control

mechanism based on [36, 15], which simulates a security automaton by inserting

dynamic access control codes into a target program, was proposed in [11]. In their

later work [18], a type system is used to guarantee that the rewritten program

adheres to security policies. Also their model differs from [1] and ours, and they

do not deal with model checking problems. The previous work most related to

ours is [3] where a program model with explicit dynamic check on permissions

and grant/accept constructs is defined. They propose a type and effect system of

Volpano-Simth-style [39] and show that a type safe program has a noninterference

property. This property is important because one of the main purposes of access

control is to avoid leaking undesirable information flow. However, they also do not

deal with model checking problems. Moreover, unlike our study, all of these works

do not discuss computational complexity needed for verification or optimization

issues that are important for implementing a useful verification tool.

3.2. HBAC Program

We will define the syntax and operational semantics of an HBAC program, which

resembles but more general than the model in [22, 30]. An HBAC program is

just a control flow graph with nodes of three types, call nodes, return nodes and

check nodes. The graph is decomposed into methods and each method is given

a subset of permissions for access control, called the static permissions of the

method. A (local) state of a program is a pair 〈n,C〉 of the current program

point n and a subset of permissions C called the current permissions. A (global)

33

configuration is represented by a stack, which is a finite sequence of local states.

A call node has two parameters, grant permissions and accept permissions. When

a method is called from a configuration 〈n1, C1〉 : . . . : 〈nk, Ck〉 with the current

(call) node n1 with grant permissions PG and accept permissions PA, a new local

state 〈m,C ′〉 is pushed onto the stack where m is the entry point of the callee

method and C ′ is the updated current permission obtained by intersecting C1

with the static permission of the callee method. Furthermore, PG is temporarily

added to the current permissions during the execution of the callee method and

PA is added to the current permissions when returned from the callee method.

A check node tests whether the current permissions include a specified subset

of permissions, and if not, the execution is aborted. For simplicity, we do not

include an exception handling mechanism in our HBAC model although it is not

difficult to incorporate a throw-catch-style exception handling into the model and

extend the model checking algorithm presented in Section 4 as was done in our

previous work [27].

Formally, an HBAC program is a directed graph given by a 7-tuple π =

(NO ,TG ,CG , IS , IT ,PRM , SP) where NO is a finite set of nodes, TG ⊆ NO ×
NO is a set of transfer edges, CG ⊆ NO × NO is a set of call edges, IS :

NO → {call [PG, PA] | PG, PA ⊆ PRM } ∪ {check [P] | P ⊆ PRM } ∪ {return} is

the labeling function for nodes, IT ∈ NO is the initial node, which represents

the entry point of the entire program, PRM is a finite set of permissions, and

SP : NO → 2PRM is the assignment of permissions to nodes. Each node n ∈ NO

corresponds to a program point and NO is divided into three subsets by IS as

follows:

• IS (n) = call [PG, PA] where PG, PA ⊆ PRM . The node n is a call node

that represents a method call. Parameters PG and PA are called grant

permissions and accept permissions, respectively.

• IS (n) = return. The node n is a return node that represents the return

from a callee method.

• IS (n) = check [P] where P ⊆ PRM . The node n is a check node that

34

n0

n1

n4

n5

n3

return

return

call[φ,φ]

call[φ,φ]

check[w]

{r}

{r, w}

{r, w}

naiveunknown file I/O

n2

return

Figure 3.1. An HBAC program

represents a test for the current permissions. (The formal definition of the

current permissions is given later.) If the current permissions include P as a

subset, then the execution continues. Otherwise, the execution is aborted.

For p ∈ PRM , check [{p}] is abbreviated as check [p]. Similar abbreviation

will be applied to call [PG, PA].

A transfer edge (tg) represents a control flow within a method, and a call edge

(cg) connects a method caller and a callee. In a figure, a solid arrow denotes a

cg and a dotted arrow denotes a tg. A node that has an incoming edge without

source node denotes the initial node.

Example 3.2.1 Fig 3.1 is an example of an HBAC program π1 with the initial

node n0. There exists a tg from n0 to n1 (denoted as n0
TG→ n1), which means the

control can move to n1 just after the execution of n0. Likewise, there exists a cg

from n1 to n4 (denoted as n1
CG→ n4). This means that if the control reaches n1,

then the control is further passed to n4 by a method call. If the control reaches

n5, the control returns to n1. 2

For a node n, SP(n) specifies a subset of permissions that are assigned to

n before runtime (static permissions). We assume that every node in the same

method has the same static permissions, i.e.,

n
TG→ n′ ⇒ SP(n) = SP(n′).

35

Also, for every call node n such that IS (n) = call [PG, PA], we require PG ⊆ SP(n)

and PA ⊆ SP(n). In Fig 3.1, a method is represented by the set of nodes sur-

rounded by a rectangle. A set beside the rectangle denotes the static permissions

assigned to the nodes belonging to the method. For example, SP(n0) = SP(n1) =

SP(n2) = {r, w} and SP(n3) = {r}.
The description length of π = (NO ,TG ,CG , IS , IT ,PRM , SP) is defined as

‖π‖ = |NO | · |PRM |+ |TG |+ |CG |. A state of π is a pair 〈n,C〉 of a node n ∈ NO

and a subset of permissions C ⊆ PRM . A configuration of π is a finite sequence

of states, which is also called a stack. The concatenation of state sequences ξ1

and ξ2 is denoted as ξ1 : ξ2. The semantics of an HBAC program is defined by

the transition relation → over the set of configurations, which is the least relation

satisfying the following rules.

IS (n) = call [PG, PA], n
CG→ m

〈n,C〉 : ξ → 〈m, (C ∪ PG) ∩ SP(m)〉 : 〈n,C〉 : ξ
(3.1)

IS (m′) = return, IS (n) = call [PG, PA], n
TG→ n′

〈m′, C ′〉 : 〈n,C〉 : ξ → 〈n′, C ∩ (C ′ ∪ PA)〉 : ξ
(3.2)

IS (n) = check [P], P ⊆ C, n
TG→ n′

〈n,C〉 : ξ → 〈n′, C〉 : ξ
(3.3)

For a configuration 〈n1, C1〉 : . . . : 〈nk, Ck〉, the stack top is 〈n1, C1〉 where n1

and C1 are called the current program point and the current permissions of the

configuration, respectively.

Rule (1) says that if the control is at a call node n where IS (n) = call [PG, PA]

and there exists a cg n
CG→ m, then 〈m, (C ∪ PG) ∩ SP(m)〉 can be pushed onto

the stack. That is, when control reaches the call node n, a method invocation

can occur by passing the control to m and the current permissions become (C ∪
PG) ∩ SP(m). Rule (2) concerns with the return from the method. Assume that

there exists a tg n
TG→ n′. If the current node is a return node m′ in the callee

method, then the next current node can be n′. The current permissions become

C ∩ (C ′ ∪ PA). Note that if there is no cg from the call node n, then the control

cannot proceed beyond n since rule (1) cannot be applied to n. Similarly, if there

36

Table 3.1. Modification of current permissions

method call return

(general case) (C ∪ PG) ∩ SP(m) C ∩ (C ′ ∪ PA)

PG = SP(n) SP(n) ∩ SP(m) C ∩ (C ′ ∪ PA)

PG = ∅ C ∩ SP(m) C ∩ (C ′ ∪ PA)

PA = SP(n) (C ∪ PG) ∩ SP(m) C

PA = ∅ (C ∪ PG) ∩ SP(m) C ∩ C ′

PA = ∅, PG = ∅ C ∩ SP(m) C ∩ C ′(= C ′)

is no tg from the call node n, then the control stops when it reaches a return

node of the callee method. Although a program with such a node is pathological,

for simplicity we do not make any syntactical restriction on cgs and tgs.

We can easily show that C ′ ⊆ C ∪ PG whenever rule (2) can be applied to

a configuration reachable from the initial configuration by induction on the rule

application. The definition of the current permissions for some special cases helps

us understand why they are defined as in rules (1) and (2).

• The case when PA = ∅ and PG = ∅ represents the basic design principle

proposed in [1]: When a method is called, the current permissions C are

intersected with the static permissions SP(m) of the callee method; when

the control returns to the caller method, the current permissions become

C ∩C ′, which is the intersection of the current permissions C ′ of the callee

at the end of the method execution and the current permissions C of the

caller when the method was invoked. Since C ′ ⊆ C∪PG = C or equivalently

C ∩C ′ = C ′, the current permissions C ′ do not change at the return of the

method call.

• In a general case, the parameter PG ⊆ SP(n) has the effect of adding the

permissions in PG to the current permissions before taking the intersection

with SP(m) at the method call. Especially, if PG = SP(n) then the current

permissions simply become the intersection of the static permissions of the

37

caller and the callee, forgetting the execution history. In anyway, the effect

of adding PG to C is canceled since the current permission is intersected

with C when returned.

• The effect of the execution of the callee method is partially canceled by

adding the permissions in PA ⊆ SP(n) to C ′ before taking the intersection

with C when returned. Especially, if PA = SP(n) then the current permis-

sions become C when returned since C ′ ⊆ C ⊆ SP(n). This means that

the effect of the execution of the called method is totally canceled as in the

case of stack inspection.

• A call node with PA = ∅ corresponds to a grant statement in [1].

• A call node with PG = ∅ corresponds to an accept statement in [1].

Finally, rule (3) says that if the control reaches a check node n with IS (n) =

check [P], there exists a tg n
TG→ n′ and the current permissions include P , then

the control can be passed to n′.

The trace set of π is defined as

[[π]] = {n0n1 . . . nk | n0 = IT , C0 = SP(IT), ξ0 = ε,

∃C1, . . . , Ck ⊆ PRM ,

∃ξ1, . . . , ξk ∈ (NO×2PRM)∗,

〈ni, Ci〉 : ξi → 〈ni+1, Ci+1〉 : ξi+1 for 0 ≤ i < k}

where ε denotes the empty sequence.

For a set S of sequences, let prefix(S) denote the set of all nonempty prefixes

of sequences in S.

Example 3.2.2 We return to HBAC program π1 in Fig 3.1. When the method

‘unknown’ is called by n0, the current permissions become {r, w} ∩ SP(n3) =

{r, w} ∩ {r} = {r} since IS (n0) = call [∅, ∅] (see Table 3.1). The test at node

n4 fails since IS (n4) = check [w] and the current permission {r} does not include

38

{w}. Summarizing,

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r}〉

→ 〈n4, {r}〉 : 〈n1, {r}〉 6→ 〈n5, {r}〉 : 〈n1, {r}〉.

[[π1]] = {n0, n0n3, n0n3n1, n0n3n1n4}

= prefix({n0n3n1n4}).

Note that since there exists no node that has multiple outgoing tg or multiple

outgoing cg (i.e., there is no nondeterminism) and there exists no cycle in π1, the

trace set can be represented as the prefixes of a single sequence n0n3n1n4.

Consider the situation that method ‘naive,’ calls ‘unknown’ and the latter

method secretly change the content of a local variable of ‘naive’, say fname, to

the name of a very critical file. Then, ‘naive’ requests ‘file I/O’ to delete fname

without knowing the content of fname has been changed. If ‘file I/O’ performs

check [w] before deleting the file, the unintended file deletion can be avoided since

the current permission does not include write permission {w} as the effect of

executing ‘unknown’. As explained in the next section, however, this kind of

access control cannot be realized by stack inspection.

Let π2 be the HBAC program that is the same as π1 except that IS (n0) =

call [∅, {r, w}]. Since the accept permissions of n0 are {r, w},

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r, w}〉

→ 〈n4, {r, w}〉 : 〈n1, {r, w}〉 → 〈n5, {r, w}〉 : 〈n1, {r, w}〉.

rm Similarly, let π3 be the HBAC program that is the same as π1 except that

IS (n1) = call [{r, w}, ∅]. Since the grant permissions of n1 are {r, w},

〈n0, {r, w}〉 → 〈n3, {r}〉 : 〈n0, {r, w}〉 → 〈n1, {r}〉

→ 〈n4, {r, w}〉 : 〈n1, {r}〉 → 〈n5, {r, w}〉 : 〈n1, {r}〉.

2

39

n4

n0

n1

n5

n6

n3

return return

call[φ,φ]

call[φ,φ]

check[pA] check[pB]

{pA}

{pA, pB}

{pB}

serviceA serviceBclient

n2

return

Figure 3.2. Chinese wall policy

Example 3.2.3 Chinese wall policy [6] is a policy such that a user has access

permissions to any resources, but once the user has accessed one of the resources,

(s)he loses access permissions to the resources belonging to the competing parties.

A simplified Chinese wall policy can be represented by program π4 in Fig 3.2.

If n0 calls ‘serviceA,’ the current permissions lose permission pB. Thus, if n1

calls ‘serviceB’ afterward, the check at n5 fails. The same situation occurs when

‘serviceB’ and ‘serviceA’ are called in this order. In fact,

[[π4]] = prefix(n0n3n4n1(n3n4n2 + n5) + n0n5n6n1(n5n6n2 + n3)),

where the argument of ‘prefix’ is specified by a regular expression and + denotes

the union operator. 2

3.3. Comparison with Stack Inspection

A program with the Java stack inspection (abbreviated as SI program) can be

represented by an 8-tuple π = (NO ,TG ,CG , IS , IT ,PRM , SP ,PRV) where each

component of π is the same as that of an HBAC program except that the label

IS (n) of each call node n is simply call without PG and PA, and a set of privileged

nodes PRV ⊆ NO is specified. The execution of a check node check [P] succeeds

if (a) for every node n on the stack, P ⊆ SP(n), or (b) there exists a node

n0 ∈ PRV on the stack such that P ⊆ SP(n0) and for every later node n in

40

the stack, P ⊆ SP(n). By taking eager evaluation strategy, we can define the

semantics of π by the following rules and rule (3) defined before (see [22, 30] for

details).

IS (n) = call , n
CG→ m, n 6∈ PRV

〈n,C〉 : ξ → 〈m,C ∩ SP(m)〉 : 〈n,C〉 : ξ
(3.4)

IS (n) = call , n
CG→ m, n ∈ PRV

〈n,C〉 : ξ → 〈m, SP(n) ∩ SP(m)〉 : 〈n,C〉 : ξ
(3.5)

IS (m′) = return, IS (n) = call , n
TG→ n′

〈m′, C ′〉 : 〈n,C〉 : ξ → 〈n′, C〉 : ξ
(3.6)

A program without check node is called a basic program. An HBAC (resp. SI)

program π is an HBAC (resp. SI) extension of a basic program π0 if π is obtained

from π0 by the following operations:

• Insert zero or more check nodes of HBAC (resp. SI) program into π0;

• Add grant permissions and/or accept permissions to call nodes (in the case

of HBAC extension); and

• Choose some of the nodes as privileged nodes (in the case of SI extension).

The formal definition of the extension is omitted. Let nc be a homomorphism

over the set of nodes defined by nc(n) = n for a call node and a return node n

and nc(n) = ε for a check node n. Let π1 and π2 be extensions of a basic program

π0. We say that π1 and π2 are trace equivalent if nc([[π1]]) = nc([[π2]]).

Comparing rules (4), (5), (6) with rules (1), (2), we can see that a non-privileged

call node and a privileged node in an SI program can be simulated by call [∅, SP(n)]

and call [SP(n), SP(n)], respectively. This correspondence was informally de-

scribed in [1]. However, the converse does not hold as shown in the next example.

Lemma 5 Chinese wall policy in example 3.2.3 cannot be simulated by SI.

(Proof sketch) Program π4 in example 3.2.3 is an HBAC extension of basic pro-

gram π0 in Fig 3.3. Note that

nc([[π4]]) = prefix(n0n4n1n4n2 + n0n6n1n6n2).

41

n4 n0

n1

return

call

call

{pA}

{pA, pB}

{pB}

n6

return

n2
return

Figure 3.3. A basic program

Assume that there exists an SI extension πSI of π0 such that nc([[πSI]]) = nc([[π4]]).

Because the effect of executing ‘serviceA’ or ‘serviceB’ is canceled when the con-

trol reaches n1 in πSI , nc([[πSI]]) must include a trace n0n4n1n6n2, which is not in

nc([[π4]]). 2

Theorem 4 For every basic program π0 and every SI extension π of π0, there

exists an HBAC extension π′ of π0 that is trace equivalent to π. There exists a

basic program π0 and an HBAC extension π of π0 such that there exists no SI

extension π′ of π0 that is trace equivalent to π. 2

3.4. Model Checking HBAC Program

In this section, we discuss the verification problem (or model checking problem)

defined as follows:

Inputs: An (HBAC) program π = (NO , . . .) and a verification property ψ ⊆
NO∗.

Output: Does every trace in [[π]] satisfy ψ ? (i.e., [[π]] ⊆ ψ ?)

Example 3.4.1 Consider the verification problem for program π4 of Example

3.2.3 and verification property ψ = (Σ − {n4})∗ + (Σ − {n6})∗ where Σ = (n0 +

n1 + · · ·+n6). As explained in Example 3.2.3, nodes n4 and n6 cannot be reached

simultaneously in a single trace, and thus [[π4]] ⊆ ψ holds. 2

42

Let M be any representation of a language such as an automaton and a grammar.

The description length of M is denoted by ‖M‖ and the language expressed by

M is denoted by L(M).

Lemma 6 For an arbitrary HBAC program π, we can construct a context-free

grammar (cfg) G such that L(G) = [[π]] and ‖G‖ = O(‖π‖ · c|PRM |) (c > 1).

(Proof sketch) We define the set of nonterminal symbols of G as (NO × 2PRM)∪
(NO × 2PRM × 2PRM). A nonterminal symbol 〈n,C〉 ∈ NO × 2PRM derives every

trace starting from a node n with current permissions C. A nonterminal symbol

[n,C,C ′] ∈ NO × 2PRM × 2PRM derives every trace starting from a node n with

current permissions C and ending with a return node with current permissions

C ′. In the following, let C, C ′, and C ′′ be arbitrary subsets of PRM . For each

node n, G has the rule 〈n,C〉 → n. For each pair (n,m) of nodes such that

IS (n) = call [PG, PA] and n
CG→ m, G has the rule 〈n,C〉 → n 〈m,P1〉 where

P1 = (C ∪PG)∩SP(m). Moreover, for each node n′ such that n
TG→ n′, G has the

following rules.

〈n,C〉 → n[m,P1, C
′]〈n′, P2〉 (3.7)

[n,C,C ′′] → n[m,P1, C
′][n′, P2, C

′′] (3.8)

P2 = C ∩ (C ′ ∪ PA)

For each pair (n, n′) of nodes such that IS (n) = check [P] and n
TG→ n′, if P ⊆ C,

then G has the following rule.

〈n,C〉 → n〈n′, C〉

[n,C,C ′] → n[n′, C, C ′]

For each return node n, G has the following rules.

[n,C,C] → n

The start symbol of G is 〈IT, SP (IT)〉. 2

43

Theorem 5 Let π be an HBAC program and M be a finite automaton (fa). The

verification problem for π and ψ = L(M) is solvable in deterministic O(‖π‖ ·
c|PRM | · ‖M‖3) time (c > 1).

(Proof sketch) By Lemma 6, we can construct a cfg G such that L(G) = [[π]].

Thus, the verification problem is equivalent to deciding whether L(G)∩L(M) = ∅.
The latter condition can be checked in O(‖G‖ · ‖M‖3) time. 2

Corollary 6 The verification problem for π and ψ = L(M) is solvable in deter-

ministic O(‖π‖2 · ‖M‖3) time if |PRM | = O(log ‖π‖). 2

The assumption that |PRM | = O(log ‖π‖) is realistic since the number of

permissions is usually not so large compared with the program size.

Let EXPTIME denote the class of decision problems solvable in deterministic

O(cp(n)) time for a constant c (> 1) and a polynomial p. The following theorem

states that if the assumption that |PRM | = O(log ‖π‖) does not hold, then the

verification problem is EXPTIME-complete.

Theorem 7 Let π be an HBAC program and M be an fa. The verification prob-

lem for π and ψ = L(M) is EXPTIME-complete.

Proof. By Theorem 5, it suffices to show that the problem is EXPTIME-

hard. It is known that a language L belongs to EXPTIME if and only if L is

recognized by a polynomial space-bounded alternating Turing machine (ATM) [7].

For any given polynomial space-bounded ATM A and any input x of A, we can

transform A and x into an HBAC program πA,x and a verification property ψ

within polynomial time such that [[πA,x]] 6⊆ ψ ⇔ A accepts x.

Below we sketch the transformation. Assume that for any input x whose

length equals n, A uses not more than p(n) space for a polynomial p. Let Γ =

{γ1, . . . , γ|Γ|} be the set of tape symbols of A and γ1 be the blank symbol. Let δ

be the transition function of A.

We define the set PRM of permissions in πA,x as PRM = {γi,j | 1 ≤ i ≤
|Γ|, 1 ≤ j ≤ p(n)}, and let current permissions C of each configuration of πA,x

44

R[k,σ2
i ,q

2
i ,k+∆2

i]R[k,σ1
i ,q

1
i ,k+∆1

i]

check[φ]

check[γi,k]check[γ1,k]

... ...call[φ,SP]

call[φ,SP]

return

check[γ|Γ|,k]

(a) q is a universal state

check[φ]

check[γi,k]check[γ1,k]

... ...call[φ,SP] call[φ,SP]

return

check[γ|Γ|,k]

(b) q is an existential state

return

(c) q is a final state

In this figure, we assume that δ(q,γi) = {(q1
i ,σ

1
i ,∆

1
i), (q

2
i ,σ

2
i ,∆

2
i)}.

SP denotes the static permissions of each call node.

R[k,σ2
i ,q

2
i ,k+∆2

i]R[k,σ1
i ,q

1
i ,k+∆1

i]

Figure 3.4. Method P [q, k]

denote an instantaneous description (ID) (a string contained by the p(n) tape

squares) σ1σ2 . . . σp(n) of A, i.e., γi,j ∈ C ⇔ σj = γi. Program πA,x simulates

a computation of A by altering current permissions according to the transition

function δ of A.

Program πA,x consists of three types of method: P [q, k], R[k, γj, q
′, k′], and I.

P [q, k] (in Fig 3.4) simulates a computation of A from any ID with state q

and head position k. It first examines whether the current contents of the

tape square k equals γi by check [γi,k], and then calls R[k, γj, q
′, k′] for each

(q′, γj, ∆) ∈ δ(q, γi) and k′ = k + ∆. P [q, k] calls all these R[k, γj, q
′, k′] se-

quentially if q is a universal state of A. If q is an existential state of A, P [q, k]

45

call[{γj,k},SP]

return

P[q′,k′]
{γi,l | 1≤i≤|Γ|, 1≤l≤p(n),
 (l=k implies i=j)}

Figure 3.5. Method R[k, γj, q
′, k′]

P[q0,1] call[φ,SP] call[φ,SP]
ns nt

Figure 3.6. Method I

calls any one of these R[k, γj, q
′, k′] and returns. Otherwise, i.e., if q is a final

state of A, P [q, k] calls no R[k, γj, q
′, k′] and simply returns. Every node m of

P [q, k] has all the permissions as the static permissions, i.e., SP(m) = PRM .

Every call node mc in P [q, k] is labeled as IS (mc) = call [∅, SP(mc)].

R[k, γj, q
′, k′] (in Fig 3.5) replaces the contents of tape square k with γj and

calls P [q′, k′] for simulating further moves. Every node m of R[k, γj, q
′, k′] has the

static permissions SP(m) = {γi,l | 1 ≤ i ≤ |Γ|, 1 ≤ l ≤ p(n), (l = k implies i =

j)} and the call node nc in R[k, γj, q
′, k′] that calls P [q′, k′] is labeled as IS (nc) =

call [{γj,k}, SP(nc)]. Thus, when R[k, γj, q
′, k′] is called, every γi,k for 1 ≤ i ≤ |Γ|

and i 6= j is removed from the current permissions, and when R[k, γj, q
′, k′] calls

P [q′, k′], γj,k is added into the current permissions.

By the above construction, P [q, k] returns if and only if the configuration of A

that consists of q, k and the contents of the tape (ID) represented by the current

permissions is a yes-configuration.

Method I (in Fig 3.6) simulates the initial configuration of A. It consists of

two call nodes ns and nt and ns is the initial node of πA,x. Let the input x =

γx1γx2 . . . γxn and q0 be the initial state of A. The nodes in I have the static

permissions SP(ns) = SP(nt) = {γx1,1, γx2,2, . . . , γxn,n, γ1,n+1, γ1,n+2, . . . , γ1,p(n)}.
(Note that γ1 is the blank symbol.) The initial node ns calls P [q0, 1] with the

current permissions SP(ns), and an execution of πA,x reaches the node nt if and

only if P [q0, 1] returns, i.e., A accepts x. We can simply let ψ = (NO − {nt})∗,
and thus L(M) = NO∗ntNO∗.

2

46

3.5. Optimization of Model Checking Algorithm

From the proof of Theorem 2, we obtain the following algorithm for solving the

verification problem.

Algorithm 1. For a given HBAC program π and an fa M such that ψ = L(M),

perform the following three steps in this order.

1. Construct a cfg G such that L(G) = [[π]] based on the proof of Lemma 1.

2. Construct a cfg Ĝ such that L(Ĝ) = L(G) ∩ L(M).

3. Decide whether L(Ĝ) = ∅.

The size of the G constructed in Step 1 is exponential to |PRM |. In most

cases, however, G contains useless rules. In this section, we describe techniques for

avoiding the construction of useless rules so that we can greatly reduce verification

time and space.

3.5.1 Basic Idea

The following is traditional algorithm for eliminating useless rules in a cfg [20].

Nonterminal symbol X is generating if there exists a derivation from X to some

string of terminal symbols. X is reachable if a derivation exists from the start

symbol of G to αXβ for some α and β. A rule r is useless if r contains a

symbol that is not generating or not reachable. The traditional algorithm finds

set V of all the symbols that are generating and reachable and then removes all

rules involving one or more symbols not in V . While this algorithm eliminates

useless rules of a given cfg, we want to avoid constructing such rules in the cfg

construction. From the definition of G in the proof of Lemma 1, we can show the

following lemma:

Lemma 7 Let π be an HBAC program and G be the cfg constructed for π in Step

1 of Algorithm 1. For each n ∈ NO and C,C ′ ⊆ PRM, 〈n,C〉 and [n,C,C ′] are

not reachable if C 6⊆ SP (n), and [n,C,C ′] is not generating if C ′ 6⊆ C.

47

By this Lemma, we can avoid constructing rules involving 〈n,C〉 or [n,C,C ′]

such that C 6⊆ SP (n) or C ′ 6⊆ C. However, the number of remaining rules is still

exponential to |PRM | in most cases, and thus we need further optimization.

3.5.2 Optimization 1: Rules with Reachable Symbols

We can exactly construct the rules involving only reachable symbols through the

following breadth-first search algorithm: Construct every rule whose left-hand

side is the start symbol 〈IT , SP(IT)〉. Then construct every rule whose left-hand

side has appeared in the right-hand side of one of the constructed rules. Repeat

this step until the run out of newly discovered nonterminal symbols.

The algorithm always halts since the number of nonterminal symbols is finite.

Obviously, this algorithm constructs rule r of G if and only if r only contains

reachable symbols. If the following conditions hold for some constant c, then the

number of rules constructed through this algorithm is polynomial to ‖π‖.

1. |SP(n) ∩ SP(m)| < c for each n in the main method (i.e., the method to

which IT belongs) and each m such that n
CG→ m.

2. |PG(n)| < c for each call node n, where PG(n) is the set of the grant

permissions of n.

The HBAC program of the Chinese wall policy in Example 3 satisfies these con-

ditions.

3.5.3 Optimization 2: Precomputing Current Permissions

Every symbol of the form 〈n,C〉 is generating since the rule 〈n,C〉 → n exists;

however, some of the rules constructed through the algorithm in 3.5.2 may contain

reachable but nongenerating symbols of the form [n, C,C ′]. For example, if the

algorithm finds that 〈n,C〉 is reachable for some n with IS (n) = call [PG, PA] and

some C, then it constructs 〈n,C〉 → n [m, P1, C
′]〈n′, P2〉, where P1 = (C ∪ PG) ∩

SP(m) and P2 = C∩(C ′∪PA), for every m and n′ such that n
CG→m and n

TG→n′ and

48

every C ′ ⊆ P1. However, if IS (m) = return, then only [m,P1, P1] is generating

among the 2|P1| symbols of the form [m,P1, C
′]. Hence we want to compute the

set Xm,P1 = {C ′ ⊆ PRM | [m,P1, C
′] is generating} for given m and P1 and

to construct 〈n,C〉 → n [m,P1, C
′]〈n′, P2〉 only for each C ′ ∈ Xm,P1 . From the

definition of the cfg G, Xn,C is the least solution of the following equation:

Xn,C =

{C} if IS (n) = return,

∅ if IS (n) = check [P] and P 6⊆ C,⋃
n′∈TG(n) Xn′,C

if IS (n) = check [P] and P ⊆ C,⋃
m∈CG(n)

⋃
n′∈TG(n)⋃

C′∈Xm,(C∪PG)∩SP(m)
Xn′,C∩(C′∪PA)

if IS (n) = call [PG, PA],

where TG(n) = {n′ | n
TG→ n′} and CG(n) = {n′ | n

CG→ n′}.
If a given HBAC program π is acyclic (as a directed graph with set of edges

CG ∪TG), then we can compute Xn,C for given n and C by regarding the above

equation as a recursive definition of a function of n and C; i.e., we define and

use a procedure for computing Xn,C that answers the value of the right-hand

side of the equation computed through recursive calls. However, if π has a cycle,

then the recursion may not terminate. To avoid this problem, we modify this

procedure as follows: When it is invoked to compute Xn,C for some n and C

during the computation of Xn,C itself, then it temporarily assumes Xn,C = 2C ,

which is the most conservative answer, and continues the computation. This

modified procedure thus answers an over-estimation of Xn,C , and we write this

estimated value as X∗
n,C .

In our implementation, the procedure computing X∗
n,C also constructs rules

consisting of symbols that are reachable from [n,C,C ′] for some C ′ ∈ X∗
n,C and are

generating (or correctly, are the form [m,P, P ′] such that P ′ ∈ X∗
m,P). For some n

with IS (n) = call [PG, PA] and some C, for instance, the procedure constructs

[n,C,C ′′] → n [m,P1, C
′][n′, P2, C

′′], where P1 = (C ∪ PG) ∩ SP(m) and P2 =

C∩ (C ′∪PA), for each m, n′, C ′ and C ′′ such that n
CG→m, n

TG→n′, C ′ ∈ X∗
m,P1

and

49

0

6

1

2

3

4

5

call[∅, ∅]

return

check[p1]

call[p2, ∅]

return

call[∅, ∅]

return{p1, p3, p4}

{p1, p2, p3, p4} {p1, p2, p4}

Figure 3.7. Sample HBAC program.

C ′′ ∈ X∗
n′,P2

. The other rules reachable from [n,C,C ′′] are constructed during the

computation of X∗
m,P1

and X∗
n′,P2

.

3.5.4 Optimization 3: Exact Computation of Current Per-

missions

The exact value of Xn,C can be computed through the following iterative proce-

dure: Consider each Xn,C to be a variable, and let V = {Xn,C | n ∈ NO and

C ⊆ PRM }. Initialize every variable in V to ∅. Compute the value of the right-

hand side of the equation in 3.5.3 for each n and C using the current values of

the variables in V , and then assign it to Xn,C . Repeat this step until the values

of the variables do not change any more. Since the domain of Xn,C is finite and

the right-hand side of the equation is monotonic, i.e., it only consists of the union

operation, this procedure obtains its least fixpoint, which equals the least solution

of the equation. However, managing all the variables in V is too expensive, and

hence we want to avoid the computation for unnecessary variables. Moreover,

when the value of some Xn,C changes, we want to efficiently find Xn′,C′ whose

value should change according to the change of Xn,C .

To satisfy the above requirements, we propose the following algorithm:

1. Construct a directed graph that represents the dependency among a subset

of variables in V , through depth-first search starting from a variable that we

want to compute. The graph resembles the inputted HBAC program except

50

X1,p1p3p4

X2,p1p3p4

X3,p1p3p4

X4,p1p2p4 X2,p1p2p4

X1,p1p2p4

X3,p1p2p4

Figure 3.8. Initial dependency graph for X1,{p1,p3,p4}.

X1,p1p3p4

X2,p1p3p4

X3,p1p3p4

X4,p1p2p4 X2,p1p2p4

X1,p1p2p4

X3,p1p2p4X5,p1p2p4

X3,p1p4

Figure 3.9. Final dependency graph for X1,{p1,p3,p4}.

that each node is augmented by current permissions. In this step, we ignore

tgs from call nodes because we do not know the current permissions at the

return from a callee method. Consider the HBAC program in Fig 3.7 for

example. To construct rules reachable from the start symbol 〈0, {p1p3, p4}〉,
we have to obtain the value of X1,{p1,p3,p4}, and we therefore construct the

graph shown in Fig 3.8 through depth-first search starting from X1,{p1,p3,p4},

ignoring tgs from call nodes. The initial value of each Xn,C is {C} if IS (n) =

return and is ∅ otherwise.

2. Propagate the values of return nodes to other nodes as follows:

2-1) Let L be a list of edges and initialize it to the list consisting of every

edge entering a return node.

2-2) Extract one edge e from L. If e is a tg from Xn,C to Xn′,C′ , then add

the value of Xn′,C′ to Xn,C . Moreover, if the value of Xn,C changes

as a result, then add every edge entering Xn,C to L. If e is a cg

from Xn,C to Xm,C′′ , then expand the graph by adding a tg from Xn,C

to Xn′,C∩(C′∪PA), where PA is the accept permissions of n, for each n′

51

such that n
TG→n′ and each C ′ ∈ Xm,C′′ . Moreover, starting from Xn′,C∩(C′∪PA),

expand the graph in the same way as Step 1 if Xn′,C∩(C′∪PA) has never

been in the graph. Whenever a new edge entering either an already

existing node or a return node is added to the graph, add the edge

to L.

2-3) Repeat Step 2-2 until L becomes empty.

For the above example, we finally obtain the graph in Fig 3.9 and the result

that X1,{p1,p3,p4} = {{p1, p4}, {p1, p3, p4}} through this algorithm, while the algo-

rithm in 3.5.3 answers X∗
1,{p1,p3,p4} = 2{p1,p4} ∪ {{p1, p3, p4}} since X∗

4,{p1,p2,p4} =

2{p1,p2,p4}.

3.6. Experiments

To examine the efficiency of the optimization described in the previous section

to practical HBAC programs, we implemented a verification tool and measured

verification time on the following two examples.

• Chinese wall policy

We extend the program π4 in Example 3 to a program πc(k) with k+1 meth-

ods {client, service1, . . . , servicek} by replacing serviceA and serviceB with

k copies of serviceA. The set of static permissions of client is {p1, p2, . . . , pk}
and the one of servicei (1 ≤ i ≤ k) is {pi}. We specify a verification prop-

erty ψ for πc(k) as

(N1 ∪ Nc)
∗ + (N2 ∪ Nc)

∗ + · · · + (Nk ∪ Nc)
∗

where Nc is the set of the nodes of method client and Ni is the one of

servicei. An HBAC program π satisfies ψ if and only if there is no trace of

π containing nodes of two or more distinct service methods.

• On-line banking system

As mentioned in Section 3, we can convert every SI program into an equiva-

lent HBAC program. We define πo(k) as an HBAC program that is obtained

52

n1: call[φ ,{d,r,w,...,dk,rk,wk}]

n2: return

n3: call[φ,{d1,...,dn}]

n4: call[φ,{d1,...,dn}]

n5: return

n6: call[φ,φ]

n7: call[φ,φ]

n8: return

n9: check[{d1}]

n10: call[{d1,r1,w1},{d1,r1,w1}]

n11: call[{d1,r1,w1},{d1,r1,w1}]

n12: return

n13: check[{r1}]

n14: return

n15: check[{w1}]

n16: return

System
{d1,r1,w1,...,dk,rk,wk}

spender
{d,...,dn}

clyde

φ

debit1

{d1,r1,w1}

read1 {d1,r1,w1} write1 {d1,r1,w1}

 check[{dk}]

 call[{dk,rk,wk},{dk,rk,wk}]

 call[{dk,rk,wk},{dk,rk,wk}]

 return

 check[{rk}]

return

check[{wk}]

return

debitk

{dk,rk,wk}

readk {dk,rk,wk} writek {dk,rk,wk}

Figure 3.10. On-line banking system

from a sample SI program in [30], which models a part of an integrated on-

line banking system with k banks (Fig 3.10). Each bank serves its clients

with a method for withdrawing money. Method spender is an agent of a re-

liable user that has static permissions {d1, . . . , dk}, and clyde is an agent of

an unreliable user without any permission. They can access method debiti

(1 ≤ i ≤ k) that is a service provider of the i-th bank. Each debiti checks

whether a user has permission di, and performs privileged calls on readi

and writei. A verification property ψ is given as the same as in [30]. That

is, ψ = Nclyde
∗
NclydeNrw

∗
, where Nclyde is the set of nodes in method clyde

and Nrw is the union of the sets of nodes of every readi and every writei.

An HBAC program π satisfies ψ if and only if the control never reaches

readi or writei after it once reaches a node in clyde.

Table 3.2 summarizes the results of the experiments. G is the cfg generated in

Step 1 of Algorithm 1. M is a regular grammar such that ψ = L(M). Fig 3.11

53

Table 3.2. Verification profiles of sample programs

πc(k) πo(k)

k 5 10 20 40 60 80 5 10 15 20

the number of permissions 5 10 20 40 60 80 15 30 45 60

the number base † 1613

of the rules 1‡ 128 353 1103 3803 8103 1870

of G 1+2§ 81 211 621 2041 4261 7281 184 1316 33200

1+2+3 ¶ 81 211 621 2041 4261 7281 142 277 412 547

‖M‖ 124 389 1369 5129 11289 19849 212 392 572 752

computation base 0.047

time ‖ (sec) 1 0.000 0.016 0.187 2.83 16.9 0.031

1+2 0.000 0.005 0.136 2.72 19.3 63.2 0.005 0.021 1.365

1+2+3 0.005 0.016 0.146 2.72 16.5 64.1 0.000 0.000 0.011 0.010

verification result true true true true true true true true true true

†base is the algorithm 1 modified based on lemma 2 (section 5.1).
‡optimization 1 described in section 5.2.
§optimization 1 and 2 described in section 5.3.
¶optimization 1,2 and 3 described in section 5.4.
‖Java VM build 1.5 06,von Windows XP Pentium4, 2GHz, 1GB RAM.

shows the computation time needed to verify πc(k) and πo(k). Without the

optimization, we could not verify πo(k) for any k ≥ 1 and πc(k) for k ≥ 10,

because the number of the rules of G was exponential to k and the amount

of memory was not sufficient to store G. With the full optimization, both the

number of the rules of G and the computation time were reduced to polynomial

to k for πc(k) and πo(k). Especially, the computation time for πo(k) was linear

to k. As in [30], we estimate that the number of permissions used in an ordinary

network application is at most several tens, and the results suggest that the

proposed verification method is feasible for practical programs.

54

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60 70 80

co
m

pu
ta

tio
n

tim
e

(s
ec

)

|PRM|

Chinese wall policy

optimization 1
optimization 1+2

optimization 1+2+3

 0

 1

 2

 3

 0 6 12 18 24 30 36 42 48 54 60

co
m

pu
ta

tio
n

tim
e

(s
ec

)

|PRM|

Online banking system

optimization 1
optimization 1+2

optimization 1+2+3

Figure 3.11. Verification time for πc(k) and πo(k)

3.7. Conclusions of chapter 3

In this chapter, we presented a new model for dynamic access control based

on execution history, called HBAC programs. The expressive power of HBAC

programs was examined and the verification problem for HBAC programs was

shown to be solvable. Although the complexity of the problem is EXPTIME-

complete in general, our verification tool could verify sample programs within a

reasonable time.

Our program model has close relation to a class of infinite state systems

called pushdown systems (abbreviated as PDS). Indeed, behavior of an HBAC

program can be modeled by a PDS with an exponential number of stack symbols.

Decidability and complexity of LTL and CTL∗ model checking [8] for PDS are

extensively studied in [12, 13]. Verification results conducted on a model checker

for PDS is reported in [14]. Although the verification problem and the model

checking algorithm in this chapter are based on finite traces, we can extend the

algorithm to infinite traces (and thus LTL) using ω-context-free grammars [9],

and the time complexity of the algorithm is slightly better than the one needed

when we apply the algorithm in [12] to a PDS that models a given HBAC pro-

gram. Namely, the former is proportional to |QM |3 where |QM | is the number

of the states of a Büchi automaton M representing the negation of a verification

property, while the latter is proportional to |QM |2|∆M | where |∆M | is the number

of the transitions of M . Note that the optimization described in section 5 can be

55

applied not only when using our algorithm but also when we use a model checker

for PDS to verify an HBAC program.

56

Chapter 4

Conclusion

In this thesis, we formally defined two problems of security system, one is IDS par-

tition deployment problem, the other is security verification problem of HBAC,

and describe the algorithms to solve them. then analyse the computational com-

plexity of these algorithms.

In chapter 2, We have defined a generalized IDS partition deployment prob-

lem which computes the deployment of IDSs, the set of messages which should

been monitored by each IDS and a partition of an attack scenario. Furthermore,

we simplified this problem and designed an efficient algorithm which computes

the optimal solution of the problem. The complexities of the related problems

are summarized in table 2.1. For any state transition IDS, the IDS partition

deployment problem (simplified) can be solvable in P , and the probe number

minimization IDS partition deployment problem is NP-complete, while nontriv-

ial upperbound and lowerbound of the complexity of the generalized IDS-PDP

are unknown at present. As future works, we will design an algorithm which

calculates the optimal solution, or analyze the lowerbound of the complexity of

the generalized IDS partition deployment problem. Moreover, we will consider

applying IDS partition deployment problems to a larger class of IDS(e.g., [26],

[19]).

In chapter 3, we presented a new model for dynamic access control based

on execution history, called HBAC programs. The expressive power of HBAC

57

programs was examined and the verification problem for HBAC programs was

shown to be solvable. Although the complexity of the problem is EXPTIME-

complete in general, our verification tool could verify sample programs within a

reasonable time.

Our program model has close relation to a class of infinite state systems

called pushdown systems (abbreviated as PDS). Indeed, behavior of an HBAC

program can be modeled by a PDS with an exponential number of stack symbols.

Decidability and complexity of LTL and CTL∗ model checking [8] for PDS are

extensively studied in [12, 13]. Verification results conducted on a model checker

for PDS is reported in [14]. Although the verification problem and the model

checking algorithm in this paper are based on finite traces, we can extend the

algorithm to infinite traces (and thus LTL) using ω-context-free grammars [9],

and the time complexity of the algorithm is slightly better than the one needed

when we apply the algorithm in [12] to a PDS that models a given HBAC pro-

gram. Namely, the former is proportional to |QM |3 where |QM | is the number

of the states of a Büchi automaton M representing the negation of a verification

property, while the latter is proportional to |QM |2|∆M | where |∆M | is the number

of the transitions of M . Note that the optimization described in section 5 can

be applied not only when using our algorithm but also when we use a model

checker for PDS to verify an HBAC program. Comparing the expressive power

of various subclasses of security automata [15, 36] with that of HBAC programs

is interesting future work. At present we have the following conjecture.

Conjecture 8 The expressive power of HBAC programs is strictly greater than

finite state security automata.

A fomal proof of Conjecture 8 is future work.

58

References

[1] M. Abadi and C. Fournet, “Access control based on execution history,” Net-

work & Distributed System Security Symposium., pp.107–121, 2003.

[2] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel and E. Stoner,

“State of the practice of intrusion detection technologies,” Technical Report,

Carnige Mellon University, CMU/SEI-99-TR-028, ESC-99-028, 2000.

[3] A. Banerjee and D. A. Naumann, “History-based access control and secure

information flow,” CASSIS04, LNCS 3362, pp.27–48, 2004.

[4] M. Bartoletti, P. Degano and G. L. Ferrari, “History-based access control

with local policies,” 8th FOSSACS, LNCS 3441, pp.316–332, 2005.

[5] M. Bartoletti, P. Degano and G. L. Ferrari, “Enforcing secure service com-

position,” IEEE 18th CSFW, pp.211-223, 2005.

[6] D. F. C. Brewer and M. J. Nash, “The Chinese wall security policy,” IEEE

Security & Privacy, pp.206–214, 1989.

[7] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer, “Alternation,” Journal

of the ACM, 28, pp.114–133, 1981.

[8] E. M. Clarke, Jr., O. Grumberg and D. Peled, Model Checking, MIT Press,

2000.

[9] R. S. Cohen and A. Y. Gold, “Theory of ω-languages. I: Characterizations

of ω-context-free languages,” Journal. of Computer & System Science, 15,

pp.169–184, 1977.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, MIT Press, 2003.

[11] Ú. Erlingsson and F. B. Schneider, “IRM Enforcement of Java Stack Inspec-

tion,” IEEE Security & Privacy, pp.246–255, 2000.

59

[12] J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon, “Efficient algorithms

for model-checking pushdown systems,” CAV2000, LNCS 1855, pp.232–247,

2000.

[13] J. Esparza, A. Kučera and S. Schwoon, “Model-checking LTL with regular

variations for pushdown systems,” TACS01, LNCS 2215, pp.316–339, 2001.

[14] J. Esparza and S. Schwoon, “A BDD-based model checker for recursive pro-

grams”, CAV2001, LNCS 2102, pp.324–336, 2001.

[15] P. W. Fong, “Access control by tracking shallow execution history,” IEEE

Security & Privacy, pp.43–55, 2004.

[16] M. R. Garey and D. S. Johnson, Computers and intractability: A Guide to

the Theory of NP-Completeness, Springer, 1979.

[17] L. Gong, M. Mueller, H. Prafullchandra and R. Schemers, “Going beyond

the sandbox: An overview of the new security architecture in the JavaTM

development kit 1.2,” USENIX Symp. on Internet Technologies and Systems,

pp.103–112, 1997.

[18] K. W. Hamlen, G. Morrisett and F. B. Schneider, “Certified In-lined refer-

ence monitoring on .NET,” Cornell University Computing and Information

Science Technical Report, TR2005-2003, 2005.

[19] Y. Ho, D. Frinck, D. Tobin and Jr, Planning, “Petri nets and intrusion

detection,” 1998.

http//csrc.nist.gov/nissc/1998/proceedings/paperF5.pdf.

[20] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation, Addison Wesley, 2001.

[21] K. Ilgun, R. A. Kemmerer and P. A. Porras, “State transition analysis:

a rule-based intrusion detection system,” IEEE Transactions on Software

Engineering, 21(3), pp.181–199, 1995.

60

[22] T. Jensen, D. Le Métayer and T. Thorn, “Verification of control flow based

security properties,” IEEE Security & Privacy, pp.89–103, 1999.

[23] S. Jha, O. Sheyner and J. Wing, “Two formal analyses of attack graphs,”

IEEE Symposium on Security and Privacy, pp.49–63, 2002.

[24] S. Kiyamura, Y. Takata and H. Seki, “A method of decomposing a labeled

transition system into parallel processes,” IPSJ Journal, 42(12), pp.2992–

3003, 2001 (in Japanese).

[25] S. Kiyamura, Y. Takata and H. Seki, “Process decomposition via synchro-

nization events and its application to counter-process decompostion,” Proc.

of the 5th International Conference on Parallel Processing and Applied Math-

ematics (PPAM 2003), LNCS 3019, pp.298–305.

[26] S. Kumar and E. H. Spafford, “An application of pattern matching in intru-

sion detection,” Technical Report CSD-TR-94-013, Department of Computer

Science, 1994.

[27] S. Kuninobu, Y. Takata, D. Taguchi, M. Nakae and H. Seki, “A specification

language for distributed policy control,” 4th ICICS, LNCS 2513, pp.386-398,

2002.

[28] R. Milner, Communication and Concurrency, Prentice Hall International

Series in Computer Science, 1989.

[29] B. Mukherjee, L. T. Heberlein and K. N. Levitt, “Network intrusion detec-

tion,” IEEE Network, pp.26–41, 1994.

[30] N. Nitta, Y. Takata and H. Seki, “An efficient security verification method

for programs with stack inspection,” 8th ACM Computer & Communications

Security, pp.68–77, 2001.

[31] J. Pieprzyk, T. Hardjono and J. Seberry, Fundamentals of Computer Secu-

rity, pp.459–497, Springer, 2003.

61

[32] P. A. Porras and P. G. Neumann, “EMERALD: event monitoring enabling

responses to anomalous live disturbances,” In 1997 National Information

Systems Security Conference, 1997.

[33] R. W. Ritchey and P. Ammann, “Using Model checking to analyze net-

work vulnerabilities,” IEEE Symposium on Security and Privacy, pp.156–

165, 2000.

[34] H. A. B. Saip and C. L. Lucchesi, “Matching algorithms for bipartite graphs,”

Relatorio Tecnico DCC-03, 1993.

http:citeseer.nj.nec.com/baiersaip93matching.html

[35] A. Schaad, J. Moffett and J. Jacob, “The role-based access control system of

a European Bank: A case study and discussion,” 6th ACM Symp. on Access

Control Models and Technologies, pp.3–9, 2001.

[36] F. B. Schneider, “Enforceable security policies,” ACM Transactions. on In-

formation & System Security, 3(1), pp.30–50, 2000.

[37] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, pp.259–

375, Spinger, 2003.

[38] G. Vigna and R. A. Kemmerer, “NetSTAT: a network-based intrusion de-

tection system,” Journal of Computer Security, 7(1), IOS Press, pp.37–71,

1999.

[39] D. Volpano and G. Smith, “A type-based approach to program security,”

TAPSOFT’97, LNCS 1214, pp.607–621, 1997.

62

