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Shiying Li

Abstract

Reflection properties of an object, such as color and gloss, are essential surface

characteristics for distinguishing one object from another. Important subjects in

computer graphics and vision are how to acquire intrinsic information about colors

and gloss of a real object without the influence of the measurement environment,

and how to estimate accurate reflectance parameters, so as to reproduce reflection

properties of the object in applications such as preserving cultural heritage in

a digital museum, exhibiting commercial goods for online shops, and creating

augmented environments with imaginary and real objects for entertainment.

Estimation of reflectance parameters is dependent on the quality of input

images captured by a commercial imaging detector. However, most imaging

detectors are based on red, green, and blue (RGB) trichromatic theory. RGB

images may be inadequate representations of the intrinsic spectral distribution of

reflected light at the surface of an object, because of effects such as metamerism.

Another problem is that imaging detectors have a limited dynamic range, as a

result of which an obtained image is often too dark in some areas and perhaps

saturated in others. In either of such cases, information about colors and texture

may be measured inaccurately, especially in glossy areas where the intensity of

specular reflection is beyond the limited dynamic range of the detectors.

To solve these two problems, and to estimate diffuse and specular reflectance

parameters accurately, two approaches are developed in the present work. First,

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
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2007.
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a new measurement system has been constructed to capture spectral images of

an object as input images, instead of RGB color images, using an imaging spec-

trograph, which is equipped with a monochrome charge coupled device (CCD)

camera, and a light source, which is rotated around the object between −90o

and 90o. After removing the influence of spectral power distribution of the light

source and properties of the CCD camera, reflection values are separated into

diffuse and specular reflection components at each wavelength for each surface

point using spectral images, and diffuse reflectance parameters are estimated at

each wavelength along with the separation.

Second, two methods have been developed to estimate specular reflectance pa-

rameters for gloss intensity and for surface roughness of an object from saturated

specular reflection components, one by assuming Fresnel reflectance as a constant

value, the other by estimating Fresnel reflectance. The equation of the Torrance-

Sparrow reflection model is transformed logarithmically to a linear form, and the

least squares method is then applied to the specular reflection components that

are lower than a threshold.

Experiments were conducted using synthetic reflection values, with or with-

out noise, and using measured spectral images of objects with different reflection

properties at their surfaces. The experimental results have demonstrated that

by applying these methods, diffuse reflectance parameters for color can be es-

timated accurately at each wavelength, and specular reflectance parameters for

gloss intensity and for surface roughness can be estimated efficiently from either

unsaturated or saturated specular reflection components, requiring neither color

segmentation nor synthesis of high dynamic range images.

Keywords:

Reflectance parameters, Specular reflection, Diffuse reflection, Spectral images,

Color, Gloss
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Chapter 1

Introduction

1.1. Background

Throughout the world, there are enormous numbers of cultural heritage artifacts

from previous generations, which are irreplaceable assets for all humankind. Some

of the materials of these artifacts are fragile, such as glass and ceramics; some

are perishable and combustible, such as wood and paper; and all are susceptible

to wars, earthquakes, floods, or simply the passage of time. Therefore, it is

a significant challenge for present and future generations to record the surface

characteristics, as well as shapes, of cultural heritage artifacts in digital form, so

that they can be preserved semipermanently and made available via the Internet

and multimedia technology for both normal and academic applications.

In addition to virtual museums and art galleries, online shopping (also known

as electronic commerce, internet shopping, and virtual shopping) has become

commonplace in people’s everyday lives since the late 1990s. Customers can

browse products, e.g., ceramic goods and clothes, on the website of an online store,

pick out their favorite items and check them out as they do in a physical store,

according to the appearance of the products and descriptive information. On the

other hand, in games and films, many scenes are augmented with imaginary and

real objects for highly realistic sensation and at low production cost.

Realistically modeling and rendering the surface characteristics of objects is

one of the fundamental aims in computer graphics and computer vision (CG&CV).

As a result of remarkable developments in graphical hardware, large-capacity
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hard disks, memory devices and networks for computing, storing and transfer-

ring heavy image data, it is possible to closely reproduce the shapes and surface

characteristics of real objects on a computer, using synthetic images or images

of real objects. This technology is capable of having the rapid spread of various

applications, such as digital preservation, online exhibition, virtual reality and

augmented reality (VR&AR), and object recognition.

1.2. Reflection Properties

Physics of Reflection Properties Surface characteristics of various

materials, which include reflection properties, transparency and texture, are es-

sential to distinguish one object from another, and are observable mainly because

of interactions between material and illumination. When light strikes the surface

of an object, some of it is reflected and the remainder penetrates into the sub-

surface. The latter may then be absorbed as it travels through the medium, or

be transmitted through the subsurface, partially or entirely, if the material is

translucent or transparent. Usually, a combination of reflection, transmission,

and absorption occurs, and the proportions of light that are reflected, absorbed,

and transmitted must sum to one [1, 2].

In CG&CV, all these effects are considered as a local relationship between

incoming and reflected light at a surface patch. Theoretically, this relationship

can be modeled by the bidirectional reflectance distribution function (BRDF),

which is symmetric in the incoming and outgoing directions; this is known as the

Helmholtz reciprocity principle. For opaque dielectric materials, the intensity of

the reflected light is determined by the light directly reflected at the interface

between air and the object’s surface, and the light re-emitted from the surface

after penetrating into the subsurface of the object and scattering internally. The

former is called specular (also known as interface or surface) reflection; the latter

is called diffuse reflection (or body reflection), as shown in Figure 1.1. Specular

reflection depends on surface characteristics, illumination and viewing directions,

and is related to the gloss of the surface material; diffuse reflection is reflected

uniformly in all directions, and is the color of the surface material.

Reflection properties are the appearance of object surfaces, including colors,

2
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Figure 1.1. Physics of reflected light on surface of dielectric objects

gloss, and surface roughness of the material. Physical color is a function of

wavelength, and shows a continuous spectral distribution in the visible range.

The spectral distribution is usually integrated into three values such as red, green,

blue (RGB) of trichromatic theory, based on human vision and applied to image

devices such as a camera. For example, green color is a spectral distribution in

the visible range as shown in Figure 1.2, while it is represented as [0, 255, 0] in

RGB.

Gloss is a fundamental attribute of an object. The gloss intensity is dependent

on illumination and viewing directions, and on the roughness of surface materials

of the object. The gloss of an object can be observed by varying the target object,

by varying positions of a camera around the object, or by varying illumination

directions around the object, as shown in Figure 1.3.

As well as colors and gloss of surface materials, surface roughness is an impor-

tant factor in characterizing reflection properties. If the surface imperfections are

much smaller than the wavelength of incident light, the material is considered op-

tically smooth. In contrast, for rough surfaces, the wavelength of incident light is

assumed to be much smaller than the surface irregularities. At a perfectly smooth

surface such as a mirror, a specular peak occurs in a direction such that the in-

cident and reflection angles are equal; however at a rough surface, there occurs

3
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Figure 1.2. Spectral distribution of green color in visible range

Figure 1.3. Gloss of an object varying with different illumination and viewing

directions

an angular envelope of specular reflection around the direction of the specular

peak, and as the surface roughness and incidence angle increase, a larger-angled

envelope is observed.

Surface roughness is often expressed as texture in the CG&CV literature,

defined as a visual and tactile quality of an unrefined surface. In early techniques

such as texture-mapping, texture segmentation and texture recognition, texture

includes both spatial variations (bumps, wrinkles, etc.) on rough surfaces and

albedo or color variations on smooth surfaces. Recently, however, as shown in

3D texturing algorithms, texture is emphasized as spatial variations on a rough

surface [3].

Techniques of Rendering Reflection Properties Texture map-

ping is a traditional technique for mapping color and surface details with tex-

ture maps or environment maps to a 2D or 3D object model, either computer-
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generated or captured using range scanners. This technique is easy and robust

for smooth surfaces. For rough surfaces, bump mapping and displacement map-

ping can produce rich surface characteristics using a heightmap of perturbed

surface normal, and relief texture mapping can create 3D surface effects, such

as self-occlusion of a surface patch, by augmenting textures with texel depth.

In addition, 3D texturing techniques, such as for solid texturing, synthesize and

render simultaneously a homogeneous volumetric texture of various refinements

by perturbing radial distance [4, 5, 6].

These techniques of model-based rendering, dependent on an accurate geo-

metric model of an object and a single or multiple texture images, are applicable

with visual satisfaction for only a limited variety of uses. Instead of an explicitly

constructed 3D model, techniques of image-based rendering directly use a collec-

tion of images acquired from real objects in particular viewing and illumination

directions, based on interpolation or pixel reprojection from source images onto

target images. The degree of realism in the synthesized images depends primar-

ily on the quality and quantity of input images, but is independent of surface

complexity [7].

In the real world, inhomogeneous object surfaces represent various color ap-

pearances in different illuminations, gloss and roughness variations with changing

viewing and illumination directions. Using the techniques described above, the

mapped textures may be unacceptable in illuminations of a computer-generated

environment, especially when specular reflection is present.

To solve the problem of inconsistent optical effects, one approach is to render

reflection properties using either numerous BRDF images generated by perform-

ing simulations [8, 9, 10], or measured real objects in arbitrary illumination and

viewing directions [11, 12]. The other approach is to estimate reflectance param-

eters from images of real objects based on reflection models [13, 14, 15, 16, 17].

The techniques in either of these two approaches yield efficient results, which are

described in more detail in Chapter 3.

Problems with Existing Techniques The methods used to repro-

duce reflection properties of real objects all depend on the quality of input images,

which are captured by an imaging detector such as a camera. However, most

commercial cameras are based on RGB trichromatic theory, which transforms

5



the spectral distribution of physical color into RGB primaries with three-channel

filters. The images captured by these cameras may be inadequate representa-

tions of the spectral distribution of the reflected light because of factors such as

metameric match.

Several methods have been developed to obtain intrinsic information about

surface materials and light sources using multispectral information that is trans-

formed from generated or captured RGB values [18, 19, 20, 21, 22, 23, 24, 25],

or from images captured by a multiband camera [26, 27]. Since a physical color

is a continuous spectral distribution over the visible region, however, converting

a small number of primaries into a full spectral distribution of physical color

is theoretically an undeterminable function with infinite solutions. A few other

methods have been described to obtain images by a spectrograph [28, 29, 30, 31]

for material recognition and color reproduction of objects. The images from a

spectrograph are captured with a spectral distribution of color at a point or a

line on the surface of an object.

Another problem with input images is that since, in the real world, inhomo-

geneous materials such as ceramic and plastic usually represent a hybrid visual

appearance of various colors and gloss, weak or strong, and since normal cameras

have a limited dynamic range, acquired images are often too dark in some areas

and too bright in others. For a strong glossy area, such as highlights at object

surfaces, image values may be clipped to an output limit in the imaging system.

For example, values of higher intensity are clipped to gray value 255 for an 8-bit

camera, while the information about colors and textures in these areas is lost.

However, if the color information behind a strong gloss is obtained by control-

ling the intensity of illumination, information about colors and textures will be

insufficient in dark areas.

Up to now, most studies have assumed that the obtained images are not satu-

rated, and several have focused on obtaining a desired response function by cap-

turing images under different exposure times or shutter speeds, and reconstructing

high dynamic range (HDR) images as input images [26, 32, 33, 34, 35, 36]. These

techniques are efficient in a case in which the raw images of real objects with

gloss are actually unsaturated. However, it is generally difficult to determine the

number of raw images and exposure values required for a desired dynamic range

6



and an effective response function, and the associated computing and storage

costs are expensive, since each HDR image is synthesized from multiple images,

such as 18 images in [35].

In response to the aforementioned problems with existing techniques, a method

has been described to estimate accurate reflectance parameters from spectral im-

ages, which are captured with an imaging spectrograph, allowing estimation of

the reflectance parameters at each wavelength at a single surface point of real

objects [37]. Another method has been introduced to adequately estimate spec-

ular reflectance parameters for gloss intensity and surface roughness, even from

saturated spectral images, by subjecting only the values obtained at illumination

positions where the values are unsaturated to the least squares method [38, 39, 40].

1.3. Realism in CG&CV

Computer graphics (CG) focuses on visual computing, where images are syn-

thesized on a computer using given information about objects (e.g., geometry,

reflection properties, illumination), or using altered visual and spatial informa-

tion sampled from real objects. On the other hand, computer vision (CV) is

concerned with theory and technology for building artificial systems by extract-

ing information about objects (e.g., geometry, reflection properties) from one

image or a sequence of images of real objects. These two fields have been merged

in recent years in simulating or rendering real objects to a synthetic environment,

as shown in Figure 1.4.

Creating realistic graphics is the ultimate aim in CG&CV. However, what

criteria to use to define realism in images is a controversial problem. Up to now,

physical accuracy, perceptual realism, and functional criteria have been applied

conceptually to evaluate productions in this field [41, 42].

The criterion for physical accuracy is that the production provides physically

intrinsic information. Under this criterion, a synthetic image should be an ac-

curate spectral representation of the values calculated at a particular viewpoint,

associated with accurate information about the shapes and material properties

of objects and illumination in the scene. In addition, the display device should

be able to reproduce accurately an image incorporating all these properties.

7
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Figure 1.4. Computing process in Computer Graphics & Computer Vision

The physical color of object surfaces is a result of interactions between sur-

face materials and light effects, including absorption and reflection at different

wavelengths, and represents a continuous spectral distribution in the visible wave-

length range. The spectral radiance E(λ) to a camera is affected by the spectral

power distribution L(λ) of the illumination, the spectral reflectance O(λ) of the

surface, and by camera sensitivity S(λ), as shown in Equation 1.1:

E(λ) = O(λ)L(λ)S(λ). (1.1)

To obtain intrinsic spectral reflectance O(λ) of surfaces, it is necessary to remove

the spectral radiance of illumination L(λ) and camera sensitivity S(λ), using an

object with a given spectral reflectance.

Reproducing physically realistic images is currently difficult because of the

limited quality of existing display devices, and insufficient knowledge about the

human visual system; however, it is important to develop physically based meth-

ods that are able to obtain accurate information from the measured images of

real objects, and to simulate synthetic images with this accurate information.

Photo-realism, another expression for perceptual realism in CG&CV, specifies

that a synthetic image should be photometrically realistic, by taking into account

the observer’s visual properties in the image generation process. Instead of de-

scribing the full spectral distribution of colors, current color imaging technology

for cameras or display devices is based on trichromatic theory. Using this visually
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based technology, different spectral distributions of colors may be integrated into

equivalent RGB or other three-channel variables, and existing display devices of-

ten cannot reproduce the vast range of strong gloss such as highlights because of

their limited dynamic range. However, the standard of photo-realism is sufficient

to allow an observer to predict visual appearance with accurate information by

applying techniques such as tone-reproduction.

The functional criterion is that the synthetic image should be sufficiently real-

istic under particular conditions or for particular needs. The fidelity of informa-

tion that an image provides allows an observer to make reliable visual judgments,

and to perform particular tasks according to the visual information, as (s)he does

in the real world. In training simulators for sports, driving, or flight, for example,

synthetic images are sufficient to allow users to improve their skills by simulating

actions in the real world. For online shopping as well, images with high fidelity,

generated based on accurate information about real objects, are in demand for

successful sales promotions and for minimizing merchandise complaints.

What is described above shows that there are diverse potential rendering styles

to produce images with reliable information for an observer. Which criteria to

apply for productions in CG&CV depends on the particular requirements. For

scientific simulations, it is usually essential to visualize physically accurate infor-

mation; for entertainment such as games or films, photo-realistic images are often

more acceptable. For preservation of cultural heritage artifacts, the primary goal

is to record accurate information about real objects, and to display synthetic im-

ages based on that information with high fidelity on a computer. Fidelity can be a

key criterion to predict synthetic images by perceiving true information in them.

However, it is currently difficult to evaluate the relationships among physical ac-

curacy, high fidelity and visual quality. This task requires more multidisciplinary

accomplishments in the fields of human vision, computer/machine vision, and

visual psychophysics [43].

1.4. Objectives

To record accurate reflection properties of real objects, such as cultural heritage

artifacts and commercial items for online shopping, and to exhibit them as syn-

9



thetic images on a computer, two key points are necessary to take into account:

(i) Obtain accurate reflection properties, including spectral distributions of

colors, gloss intensity, and surface roughness of real objects, with the least

possible influence of illumination and camera properties used for measure-

ment;

(ii) Reproduce reflection properties faithfully in illuminations of virtual envi-

ronments such as virtual museums, associated with the shape of objects, as

they would be observed in the real world.

The objective of this research is to satisfy these two points. For requirement (i),

spectral images, which capture reflected light as a continuous spectral distribu-

tion, enable us to provide an adequate record of the reflection properties at object

surfaces. Since specular reflection at the surfaces of inhomogeneous objects varies

with illumination and viewing directions, as well as with the surface roughness

and shapes of objects, it is necessary to rotate light sources or image detectors

around target objects, and to revolve the target objects so as to measure reflec-

tion properties with the slightest influence of occlusions, shadows, or shade, which

may occur between surfaces and between surface patches of the target objects.

Next, spectral power distribution of illuminations and properties of image detec-

tors at the point of measurement are removed using a standard whiteboard with

a given diffuse reflectance at each wavelength. Reflectance parameters, includ-

ing diffuse reflectance parameters for colors, and specular reflectance parameters

for gloss intensity and for surface roughness, are then estimated accurately at

each wavelength and at each surface point of an object from the spectral images,

captured with various gradient orientations of the object.

On the other hand, for the second requirement (ii), synthetic images of real

objects are reproduced based on the accurately estimated reflectance parameters,

with 3D geometric information about the objects, which can be acquired by a

range finder or similar instrument. Since the reflectance parameters are estimated

with no influence of illuminations and image detectors, it is convenient to multiply

the spectral power distribution of illuminations from particular viewpoints in a

virtual environment, using Equation 1.1. At the same time, virtual objects can

be recreated on a computer with high fidelity by taking into account human color
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Figure 1.5. Flowchart of present research

perception and the properties of display devices in the image generation process.

Furthermore, specular reflection can be synthesized with illumination and viewing

directions, associated with the shapes of objects, as it occurs in the real world,

by tracking an observer’s viewing movement in real time.

Overview of the Dissertation In this dissertation, two methods

are described to accurately estimate reflectance parameters using spectral im-

ages, and to improve estimation of specular reflectance parameters from saturated

spectral images. The flowchart of the present research is shown in Figure 1.5.

A measurement system is constructed with a light source, rotating around a

target object between −90o and 90o, and an imaging spectrograph equipped with

a monochrome charge coupled device (CCD) camera and an objective lens, which

is fixed in front of the target object. Since the imaging spectrograph is a line-

scanner, the target object is placed on a turntable rotating through 360o to obtain
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spectral images of the whole object. After removing the influence of illuminations

and camera properties, spectral images with two axes of wavelengths and spatial

positions, captured at different incident positions, are transformed into spectral

images with axes of wavelengths and incident positions. Reflection values at each

wavelength are separated into diffuse and specular reflection components based

on the dichromatic reflection model [44] and the Lambertian reflection model

[45], while the diffuse reflectance parameters are estimated during the separation

process.

For unsaturated spectral images, the separated specular reflection components

are subjected directly to the Torrance-Sparrow reflection model [46, 47], and then

specular reflectance parameters for gloss intensity and surface roughness are es-

timated. On the other hand, for saturated spectral images, after logarithmically

transforming the equation of Gaussian distribution in the Torrance-Sparrow re-

flection model into a linear form, the least squares method is applied to values of

the specular reflection components, which are obtained at positions of the light

source where the spectral images are unsaturated.

Finally, images are synthesized using the reflectance parameters estimated

from spectral images of real objects, associated with several different illumina-

tions separately in a virtual environment, and by taking into account the limited

dynamic range of the existing display for strong gloss on the objects’ surfaces.

The remainder of this dissertation is divided into six chapters. In Chapter

2, factors influencing reflection properties are described in detail because illu-

mination, camera, and material properties affect measurement of the reflection

properties of real objects, reflection models have a great effect on estimating

reflectance parameters, and display devices influence the visual appearance of

synthetic images. Chapter 3 surveys related work on the techniques of rendering

reflection properties, of estimating specular reflectance parameters and Fresnel re-

flectance, and of measuring spectral images. In Chapters 4 and 5, a measurement

system for capturing spectral images and a method to separate reflection com-

ponents are introduced, respectively. Experimental results, demonstrating that

during the separation, diffuse reflectance parameters are estimated at each wave-

length, are also presented with discussion in Chapter 5. A method to estimate

specular reflectance parameters with and without estimation of refractive index is

12



described separately; experimental results with synthetic data and measured data

are shown, with discussion, in Chapter 6. Chapter 7 gives discussion in corre-

spondence to the assumptions for the whole research, and Chapter 8 summarizes

the current work and discusses several possible subjects for future work.
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Chapter 2

Factors Influencing Reflection

Properties

Light reflected at the surface of an object can be captured into an image by

optical devices such as cameras, mirrors, and telescopes, or by natural sensors

such as human eyes. Therefore, to obtain an image, a light source, a subject,

and an image detector are necessary (a light source can be a subject at the same

time), as shown in Figure 2.1. Pixel values in this image are then analyzed

with reflection models, and finally the image, either measured or generated, is

displayed on a device.

A light source is defined as anything that internally generates and emits light

independent of the environment. In general, the radiance from a light source is

usually assumed to be constant in each direction, although the geometry of the

source such as a point source, line source, or area source may have large effects

on the spatial variation of light arriving at the objects around it. Whether the

surface of an object looks bright or dark depends on local surface characteristics,

on surface orientation, and on spectral power distribution of illuminations. How

much light can be captured by an image detector depends on the local surface

characteristics, spectral transmission properties of the objective lens with which

the detector is equipped, and the spectral sensitivity properties of the detector.

More description about illuminations, material characteristics, and image detec-

tors is given separately in Section 2.1, Section 2.2, and Section 2.3.

Representation of an image measured by a camera, or generated analytically
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on a computer, may be greatly influenced by the display devices, as introduced

in Section 2.4. Reflection models are important for interpreting pixel values in

an obtained image, and to extract object information from the pixel values. In

Section 2.5, several reflection models are described in detail.

2.1. Spectral Power Distribution of Illumination

Illuminations, either artificial light sources or daylight, play a significant role in

the appearance of object surfaces. Generally, it is assumed that the surfaces of

objects do not generate light internally and light sources are treated separately;

and that all light leaving a surface at a given wavelength is due to light arriving at

the same wavelength. Therefore, light arriving at a surface patch from multiple

sources is a linear combination of light from each source, and the proportion from

each source depends on the distance and incident angle of the source with respect

to the surface patch.

Different illumination has different spectral power distribution, which can be

considered as spectral quantities at each wavelength interval. Reflection proper-

ties of objects vary in different illuminations, since the intensities and the incident

angles of illuminations cause different appearances of gloss and surface roughness,
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Figure 2.2. (Left) Spectral power distribution of several light sources: ideal white

light (red), D-65 (black), halogen light (blue), and fluorescent light (magenta);

(Right) Variations in spectral distribution of red color separately under those

illuminations

and the reflected light is observed as a product of the spectral power distribution

of illuminations and the spectral reflectance of objects at each wavelength, as

calculated in Equation 2.1. E(λ), O(λ) and L(λ) are defined as in Equation 1.1.

E(λ) = O(λ)L(λ). (2.1)

Spectral power distribution of unknown illuminations can be measured, or

estimated from images of an object with given spectral reflectance, or estimated

from images of several colored objects. Spectral power distributions of several

light sources (ideal white light, mimic daylight (D-65), halogen light, and fluores-

cent light), which are commonly used for experiments in the laboratory, are shown

in Figure 2.2 (left), and variations in the spectral distribution of red color sepa-

rately in these illuminations are shown in Figure 2.2 (right). Clearly, to obtain

the intrinsic spectral reflectance of objects, it is necessary to remove the influence

of spectral power distribution of the illuminations used for measurement.
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2.2. Material Characteristics

Reflection properties at the surface of an object, when the surface is fixed in front

of an observer/camera, depend both on the physical characteristics of the surface

materials, e.g., metal or dielectric, opaque or translucent, and on the geometric

characteristics of the surface.

For a metal surface, only single or multiple specular reflections occur at the

interface between the surface and air, and diffuse reflection is often negligible,

since the light that penetrates into the subsurface is completely absorbed. Spec-

ular reflection is determined by the spectral power distribution of illuminations

and the reflectance of the metal, which are variable within the visible spectra.

On the other hand, for a dielectric surface, the light partly penetrates into the

subsurface and scatters internally, then emits back diffusely out of the surface

dependent on spectral reflectance of the surface materials; the remainder of the

light is reflected at the interface, often with large effects of the spectral power

distribution of illuminations.

According to the scale at which object surfaces need to be described, three dif-

ferent levels of scales are defined to classify the geometric characteristics of object

surfaces: macrostructure, mesostructure and microstructure. The macrostructure

represents explicit surface features such as polygonal patches, the mesostructure

shows small but individually visible geometric details, such as bumps and dents on

an orange skin, and the microstructure involves visually indistinguishable surface

microfacets, as shown in Figure 2.3.

A surface can either be considered as a collection of patches, with each polyg-

onal patch consisting of multiple microfacets, or it can be assumed to be a col-

lection of microfacets. Reflection properties are closely related to the geometric

distribution of these microfacets on object surfaces, since they cause spectral and

quantitative variations of the light traveling into and reflecting back out of the

subsurface with respect to the wavelength of the incident light. Thus, the inten-

sity and the directions of diffuse and specular reflection at a rough surface vary

distinguishably, compared with those at a smooth surface [47, 48, 49].
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2.3. Properties of Light Detectors

Reflection properties are measured according to the properties of image detectors,

including human eyes and cameras. The signal that image detectors record at a

surface point of an object may be represented by a single value on a black-and-

white camera, by a few values on color cameras, by many values on hyperspectral

sensors, or as a continuous function of wavelength on spectrometers.

Spectrometers A spectrometer is an optical instrument to measure the

properties of light, such as spectral reflectance and spectral radiance, over a

specific range of the spectrum from gamma rays to the far infrared. Spectrometers

split incoming light with a prism or a diffraction grating into its component

wavelengths, and convert the resulting spectrum to an electrical signal on a photo
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Figure 2.4. A spectrograph

tube or a detector.

Prisms are polyhedral translucent glass or crystal. The spectrum at long

wavelengths is refracted less than at short wavelengths when light passes through

air and the prism, since the refractive index is dependent on the wavelength of

the incident light. On the other hand, the incident light at diffraction gratings is

dispersed in multiple directions dependent on the difference of light path length

or phase difference between two neighboring gratings. A reflecting plane is ad-

justed for diffraction gratings to have a suitable angle, and to obtain a strong

spectrum in sequential order while avoiding specular diffraction. The spectral

resolution of gratings is higher than that of prisms, as a result they are often

used in astronomical telescopes.

A spectrograph, as shown in Figure 2.4, measures light reflected at an object

as a function of wavelength, based on the same principle as a spectrometer. Light

enters the spectrograph through an objective lens, and hits a diffraction grating

or a prism through an aperture or a slit on the prism-grating unit. The dispersed

light is then focused onto a detector such as a CCD device, and recorded elec-

tronically as photographic spectra with respect to wavelengths in an image. The

typical spectral resolution of a spectrograph is around 0.2 nm [50]. However,

the resolution of measurement ultimately depends on the properties of the CCD

device.

Human Perception The human eye is an exquisite optical device that

focuses an image on a light-sensitive surface by means of the main elements of the

eye. The iris and the pupil control the amount of light penetrating the eyeball;
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the cornea and the crystalline lens refract the light to create a retinal image on

the retina. The pupil, whose diameter ranges from about 1 to 8 mm, can respond

to illumination changes with a ratio of about 28 to 1. The retina consists of two

types of photoreceptors, rods and cones, which respond to light in the wavelength

range between 330 nm and 810 nm. Rods provide achromatic vision at scotopic

levels within the range of 10−6 to 10 cd/m2; and cones play roles within the range

of 0.01 to 108 cd/m2. Both rods and cones function in the overlap between 0.01

and 10 cd/m2. Thus, human eyes can have a dynamic range of illuminance of

more than 10 million to 1, from full sunlight to starlight [31].

Cones on the retinal cells produce the sensation of color. The genetics of color

vision has revealed that the cones of human eyes for most observers comprise three

types of receptors with sensitivity peaks in short, medium, and long wavelength

light (called S cones, M cones, and L cones, respectively). The response of

a receptor to incoming light can be obtained by summing the product of the

sensitivity and the spectral radiance of the light over all wavelengths, as shown

in Equation 2.2:

Rk =

∫

Λ

Sk(λ)L(λ)dλ, (2.2)

where Rk and Sk represent the response of the kth type of receptor (S, M , or

L), and its sensitivity; L(λ) is the incident radiance at the receptor; and Λ is the

range of visible wavelengths.

Since human eyes have three types of color receptors that respond to different

ranges of wavelengths, a set of standard primaries and three values of weights to

describe light using those primaries are obtained by performing color matching

experiments. The spectral radiance of a light source can be considered as a

weighted sum of three channel quantities using the primaries R, G, and B, and

each of the weighted values with respect to the primaries can be considered as

the response to the light source over all wavelengths. This process can be written

as

L(λ) = ω1R + ω2G + ω3B,

=
{ ∫

Λ

r(λ)L(λ)d(λ)
}
R +

{ ∫

Λ

g(λ)L(λ)d(λ)
}
G +

{ ∫

Λ

b(λ)L(λ)d(λ)
}
B,
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where L(λ) is the spectral power distribution of a light source, and ω1, ω2, and

ω3 are a set of weighted values. r(λ), g(λ), and b(λ) are color matching functions

with respect to primaries R, G, and B, respectively [2, 51].

The process to convert a given spectral power distribution to its correspond-

ing RGB color values is straightforward; however, the reverse transformation

is not a unique operation. There are infinitely many spectra corresponding to

a given RGB triplet. Therefore, based on the trichromatic theory, equivalent

three-variable triplets such as RGB are given for a particular observer/camera or

in a particular condition (illumination, viewing angle, etc.), although the spectral

power distributions are different. This phenomenon of metamerism causes dif-

ficulties for reproducing original colors, which are inherently determined by the

spectral distribution of light.

Image Devices An image is the light energy that is transformed into

electronic signals by image devices. An image device may measure an area, a line,

or a point on the surface of an object. Although most commercial image devices

use area sensors, high resolution can be obtained by line-scanning devices, at

much lower cost than point devices. Here, CCD cameras and lenses are described

in detail.

A CCD is an image sensor that contains an array of coupled metal-oxide

semiconductor (MOS) capacitors sensitive to light. Electric charges accumulate

on the capacitor array when an image is projected through a lens. For digital

color cameras, there are two ways to separate colors: the common one is to use a

Bayer mask over the CCD, on which green elements are twice as numerous as red

or blue; the other way is to use three CCD devices and a dichroic beam splitter

prism, which splits the image into red, green and blue components.

With black-and-white CCD cameras, the sensor response Ip at a surface point

p can be modeled as

Ip =

∫

Λ

L(λ)Op(λ)S(λ)dλ, (2.3)

where Op(λ) is the spectral reflectance of the surface material at p, and S(λ) is

the sensitivity of the device with respect to the wavelength. With color cameras,
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the sensor response can be considered as that at each color channel separately,

while taking account of the effect of the associated filter response.

There are several physical phenomena that affect the ideal response of CCD

cameras, especially for color signals:

1. Clipping. Input signals are clipped whenever the accumulated signal ex-

ceeds the highest processable voltage. For a usual 8-bit gray-scale ana-

log/digital converter (ADC), the clipping threshold may be 255 (or 1.0).

Clipping at different channels for color cameras may cause hue and satu-

ration distortion varying with intensity of the incident light at the CCD

chip.

2. Blooming. When the incoming light signal at a CCD cell exceeds the clip-

ping threshold, the extra charge spreads into the neighboring CCD cells. As

a result, information at the affected pixels in an image may be inaccurate

due to this blooming effect.

To improve the dynamic range of a camera, there are two approaches: reduce

current dark noise by cooling the CCD device, or synthesize an HDR image with

the raw images measured at different exposure times or shutter speeds.

Other factors, such as fabrication defects and quantization noise, are appro-

priately compensated by simple statistical models, e.g., a Poisson-distributed

random variable for the CCD bias, or a random integer variable for dark current

[2, 51, 52].

As well as CCD chips, image sensors composed of complementary metal-oxide

semiconductor (CMOS) chips have recently been developed with improved high

noise immunity, high speed process, and low static power consumption. Because

of these advantages of CMOS sensors, CMOS processes have comprised the vast

majority of integrated circuit manufacturing in recent years. However, CCD

sensors are still widely used because they possess a higher sensitivity and a higher

dynamic range than CMOS sensors can provide.

Lenses are positioned in front of the opening of most optical sensors to gather

the incoming light and to focus an image on the device. Since the materials used

for lenses are transparent, light going through the lenses is refracted according to

Snell’s law, as shown in Equation 2.4:
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n1(λ) sin α1 = n2(λ) sin α2, (2.4)

where n1 and n2 are the refractive indices of the first and second medium at each

wavelength λ, respectively; α1 is the incident angle; and α2 is the refractive angle.

The reflection effects at the surface of a lens can be ignored by assuming that the

angles between the incident light and the refracting surfaces of the lens are small.

To obtain an image with proper contrast between bright and dark areas at

an object surface, the incident light to the lens can be controlled by adjusting

the aperture diameter of the lens using an iris diaphragm, or by manually or

automatically adjusting exposure time with a shutter over the lens [2, 51].

2.4. Properties of Display Devices

Synthetic or measured images have to be displayed on a photo film or an elec-

tronic device, and go through the filter of human visual perception. Displays are

electronic devices to represent images in visual or tactile form. Colors on a given

display device are specified using an index into a hardware color palette, or using

an RGB triplet. Images are usually produced with a camera, or on a computer

using input RGB data or spectral data, in a 24-bit or 32-bit RGB space with 8

bits allotted to each of the three primaries and depth.

Most display devices perform poorly for high contrast images with both dark

and bright areas, which may contain contrasts as large as 100,000:1 or more.

Unlike the dynamic range of the human vision system, the intensity of a typi-

cal cathode-ray tube (CRT) display spans from 1 to 100 cd/m2. Liquid crystal

displays (LCDs) generally have an even lower dynamic range than CRT displays

because of the backlight lamp. Emissive displays, where all pixels emit light indi-

vidually, such as plasma displays, the latest organic light-emitting diode (OLED)

displays, or surface-conduction electron-emitter displays (SEDs), are theoretically

capable of achieving a higher dynamic range than CRT displays, e.g., a dynamic

range of 5,000:1, when the input signal spans brightness from 0 to 100% simul-

taneously.

With the limited dynamic range of commercial display devices, the subtle
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textures and original details in images may be inadequately reproduced. Images

with high contrast can be displayed on existing devices with perception realism

using tone reproduction technology [31, 53, 54].

2.5. Reflection Models

An appropriate reflection model is essential for analyzing captured images and

obtaining proper information about objects such as reflection properties, material

characteristics and shape information.

Roughly, according to where the light arrives at a surface, reflection models

can be classified into two main groups: local reflection models, which assume

that the incident light comes only from light sources and proceeds directly to the

camera; and global reflection models, which treat the incoming light at a surface

patch as a combination of light from sources and from other surfaces, or even

from other patches on the same surface. On the other hand, from the viewpoint

of the reflection behavior of the light at a surface patch, reflection can be divided

into diffuse reflection and specular reflection.

Interreflections, which occur between objects (including ambient illumina-

tion), between surfaces, or between surface patches on the same surface, lead to

varieties of complex shading effects. Since interreflection effects are still poorly

understood, some reflection models ignore these effects by restricting conditions,

while others take them into account. In general, the interreflected light at a sur-

face patch, whether the incident light is from other objects or from other surfaces

of the same object, and however many times the interreflection occurs at this

surface patch, can be incorporated into either diffuse or specular reflection that

occurs at the same surface patch.

In this section, several typical reflection models in CG&CV that are used to

predict and interpret reflection properties at an object surface are described in

detail.

The BRDF model is a basic local reflection model to define the ratio of

radiance in the outgoing direction to that in the incident direction, as shown in

Figure 2.5.
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From BRDF ρbrdf at a surface patch P, the outgoing radiance EP (λ, θr, φr) at

the patch P in (θr, φr) direction can be modeled in the θ, φ angular coordinate

system on a hypothetical hemisphere of directions centered at P, as shown in

Equation 2.5:

EP (λ, θr, φr) =

∫

Ω

ρbrdf(λ, θr, φr, θi, φi)LP (λ, θi, φi) cos θidω, (2.5)

where LP (λ, θi, φi) cos θidω represents incoming radiance from a solid angle dω in

(θi, φi) direction, and Ω represents the hemisphere of illumination. The BRDF

model is physically accurate, and covers anisotropic and isotropic reflections.

However, BRDF measurements are difficult practically and expensive for a large

number of combinations of illumination and viewing directions, especially for

objects with complex shapes and surface features.

The Lambertian reflection model [45] is widely used in CG&CV

to model radiance reflected at a Lambertian surface, which is proportional to

the cosine of the incident angle. BRDF at Lambertian surfaces is independent

of reflected directions. In this case, the reflected radiance Ed(λ) and the BRDF

ρbrdf are constant. Diffuse reflectance (also known as albedo) Rd for a Lambertian
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surface is defined as the fraction of the incident irradiance that is reflected at the

surface in all directions, as a value range [0,1]. The radiance reflected at a surface

can be represented by Equation 2.6 as

Ed(λ) =

∫

Ω

Rd(λ)L(λ) cos θi. (2.6)

For rough diffuse surfaces such as clays and sands, and for smooth diffuse sur-

faces, generalized Lambertian models are developed empirically or theoretically,

by taking account of geometric effects between surface microfacets for directional

diffuse reflection, or of individual subsurface inhomogeneities for Fresnel-corrected

diffuse reflection [55, 56].

The Torrance-Sparrow reflection model [46, 47], based on geo-

metric optics, is a simpler model for specular reflection than the Beckmann-

Spizzichino model [57], which is based on physical optics. Both of these models

are considered theoretically more accurate than the empirical Phong reflection

model [58]. Relative to the surface roughness, specular reflection involves a spec-

ular spike, which occurs at a mirror-like surface or in the mirror-like direction

θi = θr at a rough surface, and a specular lobe, which is symmetric with respect

to the mirror-like direction.

The Torrance-Sparrow model assumes that surface roughness is greater than

the wavelength of the incident radiance, and that surfaces are a collection of

planar, perfectly specular reflecting microfacets, as shown in Figure 2.6. The

surface has a mean normal vector N , and the normal vectors of each microfacet

in the surface, which deviate normally from the mean normal N by angle α, can

be modeled as a mathematical function of Gaussian distribution with standard

deviation σ.

This reflection model, as shown in Figure 2.7, describes the fraction of incident

light that is reflected at a microfacet with the Fresnel reflectance F (n(λ), θi), and

considers masking and shadowing between microfacets on the surface by means

of the geometrical attenuation factor G. The reflected radiance at surface patch

P is described by Equation 2.7, where Rs represents specular reflectance, and σ

represents surface roughness. The rougher the surface, the less intensive specular

reflection occurs.
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Es(λ, θr) = F (n(λ), θi)GRs(λ)e−(α/σ)2LP (λ)/ cos θr. (2.7)

The Fresnel reflectance for unpolarized incident light can be expressed in terms

of the refractive index n(λ) and the absorption factor a, as shown in Equation

2.8, where n(λ) varies with wavelength of incident light; and for the dielectrics,

a is usually 0.

F (n(λ), θi) =
1

2

(g(λ, θi)− cos θi)
2

(g(λ, θi) + cos θi)2

(
1 +

(cos θi(g(λ, θi) + cos θi)− 1)2

(cos θi(g(λ, θi)− cos θi) + 1)2

)
, (2.8)

where g(λ, θi) =
√

(n(λ)− ia)2 + cos2 θi − 1.
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By taking the Fresnel reflectance and the geometric attenuation factor into

account, the Torrance-Sparrow reflection model is capable of predicting reflec-

tions from both metal and dielectric objects with interreflections between surface

patches. Generally, in CG&CV, a simplified version of the Torrance-Sparrow

model is used to describe the specular reflection component by assuming the

Fresnel reflectance and the geometric attenuation factor to be constant [52, 59].

The dichromatic reflection model considers reflections at a surface

patch of inhomogeneous dielectric objects as a linear summation of diffuse and

specular reflection components, as shown in Figure 2.8, since, in the real world,

few surfaces are ideally diffuse or perfectly specular. H is called the half-vector

and represents the normalized vector sum between the illumination vector L

and the viewing vector V . α is the angle between the normal vector N of the

object surface and the half-vector H. The radiance at a surface patch P in a

given direction is approximated as shown in Equation 2.9, if applying diffuse and

specular reflection to the Lambertian and Torrance-Sparrow reflection models,

respectively. Note that for dielectric objects, specular reflection is assumed to be

independent of the wavelength of incident radiance [2, 44, 52].

EP (λ, θr) = Rd(λ)

∫

Ω

LP (λ) cos θidω + Rs(λ)F (n(λ), θi)Ge−(α/σ)2LP (λ)/ cos θr.

(2.9)

In addition to the reflection models described above, other reflection models have
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been developed in CG&CV. The He reflection model, based on physical optics,

analytically predicts specular reflection, directional and uniform diffuse reflections

at the surface of metal or dielectric objects [60]; the Lafortune reflection model

incorporates off-specular reflection and retro-reflection using a Monte Carlo path

tracing program [61]; and other reflection models simulate the reflections for

anisotropic materials such as brushed metal and finished wood [11, 62, 63].
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Chapter 3

Related Work

Reflection properties of object surfaces are essential information for distinguish-

ing one object from another, and for recovering 3D object features such as the

material characteristics of object surfaces and surface orientations. There have

been a large number of studies in CG&CV to obtain reflection properties of real

objects by measurement, and then to reproduce realistic reflection properties as

synthetic objects on a computer. Many techniques do not work properly when

glossy objects exist, however, especially when specular reflection is saturated,

appearing as highlights in the captured images.

In early techniques of model-based and image-based rendering in CG&CV,

one of the fundamental problems was optical inconsistency, which occurrs when

the illumination directions in a virtual environment are mismatched with the

illumination directions in which the input images were captured. To solve this

problem, there are two main approaches: one is to model and render reflection

properties at object surfaces with BRDF or bidirectional texture function (BTF)

images, which is called BRDF image-based rendering in this dissertation;

the other is to estimate reflectance parameters by subjecting measured images

to reflection models, and to reproduce reflection properties of objects associated

with illuminations in a VR&AR environment, which here is called estimating

reflectance parameters. These two approaches are both based on physics and

optics relative to light transmission and reflection at the surface of an object.
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3.1. BRDF Image-based Rendering

BRDF measurement has mainly been used in the fields of optical engineering

and remote sensing, and only since the early 1990s has it become practicable in

CG&CV. BRDF data can be simulated using a virtual gonioreflectometer based

on the physical theory of BRDF, albeit with expensive computation cost [8, 9, 10].

BRDF images for both isotropic and anisotropic materials are captured us-

ing an imaging gonioreflectometer with a fish-eye lens near grazing angles, but

without sharp specular reflection, and are applied to a selected analytic model

[11, 61]. The CUReT database has been built with BTF measurements of over

200 combinations of illumination and viewing directions for a planar patch of 60

different materials. The samples include smooth and rough surfaces of isotropic

and anisotropic materials, and, especially for anisotropic materials, the measure-

ments are carried out by rotating the samples by either 45 degrees or 90 degrees.

The BTF images are captured with 640×480 pixels, 8 bits per RGB channel us-

ing a 3-CCD video camera, and are averaged over each sample area to obtain the

BRDF images [12]. Using BRDF images from the CUReT database as reference

images, several techniques have been developed to synthesize and predict reflec-

tion properties with 3D textures at the surface of objects in novel illumination

and viewing directions [64, 65].

Recently, more robust and practicable BRDF/BTF measurement systems

have been described using a second camera attached to the light source for cap-

turing images to calibrate positions of the light source [66], and using a single

concave parabolic mirror to control illumination angles over the hemisphere to

the surface point and to record reflectance from multiple viewing directions over

the hemisphere [67]. The latter measurement system is capable of predicting

specular reflection in illumination and viewing directions as a path along with a

translating illumination aperture.

The techniques in this approach usually provide rich color and gloss of syn-

thetic objects in VR&AR, while the realism of reflection properties is determined

by the quality and quantity of input images of real objects, taken in arbitrary

illumination and viewing directions. However, these techniques require large-

capacity storage for the raw input images and high-speed processing capability

on a computer, and apply previously developed techniques of image-based render-
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ing, such as interpolation, which often present difficulties for obtaining physical

accuracy of reflection properties with surface variations synthesized in novel illu-

mination and viewing directions.

3.2. Estimating Reflectance Parameters

The approach of estimating reflectance parameters based on reflection models

is often more practicable in applications. Basically, reflection at the surface of

an inhomogeneous dielectric object is considered as a combination of diffuse and

specular reflection components, as shown in Equation 2.9. Several techniques

have been developed to simultaneously estimate diffuse reflectance parameters

Rd, specular reflectance parameters Rs for gloss intensity, and σ for surface rough-

ness from captured images of real objects using a nonlinear least squares fitting

algorithm, with expensive time and computation costs.

Abundant research is available in the literature to separate reflection values

into diffuse and specular reflection components on the basis of the dichromatic

reflection model, and on the basis of several geometrical or physical differences

between diffuse and specular reflections.

First, the light of diffuse and specular reflections has different transmitted

radiance, dependent on polarizer orientation. For dielectrics, the diffuse reflection

components tend to be unpolarized while the specular reflection components vary

as a cosine function with rotation of a polarization filter. Using a polarization

filter alone, image values may be separated into diffuse and specular reflection

components by pre-segmenting highlight areas with the assumptions that the

surface is smooth and with a uniform color [48, 68, 69].

Second, for dielectrics, diffuse and specular reflection components have differ-

ent spectral distributions. As projected in color space, image values are clustered

as a T-shape or L-shape, with two vectors in different directions (diffuse and spec-

ular reflection components) when the surface is smooth, and can be segmented

into different color areas. The two reflection components can be separated by

segmenting the two vectors in color space using the principal component analysis

(PCA) method or the Hough transformation method [13, 17, 70, 71, 72]. Al-

gorithms using both polarization and color information can separate diffuse and
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specular reflection components at a textured surface, while taking into account

interreflections [14].

Third, an epipolar plane image (EPI) can be acquired by slicing the EPI

volume, which is constructed by taking a sequence of regularly spaced images

with linear camera motion. The EPI strip-pattern of specular reflection com-

ponents in a spatio-temporal EPI has a more vertical orientation than that of

diffuse reflection components for convex surfaces, and a more horizontal orienta-

tion for concave surfaces. Based on the EPI strip-patterns of diffuse and specular

reflections, the two reflection components can be separated with geometric and

photometric constraints [73, 74].

Fourth, as ideal diffuse reflection follows a cosine function, the light scattered

at the surface disperses uniformly in all directions, and the intensity depends

on the spectral reflectance of surface materials; while specular reflection can be

modeled as the Torrance-Sparrow reflection model based on geometric optics,

or as the Beckmann-Spizzichino reflection model based on physical optics, the

intensity varies dramatically with the illumination and viewing directions and

the surface characteristics. These two reflection components can be separated by

picking up the pixels in input images below threshold values, which contain only

diffuse reflection components, or by using images taken at the positions of the

light source, where only diffuse reflection occurs [13, 15, 16, 75, 76].

Most algorithms for separating diffuse and specular reflection attempt to ac-

quire only diffuse reflection for vision techniques, such as image segmentation

and motion detection, by eliminating specular reflection in the input images,

since the positions and intensities of specular reflection such as highlights pro-

duce erroneous results. Some of the algorithms take advantage of the separated

specular reflection components for object recognition, illumination localization,

and for recovering the shape or surface curvature of objects.

By applying the separated diffuse reflection components to diffuse reflection

models, and applying the separated specular reflection components to specular

reflection models, the diffuse reflectance parameters Rd, specular reflectance pa-

rameters Rs for gloss intensity, and σ for surface roughness can then be estimated,

according to the required objectives and the applications.
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3.3. Estimating Specular Reflectance Parameters

There has been much research on synthesizing images with specular reflection

using ray tracing or environment mapping, and on reproducing specular reflection

of real objects in CG&CV, since specular reflection can be an important cue for

realistic images. Early research on specular reflection focused on addressing the

issue of gloss perception, and on determining its relations with surface curvature

and the shape of objects. Recently, specular reflection, and the interactions with

the material characteristics of object surfaces, have become a prominent subject

[77, 78].

Most models for specular reflection take into account interactions between

intensity of gloss and surface roughness. On the basis of these reflection models

and geometric information about real objects, specular reflectance parameters for

the intensity and surface roughness can be estimated using a sequence of images

captured at positions where specular reflection occurs.

Sato et al. introduced a method using a sequence of range and color images

of real objects to estimate reflectance parameters with object shapes [15]. The

range images and color images were captured with a light-stripe rangefinder and

a 3-CCD camera, which were fixed in front of a target object, while the object

was rotated by a robotic arm. First, the object was reconstructed with the range

images, and was texture-mapped with the color images. Reflection values were

then separated into diffuse and specular reflection components based on the esti-

mated surface normals. Finally, based on the Torrance-Sparrow reflection model,

specular reflectance parameters for specular intensity and surface roughness were

estimated from the separated specular reflection components, at the selected sur-

face mesh of the reconstructed object, where the intensities of diffuse and specular

reflection are both large.

Without using range images, Omata et al. proposed a method to estimate re-

flectance parameters with object shapes by analyzing intensity changes of image

values at each pixel in a sequence of input images with hypothetical rotation of

a light source [76]. The images of a target object were measured using a fixed 3-

CCD camera and light source, while the target object was rotated on a turntable.

Diffuse and specular reflection components were separated by selecting reflection

values that only included diffuse reflection components, and diffuse reflectance
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parameters and surface normals were then estimated. After correcting surface

normals with the maximal value of the separated specular reflection components

at each pixel, based on the Phone reflection model, specular reflectance param-

eters for specular intensity and for surface roughness were estimated by varying

the specular parameters for surface roughness between 3 and 300, until the differ-

ence between the theoretical and separated specular reflection components was a

minimal value.

Machida et al. proposed a method using both range and color images to esti-

mate reflectance parameters with object shapes [79]. The range and color images

of a target object were acquired with a 3-CCD camera and a laser rangefinder,

which was aligned with multiple (maximum 60) surrounding position-given point

light sources. In addition, the camera and rangefinder were both rotated around

the target object. The color images were captured only at selected light source

positions where the pixels had been observed once for the diffuse only reflection

component and twice for strong specular reflection components with respect to

the object geometry. By classifying the pixels in color images into two groups of

diffuse only reflection and strong specular reflection components, diffuse and spec-

ular reflection components were separated. Specular reflectance parameters for

specular intensity and surface roughness were estimated based on the Torrance-

Sparrow reflection components. A notable point of this method is that it enables

interreflections to be taken into account.

Several other techniques using BRDF images captured in arbitrary illumi-

nation and viewing directions at glossy rough surfaces have been developed to

estimate specular reflectance parameters for specular intensity and for surface

roughness at the mesostructure or microstructure level.

Chen et al. described a method to estimate surface mesostructure with specu-

lar intensity from BRDF images of complex real objects that are translucent and

strong glossy, such as orange skin and jelly candy [49]. The BRDF images were

measured densely with a fixed digital camera and a manually moving point light

source, and a checkerboard and four specular spheres for geometric calibration

and light source estimation. Diffuse and specular reflection components were

separated using a histogram thresholds method. From the specular reflection

components, the parameters for surface normal and for surface roughness were
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then estimated with the peak values at each pixel.

Wang and Dana developed a method to estimate relief texture with specular

intensity from BTF/BRDF images [80]. The images were captured point-by-point

using a mirror-based imaging device [67], with surface normal simultaneously at

each point of glossy object surfaces. After compensating the raw images for the

distance between each pixel and the focus point on the mirror, pixels with inten-

sity values greater than a threshold (240) were used to estimate the parameters

for surface roughness associated with the surface normals of the pixels.

Another technique was introduced to obtain reflectance parameters by ana-

lyzing the space of densely-sampled BRDF images of more than 130 common

materials [35]. For each sample material, 20-80 million BRDF images were ac-

quired with a high-resolution camera and a light source, which was mounted on

an arm of a turntable, orbiting the target sample. The dimensions in space of all

possible BRDF images, generated by interpolating and extrapolating each raw

BRDF image as a single high-dimensional vector, were reduced in linear sub-

space and nonlinear manifold analysis to define model parameters for varieties of

materials. The specular intensity and surface roughness of a glossy object sur-

face could be characterized perceptually using the material parameters associated

with the illumination and viewing directions, as well as representing other surface

characteristics of objects, such as metallic-like and fabric-like.

3.4. Estimating Fresnel Reflectance

A rough surface of an object can be considered as a collection of microfacets,

each of which is mirror-like. Specular reflection at the surface can be modeled

by describing the distribution of microfacets, with Fresnel reflectance on each of

them [46, 47]. With a given refractive index, which is a function of wavelength

at the surface patch, the Fresnel reflectance can be computed in Equation 2.8

at different incident angles. However, since the refractive index is determined

by the physical characteristics of surface materials, the refractive indices of only

limited kinds of common metal and nonmetal materials are currently available in

the Handbook of Optics [81], and in cases such as when the surface is stained,

the actual indices may be different.
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Figure 3.1. Fresnel reflectance at different incident angles, and with the refractive

indices range [1.3,1.7], increasing from bottom to top

To confirm that Fresnel reflectance varies with incident angle and wavelength

variation of refractive index, the Fresnel reflectance in terms of Equation 2.8

with refractive indices between 1.3 and 1.7, and incident angles at 0.75o intervals

between −90o and 90o, are synthesized, as shown in Figure 3.1. The effects of

incident angles and refractive indices on Fresnel reflectance are verified: as the

incident angles approach π/2, the Fresnel reflectance approaches 1.0; the larger

the reflective index, the larger the Fresnel reflectance. Therefore, it is necessary

to estimate the refractive index at each wavelength from reflection properties at

surfaces of a real object in some applications [82].

Cook and Torrance introduced a method to estimate refractive index with a

given Fresnel reflectance F0 at normal incidence, where θi = 0, using the simplified

Equation 3.1 [47]:

F0(λ) =

(
n(λ)− 1

n(λ) + 1

)2

. (3.1)

For a copper surface, values of Fresnel reflectance were calculated corresponding

to the normal reflectance, and then used to interpolate between the color of the
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material (θi = 0) and the color of the illuminations (θi = π/2) at each channel

of R, G, and B. This method ignored the fact that refractive indices and Fresnel

reflectance depend on the wavelength of incident light, although the RGB values

of material and illumination for synthetic objects were transformed using given

spectral reflectance of the material and given spectral power distribution of the

illumination.

Tanaka and Tominaga described a method to estimate refractive index for a

dielectric object, on the basis of the two assumptions that the refractive index

was independent of wavelength and that the specular reflectance parameter for

specular intensity was constant near grazing angles [72]. The specular reflec-

tion components were separated using the two vectors in RGB color space from

the images captured by a monochrome CCD camera with an RGB filter. Sur-

face normals were estimated using an iterative algorithm, with the pixel of peak

value of the specular reflection components as the initial value. By varying the

refractive indices between 1.3 and 1.7 in Equation 2.8, specular reflectance pa-

rameters for specular intensity and for surface roughness were estimated based on

the Torrance-Sparrow reflection model, and the refractive index was determined,

until the difference between the theoretical and separated specular reflection com-

ponents was minimal.

3.5. Conclusions

The aforementioned techniques, as partly summarized in Table 3.1, can provide

visually rich reflection properties of virtual objects, and some of them can even re-

produce the shape of the objects associated with the Fresnel reflectance. However,

these techniques all used RGB images of real objects, and rely on the assumption

that the input images are unsaturated, by controlling the illumination intensity

or by generating HDR images as the input images. With this assumption, the

peak intensity of specular reflection components at the normal incidence is avail-

able; therefore, the surface normals can be estimated, and the refractive indices

can be calculated simply. On the other hand, the present work can estimate ac-

curate reflectance parameters using spectral images, by replacing values that are

saturated due to the limited dynamic range of a CCD camera.
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Chapter 4

Measuring Spectral Images

To acquire the intrinsic reflection properties at the surface of a real object, it is

essential for a measurement system to be able to:

i Capture changes in reflection intensity with illumination positions;

ii Capture changes in reflection intensity with surface orientations;

iii Capture the spectral distribution of reflected light at the object surface.

Points [i] and [ii] are based on the theory that reflection intensity varies with

illumination and viewing directions, surface roughness, and shape of an object.

As we view a glossy object in the real world, the changes in reflection intensity

can be observed by arbitrarily moving any one of the three elements (the light

source, the camera, and the object surface) while the other two are fixed. To

capture reflection properties of an object with complex shapes, it is necessary to

tilt the surface orientation of the object so that each of its surfaces can face the

camera, while the 3D shape of the object can be obtained by using a rangefinder

[15, 79], or structured lighting [29]. Based on the images measured by tilting

the surface orientation of objects, the spatial positions, where interreflections

occur, may be detected so that interreflections between surfaces of complicated

objects can be taken into account while estimating reflectance parameters. For

point [iii], either a spectroradiometer or a spectrograph can meet the requirement.

However, a line-scanning spectrograph can provide higher resolution, with much

less measuring time than a point-based spectroradiometer.
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Figure 4.1. Diagram of measurement system

4.1. Measurement System

Since constructing a measurement system to capture reflection properties associ-

ated with shapes of a complicated object demands expensive equipment, such as

a robotic arm and its controlling system, in this dissertation, a simplified mea-

surement system is constructed using an imaging spectrograph and a moving light

source, as shown in Figure 4.1, under the following assumptions:

1. Only one light source is used in a dark space for the experiments;

2. A target object is fixed with one of its surfaces facing the camera, while the

light source is moving between −90o and 90o;

3. The surface normals of the target object are given, such as by a rangefinder

or by structured lighting.

With these assumptions, the ambient lighting and the interreflections between

objects and between the surfaces may be embedded into the diffuse and specular

reflection occurring at the surface. For simplification, the shape of target objects
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in this dissertation is approximated to a cylindrical shape with given surface

normals. The light source is rotated around the target object, which is placed

on a turntable. The imaging spectrograph, equipped with an objective lens and

a monochrome CCD camera, is stationary in front of the target object. The

rotation axis of the light source overlaps with the center axis of the target object,

and the surface normal vector is facing the camera. With these arrangements,

the strongest intensity of reflection is observed only when the light source and

the camera lie on the same line as the surface normal vector, but in opposite

directions.

The reflected light at an object surface enters the slit of the imaging spec-

trograph through the objective lens, as shown in Figure 4.2, and then disperses

via prisms into a spectral distribution in a range of wavelengths. The spectral

distribution of the reflected light with the spatial positions for each line of the

object surface is captured as an image on the CCD camera. The dynamic range of

the imaging spectrograph is dependent on that of the camera, such as 8 bits and

10 bits, and the wavelength range follows the spectral range of the spectrograph,

which can be calculated with several optical blocking filters.

Since the imaging spectrograph is a line scanner, which can measure one

linear area on the object surface, the target object on the turntable is rotated to

acquire spectral images over the whole surface of the object. A TOPCON SR3

spectroradiometer is used for measuring standard spectral distribution of colors

at the surface of the target object, to evaluate the spectral distribution estimated
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in experiments. TOPCON SR3 is a point-based detector, ranging from 380 nm

to 780 nm with 1 nm or 5 nm resolution.

4.2. Preprocessing Spectral Images

With spectral images acquired at each surface line of a target object, several pre-

processing steps are necessary to obtain reflection values at each wavelength, with

respect to S/N ratio and influence of the instruments used for the measurement

system, such as the light source, lens, and camera.

As shown in Equation 1.1, the intrinsic reflection values at each wavelength

can be obtained by removing spectral power distribution of illumination and

camera properties (including lens sensitivity and prism transmissivity) at each

wavelength. A spectral image of a white reference such as a teflon board with

given reflectance, captured with the same measurement system in the same illumi-

nation, meets the requirement to calibrate the spectral images of target objects,

after eliminating CCD dark current from all the spectral images and the white-

board image. CCD dark current can be obtained in a dark image, measured with

no light entering the imaging spectrograph or the CCD camera.

Sequences of calibrated spectral images of a surface line measured at dif-

ferent incident positions are transformed into spectral images with two axes of

wavelengths and incident positions, at different spatial positions of the measured

surface line, as shown in Figure 4.3.

The linear relationship between wavelength and pixel position at the spectral

axis is determined by regression analysis with correlation coefficient C = 0.999,

using four order interference filters of 449.1 nm, 500 nm, 601.2 nm and 702 nm.

The spectral axis is calibrated between 380 nm and 780 nm with respect to the

pixel positions.

To maximize the S/N ratio on the spectral images, the spectral image at a sin-

gle pixel may be smoothed using a moving average method, and reflection values

in the spectral image may be averaged across several wavelengths with respect to

the spectral axis, without aggravating the spectral resolution. Reflection values

at each wavelength are then extracted from the spectral image for each spatial

position, as shown in Figure 4.4.
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Figure 4.3. Transforming a sequence of calibrated spectral images at different

incident positions into spectral images at different spatial positions. Left: The

calibrated spectral images at different incident positions; Right: The spectral

images at different spatial positions of a surface line

The reflection value at each incident position consists of diffuse and specular

reflection components. For dielectric objects, the specular reflection component

may be zero at an incident position where only diffuse reflection occurs; however,

the diffuse reflection component is nonzero at an incident position where specular

reflection occurs. The extracted reflection values at each wavelength of a single

point for a surface line across different incident positions, as shown in Figure 4.4

(right), are used for the separation process.

4.3. Conclusions

In this chapter, a measurement system is described to capture the spectral distri-

bution of reflected light at the surface of an object, at different incident positions.

The measurement system was constructed comprising an imaging spectrograph

which is equipped with a monochrome CCD camera, and a light source that is

rotated around the object between −90o and 90o. With the spectral images mea-

sured from the measurement system, after removing the influence of illumination
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Figure 4.4. Extracting reflectance at each wavelength from a spectral image

for each spatial position. Left: A spectral image at a spatial position; Right:

Reflection values extracted at each wavelength.

and the CCD camera, reflection values across a sequence of incident positions

at each wavelength of a single surface point can be extracted for estimation of

reflectance parameters.
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Chapter 5

Separating Reflection Values and

Estimating Diffuse Reflectance

Parameters

Based on the dichromatic reflection model, as shown in Figure 2.8 and Equation

2.9, for dielectric objects, it is assumed that specular reflection is independent

of the wavelength of incident radiance. The influences of illumination and the

CCD camera used for the measurement are also assumed to be removed by the

preprocessing for the spectral images. Therefore, reflection at the surface of

an inhomogeneous object can be simplified, as shown in Equation 5.1, when

the diffuse and specular reflections are applied to the Lambertian and Torrance-

Sparrow reflection models, respectively.

E(λ, θr) = Rd(λ) cos θi + RsF (λ, θi)Ge−(α/σ)2/ cos θr. (5.1)

The reflection values E(λ, θr) are separated into diffuse and specular reflection

components, as shown in Figure 5.1. Then, from the diffuse reflection compo-

nents, diffuse reflectance parameters Rd(λ) are estimated; from the specular re-

flection components, specular reflectance parameters for intensity Rs and for sur-

face roughness σ are the parameters to estimate. In addition, Fresnel reflectance

F (λ, θi), including the refractive index n(λ) as shown in Equation 2.8, is also

estimated from the specular reflection components, according to applications.
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Figure 5.1. Separating reflectance into diffuse and specular reflection components

5.1. Separation Method

A simple method based on the intensity change across the incident positions is

described to separate reflection values into diffuse and specular reflection com-

ponents. Equation 2.6 of the Lambertian reflection model can be transformed

logarithmically into a linear form, as shown in Equation 5.2. Reflection values

at each wavelength are hypothesized as diffuse only reflection components, and

diffuse reflectance parameters are computed by applying the values to the Lam-

bertian reflection model, using the least squares method, as shown in Equation

5.3.

log(Ed(λ)) = log(Rd(λ)) + log(cos θi). (5.2)

εd =
∑
j=0

[log(E ′
j(λ))− (log(Rd(λ)) + log(cos θij))]

2, (5.3)

where j represents different incident positions. When the sum of the squares of

the difference (SSD) εd between the logarithm of the measured reflection values

E ′
j(λ) and the logarithm of the theoretical diffuse reflection components, which

are calculated with Rd(λ) cos θij, reaches a minimal value, Rd(λ) is determined.
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Figure 5.2. Process of separating reflection values into diffuse and specular re-

flection components

After detecting the maximal value for the reflection values at each wavelength,

the separation process is shown as in Figure 5.2.

(1) Subject the reflection values E ′(λ) lower than a threshold (such as the

maximum) to Equation 5.3, and compute a diffuse reflectance parameter,

since the reflection values may be saturated;

(2) Synthesize the theoretical diffuse reflection components Ed(λ) using this

parameter, as shown in Figure 5.2 (b), and subtract Ed(λ) from E ′(λ);

(3) Select values to the right and left sides of the peak position, using values

that are larger than a threshold (such as zero) as the specular refection

components Es(λ);

(4) Subtract Es(λ) from E ′(λ), and replace E ′(λ) with these values, as shown

in Figure 5.2 (d);

(5) Repeat from (1) to (4).
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When the difference between the current and previous computed diffuse re-

flectance parameters is lower than a threshold, the reflection values are considered

to be separated successfully into the two independent reflection components, as

shown in Figure 5.2 (e). With this separation method, the optimal diffuse re-

flectance parameter is determined as the diffuse reflectance parameter at the

current wavelength.

5.2. Experiments with Synthetic Data

To confirm the validity of the separation method and to determine the thresholds

used for the separation process, experiments were carried out with synthetic reflec-

tion values. The reflection values were synthesized on the basis of the Lambertian

reflection model for diffuse reflection components and of the Torrance-Sparrow

reflection model for specular reflection components.

In Equation 5.1, F (λ, θi) and G were considered as constant values, the values

for Rd, Rs, and σ were specified respectively as (100, 155, 10), and the incident

angles θi were assumed as between −90o and 90o with 0.75o intervals, as shown in

Figure 5.3 (Left). Moreover, noise values were generated using random number

generation within ±5% of the peak intensity, and added to the reflection values

in Figure 5.3 (Left), to yield Figure 5.3 (Right).

Using two types of reflection values, with and without noise, experiments were

conducted by subjecting reflection values lower than the maximum for each type

to Equation 5.3. The half value of the maximum and the average value for each

type of reflection values were also used as the threshold described above in the

separation process (1), for comparing computation costs. The diffuse reflectance

parameter for each type of reflection values was obtained after two estimations,

as shown in Table 5.1 with different thresholds. The experimental results showed

that the separation method was efficient for reflection values either with or with-

out noise; and that the threshold for reflection values subjected to the least

squares method, their average value showed better advantage than the other two.

Therefore, the average value of reflection values can be used for further separation

experiments.

Diffuse and specular reflection components were separated as shown in Figure

49



0

50

100

150

200

250

300

0

50

100

150

200

250

300

Incident positions (degrees)

In
te

ns
it

y

-90                                                0             90

Incident positions (degrees)

-90                                                0             90

Figure 5.3. Synthetic reflection values. Left: Reflection values without noise;

Right: Reflection values with noise.

Table 5.1. Experimental results with synthesized centrosymmetrical reflection

values shown in Figure 5.3

Maximum Half value Average value

Without noise 100.00 100.00 100.00

With noise 100.78 100.86 100.54

5.4. In this Figure, specular reflection components are shown in black, diffuse

reflection components in magenta, and finally estimated diffuse reflection compo-

nents in blue. Note that in Figure 5.4 (Left), the estimated and separated diffuse

reflection components overlap.

5.3. Experiments with Measured Data

The measurement system was constructed as shown in Figure 5.5. A halogen light

source was rotated between −90o and 90o at 0.75o intervals around a target object

on a turntable, 1 m away from the rotation axis. The spectral power distribution

of the halogen light source is shown in Figure 5.6. The CCD camera equipped with

an imaging spectrograph was a [CS3450] monochrome CCD camera, produced by
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reflection components in blue

Tokyo Electric Industry, whose spectral response is shown in Figure 5.7.

The target object was placed on another turntable, having the same axis of

rotation as the turntable used for the light source, and rotated through 360o. A

color cylinder and a teacup, as shown in Figure 5.8, were measured at 0.625o and

2.5o intervals, respectively. The color cylinder was created using matte and glossy

types of paper, on each of which there were check patterns of 6 colors (red, green,

blue, yellow, magenta, and cyan), as well as several glued areas to vary reflection

properties on the surface. The teacup was a cylindrical ceramic structure, with

complicated colors and textures on its surface. Since the back of the teacup was

entirely white, only spectral images of its front, as shown in Figure 5.8 (Right),

were measured.

After removing the influences of illumination and the CCD camera, the spec-

tral images obtained from these two objects were preprocessed as described in

Section 4.2. Reflection values at 5-nm intervals between 380 nm and 780 nm

were separated into diffuse and specular reflection components, and diffuse re-

flectance parameters were then estimated at each wavelength. The estimated

diffuse reflectance parameters at the surface of matte and glossy paper for blue,
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Figure 5.5. Constructed measurement system

cyan, green and magenta, are shown in Figures 5.9 to 5.12, and those at the

surface of the glossy paper for yellow and red are shown in Figure 5.13, compared

with the standard spectral distribution of the same colors at the surface measured

with a spectroradiometer. The diffuse reflectance parameters estimated at 5-nm

intervals between 380 nm and 780 nm were computed into R, G, B values using

r(λ), g(λ), and b(λ) color matching functions. The opened-up image of the color

cylinder and the front image of the teacup are shown in Figure 5.14.

5.4. Discussion

Separating reflection values accurately is crucial for estimation of reflectance pa-

rameters. Using a method to separate reflection values and to estimate diffuse

reflectance parameters, experiments were carried out with synthetic data and

measured data.

From experimental results with synthetic data, as shown in Figure 5.4 and in

Table 5.1, reflection values, either with or without noise, can be separated suc-

cessfully. Diffuse reflectance parameters with the two types of synthetic data are
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Figure 5.6. Spectral power distribution of the halogen light source

estimated accurately. The average of reflection values can be a reliable threshold

in determining reflection values subjected to the least squares method for robust

separation and at low computation cost.

From experimental results with measured data, as shown in Figures 5.9 to 5.13,

diffuse reflectance parameters estimated for six colors on either matte or glossy

paper are in good agreement with the standard spectral distribution of the same

colors at those surfaces, in the range of medium and long wavelengths. Diffuse

reflectance parameters at short wavelengths are insufficient, since, as shown in

Figures 5.6 and 5.7, the halogen light source and the CCD camera used for the

experiments are both weak in the range of short wavelengths. This problem

can be overcome by using a camera and light source which are strong at short

wavelengths, and reducing noise during the measurement of spectral images.

In Figure 5.14, colors on the matte or glossy paper of the cylinder are repro-

duced sufficiently based on the estimated diffuse reflectance parameters. Colors

on the teacup are reproduced adequately. The images in Figure 5.14 look blurred

because, since the imaging spectrograph can measure only one line on the surface
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at a time, the target object was rotated on a turntable at an interval (0.625o for

the teacup, 2.5o for the color cylinder) rather than continuously. This problem

can be improved by mounting an optical lens with high precision on the imag-

ing spectrograph; however, it is difficult to solve this kind of problem using a

point-based or line-based light detector.

5.5. Conclusions

In this chapter, a method was described to separate reflection values into diffuse

and specular reflection components over a sequence of incident positions, on the

basis that, at each surface point, the intensity of specular reflection is dependent

on illumination and viewing directions; in contrast, diffuse reflection is indepen-

dent of viewing direction. By hypothesizing that reflection values are diffuse only

reflection components, a least squares method was applied, for reflection values

that are lower than the average value, to a logarithmically transformed equation

of the Lambertian reflection model. Using this separation method, reflection val-

ues can be separated successfully without selecting pixels at which only diffuse

reflection occurs, and diffuse reflectance parameters can be estimated at each

wavelength automatically when the reflection values are separated. Results from
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Color cylinder Teacup

Figure 5.8. Two target objects for experiments

experiments using two types of synthetic data, with and without noise, and using

measured spectral images of objects with various colors and gloss, weak or strong,

revealed that this method is efficient for separating reflection values and for es-

timating diffuse reflectance parameters at low computation cost (two or three

estimations).
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Figure 5.9. Estimated diffuse reflectance parameters on blue paper. Left: Matte

paper; Right: Glossy paper
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Figure 5.10. Estimated diffuse reflectance parameters on cyan paper. Left: Matte

paper; Right: Glossy paper
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Figure 5.11. Estimated diffuse reflectance parameters on green paper. Left:

Matte paper; Right: Glossy paper

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

R
ef

le
ct

an
ce

380               480                   580                   680               780

Wavelength (nm)

380               480                   580                   680              780

Standard 
Estimated

Figure 5.12. Estimated diffuse reflectance parameters on magenta paper. Left:

Matte paper; Right: Glossy paper
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Figure 5.13. Estimated diffuse reflectance parameters on glossy paper. Left:

Yellow paper; Right: Red paper

a) b)

Figure 5.14. RGB values of color cylinder and teacup calculated from estimated

diffuse reflectance parameters. a): Opened-up color cylinder; b): Front of teacup
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Chapter 6

Estimating Specular Reflectance

Parameters

From the separated specular reflection components, specular reflectance param-

eters for gloss intensity and for surface roughness can be estimated based on

reflection models for specular reflection, such as the Torrance-Sparrow model,

using existing techniques.

However, the separated specular reflection components may be saturated due

to reflection values being saturated at an incident position where specular reflec-

tion is strong, or at the smooth surface of an object; and, since diffuse reflection

varies with wavelength even for a dielectric inhomogeneous object, specular re-

flection components are separated with different levels of intensity at each wave-

length, as shown in Figure 6.1. Therefore, specular reflectance parameters may be

estimated inaccurately by assuming reflection values are unsaturated. A method

is described in Section 6.1 to accurately estimate specular reflectance parameters

for gloss intensity and for surface roughness even from saturated spectral images.

The Torrance-Sparrow reflection model assumes that the surface of an object

is a collection of microfacets, and Fresnel reflectance describes how light is re-

flected from each microfacet, and how the light affects the specular reflection at

a surface point with incident positions. Usually, the Fresnel reflectance F (λ, θi)

in Equation 2.7 is assumed as a constant value such as 1.0, or is calculated with

a given or estimated refractive index. In Section 6.2, a method is introduced

to estimate Fresnel reflectance by estimating refractive index at each wavelength
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Figure 6.1. Reflection values and the separated specular reflection components

at different wavelengths. Left: Reflection values; Right: Separated specular re-

flection components. For both, at 550 nm in black, 650 nm in green, and 720 nm

in magenta

from specular reflection components.

6.1. Estimation of Specular Reflectance Param-

eters

In Figure 6.1, it is shown that the intensity of the separated specular reflection

components may not be the real intensity of specular reflection at the surface point

because of the limited dynamic range of a light detector. Since the dichromatic re-

flection model assumes that specular reflection is independent of wavelength, and

since there may be unsaturated reflection values at a particular wavelength at the

same surface point, theoretically, we can detect unsaturated reflection values at

the particular wavelength and consider specular reflection components separated

from them as the specular reflection components of the surface point. However,

there are difficulties in determining with a threshold whether reflection values

are unsaturated, and in ensuring that unsaturated reflection values at a partic-

ular wavelength are usable due to the noise level. Herein a method is described

to estimate specular reflectance parameters from specular reflection components,

60



which are assumed to be separated from saturated reflection values. Naturally,

this method is also applicable to specular reflection components separated from

unsaturated reflection values.

6.1.1 Proposed Method

The least squares method is applied to estimate specular reflectance parameters

from specular reflection components, eliminating values which may be saturated

in the original reflection values. The Fresnel reflectance F (λ, θi) and the geo-

metrical attenuation G in Equation 2.7 are assumed as constant values, and the

equation is transformed logarithmically to a linear form, as shown in Equation

6.1:

log(Es(λ, θr)) = log(Rs)− α2/σ2 − log(cos θr). (6.1)

When SSD εs between the logarithm of the separated specular reflection com-

ponents E ′
sj(λ, θr) and the logarithm of the theoretical specular reflection com-

ponents, which are calculated with Rs exp(−α2
j/σ

2)/ cos θrj, at different incident

positions j, reaches a minimal value, specular reflectance parameters Rs and σ

are determined, as shown in Equation 6.2:

εs =
∑
j=0

[log(E ′
sj(λ, θr))− (log(Rs)− α2

j/σ
2 − log(cos θrj))]

2. (6.2)

Since specular reflection depends on illumination and viewing directions, it

is necessary to adjust the center of saturated values to an incident position of

0o, where the highest intensity of specular reflection is assumed. The maximal

value of specular reflection components at each single wavelength is then detected.

Specular reflection components that are smaller than [maximal value − a thresh-

old] are subjected as E ′
sj(λ, θr) in Equation 6.2. Finally, specular reflectance

parameters Rs and σ are estimated at each single wavelength. For dielectric

objects, Rs and σ can be a representative value, such as a mean value, of the

estimated Rs and σ in the range of wavelengths, respectively, at the same surface

point.
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Figure 6.2. Synthetic specular reflection components with Rs = 255 and σ = 10

6.1.2 Experiments with Synthetic Data

To confirm the validity of the method for estimating specular reflectance pa-

rameters from specular reflection components, experiments were conducted with

synthetic specular reflection components. The specular reflection components

were synthesized based on the Torrance-Sparrow reflection model, by supposing

that Rs and σ are respectively 255 and 10, and that F (λ, θi) and G are 1.0 in

Equation 2.7, as shown in Figure 6.2.

The saturation level represents how much the maximal intensity of specular

reflection components is saturated with respect to an original intensity. For ex-

ample, when the maximal intensity of specular reflection components is 25.5, the

saturation level is 90% with respect to an expected intensity of 255. Since the

intensity of specular reflection components may be truncated at different levels at

different wavelengths for the same surface point, specular reflection components

with different saturation levels ranging between 0% and 90% of the original in-

tensity of 255 were synthesized, as shown in Figure 6.3 (Left). Furthermore, since

measured data usually includes noise, random noise was generated within ±5%

of the original intensity of 255, and added to the specular reflection components

at each saturation level in Figure 6.3 (Left), as shown in Figure 6.3 (Right).

Subjecting 10 types of specular reflection components without noise to Equa-

tion 6.2, specular reflectance parameters Rs and σ were estimated, eliminat-
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Figure 6.3. Synthetic specular reflection components at different saturation levels.

Left: Without noise; Right: With noise. For both, the saturation level ranges

[0%, 90%] from top to bottom

ing values which were equal to the maximal value. For 10 types of specular

reflection components with noise, the standard deviation (SD) of the random

noise was calculated, and specular reflectance parameters Rs and σ were es-

timated after eliminating values that were larger than [maximal value - SD].

Experimental results using data with and without noise, at 10 saturation lev-

els, are shown in Table 6.1. Note that in Table 6.1, error is calculated as

[|original value − estimated|/original value], and represented as %. The original

values for Rs and σ are 255 and 10, respectively.

6.1.3 Experiments with Measured Data

The SD of the current dark image was calculated, and the maximal value in sep-

arated specular reflection components at each single wavelength was detected.

Values that were larger than [maximal value − SD] were considered saturated.

Specular reflection components were adjusted so that the center of the saturated

values was at the incident position 0o. Specular reflectance parameters for gloss

intensity Rs and for surface roughness σ were estimated at each single wavelength.

Since the target objects were dielectric ones, specular reflectance parameters Rs

and σ at each surface point were computed as a mean value of Rs and σ esti-
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Table 6.1. Estimated Rs and σ using synthetic specular reflection components

with and without noise (original values for Rs and σ are 255 and 10).

1.010.101.30258.320.010.00.0255.080%

1.410.144.43266.290.010.00.0255.060%

1.010.103.71245.550.010.00.0255.050%

0.610.060.16254.580.010.00.0255.030%

0.610.060.25254.350.010.00.0255.040%

1.510.155.23268.330.010.00.0255.070%

0.510.050.55253.610.010.00.0255.020%

0.0

0.0

0.0

Error in  
σσσσ(%)

10.0

10.0

10.0

Estimated
σσσσ

0.0

0.0

0.0

Error in Rs
(%)

255.0

255.0

255.0

Estimated 
Rs

Without noise

90%

10%

0%

Saturation 
level

With noise

0.39.978.65232.95

0.610.060.20254.49

0.610.060.37254.05

Error in 
σσσσ(%)

Estimated
σσσσ

Error in Rs
(%)

Estimated 
Rs

1.010.101.30258.320.010.00.0255.080%

1.410.144.43266.290.010.00.0255.060%

1.010.103.71245.550.010.00.0255.050%

0.610.060.16254.580.010.00.0255.030%

0.610.060.25254.350.010.00.0255.040%

1.510.155.23268.330.010.00.0255.070%

0.510.050.55253.610.010.00.0255.020%

0.0

0.0

0.0

Error in  
σσσσ(%)

10.0

10.0

10.0

Estimated
σσσσ

0.0

0.0

0.0

Error in Rs
(%)

255.0

255.0

255.0

Estimated 
Rs

Without noise

90%

10%

0%

Saturation 
level

With noise

0.39.978.65232.95

0.610.060.20254.49

0.610.060.37254.05

Error in 
σσσσ(%)

Estimated
σσσσ

Error in Rs
(%)

Estimated 
Rs

mated at each single wavelength, respectively. The estimated specular reflectance

parameters Rs and σ of the color cylinder are shown in Figure 6.4, and those of

the teacup in Figure 6.5. In Figures 6.4 and 6.5, estimated Rs values larger than

410.90 are represented in white. The larger the values of Rs are, the stronger the

specular reflection is at the surface point; and the larger the values of σ are, the

rougher the surface of the target object is.

Reflection values reproduced using the estimated diffuse reflectance parameter

Rd, specular reflectance parameters Rs and σ at 580 nm and 670 nm of different

surface points are shown in Figure 6.6, compared with the extracted reflection

values from the spectral images at the same surface points. The diffuse reflectance

parameter Rd, specular reflectance parameters Rs and σ at 580 nm are estimated

as (0.21, 388.98, 4.02), and those at 670 nm as (0.12, 644.62, 15.32).
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Figure 6.4. Estimated specular reflectance parameters Rs and σ of color cylinder

6.1.4 Discussion

Using the method to estimate specular reflectance parameters from saturated

specular reflection components, experiments were carried out using synthetic data

at 10 saturation levels, either without or with noise, and using specular reflection

components separated from the measured reflection values.

As shown in Table 6.1, experimental results using synthetic data without noise

showed that specular reflectance parameters either Rs or σ are estimated to be

the same as the original values at any saturation level, with no error. Experi-

mental results using synthetic data with noise showed that specular reflectance

parameters Rs and σ were estimated accurately for the data at saturation levels

above 40%, with less than 1% error in the original values for Rs and σ; param-

eters Rs and σ were estimated sufficiently even at other saturation levels, with

less than 2% error in the original value for σ and less than 10% error for Rs.

The experimental results using synthetic specular reflection components at

different saturation levels verified that this method enables efficient estimation

of specular reflectance parameters for gloss intensity and for surface roughness,

from either saturated or unsaturated specular reflection components.

Experimental results using the separated specular reflection components, as

shown in Figure 6.4, showed that physical characteristics of the surfaces of the

color cylinder are reproduced sufficiently. Physical properties of glossy paper,

matte paper, the boundaries of the two types of paper, and the glued areas on
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Figure 6.5. Estimated specular reflectance parameters Rs and σ of the teacup

either matte or glossy paper, are estimated adequately. For the teacup shown

in Figure 6.5, the specular reflectance parameters for surface roughness σ were

estimated accurately; areas where strong specular reflection was measured were

appeared bright for the specular reflectance parameters for gloss intensity Rs,

and the other areas appeared darker, since the teacup was approximated as an

ideal cylinder for the estimation. For measuring strong specular reflection at

the other areas, it is necessary to tilt surface orientations of the target object

while using the same settings for the light source and imaging spectrograph in

the measurement system.

As shown in Figure 6.6, the reflection values reproduced using diffuse re-

flectance parameters Rd, specular reflectance parameters Rs and σ are in good

agreement with the measured reflection values; and, at incident positions close

to 0o, the reproduced reflection values replaced values that were saturated in

the measured reflection values because of the limited dynamic range of the CCD

camera.

The experimental results with specular reflection components separated from

the measured spectral images demonstrated that specular reflectance parameters

for gloss intensity and for surface roughness can be estimated adequately when

either weak or strong specular reflection is present, and even when the strong

specular reflection is saturated in input images.
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Figure 6.6. Estimated reflection values using the estimated reflectance parame-

ters, compared with those extracted from spectral images at the same wavelengths

of surface points. Left: at 580 nm; Right: at 670 nm. For both, estimated and

measured reflection values are represented separately in magenta and in black

6.2. Estimation of Fresnel Reflectance

Fresnel reflectance can be computed with given refractive indices for dielectric

materials in Equation 2.8. The refractive indices of transparent materials can

be measured using a refractometer; however, there are difficulties in measuring

the refractive indices of opaque surface materials and in having a reliable list

of refractive indices for most materials, since refractive indices are dependent

on wavelength, and on conditions such as temperature and purity, at different

surface points of an inhomogeneous object.

Using the method described in Section 5.1 to separate reflection values and to

estimate diffuse reflectance parameters at each single wavelength of each surface

point, the refractive index can be estimated at each wavelength from unsaturated

reflection values measured at normal direction in the simplified Equation 3.1.

However, it is difficult to capture reflection properties at normal directions of an

object, and to assure the reflection values are unsaturated.

A new method is introduced to estimate refractive index, and to estimate spec-

ular reflectance parameters Rs and σ at each wavelength from saturated specular
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reflection components, given that the method described in Section 6.1 is efficient

for estimating specular reflectance parameters from specular reflection compo-

nents at different saturation levels, while the Fresnel reflectance and geometric

attenuation factor are assumed as 1.

6.2.1 Proposed Method

By assuming the geometric attenuation factor as a constant value, the equation

of the Torrance-Sparrow reflection model is transformed logarithmically into a

linear form, as shown in Equation 6.3, and Equation 6.2 is modified to Equation

6.4 with the same definition:

log(Es(λ, θr)) = log(Rs) + log(F (λ, θi))− α2/σ2 − log(cos θr), (6.3)

εs =
∑
j=0

[log(E ′
sj(λ, θr))− (log(Rs)+ log(F (λ, θi))−α2

j/σ
2− log(cos θrj))]

2. (6.4)

Fresnel reflectance is calculated in terms of Equation 2.8 with given refractive

indices ranging between 1.3 and 2.0 for a dielectric object. The flowchart of the

process to estimate refractive index n, specular reflectance parameters Rs and σ

is shown in Figure 6.7.

First, Fresnel reflectance is computed with an initial n0, and specular re-

flectance parameters Rs and σ are estimated with the method described in Section

6.1. SSD εs is then computed between measured specular reflection components

and theoretical specular reflection components, which are calculated using the

computed Fresnel reflectance and the estimated Rs and σ in Equation 2.7. The

process is repeated by replacing n at 0.001 intervals between 1.3 and 2.0, and

a minimal SSD is then detected. At the same time, a refractive index n and

specular reflectance parameters Rs and σ are determined.

6.2.2 Experiments with Synthetic Data

To confirm the validity of the proposed method, experiments were conducted us-

ing synthetic specular reflection components. The specular reflection components
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Figure 6.7. Flowchart for estimating refractive index and specular reflectance

parameters
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Figure 6.8. Synthetic specular reflection components with n = 1.5, Rs = 255,

and σ = 10

were synthesized based on the Torrance-Sparrow reflection model in Equations

2.7 and 2.8, with Rs, σ, and n as (255, 10, 1.5), as shown in Figure 6.8. In a

similar way to that described in Section 6.1, specular reflection components were

synthesized with 10 saturation levels of [0%, 90%], without noise and with noise

randomly generated within ±5% of the original intensity of 255. The saturated

specular reflection components are shown in Figure 6.9. Data without noise is

at Left and that with noise at Right; for data with or without noise, saturation

levels range between 0% and 90% from top to bottom.

Using 10 types of saturated specular reflection components either without

or with noise, specular reflectance parameters Rs and σ were estimated, while

assuming F (λ, θi) and G as 1. The estimation results are shown in Table 6.2.

Using 10 types of saturated specular reflection components either without or

with noise, refractive index n, specular reflectance parameters Rs and σ were

estimated using the method proposed in this section. The estimation results are

shown in Table 6.3.

6.2.3 Discussion

Using the method to estimate refractive index and specular reflectance param-

eters at each wavelength, experiments were carried out using synthetic specular
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Figure 6.9. Synthetic specular reflection components at different saturation levels.

Left: Without noise; Right: With noise. For both, the saturation level ranges

[0%, 90%] from top to bottom

reflection components at 10 saturation levels either without or with noise.

From specular reflection components without noise, specular reflectance pa-

rameters Rs and σ as shown in Tables 6.2 and 6.3, and refractive index n as

shown in Table 6.3, were estimated accurately at any saturation level.

From specular reflection components with noise, at saturation levels above

80%, the specular reflectance parameters Rs and σ in Table 6.2 were estimated

sufficiently with around 10% and 1.5% errors with respect to the original values

for Rs and σ, respectively. In Table 6.3, the specular reflectance parameters for

gloss intensity Rs were estimated with less error in the original value for Rs, and

the specular reflectance parameters for surface roughness σ were estimated with

comparable sufficiency as in Table 6.2; however, the refractive indices n were

estimated inaccurately.

Experimental results demonstrated that specular reflectance parameters for

surface roughness can be estimated stably; and those for gloss intensity can be

refined by taking Fresnel reflectance into account for given refractive indices of

surface materials. The new method can be effective for estimating specular re-

flectance parameters for gloss intensity using the stability of estimating parame-

ters for surface roughness. On the other hand, more work is required to estimate
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Table 6.2. Estimated Rs and σ using synthetic specular reflection components

with and without noise (original values for Rs, σ, and n are 255, 10, and 1.5)

0.29.985.0242.200.010.04.0244.880%

0.010.003.6245.860.010.04.0244.860%

1.59.8510.9227.190.010.04.0244.850%
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Rs
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σσσσ(%)

Estimated
σσσσ

Error in Rs
(%)
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refractive index at each wavelength, based on the complicated Equation 2.8.

6.3. Reproducing Reflection Properties

Using diffuse reflectance parameters estimated at each 5-nm interval in Section

5.3, diffuse reflection in RGB values of the cylinder and teacup were reproduced

based on the Lambertian reflection model, as shown in Figure 6.10. Using specu-

lar reflectance parameters for gloss intensity and for surface roughness estimated

in Section 6.1, specular reflection in RGB values of the two objects was reproduced

based on the Torrance-Sparrow reflection model, assuming Fresnel reflectance and

the geometric attenuation factor as 1. Based on the dichromatic reflection model,

reflection properties (color and gloss) of the color cylinder and of the teacup are

shown in Figure 6.11.

In Figures 6.10 and 6.11, colors of the glossy and matte paper of the cylinder

are reproduced sufficiently, and gloss on matte and glossy paper is reproduced
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Table 6.3. Estimated n, Rs and σ using synthetic specular reflection components

with and without noise (original values for n, Rs, and σ are 1.5, 255, and 10)

7.8

0.2

0.0

0.1
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0.9
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0.8

0.6
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as realistically as it appears on a real object: much stronger gloss is observed

on glossy than on matte paper in the same illumination and viewing directions,

and at the same height of the cylinder. Colors and gloss of the teacup are repro-

duced adequately; however, the reproduced image is blurred because the imaging

spectrograph for measuring spectral images is a line scanner.

Colors and gloss at the back side of the cylinder show dramatic variations

in different light sources, as shown in Figure 6.12. In this manner, reflection

properties of an object can be reproduced associated with illuminations in a

virtual environment where the object is exhibited, while at its side, representing

intrinsic reflection properties of the object according to applications.

6.4. Conclusions

In this chapter, two methods, with and without estimation of Fresnel reflectance,

are described to estimate specular reflectance parameters for gloss intensity and
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a) Color cylinder b) Teacup

Front side Back side

Figure 6.10. Reproduced diffuse reflection of the color cylinder and the teacup

for surface roughness from either unsaturated or saturated specular reflection

components. Using the method that assumes Fresnel reflectance as a constant

value, experimental results for synthetic specular reflection components, with

and without noise, at different saturation levels, and using measured specular

reflection components of real objects with weak or strong gloss, have shown that

specular reflectance parameters for surface roughness can be estimated accurately,

and those for gloss intensity adequately.

Using the method that estimates Fresnel reflectance in terms of the compli-

cated Fresnel equation, experimental results for synthetic specular reflection com-

ponents, with and without noise, at different saturation levels, have demonstrated

that specular reflectance parameters for surface roughness can be estimated accu-

rately; specular reflectance parameters for gloss intensity can be estimated more

precisely by taking Fresnel reflectance into account than by assuming Fresnel re-

flectance as a constant value. However, the refractive index cannot be determined

properly with this method because the equation is unsolvable.

Using either of these two methods, intensity of specular reflection components

can be estimated by replacing saturated values at positions where highlights are

measured because of the limited dynamic range of a CCD camera. Experimental

results based on the estimated diffuse and specular reflectance parameters of

different objects have revealed that colors and gloss can be reproduced sufficiently.
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a) Color cylinder b) Teacup

Front side Back side

Figure 6.11. Reproduced diffuse and specular reflection of the color cylinder and

the teacup
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Figure 6.12. Various appearances of reflection properties at the back side of color

cylinder in different light sources
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Chapter 7

Discussion

The objectives of the present study were to acquire physically sufficient infor-

mation about colors and gloss at the surface of an object; to estimate accurate

reflectance parameters; and to reproduce reflection properties using accurately

estimated reflectance parameters, associated with illuminations in a virtual envi-

ronment such as a digital museum for cultural heritage artifacts.

The experimental results revealed that, by applying the measurement system

and the methods described in this dissertation, diffuse reflectance parameters for

color can be estimated accurately at each wavelength using spectral images, with-

out the influence of illumination and the CCD camera used for the measurement;

specular reflectance parameters for gloss intensity and for surface roughness can

be estimated sufficiently from either saturated or unsaturated specular reflection

components, replacing values that are saturated due to the limited dynamic range

of a light detector.

Discussion now is focused on several assumptions in the present work, and on

possible solutions to these assumptions.

Given geometrical information Geometrical shape is a fundamental attribute

of an object, and greatly affects reflection properties, especially gloss, including

interreflections. In the measurement system, it is assumed that each surface of an

object with a complicated shape is measured either by tilting its surface orienta-

tion toward the imaging spectrograph, which is fixed in front of the object; or by

moving the imaging spectrograph in arbitrary directions around the object with
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an instrument such as a robotic arm, when the object is fixed. The geometrical

shape of objects may be given, such as for commercial goods in online shops;

however, information about the shape of cultural heritage artifacts is often un-

known. It is necessary to measure reflection properties associated with the shape

of an object, using a rangefinder or using structured light. Moreover, on the

basis of information about shape, interreflections may be taken into account in

separating diffuse and specular reflection components, by selecting surface points

where diffuse or specular interreflections occur, according to incident positions.

Parallel incident light Specular reflection varies sensitively with illumination

and viewing directions; therefore, it is important to measure reflection properties

precisely by moving the light source/camera in directions on a hemisphere, or

by tilting surface orientations of the object in arbitrary directions, without as-

sumptions such as that incident light arriving at each surface point of an object

is parallel, as in existing literature in CG&CV.

The dichromatic reflection model In the real world, objects are created not

only with opaque dielectric materials, but also with various materials such as

transparent materials or metals. Since diffuse reflectance parameters for colors,

and specular reflectance parameters for gloss intensity and for surface rough-

ness, can be estimated at each wavelength, the estimation methods described in

this dissertation can be extended for various materials. However, the separation

method requires an appropriate model, which can interpret reflection and other

interactions between incident light and surface materials, such as absorption for

metals and refraction for transparent materials, instead of the dichromatic reflec-

tion model.

Constant F (n(λ), θi) and G in the Torrance-Sparrow reflection model

Fresnel reflectance and the geometrical attenuation factor in the Torrance-Sparrow

reflection model may have a large influence on the intensity of specular reflection

at very rough surfaces of objects such as cloth and clay. Fresnel reflectance can

be computed with a given refractive index at each wavelength. However, it is

difficult to estimate refractive indices from specular reflection components which

are saturated, using the unsolvable Fresnel equation. New methods are desirable

for obtaining the refractive index at each wavelength of a single surface point.
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Figure 7.1. Asymmetrical reflection values. Left: Reflection values without noise;

Right: Reflection values with noise

The geometrical attenuation factor may be estimated by modeling interreflections

between microfacets at the rough surface of an object, when reflection properties

can be measured in arbitrary illumination and viewing directions.

Symmetrical reflection values The measurement system described in the

present work has assumed that the peak intensity of reflected light is measured at

0o with a light source moving between −90o and 90o. Using the measured spectral

images or symmetrically synthetic reflection values, the separation method in

Section 5.1 has shown its efficiency. To confirm that the method can be applied

for asymmetrical reflection values, which are often obtained when surface normals

of an object with complicated shapes are not on the same line as the optical axis

of the camera, with and without noise, two types of asymmetrical reflection values

were synthesized based on the reflection models, with Rd, Rs, and σ as (100, 155,

10) in Equation 5.1, in a similar way to that used for synthesizing the symmetrical

data described in Section 5.2. The results are shown in Figure 7.1.

Experiments using these two types of reflection values were conducted by

subjecting reflection values lower than the maximum, or the half value of the

maximum, or the average value of each type of reflection values, to Equation

5.3. Diffuse reflectance parameters with each of the thresholds were estimated,

as shown in Table 7.1; diffuse and specular reflection components were separated,

as shown in Figure 7.2.
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Table 7.1. Experimental results with synthesized asymmetrical reflection values

shown in Figure 7.1

Maximum Half value Average value

Without noise 100.00 100.00 100.00

With noise 101.28 101.11 100.54
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Figure 7.2. Separated diffuse and specular reflection components from asymmet-

rical reflection values. Left: Without noise; Right: With noise. For both Left

and Right: specular reflection components in black, diffuse reflection components

in magenta, and estimated diffuse reflection components in blue

The experimental results in Table 7.1 and Figure 7.2 show that, by apply-

ing the separation method, asymmetrical reflection values can also be separated

successfully; diffuse reflectance parameters can be estimated accurately at low

computation cost. However, since specular reflection is dependent on the inci-

dent and viewing directions, it is necessary to adjust the peak position, or center

position for saturated values, of specular reflection components to 0o for estimat-

ing specular reflectance parameters accurately.

As described above, accurate reflection properties at surfaces of an object can be

captured without assumptions, in arbitrary illumination and viewing directions

on a hemisphere, associated with measuring the shape of the object. However,
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measuring reflection properties perfectly for numerous combinations of illumina-

tion and viewing directions requires a large amount of measurement time and high

storage capacity for vast numbers of input images. This problem is commonly

encountered in this kind of work in CG&CV, although it can be addressed by

accurately estimating various kinds of parameters, such as for diffuse and spec-

ular reflection, from numerous amount of input images using the separation and

estimation methods described in the present work.
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Chapter 8

Conclusions

8.1. Summary

To capture reflection properties accurately at the surface of an object, and to

estimate reflectance parameters precisely, a measurement system with an imaging

spectrograph fixed in front of the target object, and a light source rotating around

the target object between −90o and 90o, has been constructed to measure spectral

images at each incident position.

A separation method has been introduced to separate reflection values after

removing the influence of illumination and camera, and to estimate diffuse re-

flectance parameters at each wavelength of a surface point, from spectral images,

along with the separation.

Two methods have been described to estimate specular reflectance parame-

ters, one with and the other without estimating Fresnel reflectance, from either

unsaturated or saturated specular reflection components.

Experimental results with synthetic and measured reflection values, symmet-

ric or asymmetric, have demonstrated that reflection values can be separated

successfully, and that diffuse reflectance parameters for colors can be estimated

accurately at each wavelength from spectral images using the separation method.

Experimental results with synthetic and separated specular reflection compo-

nents at different saturation levels have revealed that specular reflectance param-

eters for gloss intensity and for surface roughness can be estimated satisfactorily

using these methods.
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8.2. Contributions

The ultimate aim in CG&CV is to realistically model surface characteristics, such

as reflection properties, shape, and texture, of real objects, and there have been

several contributions in the present dissertation to that aim.

First, spectral images of an object can be captured using a new measurement

system with an imaging spectrograph, which is equipped with a monochrome

CCD camera, and a light source that is rotated around the object. Using these

spectral images, instead of RGB images, spectral reflectance of the object can

be estimated as a function of wavelength. Based on accurate diffuse reflectance

parameters estimated with this method, after removing the influence of illumina-

tion and the camera used for measurement, colors of the object can be reproduced

realistically, without effects such as metamerism.

Second, reflection values can be separated successfully at low computation

cost using the least squares method, based on the fact that intensity of specular

reflection depends on illumination and viewing directions, whereas diffuse reflec-

tion is independent of viewing direction at each surface point. The new method

requires neither color segmentation, nor any particular instrument such as a po-

larization filter, nor extra processes such as PCA analysis to select the two vectors

of diffuse and specular reflection in a color space and creating EPI images, as in

existing studies. Using the new method, diffuse reflectance parameters can be

estimated accurately at each wavelength along with the separation.

Third, specular reflectance parameters for gloss intensity and for surface

roughness can be estimated efficiently from either unsaturated or saturated spec-

ular reflection components. Up to now, most techniques to model and render

reflection properties in CG&CV have been directed at removing specular reflec-

tion from images as a nuisance, since specular reflection plays an important role

in evaluating realism in a synthetic object, which is rendered with input images

measured in real illumination different from that in the virtual environment. Sev-

eral techniques have been developed to estimate specular reflectance parameters,

assuming input images to be unsaturated, either by controlling the intensity of

illumination or by generating HDR images as input images with several images

captured at different exposure times. However, there are difficulties in ensuring

that input images are unsaturated. Using the new method, specular reflectance
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parameters for surface roughness can be estimated accurately, and those for gloss

intensity can be estimated by replacing values that are saturated due to the lim-

ited dynamic range of image detectors.

Fourth, without the need to generate HDR images using multiple raw images

measured at different exposure times, or to incorporate special instruments such

as a diffuser in the measurement system for attenuating intensity of illumination,

raw images that are saturated can be also used to estimate diffuse reflectance

parameters, specular reflectance parameters for gloss intensity and for surface

roughness with sufficient accuracy.

Based on reflectance parameters estimated with these methods, reflection

properties of an object can be reproduced, associated with illumination in a

virtual environment such as a digital museum for cultural heritage, either with

photometric or with functional realism, or with physical accuracy, according to

needs.

In future studies, there are several subjects to be investigated:

1. Reproduce specular reflection interactively with movements of any one of

the object, the light source or the viewer/camera, when the other two are

fixed.

2. Recognize objects or materials based on spectral distribution of color and

intensity of gloss.

The first example of future work is for exhibiting synthetic objects with real-

istic reflection properties in a virtual environment, such as in a digital museum or

in an online shop, as they appear in the real world. This can be accomplished by

tracking real-time movements of objects when they are manipulated by a person

who tries to view the objects from different perspectives, or by tracking real-time

motions of the person when he/she moves his/her body or part of it around to

view objects, with immovable illumination in the virtual environment.

The second subject is another example in which to apply reflectance param-

eters of various objects or materials, which are accurately estimated with the

methods described in the present dissertation. There are difficulties in recog-

nizing color in RGB values because of metamerism; therefore, object/material

recognition using spectral distribution of color can provide high speed and high
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precision. Using intensity of gloss, the purity of materials can be determined in

applications such as classifying ceramic objects.

Finally, these methods can be incorporated easily into existing modeling and

rendering systems in CG&CV for realistic and functional graphics in virtual or

augmented environments, based on accurate information about colors and gloss

of real objects, with rapidly developing networking technology.
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Appendix

A. List of Abbreviations

ADC : analog/digital converter

BRDF : bidirectional reflectance distribution function

BTF : bidirectional texture function

CCD : charge coupled device

CG : computer graphics

CG&CV : computer graphics and computer vision

CMOS : complementary metal-oxide semiconductor

CRT : cathode-ray tube

CUReT : Columbia-Utrecht Reflectance and Texture

CV : computer vision

EPI : epipolar plane image

HDR : high dynamic range

LCDs : liquid crystal displays

OLED : organic light-emitter display

PCA : principal component analysis

RGB : red, green, and blue

SD : standard deviation

SED : surface-conduction electron-emitter display

SSD : sum of the squares of the difference

VR&AR : virtual reality and augmented reality

86



B. List of Symbols

λ : wavelength

E(λ) : spectral radiance of light

L(λ) : spectral power distribution of illumination

S(λ) : camera sensitivity

O(λ) : spectral distribution of surface material

S : S type receptor

M : M type receptor

L : L type receptor

k : kth type receptor

Rk : response of kth type receptor

Sk : sensitivity of kth type receptor

Λ : range of visible wavelengths

ω1, ω2, ω3 : set of weighted values

R, G,B : three primaries

r(λ), g(λ), b(λ) : three color matching functions

p : surface point

Ip : sensor response at p

Op : spectral reflectance of surface material at p

n1(λ), n2(λ) : refractive indices of first and second medium

α1 : incident angle

α2 : refractive angle

P : surface patch

ρbrdf : BRDF

θ, φ : angular coordinate system

θi, φi : incident angle and its azimuth angle

θr, φr : reflected angle and its azimuth angle

dω : solid angle

Ω : hemisphere of directions

Ep(λ) : outgoing radiance at P

Lp(λ) : incoming radiance at P
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Ed(λ) : diffuse reflection components

Es(λ) : specular reflection components

Rd(λ) or Rd : diffuse reflectance parameter

Rs : specular reflectance parameter for gloss intensity

σ : specular reflectance parameter for surface roughness

F (n(λ), θi) : Fresnel reflectance

G : geometrical attenuation factor

a : absorption factor

n(λ) or n : refractive index of surface material

N : unit vector of surface normal

H : unit half-vector

L : unit illumination vector

V : unit viewing vector

α : angle between N and H

j : incident position

E(λ, θr) : reflection value

E ′
d(λ) : measured reflection values

εd : SSD between logarithm of E ′
d(λ) and of theoretical diffuse re-

flection component

Es(λ, θr) : specular reflection components

E ′
sj(λ, θr) : measured specular reflection components

εs : SSD between logarithm of E ′
sj(λ, θr) and of theoretical specular

reflection component
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