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Formal Grammars for Describing RNA Pseudoknotted
Structure and Their Application to Structure Analysis *

Yuki Kato

Abstract

Recently, much attention has been paid to the structure analysis of biologically
important molecules such as nucleic acids and proteins. These structures are hierar-
chically classified into primary structure, secondary structure and tertiary structure. In
this thesis, we focus on RNA (ribonucleic acid) secondary structure determined by in-
teractions between mostly Watson-Crick complementary base pairs. Since base pairs
in typical RNAs occur in a nested way, RNA secondary structures have been success-
fully modeled by context-free grammars (CFGs), and secondary structure prediction
has been translated into a parsing problem. On the other hand, there are substructures
called pseudoknots where some base pairs occur in a crossed fashion, which cannot
be represented by CFGs. Therefore, several formal grammars have been proposed for
describing RNA secondary structure including pseudoknots, such as simple linear tree
adjoining grammars (SLTAGS), extended SLTAGs (ESLTAGs) and RNA pseudoknot
grammars (RPGs). However, the relation between the generative power of each of
these grammars has not been clarified so far.

The first aim of this thesis is to compare the generative power of the grammars
mentioned above by identifying them as subclasses of multiple context-free grammars
(MCFGs), which are natural extension of CFGs. More specifically, the following prop-
erties are shown: (1) the class of languages generated by RPGs agrees with the class
of languages generated by MCFGs with dimension one or two and rank one or two;
(2) the class of languages generated by ESLTAGSI7 AL) coincides with the class
of languages generated by MCFGs with degree five or less£&2)7 AL properly

*Doctoral Dissertation, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0561011, February 1, 2007.



includes the union of the class of languages generated by SLTAGE A L) and the

class of languages generated by CFGsS4Y AL is a full trio; and (5)6SLT AL is

a substitution closed full AFL. Considering these results, the class of ESLTAGs can be
a candidate for the minimum grammars that can represent pseudoknots.

The latter part of this thesis is dedicated to analyzing RNA secondary structure with
pseudoknots by using the subclass of MCFGs corresponding to the class of ESLTAGS.
When we interpret structure prediction as parsing of the grammar, we face the problem
that there may be many different derivation trees for an input RNA sequence. There-
fore, we take a practical approach, where we extend a grammar to a probabilistic model
and find the most likely derivation tree. In this thesis, the above subclass of MCFGs is
extended to a probabilistic model called stochastic MCFGs (SMCFGs). We present a
polynomial time parsing algorithm for finding the most probable derivation tree and a
probability parameter estimation algorithm based on the EM algorithm. Several exper-
imental results are shown where RNA pseudoknotted structure predictions were carried
out for viral RNA families using the SMCFG parsing algorithm. Furthermore, we per-
form RNA gene finding for several genome sequences known to have RNA genes with
pseudoknots. This is achieved by using the scanning algorithm based on the SMCFG
parsing algorithm. These experimental results show very close to 100% accuracy.

Keywords:

multiple context-free grammar, tree adjoining grammar, RNA pseudoknot grammar,
generative power, closure property, RNA secondary structure, pseudoknot
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Chapter 1
Introduction

In recent years, genome sequences of various kinds of organisms have been exper-
imentally determined, and many databases for biological sequences have been con-
structed. These sequences can be regarded as linear strings (primary structures) com-
posed of four letters representing nucleotides for DNAs (deoxyribonucleic acids) and
RNAs (ribonucleic acids), or twenty letters representing amino acids for proteins. The
purpose of biological sequence analysis is to analyze genetic information from se-
guence data by using methods in informatics and statistics, including gene finding,
homology searches and structure prediction. In particular, analyzing the structure of a
biomolecule leads to the elucidation of its function since it is empirically known that

if the structure of one molecule is similar to that of another, both functions will be
similar. This motivates us to predict structures from biological sequences. This thesis
concernRNA secondary structurepresenting folding information.

RNA secondary structure is determined by interactions between mastiyon-
Crick complementary base paissich asA-U andG-C. Figure 1.1 (a) shows a simple
RNA secondary structure calledstem loop If we connect the base pairs with the arcs
on the RNA sequence, we can obtain another representation of the secondary structure
shown in Figure 1.2 (a). Since base pairs in typical RNAs occur in a nested way like
stem loops, RNA secondary structures have been successfully modeled by context-free
grammars (CFGs), and secondary structure prediction has been translated into a pars-
ing problem. Techniques based on the CYK (Cocke-Younger-Kasami) algorithm have
been widely investigated [8, 9, 26]. On the other hand, there are substructures called
pseudoknotarhere some base pairs occur in a crossed fashion (see Figures 1.1 (b) and
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Figure 1.1. Example of RNA secondary structure
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1.2 (b)). They are found in several RNAs such as rRNAs, tmRNAs and viral RNAs.

It has been recognized that pseudoknots play an important role in RNA functions such
as ribosomal frameshifting and regulation of translation. However, CFGs cannot rep-
resent crossing dependency of base pairs in pseudoknotted structure due to the lack of
generative power.

As for formal grammars whose generative power is stronger than that of CFGs,
a significant concept was developed for syntax of natural language, which is called
mildly context-sensitive grammaémildly CSG) [13]. It has been widely recognized
that the generative power of CFGs is not sufficient for syntax of natural language. For
example, discontinuous structures such as respectively sentence construction cannot
be represented by CFGs. For specifying the syntax of natural language, several gram-
mars have been proposed, includinge adjoining grammar¢TAGs) [11, 12], head
grammars (HGs), linear indexed grammars (LIGs), combinatory categorical gram-
mars (CCGs), linear context-free rewriting systems (LCFRSs)manltiple context-
free grammargMCFGs) [14, 15, 29]. The generative power of TAGs, HGs, LIGs and
CCGs are known to be the same. Also, the generative power of LCFRSs and MCFGs
are the same and strictly stronger than that of TAGs. The common features of these
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grammars are as follows:

e The generative power of these grammars is strictly stronger than that of CFGs
and strictly weaker than that of CSGs.

e Languages generated by these grammars can be recognized in polynomial time
of the length of an input sequence. This contrasts with the fact that the recogni-
tion problem for CSGs is PSPACE-complete.

e These grammars inherit good mathematical properties of CFGs. For example,
the classes of languages generated by these grammars are closed under union,
concatenation, Kleene closure, homomorphism and intersection with regular lan-
guages.

In bioinformatics, several formal grammars have been proposed for fully describ-
ing RNA secondary structure including pseudoknots. In one pioneering paper [30],
Uemura et al. defined two subclasses of TAGs catliedple linear TAGESLTAGS)
and extended SLTAGESLTAGS), and argued that the class of ESLTAGs is appro-
priate for representing RNA pseudoknotted structure. Rivas and Eddy [24] provided
keen observations on the representation of RNA secondary structure by a sequence
with a single gap, and introduced a new class of grammars cRINA pseudoknot
grammars(RPGs) for deriving sequences with gaps. These grammars have generative
power stronger than CFGs, while recognition can be performed in polynomial time.
However, the relation between the generative power of each of these grammars has not
been clarified so far.

The first aim of this thesis is to compare the generative power of these grammars
by identifying them as subclasses of MCFGs. This is partially motivated by an interest
in formal language theory. As explained in detail below, it is interesting to compare the
generative power of grammars for natural language syntax with that of grammars for
biomolecule structure. An insight obtained in biological sequence analysis may result
in significant progress in formal language theory. Another motivation comes from the
observation that some techniques in formal language theory may contribute to a new
analysis method in biology. If we can model a secondary structure of a particular type
of biological sequence by a formal grammar for which a recognition method is well
studied, we do not need to construct a prediction algorithm for that type of sequence



from scratch, and we can focus on how to provide appropriate scores or measures for
grammar rules to obtain biologically realistic predictions.
The main contributions of the first part of this thesis are as follows:

(1) Itis shown that the class of languages generated by RPGs agrees with the class
of languages generated by MCFGs with dimension one or two and rank one
or two, the class of languages generated by ESLTAGS(T AL) coincides
with the class of languages generated by MCFGs with degree five or less, and
ESLT AL properly includes the union of the class of languages generated by
SLTAGs (SL7T AL) and the class of languages generated by CFGs.

(2) Itis shownthatSLT AL is afull trio and€SLT AL is a substitution closed full
AFL.

The second part of this thesis is dedicated to analyzing RNA secondary structure
with pseudoknots by using the subclass of MCFGs corresponding to the class of ESLT-
AGs. When we interpret structure prediction as parsing of the grammar, we face the
problem that there may be many different derivation trees for an input RNA sequence.
One practical approach to this problem is to extend a grammar to a probabilistic model
and find the most likely derivation tree. Another is to take free energy minimization
into account. The advantage of the latter approach is its prediction accuracy. However,
it is not always easy to obtain sufficient thermodynamic information on sequences in
experiments, and hence the former approach, based on a stochastic model, is often
practical. Eddy and Durbin [9], and Sakakibara et al. [26] modeled RNA pseudoknot-
free structure by using stochastic context-free grammars (stochastic CFGs or SCFGSs).
For pseudoknotted structure, Matsui et al. [20] proposed pair stochastic tree adjoining
grammars (PSTAGSs) based on ESLTAGs and tree automata for aligning and predicting
pseudoknots, which showed good prediction accuracy. In this thesis, the above sub-
class of MCFGs is extended to a probabilistic model catitedthastic MCFG$SM-
CFGs). We present a polynomial time parsing algorithm for finding the most probable
derivation tree and a probability parameter estimation algorithm based on the EM al-
gorithm. Several experimental results are shown where RNA pseudoknotted structure
predictions were carried out for three viral RNA families using the SMCFG parsing
algorithm. These results show very close to 100% accuracy, and we can say that the
SMCFG method is at least comparable to the PSTAG method in the same test sets. Fur-
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thermore, by using the scanning algorithm based on the SMCFG parsing algorithm, we
successfully perform RNA gene finding for several genome sequences known to have
RNA genes with pseudoknots.

The remainder of this thesis is organized as follows. Chapter 2 surveys RNA sec-
ondary structure and multiple context-free grammar, which play a major role in this
study. In Chapter 3, we clarify the relation between the generative power of gram-
mars for RNA secondary structure including pseudoknots. Chapter 4 analyzes RNA
pseudoknotted structure by using stochastic multiple context-free grammar. Chapter 5
concludes this thesis.



Chapter 2

Preliminaries

1. RNA Secondary Structure

As the central dogma of molecular biology claims, RNA is widely known as an inter-
mediary messenger between DNA gene storing genetic information and protein deter-
mining its biological function. This is called mMRNA and represented as an unstructured
linear strand. Meanwhile, there exist many RNAs that are not translated into proteins
such as rRNAs and tRNAs. They are callezh-coding RNAGWcRNAS) and fold into
characteristic three-dimensional structures so that they have specific functions. In this
thesis, we are concerned with ncRNAs and ncRNA is often written as RNA.

RNA is a high polymer consisting of four different nucleotides. They are abbre-
viated asA (adenine),C (cytosine),G (guanine) andJ (uracil) . A-U andG-C form
hydrogen bonded base pairs, which is calldatson-Crick complementary base pairs
G-C pairs form three hydrogen bonds whieU pairs form two hydrogen bonds, and
therefore, the former is more stable than the latter. The other non-canonical base pairs
also occur in RNA, where the most common paiiG&J that is thermodynamically
favorable. The resulting base paired structure is calledd¢icendary structureNote
that the secondary structure does not give information on the three-dimensional struc-
ture of a molecule. It is known that stacked base pairs twist to form double helices like
DNA.

Each element of an RNA secondary structure is shown in Figure 2.1. A hydrogen
bond is represented as a bullet. The continuous region of stacked base pairs is called

YIn DNA, T (thymine) replaces.
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hairpin loop

internal loop

multi-branched loop

Figure 2.1. Fundamental elements of RNA secondary structure

astem and a single strand connecting a stem is calléabp. A simple substructure
consisting of a single stem and a single loop is callstean loopsee Figure 1.1 (a)).
Loops are classified according to their positions to stems as follows. A loop at the edge
of a stem is called hairpin loop. A loop is called &ulge loopif a single strand occurs

on one side of a stem, arternal loopif a single strand occurs on both sides of a stem.

A loop is called amulti-branched loopf more than two stems radiate from the loop.

In typical RNA secondary structures, when we connect base pairs with arcs on the
seqguence, the arcs are hierarchically nested, that is, none of the arcs crosses each other
(see Figure 1.2 (a)). Formally, leand; be the positions of bases forming a base pair
and:’ andj’ be the positions of bases forming another base pair. Base pairs are nested
if and only if for all pairs(z, j) and(d', j'), eitheri < i/ < j' < jori <i < j < j
holds. On the other hand, RNA substructures where arcs are crossing occurs, which
is calledpseudoknotgsee Figures 1.1 (b) and 1.2 (b)). As in the definition of nested
structure, a secondary structure is a pseudoknot if and only if there existpairand
(¢/,j") suchthat < i’ < j < j'ori <i < j' < j. Although the total number of base
pairs forming pseudoknots is relatively smaller than the number of base pairs forming
nested structures, we must take pseudoknot into consideration for three-dimensional
structure prediction.



2. Multiple Context-Free Grammar

For an alphabeL, let >* denote the set of all finite sequences o¥er The empty
sequence is denoted by For a sequence < ¥*, let |w| denote the length af, that
is, the number of symbols occurringin

A multiple context-free gramm&MCFG) [14, 29] is a 5-tuplér = (N, T, F, P, S)
whereN is a finite set of nonterminal; is a finite set of terminald;’ is a finite set of
functions,P is a finite set of (production) rules ade N is the start symbol. For each
A € N, apositive integer denoted dgn(A) is given andA derivesdim(A)-tuples of
terminal sequences. For the start symBpHim(S) = 1. For eachf € F, positive
integersd; (0 < < k) are given and is a total function from(7*)% x .. x (T*)%
to (7*)% satisfying the following condition (F):

(F) Letz; = (w1,...,2q,) denote theth argument off for 1 < i < k. Thehth
component of the function value far< h < d,, denoted byf", is defined as

SUEL, 7] = BroznBnizne -+ Zhoy Bho (2.1)

wheref,, € T (0 <l <wp)andzy € {z;; |1 <i<k 1<j<d;}(1<I<
vp,). The total number of occurrencesaf in the right hand sides of (2.1) from
h = 1 throughd, is at most one.

Each rule inP has the form ofd, — f[A;,..., Ax] whereA; € N (0 < < k) and
[ (T*)dmA) s (T)dimAR)  (Tx)dim(A0) ¢ FoIf k> 1, the rule is called
a nonterminating ruleand if & = 0, it is called aterminating rule A terminating
rule Ay — f[]with fR[] = B, (1 < h < dim(A)) is simply written asd, —

(B, -+, Bdim(A))-

Example 2.1. (1) LetGy, = (N, Th, Fy, P1, S) be an MCFG wheréV, = {S, A},
Ty = {a,b} andP, = {S — J[A], A — f.[A] | fo[A] | (¢,¢)} wheredim(S) =
1, dim(A) = 2, J[(z1, x2)] = x129 @A f,[(x1, 22)] = (ax1, axs) With a = a, b.

(2) LetGy = (NQ,TQ,FQ,PQ,S) be an MCFG Wheré\fg = {S, A}, T = {CLZ‘ | 1<
i <2m}andP, = {S — J,[A], A — g[A] | (e, ...,e)} wheredim(S) = 1,
dim(A) =m, Jp[(x1, ..., 2n)] = x1 - xzymandgl(zy, ..., 20)] = (12109, . . .,

a2m71xma2m) .
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(3) LetGs = (No, Ty, F3, P3,S) be an MCFG wherds = {S — J2[A, A], A —

g[A] | (67'-'a5>} Wherejgn[(gjlw"7$m)7(yla-"7ym)] = T1 " Tm¥Y1 " Ym-
O

For a functionf defined by (2.1) in condition (F) and tuples of terminal sequences
@ = (au,...,quq) € (T)% (1 < i < k), let f[ag, ..., a;) denote the tuple of
terminal sequences obtained from the right hand sides of (2.1) by substiutifig<
i <k, 1<j<d,)intox,;. Forinstancef,[(bba, ab)] = (abba,aab) in Example 2.1
(1). We recursively define the relaties; by the following (L1) and (L2):

(L1) If A—ae P (ae (T%)%mW), we write A = .

(L2) If A — f[A),...,Ay] € PandA; =¢ a; (1 < i < k), we write A S

floa, ... o).

We will omit the subscript if it is clear from the context. Fod € N, the set gen-
erated fromA in G is defined as.q(A) = {w € (T*)4™A) | A S, w} and the
language generated Iy is defined ad.(G) = Ls(S). A languageL is amultiple
context-free languag@MCFL) if there exists an MCFG- such that, = L(G). The

class of all MCFGs and the class of all MCFLs are denoted t§FG and MCF L re-
spectively. The same notational convention will be used for other classes of grammars
and languages. In parallel with the relatién;, we define derivation trees:

(D1) If A — @ e P (a € (T*)%™), a derivation tree fof is the tree with a single
node labeled! : @.

(D2) If A — f[Ay,...,A] € P, A; ¢ @; (1 <i < k)andty,...,t, are derivation

trees foray, . . ., @y, then a derivation tree fof[ary, . . ., ax| is the tree with the
root labeledA : f that hag, ..., t; as (immediate) subtrees from left to right.

Example 2.1(continued) (1) By (L1), A =¢, (c,¢) sinced — (e,¢) € P. Since
fal(e,€)] = (a,a) and fy[(a,a)] = (ba, ba), we haveA =4, (a,a) andA =g,
(ba,ba) by (L2). Also by S — J[A], S =¢, J[(ba,ba)] = baba. In fact,
Le, (A) = {(w,w) | w € {a,b}*} and L(G;) = {ww | w € {a,b}*}.

(2) LikeWise,A :*>G2 (57 ce ,8) by (Ll),A :*>G2 f[(€, R ,6)] = (&1@2, . ,agm_lagm)
by (L2), etc. This tells us that(Gs) = {a}---a%,, | n > 0}.
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(3) SinceLa,(A) = Le,(A), L(Gs) = {af | a8 € L(Gy)}. =

To introduce subclasses dM{CFG, we define a few terminologies. L&t =
(N, T, F,P,S) be an arbitrary MCFG. For a functiofi : (T%)% x .- x (T*)% —
(T*)%, let dim(f) = do, rank f) = k anddeg(f) = Zf:o d;, which are called the
dimensionrank anddegreeof f respectively.dim(G), rankG) anddeg(G) are de-
fined as the maximum afim(f), rank /) anddeg(f) among allf € F respectively.
By definition, deg(G) < dim(G)(rankG) + 1). With these parameters, we define
subclasses aMCFG. An MCFG G with dim(G) < m and rankG) < ris called an
(m,r)-MCFG. Likewise, an MCFG7 with dim(G) < m is called ann-MCFG.

The following proposition was shown by Rambow and Satta, which summarizes
Theorems 1 and 6 of [21, 22].

Proposition 2.1([21, 22]). Form > 2, r > 6,
Lym€ (m,r—2)-MCFL\ (m,r —3)-MCFL. O

In casem = 2 andr = 6, Lgo € (2,4)-MCFL\ (2,3)-MCFL. It was also shown
in [21, 22] that(2, 2)-MCFL = (2,3)-MCFL. Therefore,Lgy € (2,4)-MCFL \
(2,2)-MCFL, which implies(2,2)-MCFL < 2-MCFL.

Example 2.2. Consider &2, 2)-MCFG G, = ({S, A}, {a,c, g,u}, Fy, Py, S) for gen-
erating RNA sequences whefg and F, are shown in Table 2.1. Functions have
mnemonic names wher& S, BF, BP and UP stand for GROSSING BIFURCA-
TION, BASE PAIR and WNPAIR respectively. The RNA sequenegacuu in Fig-
ure 2.2 can be generated by the above rules as follass, BP%[(c, )] =
(9,¢), A =g, BP™[(g,c)] = (ag,cu), A =g, BP™[(c,e)] = (a,u), A S¢,
X Sy[(ag, cu), (a,u)] = (aga,cuu) andS =¢, J[(aga, cuu)] = agacuu. G4 has a
derivation tree (Figure 2.3) fagacuu that represents the pseudoknot shown in Fig-
ure 2.2. O

Recognition problems for MCFGs can be solved in polynomial time:

Proposition 2.2([15, 29]). Let G be an MCFG withleg(G) = e. For a givenw € T,
whetherw € L(G) or not can be decided i?(n°) time wheren = |w]. O
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Table 2.1. MCFGG,

Rule Function

S — J[A] J[(z1,22)] = z122

A — XS 1[AA] | XSi[(w11,712), (721, T22)] = (211, T21712722)
A — XSo[A, A] | XSa[(w11,712), (721, T22)] = (T11721, T12722)
A — XS3[AA] | XSs[(211,712), (P21, T22)] = (11721212, T22)
A — BI[A, Al | BFi[(211,212), (221, 722)] = (211, 212721 722)
A — BF[A, Al | BFy[(211, 212), (P21, T22)] = (211212, Z21722)
A — BF3[A, Al | BF3[(z11,12), (P21, T22)] = (211212721, T22)

S
!
W
)
2
o
2
Sy

PoPl(x1,22)] = (a1, x2)

Note:a € {a,c, g,u} and(a, B) € {(a,u), (u,a), (¢, g),(g,c)}.

S:| J
A XS
~
A: BP,, >: BP,,

|
A BPy A:(g ¢

m A:| (5,8

Figure 2.2. Example of a pseudoknotFigure 2.3. A derivation tree ity



Chapter 3

Generative Power of Grammars for
RNA Pseudoknotted Structure

1. Introduction

Much attention has been paid to RNA secondary structure prediction techniques based
on context-free grammars (CFGs) since CFGs can represent stem loop structures (Fig-
ure 1.1 (a)) by their derivation trees and parsing (or secondary structure prediction
in biological words) can be performed (n?) time wheren is the length of an in-
put RNA sequence. A pseudoknot (Figure 1.1 (b)) is one of the typical substructures
found in RNA secondary structures. An alternative representation of a pseudoknot is
arc depiction in which arcs cross (see Figure 1.2 (b)). It has been recognized that pseu-
doknots play an important role in RNA functions such as ribosomal frameshifting and
splicing. Also, a database (PseudoBase [4]) containing a variety of structural, func-
tional and sequence data on RNA pseudoknots has been constructed. However, it is
known that CFGs cannot represent pseudoknotted structure

Since the middle 1980s, there has been a significant concept for syntax of natural
language, which is called mildly context-sensitive grammar (mildly CSG). The com-
mon features of these grammars are generative power between CFGs and CSGs, and
polynomial time recognizability. Kasami et al. [14, 15, 29] proposed a class of gram-

Formal grammars are also used for modeling other functions on molecular sequences with sec-
ondary structures. For example, Sakakibara and Ferretti [27] showed that splicing systems on trees can
generate context-free languages.

12
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mars called multiple context-free grammars (MCFGSs), which are natural extension of
CFGs. A nonterminal symbol of an MCFG derives tuples of sequences, while a nonter-
minal symbol of a CFG derives sequences. Tree adjoining grammars (TAGSs) [11, 12]
and MCFGs have been known as typical instances of mildly CSGs [13].

In bioinformatics, a few grammars have been proposed to represent pseudoknots.
In one pioneering paper [30], Uemura et al. defined two subclasses of TAGs called
simple linear TAGs (SLTAGs) and extended SLTAGs (ESLTAGSs). Rivas and Eddy
[24] introduced a new class of grammars called RNA pseudoknot grammars (RPGs) for
deriving sequences with gaps. These grammars have generative power stronger than
CFGs, while recognition can be performed in polynomial time. However, the relation
between the generative power of each of these grammars has not been clarified.

In this chapter, we identify these grammars for describing RNA secondary struc-
ture as subclasses of MCFGs, and clarify the inclusion relation between the classes of
languages generated by these grammars. The remainder of this chapter is organized as
follows. First, we review the grammars for describing RNA pseudoknotted structure
mentioned above in Section 2. In Section 3, these grammars are characterized as sub-
classes of MCFGs. The closure property and generative power of these grammars are
investigated in Section 4 and Section 5 respectively. Section 6 concludes this chapter.

2. Grammars for Describing RNA Pseudoknotted Struc-
ture

2.1 Tree Adjoining Grammar
Basic Definitions

We first define notation for trees. LBtbe the set of positive integers. Then the partial
order= overN* is defined as followsp < ¢ for p,q € N* if and only if there exists

r € N* such thayy = pr. We writep < ¢ whenp < ¢ andp # ¢. Let X be a finite set
of symbols. A tree overX U {¢} is defined as a function such that D; — > U {¢}
whereD; is a finite subset dN* satisfying the following conditions:

(1) If ¢ € D, andp < q, thenp € D;.

(2) If pj € Dyandj € N, thenpl,...,p(j — 1) € D,.
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Figure 3.1. Adjoining operation

Each element irD, is called anaddress The addresp = = especially indicates the
root node oft. If p < ¢ does not hold for any € D;, thenp indicates a leaf node.
We say that(p) is the label of the node at addres# the treet. Theyield of a tree
t (denoted by vyielt)) is the sequence obtained by concatenating the labels of leaf
nodes oft from left to right.

A tree adjoining gramma(TAG) is a 5-tupleG = (N, T, S,Z, A) whereN andT
are finite sets of nonterminals and terminals, respectively, NV is the start symbol,
7 is a finite set ofinitial trees (center treesover N U T U {¢} and A is a finite set
of adjunct treeqauxiliary treeg over N U T' U {¢}. Z and A satisfy the following
conditions:

(1) Ift; € Z, thent,(e) = S and yieldt,) € T*.
(2) Ifty € A, thenty(e) = X andyieldt,) € T*XT* for someX € N.

The leaf node whose label is the same as the label of the root node of an adjunct tree
is called thfoot node The path of an adjunct tree from the root node to the foot node
is called thebackboneAll initial and adjunct trees are referred toelementary trees

We next define the adjoining operation over trees. iLeé a tree with the node
labeledX at addresg. Let s be an adjunct tree with root and foot label¥d Then we
say thats is adjoinable ta at p, and the tree’ obtained front by adjoinings atp is
defined as shown in Figure 3.1. Also, we write, ¢’ (or simplyt F t'). We write the
reflective and transitive closure bfast*. We callt’ aderived tregor a tree derived
from¢) if t -* ¢’ for somet € 7 U A.

An adjoining constrainfor a noden of an elementary tree is as follows:
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(1) Selective AdjoiningSA(7)) where7 C A (T # ¢): Only members off can
be adjoined at.

(2) Null Adjoining(NA): No adjunct tree can be adjoinedrat

(3) Obligatory Adjoining(OA(7)) where7 C A (7 # ¢): A member of7 must
be adjoined at.

If a node has none of the three constraints mentioned above, we interpret its constraint
as SA(A). Therefore, we assume that every node has exactly one of the three adjoining
constraints. The relationt-, ¢ (and adjoinability) are redefined so thats obtained
from ¢ by adjoinings at p (of noden) wheren has no NA and il» has SA(), then
s € 7. A noden is inactiveif the constraint for the node is NA, otherwisetive If
no active node in a treehas OA constraint, thenis calledmature

The tree set of a TAG- is defined ag’(G) = {t | s F* t, s € 7 andt is maturg.
The definition of the relatiom* is top down in the sense that only an adjunct tree
can be adjoined to a derived tree. As discussed in [B2{7) can be alternatively
characterized in a bottom up way by allowing derived trees to be adjoined to a tree.
For example, ifsg F, t1 s, to Wheresy € 7, s1, 59 € A ands, is adjoined at a node
inherited froms,, then we can first adjoin, to s; resulting inT and then adjoin to
so to obtaint,. Note that in this bottom up definition, we can restrict a tree to which
a derived tree is adjoined to be an elementary tree dikands, above). For each
s € TU A, let us define a series of tree s&i8G), 1T7(G),. ...

(T1) T5(G) = {s} if sis mature and§(G) = ¢ otherwise.

(T2) T;,.,(G) =T:(G)U{r | sko, i by - o, e =7, 05 € TL(G) (1
k), p1,...,p are different addresses of o; is adjoinable tos at p; (1
k) andr is maturg.

IA A

<
<i

(T3) T0(G) = U,ezua T3 (G) for eachn > 0.

It is not difficult to show thatl'(G) = {t | t € T,,(G) for somen > 0 and yieldt) €
T*}. This characterization of'(G) by (T1) through (T3) is frequently used in the
proofs in Section 3.

The language generated &Yis defined ad.(G) = {w | w =yield(t), t € T(G)},
which is called dree adjoining languag€TAL). As in MCFG, Let7 AG denote the
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Initial tree Adjunct trees

S S S 3
L ] T T
€ S S S S
' S
X/i'\y X/i\y X/|S' z\x
y T 1Y
S

Figure 3.2. Elementary trees in Example 3.1

class of TAGs and AL denote the class of TALs. It has been proved that
TAL C (2,2)-MCFL C2-MCFL C MCFL (3.2)

where the proper inclusion relations of the leftmost and the rightmost in (3.1) were
given by Lemma 4.15 of [29] and Lemma 5 of [14] respectively.

SLTAG and ESLTAG

We now definessimple linear TAG$SLTAGS) andextended simple linear TAGESLT-

AGs) introduced in [30]. An elementary treesisnple linearif it has exactly one active
node, and for an adjunct tree, the active node is on the backbone of the tree. A TAG
G is asimple linear TAGSLTAG) if and only if all elementary trees i¥ are simple
linear. An adjunct tree isemi-simple lineaif it has two active nodes, where one is on
the backbone and the other is elsewhere. A TA® anextended simple linear TAG
(ESLTAG) if and only if all initial trees inG are simple linear and all adjunct trees in

G are either simple linear or semi-simple linear.

Example 3.1([30]). Let G; = (N, T4, 5,71,.A;1) be an SLTAG wheréVv; = {5},

Ty = {a,c,g,u} and elementary trees ify and.4, are shown in Figure 3.2. In the
figure, z € {a,c,g,u}, (z,y) € {(a,u),(u,a),(c, g),(g,c)} and an active node is
denoted byS*®. Figure 3.3 shows a (top down) derivation of a pseudoknot. Figure 3.4
shows an example of a bottom up derivation where a shaded region is a derived tree
adjoined to an elementary tree. O
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T — ]
€ u/

i

S S S s
| | -
T {

Figure 3.4. A bottom up derivation in Example 3.1

Example 3.2. Let Gy = (No, T3, S, 25, As) be an ESLTAG whereV, = {S, A; | 1 <

i <6}, Ty = {ta;,b;,c; | 1 <i <4} and elementary trees iy and.A, are shown

in Figure 3.5.G; generated.; = {falbicitalblchia by e tarbicit | k,l,m,n > 1}.
O

By definition,

SLTAL CESLTAL CTAL. (3.2)

On the inclusion relation betwe&hF L, SLT AL andESLT AL, the following has
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Initial tree Adjunct trees

< A, _ _
| | e &

- AA _
(2<i<4) ' A |
(1<i<4)

S
T

Figure 3.5. Elementary trees in Example 3.2

been shown in Propositions 1 to 3 of [30]:

Ly = {#aititalbbga b 4ai b3 | k1, m,n > 1} € CFL\ SLT AL, (3.3)
{a"V"c" |n >0} €e SCTAL\CFL, (3.4)
CFL CESLTAL. (3.5)

Satta and Schuler’s Subclass

From the viewpoint of parsing complexity, Satta and Schuler [28] proposed a subclass
of 7.AG, which we callSS7 AG. They classified adjunct trees into three types ac-
cording to the position of the backbone. Each of them is calliedt &reg aright tree

and awrapping treeand satisfies the following (LT1), (RT1) and (WT1) respectively:

(LT1) The rightmost leaf is the foot node and the backbone consists of only the root
and the foot nodes.

(RT1) The leftmost leaf is the foot node and the backbone consists of only the root
and the foot nodes.

(WT1) Neither (LT1) nor (RT1) holds.

A TAG G is called anSSTAGT and only if each left tree, right tree and wrapping tree
in G satisfies the following (LT2), (RT2) and (WT2) respectively:
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Figure 3.6. Wrapping adjunction

(LT2) At the backbone of each left tree, no wrapping tree can be adjoined and no
adjoining constraint on right tree is found.

(RT2) At the backbone of each right tree, no wrapping tree can be adjoined and no
adjoining constraint on left tree is found.

(WT2) At the backbone of each wrapping tree, there is at most one node where a
wrapping tree can be adjoined, which is calledwhrapping node

We describe the reason why the above restriction is imposed. The most time-consuming
step in the recognition on TAG is the one dealing with adjoining operation. When we
adjoin a wrapping tree to the wrapping nodés of another wrapping treg we can
split¢ at B into four partst; 7, t1.p, tru, trp @and adjunction can be simulated by four
successive steps (see Figure 3.6). Specificallg, combined witht; , resultingo,

and theno; is combined withtzp resultingos,, etc. In the recognition on SSTAGS,
every wrapping tree is split into four adjunct trees and regarded as a left (or right) tree
satisfying (LT2) (or (RT2)). This plays an important role in the reduction of the time
complexity. In the following, we assume that the wrapping node differs from the root
and the foot nodes without loss of generality. The close relation between ESLTAGS
and SSTAGs will be investigated in Section 5.

2.2 RNA Pseudoknot Grammar

Rivas and Eddy [24] introducextossed-interaction gramma(€1Gs), which are sim-

ilar to MCFGs. A CIG has a special terminal symbo(called the “hole” or the “gap”)
and some symbols (callezktra nonterminal symbolother than terminals and non-
terminals. An extra nonterminal symbol plays a similar role to a function in MCFGs,
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and the semantics of an extra nonterminal is given by a rearrangement rule. The hole
A provides the insertion position in a rearrangement rule. Rivas and Eddy defined a
subclass o€ZG to describe RNA secondary structure including pseudoknots. In the
following, these grammars are briefly reviewed.

A crossed-interaction grammdCIG) is a 6-tupleG = (N, T, S, 1, P, R) where
N is a finite set of nonterminal symbol%; is a finite set of terminal symbols that
contains a distinguished symbol called the hole (or the gapf € N is the start
symbol, I is a finite set of extra nonterminal symbolB,is a finite set of production
rules (productions) an® is a countable set of rearrangement rules (rearrangements).
A production is of the formd — a (A € N, a € (N(IN)*UT)*) and arearrangement
is of the form(3) —»gm (B € (T'UI)*, m e T*). Fory,0 € (NUT UI)*, we write
VA =g yad if A— a € P,andy(5)d =¢ r ymo if (3) —r m € R. The reflective
and transitive closure e and=- x are denoted as . and:*>G7 r respectively. The
subscriptG is omitted if it is clear from the context. The language generated Iy
defined ad.(G) = {ha(w) | S ¢ v =grw, v € (TUID)*, w € T*} whereh, is
the homomorphism such that (A) = e andh,(z) = z forz € T\ {A}.

An RNA pseudoknot gramm#&RPG) is a CIGG = (N, T, S, 1, P, R) wherel is
fixed to{xg, X, X1, D, (,)} andR is fixed to

(Ul NUg Xpvr A 1)2) — R U N\ V1UV9,
(Ul AUy X vy A ’Ug) — R ULV N\ UgVs,
(Ul N Ug X U1 A Ug) — R ULV U2 N Vg,

up Aug D v Avg) —pg uvg A Uiz

for eachuy, uqs, v1,v9 € T*. Sincel and R are fixed, we will write an RPG a§ =
(N, T, S, P).

Example 3.3.LetG = (N, T, S, P) be an RPG wherd/ = {S, A}, T = {a, b} and
P={S—(AxA)|e, A= (AxA)|aNa|bAb]|A}. ThenS = (A x A) =
(Ax (Ax A) = (ahax (bAbxaAa)) =g (aaxbaAba) =g aba A aba.
Thus,h,(aba A aba) = abaaba € L(G). Infact, L(G) = {ww | w € {a,b}*}. O
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A‘P

Figure 3.7. A mature derived tree

3. New Subclasses of1CFG

3.1 A Subclass ofMCFG for SLT AL

Grammargs andG’ are called weakly equivalent fi(G) = L(G’). In [31], the fol-
lowing translation method from a TAG = (N, T, S,Z,.A) into a weekly equivalent
(2,2)-MCFG G’ has been proposed: For each nontermiha N in GG, a nontermi-

nal A with dim(A) = 2 is introduced inG’, and rules are constructed so that there
exists a mature derived tréesuch that yieldt) = w; Aws (wy,ws € T*) in G (Fig-

ure 3.7) if and only ifA =« (w;,w;). Remember that each elementary tree in an
SLTAG contains exactly one active node as shown in Figure 3.8 (An inactive node
and an active node are denoted liké and 3°*, respectively, in the figure). By utiliz-
ing this restriction, we can define a translation for SLTAG simpler than that of [31].
Namely, for an adjunct tree in Figure 3.8 (a), construct an MCFGAue f[B] where
fl(z1, 2)] = (uymqvq, voxausg). This translation motivates us to define the following
subclass of2,1)-MCFG.

Definition 3.1. A (2,1)-MCFGG = (N, T, F, P, Sy) is an SLMCFG ifG satisfies the
following conditions (1) and (2):

(1) For each nonterminal other thanS,, dim(A) = 2.

(2) Each nonterminating rule has the form of eitbgr— J[A] whereJ[(xy, x2)] =
xr1zo 0r A — f[B] whereA, B € N\ {So} and f[(z1, x2)] = (uyz1v1, vaxous)
for someu;,v; € T* (j = 1,2). Such a functionf is called asimple linear
function O
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A? s
B B
u vi A’ v, U, U, U, Us
(a) Adjunct tree (b) Initial tree

Figure 3.8. Elementary trees in SLTAG

In the next lemma, we show that the generative powe$ OMCFG is the same
as that ofSL7T AG. In the beginning of this section, we already mentioned an idea
of translating from an SLTAG- into a weakly equivalent SLMCF@&’. Considering
SA constraint, we introduce a nontermindlt! into G’ for a nonterminald and an
elementary tree in G. Al is intended to derivéw, , wy) if and only if there exists
a mature derived tree such that yieldr) = w; Aw, and 7 is obtained from¢ by
adjoining derived trees to

Lemma3.1.SLT AL = SCMCFL.

Proof. (SLTAL C SLMCFL)LetG = (N,T,S,Z,A)be agiven SLTAG. We will
construct an SLMCFG" = (N', T, F, P, S,) as follows:

(1) N'={AU| Ae N, t € TUA}U{S;} wheredim(S,) = 1 anddim(Al) = 2
foreachA € N andt € 7 U A.

(2) P (and F) are the smallest sets satisfying the following conditions (a) through
().
(@) So — J[SH] € P foreacht € T andJ|[(z1, 72)] = z12 € F.
(b) For each adjunct tretec A shown in Figure 3.8 (a),

o All — f[BFl] € Pforeachs € T andf[(z1,22)] = (u121v1, vazous)
€ Fif B has either SAT) or OA(7), and
o All — (uyvy,vouy) if B has either SAT) or NA (i.e.,t is mature).
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(c) For each initial tre¢ € Z shown in Figure 3.8 (b),

o S — g[BEl] € Pforeachs € T andg[(z1,72)] = (uiz1us, Tou3) €
F if B has either SAT) or OA(7), and

o S — (uyuy, ug) if t is mature.

First, we show that there exists a treec T!(G) for somen > 0 such that
yield(7) = w Aw,y (A € N, wy,wy € T*) ifand only if AY S (wy, w,).
(“if” part) By induction on the application number of (L1) and (L2) in Section 2 of
Chapter 2.
(Basis) If Al = (wy, w,), that is, Al — (w;,ws) € P, there should exist an ad-
junct treet that corresponds to the rule by construction (2) (b) (see Figure 3.9 (b)).
Then yieldt) = w; Aws,.
(Induction) Assume thaBl*! = ¢ (w1, wy) andA S/ fl(wy, w2)] = (urw vy, vowsy
uy) by Al — f[BFl] € P wheref[(z1,75)] = (u121v1, vax9us). Then there should
exist an adjunct tre¢ shown in Figure 3.8 (a) that correspondsAd — f[B]
by construction (2) (b). By the inductive hypothesis, there exists a mature derived
treec € T7(G) such that yiel§r) = w; Bwy. Thereforet +, 7 where yieldr) =
w1 w1 v Avewo .
(“only if” part) By induction onn.
(Basis) Ifn = 0, that is, there exists a mature adjunct tree ¢ such that yiel@dr) =
wy Aws, then a ruleA” — (w;,w,) is constructed by construction (2) (b). Thus,
Al S0 (wy, wy) by (L1).
(Induction) Assume that a mature treec T (G) is obtained by adjoining a tree
o € T:_,(G) such that yieldr) = w, Bw, to an adjunct tre¢ shown in Figure 3.8 (a).
Then yield ) = uywvy Avawsu,. By construction (2) (b)AY — f[BI]] € P where
fl(x1,29)] = (uyz1v1, vewaus). By the inductive hypothesisBl®! = (wy, w,).
Hence, AW = f(wy, ws)] = (uywiv1, vawsus) by (L2).

Next, we show thal.(G)) = L(G") by considering the correspondence between the
initial trees inZ and the rules constructed in (2) (c). Consider an initial trekown
in Figure 3.8 (b) such that yielt) = u,usus3. Lett’ be a mature derived tree obtained
by adjoiningo € T7(G) such that yieldr) = w, Bw, to the initial treet. Then
yield(t') = wywiuswous = w andw € L(G). On the other hand, the SLMCFG rule
for t is S — ¢[Bl]] by construction (2) (c). Remember that there exists adree
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Figure 3.9. Constructed elementary trees

T(G) for somen > 0 such that yieldo) = w, Bw, if and only if Bl = (wy, w,).
Thus, S Z¢ g[(wi,ws)] = (viwiug, wous) and Sg] o J[(uywiug, wyus)]
wwiugwyuz = w. Consequentlyy € L(G') andL(G) = L(G").

(SLMCFL C SLTAL) LetG = (N, T, F, P,Sy) be a given SLMCFG. Construct
an SLTAGG' = (N', T, Sy, Z, A) as follows:

(1) NN=NU{X}whereX ¢ N.
(2) 7T consists of initial trees shown in Figure 3.9 (a) for— J[A] € P.
(3) A is the smallest set satisfying:

e Foreachd — f[B] € Pwheref|[(x1,x2)] = (u1x1v1, va22us), the adjunct
tree shown in Figure 3.8 (a) belongso

e For eachA — (uj,uy) € P, the adjunct tree shown in Figure 3.9 (b)
belongs taA.

Also, the constraint of every active node is SB(

Next, we show thatl = (w,, w,) if and only if there exists a treec T,,(G") for
somen > 0 such that yieldt) = w; Aws.
(“if” part) By induction onn.
(Basis) Ifn = 0, that is, there exists a mature adjunct tresuch that yiel¢t) =
wy Aws, then there should exist a rule — (wq, w9) that corresponds toby construc-
tion (3) (see Figure 3.9 (b)). Hence,=¢ (wy, w;) by (L1).
(Induction) Assume that a mature tréeec 7,,(G) is obtained by adjoining a tree
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t; € T,—1(G) such that yieldt;) = w; Bw, to an adjunct tree shown in Figure 3.8
(a). Note that yieltt) = wyw;v; Avawaus. Then there should exist a rule — f[B]
wheref[(z1, z2)] = (w101, voxausy) that corresponds toby construction (3). By the
inductive hypothesisB = (w1, ws). Thus,A S¢ f[(wy,ws)] = (uywiv1, vawaus)
by (L2).
(“only if” part) By induction on the application number of (L1) and (L2).
(Basis) If A =¢ (wy,wy), i.e., A — (wy,wy) € P, then an adjunct treesuch that
yield(t) = w; Aws, is constructed by construction (3) (see Figure 3.9 (b)).
(Induction) Assume thaB =¢ (wy,w;) andA =¢ f[(wy, ws)] = (wyw v, vawaus)
by A — f[B] € P wheref[(z1,x2)] = (u1x1v1, v229u2). By the inductive hypothe-
sis, there exists a mature derived ttge= 7,,(G’) such that yieldt;) = w;, Bws. By
construction (3), an adjunct treeshown in Figure 3.8 (a) is inl. Therefores -, t
where yieldt) = ujw;v; Avawaus.

We can show thal(G) = L(G’) in the same way as the proof @6 L7 AL C
SLMCFL). O

3.2 A Subclass ofMCFG for ESLT AL

In this section, we will define a subclass(@f 2)-MCFG that exactly generates ESLTAL.
LetG = (N,T,S5,Z, A) be agiven ESLTAG. By virtue of Property 2 of [30], we can
assume thaf- is in normal form such that for every semi-simple linear adjunct tree

t € A, vyield(t) € N. Thus, for each leab of ¢, eitherv is the foot node or the
label of v is  (see Figure 3.10). From this observation, we define a subclag@sf
MCFG by adding rules corresponding to the adjunct trees shown in Figure 3.10 to the
definition of SLMCFG.

Definition 3.2. A (2,2)-MCFGG = (N, T, F, P, S,) is an ESLMCFG if each nonter-
minating rule has one of the following forms (1) through (3):

(1) A — J[B] wheredim(A) = 1 anddim(B) = 2.
(2) A — f[B] wheref is a simple linear function.

(3) A — g[B, D] Wheredll’n(A) = dlm(D) =2, dll’H(B) =1, g € {Cl, CQ, 03, 04}
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Figure 3.10. Semi-simple linear adjunct trees in normal form

and

01[371, (3721,9622)] = (51?1332173322)7 02[5171, (3?21,3522)] = (51?211’173522)7

03[371, (ﬂleaxzz)] = (9521,3713522)7 04[513’1, ($2175€22)] = (9521,3722951)-

[]

The next lemma establishes the equivalenc€@H£7 AL andESLMCFL. Inthe
proof, we use translations between an ESLTAG and an ESLMCFG similar to those in
Lemma 3.1. Let7 be a given ESLTAG in normal form. As in Lemma 3.1, initial trees
and simple linear adjunct trees @ are translated into ESLMCFG rules with simple
linear functions. The semi-simple linear adjunct trees shown in Figure 3.10 (a) through
(d) are translated into the ESLMCFG rules of type (3) in Definition 3.2.

Lemma3.2. ESLTAL = ESLMCFL.

Proof. (ESLTAL C ESLMCFL) LetG = (N,T,S,7,A) be a given ESLTAG
in normal form [30]. We construct an ESLMCRG' = (N', T, F, P, Sy) from G as
follows:

@) N’ = {A, A) | A€ N, t € TU A} wheredim(A}') = 1 anddim(A})) = 2
forAe Nandt € ZU A.

(2) P (and F) are the smallest sets satisfying the following conditions (a) through

(d):

(a) Foreachd € N, A1 — J[Al] € P for eacht € TU A andJ[(zy, 22)] =
T1T9 € F.
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(b) Same as (2) (a) (b) (c) inthe proof L7 AL C SLMCFL) in Lemma
3.1

(c) For each semi-simple linear adjunct teeghown in Figure 3.10 (a),

o A[Qﬂ — Cl[BFl],Dész]] € P for eachs, € 7; ands, € 7, and
Cilw1, (2a1, T92)] = (w1091, 192) € F if B has either SAT;) or OA(Z;)
andD has either SAL;) or OA(7,), and

o Ag} — (g,e) € Pif tis mature.

(d) For each semi-simple linear adjunct tree (b) through (d) in Figure 3.10, the
rules using’s, C's andCy, respectively, instead @f; belong toP.

Now, we show that there exists a treec T!(G) for somen > 0 such that
yield(T) = wiAws (A € N, wy, wy € T%) if and only if A 560 (wy, ws).
(“only if” part) By induction onn.
(Basis) If 7 = t is a mature adjunct tree shown in Figure 3.10, théfh — (e,e)is
constructed by construction (2) (c). Thu%f] = (g,€) by (L1). The other cases are
the same as the proof of Lemma 3.1.
(Induction) Assume that € T} (G) \ T!_,(G) and yieldT) = w;Aw,. There are
two cases: Eithet is a simple linear adjunct tree éiis a semi-simple linear adjunct
tree. The proof of the former case is the same as the one in Lemma 3.1. Consider
the latter case, then there are four subcases according to the shaes séfown in
Figure 3.10. We only consider the subcase (a) in Figure 3.10. The other subcases can
be treated similarly. Assume that-,, 7 F,, 7 whereo, € T;' | (G), 09 € T2, (G)
and are adjoined at the addresseds0énd D respectively. By construction (2) (c),
Al ¢y[BF, DE?) € P and by construction (2) (@B — J[BY'] € P. As-
sume further that yiel@d;) = u; Buy and yieldos) = v;Dvs. Then by assumption
that yield ) = w; Aws, we see thaty; = ujuyv; andwy = vy. By the inductive hy-
potheSiSBgsl] = (ug, us), D[;Q] = (v1,v7) and thusBF” = J[(ur, ug)] = uyug
by (L2). Hence,A[zt] = O urug, (v1,v2)] = (ugugvy, v2) = (wy,wy) by (L2).
(“if” part) The proof of the “if” part is similar to that of the “only if’ part of ESLMCF L
CESLTAL).

We can show that(G) = L(G’) in the same way as the proof of Lemma 3.1.

(ESLMCFL C ESLTAL) LetG = (N, T, F, P,Sy) be a given ESLMCFG. From
G, we construct an ESLTAG' = (N U{X},T, Sy,Z, A) as follows:
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Figure 3.11. Constructed adjunct trees

(1) For each ruleA — C4[B, D] € P, add adjunct trees tgl as follows. Note
that a rule whose left-hand side s with dim(B) = 1 has the form of either
B — JE]orB — u (u € T*).

e For each ruleB — J[E] € P, add the adjunct tree shown in Figure 3.11
(@) toA.

e ForeachruleB — u € P, add the adjunct tree shown in Figure 3.11 (b) to
A.

(2) For the rules using’y, C'3 or C4, construct adjunct trees in a similar way to (1).

(3) For the other rules, add elementary trees in the same way as (2) and (3) in the
proof of (SLMCFL C SLT AL) in Lemma 3.1.

We show thatd = (wy,w,) if and only if there exists a treec T,,(G") for some
n > 0 such that yielt) = w; Aws.
(“only if” part) By induction on the application number of (L1) and (L2).
(Basis) If A =¢ (w1, ws), i.e., A — (wy,we) € P, an adjunct tree such that
yield(t) = w; Aws, is constructed (see Figure 3.9 (b)).
(Induction) Assume thak = (u1,us), B = J[(u1,us)] = uius, D =¢ (v1,v2)
and A =g Ciluiuy, (v1,v2)] = (uiusvy,vs) by B — J[E] and A — C4[B, D]
in P. By the inductive hypothesis, there exist tregst, € 7,_1(G’) such that
yield(t;) = w1 Eus and yieldty) = v, Dvy. SinceB — J[E] and A — Cy[B, D]
belong toP, the adjunct tree shown in Figure 3.11 (a) is il by construction (1).
Thus, we have a treee T,,(G’) such that yieldt) = u,usv, Ave by adjoiningt; and
t, 10 s. The other cases can be treated in a similar way.
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(“if” part) The proof of the “if” part is similar to that of the “only if” part of ESLT AL
CESLMCFL).
L(G) = L(G") can be proved in the same way as the proof of Lemma 3.1. [

3.3 A Subclass ofMCFG for RPL

As described in Section 2.2, extra nonterminals in RPGs and functions in MCFGs play
a similar role. In this section, we reformula®Pg as a subclass 0$1CFG.

Definition 3.3. A (2,2)-MCFG G = (N, T, F, P, 5) is called an RPG if each nonter-
minating rule has one of the following forms (1) through (3):

(1) A— J[B|.
(2) A— BF[Eh EQ] Whel’edlm(A) =2, dlm(El) = dlm(Eg) =1 andBF[CCl, IQ]
= (113'1, 332).

(3) A — f[B, D]wheredim(A) = dim(B) = dim(D) =2, f € {X 51, X S2, XS5,
W1, XS; (i =1,2,3) is defined in Example 2.2 aidl'[(x11, x12), (%21, T92)] =

(x11221, T22T12). L]

Note that although an original RPG in Section 2.2 does not have an extra nontermi-
nal corresponding to the functionsand BF', J is used to realize the effect of the
homomorphisnh,, and BF' is used to simulate a production of the forin— B A C.

Proposition 3.3.
RPL C (2,2)-MCFL. (3.6)
O
We obtain the following property on recognition complexity.

Proposition 3.4. For a givernw € T* (n = |w|), whetherw € L or not can be decided
in O(n%) time if L is an RPL,O(n®) time if L is an ESLTAL, andD(n?) time if L is
an SLTAL.

Proof. For an RPGG, deg(G) < 6, for an ESLMCFGG, deg(G) < 5 and for an
SLMCFGG, deg(G) < 4. The proposition follows from Proposition 2.2, Lemmas 3.1
and 3.2. [
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The above complexity results were first shown in [30] L7 AL andSLT AL,

and in [24] forRP L by providing an individual recognition algorithm for each class.
On the other hand, by identifying these classes of languages as subclag4és-af,

we can easily obtain the same results as stated in Proposition 3.4. Akutsu [2] defined
a structure called a simple pseudoknot and proposed(an) time exact prediction
algorithm andO(n*~?) time approximation algorithm without using grammar. Note
that the set of simple pseudoknots can be generated by an SLTAG.

4. Closure Property

First, we introduce a normal form of ESLMCFG and then show closure properties of
SLTAL andESLT AL. By using SLMCFG and ESLMCFG, we can prove these
properties in a simple way. Some of these properties will be used for proving the
inclusion relation betweeSL7 AL andESLT AL.

Definition 3.4. An ESLMCEFG is in normal form if the following conditions (1) and
(2) hold:

(1) For eachd — f[B] wheref[(z1,x2)] = (u1m1v1, vaous), |u1vivaus| = 1.
(2) Foreachd — (uq,uq) (u1,ug € T%), uy = uy = €. u

Remark that a similar normal form is defined for ESLTAG in [30]. It is easy to prove
the following lemma.

Lemma 3.5. For a given ESLMCFQ~, a normal form ESLMCFG>' can be con-
structed from& such thatZ.(G) = L(G").

Proof. LetG = (N, T, F, P, Sy) be a given ESLMCFG. When we construct a normal
form ESLMCFG G’ such thatL(G) = L(G’), we have only to consider that every
simple linear function irF’ can be simulated by functions satisfying the condition (1)
in Definition 3.4. For simplicity, we see the following example. Let— f[B] € P
where f[(z1, x2)] = (ax1bc, x2d) € F (a,b,c,d € T). This rule can be simulated
by A — UPY[B1], B — UPf[Bs], By — UPPs[Bs] and B; — U Pg,|B4] where
UPy, UP, andUPsy, (o € T) are defined in Example 2.2. General case can be
treated similarly. Also, every terminating rule ihcan be simulated in a similar way.

O
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Theorem 3.6.SLT AL andES LT AL have the following properties.
(1) SLT AL contains every linear language.

(2) SLT AL is closed under union, homomorphism, intersection with regular lan-
guages and regular substitution, but is not closed under intersection, concatena-
tion, Kleene closure, positive closure or substitution.

(3) ESLT AL is closed under intersection with regular languages and substitution,
but is not closed under intersection.

Proof. (1) For linear CFG rulest — u;Bv; andA — u, construct SLMCFG rules
A — f[B]wheref[(z1,xs)] = (u1x101, x2) andA — (u, €) respectively.

(2) (union) Fortwo SLMCFGS§/, = (N, T, F1, P1, So1) andGy = (No, T, Fy, Py, Sos)
whereN; N Ny = ¢, letG' = (N U No, T, Fy U Fy, P, Sy) whereP is the union
of P, and P, with Sy, and Sy, replaced withSy. ThenL(G,) U L(Gs) = L(G').
(homomorphism) LetG = (N, T, F, P, S) be an SLMCFG and be a homo-
morphism. An SLMCFGG’ such thath(L(G)) = L(G’) can be constructed
as follows. For aruled — f[B] € P where f[(z1,x2)] = (u1z1v1, v2wous),
construct a ruled — f'[B] wheref'[(z1, x2)] = (h(uq)z1h(vy), h(v)xah(us)).
The construction of terminating rules is similar.

(intersection with regular languages) Same as the proof of Theorem 3.9 (3) of
[29].

(regular substitution) Letr = (N, T, F, P, Sy) be an SLMCFG in normal form.

We also assume that each rlle— f[B] € P has a unique label, say and

write r : A — f[B] € P. Lets : T — 2(T)" be a regular substitution and
for eacha € T, let s(o) = L(G,) whereG, = (N,,T", P,, S,) is a regular
grammar. We now construct an SLMCK@& = (N’ 1", F', P', S,) such that
s(L(G)) = L(G') as follows. G’ will simulate G,, by a linear function instead

of generatingy € T. To do this, we introduce a nontermin&l’! in G’ where

X € N, andr : A — f[B] € P such that the definition of containsx € T.

o N'=NU{XIT| X e N \{S.}, a €T, r:A— f[B] € P}.

e F'consists of/, UP’, UP,, UPY, , UP}, (3 € T') of Example 2.2 and
EPS[] = (g,¢).



e P’ isthe smallest set satisfying:

— If Sy — J[A] € P, Sy — J[A] € P'.

— Assume that : A — f[B] € P wheref[(x1,z2)] = (az1,22) (o €
7). X —3Y e P,(X,YeN,, 8eT), X" - UP/ [yl ¢
P,andifX - e P, (X €N, 3eT), X" - UP/ Bl e P
wheres!! is identified with A for simplicity.

— For the other rules i, similar construction can be defined. For ex-
ample, if f[(x1, 5)] = (21, 220) (o € T)), we will useU Py, instead
of UP/,.

The proof ofs(L(G)) = L(G’) is easy. For example, in the second case of the
construction ofP’, A =« f[(71,72)] = (ay1,72) ifand only if A =4/ (671, 792)

for every¢ € L(G,).

(intersection) Letl, = {a}al'aja}a? | m,n > 1} andL’ = {a}ayala]'a? |
m,n > 1}. LandL' belong toSL7 AL (and thu£SL7 AL) since each SLM-
CFG generating. and L/, respectively, can be constructed. For example, the
SLMCFG generating_ is as follows: S, — J[A], A — f[A] | f[B] where
fl(x1,22)] = (a1z103, agx0a;5) and B — g[B] | (ag,e) Whereg[(zy, z2)] =
(agwy,72). The SLMCFG generatind’ is constructed in a similar way. The
intersection of them, i.el, N L' = {a}a%a%a}ay | n > 1} is not a 2-MCFL by
Lemma 3.3 of [29]. Thereford, does not belong t6 L7 AL.

(concatenation) Lef. = {fafbitald, | k,0 > 1} and L’ = {faF'b3'8a}bit |
m,n > 1}, both of which are SLTALs. An SLMCFG generatingis such
that Sy — J[S], S — add‘[4] where ad#f[(z,22)] = (H21,812), A —
flA] | B wheref[(x1,22)] = (a121b1,22) and B — g[B] | (a1b1, azbs) wWhere
gl(x1,29)] = (21, a922b9). The construction of an SLMCFG generatifgis
similar. The concatenation of them, i.d./ = L, defined in (3.3) is not an
SLTAL.

(Kleene closure, positive closure) By the next corolla$y;7 AL is a union
closed full trio. IfSL7T AL is closed under Kleene closure or positive closure,
thenSL7T AL is closed under concatenation by Proposition 3.8, which is a con-
tradiction.

(substitution) Letl; = {td;#dsfldstd,t}, which is a finite language and thus an
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SLTAL, and lets be a substitution such thatd;) = {a’b} | n > 1} (1 < i < 4),

which is also an SLTAL by (1) of this theorem. The(L;) = L. defined in
(3.3), which is not an SLTAL.

(3) (intersection with regular languages) Same as the proof of Theorem 3.9 (3) of
[29].
(substitution) LetZ = (N, T, F, P, Sy) be an ESLMCFG in normal form. Let
be a substitution such thafa) = L(G,) (a € T) whereG, = (N,,T", F,, P., Soa)
is an ESLMCFG without sharing nonterminals with one another anddiitAn
ESLMCFGG" = (NUU,ep NaU{X }, T, FUU,or Fay P'UU,er Pas So) gEN-
eratess(L(G)) whereP’ is the same a® except that for a rulel — f[B] where
fl(x1, z2)] = (az1,z2), P’ containsA — C[Sy,, B] instead ofA — f[B], and
similarly for the other rules that use simple linear functions.
(intersection) See (2) of this proof. O

a€T

A class of languages is calledwall trio (or cong if it is closed under homomorphism,
inverse homomorphism and intersection with regular languages. A full trio closed
under union, concatenation and Kleene closure is calledl abstract family of lan-
guages(full AFL). When we try to show that a class of languages is a full trio (or
full AFL), major difficulty lies in showing closure under inverse homomorphism. The
following propositions [19] present an alternative way of proving it.

Proposition 3.7 ([19]). If a class of languages is closed unddiree regular substi-
tution, linear erasing, union with regular languages and intersection with regular lan-
guages, then it is closed under inverse homomorphism. The same conclusion can be
made fore-free classes even without assuming closure under union with regular lan-
guages. ]

Proposition 3.8([19]). If a class of languages includes a language containing a nonempty
word and is closed under union, Kleene closure (or positive closexfege regular
substitution, intersection with regular languages and homomorphism, then the class is
a full AFL. If a class of languages contains all regular languages and is closed under
substitution as well as under intersection with regular languages, then the class is a full
AFL. O

Corollary 3.9. SLT AL is afull trio. ESLT AL is a substitution closed full AFL.
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CFLSLTAL
(56 5)

Figure 3.12. Known results on inclusion relation

Proof. (full trio) By Proposition 3.7 and Theorem 3.6 (2) .
(full AFL) By Proposition 3.8 and Theorem 3.6 (1), (3). Il

5. Inclusion Relation

First, we summarize the inclusion relations between the classes of languages stated
in (3.1) through (3.6) (see Figure 3.12). In the figure, an asterisk indicates that there
exists at least one language in the region where the asterisk is placed.

Proposition 3.10. (1) (CFLUSLTAL) CESLTAL CTAL C (2,2)-MCFL.
(2) RPL C (2,2)-MCFL C 2-MCFL C MCFL. O

In the following, we refine the above proposition.

5.1 RPL = (2,2)-MCFL

We introduce the following condition (S) that states that for each argutmgnt;,)
of a function of a 2-MCFG, the order of the occurrences of its compongngdz;,
is not interchanged in the function value.

(S) LetG = (N, T, F,P,S)bea2-MCFG ang : (T*)% x---x (T*)% — (T*)% (1 <
d; < 2for0 < i < k) be an arbitrary function i’ defined by (see (F) in Section



Chapter 3 Generative Power of Grammars for RNA Pseudoknotted Structud®

2 of Chapter 2):
f[h][zl, Ce ,Zk] = (1 S h S do)

where either; = x; or z; = (741, 242) (1 < i < k). Letp = oy if dy = 1 and
let p = ajay if dy = 2. For eachi (1 < i < k), if 2, = (z;1,2:2) and both
x; andx;, occur ing, thenx;; occurs to the left of the occurrence of, i.e.,
¢ = &irnoring; for someg; (1 < j < 3).

Lemma 3.11. For a given 2-MCFQG~, we can construct a 2-MCFG’ satisfying the
condition (S) and.(G) = L(G").

Proof. Let G = (N,T,F,P,S) be a given 2-MCFG. For example, if there exits
aruleA — f[B,D] € P where f[(z11,212), (x21,%22)] = (12721, T22211), then
the pair of variablegz,, x15) violates the condition (S). We interchange the occur-
rences ofr;; andzy, in the definition of f to obtain another function, saf such
that f[(z11, z12), (221, T22)] = (211291, T22212). ThenA — f[B, D] is replaced with

A — f,|BY, D] whereB* is a new nonterminal symbol such that= (u;, us) if and
only if B® = (uy,u,). For B to satisfy this property, more rules should be added.

Generally, we will construct a 2-MCFG’ = (N, T, F', P, S) as

N'= NU{AR | A € N},

F'={f, fF| feF},
P'={Ay— f.[Br,....Bl, AR — fRIDy,.... Dyl | Ao — flAy,..., A € P}

wheref,, f& B; andD; (1 < i < k) are defined as follows. Let the definition pbe
the one stated in the condition (S). Also, €t = ¢ = o if dy = 1 and letp? = ay
if dyg = 2.

AR if x4 occurs to the left of;; in ¢

B; =
A; otherwise.
AR if x4 occurs to the left of:;; in o
A; otherwise.
Assume thatly = 2, i.e., flz1,...,2x] = (a1,2). (The case that, = 1 can be

treated in the same way.) Thetizy, ..., 2] = (61, 32) and fE[zy, ..., 2] = (Y2, m1)-
Here,3; (j = 1,2) is obtained fromy; by interchanging the occurrencesxf and
zi2 (1 <4 < k) if and only if z;, occurs to the left of;; in . Similarly,v; (j = 1,2)
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is obtained fromy; by interchanging the occurrencesagf andz;, (1 <1 < k) if and
only if z;5 occurs to the left of;; in 7.

Now, we show by induction on the application number of (L1) and (L2) that
A =S¢ (ug, ug) (uy,ug € T*) ifand only if A ¢ (uy, ug) andA® S (ug, uy).
(“only if” part) (Basis) If A =¢ (u1,us2), A — (u1,us) € P. By the above construc-
tion of G/, A — (u1,u) € P and A% — (us,u;) € P'. Hence,A = (uy,uy) and
AR = (ug, uy).
(Induction) Assume that; =¢ (v;1, vi2) (1 < < k) andAy =¢ f[(vi1, v12), - . -, (U
JUk2)] = (ug,ug) by Ag — f[As,..., Ax] € P. By the above constructio, —
flA1, ..., Ag] € Pisreplaced withdg — fi[By,..., Byl and Al — fE[Dy, ..., Dy]
in P, If 24 occurs to the left of;; in o, thenB; = AE, otherwiseB; = A;. By the
inductive hypothesisd; = (vi1, viz) and AR = (vig, v31). Thus,Ag = (uy, us).
Al S (uy,uy) can be shown in the same way.
(“if” part) The proof of the “if” part is similar.

L(G) = L(G") can be proved by considering a derivation from the start symbol.

Il

Lemma3.12.LetG = (N, T, F, P, S) be a(2, 2)-MCFG satisfying the condition (S).
Then we can construct an RR@ such thatL(G) = L(G").

Proof. LetG = (N, T, F, P, S) be an arbitrary2, 2)-MCFG satisfying the condition

(S). We construct an RPG’ weakly equivalent t@+ as follows. The number of func-
tions f : (T*)* x (T*)* — (T*)? satisfying the condition (S) is 18. A half of them
can be obtained from the other half of them by interchanging the first and the second
arguments. Among the remaining nine functions, four are RPG functions. The others

are:
f1[($11,$12), ($21,I22)] = ($11,$12$213322),
f2[($11,$12), (@1@22)] = ($115E12,$21$22),
f3[(3711,9312), (5U21751722)] = (T11712721, To2),
f4[(9511,9512), (1’2175622)] = (211, T21722712),
f5[($11,$12), ($21,I22)] = ($11$211322,3312)~

These functions can be simulated by RPG functions (see Table 3.1). Also, a simpler
function such ag : (T*)* x T* — (T*)? can be treated in the same way. O

By Proposition 3.10 (2), Lemmas 3.11 and 3.12, we obtain the following theorem.
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Table 3.1. Simulation of2, 2)-MCFG functions by RPG functions

(2,2)-MCFG rule Corresponding RPG rule
A— fi[B,D] | A— XS,[B,Y1], Y1 — BF[Ys,Ys], Yo — ¢, Y3 — J[D]
A— fo[B,D] | A— BF[Y1,Y2], Y1 — J[B], Y2 — J[D]
A— f3]B,D] | A— XS[Y1,D], Y1 — BF[Y2,Y3], Y2 — J[B], Y3 — ¢
A— f4B,D] | A—WI[B,Y1], Y1 — BF[Y,Ys], Yo — ¢, Y3 — J[D]
A— f5[B,D] | A— WI[B,Y1], Y1 — BF[Ys,Y3], Yo — J[D], Y3 — ¢
Theorem 3.13.RPL = (2,2)-MCFL. O

52 ESLTAL =SSTAL = (2,2)-MCFL with degree< 5

Next, we will show the equivalence 6iSL7 AL, SST AL and(2,2)-MCF L whose
degree is five or less.

Theorem 3.14.ESLT AL = SST AL = (2,2)-MCF L with degree< 5.

Proof. (ESLT AL C SST AL) To prove this inclusion relation, we redefine SSTAG

in a different way from the original mentioned in Section 2.1. Gzet (N, T, S,Z, A)

be a TAG. We divideA into three finite setsA;, A, and. A3 arbitrarily and call each
element of them a left tree, a right tree and a wrapping tree respectively. If each left tree
satisfies (LT1) and (LT2), each right tree satisfies (RT1) and (RT2), and each wrapping
tree satisfies (WT2), the¥ is called an SSTAG. Note th&iS7 .AG defined in [28]

is included in the class of grammars we redefined above, but not vice versa. Part of
the reason is because in the original definition of SSTAG, every adjunct tree satisfying
(LT1) is called a left tree and every left tree must satisfy (LT2), while in our definition,
we can classify every adjunct tree satisfying (LT1) into a wrapping tree. Here, we
classify every adjunct tree in a given ESLTAG into a wrapping tree and assume that the
other sets4; and.A, are empty. Then by the definition of ESLTAG, every wrapping
tree in.Aj; satisfies (WT2) and thus is an SSTAG.

((2,2)-MCFL with degree< 5 C ESLT AL) By virtue of Lemmas 3.2 and 3.11, we
have only to consider translation from(2, 2)-MCFG G such thatdeg(G) < 5 and

G satisfies the condition (S) into an ESLMCF@. The construction ofy’ from G is

as follows. The number of functions satisfying the condition (S) is 12. A half of them
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A A

A . Ak
Wl W2
(a) A left tree in SSTAG (b) Aright tree in SSTAG
A
5
U, vi AV, U,

(c) A wrapping tree in SSTAG

Figure 3.13. Adjunct trees in SSTAG

Figure 3.14. A mature derived tree in SSTAG

can be obtained from the other half of them by interchanging the first and the second
arguments. Among the remaining six functions, four are ESLMCFG ones. The others
are gi[xq, (x91, x20)] = (21, To1290) aNd go[z1, (721, T22)] = (T21292,21). The rule

A — ¢1[B, D]in G can be simulated byl — C,[B,Y1], Y1 — C4[Y2,Y3], Yo — J[D]

andYs; — (g,¢) in G'. Similarly, A — ¢»[B, D] can be simulated byA — C4[B, Y],

Y1 — C1[Ys, V3], Yo — J[D] andY; — (g,¢).

(SSTAL C (2,2)-MCFL with degree< 5) Let G = (N,T,S,Z, A) be a given
SSTAG defined in [28]. We construct (@, 2)-MCFG G' = (N',T, F, P, S) with
deg(G’) < 5 as follows:

(1) N' = {4, A, Al AV | A€ N, t € TU A} wheredim(A,) = dim(A})) = 1
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anddim(A,) = dim(AY) = 2. In addition, we classify3, € N’ corresponding

to the wrapping node of a wrapping tree into four nontermiigls, B p, Bru

and Bgp. Their dimensions are one and each of them derives a portion of the
tree yield, say,Bry = ui, BLp = U1, Bru = us and Brp = ¥s
whereu, us, v1, vy € T (see Figure 3.13 (c)).

(2) P (andF) are the smallest sets satisfying the following conditions:

@) Sy — J[S1) € P for eacht € T andJ[(x1, 25)] = 2122 € F.
(b) Foreachd € N, A; — J[A,], A1 — J[AlY € P for eacht € 7 U A and
J e F.
(c) For each left tree € A shown in Figure 3.13 (a),
o Al — 1[4l AlY € Pforeachlefttree € T andC) [z, (221, 222)]
= (z1291, 92) € F if the root node has either SA{) or OA(7),
o Al - ¢y|Al, AN € Pforeach lefttree € T andCyfry, (zo1, 722))]
= (w9171, T99) € F if the foot node has either SA() or OA(7),
o Al - 0 (Al Al € Pforeachrighttree € AandCy[zy, (za1, 222)]
= (w91, re011) € F if sis adjoined to the root node of
o Al — (Al Al € Pforeachrighttree € A andCs[zy, (21, 222)]
= (w91, T1722) € F if sis adjoined to the foot node of
e See (e) if we adjoin an adjunct tree to a node that is not in the back-
bone, and
o Al (wy, e)if tis mature.
(d) For each right tree € A shown in Figure 3.13 (b),
o A[zt] — C4[A[f], A[Qﬂ] € Pforeachrighttree € 7 andCy[z1, (z21, x22)]
= (w91, Teowy) € F if the root node has either SA() or OA(7),
o A[zt] — 03[14[18}, Agﬂ] € Pforeachrighttree € 7 andCjs[zy, (z21, x22)]
= (w91, T172) € F if the foot node has either S&( or OA(7),
o Al 01[AF Al € Pforeachlefttree € AandC) [y, (221, 222)]
= (x1291,92) € Fif sis adjoined to the root node of
o Al — 0,[Al AlY € Pforeachlefttree € AandCslzy, (221, 222)]
= (x9111, x99) € Fif s is adjoined to the foot node of
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e See (e) if we adjoin an adjunct tree to a node that is not in the back-
bone, and

o A[zt] — (e, wo) If ¢ is mature.
(e) For each wrapping treec A,

o Al — C\[Bry. X1, X1 — Cu[Bru, X, X2 — Cs[Brp, X, X3 —
Cs[Brp, Bf]] € P for each wrapping tree € 7 andC, (5, Cs,Cy €
F if the wrapping nodeB in Figure 3.13 (c) has either SA] or
OA(T),

o Al = Ci[Dy, A3], Dy — (a,e), Ay — (b,ab) € P wherea,b € T
and(C; € F if we adjoin the adjunct tree indicated by the shaded
region in Figure 3.14 td that is not in the backbone and then the
derived tree is mature. The other examples and the adjunction of a
left tree or a right tree to a node in the backbone ofn be treated
similarly, and

o Al — (wy, w,) if t is mature.

() For each initial tree¢ € Z, adjoin derived trees tband then construct rules
for the mature tree in a similar way to (e).

Although the derivation in SSTAG is not specifically described in [28], the recognition
algorithm is correct and thus we can constrGGtby the above construction.

Next, we show that there exists a treec T'(G) for somen > 0 such that
yield(T) = wi Aws (A € N, wy, wy € T%) if and only if AU 560 (wy, ws).
(“only if” part) By induction onn.
(Basis) If 7 = t is a mature wrapping tree shown in Figure 3.13 (c), then a rule
A[;] — (wq,wy) is constructed by construction (2) (e). Thuﬁ] o (wy,wy) by
(L1). The other cases can be proved in the same way.
(Induction) Assume that € T (G) \ T!:_,(G). We consider only the case wheres
a wrapping tree and the adjunction is performed only at the wrapping node (see Fig-
ure 3.13 (c)). The other cases can be treated similarly. Assume thatr where
o € T:_,(G) is adjoined to the wrapping nodB in ¢ and yieldo) = w;Bws.
(Note thats is a wrapping tree.) Then yield) = ujw,v; Avowsus. By construc-
tion (2) (e), AY — C\[Buy, X1], X1 — Cu[Bry, X, Xo — Cs[Bgp, Xs], X5 —
C3|Brp, BYY] € P. By the inductive hypothesisBl! = (w;,w,). ThenX; =4
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Colvy, (w1, w3)] = (wyvy, ws), Xo = Cslvg, (wivr, ws)] = (wyvy, vows), X, =
Cylug, (wyv1, vows)] = (w1v1, vowqus) and thusA[;] = Crlug, (wivr, vowsuy)| =
(uwyvy, vawausg) by (L2).
(“if” part) The proof of the “if” part is similar.

L(G) = L(G") can be shown by considering the correspondence between the initial
trees inZ and the rules constructed in (2) (f). O]

53 (CFLUSLTAL) CESLTAL
We show the inclusion relation betwe87 AL andESLT AL.

Theorem 3.15.Let Ly = {fafbicitalblchtagbiedtaibicit | k,1,m,n > 1}. Then
Ly € ESLTALN\ (CFLUSLTAL).

Proof. Let h; be a homomorphism such that(a,) = ay, hi(b1) = b1, hi(c1) = 1
andh, (z) = eforxz € {a;, b, c; | i = 2,3,4}U{tt}. Thenh,(L3) = {afblcl | k > 1},
which is not a CFL. Sinc€ FL is closed under homomorphismg is not a CFL.
Similarly, leth, be a homomorphism such that(c;) = ¢ for: = 1,2, 3 and identity on
the other symbols. Thel,(L3) = L, defined in (3.3), which is not an SLTAL. Since
SLT AL is closed under homomorphism by Theorem 3.6 (2),s not an SLTAL.
Next, we give an ESLMCFG (with start symh8{) generating_; as follows:

So — J[S1], J[(z1, x2)] = 2129,

S; — add|[T1], add|(x1, 2,)] = (1, 72),

T; — Cy[Siv1, Ai] (1 <1< 3), Cylz1, (T21, T22)] = (221, T221),
Sy — J[T3],

S — J[T3],

Sy — J[A4],

A = LA | (aibs,eif) (1 <i<4), fil(z1,22)] = (aiz1bi, o) (1 <0< 4). U

Finally, we sum up the inclusion relations obtained in this section. The following
corollary follows from Proposition 3.10, Theorems 3.13, 3.14 and 3.15 (see Figure
3.15).

Corollary 3.16. (CFLUSLTAL) C ESLTAL = SSTAL = (2,2)-MCFL
with degree< 5 C TAL C RPL = (2,2)-MCFL C 2-MCFL C MCFL. O

Whether the inclusiod SLT AL C T AL is proper or not is an open problem.
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= (2,2)-MCFL
O
TAL

ESLTAL = SSTAL
= (2,2)-MCFL (degree < 5)

O

CFL SLTAL
(28 =)

Figure 3.15. New results on inclusion relation

6. Summary

In this chapter, several formal grammars for describing RNA secondary structure with
pseudoknots were identified as subclassegl6tF G, and their generative powers were
compared. To the author's knowledge, the exact definition of RNA pseudoknot in a
biological or geometrical sense is not known, and then it is difficult to answer which
class of grammars is the minimum to represent pseudoknots. However, SLTAGS cannot
generate RNA sequences obtained by repeating a simple pseudoknot shown in Figure
1.2 (b) by (3.3), and by virtue of Theorem 3.15, ESLTAGSs (equivalently, ESLMCFGs
or (2,2)-MCFGs with degree 5 or less) are candidates for the minimum grammars that
can represent repeating simple pseudoknots. We also showeSi4@at L is a full

trio andESLT AL is a substitution closed full AFL, which is a good property from

the formal language theoretical point of view.

As described in the previous section, we conjecture ThdiZ properly includes
ESLT AL. To show this, it is sufficient to find a language that belong% L but
notto£SL7T AL by using a pumping lemma fétSL7 AL. As has been mentioned in
Section 1, the final goal of this study is to predict RNA secondary structure including
pseudoknots by using an appropriate subclas$1@i7G. For that purpose, we must
introduce probabilistic models and design algorithms for them. For instance, stochastic
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CFGs (SCFGs) where probability is assigned to each rule are used for RNA secondary
structure prediction without pseudoknots [8, 9, 26]. To apply subclassa4®Fg

to RNA secondary structure prediction with pseudoknots, probabilistic extension of
MCFGs should be introduced like SCFGs, which is presented in Chapter 4. It is es-
pecially important to consider the way to give probabilities to MCFG rules in order
to obtain biologically realistic structure. In addition, we would like to consider using
information on known secondary structures from some databases.



Chapter 4

Analysis of RNA Pseudoknotted
Structure Using SMCFGs

1. Introduction

Recently, it has been thought that most of the RNAs transcribed from genome se-
guences are non-coding RNAs (ncRNAs), and much attention has been paid to their
structures and functions. Non-coding RNAs fold into characteristic structures in such
a way that canonical Watson-Crick base pairs and non-canonical pairs bond each other.
The resulting base paired structure is called the secondary structure. In typical RNA
secondary structures, base pairs occur in a nested way, that is, for all pogitipns
and(7’, j') indicating base pairs in one stem, either ¢/ < j' < jori <i<j<j

holds. On the other hand, there are substructures where some base pairs occur in a
crossed fashion, which are callpdeudoknotsand they are found in several RNAs
such as rRNAs, tmRNAs and viral RNAs. It has been recognized that pseudoknots
play an important role in RNA functions such as ribosomal frameshifting and regula-
tion of translation.

Many attempts have so far been made at modeling RNA secondary structure by
formal grammars. In a grammatical approach, secondary structure prediction can be
viewed as parsing problem. However, there may be many different derivation trees for
an input sequence. Thus, it is necessary to have a method of extracting biologically
realistic derivation trees among them. One solution to this problem is to extend a gram-
mar to a probabilistic model and find the most likely derivation tree. Another is to take

44
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free energy minimization into account. Eddy and Durbin [9], and Sakakibara et al. [26]
modeled RNA secondary structure without pseudoknots by using stochastic context-
free grammars (stochastic CFGs or SCFGs). For pseudoknotted structure, however,
another approach has to be taken since a single CFG cannot represent crossing depen-
dency of base pairs in pseudoknots (Figure 1.2 (b)) due to the lack of generative power.
Brown and Wilson [5] proposed a model based on intersections of SCFGs to describe
RNA pseudoknots. Cai et al. [6] introduced a model based on parallel communication
grammar systems using a single CFG synchronized with a number of regular gram-
mars. Akutsu [2] provided dynamic programming algorithms for RNA pseudoknot
prediction without using grammars.

On the other hand, several grammars have been proposed where the grammar itself
can fully describe pseudoknots. Rivas and Eddy [23, 24] provided a dynamic pro-
gramming algorithm for predicting RNA secondary structure including pseudoknots,
and introduced a new class of grammars called RNA pseudoknot grammars (RPGS)
for deriving sequences with gaps. Uemura et al. [30] defined specific subclasses of
tree adjoining grammars (TAGs) named simple linear TAGs (SLTAGSs) and extended
SLTAGs (ESLTAGS), respectively, and predicted RNA pseudoknots by using the pars-
ing algorithm of ESLTAGs. Matsui et al. [20] proposed pair stochastic tree adjoining
grammars (PSTAGSs) based on ESLTAGs and tree automata for aligning and predicting
pseudoknots, which showed good prediction accuracy. These grammars have genera-
tive power stronger than CFGs and polynomial time algorithms for parsing problem.
For another application using a grammar-based model, Rivas and Eddy [25] presented
the detection of ncRNA genes in genome sequences. They tested the maximum lik-
lihood scanning algorithm based on SCFGs for some genome sequences including
known RNA genes such as tRNAs.

In Chapter 3, we have identified RPGs, SLTAGs and ESLTAGs as subclasses of
multiple context-free gramma(81CFGs) [14, 29], and have shown a candidate sub-
class for the minimum grammars to represent pseudoknots. The remainder of this
chapter is organized as follows. First, stochastic MCFGs (SMCFGs) are introduced
in Section 2, which are probabilistic extension of MCFGs. In Section 3, we present
a polynomial time parsing algorithm for finding the most probable derivation tree and
a probability parameter estimation algorithm based on the EM algorithm. In Section
4, we show some experimental results on pseudoknot prediction for three viral RNA
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families using the SMCFG parsing algorithm. Furthermore, we perform ncRNA gene
finding for several genome sequences known to have ncRNA genes with pseudoknots.
Experimental results are discussed in Section 5. Section 6 concludes this chapter.

2. Stochastic Multiple Context-Free Grammar

Stochastic multiple context-free gramméssochastic MCFGs, or SMCFGs) are prob-
abilistic extensions of MCFGs. An SMCFG is a 5-tugle= (N, T, F, P, S) where
the definitions ofV, T', F and S are the same as those of MCFR.s a finite set of
(production) rules associated with some real numbers and each rBlaas the form
of Ay & f[Ay,..., Ay whered; € N (0 < i < k), f € F andp is a real number
with 0 < p < 1 called theprobability of this rule. The summation of the probabilities
of the rules with the same left-hand side should be one. If we are not interegigd in
we just writeAy — f[A4, ..., Ag.

We next define derivation trees of SMCFGs as follows:

(D) If A L@ c P (ae (T)%™A), then the ordered tree with the root labeléd
that hasy as the only one child is a derivation tree fokvith probability p.

(D2) If A % flA1, ..., Ax] € P andty,...,t; with the roots labeled!,, ..., A; are
derivation trees forvy, . .., a; with probabilitiespy, . .., p., respectively, then
the ordered tree with the root labelddor A : f if necessary) that has, . . . ,
as (immediate) subtrees from left to right is a derivation treeffor, . . . , @]
with probabilityp - [T, p:.

ForA € N,a € (T*)%™®W andq (0 < ¢ < 1), we write A = @ with probability

q if ¢ is the summation of the probabilities of derivation trees dowith the root
labeledA. The language generated by an SMCE@s defined ad.(G) = {w € T* |

S = w with probability greater thaf}. Dimension, rank and degree of SMCFG are
defined in the same way as those of MCFG.

Example 4.1.Let G, = (N, T4, F1, P, S) be a(2,1)-SMCFG whereV; = {S, A},
Ty = {a,b}, L = {S 5 J[A], A2 f[4], AL (ab,cd)}, J[(x1, 22)] = 2122 ANd
fl(x1,22)] = (az1b, cxod). Then,A = (ab, cd) with probability 0.7 by the third rule,
which is followed byA = f[(ab, cd)] = (aabb, ccdd) with probability0.3 - 0.7 = 0.21
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Table 4.1. SMCFG~r

a7

Type Rule set Function Transition prob.| Emission prob.
E | W, — (g¢) 1 1
S | Wy = J[W,] J((z1,22)] = 2122 tu(y) 1
D W, — SK[W,] SK[(x1,22)] = (x1,22) ty(y) 1
By | Wy, = Ci[Wy,W,] | Cilz1, (221, 222)] = (2121, T22) 1 1
By | Wy — Co[Wy,W,] | Calzq, (x21, 222)] = (x2121, T22) 1 1
Bs | Wy — Cs[Wy, W.] | Cslzr, (221, 222)] = (221, Z1222) 1 1
By | Wy — Cy[W,,W.] | Cylzy, (z21,222)] = (w21, T2271) 1 1
Ui, | Wy = UPL W] | UPY[(21,22)] = (aiz1, x2) tu(y) ev(ai)
Ui | Wy — UPRIW,] | UPE[(z1,22)] = (2105, 2) tu(y) ev(a;)
UsL | Wo = UPRE[Wy] | UPsp (21, 22)] = (1, ak®2) tu(y) ev(ar)
Usr | Wo = UP[Wy| | UPg[(z1, m2)] = (21, 220:) tu(y) ev(a)
P | Wy — BPu[W,] | BPY“"[(z1,23)] = (a:iz1, T2a1) to(y) ev(ai, ar)

by the second rule. Also, by the first rul§, = J[(aabb,ccdd)] = aabbcedd with
probability1 - 0.21 = 0.21. In fact, L(G,) = {a"b"c"d" | n > 1}. O

In this chapter, we focus on(@, 2)-SMCFGGr = (N, T, F, P, S) with deg(Gr) <
5 that satisfies the following condition&:z hasm different nonterminals denoted by
Wi, ..., W, each of which uses the only one type of a rule denotedl lty, D, B,
B,, Bs, By, Uip, Uigr, Usp, Usg Or P (see Table 4.1). These types stand forok
START, DELETE, BIFURCATION, UNPAIR and RAIR respectively. The type dfV, is
denoted by typ@) and we predefine type)
For each rule-, two real values calletransition probabilityp; andemission proba-
bility p, are specified as shown in Table 4.1. The probability &f simply defined as

= S, that is, W is the start symbol.

p1 - p2. In application,p; = ¢,(y) andp, = e,(a;), etc. in Table 4.1 are parameters

for the grammar, which are set by hand or by a training algorithm depending on the
set of possible sequences to be analyzed. All the transition probabilities of bifurcation
nonterminals are defined as one since most of the nonterminals for modeling RNA
secondary structure have the type of eithePdir or PAIR, and BFURCATION non-
terminals are sometimes used to deal with concatenating and wrapping operation. This
single choice of transition for BURCATION nonterminal reduces time complexities

of SMCFG algorithms. For each nontermin&], AL, AR A2l and A2 are defined

as the number of symbols generatediby (see Table 4.2). This notation simplifies
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Table 4.2. The number of symbols emitted by nonterminals

Type | A" | A | ATE | ARF
E 0 0 0 0
S 0 0 0 0
D 0 0 0 0
B; 0 0 0 0
Bs 0 0 0 0
B3 0 0 0 0
B4 0 0 0 0

Ui 1 0 0 0

Ur | 0 1 0 0

Usr, 0 0 1 0

Usr 0 0 0 1
P 1 0 0 1

the description of the algorithms presented in the next section.

3. Algorithms for SMCFG

In RNA structure analysis using stochastic grammars, we have to deal with the follow-
ing three problems [8]:

(1) Calculate the optimal alignment of a sequence to a stochastic grammar. (align-
ment problem)

(2) Calculate the probability of a sequence, given a stochastic grammar. (scoring
problem)

(3) Estimate optimal probability parameters for a stochastic grammar, given a set of
example sequences. (training problem)

In this section, we give solutions to each problem for the specific SMGRG=
(N,T,F,P,S).
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3.1 Alignment Algorithm

The alignment problem faf7 is to find the most probable derivation tree for a given
input sequence. This problem can be solved by a dynamic programming algorithm
similar to the CYK algorithm for SCFGs [8], and in this paper, we also call the parsing
algorithm forG the CYK algorithm. We fix an input sequenge= a; - - - a,, (Jw| =

n). In fact,w is an RNA sequence composed of four symhaols g andu. Let~,(7, j)

and~, (7,7, k, 1) be the maximum log probabilities of a derivation subtree rooted at
a nonterminallV,, for a terminal subsequencg- - - a;, and of a derivation subtree
rooted at a nontermindl/, for a pair of terminal subsequencés - --a;, a; - - - ;)
respectively. The variables, (i, — 1) and~,(i,i — 1,k,k — 1) are the maximum

log probabilities for an empty sequencand a pair ot. Let7,(i,j) andr,(i, j, k., 1)

be traceback variables for constructing a derivation tree, which are calculated together
with v,(7, ) andv, (¢, j, k,1). We letC, = {y | W, — f[W,] € P, f € F'}. To avoid
non-emitting cycles, we assume that the nonterminals are numbered such<that

for all y € C,. The CYK algorithm uses a five dimensional dynamic programming
matrix to calculatey, which leads tdog P(w, 7 | ) wherer is the most probable
derivation tree and is an entire set of probability parameters. The illustration of the
iteration step in the CYK algorithm is shown in Figure 4.1. The detailed description of
the algorithm is as follows:

Algorithm 4.1 (CYK).

Initialization:

1 fori—1ton+1,k—iton+1,v«< 1tom
doif type(v) = E

3 then~,(i,i — 1,k,k—1) <0

4 elsevy,(i,i — 1,k k — 1) «— —o0

N

Iteration:

5 fori«<ndowntol,j«i—1ton, k< n+1downtoj+1,l — k—1ton,
v+ 1tom

6 doif type(v) = E

7 thenif j=7—1landl=k—1

8 then skip

9 elsev, (i, j,k,1) «— —oc0
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1

1

if type(v)

if type(v) =

if type(v)

W, Wv Wv
|
W,
i hh+tl | 1 hh+1 j 1 hh+1 j
(a) typgv) = S (b) type(v) = By (c) type(v) =B
W, W, Wy
VRN VRN |
W, W W, W, W,
i k hhtil n 1 i j k hhtll n 1 i ik I n
(d) typgv) =B (e) typdv) = By (f) otherwise

Figure

then , (4,

4.1. lllustration of the iteration step for calculatmng

if type(v) = S

J) — m%x max [logtv(y) + v, (4, hy h + 1, 5)]

» h=i—1,...,

7(4,7) < arg r(neg[logt oY) + (i, b h+ 1, 7)]
Y,

then ~, (i,

then ~, (4,

= B, and W, — C1[W,,, W,]

gy k1) — , nax [’yy(z h)+~.(h+ 1,7, k,1)]

77777

)+
7o(i,J, k, 1) < arg (mz‘o}X[vy(z h) + 7. (h+ 1,5k, 1)]
W2

B, and W,, — Cy[W,
Jyk,1) —  max hy(h+ L,7) + (i, h k1)

,,,,,

7(4, 7, k, 1) — arg (ma;shy(h +1,7) +7:(¢, h, k, 1))
Y,z,

if type(v) =

then ~, (i,

B; and W, — Cs5[W,,, W, ]
gy k1) — , nax V24,5, h + 1,1) + v, (k, h)]

.....

U(Z7]7 k?” — arg (ma;l()[%(z,j,h + 17l) + 7y(k7h)]
Y,z

then ~, (4,

= B, and W, — Cy4[W,,, W,]

gy k1) — ,nax V:(3, 7, k, h) + v, (h+ 1,1)]

-----

7,(,J, k,1) < arg (ma;s[’yz(w, k,h) 4~y (h +1,1)]
Y,z,

if type(v) =
thenifj=i—1lorli=k—1
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27 then~, (7, j, k,1) «— —o0
28 else, (i, j, k, 1) — max[log e, (a;; ar) +logtu(y) + 7, (i + 1,5, k, 1 = 1)]
Yy v
29 7,(1, 7, k, 1) < argmax|[log e, (a;, a;) +logt,(y) + v, (i + 1,7, k, 1 —1)]
Yy

30  elsev,(i,j,k,1) «— Iﬁ%}:[log ep(a;, aj, ap, a;) + logt,(y)
+y, (0 4+ AL G — Ak AL — AZR)Y)
31 7y(1, j, k, 1) < argmax[log e, (a;, a;, ay, a;) + log t,(y)
+73(i+AiL,j — Ak AR T — AP O

When the calculation terminates, we obtkig P(w, 7 | ) = (1, n). If there are
b BIFURCATION nonterminals and other nonterminals, the time and space complex-
ities of the CYK algorithm ar®(amn* + in°) andO(mn?*) respectively. To recover
the optimal derivation tree, we use the traceback variabkesd the push-down stack
holding tuples of integers of the forngs, i, j) and(y, 7, j, k, ). The full description of
the traceback algorithm is as follows:

Algorithm 4.2 (CYK traceback)
Initialization:

1 (v,h)—m7(1,n)

2 attachi¥, as the child ofi;

3 push(v,1,h,h+ 1,n) on the stack
Iteration:

4 while the stack is not empty

gl

do pop
6 if type(v) = E

7 then attach(e, €) as the child ofiV,
8 if type(v) =S

9 then (y, h) — 7,(i,5)

10 attachlV, as the child ofiV,

11 push(y,i, h,h +1,7)

12 if type(v) = By

13 then (y, z,h) «— 7,(4, 4, k,1)

14 attachiv,, W, as the children ofV,
15 push(z,h+ 1,7, k,1)

16 push(y, i, h)
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17 if type(v) = Bo

18 then (y, z,h) «— 7,(i, 4, k,1)

19 attachlv,, W, as the children ofV,
20 push(z,i, h, k1)

21 push(y, h + 1, 5)

22 if type(v) = B3

23 then (y, z,h) «— 7,(4, 4, k,1)

24 attachlv,,, W, as the children ofV,
25 push(z,i,j,h + 1,1)

26 push(y, k, h)

27  if typelv) = By

28 then (y, z,h) «— 7,(4, 4, k,1)

29 attachiv,, W, as the children ofV,
30 push(z,i,j, k, h)

31 push(y, h + 1,1)

32 elsey — 7,(i,j,k,1)

33 attachiV, as the child ofi¥,

34 push(y,i + ALE j — AL |+ A2L ] — AZR) O

3.2 Scoring Algorithm

As in SCFGs [8], the scoring problem f6iz can be solved by the inside algorithm.
The inside algorithm calculates the summed probabilitigs, j) ando, (i, 7, k, 1) of

all derivation subtrees rooted at a nonterminalfor a subsequence - - - a;, and of alll
derivation subtrees rooted at a nontermifglfor a pair of subsequenceés; - - - a;, ay

---q;) respectively. The variables, (i, — 1) anda, (i, — 1,k,k — 1) are defined

for empty sequences in a similar way to the CYK algorithm. Therefore, we can easily
obtain the inside algorithm by replacing max operations with summations in the CYK
algorithm. When the calculation terminates, we obtain the likelihGod | 0) =
a1(1,n) of the sequence given the probability parametefs The time and space
complexities of the algorithm are identical with those of the CYK algorithm.

Algorithm 4.3 (Inside)
Initialization:
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1 fori—1ton+1,k<—iton+1,v<—1tom
do if type(v) = E

3 then o, (i,i — 1,k k— 1) «— 1

4 elsea,(i,i — 1,k k—1) <0

N

Iteration:

5 fori«ndowntol,j«—i—1ton, k< n+1ldowntoj+1,l— k—1ton,
v—1tom

6 doif type(v) = E

7 thenif j=7—1landl=k—1

8 then skip

9 elsea, (i, 7, k,1) < 0

10  if type(v) =S

J

11 then o, (i, 5) < > Y to(y)ay(i h, b+ 1, 5)

y€ECy h=1—1
12 if typev) = By
j
13 then o, (i, 5.k, 1) «— > ay (i, h)az(h+1,5,k,1)
h=i—1
j
15 then o, (i, 5, k, 1) — > ay(h+1,5)a(i, h, k,1)
h=i—1
16  if type(v) = B;
l
17 then o, (i, j, k, 1) — a,(i,j,h+1,0)ay,(k, h)
h=k—1
18  if type(v) = By
l
19 then a, (i, j, k, 1) — a.(i,j,k, h)oy(h +1,1)
h=k—1
20 if type(v) =P
21 thenif j=71—1lorl=k—1
22 then o, (4, j, k,1) < 0
23 elsea, (i, j, k1) «— Y _ ey(as, aty(y)ay (i + 1,4, k.1 — 1)]
y€Cy
24 elsea, (i, j, k,1) «— Z ep(ai, aj, ak, a)ty(y)
y€Cy
Oéy(l.—i-A,}}L,j _All)Rak+A%Lvl_A12)R) [

In order to re-estimate the probability parameter&'gf we need the outside algo-
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rithm. The outside algorithm calculates the summed probalility, j) of all deriva-

tion trees excluding subtrees rooted at a nontermifialgenerating a subsequence
a;---aj. Also, it calculatess, (i, j, k,1), the summed probability of all derivation
trees excluding subtrees rooted at a nonterniiiabenerating a pair of subsequences
(a;---aj,ax---a;). In the algorithm, we will use, = {y | W, — f[W,] € P, [ €

F'}. Note that calculating the outside variableésequires the inside variables Un-

like CYK and inside algorithms, the outside algorithm recursively works its way in-
ward. The time and space complexities of the outside algorithm are the same as those
of CYK and inside algorithms. Figure 4.2 shows the iteration step in the algorithm.
Formal description of the outside algorithm is as follows:

Algorithm 4.4 (Outside)

Initialization:

1 Ai(l,n) 1

Iteration:

2 fori—1ton+1,j < ndowntoi—1,k+« j+1ton+1,l < ndownto
k—1,v«1tom

3 do if type(v) = Sand W, — C,[W,, W, ]
n n+1 n
4 then B,(i,j) — > _ Y Zﬁy hok e, (G+ 1,0 K1)

h=7 k'=h-+11'=
5 if typglv) =Sand W, — CQ[W,,, WZ]

i n+1 n

6 then B,(i,j) — > Z By (h, 5, K ) (hyi — 1,k 1)

h=1 k'=j+11'=

7 if type(v) =S and W, — Cg[WU, WZ]
8 then B, (i, j) « » Z Zﬁyhk’,z,laz(hk’j+1l)

h=1 k'=h—1l'=j

9 if typg(v) =S and W, — 04[Wv, W]
10 then 8, (i, j) < » _ Z Z By (h, kU, as(h k10— 1)

h=1 k'=h—11U'=k"+1
11 if type(v) # Sand W, — C,[W,, W,]
12 then 8, (i, j, k.1) < > _ B, (h, j, k, Do.(h,i — 1)
h=1
13 if type(v) # Sand W, — Co[W,, W,]
k—1

14 then 8, (i, j, k,1) < > _ B, (i, h, k, Doz (j +1,h)

h=j
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1 i jj*2h k I' n 1 h i1i j kK I n 1 h K i jj+1 1" n
() typgv) = S, (b) type(v) =S, () type(v) =5,
type(y) = By type(y type(y
W,
N
W, W,
1 h Kk I'ili |j 1 h i1i j i jj*1 h k
(d) typg(v) = S, (e) typev) # S, () type(v )
type(y) = By type(y type(y) =
W, A
: @ ﬁi&
N
W, W,
1 i j hklk | j I1+41 h n
(9) typg(v) # S, (h) typg(v) # S, (i) otherwise
type(y) = Bs type(y) = By

Figure 4.2. Illustration of the iteration step for calculating

15 if type(v) # Sand W, — 03 (W, W,]

16 then 3,(i, j, k. 1) Z B,(i, 7, h, D (hy k —1)

h=j+1
17 if type(v) # Sand W, — Cy[W,, W,]
18 then 3, (i, j, k., 1) Zﬁy (i,4,k, h)a.(l+1,h)

19  elseB,(i,j, k1) Z 6y i— AL+ AV R — A2+ AR
yG'Pu
ey(az‘—A;% Aj+ALRs Af—A2L GZ+A5R)ty(U)
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3.3 Training Algorithm

The training problem folGr can be solved by the EM algorithm called the inside-
outside algorithm where the inside variabteand outside variables are used to re-
estimate probability parameters. First, we consider the probability that a nonterminal
W, is used at positionfsj k and! in a derivation of a single sequenee If type(v) =

S, the probability is5—— P( 0 av(i,j)ﬁv(z‘,j) othermsemav(z‘,j,k;,l)ﬁv(z‘,j,k;,l). By
summing these over all positions in the sequence, we can obtain the expected number

of times thatiV, is used forw as follows: for typév) = S, the expected count is

n+l n

ww Zzavwﬂvw

i=1 j=i—1

otherwise

n+l n n+1 n

w|e DD D> > @i kDB kD).

i=1 j=i—1k=j+11=k—-1

Next, we extend these expected values from a single sequetwenultiple indepen-
dent sequences® (1 < s < N). Leta!® and3® be the inside and outside variables
calculated for each input sequenc&). Then we can obtain the expected number of
times £ (v) that a nonterminallV, is used for training sequences®) (1 <r < N) by
summing the above terms over all sequences (E-step):

(N nt+l n

222 F s>|g o0, )8 (1, ), (type(v) = 9)

slzl]zl
N n+l n n+1 n

E(v) = ZZZ Z Z w(S |0 &), 4, k1)

slzljzlkj—f—llkl
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Similarly, for a givenlV,,, the expected number of timégv — y) that a rulel,, —
f[W,] is applied can be obtained as follows:

(N n+l n

S5 Y gt

slzl]zlhzl

§ G h b+ 1,5), (type(v) = 5)

N n+1 n n+1 n

%W:zzzzzp Gk

s=1 i=1 j=i—1k=j+11=k—1
ev(&h aj7 ag, al)tv(y)

af (i + AL G — ARk A2 ] — A2R), (type(v) # S)

For a given terminak or a pair of terminalga, b), the expected number of times
E(v — a) (or E(v — ab)) that a rule containing (or « andb) is applied is

n n+1 n

)3)3) D i) PELISALEN

s=1 jzkj+1lk1

=1
B (0, 5.k, Dok (i, 5, k. 1), (type(v) = Usp)

n n+1 n

DRI USRI LG

s=1 j+11=k—1

=1
B0, 4, k, D)ol (0, 4, k, 1), (type(v) = Usn)
n—1 n

n

)3) DD B S pETHCE

s=1 i= jzlk]—i—llk

E(v—a)=

1
B, 5.k, 1ol (0, 4, k, 1), (type(v) = Usy)

n—1 n—1

)2) DD B D) pETHEE

s=1 i= jzlk]—i—llk

1
61(15)(1 ]7 k l>05v (Z j7k7 l)? (type(v> = U2R>

and for typév) = P,

N
E(v — ab) Z

s=1 i=1 j=t k=j+1 I=k

ol (i, 4, k,1)

n—1n—-1 n n

P(w®) | 9)

whered(C') is 1 if the conditionC' in the parenthesis is ture, afdf C'is false.
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Now, we re-estimate probability parameters by using the above expected counts.
Let#,(y) be the re-estimated probability that a réle, — f[W,] is applied. Also,
leté,(a) (oré,(a,b)) be the re-estimated probability that a rule containir(or « and
b) is applied. We can obtain each re-estimated probability by the following equations
(M-step):

; E(w—y)

E(v — ab)
E(w)

év(a,b) = B

, 6y(a) = (4.2)

Note that the expected count correctly corresponding to its nonterminal type must be
substituted for the above equations. For example, if(type- S,

N n+l n

XN Z S ey 1,)

~ slzl]zlhzl
tv(y)_ N n+l n

D0 w6 )

Sl’lljll

In summary, the inside-outside algorithm is as follows:

Algorithm 4.5 (Inside-Outside)
Initialization:
1 Pick arbitrary probability parameters of the model.

Iteration:
2 Calculate the new probability parameters using (4.1).
3 Calculate the new log likelihoo Y log P(w®) | 8) of the model.

Termination:
4 Stop if the change in log likelihood is less than predefined threshold. Il

3.4 Scanning Algorithm

Finally, we mention another application using the extension of the CYK algorithm. The
extended CYK algorithm can be used to find ncRNA genes in long genome sequences.
The basic idea is that the most likely parsing is done in a target window (subsequence)
of variable length and then the window is moved along the whole sequence. However,
the standard CYK algorithm described before does not work well since the maximum
log probability of the derivation of a subsequence strongly depends on its length. To
avoid such a phenomenon, we calculate log odds (LOD) scores that are the ratio to a
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null model generating random sequences. Assume that the likelihood of a sequence
generated by the null model is the product of each base frequence denofedy

so on. In the scanning algorithm below, we will use the following ségnastead of

log emission probability, for nonterminal types ot/;;,, Ui, Usp,, Usg andP:

ev(aiy aj, Qg, al)

Jaifa; Jay fa

Note that if typgv) = Uyy, é,(a;, a;, ak, ;) = é,(a;) = log(ey(a;)/ fa;)- The other
types are interpreted similarly. Letdenote the right end of the target region, and

év<ai7 Qj, Qf, al) = lOg

dmin @andd,,., denote the minimum and the maximum lengths of the target window
respectively. Alson denotes the length of an input genome sequence, and the indices
1, j, k andl are interpreted as in the CYK algorithm.

Algorithm 4.6 (CYK-scan)

1 for r « dpn ton, d < dyin t0 dppax, @ < rdowntor —d+1,j«—i—1tor,
k—r+1ldowntoj+1,l—k—1tor

2 do CYK algorithm O

The time complexity i€ (amnd* . +bnd>

max max

) whereb is the number of BFURCATION
nonterminals,a is the number of other nonterminals and = a + b. The space
complexity isO(md2,.).

max

4. Experimental Results

4.1 Data for Experiments

The data sets for experiments were taken from an RNA family database called “Rfam”
(version 7.0) [10] that contains multiple sequence alignments and covariance mod-
els [9] representing non-coding RNA families. We selected three viral RNA families
with pseudoknot annotations named Corqka (Corona), HDVribozyme (HDV) and
Tombus3_1V (Tombus) for prediction tests (see Table 4.3). Cor@k& has a simple
pseudoknotted structure, whereas Hbbozyme and Tombu8_IV have more com-
plicated structures with pseudoknots. Also, we used several genome sequences known
to have Corongk3 genes to test ncRNA gene finding, which are also available from
Rfam.
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Table 4.3. Three RNA families from Rfam ver. 7.0

Family Length | # of annotated sequencest of test sequences
Coronapk3 6264 14 10
HDV _ribozyme | 87-91 15 10
Tombus3_IV 89-92 18 12

4.2 Implementation

We specified a particular SMCFGpy, by utilizing secondary structure annotation of
each family in Rfam. Rules were determined by considering consensus secondary
structure. Probability parameters were estimated in a few selected sequences by the
simplest pseudocounting method known as the Laplace’s rule [8]: to add one extra
count to the true counts for each base configuration observed in the sequences. Note
that the inside-outside algorithm was not used in the experiments. The other sequences
in the alignment were used as the test sequences for prediction (see Table 4.3).

We implemented the CYK algorithm with traceback in ANSI C on a machine with
Intel Pentium D CPU 2.80 GHz and 2.00 GB RAM. Straightforward implementation
gives rise to a serious problem of lack of memory space due to the higher order dy-
namic programming matrix (remember that the space complexity of the CYK algo-
rithm is O(mn?)). Since the dynamic programming matrix in our specified model is
sparse, we successfully implemented the matrix hash tablestoring only nonzero
probability values (equivalently, finite values of the logarithm of probabilities). Con-
sider the case where both of the number of nonterminals and the sequence length is
100. If we try to implement the DP matrix representing, j, k, 1) as a five dimen-
sional array, about 200 GB memaory space will be required. On the other hand, using a
hash table of the siz2”, only 5.8 MB memory space will be sufficient for implement-
ing v. This point deserves explicit emphasis for computational experiments.

4.3 Structure Prediction

We tested prediction accuracy by calculating precision and recall, which are the ratio
of the number of correct base pairs predicted by the algorithm to the total number of
predicted base pairs, and the ratio of the number of correct base pairs predicted by the
algorithm to the total number of base pairs specified by the trusted annotation respec-
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Table 4.4. Prediction results

Family Precision [%] Recall [%] CPU time [sec]
Avg Min Max | Avg Min Max | Avg Min Max
Coronapk3 99.4| 944 100.0| 99.4| 94.4| 100.0| 27.8| 26.0| 304

HDV _ribozyme | 100.0 | 100.0 | 100.0| 100.0| 100.0| 100.0| 252.1| 219.0| 278.4
Tombus3_1IV 100.0| 100.0| 100.0| 100.0| 100.0| 100.0| 244.8| 215.2| 257.5

Corona _pk3 (EMBL accession #: X51325)

[Trusted structure in Rfam]
CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
[OOOOCLL (CC CCCCCCC 111111 9)))0))) )

[Prediction by SMCFG]
CUAGUCUUAUACACAAUGGUAAGCCAGUGEUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
[OOOOOLL (CCCCCecce I11T1111-))))))))))

Figure 4.3. Comparison between a trusted structure and a predicted one

tively. The results are shown in Table 4.4. A nearly correct prediction (94.4% precision
and recall) for Corongk3 is shown in Figure 4.3 where underlined base pairs agree
with trusted ones. The secondary structures predicted by our algorithm agree very
well with the trusted structures. The running time of prediction in Conok&is much
shorter than that of prediction in HD¥bozyme and Tombu8_IV since every se-
guence in Coron@pk3 can be generated by rules withouEBRCATION nonterminals.

In this case, the time complexity of the CYK algorithm(gm?n*).

To see whether a grammar for one RNA family can be applied to secondary struc-
ture prediction for another family, we compared LOD scores obtained by applying the
specific grammar for Coronpk3 to all of the three RNA families (see Table 4.5). As
a result, we can say that a specific grammar overfits its objective RNA family.

4.4 Comparison with PSTAG

We compared the prediction accuracy of our SMCFG algorithm with that of the PSTAG
algorithm [20] (see Table 4.6). PSTAGs, as we have mentioned before, are proposed
for modeling pairwise alignment of RNA sequences with pseudoknots, and assign a
probability to each alignment of TAG derivation trees. The PSTAG algorithm, based
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Table 4.5. Comparison of LOD scores by using the same grammar

Family Grammar | # of test LOD score [bit]
sequences Avg Min Max
Coronapk3 Coronapk3 10 38.2 72| 725
HDV _ribozyme | Coronapk3 10 —6.4| -12.3| -2.7
Tombus3_IV Coronapk3 12 -35| -55] -03

Table 4.6. Comparison between SMCFG and PSTAG
Model Average precision [%] Average recall [%]
Corona| HDV | Tombus| Corona| HDV | Tombus
SMCFG 99.4 | 100.0 100.0 99.4 | 100.0 100.0
PSTAG 955| 95.6 97.4 946| 94.1 97.4

on dynamic programming, calculates the most likely alignment for the pair of TAG
derivation trees, where one of them is in the form of an unfolded sequence and the
other is a TAG derivation tree for known structure. As the table shows, the SMCFG
method is at least comparable to the PSTAG method in the same test sets.

4.5 Detection of Non-Coding RNA Gene

We did elementary gene finding tests using the CYK-scan algorithm. Figure 4.4 shows
the result of Corongk3 gene finding in genome sequence X90577 of length 1137. In
the figure, scores are plotted at the right end of the target window. The region with
the highest score is 1000-1062, which is exactly the same as the correct region. To
see whether the scanning algorithm can distinguish a real ncRNA gene from a shuffled
gene, we also tested a sequence where the real gene is replaced with a shuffled one. The
shuffling procedure we used is tmucleotide shufflingg] that preserves dinucleotide
frequency of an input sequence. As might be expected, the hits of the high-scoring
subsequences disappeared after shuffling (see Figure 4.5). Tests for other genome
sequences such as X90576 and X51325 of length 946 and 1576, respectively, similarly
showed strong scores in each correct region of the original sequences and low scores
in each shuffled region.
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Figure 4.4. Gene detection in genome sequence X90577

5. Discussion

In the computational experiments using the SMCFG algorithm, we obtained good pre-
diction results in terms of accuracy, and we did not trained probability parameters using
the inside-outside algorithm any more. Main reason for success of prediction without
training is that we were able to obtain good structural alignment from the database. The
word “good” means that every trusted structure is little different from the consensus
structure and the number of gaps in each alignment is relatively few. In fact, an ear-
lier experimental results, omitted in this thesis, showed only 76.6% average precision
and recall in Corongk3 and 95.7% in Tombu8_IV. We should notice that there are
more gaps in the alignment of Corap&3 than that of Tombu8_IV. Changing rules

in such a way that BLETE rules are not successively used after the terminating rule
W, — (g,¢), we can obtain the present results shown in Table 4.4. Hence, prediction
accuracy will depend on the way to construct rules. We think that the most sensitive
factor for prediction accuracy will be the number of consecutive gaps in the alignment.

The PSTAG method aligns an unfolded sequence with a derivation tree represent-
ing trusted structure. In SMCFGs, rules are constructed according to a consensus
structure and then the most likely derivation tree is calculated. In this sense, SMCFGs
and PSTAGs have a common property that both of them take structural alignment into
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Figure 4.5. Gene detection in X90577 with shuffled gene

consideration implicitly or explicitly. The time and space complexities of the SMCFG
algorithm have the same order as those of the PSTAG algorithm, whereas the SM-
CFG algorithm consumes less memory than the PSTAG algorithm since the dynamic
programming matrix of the SMCFG algorithm is sparse. This greatly contributes to
practicability in computational structure prediction.

It is not certain that the differences in precision and recall between SMCFGs and
PSTAGs are statistically significant since the number of analyzed data sets is small.
SMCFGs can have arbitrary number of nonterminals and rules. On the other hand, the
PSTAG method takes three finite states into account, which represent match, insertion
and deletion states. Here, we regard nonterminals as states and rule application as
state transitions [8]. The difference of the number of finite states may affect prediction
accuracy.

Rivas and Eddy [25] compared the scores of an original genome sequence known to
have ncRNA genes with those of a sequence including mononucleotide shuffled genes,
which contain the same mononucleotide frequency as that of the genes. In their paper,
they concluded that it would not be statistically significant to use secondary structure
as a signal for detecting ncRNA genes. However, as our experimental results indicate,
the dinucleotide shuffling is the key to test the significance, and we can say that it will
be useful to use secondary structure as a statistical signal for a certain type of gene
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finding tests.

6. Summary

In this chapter, we proposed a probabilistic model named SMCFG, and designed a
polynomial time parsing and a parameter estimation algorithm for the specific SM-
CFG. We then carried out computational experiments on RNA secondary structure
prediction with pseudoknots using the SMCFG parsing algorithm. The results of the
experiments indicated good performance of the algorithm in terms of accuracy. Also,
we can say that the SMCFG method is at least comparable to the PSTAG method in
the same test sets. Moreover, elementary tests on ncRNA gene finding showed good
results for a family of ncRNAs with pseudoknots.

Comparing with other prediction methods such as a thermodynamic approach,
stochastic grammars have an advantage in easily modeling RNA secondary structure
that we would like to analyze and training probability parameters. We should notice
that there is a trade-off between prediction accuracy and cost for constructing an initial
grammar.



Chapter 5
Conclusion

This thesis dealt with several formal grammars for describing RNA secondary structure
including pseudoknots and their application to structure analysis. In particular, the
following subjects were discussed:

(1) Comparison of the generative power of grammars for describing RNA pseudo-
knotted structure.

(2) Analysis of RNA pseudoknotted structure by using a stochastic grammar-based
approach.

Multiple context-free grammars played an important role in both (1) and (2).

In Chapter 3, we dealt with the first subject. Namely, the classes of grammars
SLTAGs, ESLTAGs and RPGs for representing RNA pseudoknotted structure were
identified as subclasses of MCFGs, and their generative powers were compared. Con-
sidering the results obtained in Chapter 3, we conclude that ESLTAGs (equivalently,
ESLMCFGs or(2,2)-MCFGs with degree 5 or less) are candidates for the minimum
grammars that can represent pseudoknots. We also showeSidiat £ is a full trio
andESLT AL is a substitution closed full AFL, which is a good property from the
formal language theoretical point of view.

To address the second subject, we proposed a probabilistic model named SMCFG
in Chapter 4, where the subclass of MCFGs corresponding to the class of ESLTAGs
was extended to a stochastic grammar. We designed a polynomial time parsing and a
parameter estimation algorithm for the specific SMCFG. We then carried out computa-
tional experiments on RNA secondary structure prediction with pseudoknots using the
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SMCFG parsing algorithm. The results of the experiments indicated good performance
of the algorithm in terms of accuracy. Also, we can say that the SMCFG method is at
least comparable to the PSTAG method in the same test RNA sequences. Moreover,
elementary tests on ncRNA gene finding showed good results for a family of n\cCRNAs
with pseudoknots.

The generative power of a grammar and computational complexity for parsing have
a close relationship. In this sense, it is reasonable to identify an optimal class of gram-
mars for RNA and predict secondary structure by using the grammar. The proposed
prediction algorithm for SMCFGs need¥n°) computation time as well as existing
algorithms for ESLTAGs and PSTAGSs, whetes the length of an input sequence.
Although this complexity seems very high at a glance, the experiments we performed
make it clear that prediction can be performed in a practical time for RNA sequences
of relatively short length.

We predicted known RNA secondary structure by using the parsing algorithm of a
specific grammar for its corresponding RNA family. A specific model can be useful
for discrimination between the objective family and other families. The reason is that a
prediction algorithm shows a strong score for a sequence that can be generated by the
grammar designed for the corresponding RNA structure as compared with a sequence
that is unlikely to be generated by the grammar. For prediction of unknown structure,
we need a generic grammar for which the accuracy of its prediction algorithm has to
be good to some extent. The construction of a generic model is difficult since there are
various kinds of RNA structures. However, if a family of RNA families (i.e., superfam-
ily) whose structures are partially similar to each other is specified, we may construct
a generic grammar. For example, since transition probabilities for nonterminals gen-
erating consecutive base pairs determine the probability distribution of the length of
a stem, setting the transition probabilities carefully may contribute to the construction
of a generic grammar. Although the probability parameters of the rules can be trained
in our approach, the rules of the grammar themselves cannot be changed any more.
Considering from this point of view, it is important to automatically derive an optimal
grammar from sequence data with structure, rather than to fix an initial grammar.

In this thesis, we compared the yield languages generated by the grammars for
RNA, but we should notice that a secondary structure is represented by a derivation
(or derived) tree. Thus, it would be more important to compare each tree language
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rather than each yield language. That is, a comparison of the tree generative power
of ESLTAGs and RPGs is an interesting problem. Turning now to structure prediction
of biomolecules, Abe and Mamitsuka [1] used a subclass of stochastic tree grammars
called stochastic ranked node rewriting grammars (SRNRGSs) for predicting protein
secondary structure. SRNRGs have enough generative power to deal with anti-parallel
and parallel dependency, and combinations of themsheets, which is more difficult

to handle than RNA secondary structure. The major difference between MCFGs and
other grammars fully describing RNA pseudoknots is that the generative power of
MCFGs can be set arbitrarily by choosing grammar parameters: dimension, rank and
degree. Thus, the SMCFG method can be applied to more complicated biological
structure analysis such as predicting protein secondary structure.
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Appendix

List of Abbreviations

Below is a table that indicates abbreviations used in this thesis.

Table 6.1. Abbreviations

Abbreviation

Formal name

AFL
CFG
CIG
CSG
ESLTAG
MCFG
PSTAG
RPG
SCFG
SMCFG
TAG
SLTAG
SSTAG

abstract family of languages

context-free grammar
crossed-interaction grammar
context-sensitive grammar

extended simple linear tree adjoining grammar
multiple context-free grammar

pair stochastic tree adjoining grammar
RNA pseudoknot grammar

stochastic context-free grammar
stochastic multiple context-free grammar
tree adjoining grammar

simple linear tree adjoining grammar

Satta and Schuler’s subclass of tree adjoining grammars
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