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Formal Grammars for Describing RNA Pseudoknotted

Structure and Their Application to Structure Analysis ∗

Yuki Kato

Abstract

Recently, much attention has been paid to the structure analysis of biologically

important molecules such as nucleic acids and proteins. These structures are hierar-

chically classified into primary structure, secondary structure and tertiary structure. In

this thesis, we focus on RNA (ribonucleic acid) secondary structure determined by in-

teractions between mostly Watson-Crick complementary base pairs. Since base pairs

in typical RNAs occur in a nested way, RNA secondary structures have been success-

fully modeled by context-free grammars (CFGs), and secondary structure prediction

has been translated into a parsing problem. On the other hand, there are substructures

called pseudoknots where some base pairs occur in a crossed fashion, which cannot

be represented by CFGs. Therefore, several formal grammars have been proposed for

describing RNA secondary structure including pseudoknots, such as simple linear tree

adjoining grammars (SLTAGs), extended SLTAGs (ESLTAGs) and RNA pseudoknot

grammars (RPGs). However, the relation between the generative power of each of

these grammars has not been clarified so far.

The first aim of this thesis is to compare the generative power of the grammars

mentioned above by identifying them as subclasses of multiple context-free grammars

(MCFGs), which are natural extension of CFGs. More specifically, the following prop-

erties are shown: (1) the class of languages generated by RPGs agrees with the class

of languages generated by MCFGs with dimension one or two and rank one or two;

(2) the class of languages generated by ESLTAGs (ESLT AL) coincides with the class

of languages generated by MCFGs with degree five or less; (3)ESLT AL properly
∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0561011, February 1, 2007.
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includes the union of the class of languages generated by SLTAGs (SLT AL) and the

class of languages generated by CFGs; (4)SLT AL is a full trio; and (5)ESLT AL is

a substitution closed full AFL. Considering these results, the class of ESLTAGs can be

a candidate for the minimum grammars that can represent pseudoknots.

The latter part of this thesis is dedicated to analyzing RNA secondary structure with

pseudoknots by using the subclass of MCFGs corresponding to the class of ESLTAGs.

When we interpret structure prediction as parsing of the grammar, we face the problem

that there may be many different derivation trees for an input RNA sequence. There-

fore, we take a practical approach, where we extend a grammar to a probabilistic model

and find the most likely derivation tree. In this thesis, the above subclass of MCFGs is

extended to a probabilistic model called stochastic MCFGs (SMCFGs). We present a

polynomial time parsing algorithm for finding the most probable derivation tree and a

probability parameter estimation algorithm based on the EM algorithm. Several exper-

imental results are shown where RNA pseudoknotted structure predictions were carried

out for viral RNA families using the SMCFG parsing algorithm. Furthermore, we per-

form RNA gene finding for several genome sequences known to have RNA genes with

pseudoknots. This is achieved by using the scanning algorithm based on the SMCFG

parsing algorithm. These experimental results show very close to 100% accuracy.

Keywords:

multiple context-free grammar, tree adjoining grammar, RNA pseudoknot grammar,

generative power, closure property, RNA secondary structure, pseudoknot
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RNAシュードノット構造記述向き形式文法と

その構造解析への応用∗

加藤有己

内容梗概

近年，核酸やタンパク質などの生物学的に重要な分子の構造解析が注目を浴

びている．これらの構造は階層的に１次構造，２次構造，３次構造と分類される．

本論文では，多くがWatson-Crick相補塩基対間の相互作用で決定される，RNA

(リボ核酸)の２次構造に焦点を当てる．典型的な RNAでは塩基対が互いに入れ

子になって現れるため，RNA２次構造を文脈自由文法 (CFG)でモデル化し，２次

構造予測を文法の構文解析に置き換える試みが行われてきた．一方で，いくつか

の塩基対が交差して現れる，シュードノットと呼ばれる部分構造が存在し，CFG

では表現できないことが知られている．そのため，線形接木文法 (SLTAG)，拡張

SLTAG (ESLTAG)，RNAシュードノット文法 (RPG)などの，シュードノットを

含むRNAの２次構造を記述する形式文法がいくつか提案された．しかしながら，

現在までこれらの文法の生成能力間の関係は明らかではなかった．

本論文の最初の目的は，上記文法の生成能力を比較することである．そのた

めに，上記文法クラスをCFGの自然な拡張である多重文脈自由文法 (MCFG)の

部分クラスとして同定した．具体的には以下を示した: (1) RPGが生成する言語の

クラスは，次元が 2以下，ランクが 2以下のMCFGが生成する言語のクラスに一

致する，(2) ESLTAGが生成する言語のクラス (ESLT AL)は，自由度が 5以下の

MCFGが生成する言語のクラスに一致する，(3) ESLT ALは，SLTAGが生成す

る言語のクラス (SLT AL)と CFGが生成する言語のクラスとの和集合を真に含

む，(4) SLT ALは full trio である，(5) ESLT ALは代入のもとで閉じた full AFL

である．これらの結果を考慮すれば，現在知られている形式文法の中でシュード

ノットを表現できる生成能力最小の文法は ESLTAGであると考えられる．
∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-IS-DD0561011,

2007年 2月 1日.
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本論文の後半では，ESLTAGに対応するMCFGの部分クラスを用いて，シュー

ドノットを含むRNA２次構造を解析する手法について論じる．構造予測を文法

の構文解析とみなすとき，入力 RNA配列に対して一般に多くの導出木が存在す

るという問題に直面する．従って，実用的には文法を確率モデルに拡張し，確率

最大の導出木を求めるアプローチをとる．本論文では，上記MCFGの部分クラス

を確率MCFG (SMCFG)と呼ばれる確率モデルに拡張する．次に，多項式時間で

確率最大の導出木を求める構文解析アルゴリズム及びEMアルゴリズムに基づく

確率パラメータ推定アルゴリズムを与える．また，SMCFGの構文解析アルゴリ

ズムを用いて，ウイルス性 RNAに対して２次構造予測を行った結果を示す．さ

らに，上記構文解析アルゴリズムに基づく走査アルゴリズムを用いて，シュード

ノットを持つRNA遺伝子が含まれているいくつかのゲノム配列に対してRNA遺

伝子発見を行った．これらの実験結果は 100%に近い予測精度を示している．

キーワード

多重文脈自由文法，接木文法，RNAシュードノット文法，生成能力，閉包性，RNA

２次構造，シュードノット
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Chapter 1

Introduction

In recent years, genome sequences of various kinds of organisms have been exper-

imentally determined, and many databases for biological sequences have been con-

structed. These sequences can be regarded as linear strings (primary structures) com-

posed of four letters representing nucleotides for DNAs (deoxyribonucleic acids) and

RNAs (ribonucleic acids), or twenty letters representing amino acids for proteins. The

purpose of biological sequence analysis is to analyze genetic information from se-

quence data by using methods in informatics and statistics, including gene finding,

homology searches and structure prediction. In particular, analyzing the structure of a

biomolecule leads to the elucidation of its function since it is empirically known that

if the structure of one molecule is similar to that of another, both functions will be

similar. This motivates us to predict structures from biological sequences. This thesis

concernsRNA secondary structurerepresenting folding information.

RNA secondary structure is determined by interactions between mostlyWatson-

Crick complementary base pairssuch asA-U andG-C. Figure 1.1 (a) shows a simple

RNA secondary structure called astem loop. If we connect the base pairs with the arcs

on the RNA sequence, we can obtain another representation of the secondary structure

shown in Figure 1.2 (a). Since base pairs in typical RNAs occur in a nested way like

stem loops, RNA secondary structures have been successfully modeled by context-free

grammars (CFGs), and secondary structure prediction has been translated into a pars-

ing problem. Techniques based on the CYK (Cocke-Younger-Kasami) algorithm have

been widely investigated [8, 9, 26]. On the other hand, there are substructures called

pseudoknotswhere some base pairs occur in a crossed fashion (see Figures 1.1 (b) and

1
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       U    G
    C          A
       G •  C
       G • C
       A • U
5’−C        G  C  U  C  A  G−3’ 

(a) Stem loop

5’−C  A  G  G
           •   •   •  
           U  C  C  A  G  U
                         •   •   •
                         U  C  A  G−3’

C

G

C

(b) Pseudoknot

Figure 1.1. Example of RNA secondary structure

c  a  g  g  c  u  g  a  c  c  u  g  c  u  c  a  g

(a) Stem loop

c  a  g  g  c  u  g  a  c  c  u  g  c  u  c  a  g

(b) Pseudoknot

Figure 1.2. Arc depiction of Figure 1.1

1.2 (b)). They are found in several RNAs such as rRNAs, tmRNAs and viral RNAs.

It has been recognized that pseudoknots play an important role in RNA functions such

as ribosomal frameshifting and regulation of translation. However, CFGs cannot rep-

resent crossing dependency of base pairs in pseudoknotted structure due to the lack of

generative power.

As for formal grammars whose generative power is stronger than that of CFGs,

a significant concept was developed for syntax of natural language, which is called

mildly context-sensitive grammar(mildly CSG) [13]. It has been widely recognized

that the generative power of CFGs is not sufficient for syntax of natural language. For

example, discontinuous structures such as respectively sentence construction cannot

be represented by CFGs. For specifying the syntax of natural language, several gram-

mars have been proposed, includingtree adjoining grammars(TAGs) [11, 12], head

grammars (HGs), linear indexed grammars (LIGs), combinatory categorical gram-

mars (CCGs), linear context-free rewriting systems (LCFRSs) andmultiple context-

free grammars(MCFGs) [14, 15, 29]. The generative power of TAGs, HGs, LIGs and

CCGs are known to be the same. Also, the generative power of LCFRSs and MCFGs

are the same and strictly stronger than that of TAGs. The common features of these
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grammars are as follows:

• The generative power of these grammars is strictly stronger than that of CFGs

and strictly weaker than that of CSGs.

• Languages generated by these grammars can be recognized in polynomial time

of the length of an input sequence. This contrasts with the fact that the recogni-

tion problem for CSGs is PSPACE-complete.

• These grammars inherit good mathematical properties of CFGs. For example,

the classes of languages generated by these grammars are closed under union,

concatenation, Kleene closure, homomorphism and intersection with regular lan-

guages.

In bioinformatics, several formal grammars have been proposed for fully describ-

ing RNA secondary structure including pseudoknots. In one pioneering paper [30],

Uemura et al. defined two subclasses of TAGs calledsimple linear TAGs(SLTAGs)

andextended SLTAGs(ESLTAGs), and argued that the class of ESLTAGs is appro-

priate for representing RNA pseudoknotted structure. Rivas and Eddy [24] provided

keen observations on the representation of RNA secondary structure by a sequence

with a single gap, and introduced a new class of grammars calledRNA pseudoknot

grammars(RPGs) for deriving sequences with gaps. These grammars have generative

power stronger than CFGs, while recognition can be performed in polynomial time.

However, the relation between the generative power of each of these grammars has not

been clarified so far.

The first aim of this thesis is to compare the generative power of these grammars

by identifying them as subclasses of MCFGs. This is partially motivated by an interest

in formal language theory. As explained in detail below, it is interesting to compare the

generative power of grammars for natural language syntax with that of grammars for

biomolecule structure. An insight obtained in biological sequence analysis may result

in significant progress in formal language theory. Another motivation comes from the

observation that some techniques in formal language theory may contribute to a new

analysis method in biology. If we can model a secondary structure of a particular type

of biological sequence by a formal grammar for which a recognition method is well

studied, we do not need to construct a prediction algorithm for that type of sequence
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from scratch, and we can focus on how to provide appropriate scores or measures for

grammar rules to obtain biologically realistic predictions.

The main contributions of the first part of this thesis are as follows:

(1) It is shown that the class of languages generated by RPGs agrees with the class

of languages generated by MCFGs with dimension one or two and rank one

or two, the class of languages generated by ESLTAGs (ESLT AL) coincides

with the class of languages generated by MCFGs with degree five or less, and

ESLT AL properly includes the union of the class of languages generated by

SLTAGs (SLT AL) and the class of languages generated by CFGs.

(2) It is shown thatSLT AL is a full trio andESLT AL is a substitution closed full

AFL.

The second part of this thesis is dedicated to analyzing RNA secondary structure

with pseudoknots by using the subclass of MCFGs corresponding to the class of ESLT-

AGs. When we interpret structure prediction as parsing of the grammar, we face the

problem that there may be many different derivation trees for an input RNA sequence.

One practical approach to this problem is to extend a grammar to a probabilistic model

and find the most likely derivation tree. Another is to take free energy minimization

into account. The advantage of the latter approach is its prediction accuracy. However,

it is not always easy to obtain sufficient thermodynamic information on sequences in

experiments, and hence the former approach, based on a stochastic model, is often

practical. Eddy and Durbin [9], and Sakakibara et al. [26] modeled RNA pseudoknot-

free structure by using stochastic context-free grammars (stochastic CFGs or SCFGs).

For pseudoknotted structure, Matsui et al. [20] proposed pair stochastic tree adjoining

grammars (PSTAGs) based on ESLTAGs and tree automata for aligning and predicting

pseudoknots, which showed good prediction accuracy. In this thesis, the above sub-

class of MCFGs is extended to a probabilistic model calledstochastic MCFGs(SM-

CFGs). We present a polynomial time parsing algorithm for finding the most probable

derivation tree and a probability parameter estimation algorithm based on the EM al-

gorithm. Several experimental results are shown where RNA pseudoknotted structure

predictions were carried out for three viral RNA families using the SMCFG parsing

algorithm. These results show very close to 100% accuracy, and we can say that the

SMCFG method is at least comparable to the PSTAG method in the same test sets. Fur-
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thermore, by using the scanning algorithm based on the SMCFG parsing algorithm, we

successfully perform RNA gene finding for several genome sequences known to have

RNA genes with pseudoknots.

The remainder of this thesis is organized as follows. Chapter 2 surveys RNA sec-

ondary structure and multiple context-free grammar, which play a major role in this

study. In Chapter 3, we clarify the relation between the generative power of gram-

mars for RNA secondary structure including pseudoknots. Chapter 4 analyzes RNA

pseudoknotted structure by using stochastic multiple context-free grammar. Chapter 5

concludes this thesis.



Chapter 2

Preliminaries

1. RNA Secondary Structure

As the central dogma of molecular biology claims, RNA is widely known as an inter-

mediary messenger between DNA gene storing genetic information and protein deter-

mining its biological function. This is called mRNA and represented as an unstructured

linear strand. Meanwhile, there exist many RNAs that are not translated into proteins

such as rRNAs and tRNAs. They are callednon-coding RNAs(ncRNAs) and fold into

characteristic three-dimensional structures so that they have specific functions. In this

thesis, we are concerned with ncRNAs and ncRNA is often written as RNA.

RNA is a high polymer consisting of four different nucleotides. They are abbre-

viated asA (adenine),C (cytosine),G (guanine) andU (uracil) 1. A-U andG-C form

hydrogen bonded base pairs, which is calledWatson-Crick complementary base pairs.

G-C pairs form three hydrogen bonds whileA-U pairs form two hydrogen bonds, and

therefore, the former is more stable than the latter. The other non-canonical base pairs

also occur in RNA, where the most common pair isG-U that is thermodynamically

favorable. The resulting base paired structure is called thesecondary structure. Note

that the secondary structure does not give information on the three-dimensional struc-

ture of a molecule. It is known that stacked base pairs twist to form double helices like

DNA.

Each element of an RNA secondary structure is shown in Figure 2.1. A hydrogen

bond is represented as a bullet. The continuous region of stacked base pairs is called

1In DNA, T (thymine) replacesU.

6
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Figure 2.1. Fundamental elements of RNA secondary structure

a stem, and a single strand connecting a stem is called aloop. A simple substructure

consisting of a single stem and a single loop is called astem loop(see Figure 1.1 (a)).

Loops are classified according to their positions to stems as follows. A loop at the edge

of a stem is called ahairpin loop. A loop is called abulge loopif a single strand occurs

on one side of a stem, orinternal loopif a single strand occurs on both sides of a stem.

A loop is called amulti-branched loopif more than two stems radiate from the loop.

In typical RNA secondary structures, when we connect base pairs with arcs on the

sequence, the arcs are hierarchically nested, that is, none of the arcs crosses each other

(see Figure 1.2 (a)). Formally, leti andj be the positions of bases forming a base pair

andi′ andj′ be the positions of bases forming another base pair. Base pairs are nested

if and only if for all pairs(i, j) and(i′, j′), eitheri < i′ < j′ < j or i′ < i < j < j ′

holds. On the other hand, RNA substructures where arcs are crossing occurs, which

is calledpseudoknots(see Figures 1.1 (b) and 1.2 (b)). As in the definition of nested

structure, a secondary structure is a pseudoknot if and only if there exist pairs(i, j) and

(i′, j′) such thati < i′ < j < j′ or i′ < i < j ′ < j. Although the total number of base

pairs forming pseudoknots is relatively smaller than the number of base pairs forming

nested structures, we must take pseudoknot into consideration for three-dimensional

structure prediction.



8

2. Multiple Context-Free Grammar

For an alphabetΣ, let Σ∗ denote the set of all finite sequences overΣ. The empty

sequence is denoted byε. For a sequencew ∈ Σ∗, let |w| denote the length ofw, that

is, the number of symbols occurring inw.

A multiple context-free grammar(MCFG) [14, 29] is a 5-tupleG = (N, T, F, P, S)

whereN is a finite set of nonterminals,T is a finite set of terminals,F is a finite set of

functions,P is a finite set of (production) rules andS ∈ N is the start symbol. For each

A ∈ N , a positive integer denoted asdim(A) is given andA derivesdim(A)-tuples of

terminal sequences. For the start symbolS, dim(S) = 1. For eachf ∈ F , positive

integersdi (0 ≤ i ≤ k) are given andf is a total function from(T ∗)d1 × · · · × (T ∗)dk

to (T ∗)d0 satisfying the following condition (F):

(F) Let xi = (xi1, . . . , xidi
) denote theith argument off for 1 ≤ i ≤ k. Thehth

component of the function value for1 ≤ h ≤ d0, denoted byf [h], is defined as

f [h][x1, . . . , xk] = βh0zh1βh1zh2 · · · zhvh
βhvh

(2.1)

whereβhl ∈ T ∗ (0 ≤ l ≤ vh) andzhl ∈ {xij | 1 ≤ i ≤ k, 1 ≤ j ≤ di} (1 ≤ l ≤
vh). The total number of occurrences ofxij in the right hand sides of (2.1) from

h = 1 throughd0 is at most one.

Each rule inP has the form ofA0 → f [A1, . . . , Ak] whereAi ∈ N (0 ≤ i ≤ k) and

f : (T ∗)dim(A1) × · · · × (T ∗)dim(Ak) → (T ∗)dim(A0) ∈ F . If k ≥ 1, the rule is called

a nonterminating rule, and if k = 0, it is called aterminating rule. A terminating

rule A0 → f [ ] with f [h][ ] = βh (1 ≤ h ≤ dim(A0)) is simply written asA0 →
(β1, . . . , βdim(A0)).

Example 2.1. (1) Let G1 = (N1, T1, F1, P1, S) be an MCFG whereN1 = {S,A},

T1 = {a, b} andP1 = {S → J [A], A → fa[A] | fb[A] | (ε, ε)} wheredim(S) =

1, dim(A) = 2, J [(x1, x2)] = x1x2 andfα[(x1, x2)] = (αx1, αx2) with α = a, b.

(2) LetG2 = (N2, T2, F2, P2, S) be an MCFG whereN2 = {S,A}, T2 = {ai | 1 ≤
i ≤ 2m} andP2 = {S → Jm[A], A → g[A] | (ε, . . . , ε)} wheredim(S) = 1,

dim(A) = m, Jm[(x1, . . . , xm)] = x1 · · · xm andg[(x1, . . . , xm)] = (a1x1a2, . . . ,

a2m−1xma2m).
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(3) Let G3 = (N2, T2, F3, P3, S) be an MCFG whereP3 = {S → J2
m[A,A], A →

g[A] | (ε, . . . , ε)} whereJ2
m[(x1, . . . , xm), (y1, . . . , ym)] = x1 · · · xmy1 · · · ym.

For a functionf defined by (2.1) in condition (F) and tuples of terminal sequences

αi = (αi1, . . . , αidi
) ∈ (T ∗)di (1 ≤ i ≤ k), let f [α1, . . . , αk] denote the tuple of

terminal sequences obtained from the right hand sides of (2.1) by substitutingαij (1 ≤
i ≤ k, 1 ≤ j ≤ di) into xij. For instance,fa[(bba, ab)] = (abba, aab) in Example 2.1

(1). We recursively define the relation
∗⇒G by the following (L1) and (L2):

(L1) If A → α ∈ P (α ∈ (T ∗)dim(A)), we writeA
∗⇒G α.

(L2) If A → f [A1, . . . , Ak] ∈ P andAi
∗⇒G αi (1 ≤ i ≤ k), we write A

∗⇒G

f [α1, . . . , αk].

We will omit the subscriptG if it is clear from the context. ForA ∈ N , the set gen-

erated fromA in G is defined asLG(A) = {w ∈ (T ∗)dim(A) | A
∗⇒G w} and the

language generated byG is defined asL(G) = LG(S). A languageL is a multiple

context-free language(MCFL) if there exists an MCFGG such thatL = L(G). The

class of all MCFGs and the class of all MCFLs are denoted byMCFG andMCFL re-

spectively. The same notational convention will be used for other classes of grammars

and languages. In parallel with the relation
∗⇒G, we define derivation trees:

(D1) If A → α ∈ P (α ∈ (T ∗)dim(A)), a derivation tree forα is the tree with a single

node labeledA : α.

(D2) If A → f [A1, . . . , Ak] ∈ P , Ai
∗⇒G αi (1 ≤ i ≤ k) andt1, . . . , tk are derivation

trees forα1, . . . , αk, then a derivation tree forf [α1, . . . , αk] is the tree with the

root labeledA : f that hast1, . . . , tk as (immediate) subtrees from left to right.

Example 2.1(continued). (1) By (L1), A
∗⇒G1 (ε, ε) sinceA → (ε, ε) ∈ P . Since

fa[(ε, ε)] = (a, a) andfb[(a, a)] = (ba, ba), we haveA
∗⇒G1 (a, a) andA

∗⇒G1

(ba, ba) by (L2). Also by S → J [A], S
∗⇒G1 J [(ba, ba)] = baba. In fact,

LG1(A) = {(w,w) | w ∈ {a, b}∗} andL(G1) = {ww | w ∈ {a, b}∗}.

(2) Likewise,A
∗⇒G2 (ε, . . . , ε) by (L1),A

∗⇒G2 f [(ε, . . . , ε)] = (a1a2, . . . , a2m−1a2m)

by (L2), etc. This tells us thatL(G2) = {an
1 · · · an

2m | n ≥ 0}.
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(3) SinceLG3(A) = LG2(A), L(G3) = {αβ | α, β ∈ L(G2)}.

To introduce subclasses ofMCFG, we define a few terminologies. LetG =

(N, T, F, P, S) be an arbitrary MCFG. For a functionf : (T ∗)d1 × · · · × (T ∗)dk →
(T ∗)d0 , let dim(f) = d0, rank(f) = k anddeg(f) =

∑k
j=0 dj, which are called the

dimension, rank anddegreeof f respectively.dim(G), rank(G) anddeg(G) are de-

fined as the maximum ofdim(f), rank(f) anddeg(f) among allf ∈ F respectively.

By definition, deg(G) ≤ dim(G)(rank(G) + 1). With these parameters, we define

subclasses ofMCFG. An MCFGG with dim(G) ≤ m and rank(G) ≤ r is called an

(m, r)-MCFG. Likewise, an MCFGG with dim(G) ≤ m is called anm-MCFG.

The following proposition was shown by Rambow and Satta, which summarizes

Theorems 1 and 6 of [21, 22].

Proposition 2.1([21, 22]). Form ≥ 2, r ≥ 6,

Lr,m ∈ (m, r − 2)-MCFL \ (m, r − 3)-MCFL.

In casem = 2 andr = 6, L6,2 ∈ (2, 4)-MCFL \ (2, 3)-MCFL. It was also shown

in [21, 22] that(2, 2)-MCFL = (2, 3)-MCFL. Therefore,L6,2 ∈ (2, 4)-MCFL \
(2, 2)-MCFL, which implies(2, 2)-MCFL ( 2-MCFL.

Example 2.2.Consider a(2, 2)-MCFGG4 = ({S,A}, {a, c, g, u}, F4, P4, S) for gen-

erating RNA sequences whereP4 and F4 are shown in Table 2.1. Functions have

mnemonic names whereXS, BF , BP and UP stand for CROSSING, BIFURCA-

TION, BASE PAIR and UNPAIR respectively. The RNA sequenceagacuu in Fig-

ure 2.2 can be generated by the above rules as follows:A
∗⇒G4 BP gc[(ε, ε)] =

(g, c), A
∗⇒G4 BP au[(g, c)] = (ag, cu), A

∗⇒G4 BP au[(ε, ε)] = (a, u), A
∗⇒G4

XS2[(ag, cu), (a, u)] = (aga, cuu) andS
∗⇒G4 J [(aga, cuu)] = agacuu. G4 has a

derivation tree (Figure 2.3) foragacuu that represents the pseudoknot shown in Fig-

ure 2.2.

Recognition problems for MCFGs can be solved in polynomial time:

Proposition 2.2([15, 29]). Let G be an MCFG withdeg(G) = e. For a givenw ∈ T ∗,

whetherw ∈ L(G) or not can be decided inO(ne) time wheren = |w|.
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Table 2.1. MCFGG4

Rule Function

S → J [A] J [(x1, x2)] = x1x2

A → XS1[A,A] XS1[(x11, x12), (x21, x22)] = (x11, x21x12x22)

A → XS2[A,A] XS2[(x11, x12), (x21, x22)] = (x11x21, x12x22)

A → XS3[A,A] XS3[(x11, x12), (x21, x22)] = (x11x21x12, x22)

A → BF1[A, A] BF1[(x11, x12), (x21, x22)] = (x11, x12x21x22)

A → BF2[A, A] BF2[(x11, x12), (x21, x22)] = (x11x12, x21x22)

A → BF3[A, A] BF3[(x11, x12), (x21, x22)] = (x11x12x21, x22)

A → UPα
1L[A] UPα

1L[(x1, x2)] = (αx1, x2)

A → UPα
1R[A] UPα

1R[(x1, x2)] = (x1α, x2)

A → UPα
2L[A] UPα

2L[(x1, x2)] = (x1, αx2)

A → UPα
2R[A] UPα

2R[(x1, x2)] = (x1, x2α)

A → BPαβ [A] BPαβ [(x1, x2)] = (αx1, x2β)

A → (ε, ε)

Note:α ∈ {a, c, g, u} and(α, β) ∈ {(a, u), (u, a), (c, g), (g, c)}.

a  g  a  c  u  u

Figure 2.2. Example of a pseudoknot

S : J

A : XS2

A : BPau A : BPau

A : BPgc

A : (ε, ε)

A : (ε, ε)

Figure 2.3. A derivation tree inG4



Chapter 3

Generative Power of Grammars for

RNA Pseudoknotted Structure

1. Introduction

Much attention has been paid to RNA secondary structure prediction techniques based

on context-free grammars (CFGs) since CFGs can represent stem loop structures (Fig-

ure 1.1 (a)) by their derivation trees and parsing (or secondary structure prediction

in biological words) can be performed inO(n3) time wheren is the length of an in-

put RNA sequence. A pseudoknot (Figure 1.1 (b)) is one of the typical substructures

found in RNA secondary structures. An alternative representation of a pseudoknot is

arc depiction in which arcs cross (see Figure 1.2 (b)). It has been recognized that pseu-

doknots play an important role in RNA functions such as ribosomal frameshifting and

splicing. Also, a database (PseudoBase [4]) containing a variety of structural, func-

tional and sequence data on RNA pseudoknots has been constructed. However, it is

known that CFGs cannot represent pseudoknotted structure1.

Since the middle 1980s, there has been a significant concept for syntax of natural

language, which is called mildly context-sensitive grammar (mildly CSG). The com-

mon features of these grammars are generative power between CFGs and CSGs, and

polynomial time recognizability. Kasami et al. [14, 15, 29] proposed a class of gram-

1Formal grammars are also used for modeling other functions on molecular sequences with sec-

ondary structures. For example, Sakakibara and Ferretti [27] showed that splicing systems on trees can

generate context-free languages.

12



Chapter 3 Generative Power of Grammars for RNA Pseudoknotted Structure13

mars called multiple context-free grammars (MCFGs), which are natural extension of

CFGs. A nonterminal symbol of an MCFG derives tuples of sequences, while a nonter-

minal symbol of a CFG derives sequences. Tree adjoining grammars (TAGs) [11, 12]

and MCFGs have been known as typical instances of mildly CSGs [13].

In bioinformatics, a few grammars have been proposed to represent pseudoknots.

In one pioneering paper [30], Uemura et al. defined two subclasses of TAGs called

simple linear TAGs (SLTAGs) and extended SLTAGs (ESLTAGs). Rivas and Eddy

[24] introduced a new class of grammars called RNA pseudoknot grammars (RPGs) for

deriving sequences with gaps. These grammars have generative power stronger than

CFGs, while recognition can be performed in polynomial time. However, the relation

between the generative power of each of these grammars has not been clarified.

In this chapter, we identify these grammars for describing RNA secondary struc-

ture as subclasses of MCFGs, and clarify the inclusion relation between the classes of

languages generated by these grammars. The remainder of this chapter is organized as

follows. First, we review the grammars for describing RNA pseudoknotted structure

mentioned above in Section 2. In Section 3, these grammars are characterized as sub-

classes of MCFGs. The closure property and generative power of these grammars are

investigated in Section 4 and Section 5 respectively. Section 6 concludes this chapter.

2. Grammars for Describing RNA Pseudoknotted Struc-

ture

2.1 Tree Adjoining Grammar

Basic Definitions

We first define notation for trees. LetN be the set of positive integers. Then the partial

order≼ overN∗ is defined as follows:p ≼ q for p, q ∈ N∗ if and only if there exists

r ∈ N∗ such thatq = pr. We writep ≺ q whenp ≼ q andp ̸= q. Let Σ be a finite set

of symbols. A treet overΣ ∪ {ε} is defined as a function such thatt : Dt → Σ ∪ {ε}
whereDt is a finite subset ofN∗ satisfying the following conditions:

(1) If q ∈ Dt andp ≺ q, thenp ∈ Dt.

(2) If pj ∈ Dt andj ∈ N, thenp1, . . . , p(j − 1) ∈ Dt.
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X
X

X

X

t s t’

p

X

Figure 3.1. Adjoining operation

Each element inDt is called anaddress. The addressp = ε especially indicates the

root node oft. If p ≺ q does not hold for anyq ∈ Dt, thenp indicates a leaf node.

We say thatt(p) is the label of the node at addressp in the treet. Theyield of a tree

t (denoted by yield(t)) is the sequence obtained by concatenating the labels of leaf

nodes oft from left to right.

A tree adjoining grammar(TAG) is a 5-tupleG = (N, T, S, I,A) whereN andT

are finite sets of nonterminals and terminals, respectively,S ∈ N is the start symbol,

I is a finite set ofinitial trees (center trees) over N ∪ T ∪ {ε} andA is a finite set

of adjunct trees(auxiliary trees) over N ∪ T ∪ {ε}. I andA satisfy the following

conditions:

(1) If t1 ∈ I, thent1(ε) = S and yield(t1) ∈ T ∗.

(2) If t2 ∈ A, thent2(ε) = X and yield(t2) ∈ T ∗XT ∗ for someX ∈ N .

The leaf node whose label is the same as the label of the root node of an adjunct tree

is called thefoot node. The path of an adjunct tree from the root node to the foot node

is called thebackbone. All initial and adjunct trees are referred to aselementary trees.

We next define the adjoining operation over trees. Lett be a tree with the node

labeledX at addressp. Let s be an adjunct tree with root and foot labeledX. Then we

say thats is adjoinable tot at p, and the treet′ obtained fromt by adjoinings at p is

defined as shown in Figure 3.1. Also, we writet ⊢s t′ (or simplyt ⊢ t′). We write the

reflective and transitive closure of⊢ as⊢∗. We callt′ a derived tree(or a tree derived

from t) if t ⊢∗ t′ for somet ∈ I ∪ A.

An adjoining constraintfor a noden of an elementary tree is as follows:
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(1) Selective Adjoining(SA(T )) whereT ⊆ A (T ̸= ϕ): Only members ofT can

be adjoined atn.

(2) Null Adjoining(NA): No adjunct tree can be adjoined atn.

(3) Obligatory Adjoining(OA(T )) whereT ⊆ A (T ≠ ϕ): A member ofT must

be adjoined atn.

If a node has none of the three constraints mentioned above, we interpret its constraint

as SA(A). Therefore, we assume that every node has exactly one of the three adjoining

constraints. The relationt ⊢s t′ (and adjoinability) are redefined so thatt′ is obtained

from t by adjoinings at p (of noden) wheren has no NA and ifn has SA(T ), then

s ∈ T . A noden is inactiveif the constraint for the node is NA, otherwiseactive. If

no active node in a treet has OA constraint, thent is calledmature.

The tree set of a TAGG is defined asT (G) = {t | s ⊢∗ t, s ∈ I andt is mature}.

The definition of the relation⊢∗ is top down in the sense that only an adjunct tree

can be adjoined to a derived tree. As discussed in [32],T (G) can be alternatively

characterized in a bottom up way by allowing derived trees to be adjoined to a tree.

For example, ifs0 ⊢s1 t1 ⊢s2 t2 wheres0 ∈ I, s1, s2 ∈ A ands2 is adjoined at a node

inherited froms1, then we can first adjoins2 to s1 resulting inτ and then adjoinτ to

s0 to obtaint2. Note that in this bottom up definition, we can restrict a tree to which

a derived tree is adjoined to be an elementary tree (likes1 ands0 above). For each

s ∈ I ∪ A, let us define a series of tree setsT s
0 (G), T s

1 (G), . . . .

(T1) T s
0 (G) = {s} if s is mature andT s

0 (G) = ϕ otherwise.

(T2) T s
n+1(G) = T s

n(G) ∪ {τ | s ⊢σ1 τ1 ⊢σ2 · · · ⊢σk
τk = τ, σi ∈ Tn(G) (1 ≤ i ≤

k), p1, . . . , pk are different addresses ofs, σi is adjoinable tos at pi (1 ≤ i ≤
k) andτ is mature}.

(T3) Tn(G) =
∪

s∈I∪A T s
n(G) for eachn ≥ 0.

It is not difficult to show thatT (G) = {t | t ∈ Tn(G) for somen ≥ 0 and yield(t) ∈
T ∗}. This characterization ofT (G) by (T1) through (T3) is frequently used in the

proofs in Section 3.

The language generated byG is defined asL(G) = {w | w = yield(t), t ∈ T (G)},

which is called atree adjoining language(TAL). As in MCFG, LetT AG denote the
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Figure 3.2. Elementary trees in Example 3.1

class of TAGs andT AL denote the class of TALs. It has been proved that

T AL ( (2, 2)-MCFL ( 2-MCFL ( MCFL (3.1)

where the proper inclusion relations of the leftmost and the rightmost in (3.1) were

given by Lemma 4.15 of [29] and Lemma 5 of [14] respectively.

SLTAG and ESLTAG

We now definesimple linear TAGs(SLTAGs) andextended simple linear TAGs(ESLT-

AGs) introduced in [30]. An elementary tree issimple linearif it has exactly one active

node, and for an adjunct tree, the active node is on the backbone of the tree. A TAG

G is asimple linear TAG(SLTAG) if and only if all elementary trees inG are simple

linear. An adjunct tree issemi-simple linearif it has two active nodes, where one is on

the backbone and the other is elsewhere. A TAGG is anextended simple linear TAG

(ESLTAG) if and only if all initial trees inG are simple linear and all adjunct trees in

G are either simple linear or semi-simple linear.

Example 3.1([30]). Let G1 = (N1, T1, S, I1,A1) be an SLTAG whereN1 = {S},

T1 = {a, c, g, u} and elementary trees inI1 andA1 are shown in Figure 3.2. In the

figure, z ∈ {a, c, g, u}, (x, y) ∈ {(a, u), (u, a), (c, g), (g, c)} and an active node is

denoted byS•. Figure 3.3 shows a (top down) derivation of a pseudoknot. Figure 3.4

shows an example of a bottom up derivation where a shaded region is a derived tree

adjoined to an elementary tree.
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Figure 3.3. A derivation of a pseudoknot in Example 3.1
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Figure 3.4. A bottom up derivation in Example 3.1

Example 3.2. Let G2 = (N2, T2, S, I2,A2) be an ESLTAG whereN2 = {S,Ai | 1 ≤
i ≤ 6}, T2 = {♯, ai, bi, ci | 1 ≤ i ≤ 4} and elementary trees inI2 andA2 are shown

in Figure 3.5.G2 generatesL3 = {♯ak
1b

k
1c

k
1♯a

l
2b

l
2c

l
2♯a

m
3 bm

3 cm
3 ♯an

4b
n
4c

n
4 ♯ | k, l,m, n ≥ 1}.

By definition,

SLT AL ⊆ ESLT AL ⊆ T AL. (3.2)

On the inclusion relation betweenCFL, SLT AL andESLT AL, the following has
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Initial tree Adjunct trees

ε

S•

#

S

S

A1 Ai

#
Ai

Ai

ai

bi ci

(1 ≤ i ≤ 4)

(2 ≤ i ≤ 4)

A•
6

ε

A•
5

A•
1 A•

i A•
i

A•
2

ε

A•
1

A5

A5

A•
4

ε

A•
3

A6

A6

Figure 3.5. Elementary trees in Example 3.2

been shown in Propositions 1 to 3 of [30]:

L2 = {♯ak
1b

k
1♯a

l
2b

l
2♯a

m
3 bm

3 ♯an
4b

n
4 ♯ | k, l,m, n ≥ 1} ∈ CFL \ SLT AL, (3.3)

{anbncn | n ≥ 0} ∈ SLT AL \ CFL, (3.4)

CFL ⊆ ESLT AL. (3.5)

Satta and Schuler’s Subclass

From the viewpoint of parsing complexity, Satta and Schuler [28] proposed a subclass

of T AG, which we callSST AG. They classified adjunct trees into three types ac-

cording to the position of the backbone. Each of them is called aleft tree, a right tree

and awrapping treeand satisfies the following (LT1), (RT1) and (WT1) respectively:

(LT1) The rightmost leaf is the foot node and the backbone consists of only the root

and the foot nodes.

(RT1) The leftmost leaf is the foot node and the backbone consists of only the root

and the foot nodes.

(WT1) Neither (LT1) nor (RT1) holds.

A TAG G is called anSSTAGif and only if each left tree, right tree and wrapping tree

in G satisfies the following (LT2), (RT2) and (WT2) respectively:
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tLU tRU

tLD tRD

s

B B

B B

Figure 3.6. Wrapping adjunction

(LT2) At the backbone of each left tree, no wrapping tree can be adjoined and no

adjoining constraint on right tree is found.

(RT2) At the backbone of each right tree, no wrapping tree can be adjoined and no

adjoining constraint on left tree is found.

(WT2) At the backbone of each wrapping tree, there is at most one node where a

wrapping tree can be adjoined, which is called thewrapping node.

We describe the reason why the above restriction is imposed. The most time-consuming

step in the recognition on TAG is the one dealing with adjoining operation. When we

adjoin a wrapping trees to the wrapping nodeB of another wrapping treet, we can

split t at B into four partstLU , tLD, tRU , tRD and adjunction can be simulated by four

successive steps (see Figure 3.6). Specifically,s is combined withtLD resultingσ1

and thenσ1 is combined withtRD resultingσ2, etc. In the recognition on SSTAGs,

every wrapping tree is split into four adjunct trees and regarded as a left (or right) tree

satisfying (LT2) (or (RT2)). This plays an important role in the reduction of the time

complexity. In the following, we assume that the wrapping node differs from the root

and the foot nodes without loss of generality. The close relation between ESLTAGs

and SSTAGs will be investigated in Section 5.

2.2 RNA Pseudoknot Grammar

Rivas and Eddy [24] introducedcrossed-interaction grammars(CIGs), which are sim-

ilar to MCFGs. A CIG has a special terminal symbol∧ (called the “hole” or the “gap”)

and some symbols (calledextra nonterminal symbols) other than terminals and non-

terminals. An extra nonterminal symbol plays a similar role to a function in MCFGs,
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and the semantics of an extra nonterminal is given by a rearrangement rule. The hole

∧ provides the insertion position in a rearrangement rule. Rivas and Eddy defined a

subclass ofCIG to describe RNA secondary structure including pseudoknots. In the

following, these grammars are briefly reviewed.

A crossed-interaction grammar(CIG) is a 6-tupleG = (N, T, S, I, P,R) where

N is a finite set of nonterminal symbols,T is a finite set of terminal symbols that

contains a distinguished symbol∧ called the hole (or the gap),S ∈ N is the start

symbol,I is a finite set of extra nonterminal symbols,P is a finite set of production

rules (productions) andR is a countable set of rearrangement rules (rearrangements).

A production is of the formA → α (A ∈ N, α ∈ (N(IN)∗∪T )∗) and a rearrangement

is of the form(β) →R m (β ∈ (T ∪ I)∗, m ∈ T ∗). Forγ, δ ∈ (N ∪ T ∪ I)∗, we write

γAδ ⇒G γαδ if A → α ∈ P , andγ(β)δ ⇒G,R γmδ if (β) →R m ∈ R. The reflective

and transitive closure of⇒G and⇒G,R are denoted as
∗⇒G and

∗⇒G,R respectively. The

subscriptG is omitted if it is clear from the context. The language generated byG is

defined asL(G) = {h∧(w) | S
∗⇒G γ

∗⇒G,R w, γ ∈ (T ∪ I)∗, w ∈ T ∗} whereh∧ is

the homomorphism such thath∧(∧) = ε andh∧(x) = x for x ∈ T \ {∧}.

An RNA pseudoknot grammar(RPG) is a CIGG = (N, T, S, I, P,R) whereI is

fixed to{×R,×,×L,⊃, (, )} andR is fixed to

(u1 ∧ u2 ×R v1 ∧ v2) →R u1 ∧ v1u2v2,

(u1 ∧ u2 × v1 ∧ v2) →R u1v1 ∧ u2v2,

(u1 ∧ u2 ×L v1 ∧ v2) →R u1v1u2 ∧ v2,

(u1 ∧ u2 ⊃ v1 ∧ v2) →R u1v1 ∧ v2u2

for eachu1, u2, v1, v2 ∈ T ∗. SinceI andR are fixed, we will write an RPG asG =

(N, T, S, P ).

Example 3.3. Let G = (N, T, S, P ) be an RPG whereN = {S,A}, T = {a, b} and

P = {S → (A × A) | ε, A → (A × A) | a ∧ a | b ∧ b | ∧}. ThenS ⇒ (A × A) ⇒
(A × (A × A))

∗⇒ (a ∧ a × (b ∧ b × a ∧ a)) ⇒R (a ∧ a × ba ∧ ba) ⇒R aba ∧ aba.

Thus,h∧(aba ∧ aba) = abaaba ∈ L(G). In fact,L(G) = {ww | w ∈ {a, b}∗}.
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Aφ

w1 w2Aφ

Figure 3.7. A mature derived tree

3. New Subclasses ofMCFG

3.1 A Subclass ofMCFG for SLT AL

GrammarsG andG′ are called weakly equivalent ifL(G) = L(G′). In [31], the fol-

lowing translation method from a TAGG = (N, T, S, I,A) into a weekly equivalent

(2, 2)-MCFG G′ has been proposed: For each nonterminalA ∈ N in G, a nontermi-

nal A with dim(A) = 2 is introduced inG′, and rules are constructed so that there

exists a mature derived treet such that yield(t) = w1Aw2 (w1, w2 ∈ T ∗) in G (Fig-

ure 3.7) if and only ifA
∗⇒G′ (w1, w2). Remember that each elementary tree in an

SLTAG contains exactly one active node as shown in Figure 3.8 (An inactive node

and an active node are denoted likeAϕ andB•, respectively, in the figure). By utiliz-

ing this restriction, we can define a translation for SLTAG simpler than that of [31].

Namely, for an adjunct tree in Figure 3.8 (a), construct an MCFG ruleA → f [B] where

f [(x1, x2)] = (u1x1v1, v2x2u2). This translation motivates us to define the following

subclass of(2, 1)-MCFG.

Definition 3.1. A (2, 1)-MCFGG = (N, T, F, P, S0) is an SLMCFG ifG satisfies the

following conditions (1) and (2):

(1) For each nonterminalA other thanS0, dim(A) = 2.

(2) Each nonterminating rule has the form of eitherS0 → J [A] whereJ [(x1, x2)] =

x1x2 or A → f [B] whereA,B ∈ N \ {S0} andf [(x1, x2)] = (u1x1v1, v2x2u2)

for someuj, vj ∈ T ∗ (j = 1, 2). Such a functionf is called asimple linear

function.
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Aφ

Aφu1 v1 v2 u2

B•

(a) Adjunct tree

Sφ

u1 u2

B•

u3

(b) Initial tree

Figure 3.8. Elementary trees in SLTAG

In the next lemma, we show that the generative power ofSLMCFG is the same

as that ofSLT AG. In the beginning of this section, we already mentioned an idea

of translating from an SLTAGG into a weakly equivalent SLMCFGG′. Considering

SA constraint, we introduce a nonterminalA[t] into G′ for a nonterminalA and an

elementary treet in G. A[t] is intended to derive(w1, w2) if and only if there exists

a mature derived treeτ such that yield(τ) = w1Aw2 and τ is obtained fromt by

adjoining derived trees tot.

Lemma 3.1. SLT AL = SLMCFL.

Proof. (SLT AL ⊆ SLMCFL) Let G = (N, T, S, I,A) be a given SLTAG. We will

construct an SLMCFGG′ = (N ′, T, F, P, S0) as follows:

(1) N ′ = {A[t] | A ∈ N, t ∈ I ∪A}∪ {S0} wheredim(S0) = 1 anddim(A[t]) = 2

for eachA ∈ N andt ∈ I ∪ A.

(2) P (andF ) are the smallest sets satisfying the following conditions (a) through

(c).

(a) S0 → J [S[t]] ∈ P for eacht ∈ I andJ [(x1, x2)] = x1x2 ∈ F .

(b) For each adjunct treet ∈ A shown in Figure 3.8 (a),

• A[t] → f [B[s]] ∈ P for eachs ∈ T andf [(x1, x2)] = (u1x1v1, v2x2u2)

∈ F if B has either SA(T ) or OA(T ), and

• A[t] → (u1v1, v2u2) if B has either SA(T ) or NA (i.e., t is mature).
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(c) For each initial treet ∈ I shown in Figure 3.8 (b),

• S[t] → g[B[s]] ∈ P for eachs ∈ T andg[(x1, x2)] = (u1x1u2, x2u3) ∈
F if B has either SA(T ) or OA(T ), and

• S[t] → (u1u2, u3) if t is mature.

First, we show that there exists a treeτ ∈ T t
n(G) for somen ≥ 0 such that

yield(τ) = w1Aw2 (A ∈ N, w1, w2 ∈ T ∗) if and only if A[t] ∗⇒G′ (w1, w2).

(“if” part) By induction on the application number of (L1) and (L2) in Section 2 of

Chapter 2.

(Basis) IfA[t] ⇒G′ (w1, w2), that is,A[t] → (w1, w2) ∈ P , there should exist an ad-

junct treet that corresponds to the rule by construction (2) (b) (see Figure 3.9 (b)).

Then yield(t) = w1Aw2.

(Induction) Assume thatB[s] ∗⇒G′ (w1, w2) andA[t] ∗⇒G′ f [(w1, w2)] = (u1w1v1, v2w2

u2) by A[t] → f [B[s]] ∈ P wheref [(x1, x2)] = (u1x1v1, v2x2u2). Then there should

exist an adjunct treet shown in Figure 3.8 (a) that corresponds toA[t] → f [B[s]]

by construction (2) (b). By the inductive hypothesis, there exists a mature derived

treeσ ∈ T s
n(G) such that yield(σ) = w1Bw2. Therefore,t ⊢σ τ where yield(τ) =

u1w1v1Av2w2u2.

(“only if” part) By induction onn.

(Basis) Ifn = 0, that is, there exists a mature adjunct treeτ = t such that yield(τ) =

w1Aw2, then a ruleA[t] → (w1, w2) is constructed by construction (2) (b). Thus,

A[t] ∗⇒G′ (w1, w2) by (L1).

(Induction) Assume that a mature treeτ ∈ T t
n(G) is obtained by adjoining a tree

σ ∈ T s
n−1(G) such that yield(σ) = w1Bw2 to an adjunct treet shown in Figure 3.8 (a).

Then yield(τ) = u1w1v1Av2w2u2. By construction (2) (b),A[t] → f [B[s]] ∈ P where

f [(x1, x2)] = (u1x1v1, v2x2u2). By the inductive hypothesis,B[s] ∗⇒G′ (w1, w2).

Hence,A[t] ∗⇒G′ f [(w1, w2)] = (u1w1v1, v2w2u2) by (L2).

Next, we show thatL(G) = L(G′) by considering the correspondence between the

initial trees inI and the rules constructed in (2) (c). Consider an initial treet shown

in Figure 3.8 (b) such that yield(t) = u1u2u3. Let t′ be a mature derived tree obtained

by adjoiningσ ∈ T s
n(G) such that yield(σ) = w1Bw2 to the initial treet. Then

yield(t′) = u1w1u2w2u3 = w andw ∈ L(G). On the other hand, the SLMCFG rule

for t is S[t] → g[B[s]] by construction (2) (c). Remember that there exists a treeσ ∈
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S0

AOA(A)

ε

(a)

Aφ

u1 u2Aφ

X•

(b)

Figure 3.9. Constructed elementary trees

T s
n(G) for somen ≥ 0 such that yield(σ) = w1Bw2 if and only if B[s] ∗⇒G′ (w1, w2).

Thus, S[t] ∗⇒G′ g[(w1, w2)] = (u1w1u2, w2u3) andS
[t]
0

∗⇒G′ J [(u1w1u2, w2u3)] =

u1w1u2w2u3 = w. Consequently,w ∈ L(G′) andL(G) = L(G′).

(SLMCFL ⊆ SLT AL) Let G = (N, T, F, P, S0) be a given SLMCFG. Construct

an SLTAGG′ = (N ′, T, S0, I,A) as follows:

(1) N ′ = N ∪ {X} whereX ̸∈ N .

(2) I consists of initial trees shown in Figure 3.9 (a) forS0 → J [A] ∈ P .

(3) A is the smallest set satisfying:

• For eachA → f [B] ∈ P wheref [(x1, x2)] = (u1x1v1, v2x2u2), the adjunct

tree shown in Figure 3.8 (a) belongs toA.

• For eachA → (u1, u2) ∈ P , the adjunct tree shown in Figure 3.9 (b)

belongs toA.

Also, the constraint of every active node is SA(A).

Next, we show thatA
∗⇒G (w1, w2) if and only if there exists a treet ∈ Tn(G′) for

somen ≥ 0 such that yield(t) = w1Aw2.

(“if” part) By induction onn.

(Basis) If n = 0, that is, there exists a mature adjunct treet such that yield(t) =

w1Aw2, then there should exist a ruleA → (w1, w2) that corresponds tot by construc-

tion (3) (see Figure 3.9 (b)). Hence,A
∗⇒G (w1, w2) by (L1).

(Induction) Assume that a mature treet ∈ Tn(G) is obtained by adjoining a tree
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t1 ∈ Tn−1(G) such that yield(t1) = w1Bw2 to an adjunct trees shown in Figure 3.8

(a). Note that yield(t) = u1w1v1Av2w2u2. Then there should exist a ruleA → f [B]

wheref [(x1, x2)] = (u1x1v1, v2x2u2) that corresponds tos by construction (3). By the

inductive hypothesis,B
∗⇒G (w1, w2). Thus,A

∗⇒G f [(w1, w2)] = (u1w1v1, v2w2u2)

by (L2).

(“only if” part) By induction on the application number of (L1) and (L2).

(Basis) IfA ⇒G (w1, w2), i.e., A → (w1, w2) ∈ P , then an adjunct treet such that

yield(t) = w1Aw2 is constructed by construction (3) (see Figure 3.9 (b)).

(Induction) Assume thatB
∗⇒G (w1, w2) andA

∗⇒G f [(w1, w2)] = (u1w1v1, v2w2u2)

by A → f [B] ∈ P wheref [(x1, x2)] = (u1x1v1, v2x2u2). By the inductive hypothe-

sis, there exists a mature derived treet1 ∈ Tn(G′) such that yield(t1) = w1Bw2. By

construction (3), an adjunct trees shown in Figure 3.8 (a) is inA. Therefore,s ⊢t1 t

where yield(t) = u1w1v1Av2w2u2.

We can show thatL(G) = L(G′) in the same way as the proof of(SLT AL ⊆
SLMCFL).

3.2 A Subclass ofMCFG for ESLT AL

In this section, we will define a subclass of(2, 2)-MCFG that exactly generates ESLTAL.

Let G = (N, T, S, I,A) be a given ESLTAG. By virtue of Property 2 of [30], we can

assume thatG is in normal form such that for every semi-simple linear adjunct tree

t ∈ A, yield(t) ∈ N . Thus, for each leafv of t, eitherv is the foot node or the

label ofv is ε (see Figure 3.10). From this observation, we define a subclass of(2, 2)-

MCFG by adding rules corresponding to the adjunct trees shown in Figure 3.10 to the

definition of SLMCFG.

Definition 3.2. A (2, 2)-MCFGG = (N, T, F, P, S0) is an ESLMCFG if each nonter-

minating rule has one of the following forms (1) through (3):

(1) A → J [B] wheredim(A) = 1 anddim(B) = 2.

(2) A → f [B] wheref is a simple linear function.

(3) A → g[B,D] wheredim(A) = dim(D) = 2, dim(B) = 1, g ∈ {C1, C2, C3, C4}
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Aφ

Aφ
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ε
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Aφ

Aφ
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ε

(c)

Aφ

Aφ

D• B•

ε

(d)

Figure 3.10. Semi-simple linear adjunct trees in normal form

and

C1[x1, (x21, x22)] = (x1x21, x22), C2[x1, (x21, x22)] = (x21x1, x22),

C3[x1, (x21, x22)] = (x21, x1x22), C4[x1, (x21, x22)] = (x21, x22x1).

The next lemma establishes the equivalence ofESLT AL andESLMCFL. In the

proof, we use translations between an ESLTAG and an ESLMCFG similar to those in

Lemma 3.1. LetG be a given ESLTAG in normal form. As in Lemma 3.1, initial trees

and simple linear adjunct trees inG are translated into ESLMCFG rules with simple

linear functions. The semi-simple linear adjunct trees shown in Figure 3.10 (a) through

(d) are translated into the ESLMCFG rules of type (3) in Definition 3.2.

Lemma 3.2. ESLT AL = ESLMCFL.

Proof. (ESLT AL ⊆ ESLMCFL) Let G = (N, T, S, I,A) be a given ESLTAG

in normal form [30]. We construct an ESLMCFGG′ = (N ′, T, F, P, S0) from G as

follows:

(1) N ′ = {A[t]
1 , A

[t]
2 | A ∈ N, t ∈ I ∪ A} wheredim(A

[t]
1 ) = 1 anddim(A

[t]
2 ) = 2

for A ∈ N andt ∈ I ∪ A.

(2) P (andF ) are the smallest sets satisfying the following conditions (a) through

(d):

(a) For eachA ∈ N , A
[t]
1 → J [A

[t]
2 ] ∈ P for eacht ∈ I ∪ A andJ [(x1, x2)] =

x1x2 ∈ F .
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(b) Same as (2) (a) (b) (c) in the proof of(SLT AL ⊆ SLMCFL) in Lemma

3.1.

(c) For each semi-simple linear adjunct treet shown in Figure 3.10 (a),

• A
[t]
2 → C1[B

[s1]
1 , D

[s2]
2 ] ∈ P for eachs1 ∈ T1 and s2 ∈ T2 and

C1[x1, (x21, x22)] = (x1x21, x22) ∈ F if B has either SA(T1) or OA(T1)

andD has either SA(T2) or OA(T2), and

• A
[t]
2 → (ε, ε) ∈ P if t is mature.

(d) For each semi-simple linear adjunct tree (b) through (d) in Figure 3.10, the

rules usingC2, C3 andC4, respectively, instead ofC1 belong toP .

Now, we show that there exists a treeτ ∈ T t
n(G) for somen ≥ 0 such that

yield(τ) = w1Aw2 (A ∈ N, w1, w2 ∈ T ∗) if and only if A[t]
2

∗⇒G′ (w1, w2).

(“only if” part) By induction onn.

(Basis) If τ = t is a mature adjunct tree shown in Figure 3.10, thenA
[t]
2 → (ε, ε) is

constructed by construction (2) (c). Thus,A
[t]
2

∗⇒G′ (ε, ε) by (L1). The other cases are

the same as the proof of Lemma 3.1.

(Induction) Assume thatτ ∈ T t
n(G) \ T t

n−1(G) and yield(τ) = w1Aw2. There are

two cases: Eithert is a simple linear adjunct tree ort is a semi-simple linear adjunct

tree. The proof of the former case is the same as the one in Lemma 3.1. Consider

the latter case, then there are four subcases according to the shapes oft as shown in

Figure 3.10. We only consider the subcase (a) in Figure 3.10. The other subcases can

be treated similarly. Assume thatt ⊢σ1 τ1 ⊢σ2 τ whereσ1 ∈ T s1
n−1(G), σ2 ∈ T s2

n−1(G)

and are adjoined at the addresses ofB andD respectively. By construction (2) (c),

A
[t]
2 → C1[B

[s1]
1 , D

[s2]
2 ] ∈ P and by construction (2) (a),B[s1]

1 → J [B
[s1]
2 ] ∈ P . As-

sume further that yield(σ1) = u1Bu2 and yield(σ2) = v1Dv2. Then by assumption

that yield(τ) = w1Aw2, we see thatw1 = u1u2v1 andw2 = v2. By the inductive hy-

pothesis,B[s1]
2

∗⇒G′ (u1, u2), D
[s2]
2

∗⇒G′ (v1, v2) and thusB[s1]
1

∗⇒G′ J [(u1, u2)] = u1u2

by (L2). Hence,A[t]
2

∗⇒G′ C1[u1u2, (v1, v2)] = (u1u2v1, v2) = (w1, w2) by (L2).

(“if” part) The proof of the “if” part is similar to that of the “only if” part of(ESLMCFL
⊆ ESLT AL).

We can show thatL(G) = L(G′) in the same way as the proof of Lemma 3.1.

(ESLMCFL ⊆ ESLT AL) Let G = (N, T, F, P, S0) be a given ESLMCFG. From

G, we construct an ESLTAGG′ = (N ∪ {X}, T, S0, I,A) as follows:
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Figure 3.11. Constructed adjunct trees

(1) For each ruleA → C1[B,D] ∈ P , add adjunct trees toA as follows. Note

that a rule whose left-hand side isB with dim(B) = 1 has the form of either

B → J [E] or B → u (u ∈ T ∗).

• For each ruleB → J [E] ∈ P , add the adjunct tree shown in Figure 3.11

(a) toA.

• For each ruleB → u ∈ P , add the adjunct tree shown in Figure 3.11 (b) to

A.

(2) For the rules usingC2, C3 or C4, construct adjunct trees in a similar way to (1).

(3) For the other rules, add elementary trees in the same way as (2) and (3) in the

proof of (SLMCFL ⊆ SLT AL) in Lemma 3.1.

We show thatA
∗⇒G (w1, w2) if and only if there exists a treet ∈ Tn(G′) for some

n ≥ 0 such that yield(t) = w1Aw2.

(“only if” part) By induction on the application number of (L1) and (L2).

(Basis) If A ⇒G (w1, w2), i.e., A → (w1, w2) ∈ P , an adjunct treet such that

yield(t) = w1Aw2 is constructed (see Figure 3.9 (b)).

(Induction) Assume thatE
∗⇒G (u1, u2), B

∗⇒G J [(u1, u2)] = u1u2, D
∗⇒G (v1, v2)

and A
∗⇒G C1[u1u2, (v1, v2)] = (u1u2v1, v2) by B → J [E] and A → C1[B,D]

in P . By the inductive hypothesis, there exist treest1, t2 ∈ Tn−1(G
′) such that

yield(t1) = u1Eu2 and yield(t2) = v1Dv2. SinceB → J [E] andA → C1[B,D]

belong toP , the adjunct trees shown in Figure 3.11 (a) is inA by construction (1).

Thus, we have a treet ∈ Tn(G′) such that yield(t) = u1u2v1Av2 by adjoiningt1 and

t2 to s. The other cases can be treated in a similar way.
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(“if” part) The proof of the “if” part is similar to that of the “only if” part of(ESLT AL
⊆ ESLMCFL).

L(G) = L(G′) can be proved in the same way as the proof of Lemma 3.1.

3.3 A Subclass ofMCFG for RPL

As described in Section 2.2, extra nonterminals in RPGs and functions in MCFGs play

a similar role. In this section, we reformulateRPG as a subclass ofMCFG.

Definition 3.3. A (2, 2)-MCFG G = (N, T, F, P, S) is called an RPG if each nonter-

minating rule has one of the following forms (1) through (3):

(1) A → J [B].

(2) A → BF [E1, E2] wheredim(A) = 2, dim(E1) = dim(E2) = 1 andBF [x1, x2]

= (x1, x2).

(3) A → f [B,D] wheredim(A) = dim(B) = dim(D) = 2, f ∈ {XS1, XS2, XS3,

W}, XSi (i = 1, 2, 3) is defined in Example 2.2 andW [(x11, x12), (x21, x22)] =

(x11x21, x22x12).

Note that although an original RPG in Section 2.2 does not have an extra nontermi-

nal corresponding to the functionsJ andBF , J is used to realize the effect of the

homomorphismh∧ andBF is used to simulate a production of the formA → B ∧ C.

Proposition 3.3.

RPL ⊆ (2, 2)-MCFL. (3.6)

We obtain the following property on recognition complexity.

Proposition 3.4. For a givenw ∈ T ∗ (n = |w|), whetherw ∈ L or not can be decided

in O(n6) time if L is an RPL,O(n5) time if L is an ESLTAL, andO(n4) time if L is

an SLTAL.

Proof. For an RPGG, deg(G) ≤ 6, for an ESLMCFGG, deg(G) ≤ 5 and for an

SLMCFGG, deg(G) ≤ 4. The proposition follows from Proposition 2.2, Lemmas 3.1

and 3.2.
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The above complexity results were first shown in [30] forESLT AL andSLT AL,

and in [24] forRPL by providing an individual recognition algorithm for each class.

On the other hand, by identifying these classes of languages as subclasses ofMCFL,

we can easily obtain the same results as stated in Proposition 3.4. Akutsu [2] defined

a structure called a simple pseudoknot and proposed anO(n4) time exact prediction

algorithm andO(n4−δ) time approximation algorithm without using grammar. Note

that the set of simple pseudoknots can be generated by an SLTAG.

4. Closure Property

First, we introduce a normal form of ESLMCFG and then show closure properties of

SLT AL andESLT AL. By using SLMCFG and ESLMCFG, we can prove these

properties in a simple way. Some of these properties will be used for proving the

inclusion relation betweenSLT AL andESLT AL.

Definition 3.4. An ESLMCFG is in normal form if the following conditions (1) and

(2) hold:

(1) For eachA → f [B] wheref [(x1, x2)] = (u1x1v1, v2x2u2), |u1v1v2u2| = 1.

(2) For eachA → (u1, u2) (u1, u2 ∈ T ∗), u1 = u2 = ε.

Remark that a similar normal form is defined for ESLTAG in [30]. It is easy to prove

the following lemma.

Lemma 3.5. For a given ESLMCFGG, a normal form ESLMCFGG′ can be con-

structed fromG such thatL(G) = L(G′).

Proof. Let G = (N, T, F, P, S0) be a given ESLMCFG. When we construct a normal

form ESLMCFGG′ such thatL(G) = L(G′), we have only to consider that every

simple linear function inF can be simulated by functions satisfying the condition (1)

in Definition 3.4. For simplicity, we see the following example. LetA → f [B] ∈ P

wheref [(x1, x2)] = (ax1bc, x2d) ∈ F (a, b, c, d ∈ T ). This rule can be simulated

by A → UP a
1L[B1], B1 → UP c

1R[B2], B2 → UP b
1R[B3] andB3 → UP d

2R[B4] where

UP α
1L, UP α

1R andUP α
2R (α ∈ T ) are defined in Example 2.2. General case can be

treated similarly. Also, every terminating rule inP can be simulated in a similar way.
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Theorem 3.6.SLT AL andESLT AL have the following properties.

(1) SLT AL contains every linear language.

(2) SLT AL is closed under union, homomorphism, intersection with regular lan-

guages and regular substitution, but is not closed under intersection, concatena-

tion, Kleene closure, positive closure or substitution.

(3) ESLT AL is closed under intersection with regular languages and substitution,

but is not closed under intersection.

Proof. (1) For linear CFG rulesA → u1Bv1 andA → u, construct SLMCFG rules

A → f [B] wheref [(x1, x2)] = (u1x1v1, x2) andA → (u, ε) respectively.

(2) (union) For two SLMCFGsG1 = (N1, T, F1, P1, S01) andG2 = (N2, T, F2, P2, S02)

whereN1 ∩N2 = ϕ, let G′ = (N1 ∪N2, T, F1 ∪F2, P, S0) whereP is the union

of P1 andP2 with S01 andS02 replaced withS0. ThenL(G1)∪L(G2) = L(G′).

(homomorphism) LetG = (N, T, F, P, S0) be an SLMCFG andh be a homo-

morphism. An SLMCFGG′ such thath(L(G)) = L(G′) can be constructed

as follows. For a ruleA → f [B] ∈ P wheref [(x1, x2)] = (u1x1v1, v2x2u2),

construct a ruleA → f ′[B] wheref ′[(x1, x2)] = (h(u1)x1h(v1), h(v2)x2h(u2)).

The construction of terminating rules is similar.

(intersection with regular languages) Same as the proof of Theorem 3.9 (3) of

[29].

(regular substitution) LetG = (N, T, F, P, S0) be an SLMCFG in normal form.

We also assume that each ruleA → f [B] ∈ P has a unique label, sayr, and

write r : A → f [B] ∈ P . Let s : T → 2(T ′)∗ be a regular substitution and

for eachα ∈ T , let s(α) = L(Gα) whereGα = (Nα, T ′, Pα, Sα) is a regular

grammar. We now construct an SLMCFGG′ = (N ′, T ′, F ′, P ′, S0) such that

s(L(G)) = L(G′) as follows.G′ will simulateGα by a linear function instead

of generatingα ∈ T . To do this, we introduce a nonterminalX [r] in G′ where

X ∈ Nα andr : A → f [B] ∈ P such that the definition off containsα ∈ T .

• N ′ = N ∪ {X [r] | X ∈ Nα \ {Sα}, α ∈ T, r : A → f [B] ∈ P}.

• F ′ consists ofJ , UP β
1L, UP β

1R, UP β
2L, UP β

2R (β ∈ T ′) of Example 2.2 and

EPS[ ] = (ε, ε).
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• P ′ is the smallest set satisfying:

– If S0 → J [A] ∈ P , S0 → J [A] ∈ P ′.

– Assume thatr : A → f [B] ∈ P wheref [(x1, x2)] = (αx1, x2) (α ∈
T ). If X → βY ∈ Pα (X,Y ∈ Nα, β ∈ T ′), X [r] → UP β

1L[Y [r]] ∈
P ′, and ifX → β ∈ Pα (X ∈ Nα, β ∈ T ′), X [r] → UP β

1L[B] ∈ P ′

whereS
[r]
α is identified withA for simplicity.

– For the other rules inP , similar construction can be defined. For ex-

ample, iff [(x1, x2)] = (x1, x2α) (α ∈ T ), we will useUP β
2R instead

of UP β
1L.

The proof ofs(L(G)) = L(G′) is easy. For example, in the second case of the

construction ofP ′, A
∗⇒G f [(γ1, γ2)] = (αγ1, γ2) if and only if A

∗⇒G′ (ξγ1, γ2)

for everyξ ∈ L(Gα).

(intersection) LetL = {an
1a

m
2 an

3a
n
4a

n
5 | m,n ≥ 1} andL′ = {an

1a
n
2a

n
3a

m
4 an

5 |
m,n ≥ 1}. L andL′ belong toSLT AL (and thusESLT AL) since each SLM-

CFG generatingL andL′, respectively, can be constructed. For example, the

SLMCFG generatingL is as follows: S0 → J [A], A → f [A] | f [B] where

f [(x1, x2)] = (a1x1a3, a4x2a5) andB → g[B] | (a2, ε) whereg[(x1, x2)] =

(a2x1, x2). The SLMCFG generatingL′ is constructed in a similar way. The

intersection of them, i.e.,L ∩ L′ = {an
1a

n
2a

n
3a

n
4a

n
5 | n ≥ 1} is not a 2-MCFL by

Lemma 3.3 of [29]. Therefore,L does not belong toSLT AL.

(concatenation) LetL = {♯ak
1b

k
1♯a

l
2b

l
2 | k, l ≥ 1} andL′ = {♯am

3 bm
3 ♯an

4b
n
4 ♯ |

m,n ≥ 1}, both of which are SLTALs. An SLMCFG generatingL is such

that S0 → J [S], S → add♯♯[A] where add♯♯[(x1, x2)] = (♯x1, ♯x2), A →
f [A] | B wheref [(x1, x2)] = (a1x1b1, x2) andB → g[B] | (a1b1, a2b2) where

g[(x1, x2)] = (x1, a2x2b2). The construction of an SLMCFG generatingL′ is

similar. The concatenation of them, i.e.,LL′ = L2 defined in (3.3) is not an

SLTAL.

(Kleene closure, positive closure) By the next corollary,SLT AL is a union

closed full trio. IfSLT AL is closed under Kleene closure or positive closure,

thenSLT AL is closed under concatenation by Proposition 3.8, which is a con-

tradiction.

(substitution) LetL1 = {♯d1♯d2♯d3♯d4♯}, which is a finite language and thus an
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SLTAL, and lets be a substitution such thats(di) = {an
i bn

i | n ≥ 1} (1 ≤ i ≤ 4),

which is also an SLTAL by (1) of this theorem. Thens(L1) = L2 defined in

(3.3), which is not an SLTAL.

(3) (intersection with regular languages) Same as the proof of Theorem 3.9 (3) of

[29].

(substitution) LetG = (N, T, F, P, S0) be an ESLMCFG in normal form. Lets

be a substitution such thats(a) = L(Ga) (a ∈ T ) whereGa = (Na, T
′, Fa, Pa, S0a)

is an ESLMCFG without sharing nonterminals with one another and withG. An

ESLMCFGG′ = (N∪
∪

a∈T Na∪{X}, T ′, F ∪
∪

a∈T Fa, P
′∪

∪
a∈T Pa, S0) gen-

eratess(L(G)) whereP ′ is the same asP except that for a ruleA → f [B] where

f [(x1, x2)] = (ax1, x2), P ′ containsA → C1[S0a, B] instead ofA → f [B], and

similarly for the other rules that use simple linear functions.

(intersection) See (2) of this proof.

A class of languages is called afull trio (or cone) if it is closed under homomorphism,

inverse homomorphism and intersection with regular languages. A full trio closed

under union, concatenation and Kleene closure is called afull abstract family of lan-

guages(full AFL). When we try to show that a class of languages is a full trio (or

full AFL), major difficulty lies in showing closure under inverse homomorphism. The

following propositions [19] present an alternative way of proving it.

Proposition 3.7 ([19]). If a class of languages is closed underε-free regular substi-

tution, linear erasing, union with regular languages and intersection with regular lan-

guages, then it is closed under inverse homomorphism. The same conclusion can be

made forε-free classes even without assuming closure under union with regular lan-

guages.

Proposition 3.8([19]). If a class of languages includes a language containing a nonempty

word and is closed under union, Kleene closure (or positive closure),ε-free regular

substitution, intersection with regular languages and homomorphism, then the class is

a full AFL. If a class of languages contains all regular languages and is closed under

substitution as well as under intersection with regular languages, then the class is a full

AFL.

Corollary 3.9. SLT AL is a full trio. ESLT AL is a substitution closed full AFL.
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∗ ∗ ∗

∗

∗

∗

Figure 3.12. Known results on inclusion relation

Proof. (full trio) By Proposition 3.7 and Theorem 3.6 (2) .

(full AFL) By Proposition 3.8 and Theorem 3.6 (1), (3).

5. Inclusion Relation

First, we summarize the inclusion relations between the classes of languages stated

in (3.1) through (3.6) (see Figure 3.12). In the figure, an asterisk indicates that there

exists at least one language in the region where the asterisk is placed.

Proposition 3.10. (1) (CFL ∪ SLT AL) ⊆ ESLT AL ⊆ T AL ( (2, 2)-MCFL.

(2) RPL ⊆ (2, 2)-MCFL ( 2-MCFL ( MCFL.

In the following, we refine the above proposition.

5.1 RPL = (2, 2)-MCFL

We introduce the following condition (S) that states that for each argument(xi1, xi2)

of a function of a 2-MCFG, the order of the occurrences of its componentsxi1 andxi2

is not interchanged in the function value.

(S) LetG = (N, T, F, P, S) be a 2-MCFG andf : (T ∗)d1×· · ·×(T ∗)dk → (T ∗)d0 (1 ≤
di ≤ 2 for 0 ≤ i ≤ k) be an arbitrary function inF defined by (see (F) in Section
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2 of Chapter 2):

f [h][z1, . . . , zk] = αh (1 ≤ h ≤ d0)

where eitherzi = xi or zi = (xi1, xi2) (1 ≤ i ≤ k). Let φ = α1 if d0 = 1 and

let φ = α1α2 if d0 = 2. For eachi (1 ≤ i ≤ k), if zi = (xi1, xi2) and both

xi1 andxi2 occur inφ, thenxi1 occurs to the left of the occurrence ofxi2, i.e.,

φ = ξ1xi1ξ2xi2ξ3 for someξj (1 ≤ j ≤ 3).

Lemma 3.11. For a given 2-MCFGG, we can construct a 2-MCFGG′ satisfying the

condition (S) andL(G) = L(G′).

Proof. Let G = (N, T, F, P, S) be a given 2-MCFG. For example, if there exits

a rule A → f [B,D] ∈ P wheref [(x11, x12), (x21, x22)] = (x12x21, x22x11), then

the pair of variables(x11, x12) violates the condition (S). We interchange the occur-

rences ofx11 andx12 in the definition off to obtain another function, sayfs such

thatfs[(x11, x12), (x21, x22)] = (x11x21, x22x12). ThenA → f [B,D] is replaced with

A → fs[B
R, D] whereBR is a new nonterminal symbol such thatB

∗⇒ (u1, u2) if and

only if BR ∗⇒ (u2, u1). ForBR to satisfy this property, more rules should be added.

Generally, we will construct a 2-MCFGG′ = (N ′, T, F ′, P ′, S) as

N ′ = N ∪ {AR | A ∈ N},
F ′ = {fs, f

R
s | f ∈ F},

P ′ = {A0 → fs[B1, . . . , Bk], AR
0 → fR

s [D1, . . . , Dk] | A0 → f [A1, . . . , Ak] ∈ P}

wherefs, f
R
s , Bi andDi (1 ≤ i ≤ k) are defined as follows. Let the definition off be

the one stated in the condition (S). Also, letφR = φ = α1 if d0 = 1 and letφR = α2α1

if d0 = 2.

Bi =

AR
i if xi2 occurs to the left ofxi1 in φ

Ai otherwise.

Di =

AR
i if xi2 occurs to the left ofxi1 in φR

Ai otherwise.

Assume thatd0 = 2, i.e., f [z1, . . . , zk] = (α1, α2). (The case thatd0 = 1 can be

treated in the same way.) Thenfs[z1, . . . , zk] = (β1, β2) andfR
s [z1, . . . , zk] = (γ2, γ1).

Here,βj (j = 1, 2) is obtained fromαj by interchanging the occurrences ofxi1 and

xi2 (1 ≤ i ≤ k) if and only if xi2 occurs to the left ofxi1 in φ. Similarly,γj (j = 1, 2)
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is obtained fromαj by interchanging the occurrences ofxi1 andxi2 (1 ≤ i ≤ k) if and

only if xi2 occurs to the left ofxi1 in φR.

Now, we show by induction on the application number of (L1) and (L2) that

A
∗⇒G (u1, u2) (u1, u2 ∈ T ∗) if and only if A

∗⇒G′ (u1, u2) andAR ∗⇒G′ (u2, u1).

(“only if” part) (Basis) If A ⇒G (u1, u2), A → (u1, u2) ∈ P . By the above construc-

tion of G′, A → (u1, u2) ∈ P ′ andAR → (u2, u1) ∈ P ′. Hence,A ⇒G′ (u1, u2) and

AR ⇒G′ (u2, u1).

(Induction) Assume thatAi
∗⇒G (vi1, vi2) (1 ≤ i ≤ k) andA0

∗⇒G f [(v11, v12), . . . , (vk1

, vk2)] = (u1, u2) by A0 → f [A1, . . . , Ak] ∈ P . By the above construction,A0 →
f [A1, . . . , Ak] ∈ P is replaced withA0 → fs[B1, . . . , Bk] andAR

0 → fR
s [D1, . . . , Dk]

in P ′. If xi2 occurs to the left ofxi1 in φ, thenBi = AR
i , otherwiseBi = Ai. By the

inductive hypothesis,Ai
∗⇒G′ (vi1, vi2) andAR

i
∗⇒G′ (vi2, vi1). Thus,A0

∗⇒G′ (u1, u2).

AR
0

∗⇒G′ (u2, u1) can be shown in the same way.

(“if” part) The proof of the “if” part is similar.

L(G) = L(G′) can be proved by considering a derivation from the start symbol.

Lemma 3.12.Let G = (N, T, F, P, S) be a(2, 2)-MCFG satisfying the condition (S).

Then we can construct an RPGG′ such thatL(G) = L(G′).

Proof. Let G = (N, T, F, P, S) be an arbitrary(2, 2)-MCFG satisfying the condition

(S). We construct an RPGG′ weakly equivalent toG as follows. The number of func-

tions f : (T ∗)2 × (T ∗)2 → (T ∗)2 satisfying the condition (S) is 18. A half of them

can be obtained from the other half of them by interchanging the first and the second

arguments. Among the remaining nine functions, four are RPG functions. The others

are:
f1[(x11, x12), (x21, x22)] = (x11, x12x21x22),

f2[(x11, x12), (x21, x22)] = (x11x12, x21x22),

f3[(x11, x12), (x21, x22)] = (x11x12x21, x22),

f4[(x11, x12), (x21, x22)] = (x11, x21x22x12),

f5[(x11, x12), (x21, x22)] = (x11x21x22, x12).

These functions can be simulated by RPG functions (see Table 3.1). Also, a simpler

function such asg : (T ∗)2 × T ∗ → (T ∗)2 can be treated in the same way.

By Proposition 3.10 (2), Lemmas 3.11 and 3.12, we obtain the following theorem.



Chapter 3 Generative Power of Grammars for RNA Pseudoknotted Structure37

Table 3.1. Simulation of(2, 2)-MCFG functions by RPG functions

(2, 2)-MCFG rule Corresponding RPG rule

A → f1[B,D] A → XS2[B, Y1], Y1 → BF [Y2, Y3], Y2 → ε, Y3 → J [D]

A → f2[B,D] A → BF [Y1, Y2], Y1 → J [B], Y2 → J [D]

A → f3[B,D] A → XS2[Y1, D], Y1 → BF [Y2, Y3], Y2 → J [B], Y3 → ε

A → f4[B,D] A → W [B, Y1], Y1 → BF [Y2, Y3], Y2 → ε, Y3 → J [D]

A → f5[B,D] A → W [B, Y1], Y1 → BF [Y2, Y3], Y2 → J [D], Y3 → ε

Theorem 3.13.RPL = (2, 2)-MCFL.

5.2 ESLT AL = SST AL = (2, 2)-MCFL with degree≤ 5

Next, we will show the equivalence ofESLT AL, SST AL and(2, 2)-MCFL whose

degree is five or less.

Theorem 3.14.ESLT AL = SST AL = (2, 2)-MCFL with degree≤ 5.

Proof. (ESLT AL ⊆ SST AL) To prove this inclusion relation, we redefine SSTAG

in a different way from the original mentioned in Section 2.1. LetG = (N, T, S, I,A)

be a TAG. We divideA into three finite setsA1,A2 andA3 arbitrarily and call each

element of them a left tree, a right tree and a wrapping tree respectively. If each left tree

satisfies (LT1) and (LT2), each right tree satisfies (RT1) and (RT2), and each wrapping

tree satisfies (WT2), thenG is called an SSTAG. Note thatSST AG defined in [28]

is included in the class of grammars we redefined above, but not vice versa. Part of

the reason is because in the original definition of SSTAG, every adjunct tree satisfying

(LT1) is called a left tree and every left tree must satisfy (LT2), while in our definition,

we can classify every adjunct tree satisfying (LT1) into a wrapping tree. Here, we

classify every adjunct tree in a given ESLTAG into a wrapping tree and assume that the

other setsA1 andA2 are empty. Then by the definition of ESLTAG, every wrapping

tree inA3 satisfies (WT2) and thusG is an SSTAG.

((2, 2)-MCFL with degree≤ 5 ⊆ ESLT AL) By virtue of Lemmas 3.2 and 3.11, we

have only to consider translation from a(2, 2)-MCFG G such thatdeg(G) ≤ 5 and

G satisfies the condition (S) into an ESLMCFGG′. The construction ofG′ from G is

as follows. The number of functions satisfying the condition (S) is 12. A half of them
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Figure 3.13. Adjunct trees in SSTAG
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Figure 3.14. A mature derived tree in SSTAG

can be obtained from the other half of them by interchanging the first and the second

arguments. Among the remaining six functions, four are ESLMCFG ones. The others

areg1[x1, (x21, x22)] = (x1, x21x22) andg2[x1, (x21, x22)] = (x21x22, x1). The rule

A → g1[B,D] in G can be simulated byA → C1[B, Y1], Y1 → C4[Y2, Y3], Y2 → J [D]

andY3 → (ε, ε) in G′. Similarly, A → g2[B,D] can be simulated byA → C4[B, Y1],

Y1 → C1[Y2, Y3], Y2 → J [D] andY3 → (ε, ε).

(SST AL ⊆ (2, 2)-MCFL with degree≤ 5) Let G = (N, T, S, I,A) be a given

SSTAG defined in [28]. We construct a(2, 2)-MCFG G′ = (N ′, T, F, P, S0) with

deg(G′) ≤ 5 as follows:

(1) N ′ = {A1, A2, A
[t]
1 , A

[t]
2 | A ∈ N, t ∈ I ∪ A} wheredim(A1) = dim(A

[t]
1 ) = 1
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anddim(A2) = dim(A
[t]
2 ) = 2. In addition, we classifyB1 ∈ N ′ corresponding

to the wrapping node of a wrapping tree into four nonterminalsBLU , BLD, BRU

andBRD. Their dimensions are one and each of them derives a portion of the

tree yield, say,BLU
∗⇒G′ u1, BLD

∗⇒G′ v1, BRU
∗⇒G′ u2 andBRD

∗⇒G′ v2

whereu1, u2, v1, v2 ∈ T ∗ (see Figure 3.13 (c)).

(2) P (andF ) are the smallest sets satisfying the following conditions:

(a) S0 → J [S
[t]
2 ] ∈ P for eacht ∈ I andJ [(x1, x2)] = x1x2 ∈ F .

(b) For eachA ∈ N , A1 → J [A2], A
[t]
1 → J [A

[t]
2 ] ∈ P for eacht ∈ I ∪ A and

J ∈ F .

(c) For each left treet ∈ A shown in Figure 3.13 (a),

• A
[t]
2 → C1[A

[s]
1 , A

[t]
2 ] ∈ P for each left trees ∈ T andC1[x1, (x21, x22)]

= (x1x21, x22) ∈ F if the root node has either SA(T ) or OA(T ),

• A
[t]
2 → C2[A

[s]
1 , A

[t]
2 ] ∈ P for each left trees ∈ T andC2[x1, (x21, x22)]

= (x21x1, x22) ∈ F if the foot node has either SA(T ) or OA(T ),

• A
[t]
2 → C4[A

[s]
1 , A

[t]
2 ] ∈ P for each right trees ∈ A andC4[x1, (x21, x22)]

= (x21, x22x1) ∈ F if s is adjoined to the root node oft,

• A
[t]
2 → C3[A

[s]
1 , A

[t]
2 ] ∈ P for each right trees ∈ A andC3[x1, (x21, x22)]

= (x21, x1x22) ∈ F if s is adjoined to the foot node oft,

• See (e) if we adjoin an adjunct tree to a node that is not in the back-

bone, and

• A
[t]
2 → (w1, ε) if t is mature.

(d) For each right treet ∈ A shown in Figure 3.13 (b),

• A
[t]
2 → C4[A

[s]
1 , A

[t]
2 ] ∈ P for each right trees ∈ T andC4[x1, (x21, x22)]

= (x21, x22x1) ∈ F if the root node has either SA(T ) or OA(T ),

• A
[t]
2 → C3[A

[s]
1 , A

[t]
2 ] ∈ P for each right trees ∈ T andC3[x1, (x21, x22)]

= (x21, x1x22) ∈ F if the foot node has either SA(T ) or OA(T ),

• A
[t]
2 → C1[A

[s]
1 , A

[t]
2 ] ∈ P for each left trees ∈ A andC1[x1, (x21, x22)]

= (x1x21, x22) ∈ F if s is adjoined to the root node oft,

• A
[t]
2 → C2[A

[s]
1 , A

[t]
2 ] ∈ P for each left trees ∈ A andC2[x1, (x21, x22)]

= (x21x1, x22) ∈ F if s is adjoined to the foot node oft,
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• See (e) if we adjoin an adjunct tree to a node that is not in the back-

bone, and

• A
[t]
2 → (ε, w2) if t is mature.

(e) For each wrapping treet ∈ A,

• A
[t]
2 → C1[BLU , X1], X1 → C4[BRU , X2], X2 → C3[BRD, X3], X3 →

C2[BLD, B
[s]
2 ] ∈ P for each wrapping trees ∈ T andC1, C2, C3, C4 ∈

F if the wrapping nodeB in Figure 3.13 (c) has either SA(T ) or

OA(T ),

• A
[t]
2 → C1[D1, A2], D2 → (a, ε), A2 → (b, ab) ∈ P wherea, b ∈ T

and C1 ∈ F if we adjoin the adjunct tree indicated by the shaded

region in Figure 3.14 toD that is not in the backbone and then the

derived tree is mature. The other examples and the adjunction of a

left tree or a right tree to a node in the backbone oft can be treated

similarly, and

• A
[t]
2 → (w1, w2) if t is mature.

(f) For each initial treet ∈ I, adjoin derived trees tot and then construct rules

for the mature tree in a similar way to (e).

Although the derivation in SSTAG is not specifically described in [28], the recognition

algorithm is correct and thus we can constructG′ by the above construction.

Next, we show that there exists a treeτ ∈ T t
n(G) for somen ≥ 0 such that

yield(τ) = w1Aw2 (A ∈ N, w1, w2 ∈ T ∗) if and only if A[t]
2

∗⇒G′ (w1, w2).

(“only if” part) By induction onn.

(Basis) If τ = t is a mature wrapping tree shown in Figure 3.13 (c), then a rule

A
[t]
2 → (w1, w2) is constructed by construction (2) (e). Thus,A

[t]
2

∗⇒G′ (w1, w2) by

(L1). The other cases can be proved in the same way.

(Induction) Assume thatτ ∈ T t
n(G) \ T t

n−1(G). We consider only the case wheret is

a wrapping tree and the adjunction is performed only at the wrapping node (see Fig-

ure 3.13 (c)). The other cases can be treated similarly. Assume thatt ⊢σ τ where

σ ∈ T s
n−1(G) is adjoined to the wrapping nodeB in t and yield(σ) = w1Bw2.

(Note thats is a wrapping tree.) Then yield(τ) = u1w1v1Av2w2u2. By construc-

tion (2) (e),A[t]
2 → C1[BLU , X1], X1 → C4[BRU , X2], X2 → C3[BRD, X3], X3 →

C2[BLD, B
[s]
2 ] ∈ P . By the inductive hypothesis,B[s]

2
∗⇒G′ (w1, w2). ThenX3

∗⇒G′
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C2[v1, (w1, w2)] = (w1v1, w2), X2
∗⇒G′ C3[v2, (w1v1, w2)] = (w1v1, v2w2), X1

∗⇒G′

C4[u2, (w1v1, v2w2)] = (w1v1, v2w2u2) and thusA[t]
2

∗⇒G′ C1[u1, (w1v1, v2w2u2)] =

(u1w1v1, v2w2u2) by (L2).

(“if” part) The proof of the “if” part is similar.

L(G) = L(G′) can be shown by considering the correspondence between the initial

trees inI and the rules constructed in (2) (f).

5.3 (CFL ∪ SLT AL) ( ESLT AL

We show the inclusion relation betweenSLT AL andESLT AL.

Theorem 3.15.Let L3 = {♯ak
1b

k
1c

k
1♯a

l
2b

l
2c

l
2♯a

m
3 bm

3 cm
3 ♯an

4b
n
4c

n
4 ♯ | k, l,m, n ≥ 1}. Then

L3 ∈ ESLT AL \ (CFL ∪ SLT AL).

Proof. Let h1 be a homomorphism such thath1(a1) = a1, h1(b1) = b1, h1(c1) = c1

andh1(x) = ε for x ∈ {ai, bi, ci | i = 2, 3, 4}∪{♯}. Thenh1(L3) = {ak
1b

k
1c

k
1 | k ≥ 1},

which is not a CFL. SinceCFL is closed under homomorphism,L3 is not a CFL.

Similarly, leth2 be a homomorphism such thath2(ci) = ε for i = 1, 2, 3 and identity on

the other symbols. Thenh2(L3) = L2 defined in (3.3), which is not an SLTAL. Since

SLT AL is closed under homomorphism by Theorem 3.6 (2),L3 is not an SLTAL.

Next, we give an ESLMCFG (with start symbolS0) generatingL3 as follows:

S0 → J [S1], J [(x1, x2)] = x1x2,

S1 → add♯[T1], add♯[(x1, x2)] = (♯x1, x2),

Ti → C4[Si+1, Ai] (1 ≤ i ≤ 3), C4[x1, (x21, x22)] = (x21, x22x1),

S2 → J [T2],

S3 → J [T3],

S4 → J [A4],

Ai → fi[Ai] | (aibi, ci♯) (1 ≤ i ≤ 4), fi[(x1, x2)] = (aix1bi, cix2) (1 ≤ i ≤ 4).

Finally, we sum up the inclusion relations obtained in this section. The following

corollary follows from Proposition 3.10, Theorems 3.13, 3.14 and 3.15 (see Figure

3.15).

Corollary 3.16. (CFL ∪ SLT AL) ( ESLT AL = SST AL = (2, 2)-MCFL
with degree≤ 5 ⊆ T AL ( RPL = (2, 2)-MCFL ( 2-MCFL ( MCFL.

Whether the inclusionESLT AL ⊆ T AL is proper or not is an open problem.
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∗ ∗ ∗

∗

∗

∗

∗

Figure 3.15. New results on inclusion relation

6. Summary

In this chapter, several formal grammars for describing RNA secondary structure with

pseudoknots were identified as subclasses ofMCFG, and their generative powers were

compared. To the author’s knowledge, the exact definition of RNA pseudoknot in a

biological or geometrical sense is not known, and then it is difficult to answer which

class of grammars is the minimum to represent pseudoknots. However, SLTAGs cannot

generate RNA sequences obtained by repeating a simple pseudoknot shown in Figure

1.2 (b) by (3.3), and by virtue of Theorem 3.15, ESLTAGs (equivalently, ESLMCFGs

or (2, 2)-MCFGs with degree 5 or less) are candidates for the minimum grammars that

can represent repeating simple pseudoknots. We also showed thatSLT AL is a full

trio andESLT AL is a substitution closed full AFL, which is a good property from

the formal language theoretical point of view.

As described in the previous section, we conjecture thatT AL properly includes

ESLT AL. To show this, it is sufficient to find a language that belongs toT AL but

not toESLT AL by using a pumping lemma forESLT AL. As has been mentioned in

Section 1, the final goal of this study is to predict RNA secondary structure including

pseudoknots by using an appropriate subclass ofMCFG. For that purpose, we must

introduce probabilistic models and design algorithms for them. For instance, stochastic
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CFGs (SCFGs) where probability is assigned to each rule are used for RNA secondary

structure prediction without pseudoknots [8, 9, 26]. To apply subclasses ofMCFG
to RNA secondary structure prediction with pseudoknots, probabilistic extension of

MCFGs should be introduced like SCFGs, which is presented in Chapter 4. It is es-

pecially important to consider the way to give probabilities to MCFG rules in order

to obtain biologically realistic structure. In addition, we would like to consider using

information on known secondary structures from some databases.



Chapter 4

Analysis of RNA Pseudoknotted

Structure Using SMCFGs

1. Introduction

Recently, it has been thought that most of the RNAs transcribed from genome se-

quences are non-coding RNAs (ncRNAs), and much attention has been paid to their

structures and functions. Non-coding RNAs fold into characteristic structures in such

a way that canonical Watson-Crick base pairs and non-canonical pairs bond each other.

The resulting base paired structure is called the secondary structure. In typical RNA

secondary structures, base pairs occur in a nested way, that is, for all positions(i, j)

and(i′, j′) indicating base pairs in one stem, eitheri < i′ < j′ < j or i′ < i < j < j′

holds. On the other hand, there are substructures where some base pairs occur in a

crossed fashion, which are calledpseudoknots, and they are found in several RNAs

such as rRNAs, tmRNAs and viral RNAs. It has been recognized that pseudoknots

play an important role in RNA functions such as ribosomal frameshifting and regula-

tion of translation.

Many attempts have so far been made at modeling RNA secondary structure by

formal grammars. In a grammatical approach, secondary structure prediction can be

viewed as parsing problem. However, there may be many different derivation trees for

an input sequence. Thus, it is necessary to have a method of extracting biologically

realistic derivation trees among them. One solution to this problem is to extend a gram-

mar to a probabilistic model and find the most likely derivation tree. Another is to take

44
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free energy minimization into account. Eddy and Durbin [9], and Sakakibara et al. [26]

modeled RNA secondary structure without pseudoknots by using stochastic context-

free grammars (stochastic CFGs or SCFGs). For pseudoknotted structure, however,

another approach has to be taken since a single CFG cannot represent crossing depen-

dency of base pairs in pseudoknots (Figure 1.2 (b)) due to the lack of generative power.

Brown and Wilson [5] proposed a model based on intersections of SCFGs to describe

RNA pseudoknots. Cai et al. [6] introduced a model based on parallel communication

grammar systems using a single CFG synchronized with a number of regular gram-

mars. Akutsu [2] provided dynamic programming algorithms for RNA pseudoknot

prediction without using grammars.

On the other hand, several grammars have been proposed where the grammar itself

can fully describe pseudoknots. Rivas and Eddy [23, 24] provided a dynamic pro-

gramming algorithm for predicting RNA secondary structure including pseudoknots,

and introduced a new class of grammars called RNA pseudoknot grammars (RPGs)

for deriving sequences with gaps. Uemura et al. [30] defined specific subclasses of

tree adjoining grammars (TAGs) named simple linear TAGs (SLTAGs) and extended

SLTAGs (ESLTAGs), respectively, and predicted RNA pseudoknots by using the pars-

ing algorithm of ESLTAGs. Matsui et al. [20] proposed pair stochastic tree adjoining

grammars (PSTAGs) based on ESLTAGs and tree automata for aligning and predicting

pseudoknots, which showed good prediction accuracy. These grammars have genera-

tive power stronger than CFGs and polynomial time algorithms for parsing problem.

For another application using a grammar-based model, Rivas and Eddy [25] presented

the detection of ncRNA genes in genome sequences. They tested the maximum lik-

lihood scanning algorithm based on SCFGs for some genome sequences including

known RNA genes such as tRNAs.

In Chapter 3, we have identified RPGs, SLTAGs and ESLTAGs as subclasses of

multiple context-free grammars(MCFGs) [14, 29], and have shown a candidate sub-

class for the minimum grammars to represent pseudoknots. The remainder of this

chapter is organized as follows. First, stochastic MCFGs (SMCFGs) are introduced

in Section 2, which are probabilistic extension of MCFGs. In Section 3, we present

a polynomial time parsing algorithm for finding the most probable derivation tree and

a probability parameter estimation algorithm based on the EM algorithm. In Section

4, we show some experimental results on pseudoknot prediction for three viral RNA
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families using the SMCFG parsing algorithm. Furthermore, we perform ncRNA gene

finding for several genome sequences known to have ncRNA genes with pseudoknots.

Experimental results are discussed in Section 5. Section 6 concludes this chapter.

2. Stochastic Multiple Context-Free Grammar

Stochastic multiple context-free grammars(stochastic MCFGs, or SMCFGs) are prob-

abilistic extensions of MCFGs. An SMCFG is a 5-tupleG = (N, T, F, P, S) where

the definitions ofN , T , F andS are the same as those of MCFG.P is a finite set of

(production) rules associated with some real numbers and each rule inP has the form

of A0
p→ f [A1, . . . , Ak] whereAi ∈ N (0 ≤ i ≤ k), f ∈ F andp is a real number

with 0 < p ≤ 1 called theprobability of this rule. The summation of the probabilities

of the rules with the same left-hand side should be one. If we are not interested inp,

we just writeA0 → f [A1, . . . , Ak].

We next define derivation trees of SMCFGs as follows:

(D1) If A
p→ α ∈ P (α ∈ (T ∗)dim(A)), then the ordered tree with the root labeledA

that hasα as the only one child is a derivation tree forα with probabilityp.

(D2) If A
p→ f [A1, . . . , Ak] ∈ P andt1, . . . , tk with the roots labeledA1, . . . , Ak are

derivation trees forα1, . . . , αk with probabilitiesp1, . . . , pk, respectively, then

the ordered tree with the root labeledA (or A : f if necessary) that hast1, . . . , tk

as (immediate) subtrees from left to right is a derivation tree forf [α1, . . . , αk]

with probabilityp ·
∏k

i=1 pi.

For A ∈ N , α ∈ (T ∗)dim (A) andq (0 < q ≤ 1), we writeA
∗⇒ α with probability

q if q is the summation of the probabilities of derivation trees forα with the root

labeledA. The language generated by an SMCFGG is defined asL(G) = {w ∈ T ∗ |
S

∗⇒ w with probability greater than0}. Dimension, rank and degree of SMCFG are

defined in the same way as those of MCFG.

Example 4.1. Let G1 = (N1, T1, F1, P1, S) be a(2, 1)-SMCFG whereN1 = {S,A},

T1 = {a, b}, P1 = {S 1→ J [A], A
0.3→ f [A], A

0.7→ (ab, cd)}, J [(x1, x2)] = x1x2 and

f [(x1, x2)] = (ax1b, cx2d). Then,A
∗⇒ (ab, cd) with probability0.7 by the third rule,

which is followed byA
∗⇒ f [(ab, cd)] = (aabb, ccdd) with probability0.3 · 0.7 = 0.21
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Table 4.1. SMCFGGR

Type Rule set Function Transition prob. Emission prob.

E Wv → (ε, ε) 1 1

S Wv → J [Wy] J [(x1, x2)] = x1x2 tv(y) 1

D Wv → SK[Wy] SK[(x1, x2)] = (x1, x2) tv(y) 1

B1 Wv → C1[Wy,Wz] C1[x1, (x21, x22)] = (x1x21, x22) 1 1

B2 Wv → C2[Wy,Wz] C2[x1, (x21, x22)] = (x21x1, x22) 1 1

B3 Wv → C3[Wy,Wz] C3[x1, (x21, x22)] = (x21, x1x22) 1 1

B4 Wv → C4[Wy,Wz] C4[x1, (x21, x22)] = (x21, x22x1) 1 1

U1L Wv → UP ai

1L[Wy] UP ai

1L[(x1, x2)] = (aix1, x2) tv(y) ev(ai)

U1R Wv → UP
aj

1R[Wy] UP
aj

1R[(x1, x2)] = (x1aj , x2) tv(y) ev(aj)

U2L Wv → UP ak

2L [Wy] UP ak

2L [(x1, x2)] = (x1, akx2) tv(y) ev(ak)

U2R Wv → UP al

2R[Wy] UP al

2R[(x1, x2)] = (x1, x2al) tv(y) ev(al)

P Wv → BP aial [Wy] BP aial [(x1, x2)] = (aix1, x2al) tv(y) ev(ai, al)

by the second rule. Also, by the first rule,S
∗⇒ J [(aabb, ccdd)] = aabbccdd with

probability1 · 0.21 = 0.21. In fact,L(G1) = {anbncndn | n ≥ 1}.

In this chapter, we focus on a(2, 2)-SMCFGGR = (N, T, F, P, S) with deg(GR) ≤
5 that satisfies the following conditions:GR hasm different nonterminals denoted by

W1, . . . ,Wm, each of which uses the only one type of a rule denoted byE, S, D, B1,

B2, B3, B4, U1L, U1R, U2L, U2R or P (see Table 4.1). These types stand for END,

START, DELETE, BIFURCATION, UNPAIR and PAIR respectively. The type ofWv is

denoted by type(v) and we predefine type(1) = S, that is,W1 is the start symbol.

For each ruler, two real values calledtransition probabilityp1 andemission proba-

bility p2 are specified as shown in Table 4.1. The probability ofr is simply defined as

p1 · p2. In application,p1 = tv(y) andp2 = ev(ai), etc. in Table 4.1 are parameters

for the grammar, which are set by hand or by a training algorithm depending on the

set of possible sequences to be analyzed. All the transition probabilities of bifurcation

nonterminals are defined as one since most of the nonterminals for modeling RNA

secondary structure have the type of either UNPAIR or PAIR, and BIFURCATION non-

terminals are sometimes used to deal with concatenating and wrapping operation. This

single choice of transition for BIFURCATION nonterminal reduces time complexities

of SMCFG algorithms. For each nonterminalWv, ∆1L
v , ∆1R

v , ∆2L
v and∆2R

v are defined

as the number of symbols generated byWv (see Table 4.2). This notation simplifies
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Table 4.2. The number of symbols emitted by nonterminals

Type ∆1L
v ∆1R

v ∆2L
v ∆2R

v

E 0 0 0 0

S 0 0 0 0

D 0 0 0 0

B1 0 0 0 0

B2 0 0 0 0

B3 0 0 0 0

B4 0 0 0 0

U1L 1 0 0 0

U1R 0 1 0 0

U2L 0 0 1 0

U2R 0 0 0 1

P 1 0 0 1

the description of the algorithms presented in the next section.

3. Algorithms for SMCFG

In RNA structure analysis using stochastic grammars, we have to deal with the follow-

ing three problems [8]:

(1) Calculate the optimal alignment of a sequence to a stochastic grammar. (align-

ment problem)

(2) Calculate the probability of a sequence, given a stochastic grammar. (scoring

problem)

(3) Estimate optimal probability parameters for a stochastic grammar, given a set of

example sequences. (training problem)

In this section, we give solutions to each problem for the specific SMCFGGR =

(N, T, F, P, S).
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3.1 Alignment Algorithm

The alignment problem forGR is to find the most probable derivation tree for a given

input sequence. This problem can be solved by a dynamic programming algorithm

similar to the CYK algorithm for SCFGs [8], and in this paper, we also call the parsing

algorithm forGR the CYK algorithm. We fix an input sequencew = a1 · · · an (|w| =

n). In fact,w is an RNA sequence composed of four symbolsa, c, g andu. Letγv(i, j)

andγy(i, j, k, l) be the maximum log probabilities of a derivation subtree rooted at

a nonterminalWv for a terminal subsequenceai · · · aj, and of a derivation subtree

rooted at a nonterminalWy for a pair of terminal subsequences(ai · · · aj, ak · · · al)

respectively. The variablesγv(i, i − 1) andγy(i, i − 1, k, k − 1) are the maximum

log probabilities for an empty sequenceε and a pair ofε. Let τv(i, j) andτy(i, j, k, l)

be traceback variables for constructing a derivation tree, which are calculated together

with γv(i, j) andγy(i, j, k, l). We letCv = {y | Wv → f [Wy] ∈ P, f ∈ F}. To avoid

non-emitting cycles, we assume that the nonterminals are numbered such thatv < y

for all y ∈ Cv. The CYK algorithm uses a five dimensional dynamic programming

matrix to calculateγ, which leads tolog P (w, π̂ | θ) whereπ̂ is the most probable

derivation tree andθ is an entire set of probability parameters. The illustration of the

iteration step in the CYK algorithm is shown in Figure 4.1. The detailed description of

the algorithm is as follows:

Algorithm 4.1 (CYK).

Initialization:

1 for i ← 1 to n + 1, k ← i to n + 1, v ← 1 to m

2 do if type(v) = E

3 then γv(i, i − 1, k, k − 1) ← 0

4 elseγv(i, i − 1, k, k − 1) ← −∞

Iteration:

5 for i ← n downto 1, j ← i − 1 to n, k ← n + 1 downto j + 1, l ← k − 1 to n,

v ← 1 to m

6 do if type(v) = E

7 then if j = i − 1 and l = k − 1

8 then skip

9 elseγv(i, j, k, l) ← −∞
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Wv

Wy

1 i h nh+1 j

(a) type(v) = S

Wv

Wy Wz

1 i h nh+1 j k l

(b) type(v) = B1

Wv

Wy Wz

1 i h nh+1 j k l

(c) type(v) = B2

Wv

Wy Wz

1 i h nh+1j k l

(d) type(v) = B3

Wv

Wy Wz

1 i h nh+1j k l

(e) type(v) = B4

Wv

Wy

1 i nj k l

(f) otherwise

Figure 4.1. Illustration of the iteration step for calculatingγ

10 if type(v) = S

11 then γv(i, j) ← max
y∈Cv

max
h=i−1,...,j

[log tv(y) + γy(i, h, h + 1, j)]

12 τv(i, j) ← arg max
(y,h)

[log tv(y) + γy(i, h, h + 1, j)]

13 if type(v) = B1 and Wv → C1[Wy,Wz]

14 then γv(i, j, k, l) ← max
h=i−1,...,j

[γy(i, h) + γz(h + 1, j, k, l)]

15 τv(i, j, k, l) ← arg max
(y,z,h)

[γy(i, h) + γz(h + 1, j, k, l)]

16 if type(v) = B2 and Wv → C2[Wy,Wz]

17 then γv(i, j, k, l) ← max
h=i−1,...,j

[γy(h + 1, j) + γz(i, h, k, l)]

18 τv(i, j, k, l) ← arg max
(y,z,h)

[γy(h + 1, j) + γz(i, h, k, l)]

19 if type(v) = B3 and Wv → C3[Wy,Wz]

20 then γv(i, j, k, l) ← max
h=k−1,...,l

[γz(i, j, h + 1, l) + γy(k, h)]

21 τv(i, j, k, l) ← arg max
(y,z,h)

[γz(i, j, h + 1, l) + γy(k, h)]

22 if type(v) = B4 and Wv → C4[Wy,Wz]

23 then γv(i, j, k, l) ← max
h=k−1,...,l

[γz(i, j, k, h) + γy(h + 1, l)]

24 τv(i, j, k, l) ← arg max
(y,z,h)

[γz(i, j, k, h) + γy(h + 1, l)]

25 if type(v) = P

26 then if j = i − 1 or l = k − 1
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27 then γv(i, j, k, l) ← −∞
28 elseγv(i, j, k, l) ← max

y∈Cv

[log ev(ai, al) + log tv(y) + γy(i + 1, j, k, l − 1)]

29 τv(i, j, k, l) ← arg max
y

[log ev(ai, al)+ log tv(y)+ γy(i+1, j, k, l− 1)]

30 elseγv(i, j, k, l) ← max
y∈Cv

[log ev(ai, aj, ak, al) + log tv(y)

+γy(i + ∆1L
v , j − ∆1R

v , k + ∆2L
v , l − ∆2R

v )]

31 τv(i, j, k, l) ← arg max
y

[log ev(ai, aj, ak, al) + log tv(y)

+γy(i + ∆1L
v , j − ∆1R

v , k + ∆2L
v , l − ∆2R

v )]

When the calculation terminates, we obtainlog P (w, π̂ | θ) = γ1(1, n). If there are

b BIFURCATION nonterminals anda other nonterminals, the time and space complex-

ities of the CYK algorithm areO(amn4 + bn5) andO(mn4) respectively. To recover

the optimal derivation tree, we use the traceback variablesτ and the push-down stack

holding tuples of integers of the forms(v, i, j) and(y, i, j, k, l). The full description of

the traceback algorithm is as follows:

Algorithm 4.2 (CYK traceback).

Initialization:

1 (v, h) ← τ1(1, n)

2 attachWv as the child ofW1

3 push(v, 1, h, h + 1, n) on the stack

Iteration:

4 while the stack is not empty

5 do pop

6 if type(v) = E

7 then attach(ε, ε) as the child ofWv

8 if type(v) = S

9 then (y, h) ← τv(i, j)

10 attachWy as the child ofWv

11 push(y, i, h, h + 1, j)

12 if type(v) = B1

13 then (y, z, h) ← τv(i, j, k, l)

14 attachWy, Wz as the children ofWv

15 push(z, h + 1, j, k, l)

16 push(y, i, h)
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17 if type(v) = B2

18 then (y, z, h) ← τv(i, j, k, l)

19 attachWy, Wz as the children ofWv

20 push(z, i, h, k, l)

21 push(y, h + 1, j)

22 if type(v) = B3

23 then (y, z, h) ← τv(i, j, k, l)

24 attachWy, Wz as the children ofWv

25 push(z, i, j, h + 1, l)

26 push(y, k, h)

27 if type(v) = B4

28 then (y, z, h) ← τv(i, j, k, l)

29 attachWy, Wz as the children ofWv

30 push(z, i, j, k, h)

31 push(y, h + 1, l)

32 elsey ← τv(i, j, k, l)

33 attachWy as the child ofWv

34 push(y, i + ∆1L
v , j − ∆1R

v , k + ∆2L
v , l − ∆2R

v )

3.2 Scoring Algorithm

As in SCFGs [8], the scoring problem forGR can be solved by the inside algorithm.

The inside algorithm calculates the summed probabilitiesαv(i, j) andαy(i, j, k, l) of

all derivation subtrees rooted at a nonterminalWv for a subsequenceai · · · aj, and of all

derivation subtrees rooted at a nonterminalWy for a pair of subsequences(ai · · · aj, ak

· · · al) respectively. The variablesαv(i, i − 1) andαy(i, i − 1, k, k − 1) are defined

for empty sequences in a similar way to the CYK algorithm. Therefore, we can easily

obtain the inside algorithm by replacing max operations with summations in the CYK

algorithm. When the calculation terminates, we obtain the likelihoodP (w | θ) =

α1(1, n) of the sequencew given the probability parametersθ. The time and space

complexities of the algorithm are identical with those of the CYK algorithm.

Algorithm 4.3 (Inside).

Initialization:
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1 for i ← 1 to n + 1, k ← i to n + 1, v ← 1 to m

2 do if type(v) = E

3 then αv(i, i − 1, k, k − 1) ← 1

4 elseαv(i, i − 1, k, k − 1) ← 0

Iteration:

5 for i ← n downto 1, j ← i − 1 to n, k ← n + 1 downto j + 1, l ← k − 1 to n,

v ← 1 to m

6 do if type(v) = E

7 then if j = i − 1 and l = k − 1

8 then skip

9 elseαv(i, j, k, l) ← 0

10 if type(v) = S

11 then αv(i, j) ←
∑
y∈Cv

j∑
h=i−1

tv(y)αy(i, h, h + 1, j)

12 if type(v) = B1

13 then αv(i, j, k, l) ←
j∑

h=i−1

αy(i, h)αz(h + 1, j, k, l)

14 if type(v) = B2

15 then αv(i, j, k, l) ←
j∑

h=i−1

αy(h + 1, j)αz(i, h, k, l)

16 if type(v) = B3

17 then αv(i, j, k, l) ←
l∑

h=k−1

αz(i, j, h + 1, l)αy(k, h)

18 if type(v) = B4

19 then αv(i, j, k, l) ←
l∑

h=k−1

αz(i, j, k, h)αy(h + 1, l)

20 if type(v) = P

21 then if j = i − 1 or l = k − 1

22 then αv(i, j, k, l) ← 0

23 elseαv(i, j, k, l) ←
∑
y∈Cv

ev(ai, al)tv(y)αy(i + 1, j, k, l − 1)]

24 elseαv(i, j, k, l) ←
∑
y∈Cv

ev(ai, aj, ak, al)tv(y)

αy(i + ∆1L
v , j − ∆1R

v , k + ∆2L
v , l − ∆2R

v )

In order to re-estimate the probability parameters ofGR, we need the outside algo-
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rithm. The outside algorithm calculates the summed probabilityβv(i, j) of all deriva-

tion trees excluding subtrees rooted at a nonterminalWv generating a subsequence

ai · · · aj. Also, it calculatesβy(i, j, k, l), the summed probability of all derivation

trees excluding subtrees rooted at a nonterminalWy generating a pair of subsequences

(ai · · · aj, ak · · · al). In the algorithm, we will usePv = {y | Wy → f [Wv] ∈ P, f ∈
F}. Note that calculating the outside variablesβ requires the inside variablesα. Un-

like CYK and inside algorithms, the outside algorithm recursively works its way in-

ward. The time and space complexities of the outside algorithm are the same as those

of CYK and inside algorithms. Figure 4.2 shows the iteration step in the algorithm.

Formal description of the outside algorithm is as follows:

Algorithm 4.4 (Outside).

Initialization:

1 β1(1, n) ← 1

Iteration:

2 for i ← 1 to n + 1, j ← n downto i − 1, k ← j + 1 to n + 1, l ← n downto

k − 1, v ← 1 to m

3 do if type(v) = S and Wy → C1[Wv,Wz]

4 then βv(i, j) ←
n∑

h=j

n+1∑
k′=h+1

n∑
l′=k′−1

βy(i, h, k′, l′)αz(j + 1, h, k′, l′)

5 if type(v) = S and Wy → C2[Wv,Wz]

6 then βv(i, j) ←
i∑

h=1

n+1∑
k′=j+1

n∑
l′=k′−1

βy(h, j, k′, l′)αz(h, i − 1, k′, l′)

7 if type(v) = S and Wy → C3[Wv,Wz]

8 then βv(i, j) ←
i∑

h=1

i−1∑
k′=h−1

n∑
l′=j

βy(h, k′, i, l′)αz(h, k′, j + 1, l′)

9 if type(v) = S and Wy → C4[Wv,Wz]

10 then βv(i, j) ←
i∑

h=1

i−1∑
k′=h−1

i∑
l′=k′+1

βy(h, k′, l′, j)αz(h, k′, l′, i − 1)

11 if type(v) ̸= S and Wy → C1[Wz,Wv]

12 then βv(i, j, k, l) ←
i∑

h=1

βy(h, j, k, l)αz(h, i − 1)

13 if type(v) ̸= S and Wy → C2[Wz,Wv]

14 then βv(i, j, k, l) ←
k−1∑
h=j

βy(i, h, k, l)αz(j + 1, h)
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Wy

Wv Wz

1 i j nj+1 h k’ l’

W1

(a) type(v) = S,

type(y) = B1

Wy

Wv Wz

1 h i-1 ni j k’ l’

W1

(b) type(v) = S,

type(y) = B2

Wy

Wv Wz

1 h j nj+1k’ i l’

W1

(c) type(v) = S,

type(y) = B3

Wy

Wv Wz

1 h i-1 nik’ l’ j

W1

(d) type(v) = S,

type(y) = B4

Wy

Wz Wv

1 h i-1 ni j k l

W1

(e) type(v) ̸= S,

type(y) = B1

Wy

Wz Wv

1 i j nj+1 h k l

W1

(f) type(v) ̸= S,

type(y) = B2

Wy

Wz Wv

1 i k-1 nkj h l

W1

(g) type(v) ̸= S,

type(y) = B3

Wy

Wz Wv

1 i l nl+1j k h

W1

(h) type(v) ̸= S,

type(y) = B4

Wy

Wv

1 i nj k l

W1

(i) otherwise

Figure 4.2. Illustration of the iteration step for calculatingβ

15 if type(v) ̸= S and Wy → C3[Wz,Wv]

16 then βv(i, j, k, l) ←
k∑

h=j+1

βy(i, j, h, l)αz(h, k − 1)

17 if type(v) ̸= S and Wy → C4[Wz,Wv]

18 then βv(i, j, k, l) ←
n∑

h=l

βy(i, j, k, h)αz(l + 1, h)

19 elseβv(i, j, k, l) ←
∑
y∈Pv

βy(i − ∆1L
y , j + ∆1R

y , k − ∆2L
y , l + ∆2R

y )

ey(ai−∆1L
y

, aj+∆1R
y

, ak−∆2L
y

, al+∆2R
y

)ty(v)
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3.3 Training Algorithm

The training problem forGR can be solved by the EM algorithm called the inside-

outside algorithm where the inside variablesα and outside variablesβ are used to re-

estimate probability parameters. First, we consider the probability that a nonterminal

Wv is used at positionsi, j, k andl in a derivation of a single sequencew. If type(v) =

S, the probability is 1
P (w|θ)αv(i, j)βv(i, j), otherwise 1

P (w|θ)αv(i, j, k, l)βv(i, j, k, l). By

summing these over all positions in the sequence, we can obtain the expected number

of times thatWv is used forw as follows: for type(v) = S, the expected count is

1

P (w | θ)

n+1∑
i=1

n∑
j=i−1

αv(i, j)βv(i, j),

otherwise

1

P (w | θ)

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

αv(i, j, k, l)βv(i, j, k, l).

Next, we extend these expected values from a single sequencew to multiple indepen-

dent sequencesw(s) (1 ≤ s ≤ N). Letα(s) andβ(s) be the inside and outside variables

calculated for each input sequencew(s). Then we can obtain the expected number of

timesE(v) that a nonterminalWv is used for training sequencesw(s) (1 ≤ r ≤ N) by

summing the above terms over all sequences (E-step):

E(v) =



N∑
s=1

n+1∑
i=1

n∑
j=i−1

1

P (w(s) | θ)
α(s)

v (i, j)β(s)
v (i, j), (type(v) = S)

N∑
s=1

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

1

P (w(s) | θ)
α(s)

v (i, j, k, l)

β
(s)
v (i, j, k, l). (type(v) ̸= S)
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Similarly, for a givenWy, the expected number of timesE(v → y) that a ruleWv →
f [Wy] is applied can be obtained as follows:

E(v → y) =



N∑
s=1

n+1∑
i=1

n∑
j=i−1

j∑
h=i−1

1

P (w(s) | θ)
β(s)

v (i, j)tv(y)

α
(s)
y (i, h, h + 1, j), (type(v) = S)

N∑
s=1

n+1∑
i=1

n∑
j=i−1

n+1∑
k=j+1

n∑
l=k−1

1

P (w(s) | θ)
β(s)

v (i, j, k, l)

ev(ai, aj, ak, al)tv(y)

α
(s)
y (i + ∆1L

v , j − ∆1R
v , k + ∆2L

v , l − ∆2R
v ). (type(v) ̸= S)

For a given terminala or a pair of terminals(a, b), the expected number of times

E(v → a) (or E(v → ab)) that a rule containinga (or a andb) is applied is

E(v → a) =



N∑
s=1

n∑
i=1

n∑
j=i

n+1∑
k=j+1

n∑
l=k−1

1

P (w(s) | θ)
δ(a

(s)
i = a)

β
(s)
v (i, j, k, l)α

(s)
v (i, j, k, l), (type(v) = U1L)

N∑
s=1

n∑
i=1

n∑
j=i

n+1∑
k=j+1

n∑
l=k−1

1

P (w(s) | θ)
δ(a

(s)
j = a)

β
(s)
v (i, j, k, l)α

(s)
v (i, j, k, l), (type(v) = U1R)

N∑
s=1

n−1∑
i=1

n−1∑
j=i−1

n∑
k=j+1

n∑
l=k

1

P (w(s) | θ)
δ(a

(s)
k = a)

β
(s)
v (i, j, k, l)α

(s)
v (i, j, k, l), (type(v) = U2L)

N∑
s=1

n−1∑
i=1

n−1∑
j=i−1

n∑
k=j+1

n∑
l=k

1

P (w(s) | θ)
δ(a

(s)
l = a)

β
(s)
v (i, j, k, l)α

(s)
v (i, j, k, l), (type(v) = U2R)

and for type(v) = P,

E(v → ab) =
N∑

s=1

n−1∑
i=1

n−1∑
j=i

n∑
k=j+1

n∑
l=k

1

P (w(s) | θ)
δ(a

(s)
i = a, a

(s)
l = b)β(s)

v (i, j, k, l)

α(s)
v (i, j, k, l)

whereδ(C) is 1 if the conditionC in the parenthesis is ture, and0 if C is false.
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Now, we re-estimate probability parameters by using the above expected counts.

Let t̂v(y) be the re-estimated probability that a ruleWv → f [Wy] is applied. Also,

let êv(a) (or êv(a, b)) be the re-estimated probability that a rule containinga (or a and

b) is applied. We can obtain each re-estimated probability by the following equations

(M-step):

t̂v(y) =
E(v → y)

E(v)
, êv(a) =

E(v → a)

E(v)
, êv(a, b) =

E(v → ab)

E(v)
. (4.1)

Note that the expected count correctly corresponding to its nonterminal type must be

substituted for the above equations. For example, if type(v) = S,

t̂v(y) =

N∑
s=1

n+1∑
i=1

n∑
j=i−1

j∑
h=i−1

1

P (w(s) | θ)
β(s)

v (i, j)tv(y)α(s)
y (i, h, h + 1, j)

N∑
s=1

n+1∑
i=1

n∑
j=i−1

1

P (w(s) | θ)
α(s)

v (i, j)β(s)
v (i, j)

.

In summary, the inside-outside algorithm is as follows:

Algorithm 4.5 (Inside-Outside).

Initialization:

1 Pick arbitrary probability parameters of the model.

Iteration:

2 Calculate the new probability parameters using (4.1).

3 Calculate the new log likelihood
∑N

s=1 log P (w(s) | θ) of the model.

Termination:

4 Stop if the change in log likelihood is less than predefined threshold.

3.4 Scanning Algorithm

Finally, we mention another application using the extension of the CYK algorithm. The

extended CYK algorithm can be used to find ncRNA genes in long genome sequences.

The basic idea is that the most likely parsing is done in a target window (subsequence)

of variable length and then the window is moved along the whole sequence. However,

the standard CYK algorithm described before does not work well since the maximum

log probability of the derivation of a subsequence strongly depends on its length. To

avoid such a phenomenon, we calculate log odds (LOD) scores that are the ratio to a
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null model generating random sequences. Assume that the likelihood of a sequence

generated by the null model is the product of each base frequence denoted byfa and

so on. In the scanning algorithm below, we will use the following scoreêv instead of

log emission probabilityev for nonterminal types ofU1L, U1R, U2L, U2R andP:

êv(ai, aj, ak, al) = log
ev(ai, aj, ak, al)

fai
faj

fak
fal

Note that if type(v) = U1L, êv(ai, aj, ak, al) = êv(ai) = log(ev(ai)/fai
). The other

types are interpreted similarly. Letr denote the right end of the target region, and

dmin anddmax denote the minimum and the maximum lengths of the target window

respectively. Also,n denotes the length of an input genome sequence, and the indices

i, j, k andl are interpreted as in the CYK algorithm.

Algorithm 4.6 (CYK-scan).

1 for r ← dmin to n, d ← dmin to dmax, i ← r downto r − d + 1, j ← i − 1 to r,

k ← r + 1 downto j + 1, l ← k − 1 to r

2 do CYK algorithm

The time complexity isO(amnd4
max+bnd5

max) whereb is the number of BIFURCATION

nonterminals,a is the number of other nonterminals andm = a + b. The space

complexity isO(md4
max).

4. Experimental Results

4.1 Data for Experiments

The data sets for experiments were taken from an RNA family database called “Rfam”

(version 7.0) [10] that contains multiple sequence alignments and covariance mod-

els [9] representing non-coding RNA families. We selected three viral RNA families

with pseudoknot annotations named Coronapk3 (Corona), HDVribozyme (HDV) and

Tombus3 IV (Tombus) for prediction tests (see Table 4.3). Coronapk3 has a simple

pseudoknotted structure, whereas HDVribozyme and Tombus3 IV have more com-

plicated structures with pseudoknots. Also, we used several genome sequences known

to have Coronapk3 genes to test ncRNA gene finding, which are also available from

Rfam.
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Table 4.3. Three RNA families from Rfam ver. 7.0
Family Length # of annotated sequences# of test sequences

Coronapk3 62–64 14 10

HDV ribozyme 87–91 15 10

Tombus3 IV 89–92 18 12

4.2 Implementation

We specified a particular SMCFGGR by utilizing secondary structure annotation of

each family in Rfam. Rules were determined by considering consensus secondary

structure. Probability parameters were estimated in a few selected sequences by the

simplest pseudocounting method known as the Laplace’s rule [8]: to add one extra

count to the true counts for each base configuration observed in the sequences. Note

that the inside-outside algorithm was not used in the experiments. The other sequences

in the alignment were used as the test sequences for prediction (see Table 4.3).

We implemented the CYK algorithm with traceback in ANSI C on a machine with

Intel Pentium D CPU 2.80 GHz and 2.00 GB RAM. Straightforward implementation

gives rise to a serious problem of lack of memory space due to the higher order dy-

namic programming matrix (remember that the space complexity of the CYK algo-

rithm is O(mn4)). Since the dynamic programming matrix in our specified model is

sparse, we successfully implemented the matrix as ahash tablestoring only nonzero

probability values (equivalently, finite values of the logarithm of probabilities). Con-

sider the case where both of the number of nonterminals and the sequence length is

100. If we try to implement the DP matrix representingγv(i, j, k, l) as a five dimen-

sional array, about 200 GB memory space will be required. On the other hand, using a

hash table of the size217, only 5.8 MB memory space will be sufficient for implement-

ing γ. This point deserves explicit emphasis for computational experiments.

4.3 Structure Prediction

We tested prediction accuracy by calculating precision and recall, which are the ratio

of the number of correct base pairs predicted by the algorithm to the total number of

predicted base pairs, and the ratio of the number of correct base pairs predicted by the

algorithm to the total number of base pairs specified by the trusted annotation respec-
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Table 4.4. Prediction results
Family Precision [%] Recall [%] CPU time [sec]

Avg Min Max Avg Min Max Avg Min Max

Coronapk3 99.4 94.4 100.0 99.4 94.4 100.0 27.8 26.0 30.4

HDV ribozyme 100.0 100.0 100.0 100.0 100.0 100.0 252.1 219.0 278.4

Tombus3 IV 100.0 100.0 100.0 100.0 100.0 100.0 244.8 215.2 257.5

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
    [[[[[[[[              ((( ((((((( ]]]]]]]]  ))))))) )))    

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
    [[[[[[[[              ((((((((((  ]]]]]]]]   ))))))))))      

[Trusted structure in Rfam]

[Prediction by SMCFG]

Corona_pk3 (EMBL accession #: X51325)

Figure 4.3. Comparison between a trusted structure and a predicted one

tively. The results are shown in Table 4.4. A nearly correct prediction (94.4% precision

and recall) for Coronapk3 is shown in Figure 4.3 where underlined base pairs agree

with trusted ones. The secondary structures predicted by our algorithm agree very

well with the trusted structures. The running time of prediction in Coronapk3 is much

shorter than that of prediction in HDVribozyme and Tombus3 IV since every se-

quence in Coronapk3 can be generated by rules without BIFURCATION nonterminals.

In this case, the time complexity of the CYK algorithm isO(m2n4).

To see whether a grammar for one RNA family can be applied to secondary struc-

ture prediction for another family, we compared LOD scores obtained by applying the

specific grammar for Coronapk3 to all of the three RNA families (see Table 4.5). As

a result, we can say that a specific grammar overfits its objective RNA family.

4.4 Comparison with PSTAG

We compared the prediction accuracy of our SMCFG algorithm with that of the PSTAG

algorithm [20] (see Table 4.6). PSTAGs, as we have mentioned before, are proposed

for modeling pairwise alignment of RNA sequences with pseudoknots, and assign a

probability to each alignment of TAG derivation trees. The PSTAG algorithm, based
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Table 4.5. Comparison of LOD scores by using the same grammar

Family Grammar # of test LOD score [bit]

sequences Avg Min Max

Coronapk3 Coronapk3 10 38.2 7.2 72.5

HDV ribozyme Coronapk3 10 −6.4 −12.3 −2.7

Tombus3 IV Coronapk3 12 −3.5 −5.5 −0.3

Table 4.6. Comparison between SMCFG and PSTAG

Model Average precision [%] Average recall [%]

Corona HDV Tombus Corona HDV Tombus

SMCFG 99.4 100.0 100.0 99.4 100.0 100.0

PSTAG 95.5 95.6 97.4 94.6 94.1 97.4

on dynamic programming, calculates the most likely alignment for the pair of TAG

derivation trees, where one of them is in the form of an unfolded sequence and the

other is a TAG derivation tree for known structure. As the table shows, the SMCFG

method is at least comparable to the PSTAG method in the same test sets.

4.5 Detection of Non-Coding RNA Gene

We did elementary gene finding tests using the CYK-scan algorithm. Figure 4.4 shows

the result of Coronapk3 gene finding in genome sequence X90577 of length 1137. In

the figure, scores are plotted at the right end of the target window. The region with

the highest score is 1000–1062, which is exactly the same as the correct region. To

see whether the scanning algorithm can distinguish a real ncRNA gene from a shuffled

gene, we also tested a sequence where the real gene is replaced with a shuffled one. The

shuffling procedure we used is thedinucleotide shuffling[3] that preserves dinucleotide

frequency of an input sequence. As might be expected, the hits of the high-scoring

subsequences disappeared after shuffling (see Figure 4.5). Tests for other genome

sequences such as X90576 and X51325 of length 946 and 1576, respectively, similarly

showed strong scores in each correct region of the original sequences and low scores

in each shuffled region.
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Figure 4.4. Gene detection in genome sequence X90577

5. Discussion

In the computational experiments using the SMCFG algorithm, we obtained good pre-

diction results in terms of accuracy, and we did not trained probability parameters using

the inside-outside algorithm any more. Main reason for success of prediction without

training is that we were able to obtain good structural alignment from the database. The

word “good” means that every trusted structure is little different from the consensus

structure and the number of gaps in each alignment is relatively few. In fact, an ear-

lier experimental results, omitted in this thesis, showed only 76.6% average precision

and recall in Coronapk3 and 95.7% in Tombus3 IV. We should notice that there are

more gaps in the alignment of Coronapk3 than that of Tombus3 IV. Changing rules

in such a way that DELETE rules are not successively used after the terminating rule

Wv → (ε, ε), we can obtain the present results shown in Table 4.4. Hence, prediction

accuracy will depend on the way to construct rules. We think that the most sensitive

factor for prediction accuracy will be the number of consecutive gaps in the alignment.

The PSTAG method aligns an unfolded sequence with a derivation tree represent-

ing trusted structure. In SMCFGs, rules are constructed according to a consensus

structure and then the most likely derivation tree is calculated. In this sense, SMCFGs

and PSTAGs have a common property that both of them take structural alignment into
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Figure 4.5. Gene detection in X90577 with shuffled gene

consideration implicitly or explicitly. The time and space complexities of the SMCFG

algorithm have the same order as those of the PSTAG algorithm, whereas the SM-

CFG algorithm consumes less memory than the PSTAG algorithm since the dynamic

programming matrix of the SMCFG algorithm is sparse. This greatly contributes to

practicability in computational structure prediction.

It is not certain that the differences in precision and recall between SMCFGs and

PSTAGs are statistically significant since the number of analyzed data sets is small.

SMCFGs can have arbitrary number of nonterminals and rules. On the other hand, the

PSTAG method takes three finite states into account, which represent match, insertion

and deletion states. Here, we regard nonterminals as states and rule application as

state transitions [8]. The difference of the number of finite states may affect prediction

accuracy.

Rivas and Eddy [25] compared the scores of an original genome sequence known to

have ncRNA genes with those of a sequence including mononucleotide shuffled genes,

which contain the same mononucleotide frequency as that of the genes. In their paper,

they concluded that it would not be statistically significant to use secondary structure

as a signal for detecting ncRNA genes. However, as our experimental results indicate,

the dinucleotide shuffling is the key to test the significance, and we can say that it will

be useful to use secondary structure as a statistical signal for a certain type of gene
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finding tests.

6. Summary

In this chapter, we proposed a probabilistic model named SMCFG, and designed a

polynomial time parsing and a parameter estimation algorithm for the specific SM-

CFG. We then carried out computational experiments on RNA secondary structure

prediction with pseudoknots using the SMCFG parsing algorithm. The results of the

experiments indicated good performance of the algorithm in terms of accuracy. Also,

we can say that the SMCFG method is at least comparable to the PSTAG method in

the same test sets. Moreover, elementary tests on ncRNA gene finding showed good

results for a family of ncRNAs with pseudoknots.

Comparing with other prediction methods such as a thermodynamic approach,

stochastic grammars have an advantage in easily modeling RNA secondary structure

that we would like to analyze and training probability parameters. We should notice

that there is a trade-off between prediction accuracy and cost for constructing an initial

grammar.
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Conclusion

This thesis dealt with several formal grammars for describing RNA secondary structure

including pseudoknots and their application to structure analysis. In particular, the

following subjects were discussed:

(1) Comparison of the generative power of grammars for describing RNA pseudo-

knotted structure.

(2) Analysis of RNA pseudoknotted structure by using a stochastic grammar-based

approach.

Multiple context-free grammars played an important role in both (1) and (2).

In Chapter 3, we dealt with the first subject. Namely, the classes of grammars

SLTAGs, ESLTAGs and RPGs for representing RNA pseudoknotted structure were

identified as subclasses of MCFGs, and their generative powers were compared. Con-

sidering the results obtained in Chapter 3, we conclude that ESLTAGs (equivalently,

ESLMCFGs or(2, 2)-MCFGs with degree 5 or less) are candidates for the minimum

grammars that can represent pseudoknots. We also showed thatSLT AL is a full trio

andESLT AL is a substitution closed full AFL, which is a good property from the

formal language theoretical point of view.

To address the second subject, we proposed a probabilistic model named SMCFG

in Chapter 4, where the subclass of MCFGs corresponding to the class of ESLTAGs

was extended to a stochastic grammar. We designed a polynomial time parsing and a

parameter estimation algorithm for the specific SMCFG. We then carried out computa-

tional experiments on RNA secondary structure prediction with pseudoknots using the

66
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SMCFG parsing algorithm. The results of the experiments indicated good performance

of the algorithm in terms of accuracy. Also, we can say that the SMCFG method is at

least comparable to the PSTAG method in the same test RNA sequences. Moreover,

elementary tests on ncRNA gene finding showed good results for a family of ncRNAs

with pseudoknots.

The generative power of a grammar and computational complexity for parsing have

a close relationship. In this sense, it is reasonable to identify an optimal class of gram-

mars for RNA and predict secondary structure by using the grammar. The proposed

prediction algorithm for SMCFGs needsO(n5) computation time as well as existing

algorithms for ESLTAGs and PSTAGs, wheren is the length of an input sequence.

Although this complexity seems very high at a glance, the experiments we performed

make it clear that prediction can be performed in a practical time for RNA sequences

of relatively short length.

We predicted known RNA secondary structure by using the parsing algorithm of a

specific grammar for its corresponding RNA family. A specific model can be useful

for discrimination between the objective family and other families. The reason is that a

prediction algorithm shows a strong score for a sequence that can be generated by the

grammar designed for the corresponding RNA structure as compared with a sequence

that is unlikely to be generated by the grammar. For prediction of unknown structure,

we need a generic grammar for which the accuracy of its prediction algorithm has to

be good to some extent. The construction of a generic model is difficult since there are

various kinds of RNA structures. However, if a family of RNA families (i.e., superfam-

ily) whose structures are partially similar to each other is specified, we may construct

a generic grammar. For example, since transition probabilities for nonterminals gen-

erating consecutive base pairs determine the probability distribution of the length of

a stem, setting the transition probabilities carefully may contribute to the construction

of a generic grammar. Although the probability parameters of the rules can be trained

in our approach, the rules of the grammar themselves cannot be changed any more.

Considering from this point of view, it is important to automatically derive an optimal

grammar from sequence data with structure, rather than to fix an initial grammar.

In this thesis, we compared the yield languages generated by the grammars for

RNA, but we should notice that a secondary structure is represented by a derivation

(or derived) tree. Thus, it would be more important to compare each tree language
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rather than each yield language. That is, a comparison of the tree generative power

of ESLTAGs and RPGs is an interesting problem. Turning now to structure prediction

of biomolecules, Abe and Mamitsuka [1] used a subclass of stochastic tree grammars

called stochastic ranked node rewriting grammars (SRNRGs) for predicting protein

secondary structure. SRNRGs have enough generative power to deal with anti-parallel

and parallel dependency, and combinations of them inβ-sheets, which is more difficult

to handle than RNA secondary structure. The major difference between MCFGs and

other grammars fully describing RNA pseudoknots is that the generative power of

MCFGs can be set arbitrarily by choosing grammar parameters: dimension, rank and

degree. Thus, the SMCFG method can be applied to more complicated biological

structure analysis such as predicting protein secondary structure.
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Appendix

List of Abbreviations

Below is a table that indicates abbreviations used in this thesis.

Table 6.1. Abbreviations
Abbreviation Formal name

AFL abstract family of languages

CFG context-free grammar

CIG crossed-interaction grammar

CSG context-sensitive grammar

ESLTAG extended simple linear tree adjoining grammar

MCFG multiple context-free grammar

PSTAG pair stochastic tree adjoining grammar

RPG RNA pseudoknot grammar

SCFG stochastic context-free grammar

SMCFG stochastic multiple context-free grammar

TAG tree adjoining grammar

SLTAG simple linear tree adjoining grammar

SSTAG Satta and Schuler’s subclass of tree adjoining grammars


