
NAIST-IS-DD0561023

Doctoral Dissertation

Studies on Test Generation and Design for

Testability Based on Knowledge for LSIs

Masato Nakazato

March 23, 2007

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Masato Nakazato

Thesis Committee:

Professor Hideo Fujiwara (Supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Associate Professor Michiko Inoue (Co-supervisor)

Studies on Test Generation and Design for

Testability Based on Knowledge for LSIs∗

Masato Nakazato

Abstract

LSI (Large Scale Integration) circuits are basic components of today’s com-
plex digital systems. As LSI circuits with high performance and a lot of func-
tions are produced by very deep submicron manufacturing (VDSM) technologies,
the LSI circuits have many problems for the test. As density of an LSI circuit
grows beyond billions of gates, the complexity of a test generation for the LSI
circuit is increasing. Moreover, the produced transistors have non-uniform char-
acteristic and size caused by hurdles imposed by the fundamental laws of the
nano-electronics physics. These cases will cause long test generation time and
faults related to timing of LSI circuits. Therefore, LSI testing will be required to
generate a test in short time and perform at-speed testing.

In this dissertation, in order to satisfy these requirements, we propose a test
generation method for sequential circuits and a design for testability (DFT)
method for processors based on knowledge, which eases the testing, extracted
from the high level design of LSIs. The proposed test generation method con-
sists of a synthesis for testability (SFT) method and a test generation method
using knowledge extracted from the proposed SFT. The proposed test genera-
tion method can achieve 100% fault efficiency in short time and enables at-speed
testing. We also propose special DFT for software-based self-test (SBST) which
generates a test in reasonable time for a processor. However, the SBST have
a problem of “error masking” where errors disappear into a circuit. For any
test program generated by the SBST, the proposed DFT method can completely
resolve error masking by adding observation points to the original design, and
enables at-speed testing.

Keywords:

sequential test generation, software-based self-test, design for testability, test
knowledge, at-speed testing

∗ Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561023, March 23,
2007.

i

List of Publications

Journal Paper

1. Masato Nakazato, Satoshi Ohtake, Kewal K. Saluja and Hideo Fujiwara,

“Acceleration of Test Generation for Sequential Circuits Using Knowledge

Obtained from Synthesis for Testability,” The IEICE Transactions on In-

formation and Systems, Vol.E90-D, No.1, pp.296-305, Jan. 2007.

International Conferences (Reviewed)

1. Masato Nakazato, Satoshi Ohtake, Kewal K. Saluja and Hideo Fujiwara,

“Acceleration of Test Generation for Sequential Circuits Using Knowledge

Obtained from Synthesis for Testability,” Proceedings of the 6th IEEE Work-

shop on RTL and High Level Testing (WRTLT’05), pp.50-60, Jul. 2005.

2. Masato Nakazato, Satoshi Ohtake, Michiko Inoue and Hideo Fujiwara, “De-

sign for testability of software-based self-test for processors,” Proceedings of

the 15th IEEE Asian Test Symposium (ATS’06), pp.375-380, Nov. 2006.

3. Ilia Polian, Bernd Becker, Masato Nakazato, Satoshi Ohtake and Hideo

Fujiwara, “Period of grace: a new paradigm for efficient soft error harden-

ing,” 18. ITG/GI/GMM Workshop Testmethoden und Zuverlassigkeit von

Schaltungen und Systemen, pp.41-45, Mar. 2006.

4. Ilia Polian, Bernd Becker, Masato Nakazato, Satoshi Ohtake and Hideo

Fujiwara, “Low-cost hardening of image processing applications against soft

ii

errors,” Proceedings of the 21st IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT’06), pp.274-279, Oct. 2006.

Technical Reports

1. Masato Nakazato, Satoshi Ohtake, Kewal K. Saluja and Hideo Fujiwara，
“Acceleration of Test Generation for Sequential Circuits Using Knowledge

Obtained from Synthesis for Testability,” Technical Report of IEICE (DC2004-

97), Vol. 104, No. 664, pp.33-38, Feb. 2005. (In Japanese)

2. Masato Nakazato, Satoshi Ohtake, Michiko Inoue and Hideo Fujiwara, “De-

sign for Testability of Software-Based Self-Test for Processors,” Technical

Report of IEICE (ICD2006-40), Vol. 106, No. 92, pp.49-54, Jun. 2006. (In

Japanese)

3. Nobuhiro Yamagata, Masato Nakazato, Kazuko Kambe, Tomokazu Yoneda,

Satoshi Ohtake, Michiko Inoue and Hideo Fujiwara, “DFT of Instruction-

Based Self-Test for Non-pipelined Processors,” Technical Report of IEICE

(DC2005-73), Vol. 105, No. 607, pp.7-12, Feb. 2006. (In Japanese)

Awards

1. IEEE Kansai Section Student Paper Award, Feb. 2006.

2. The 6th IEEE Workshop on RTL and High Level Testing (WRTLT’05) Best

Paper Award, Nov. 2006.

iii

Contents

1 Introduction 1

2 Test Generation and Design for Testability 5

1. Fault Model . 5

2. Test Generation of Stuck-at Faults for Sequential Circuits 6

3. Software-Based Self-Test . 9

4. Full-Scan Design . 13

5. Summary . 14

3 Acceleration of Test Generation for Sequential Circuits Using

Knowledge Obtained from Synthesis for Testability 15

1. Introduction . 15

2. Preliminaries . 16

3. Outline of the Proposed Method 19

4. Synthesis for Testability . 22

4.1 Formulation of SFT Problem 22

4.2 Synthesis for Testability Algorithm 23

5. Test Generation Algorithm for Sequential Circuits 29

5.1 Fault Excitation . 29

5.2 State Justification . 31

5.3 Error Propagation . 32

6. Experimental Results . 33

7. Summary . 38

iv

4 Design for Testability of Software-Based Self-Test for Processors 41

1. Introduction . 41

2. Processor Model . 43

3. Test Program Generation based on Templates 44

4. Error Masking . 45

4.1 Template Level Fault Efficiency 45

4.2 Analyzing Error Masking 46

5. Sufficient Condition for Avoiding Error Masking 48

6. Design for Testability Avoiding Error Masking of Software-Based

Self-Test . 50

6.1 Formulation . 50

6.2 Algorithm . 51

7. Experimental Results . 55

8. Summary . 58

5 Conclusions and Future Work 59

References . 62

Appendix . 64

A. Dlx N Processor . 64

v

List of Figures

1.1 2005 ITRS Product Technology Trends 2

2.1 A sequential circuit . 6

2.2 A time frame expansion model . 7

2.3 General sequential test generation 7

2.4 Software-Based Self-Test . 10

2.5 Application of software-based self-test: (a) Justification of test pat-

terns; (b) Application of test patterns and response collection; (c)

Observation of response. 11

2.6 The instruction sequences for testing a forwarding control unit of

Dlx N processor. 12

2.7 The full-scan design method: (a) A sequential circuit designed by

the full-scan design method; (b) A scan-flip-flop (SFF). 13

3.1 An incompletely specified finite state machine. 17

3.2 A sequential circuit Ms synthesized from an FSM. 18

3.3 A time frame of a sequential circuit Ms (a) and a time frame ex-

pansion model of Ms (b). 19

3.4 The flow chart of the proposed method. 21

3.5 The 2-partial state distinguishing tree T2 = (VT2 , ET2). 24

3.6 The state compatibility graph corresponding to Figure 3.5. 25

3.7 The flow chart of the proposed test generation method for sequen-

tial circuits. 30

3.8 An example of an invalidation. 32

4.1 An example of a processor. 43

vi

4.2 An example of a template. 44

4.3 A model of an MUT test generation. 45

4.4 Examples of error masking：(a) unknown values are propagated to

RTL signals; (b) errors reach the MUT; (c) errors are propagated

to two RTL signals and meet at some module in some frame. . . . 47

4.5 The circuit graph of the reconvergent structure. 52

4.6 The path dependency graph. 53

vii

List of Tables

3.1 Characteristics of FSM benchmarks and results of SFT. 35

3.2 Characteristics of FSM benchmarks and results of SFT. (cont.) . . 36

3.3 Test generation results for each method. 39

3.4 Test generation results for each method. (cont.) 40

4.1 Characteristics of processors. 55

4.2 Hardware overhead. 57

4.3 MUT test generation for ALU. 57

4.4 Test program execution for ALU. 58

viii

Chapter 1

Introduction

Nowadays, digital systems are widely used in various aspects of daily life. The

key components of digital systems are LSI (Large Scale Integration) circuits,

and malfunctions of the circuits will affect the behavior of digital systems. The

incorrect behavior of digital systems causes serious accidents if the digital systems

are used as lifeline systems. The expectation of zero failure can only be met if all

manufacturing defects are eliminated. A key requirement for obtaining reliable

electronic systems is the ability to determine that systems are error-free. LSI

testing plays an important role in satisfying this requirement. LSI testing is to

check whether faults exist in a circuit, and it consists of two main phases; test

generation and test application. In test generation, a test sequence that is an

input sequence to detect faults is generated. In test application, the generated

test sequence is applied to the circuit.

The LSI technology has several complexities such that billions of transistors

are put on a single chip and the chip is implemented with GHz clock frequency and

so on. If the physical gate length is shorter, it is effective in implementing these

things. The physical gate length of today’s semiconductor process technology

is 35nm or 50nm. This technology is utilized for producing System-On-a-Chip

(SOC) so that processors, digital signal processors, memories and some modules

consisting of sequential circuits etc. are integrated on a silicon wafer, state-of-the-

art processors (e.g. Athlon64-X2, Opteron by AMD Core and Core2 by Intel).

According to the prediction of the 2005 International Technology Roadmap

for Semiconductors (ITRS) in Figure 1.1, the physical gate length of ASIC (SOC

1

2005 2010 2015 20201
10

100

Physical Gate Le
ngth (nm)

Year of Production

 MPU ASIC

Figure 1.1. 2005 ITRS Product Technology Trends

is one of ASIC) will drop 7nm and the physical gate length of processors will drop

6nm in 2020. A few years ago, the implementation of correctly operating elec-

tronic circuits in such a small geometry - usually referred as Very Deep Submicron

Manufacturing (VDSM) technologies - was believed to be extremely difficult if

at all possible. Because they have hurdles imposed by the fundamental laws of

the nano-electronics physics when circuit elements are manufactured. However,

VDSM technologies are successfully used today to produce high performance cir-

cuits.

As LSI circuits with high performance and a lot of functions are produced by

VDSM technologies, the LSI circuits have many problems for the test. As density

of an LSI circuit grows beyond billions of gates, the complexity of a test generation

for the LSI circuit is increasing. Moreover, the produced transistors have non-

uniform characteristic and size caused by hurdles imposed by the fundamental

2

laws of the nano-electronics physics. The length between signal lines in the LSI

circuit is also very short. Two signal lines are easily shorted by dust that gets

mixed during producing LSIs and a signal line may have high resistance. These

cases will cause long test generation time and faults related to timing of LSI

circuits. Therefore, LSI testing will be required to generate a test in short time

and perform at-speed testing.

In this dissertation, in order to satisfy these requirements, we propose a test

generation method for sequential circuits and a design for testability (DFT)

method for processors based on knowledge, which eases the testing, extracted

from the high level design of LSIs. The proposed test generation method con-

sists of a synthesis for testability (SFT) method and a test generation method

using knowledge extracted from the proposed SFT. The proposed test genera-

tion method can achieve 100% fault efficiency in short time and enables at-speed

testing. We also propose special DFT for software-based self-test (SBST) which

generates a test in reasonable time for a processor and enables at-speed testing.

Although SBST has many advantages, in experiments of [11-17], the high fault

efficiency is not achieved for processors. The reason why faults can not be de-

tected is “error masking” where multiple errors mask each other, and any error

is not propagated to any primay output. For any test program generated by

the SBST, the proposed DFT method can completely resolve error masking by

adding observation points to the original design, and enables at-speed testing.

The rest of this dissertation is organized as follows. Chapter 2 gives the basics

of test method for sequential circuits and processors, and design for testability

method which is generally utilized for easing LSI testing. In Chapter 3, we pro-

pose a test generation method for sequential circuits based on knowledge obtained

from synthesis for testabiliy. The sequential circuit is synthesized from a given

FSM by a synthesis for testability (SFT) method proposed in this chapter which

takes the features of our test generation method into consideration. The SFT

method guarantees the existence of state distinguishing sequences of the speci-

fied length by making the given FSM reduced. Thus, the performance of the test

generator is improved as it uses state justification sequences extracted from the

completely specified state transition function of the FSM produced by the syn-

thesizer. The proposed method can completely identify every fault in the circuit

3

obtained by the proposed SFT method to be detectable or untestable. In our

experiments, 100% fault efficiency is achieved for all the benchmark circuits in

relatively short test generation time. Chapter 4 proposes design for testability

method which completely resolves the problem of error masking for any test pro-

grams generated by the template-based software-based self-test approach. The

proposed method adds only observation points to the original design, and it en-

ables at-speed testing and does not induce delay overhead. Finally, in Chapter

5, we conclude these works and discuss directions for future work.

4

Chapter 2

Test Generation and Design for

Testability

1. Fault Model

The consideration of possible faults in a digital circuit is undertaken in order

to establish a minimum set of test vectors, which collectively will test whether

faults are present or not. If none of the predefined faults are detected, then

circuit is considered to be fault-free. There are several fault models presented in

the literature to model various defects. This section presents widely used fault

model which is related to my study; namely stuck-at fault model, which deal with

a logic.

A stuck-at fault is assumed to affect only the interconnection between the

gates. Each connecting line can have two types of faults: stuck-at-0 (s-a-0) and

stuck-at-1 (s-a-1). Thus, a line with s-a-0 fault is fixed to have a value 0.

In general, several stuck-at faults can be simultaneously present in the circuit.

A circuit with n lines can have 3n − 1 possible stuck line combinations, because

each line can be in one of three states: s-a-0, s-a-1, or fault-free. All combinations

except one having all lines in fault-free states are counted as faults. Clearly, even

a moderate value of n will give an enormously large number of multiple stuck-at

faults. It is common practice, therefore, to model only single stuck-at faults. An

n-line circuit can have at most 2n single stuck-at faults. This number is further

reduced by fault collapsing technique.

5

PO
Combinational

Component

FFs

PI PO
Combinational

Component

FFs

PI

Next
State

Present
State

Figure 2.1. A sequential circuit

2. Test Generation of Stuck-at Faults for Sequen-

tial Circuits

This section describes sequential test generation and the previous work. Both

combinational test generation and sequential test generation are NP-complete

problem. For combinational test generation, there are a lot of results of studies.

These test generation methods generate a test for a large combinational circuit

in relatively reasonable test generation time. On the other hand, sequential test

generation is difficult to generate a test in relatively reasonable test generation

time compared with combinational test generation because sequential circuits

have combinational circuit’s parts and flip-flops. (Figure 2.1)

Most sequential test generation methods generally utilize a time frame expan-

sion model. A time frame is the combinational circuit extracted from a sequential

circuit by treating its present state lines and next state lines as pseudo primary

inputs and pseudo primary outputs, respectively.

In Figure 2.2, a time frame expansion model for a sequential circuit is a com-

binational circuit constructed by connecting time frames such that the pseudo

primary outputs of a time frame t is connected to the pseudo primary inputs

of a time frame t + 1. Sequential test generation problem is reduced to combi-

national test generation problem by utilizing the time frame expansion model.

However, the time frame expansion model of the sequential circuit has multiple

faults because every time frame has the same stuck-at fault. We must consider

6

Combinational
Component

PI2

PO2

Combinational
Component

PI1

PO1

Combinational
Component

PIt+1

POt+1

Combinational
Component

PIt

POt

time 1 time 2 time t time t+1

fault fault fault fault

Figure 2.2. A time frame expansion model

Combinational
Component

State Justification

Fault Excitation

Error Propagation

PO

time 1 time k-1 time k+1 time t
error

Combinational
Component

Combinational
Component

Combinational
Component

Combinational
Component

time k

Figure 2.3. General sequential test generation

combinational test generation for the combinational circuit which has multiple

faults.

Figure 2.3 shows general sequential test generation method. The sequential

test generation method consists of three processes: fault excitation, state justifi-

cation and error propagation.

At first, for a target fault, fault excitation finds an excitation vector which is

assigned to primary inputs and pseudo primary inputs to produce errors and to

propagate them to the primary outputs and/or the pseudo primary outputs of

the fault excitation frame. The pseudo primary input part of an excitation vector

is referred to as an excitation state.

Once an excitation vector is found, state justification is performed. In order

to justify from the initial state to the excitation state, state justification process

7

searchs values assigning to primary inputs. A lot of backtracks occur during

performing this process in order to transfer the initial state to the excitation

state.

If the fault is not identified as detected or untestable by the first two processes,

error propagation is performed. The error propagation process determines pri-

mary input values of the expanded time frames to propagate an error to a primary

output. A lot of backtracks also occur during performing this process in order to

propagate an error.

There are a lot of results of studies for sequential test generation algorithm.

This section describes sequential test generation algorithms which are related to

my study: FASTEST, HITEC and VERITAS.

The FASTEST[6] is incomplete sequential test generation method. This

method can not identify untestable faults. Our objective is that the test gen-

erator can completely identify a fault as detectable or untestable.

The HITEC[2] is a well known test generator for sequential circuits. This

method consists of two phases. The first phase is the forward time processing

phase in which a fault is excited and the resulting fault effect is propagated to a

primary output. The second phase is the backward time processing phase which

justifies the state required for activating the fault. Then, this method is not

efficient to generate tests because it still backtracks during the execution of each

phase.

The VERITAS[3] test generation method is an extension of the finite state

machine (FSM) verification approach. This method constructs a product machine

of a good FSM and its faulty version, and carries out reachability analysis by

traversing the product machine. The information obtained by the reachability

analysis is used to generate a test sequence. Although this simplifies generation

of state justification sequences, it is not efficient to generate tests because it has

to deal with huge product machines.

Therefore, these test generation methods are not efficient about test genera-

tion time.

8

3. Software-Based Self-Test

This section describes Software-Based Self-Test (SBST) approach and the previ-

ous works of software-based self-test for the testing of processors.

SBST links functional testing with gate level fault model. The concept of

the SBST is illustrated in Figure 2.4. It uses on chip resources and processor

instructions to deliver the test patterns and collection of test responses. Self-

test routines are stored in instruction memory area and data which they need

for execution are stored in data memory area. Both transfers (instructions and

data) are performed using external test equipment. The external test equipment

that transfers test data at high speed and has a large memory is not required.

Tests are applied to modules of the processor during the execution of the self-test

programs and test responses are stored back in the data memory area.

At first, the self-testing code is downloaded to the processor instruction mem-

ory area of the processor via external tester which has access to the internal

system bus. The self-test data is downloaded to the data memory area of the

processor via the same external tester. Self-test data may consist of parameters,

variables called by the execution of the self-test code.

Once self-test code and data are transferred to processor memory, the control

is transferred to self-test program which starts execution of self-test. Test patterns

are applied to internal processor module via processor instructions to detect their

faults. Test responses of the applied test instructions are collected in registers

and/or data memory area.

After self-test code completes execution, the test responses are transferred to

the external tester in order to evaluating the expected fault-free test responses.

Application of test patterns to processor via processor instructions consists of

the following three steps, which are shown in Figure 2.5.

Justification of test patterns: Test patterns is transferred to a module un-

der test in a processor by the execution of a test program. This step may

require one or more processor instructions.

Application of test patterns and response collection: Test patterns are

applied to the processor’s module under test and module’s response are

9

Instruction

Processor

Data
Memory

Self-Test
Data

Test
Responses

Self-Test

Code

External
Tester

System Bus

Instruction

Processor

Data
Memory

Self-Test
Data

Test
Responses

Self-Test

Code

External
Tester

System Bus

Processor

Data
Memory

Self-Test
Data

Test
Responses

Self-Test

Code

External
Tester

System Bus

Figure 2.4. Software-Based Self-Test

collected in registers or memory. This step may require a few processor

instructions.

Observation of response: Response collected internally are exported towards

data memory. This step may also require one or more processor instructions.

For example, a fault inside a forwarding control unit of Dlx N processor re-

ferred to Appendix A can be tested by the instruction sequence in Figure 2.6.

Instructions from I1 to I8 correspond to justification of test patterns as shown

in Figure 2.5(a). Instructions from I9 to I11 correspond to application of test

patterns and test response collection as shown in Figure 2.5(b). Instructions

from I12 to I14 correspond to observation of internal test response in Figure

2.5(c). Instructions from I9 to I11 transfer test patterns to adjacent registers of

the forwarding control unit. The value which is calculated by the execution of in-

structions from I9 to I11 is the test response of the module under test. Therefore,

Instructions from I1 to I8 transfer values which are required to execute instruc-

tions from I9 to I11. When the processor executes instruction I9, the processor

requires loading the value from the data memory. Therefore, the required values

are already set to the data memory before executing a test program.

Finally, Instructions from I15 to I17 transfer the test response to the data

10

Module
Under Test

fault

Register Register

Register

From Memory

Processor

Module
Under Test

fault

Register Register

Register

From Memory

Processor

（a）

Module
Under Test

fault

Register Register

Register
Processor

stored
error

Module
Under Test

fault

Register Register

Register
Processor

stored
error

（b）

Module
Under Test

fault

Register Register

Register

Processor

error

To Memory

Module
Under Test

fault

Register Register

Register

Processor

error

To Memory

（c）

Figure 2.5. Application of software-based self-test: (a) Justification of test pat-

terns; (b) Application of test patterns and response collection; (c) Observation

of response.

memory.

Due to inherent non-intrusive approach, SBST has following advantages:

No area overhead: This approach uses only processor resources for test ap-

plication and test response collection. Therefore, it does not lead to area

overhead.

No performance degradation: This approach does not modify the circuit

under test. Therefore, it does not lead to performance degradation.

At-speed test: This approach always applies test vectors at-speed as it uses

functional mode of operation. Therefore, it can be easily used for the testing

of timing faults.

Due to the above advantages of SBST, it is a suitable testing methodology for

processor testing. In the next, we describes the previous work of software-based

self-test of processors.

Some methods among the SBST methods generate a test program based on

test program templates targeting structural faults to achieve the high fault cover-

age [13-17]. In this approach, gate-level test generation is applied for each module

under test (MUT) of a processor (MUT test generation), and a test program is

synthesized from a test pattern generated in MUT test generation (test program

11

I1: LHI r1, X”0000”

I2: ADD.I r2, r1, X”1111”

I3: LHI r3, X”1111”

I4: ADD.I r4, r3, X”0000”

I5: LHI r5, X”1010”

I6: ADD.I r6, r5, ”0101”

I7: LHI r7, X”1001”

I8: ADD.I r8, r7, X”0110”

I9: LW r7, r4(X”0000”)

I10: ADD r11, r6, r8

I11: SUB r12, r8, r2

I12: LHI r13, X”1000”

I13: ADD.I r14, r13, X”0001”

I14: SW r12, r14(X”0000”)

Figure 2.6. The instruction sequences for testing a forwarding control unit of

Dlx N processor.

synthesis), where a test program justifies the test pattern from the memory to

the MUT and propagates the test response from the MUT to the memory. To

guarantee the test program synthesis, test program templates are used. A test

program template is an instruction sequence with unspecified operands that de-

livers test patterns to an MUT and observes the test responses. The approach

extracts constraints from each template since the template represents ways to

propagate tests from the memory and test responses to the memory, and applies

test generation for the MUT under such constrains. In this approach, we can

easily synthesize a test program from a test pattern for the MUT. However, the

justification and observation parts consider only behavior of a fault-free processor

and do not consider behavior of a faulty processor, and such parts do not work

as expected. In this case, some faults detected by a test pattern for a MUT may

not be detected by the synthesized test program. We call such a phenomenon

“error masking.”

12

Combinational
Circuit

Scan in
Scan out

Mode

fault

PIs POs

Combinational
Circuit

Scan in
Scan out

Mode

fault

PIs POs

（a）

: Scan FF

FF

Scan in

Scan out Mode

0
1

: Scan FF

FF

Scan in

Scan out Mode

0
1

（b）

Figure 2.7. The full-scan design method: (a) A sequential circuit designed by the

full-scan design method; (b) A scan-flip-flop (SFF).

4. Full-Scan Design

This section describes full-scan design method[1] which is one of DFT methods.

This method is widely utilized for easing LSI testing.

Figure 2.7 (a) shows the full-scan design for a sequential circuit and Figure

2.7 (b) shows a scan-flip-flop utilized by the full-scan design. In Figure 2.7 (a),

every flip-flop (FF) is replaced with a scan FF (SFF) shown as Figure 2.7 (b).

Each SFF can store an arbitrary value. For a sequential circuit designed by this

technique, we can use a combinational test generation algorithm to generate a test

pattern for the original circuit. Therefore, high fault efficiency can be achieved

with short test generation time.

However, this method has the following disadvantages:

Area overhead: This approach adds extra DFT elements to FFs of the orig-

inal sequential circuit. Therefore, compared with the area of the original

sequential circuit, that of the sequential circuit designed by this method

increases.

Delay overhead: This approach adds extra DFT elements to FFs of the orig-

inal sequential circuit. Compared with the level of gates in the FF of the

original sequential circuit, that in the SFF of the sequential circuit designed

by this method increases. Therefore, the delay of the sequential circuit de-

signed by this method increases.

13

Long test application time: This approach performs the scan-in and scan-

out operation to control and observe the value in FFs of the circuit, re-

spectively. Therefore, the scan-in and scan-out operations spend a lot of

time.

No at-speed testing: This approach performs the scan-in and scan-out oper-

ations in the too slow operational speed compared with the normal opera-

tional speed of the original circuit. Therefore, test application at the rated

speed of an original circuit can not be performed.

Althogh this method has some disadvantages, this method is usually utilized

for easing LSI testing at many corporations. The reason is that this method can

easily modify a original circuit and apply to any sequential circuit.

5. Summary

This chapter introduced the basic of test generation method for sequential circuits

and processors, and design for testabiltiy method which is generally utilized for

easing LSI testing. We discussed problems of the test for each method.

14

Chapter 3

Acceleration of Test Generation

for Sequential Circuits Using

Knowledge Obtained from

Synthesis for Testability

1. Introduction

For general sequential circuits, it is difficult to achieve 100% fault efficiency in

reasonable test generation time even for single stuck-at faults. The full-scan de-

sign is utilized to ease the test generation for sequential circuits[1]. However, we

cannot perform at-speed testing for full-scan designed sequential circuits. To real-

ize at-speed testing, an efficient test generation algorithm for sequential circuits,

which generates tests for all the detectable faults and identifies all the untestable

faults in reasonable test generation time, is necessary.

Most test generation algorithms for sequential circuits (e.g. HITEC[2], VERITAS[3],

STALLION[5] and FASTEST[6]) employ a time frame expansion model of a se-

quential circuit. The time frame expansion model is a combinational circuit that

simulates the exact behavior of the sequential circuit for a given number of time

frames.

The HITEC is a well known test generator for sequential circuits. This method

15

consists of two phases. The first phase is the forward time processing phase in

which a fault is excited and the resulting fault effect is propagated to a primary

output. The second phase is the backward time processing phase which justifies

the state required for activating the fault.

The VERITAS test generation method is an extension of the finite state ma-

chine (FSM) verification approach. This method constructs a product machine

of a good FSM and its faulty version, and carries out reachability analysis by

traversing the product machine. The information obtained by the reachability

analysis is used to generate a test sequence. Although this simplifies generation

of state justification sequences, it is not efficient to generate tests because it has

to deal with huge product machines.

In this chapter, we propose a method of accelerating test generation for se-

quential circuits using the knowledge about a set of state justification sequences,

the bound on the maximum length of state distinguishing sequences, the infor-

mation about the valid states and the value of the reset state. We assume that

circuits are given in FSM description. For circuits designed at register transfer

level (RTL), controllers of the circuits are generally specified by FSM description.

The proposed method is effective for such controllers. The sequential circuit is

synthesized from a given FSM by a synthesis for testability (SFT) method pro-

posed in this chapter which takes the features of our test generation method into

consideration. The SFT method guarantees the existence of state distinguishing

sequences of the specified length by making the given FSM reduced. Thus, the

performance of the test generator is improved as it uses state justification se-

quences extracted from the completely specified state transition function of the

FSM produced by the synthesizer. The proposed method can completely identify

every fault in the circuit obtained by the proposed SFT method to be detectable

or untestable. In our experiments, 100% fault efficiency is achieved for all the

benchmark circuits in relatively short test generation time.

2. Preliminaries

In this chapter, we consider synchronous sequential circuits composed of combi-

national logic and D-type flip-flops (FFs). All the FFs are controlled by a single

16

s01/1
s1

0/0
0/0 or 1/1

s2
1/0

0/10/0

sr

Figure 3.1. An incompletely specified finite state machine.

clock. We assume that a reset state is defined and a reset signal is available. We

also assume that both the good and the faulty circuits can be put on the reset

state by applying the reset signal. We consider the single stuck-at fault model

but the faults on the clock lines, inside the FFs, and on the reset lines are not

included in the fault set.

This paper deals with completely and incompletely specified Mealy-type FSMs.

A Mealy-type FSM M is defined as a 6-tuple ⟨ Σ, O, S, sr, δ, λ ⟩. Σ = {x0x1 . . .

xni−1 | xk ∈ {0, 1, X}, 0 ≤ k < ni} is the set of input vectors and O = {z0z1 . . . zno−1 |
zk ∈ {0, 1, X}, 0 ≤ k < no} is the set of output vectors, where X is the

don’t care, and ni and no are the numbers of inputs and outputs, respectively.

S = {sr, s0, s1, . . . , sn−2} is the set of states, where n is the number of states

and sr is the reset state. The functions δ and λ are the state transition func-

tion S × Σ → S and the output function S × Σ → O, respectively. We assume

that all the states defined in the FSM are reachable from the reset state sr. For

example, an incompletely specified Mealy-type FSM is shown in Figure 3.1.

A sequential circuit Ms composed of a combinational circuit part (CC) and

FFs as shown in Figure 2 is synthesized from an FSM, where x0, x1, x2, . . . , xni−1

are the primary inputs, z0, z1, z2, . . . , zno−1 are the primary outputs and r is the

reset input. We classify states represented by FFs of Ms into valid states and

invalid states as defined below.

Definition 1 (Valid State and Invalid State) A state si represented by the

17

CC
FF

FF

FF
r

x0
x1

xni-1

z0
z1

zno-1

Present
State

Next
State

CC
FF

FF

FF
r

x0
x1

xni-1

z0
z1

zno-1

Present
State

Next
State

Figure 3.2. A sequential circuit Ms synthesized from an FSM.

FFs of a sequential circuit Ms is valid if si is reachable from the reset state of

Ms. Otherwise, si is invalid. 2

Definition 2 (State Distinguishing Sequence) Let I be an input sequence

of an FSM M . Let oi and oj be output sequences of I for M with initial states si

and sj, respectively. I is called a state distinguishing sequence with respect to the

pair of states si and sj if oi and oj are not identical. 2

Definition 3 (Reduced FSM) An FSM is said to be reduced if every pair of

states has at least one state distinguishing sequence. 2

The proposed test generation method employs a time frame expansion model

for the test generation.

Definition 4 (Time Frame) A time frame is the combinational circuit extracted

from a sequential circuit by treating its present state lines and next state lines as

pseudo primary inputs and pseudo primary outputs, respectively. 2

Definition 5 (Time Frame Expansion Model) A time

frame expansion model of length l (l ≥ 2) for a sequential circuit is a combina-

tional circuit constructed by connecting time frames such that the pseudo primary

outputs of a time frame i (0 ≤ i ≤ l − 2) is connected to the pseudo primary

inputs of a time frame i + 1. 2

18

CC

x0x1 xni-1

z0z1 zno-1

Y0

Y1

Yq-1

y0

y1

yq-1

CC

x0x1 xni-1

z0z1 zno-1

CC

x0x1 xni-1

z0z1 zno-1

Y0

Y1

Yq-1

y0

y1

yq-1

(a)

CC

time 0

CC

time 1

CC

time l-2

x0x1 xni-1 x0x1 xni-1 x0 x1 xni-1

z0z1 zno-1 z0z1 zno-1 z0 z1 zno-1

Y0
Y1

Yq-1

y0
y1
yq-1

CC

time l-1

x0 x1 xni-1

z0 z1 zno-1

y0
y1
yq-1

0
0

0

0 0 0

0 0 0

1 1 1

1 1 1

l-2

1
1

1

l-2

l-2 l-2 l-2

l-2 l-1 l-1

l-1 l-1

l-1

l-1

l-1
l-1

l-1

(b)

Figure 3.3. A time frame of a sequential circuit Ms (a) and a time frame expansion

model of Ms (b).

Examples of a time frame and a time frame expansion model are shown in

Figure 3.3 (a) and (b), where (Y i
0 , Y i

1 , . . . , Y i
q−1) and (yi

0, y
i
1, . . . , y

i
q−1) are the

pseudo primary inputs and the pseudo primary outputs of each time frame i,

respectively.

3. Outline of the Proposed Method

The proposed method consists of an SFT method and a test generation method for

sequential circuits synthesized by the SFT method. The SFT method synthesizes

a sequential circuit to have the three specific characteristics from a given FSM.

The proposed test generation method for the sequential circuit utilizes higher

19

level knowledge of its characteristics. By considering each characteristic, we can

accelerate the fault excitation, the state justification and the error propagation,

respectively. These three specific characteristics are the following.

Characteristic I: Any state in a sequential circuit synthesized from an FSM

can be identified as either valid or invalid.

Characteristic II: There exists one to one correspondence between each state

of the FSM and each valid state of the sequential circuit.

Characteristic III: For each pair of states in the sequential circuit, there exists

a state distinguishing sequence. The maximum length of distinguishing

sequences is k, which is a known constant.

The flow chart of the proposed method is shown in Figure 3.4. The area

surrounded by the dotted line shows the SFT method and the outside area is

our proposed automatic test pattern generation (ATPG) method. The italicized

types in Figure 3.4 show knowledge extracted by the SFT. The knowledge is

useful for the proposed test generation as follows.

Information of valid states:

In a justification process of test generation, we don’t need to justify a fault ex-

citation state of a sequential circuit from the reset state if the fault excitation

state is invalid. We can prune the search space of the justification process if we

utilize the knowledge that helps to identify the fault excitation state as either

valid or invalid. The knowledge “information of valid states” can be obtained

since Characteristic I is satisfied. We can accelerate the whole fault excitation

process during executing our proposed ATPG by reducing the number of calls of

the fault excitation procedure by utilizing this information.

A set of state justification sequences:

The state transition function of a given FSM is incompletely specified. The

behavior of the FSM and the behavior of a sequential circuit synthesized from

the FSM may be different, because the state transition function of the FSM

is appropriately specified during the synthesis process and the state transition

function of the sequential circuit becomes completely specified. We can justify

the state of the sequential circuit easily if we can utilize the knowledge that helps

20

Incompletely specified
FSM

Step1. Make the state transition function
completely specified

Step 2. Make the FSM reduced

Step 3. Assign consecutive binary numbers
to states

Step 4. Add at most one output
to the reduced FSM to identify
any state as either valid or invalid

Step 6. Synthesize
a sequential circuit

The FSM reduced with the completely
specified state transition function

The maximum length of
state distinguishing sequences

• Information of valid states
• The FSM with state assignment

of consecutive binary number

A gate level Netlist

Our proposed ATPG

A test sequence

Synthesis for Testability

Step 5. Generate a set of state
justification sequences

A set of
state justification sequences

Figure 3.4. The flow chart of the proposed method.

21

to justify it by utilizing an input sequence, which is extracted from the FSM

description, from the reset state to the excitation state. The knowledge “a set of

state justification sequences” can be obtained since Characteristic II is satisfied.

We can accelerate the state justification process using this information.

The maximum length of state distinguishing sequences:

In general, we can’t know the number of time frames which are required for prop-

agating errors from the fault excitation frame to primary outputs of a sequential

circuit in advance. However, we may limit the number of time frames expanded

from the fault excitation frame if we have the knowledge of the number. The

knowledge “the maximum length of state distinguishing sequences” is given by

k since Characteristic III is satisfied. We can accelerate the error propagation

process using this information.

4. Synthesis for Testability

In this section, we describe the proposed synthesis for testability (SFT) method

for FSMs in detail. In the method, a sequential circuit which has three specific

characteristics described in section 3 is synthesized from a given FSM. In order to

synthesize a sequential circuit with such characteristics, a given FSM is modified

as follows.

• Appropriate values are assigned to some of the coordinates which have don’t

care values in output vectors of the FSM.

• Extra outputs, if needed, are added to the FSM and appropriate values are

assigned to them.

4.1 Formulation of SFT Problem

We formulate the SFT problem as an optimization problem as follows.

Input: An FSM with a reset state and the maximum length of state distinguish-

ing sequences.

22

Output: A gate level netlist of a sequential circuit which has the three char-

acteristics for the reset state, a set of state justification sequences and the

number of valid states.

Objective: Minimization of the number of extra outputs.

4.2 Synthesis for Testability Algorithm

In this section, we propose a heuristic algorithm of the SFT since the minimization

of the number of extra outputs is NP hard. The heuristic algorithm of the SFT

consists of 6 steps as follows:

Step 1: Make the state transition function completely specified

Step 2: Make the FSM reduced

Step 2.1: Try to generate state distinguishing sequences of length 1 for

each pair of states of the FSM

Step 2.2: Generate the k-partial state distinguishing tree in order to con-

firm that there exists a state distinguishing sequence of length less

than or equal to k for each pair of states of the FSM and a state

compatibility graph

Step 2.3: Determine the number of extra outputs from the state compat-

ibility graph

Step 3: Assign consecutive binary numbers to states in order to identify as either

a valid or an invalid state

Step 4: Add an extra output to the FSM in order to guarantee existence of a

state distinguishing sequence of length 1 for each pair of any valid state and

any invalid state

Step 5: Generate a set of state justification sequences

Step 6: Synthesize a sequential circuit

23

v0,0

sr
sr
x

sr
sr
x

s0
s0
x

s0
s0
x

s1
s1
x

s1
s1
x

s2
s2
x

s2
s2
x

u0 u1 u2 u3

U0,0

v1,0

sr
s1
1

sr
s1
1

s0
s2
0

s0
s2
0

s1
s0
0

s1
s0
0

s2
s1
0

s2
s1
0

u0 u1 u2 u3

U1,0

e0,0=0

U1,0

v1,1

sr
s2
0

sr
s2
0

s0
s0
1

s0
s0
1

s1
s0
1

s1
s0
1

s2
sr
1

s2
sr
1

u0 u1 u2 u3

e0,1=1

v2,0

sr
s0
0

sr
s0
0

s0
s1
1

s0
s1
1

s1
s2
1

s1
s2
1

s2
s0
1

s2
s0
1

u0 u1 u2 u3

e1,0=0
v2,1

sr
s0
1

sr
s0
1

s0
sr
1

s0
sr
1

s1
s0
1

s1
s0
1

s2
s0
1

s2
s0
1

u0 u1 u2 u3

e1,1=1
v2,2

sr
s1
0

sr
s1
0

s0
s2
0

s0
s2
0

s1
s2
0

s1
s2
0

s2
s1
1

s2
s1
1

u0 u1 u2 u3

e1,2=0
v2,3
e1,3=1

sr
sr
0

sr
sr
0

s0
s0
1

s0
s0
1

s1
s0
1

s1
s0
1

s2
s2
0

s2
s2
0

u0 u1 u2 u3

Condition 2 :
Condition 1 :

k=2U1,1 U1,1

0

0 1 0 1

termination termination termination
U2,0 U2,0 U2,1 U2,1 U2,2 U2,2 U2,2 U2,3 U2,3 U2,3

0 1 0 1 0 1 2 0 1 2

F1 F2,

Figure 3.5. The 2-partial state distinguishing tree T2 = (VT2 , ET2).

In the heuristic algorithm, we use a k-partial state distinguishing tree and a

state compatibility graph. We first define them as follows.

To clarify the discussion of state distinguishing sequences, we extend the def-

inition of the successor tree defined in the literature [4] as follows.

Definition 6 (k-Partial State Distinguishing Tree) Let M be an FSM. Let

Tk = (VTk
, ETk

) be a tree of level k (0 ≤ k), where VTk
is a set of nodes {vi,ji

| 0 ≤
i ≤ k, 0 ≤ ji < |Σ|i} and ETk

is a set of edges {(vi,ji
, vi+1,ji·|Σ|+t) | 0 ≤ i < k, 0 ≤

ji < |Σ|i, 0 ≤ t < |Σ|}. An edge (vi,ji
, vi+1,ji·|Σ|+t) is also referred to as ei,ji·|Σ|+t

and σt ∈ Σ is associated with the edge. Let U be a set of states, which will be

tried to be distinguished, of M and it is referred to as an initial uncertainty. Let

Up
i,ji

be a set of 3-tuples {un | 0 ≤ n < |U|} and be associated with vi,ji
, where

p is the characteristic number and a 3-tuple un ∈ Up
i,ji

is composed of sn ∈ U ,

sℓ which is a state succeeded by applying the input sequence, which corresponds

to a path from v0,0 to vi,ji
, and oℓ, which appears as the last output vector by

24

s0

s1

s2

sr

v0

v1

v2

v3

Figure 3.6. The state compatibility graph corresponding to Figure 3.5.

applying the input sequence to sn, and is denoted in < sn, sℓ, oℓ >. Here, un is

called a distinguished state history (DSH). For each Up
i,ji

of vi,ji
, sets of DSHs of

vi+1,ji·|Σ|+t are generated so that the DSHs are obtained by applying σt to M with

the state of the second element of each un ∈ Up
i,ji

and these are classified into the

sets where a set has the DSHs whose third elements are the same and they are

different from the third elements of the DSHs in the other sets. The tree Tk is

called a k-partial state distinguishing tree. 2

Figure 3.5 shows the 2-partial state distinguishing tree T2 = (VT2 , ET2) for the

FSM of Figure 3.1. Here, we suppose an initial uncertainty U of the FSM is a set

of all the states of the FSM. Suppose a set of DSHs, U0
0,0 = [u0, u1, u2, u3] = [<

sr, sr,X >,< s0, s0,X >,< s1, s1,X >,< s2, s2,X >] is assigned to v0,0 ∈ VT2 ,

where X is don’t care vector such that all the bits of the output vector are don’t

care. By applying the vector σ1 = 1 to each DSH of v0,0, two sets U0
1,1 and

U1
1,1, where U0

1,1 is [u0] = [< sr, s2, 0 >] and U1
1,1 is [u1, u2, u3] = [< s0, s0, 1 >,<

s1, s0, 1 >,< s2, sr, 1 >], respectively, are associated with v1,1. By applying the

sequence σ1σ0 = 10 to each DSH of v0,0, three sets U0
2,2, U1

2,2 and U2
2,2, where U0

2,2

is [u0] = [< sr, s1, 0 >], U1
2,2 is [u1, u2] = [< s0, s2, 0 >,< s1, s2, 0 >] and U2

2,2 is

[u3] = [< s2, s1, 1 >], respectively, are associated with v2,2.

Definition 7 (State Compatibility Graph) An undirected graph G = (VG, EG),

where v ∈ VG is a vertex corresponding to a state of an FSM and e ∈ EG is an

25

edge corresponding to a pair of indistinguishable states of the FSM, is said to be

a state compatibility graph. 2

U is the initial uncertainty of an FSM. Let Djk
s be a set of the distinguished

states for s ∈ U of a leaf node vk,jk
∈ VTk

of a k-partial state distinguishing tree

Tk obtained from the FSM where a distinguished state is a state in U except for s

and is distinguishable from s. For all the leaf node of Tk, a set of states, which are

distinguished from s, of U is obtained by the following formula:
∪|Σ|k

jk=0 Djk
s . The

set of indistinguishable states of s is the complement of
∪|Σ|k

jk=0 Djk
s for U . We make

the state compatibility graph based on pairs of indistinguishable states obtained

from the above. Figure 3.6 shows the state compatibility graph corresponding to

Figure 3.5. In this figure, indistinguishable states are s0 and s1.

Then, we describe the process for every step in detail.

Step 1: Let si be a state in M such that, there exist input vectors for which

next states of the state are not specified in the state transition function. For each

input vector σ ∈ Σ, which is not defined for a transition from the state si, of

M , a state transition from si to si (i.e., a self-loop) in M for σ is added to the

state transition function. An output vector oi for the self-loop is added to the

output function. All the bits of oi are don’t care. The FSM obtained in this step

is referred to as Mα.

Step 2: To make every pair of states defined in Mα distinguishable, we perform

the following three processes.

Step 2.1: For each input vector σ ∈ Σ of M , we try to distinguish all the pairs

of states si and sj (si ̸= sj) of M . We perform the following two processes.

Step 2.1.1: Let oi and oj be output vectors of σ for Mα with si and sj,

respectively. We assign ‘0’ or ‘1’ to appropriate don’t care bits of oi in order to

differentiate oi and oj if oj is covered by oi. Here, we define the relation between

vectors a and b which have don’t care values. We say that a covers b if A ⊃ B,

where A and B are the sets of values represented by a and b, respectively.

Step 2.1.2: If oi and oj are the same and still have don’t care bits, we assign

‘0’ or ‘1’ to some don’t care bits of oi and oj to make oi and oj different. Let K

be a set of such the same output vectors. Let X(= x0x1 . . . xnX−1) be a vector

composed of don’t care bits in κ ∈ K, where nX is the number of don’t care bits

in κ. The number of values represented by X is 2nX . If |K| ≤ 2nX , the unique

26

value can be assigned to each κ. In this case, for each κ, we assign a unique

value among 2nX to the don’t care bits. If |K| > 2nX , we assign a value to each

κ so that the number of the same output vectors is minimized. In this case, the

consecutive binary number is cyclically assigned to the don’t care bits in each κ.

The FSM obtained in this step is referred to as Mβ.

Step 2.2: We construct the k-partial state distinguishing tree to examine

whether a pair of states si and sj of M could be distinguishable by applying

input sequences of length less than or equal to k to Mβ with si and with sj. We

use the following two conditions of pruning for construction of the tree. Here, v

and Up are a current observed node of the k-partial state distinguishing tree and

a set of DSHs of v whose third elements are the same and they are different from

the third elements of DSHs in the other sets. Let Vq be the set of nodes on the

path from the root to v. Let Up
q be the set of DSHs of vq ∈ Vq whose the third

elements are the same and they are different from the third elements of DSHs in

the other sets. Let F1(U
p) and F2(U

p) be the set of first elements of all the DSHs

in Up and the set of the second elements of all the DSHs in Up, respectively.

Condition 1: For each Up of v such that |Up| ≥ 2, all the elements of F2(U
p)

are the same.

Condition 2: There exists vq such that for each Up, whose number of DSHs

is larger than 1, of v, there exists Up
q , which satisfies F1(U

p
q) = F1(U

p) and

F2(U
p
q) = F2(U

p), of vq.

If v satisfies Condition 1 or Condition 2, v is a termination node. For example,

in Figure 3.5, v2,2 and v2,3 satisfy Condition 1 and v2,0 satisfies Condition 2. For

v2,2, all the elements of F2(U
1
2,2) are the same state s2. For v2,0, F1(U

1
2,0) and

F2(U
1
2,0) of v2,0 are equal to F1(U

1
1,0) and F2(U

1
1,0) of v1,0 on the path from v0,0 to

v2,0, respectively. In this case, the level of termination nodes is the same as the

maximum level of the 2-partial state distinguishing tree.

Step 2.3: We construct the state compatibility graph obtained from the k-

partial state distinguishing tree for representing all the indistinguishable state

pairs of Mβ.

For example, we obtain the state compatibility graph in Figure 3.6 from Figure

3.5. We can see that the indistinguishable states are s0 and s1 in the state

compatibility graph.

27

We perform the following process in order to distinguish these indistinguish-

able states. Some outputs are added to Mβ to distinguish all the indistinguish-

able state pairs. The problem to find the minimum number of additional outputs

to distinguish all the indistinguishable state pairs is solved as a vertex coloring

problem[7] of the state compatibility graph. The number of outputs to be added

to Mβ is obtained by the following formula:

na =

⌈
log2 C

|Σ|

⌉
,

where C is the number of colors obtained by solving the vertex coloring problem

and na is the number of the additional outputs.

Let P be the set of values represented by the additional outputs. Let fi be a

mapping Σ
fi7−→ P such that fi ̸= fj， ∀i, j | 1 ≤ i, j ≤ C ∧ i ̸= j. For any σ ∈ Σ,

the output function of Mβ is changed so that the value of the additional outputs

become fi(σ) for the state corresponding to each vertex, whose degree is more

than or equal to 1, of the state compatibility graph. Thus, a state distinguishing

sequence of length less than or equal to k is guaranteed for any state pair. The

FSM obtained by this step is referred to as Mγ

Step 3: Let ns be the number of states of the FSM Mγ. The number of FF, nff ,

in a sequential circuit synthesized from Mγ is equal to ⌈log2 ns⌉. The number

of valid states of the circuit is equal to ns and the number of invalid states, niv,

is equal to 2nff − ns. Binary numbers within the range of 0 to ns − 1 are used

for the state assignment of Mγ and binary numbers within the range of ns to

2nff − 1 (if niv ̸= 0) are used for values of the state variables of invalid states of

the sequential circuit. The value assigned to the reset state sr is referred to as

nr.

Step 4: To guarantee existence of a state distinguishing sequence of length

1 for each pair of any valid state and any invalid state of the sequential circuit

synthesized by the SFT, one output is added to the FSM if niv is not equal to

0. This process means that a pair of any valid state and any invalid state is

made distinguishable in order to realize Characteristic III. For a transition from

a valid state to a valid state, ’0’ is assigned to the output. For a transition from

an invalid state, ’1’ is assigned to the output. For a transition from a valid state

to an invalid state, we have already considered in Step 1; all the transitions from

28

valid states are succeeded by valid states. The FSM obtained by this step is

referred to as M ϵ.

Step 5: For each valid state of M ϵ, an input sequence to reach the state

from the reset state is generated by a breadth-first search on the state transition

graph of M ϵ. By searching in a breadth-first fashion, the shortest input sequence

is guaranteed for each state. The input sequence is called a state justification

sequence.

A set of state justification sequences for all the valid states of M ϵ is referred

to as Ssi.

Step 6: A gate level sequential circuit is synthesized from M ϵ by a logic synthesis

tool.

5. Test Generation Algorithm for Sequential Cir-

cuits

In this section, we describe the proposed test generation method that utilizes the

knowledge of Ssi: a set of state justification sequences, k: the maximum length

of state distinguish sequences, ns: the number of valid states, and nr: the value

of a reset state extracted by the SFT.

Our test generation method uses a time frame expansion model. A time frame

expansion model has multiple faults because every time frame has the same single

stuck-at fault. Therefore, our test generation method uses a 9 valued logic system

[8][9] for the test generation to deal with multiple faults.

Figure 3.7 shows the flow chart of our test generation method for sequential

circuits. The proposed test generation method consists of three processes: fault

excitation, state justification and error propagation.

5.1 Fault Excitation

For a target fault, fault excitation finds an excitation vector which is assigned to

primary inputs and pseudo primary inputs to produce errors and to propagate

them to the primary outputs and/or the pseudo primary outputs of the fault ex-

citation frame. The pseudo primary input part of an excitation vector is referred

29

START
Fault Excitation
Errors appearat POs or PPOs ?

Is the state of PPIsvalid state ?
YES

State JustificationYES
Errors appearat POs ?

Error PropagationNO
DETECTEDErrors appearat POs ? YES

YES

Is there an untried combinationof values on assigned PIs or PPIs ofthe fault excitation frame ?
NO

NO
NO

k ← k × 10

NO
YES

YES
Errors appear at PPOsof the last time frame ? UNTESTABLENO

Figure 3.7. The flow chart of the proposed test generation method for sequential

circuits.

30

to as an excitation state ne. The number of valid states, ns, helps generating a

valid excitation vector which is an excitation vector whose excitation state is a

valid state. If an excitation state is valid, the state may be justified from the reset

state. However, if the excitation state is invalid, state justification is not required

because the state cannot be justified from the reset state. Hence, the proposed

method can prune a part of search space of a test generation. This search space

pruning is realized by comparing ns with ne. If ne is less than ns, the excitation

state is valid. Otherwise, the state is invalid. This feature saves a large amount

of time for trying to generate invalid excitation vector and trying to justify the

invalid excitation state. If there exists no valid state to excite the fault, the fault

is proved untestable.

5.2 State Justification

Once an excitation vector is found, state justification is performed. The excitation

state must be justified for both the fault-free circuit and the faulty circuit. We

have a set of state justification sequences, Ssi, for the fault-free circuit. The

fault-free state justification can be easily done by choosing the state justification

sequence for the excitation state from Ssi.

No backtracking is required and no failure can occur in this step. The next

step is to confirm if the fault-free state justification sequence is also valid for the

faulty circuit. This is confirmed by fault simulation using the fault-free state

justification sequence and observing if any invalidation occurs. Figure 3.8 shows

an example of an invalidation. An invalidation means that a state transition of

the faulty circuit is different from the fault-free circuit. If an invalidation occurs,

the state justification sequence cannot justify the given excitation state because

the state justification sequence is not guaranteed to work under the faulty circuit.

However, if an invalidation occurs, some error must appear on the pseudo primary

outputs of some frame (we call this an actual excitation state) between the reset

frame and the fault excitation frame. We try to propagate errors from the actual

excitation state. If some error appears on the primary outputs between the reset

frame and the fault excitation frame, the fault is detected.

31

Sr S0 S1

S1

S2 S3Actual excitation
state Excitation state

Invalidation

State transition under
fault-free circuit

S2

State transition under
faulty circuit

Sr S0 S1

S1

S2 S3Actual excitation
state Excitation state

Invalidation

State transition under
fault-free circuit

S2

State transition under
faulty circuit

Figure 3.8. An example of an invalidation.

5.3 Error Propagation

If a fault is not identified as detected or untestable by the first two processes, er-

ror propagation is performed. Time frames of length k are added to the (actual)

fault excitation frame. The error propagation process determines primary input

values of the expanded time frames to propagate an error to a primary output.

This process may not propagate any error to any primary output and any pseudo

primary output because errors may be masked by the multiple faults within the

added k time frames. In this case, we try to search a different excitation state

by returning to the fault excitation process. On the other hand, any error is not

propagated to any primary output but any error is propagated to some pseudo

primary output of the last time frame. This is because k-state distinguishing

sequence is not guaranteed for faulty circuit. Therefore, in order to make error

propagation complete, the number of time frames expanded from the fault exci-

tation frame has to be increased (e.g., k = k × 10, where this number 10 might

be changed empirically). We perform fault excitation again.

32

6. Experimental Results

Table 3.1 and Table 3.2 show characteristics of the MCNC FSM benchmarks[10]

and the results of SFT. All the experiments except for the proposed SFT were

performed on a SUN Blade 2000 (CPU 1GHz × 2) with 8GB memory. The

experiments for the proposed SFT were performed on a PC/AT machine (CPU

Athlon 3000+) with 1GB memory. Design Compiler (Synopsys) is used as a

logic synthesis tool for the Step 6 of the proposed SFT method. The number of

benchmarks is 53. For all the benchmarks, the proposed method could perform

until Step 5. However, Design Compiler was unable to perform Step 6 for 14

benchmarks because of restrictions on Design Compiler. One of the restrictions

is that the size of FSM descriptions which Design Compiler can read is limited.

All the benchmarks shown in Table 3.1 and Table 3.2 were synthesized by using

some optimization options which optimize the area and the delay of a circuit. The

first four columns give the benchmark name and the numbers of primary inputs,

primary outputs and states, respectively. The column “k” gives the maximum

length of the state distinguishing sequences. The columns “#EO,” “HOH” and

“#MLG” give the results of the proposed SFT. The column “#EO” denotes

the number of extra outputs added to each benchmark. The column “HOH”

denotes the hardware overhead which is the ratio of the area of the sequential

circuit synthesized by the proposed SFT to that of the original sequential circuit

synthesized by the ordinary synthesizer. The subdivided columns “Orig.” and

“Prop.” in “#MLG” are the maximum level of gates in the original sequential

circuit and that of gates in the sequential circuit obtained by the proposed SFT,

respectively.

In this experiment, the maximum number of outputs added to the FSMs is

two: one for distinguishing between valid and invalid states and the other for

making the given FSM reduced. The number of extra outputs decreases when

the FSM is reduced by only assigning values to the don’t cares in the output

vectors of the FSM.

The average hardware overhead is 30.18%. However, the hardware overhead

of the circuit ‘pma’ is more than 300%. It is considerable that the logic synthesis

tool may not be able to simplify logic because we assign logic values to coordinates

with don’t cares in input vectors and output vectors to make a given FSM reduced.

33

However, a hardware overhead may be able to be reduced by carrying out recoding

of input vectors and output vectors. Hence, still there is room for research on

how to assign coordinates with don’t cares in input vectors and output vectors

during SFT.

The maximum time spent for the proposed SFT method is about twenty

minutes. For small circuits (ex. lion, bbara, bbsse, bbtas and so on), the time

spent for the SFT is 0.1 second or less. Notice that since we have no way to

obtain the optimal length of state distinguishing sequences, in the experiments,

we determined a practical length k by running trials as follows. For an FSM,

we set a time limit to determine k for the trials. For k, we tried recursively

to create k-partial state distinguishing tree and to confirm that there exists a

state distinguishing sequence of length less than or equal to k for each pair of

states of an FSM by running the procedure of Step 2.2 in the proposed SFT

method. If the whole run time of the trials exceeds the time limit or the number

of distinguishable states does not increase compared with that of the previous

trial, we take k of the previous trial. Otherwise, we increment k by one and

perform the next trial. In the experiments, we incremented k from one and set

the time limit one hour for each benchmark circuit. To find a way to do that is

included in our future work.

For almost all the circuits, the maximum level of gates in the sequential cir-

cuits obtained by the SFT is less than that in the sequential circuit synthesized

from the FSM without using the SFT. However, the maximum level of gates in

some circuits synthesized by the proposed SFT becomes about twice compared

with that synthesized by the ordinary synthesizer. In this case, the performance

of these circuits degrades from the original sequential circuits. Typically, the

maximum level of gates in these circuits is much less than that of the data path

in a VLSI. We believe that the performance of these circuits depends on the per-

formance of a data path and the delay of a circuit is able to be absorbed on the

data path side.

Table 3.3 and Table 3.4 show the test generation results for three different

methods. Method 1 applies TestGen (Synopsys) to the original sequential circuit

synthesized from the FSM without using the proposed SFT. Method 2 applies

TestGen to the sequential circuit obtained by the proposed SFT. Method 3 applies

34

Table 3.1. Characteristics of FSM benchmarks and results of SFT.

Circuit #Input #Output #State k #EO HOH (%)
#MLG

Prop. Orig.

bbara 6 2 10 3 2 3.36 14 17

bbsse 9 7 13 2 1 43.03 28 34

bbtas 4 2 6 5 1 3.45 11 8

beecount 5 4 7 2 1 12.82 27 11

cse 9 7 16 1 0 27.3 22 30

dk14 5 5 7 1 1 -0.28 22 26

dk15 5 5 4 1 0 0 18 18

dk16 4 3 27 2 1 9.76 48 39

dk17 4 3 8 1 0 0 15 15

dk27 3 2 7 2 1 -1.28 12 8

ex1 11 19 20 1 1 69.61 34 35

ex3 4 2 10 2 1 35.15 18 23

ex4 8 9 14 1 1 16.36 16 25

ex5 4 2 9 2 1 39.56 17 18

ex6 7 8 8 1 0 -1.69 17 26

keyb 9 2 19 1 1 44.6 36 29

kirkman 14 6 16 1 0 104.34 45 44

lion 4 1 4 2 0 0 9 12

lion9 4 1 9 6 1 14.29 17 33

35

Table 3.2. Characteristics of FSM benchmarks and results of SFT. (cont.)

Circuit #Input #Output #State k #EO HOH (%)
#MLG

Prop. Orig.

mc 5 5 4 1 0 0 6 8

opus 7 6 10 1 1 28.52 21 28

planet 9 19 48 2 1 24.76 41 33

planet1 9 19 48 2 1 24.76 41 33

pma 10 8 24 1 1 303.04 100 59

s1 10 6 20 1 1 -5.83 47 67

s1488 10 19 48 2 1 -0.71 48 88

s1494 10 19 48 2 1 -20.73 42 73

s208 13 2 18 3 2 2.41 23 24

s27 6 1 6 2 2 4.4 14 15

s298 5 6 218 6 2 11.68 107 146

s386 9 7 13 2 1 -1.47 29 41

s420 21 2 18 1 2 56.02 14 24

styr 11 10 30 1 2 62.42 41 30

sse 9 7 16 1 0 77.27 76 48

tma 9 6 20 1 1 120.75 5 8

tbk 8 3 32 1 1 36.39 46 67

tav 6 4 4 3 0 0 48 50

train11 4 1 11 2 2 28.83 26 19

train4 4 1 4 2 0 4.08 8 17

36

the proposed test generation method to the sequential circuit obtained by the

proposed SFT. The column “TGT [s]” denotes the time, in seconds, which was

spent on the test generation excluding the fault simulation time. The subdivided

columns “m1,” “m2” and “m3” denote the method 1, the method 2 and the

method 3, respectively. The column “TTGT [s]” denotes the time, in seconds,

which is the sum of “TGT” and the fault simulation time. The fault simulation

time is calculated by “TTGT” - “TGT.” The time ‘> 10h’ in the columns “TGT

[s]” and “TTGT [s]” means that the test generation did not finish within 10

hours.

All the methods performed the equivalent fault analysis and the fault simula-

tion which is implemented in TestGen. Since our test generator does not have the

desired fault simulation capability, the method 3 requires a call to the external

fault simulator. Therefore, in order to compare the test generation time of the

proposed method with that of TestGen on equal terms, we performed the fault

simulation for the test sequence obtained by the test generation.

The total test generation time for each benchmark of the method 3 is shorter

than that of the other methods. For some benchmarks, the total test generation

time of the method 2 is longer than that of the method 1. For all the experiments

of the method 3, k was not increased. In other words, the error propagation

process of the method 3 performed completely within k frames expanded for the

process where k was given as the input of our proposed ATPG. We believe that

the method 3 can effectively use the knowledge obtained by the SFT but the

method 2 cannot effectively use it. The average total test generation time of the

method 1, that of the method 2 and that of the method 3 are 9694.06 (s), 3371.99

(s) and 2.97 (s), respectively. The actual average total test generation time of

the method 1 and the method 2 will be longer because these methods did not

achieve 100% fault efficiency for some circuits. The method 3 identified all the

untestable faults within reasonable time.

The columns “FC [%],” “FE [%],” and “TSL” are the fault coverage, the fault

efficiency and the length of the test sequence, respectively. The method 3 can

achieve 100% fault efficiency for all the benchmarks within reasonable time and

the time is shorter than both the test generation time of the method 1 and that

of the method 2. However, the method 1 and the method 2 did not achieve 100%

37

fault efficiency for several these benchmarks. Particularly, both the method 1

and the method 2 for ‘s298’ did not achieve 100% fault efficiency within 10 hours.

The proposed method can perform faster test generation than the conventional

method for benchmarks.

The test sequence length of the method 3 is shorter than that of the other

methods for about a half of benchmarks. There are some cases where the test

sequence length of the method 3 is longer than that of the other methods, this is

because TestGen uses techniques of test sequence compression.

7. Summary

In this chapter, we proposed a method for high speed test generation for se-

quential circuits with some specific characteristics. Such a sequential circuit can

be synthesized from a given FSM by the synthesis for testability (SFT) method

which takes the features of our test generation method into consideration. We

accelerated test generation for sequential circuits by utilizing the knowledge that

consisted of a set of state justification sequences, the maximum length of state dis-

tinguishing sequences, the number of valid states, and the value of the reset state

extracted by the SFT. The experimental results show that the proposed method

can achieve 100% fault efficiency in shorter test generation time compared to a

state of the art test generator.

38

T
ab

le
3.

3.
T
es

t
ge

n
er

at
io

n
re

su
lt

s
fo

r
ea

ch
m

et
h
o
d
.

C
ir

cu
it

T
G

T
[s

]
T

T
G

T
[s

]
F
C

[%
]

F
E

[%
]

T
S
L

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

b
b
ar

a
>

10
h

2.
12

0.
09

>
10

h
2.

26
0.

24
94

.9
5

95
.6

3
95

.6
3

96
.4

6
10

0.
00

10
0.

00
89

1
69

0
48

6

b
b
ss

e
1.

70
2.

03
0.

28
1.

83
2.

23
0.

44
98

.2
7

97
.4

6
97

.4
6

10
0.

00
10

0.
00

10
0.

00
48

6
76

2
80

1

b
b
ta

s
1.

60
2.

89
0.

03
1.

68
3.

03
0.

11
98

.6
1

95
.2

4
95

.2
4

10
0.

00
10

0.
00

10
0.

00
27

6
31

8
21

6

b
ee

co
u
n
t

0.
26

0.
28

0.
02

0.
38

0.
38

0.
14

97
.5

3
97

.8
0

97
.8

0
10

0.
00

10
0.

00
10

0.
00

34
2

28
5

27
0

cs
e

2.
28

1.
69

0.
21

2.
49

1.
87

0.
40

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

11
19

91
5

92
4

d
k
14

0.
32

0.
29

0.
02

0.
45

0.
41

0.
13

98
.6

1
98

.2
1

98
.2

1
10

0.
00

10
0.

00
10

0.
00

30
0

28
8

27
0

d
k
15

0.
09

0.
15

0.
00

0.
21

0.
28

0.
11

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
8

10
8

11
7

d
k
16

>
10

h
92

.7
5

0.
63

>
10

h
93

.0
6

0.
87

98
.2

9
98

.1
7

98
.1

7
99

.7
4

10
0.

00
10

0.
00

13
23

13
68

95
1

d
k
17

0.
13

0.
12

0.
02

0.
22

0.
24

0.
16

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

17
1

18
0

17
1

d
k
27

0.
10

0.
12

0.
00

0.
21

0.
21

0.
11

95
.5

9
94

.4
4

94
.4

4
10

0.
00

10
0.

00
10

0.
00

81
75

54

ex
1

55
38

.0
5

>
10

h
1.

02
55

38
.2

3
>

10
h

1.
32

97
.5

7
98

.5
2

98
.5

2
10

0.
00

99
.8

9
10

0.
00

90
6

10
26

99
0

ex
3

10
.5

3
0.

53
0.

06
10

.6
5

0.
65

0.
19

96
.4

6
97

.2
7

97
.2

7
10

0.
00

10
0.

00
10

0.
00

37
2

39
9

33
0

ex
4

0.
82

0.
31

0.
03

0.
97

0.
39

0.
15

97
.0

8
97

.0
8

97
.0

8
10

0.
00

10
0.

00
10

0.
00

66
0

30
6

37
2

ex
5

56
39

.3
3

3.
86

0.
04

56
39

.4
4

3.
96

0.
16

95
.6

5
95

.2
0

95
.2

0
10

0.
00

10
0.

00
10

0.
00

41
7

39
0

29
4

ex
6

0.
19

0.
16

0.
01

0.
30

0.
27

0.
14

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

24
0

18
3

20
1

ke
y
b

10
.3

9
30

.2
0

1.
12

10
.5

9
30

.4
2

1.
35

97
.8

1
97

.3
8

97
.3

8
10

0.
00

10
0.

00
10

0.
00

10
50

11
04

11
88

k
ir

k
m

an
1.

13
1.

51
0.

61
1.

34
1.

80
0.

96
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
14

37
16

98
18

39

li
on

0.
08

0.
11

0.
00

0.
16

0.
22

0.
08

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

12
0

12
0

81

li
on

9
>

10
h

36
.6

9
0.

05
>

10
h

36
.8

1
0.

16
95

.7
1

95
.6

2
95

.6
2

98
.5

7
10

0.
00

10
0.

00
40

8
45

6
43

2

39

T
ab

le
3.

4.
T
es

t
ge

n
er

at
io

n
re

su
lt

s
fo

r
ea

ch
m

et
h
o
d
.

(c
on

t.
)

C
ir

cu
it

T
G

T
[s

]
T

T
G

T
[s

]
F
C

[%
]

F
E

[%
]

T
S
L

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

m
1

m
2

m
3

m
c

0.
09

0.
09

0.
00

0.
19

0.
20

0.
07

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

87
87

51

op
u
s

7.
72

7.
19

0.
10

7.
85

7.
30

0.
22

98
.7

6
96

.5
0

96
.5

0
10

0.
00

10
0.

00
10

0.
00

40
8

45
6

49
8

p
la

n
et

15
62

.3
0

11
60

.2
0

2.
26

15
62

.8
3

11
60

.9
5

3.
22

98
.9

6
98

.9
7

98
.9

7
10

0.
00

10
0.

00
10

0.
00

27
21

34
26

39
63

p
la

n
et

1
15

62
.3

0
11

60
.2

0
2.

26
15

62
.8

3
11

60
.9

5
3.

22
98

.9
6

98
.9

7
98

.9
7

10
0.

00
10

0.
00

10
0.

00
27

21
34

26
39

63

p
m

a
>

10
h

10
18

5.
70

25
.7

1
>

10
h

10
18

7.
76

27
.8

8
98

.8
3

99
.4

4
99

.4
4

99
.6

1
10

0.
00

10
0.

00
12

48
44

04
45

27

s1
48

8
12

82
.4

1
45

44
.7

4
1.

18
12

83
.0

0
45

45
.4

3
1.

79
98

.7
4

99
.0

1
99

.0
1

10
0.

00
10

0.
00

10
0.

00
27

87
36

93
31

29

s1
49

4
19

65
.0

4
60

27
.3

3
1.

37
19

65
.6

0
60

27
.9

5
2.

07
98

.7
1

98
.8

7
98

.8
7

10
0.

00
10

0.
00

10
0.

00
26

76
28

56
33

75

s1
>

10
h

17
0.

99
1.

01
>

10
h

17
1.

23
1.

22
97

.0
2

96
.8

4
96

.8
4

99
.4

6
10

0.
00

10
0.

00
11

82
15

42
97

2

s2
08

>
10

h
2.

45
0.

04
>

10
h

2.
55

0.
18

95
.0

0
94

.4
4

94
.4

4
98

.5
7

10
0.

00
10

0.
00

60
3

61
2

51
0

s2
7

0.
27

0.
19

0.
12

0.
36

0.
28

0.
21

91
.0

3
90

.1
2

90
.1

2
10

0.
00

10
0.

00
10

0.
00

10
2

10
2

81

s2
98

>
10

h
>

10
h

48
.0

1
>

10
h

>
10

h
57

.0
9

95
.7

5
95

.7
5

92
.1

2
96

.1
2

92
.5

6
10

0.
00

29
32

5
22

42
2

14
05

2

s3
86

4.
60

2.
44

0.
16

4.
78

2.
60

0.
30

97
.2

2
96

.2
7

96
.2

7
10

0.
00

10
0.

00
10

0.
00

66
3

79
5

56
7

s4
20

>
10

h
3.

66
0.

08
>

10
h

3.
78

0.
22

95
.0

0
96

.1
2

96
.1

2
98

.5
7

10
0.

00
10

0.
00

65
1

85
8

10
20

ss
e

37
7.

75
1.

61
0.

44
37

7.
91

1.
79

0.
63

97
.1

7
97

.2
6

97
.2

6
10

0.
00

10
0.

00
10

0.
00

54
3

64
5

74
7

st
y
r

18
.3

0
30

.2
2

4.
25

18
.7

9
30

.9
2

4.
95

99
.5

4
99

.7
2

99
.7

2
10

0.
00

10
0.

00
10

0.
00

23
67

24
60

17
83

ta
v

0.
09

0.
11

0.
01

0.
18

0.
19

0.
11

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

81
81

12
0

tb
k

>
10

h
7.

47
2.

99
>

10
h

8.
12

3.
08

98
.8

5
10

0.
00

10
0.

00
98

.8
5

10
0.

00
10

0.
00

12
00

25
86

20
25

tm
a

>
10

h
>

10
h

1.
17

>
10

h
>

10
h

1.
69

99
.0

2
98

.9
2

98
.9

2
99

.4
1

99
.9

1
10

0.
00

78
9

12
87

12
33

tr
ai

n
11

55
.0

1
0.

71
0.

05
55

.1
3

0.
86

0.
18

97
.3

1
97

.0
6

97
.0

6
10

0.
00

10
0.

00
10

0.
00

34
2

30
0

32
1

tr
ai

n
4

0.
13

0.
13

0.
00

0.
23

0.
22

0.
09

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

12
0

13
8

99

40

Chapter 4

Design for Testability of

Software-Based Self-Test for

Processors

1. Introduction

In recent years, it has been essential that processors with high performance and

rich functionality have accurate and at-speed testing. Though the full-scan ap-

proach is commonly used due to its simplicity, it induces performance penalty,

area overhead and excessive power consumption. The hardware built-in self-test

(BIST), which is one of the other widely used techniques, applies pseudo-random

test patterns to modules on the circuit at the normal operational speed. However,

design modifications are required to make a circuit to be BIST-ready, and involve

large amount of manual effort. The BIST also induces area overhead. Further-

more, an application of random patterns results in excessive power consumption.

A number of approaches [11-17] have been proposed for software-based self-

test (SBST) as a promising approach to resolve the above problems. In SBST, we

test a processor by executing a sequence of instructions called a test program. A

processor can be tested by communicating with the memory, and thus it enables

at-speed testing. We use communication between the memory and the outside

ATE as pre- and post-processes of the execution of the test program.

Some methods among the SBST methods generate a test program based on

41

test program templates targeting structural faults to achieve the high fault cover-

age [13-17]. In this approach, gate-level test generation is applied to generate test

patterns for each module under test (MUT) of a processor (MUT test generation),

and a test program is synthesized from test patterns (test program synthesis),

where a test program justifies the test pattern from the memory to the MUT

and propagates the test response from the MUT to the memory. To guarantee

the test program synthesis, test program templates are used. A test program

template is an instruction sequence with unspecified operands that delivers a test

pattern to an MUT and observes the test response. The approach extracts con-

straints on the input and output of the MUT from each template, and applies

test generation for the MUT under the constrains. In this approach, we can easily

synthesize a test program from a test pattern for the MUT. However, the justifi-

cation and observation parts consider only behavior of a fault-free processor and

do not consider behavior of a faulty processor, and such parts might not work as

expected. In this case, some faults detected by a test pattern for an MUT may

not be detected by the synthesized test program. We call such a phenomenon

“error masking.”

In this chapter, we propose a design for testability (DFT) method that com-

pletely resolves the problem of error masking for any test program generated by

the template-based SBST approach for the stuck-at fault. We show a sufficient

condition for avoiding error masking and propose the DFT method which satis-

fies the sufficient condition. In the experimental results, we show the hardware

overhead caused by the proposed DFT method and results of the execution of

a test program for processors before/after applying the proposed DFT method.

The proposed method enables at-speed testing.

This chapter is organized as follows. In sections 2 and 3, we show a processor

model and test program generation using templates, respectively. In section 4,

we analyze error masking and define template level fault efficiency. In section

5, we propose a sufficient condition for avoiding error masking. In section 6, we

propose a DFT method of SBST for processors and the experimental results are

shown in section 7. Finally, the paper is concluded in section 8.

42

CM

CM CM CM

CM

Registers

Memory

CM : Combinational Module
SM ：Sequential ModuleSM

Registers

Figure 4.1. An example of a processor.

2. Processor Model

A processor is specified by register transfer level (RTL) description. Figure 4.1

illustrates an example of a processor. A processor consists of combinational mod-

ules such as arithmetic logic unit (ALU) or multiplexer (MUX), sequential mod-

ules such as a controller specified as a finite state machine, signals where a signal

is referred to as an RTL signal that connects the modules, and buses. A bus

considered to be a tri-state bus[21]. For a fault-free processor, we also assume

the following about tri-state buses.

(1) Two or more inputs of a tri-state bus are not activated simultaneously.

(2) Each output of the tri-state bus has a masking circuit that generates a logic

value (‘0’ or ‘1’), and an output of a tri-state bus is masked into some

specific logic value if any input of the tri-state bus is not activated.

A processor is assumed to be synthesized while preserving the hierarchy of the

modules, and therefore each module can be identified in a gate-level description.

43

Interface Justification
Instruction Sequence

Test Instruction
Sequence

Interface Observation
Instruction Sequence

op# : Unspecified operand

LHI op1 op2
ADD.I op4 op1 op3
LHI op6 op5
ADD.I op8 op6 op7
LHI op10 op9
ADD.I op12 op10 op11
LHI op14 op13
ADD.I op16 op15 op14
LW op17 op8(op4)
ADD op18 op16 op12
SUB op19 op20 op21

LHI op23 op22
ADD.I op25 op23 op24
LHI op27 op26
ADD.I op29 op27 op28
SW op19 op25(op29)

Figure 4.2. An example of a template.

3. Test Program Generation based on Templates

We first explain test program generation using test program templates. In the

rest of this chapter, we call a test program template a template. Figure 4.2 illus-

trates an example of a template, which consists of three sequences: a justification

instruction sequence, a test instruction sequence and an observation instruction

sequence. A justification instruction sequence is utilized for justifying test pat-

terns to registers which are adjacent to inputs of an MUT. A test instruction

sequence applies test patterns to the MUT and propagates the test response to

registers that are adjacent to outputs of the MUT or the memory. An obser-

vation instruction sequence propagates the test response stored in registers to

the memory. For each template, we extract constraints about the input space

and the output space of the MUT and perform the MUT test generation under

constraints.

Figure 4.3 illustrates a model of an MUT test generation under constraints

extracted from a template. The input and output constraint are extracted from

44

Input
constraintop1

op2
op3

op26
op27

op28 Output
constraint

MUT

Input
constraintop1

op2
op3

op26
op27

op28 Output
constraint

MUT

Figure 4.3. A model of an MUT test generation.

a justification instruction sequence and the test instruction sequence, and the

test instruction sequence and an observation sequence, respectively. The both

constraints represent the behavior which includes the operation of the MUT. If

the processor is fault-free, a test program synthesized from test patterns generated

by using the model in Fig. 4.3 can justify test patterns to the inputs of the MUT

and observe the test responses. However, in the case of the faulty processor, the

both constraints show the incorrect behavior because the MUT appears and is

utilized during the executing of the test program. Therefore, the test program

synthesized from the test generation model might not justify test patterns to the

inputs of the MUT and observe the test responses. Throughout the paper, we

call a test program obtained by the test program generation template-based test

program and restrict fault model to a stuck-at fault.

4. Error Masking

4.1 Template Level Fault Efficiency

In the test program generation method using templates, justification instruction

sequences, and observation instruction sequences are generated only in considera-

tion of the behavior of the fault-free processor. When applying a test program to

the faulty processor, errors may appear during the execution of these sequences.

45

Therefore, we cannot guarantee that the test program justifies test patterns of

the MUT, or observe the test response. This means that some faults detected in

the MUT test generation may not be detected by the test program synthesized

from the test. We call this phenomenon “error masking.” In this chapter, we

define template level fault efficiency (FET) as measure to evaluate error masking

as follows:

FET =
FTP

FMT

,

where FMT is the number of faults detected in the MUT test generation and FTP

is the number of faults detected by the test program among the FMT faults. A

template level fault efficiency of 100% means that there is no error masking.

4.2 Analyzing Error Masking

Figure 4.4 illustrates examples of error masking using a time frame expansion

model of the execution of a test program, where each time frame corresponds

to one clock. In the time frame expansion model, time frames that apply test

patterns to the MUT are called “test frame”, while time frames before the test

frame are called “justification frame” and time frames after the test frame are

called “observation frame”. Modules MJ , MT and MO denote the same MUT

which appears repeatedly in each time frame. The following phenomena can be

considered.

Figure 4.4 (a) illustrates an example of error masking induced by an unknown

value. In this figure, we describe the value of an RTL signal as “the value in fault-

free circuit/value in faulty circuit.” Values in gray field denotes the propagated

values which include unknown values. In Fig. 4.4 (a), unknown values reach

an input of MJ and the specified values reach another input. If MJ operates

correctly, unknown values do not appear the output of its module. However, if

MJ operates incorrectly under the effect of the fault, values ‘11/1X’ which include

an unknown value is propagated through its module. Therefore, values ‘01/0X’

which include an unknown value are propagated to an input of MT at the test

frame and fail to activate the fault at the test frame.

Figure 4.4 (b) illustrates an example of error masking induced by a cycle. In

Fig. 4.4 (b), the fault is excited at MJ of the justification frame and errors appear

46

PI1

PIm
XX/XX

11/11

11/1X

10/10

01/0X

MJ
01/0X

PO1

POn

Justification Frame Observation Frame

MT

00/1X

11/0X

Test Frame

（a）

PI1

PIm

11

MJ

Justification Frame

MT

Test Frame

00

1D
0D

00

00

（b）

Observation Frame

MT

Test Frame

MR
MO

1D

1D

1D
p1

p2

（c）

Figure 4.4. Examples of error masking：(a) unknown values are propagated to

RTL signals; (b) errors reach the MUT; (c) errors are propagated to two RTL

signals and meet at some module in some frame.

the output of its module. The errors reach inputs of MT in the test frame. A

fault of MT is not excited because incorrect test patterns reach to inputs of its

module. In this case, there is a cycle that includes the MUT.

Figure 4.4 (c) illustrates an example of error masking induced by the conver-

gence of errors. In Fig. 4.4 (c), the same fault in MT and MO is excited, and

errors are propagated to two paths p1 and p2 meet at some module MR. The

multiple errors mask each other in MR in the observation frame and no error is

propagated to the output of MR. The phenomenon in Figure 4.4 (c) might occur

if there are reconvergent paths between the MUT and some module.

47

5. Sufficient Condition for Avoiding Error Mask-

ing

In this section, we show a sufficient condition for avoiding error masking. In the

sufficient condition, we utilize a reconvergent path.

Definition 8 (Reconvergent path) Let M and M ′ be modules. Paths pi and

pj are reconvergent paths from M to M ′ if both pi and pj are paths from M to

M ′, and pi and pj share no module except M and M ′.

We give the following two assumptions for a test program.

• The value stored in the memory cell referred to during the execution of the

test program is known. That is, in the fault-free processor, unknown values

are not propagated from the memory to the processor.

• The memory cell referred to during the execution of the test program is

initialized to a different value from the expected value, which will be stored

in the memory cell during the execution of the test program.

In this chapter, we consider a fault is detected in the following cases.

(A1) No value or an incorrect value is stored in some memory cell where the test

program should write some expected value.

(A2) The test program fails to read a value from a memory cell designated to

be read in the test program.

The second condition (A2) holds if the memory address lines are observable.

However, even if they are not observable, we consider such incorrect behavior

would cause some observable errors.

To guarantee that the proposed method can achieve 100% template level fault

efficiency, we show a sufficient condition for a processor such that error masking

does not occur during the execution of the template-based test program. In the

proof of theorem 1, we consider four values ‘0’, ‘1’, ‘X’ (uninitialized value) and

‘Z’ (high-impedance) for each bit of an RTL signal line. We consider ‘X’ and ‘Z’

to be unknown value, and an error of an RTL signal line means that at least one

bit has different known values.

48

Theorem 1 For any template-based test program, error masking does not occur

during the execution of the test program if a processor satisfies the following four

conditions.

(1) Each register is initialized at the beginning of the execution of the test pro-

gram.

(2) All the control signals of each tri-state bus and its masking circuits are ob-

servable.

(3) For each cycle, at least one RTL signal on the cycle is observable.

(4) For each pair of reconvergent paths, at least one RTL signal on the two paths

is observable.

Proof :

Let f be a stuck-at fault detected by an MUT test generation in template-

based test program generation. We consider the execution of a test program for

f . Let M be a module with f .

First we show that f is detected or the value of any RTL signal of the processor

is known.

Since all the registers are initialized to known values at the beginning from

condition (1), if some signal has an unknown value, it comes from the outside

or is generated at the inside of the processor. If f is not detected, (A2) implies

that values are read from the same memory addresses in both correct and faulty

processors. Since the memory cells where the test program refers to have known

values, unknown values are not propagated from the outside of the processor.

Moreover, if f is not detected, condition (2) implies that there is no error on

control signals or masking circuits of tri-state buses. Therefore, any output of

any bus has a value of some activated input of the bus or a known value generated

by its masking circuit. Since the value of any RTL signal can be determined by

values of primary inputs, registers, and bus outputs, any RTL signal has a known

value.

Then we show that the test pattern reaches M or f is detected. We assume

that the test pattern of f does not reach the inputs of M . We consider the

registers used in order to justify this test pattern in the correct operation of the

49

processor. In this case, there is a bit b of a register among them such that b has

a different value from the correct value. If f is not detected, any RTL signals

have known values and the value of b is an error. Since an error is only caused

by f of M , a path P through b from an output of M to an input of M exists

and the error is propagated on P . Since at least one RTL signal on each cycle

is observable from condition (3), at least one RTL signal on P is observable and

the fault is detected. Therefore, the test pattern for f reaches the inputs of M

or f is detected.

Finally, we show that the test response of M is propagated to an intended

primary output or f is detected. The output of M can be observed at a primary

output in the fault-free processor. Therefore, there exists a path P such that

an error is propagated from M to an primary output. Suppose the fault is not

detected. In this case, an error is not propagated to any primary output, and

there exists a module M ′ such that the error is prevented from propagating on P .

If M ′ is not faulty and errors are propagated to M ′ only through P , the errors

are propagated to the outputs of M ′. Therefore, (a) M ′ is faulty that is M = M ′,

or (b) errors are propagated to some inputs of M ′ which are not on P .

(a) If M ′ is M , errors are propagated on a cycle, and are observed from

condition (3) and therefore f is detected.

(b) If errors are propagated to some inputs of M ′ which is not on P , errors are

propagated on two reconvergent paths from M to M ′. By condition (4), errors

are observed and f is detected.

Therefore, a fault f detected by MUT test generation can be detected during

the execution of a test program synthesized from the test pattern for f .

2

6. Design for Testability Avoiding Error Mask-

ing of Software-Based Self-Test

6.1 Formulation

We propose a DFT method to avoid error masking. First, we consider the fol-

lowing DFT element since we add only initialization functions of registers and

50

observable poins to the original design in order to satisfy the sufficient condition

in theorem 1.

• Add a function to initialize a register

• Add an observation point to an RTL signal

Since an advantage of SBST is the possibility of at-speed testing, it is im-

portant that the processor after DFT also preserves the possibility of at-speed

testing. Therefore, we capture the values of RTL signals at the normal operational

speed. We use a multiple input signature register (MISR) for this purpose.

In order to satisfy the sufficient condition, it is necessary to add an initializa-

tion function to a register which do not have it. Therefore, it is not necessary

to consider an optimization problem which adds an initialization function. We

formulate the problem to minimize the number of observation points as follows.

Error Masking Resolution Problem:

Input: An RTL description of a processor

Output: An RTL description of an augmented processor that can achieve 100%

template level fault efficiency for any template-based test program

Objective: To minimize the sum of the bitwidths of RTL signals that are made

observable

6.2 Algorithm

We propose a heuristic algorithm in order to solve the error masking resolution

problem. In the proposed algorithm, we utilize a circuit graph, a reconvergent

structure and a reconvergent path dependency graph.

Definition 9 (Circuit Graph) The circuit graph is a directed graph of an RTL

circuit GC = (VGC
, EGC

), where v ∈ V is a vertex corresponding to a combina-

tional module, a sequential module, a register, a primary input and a primary

output and e ∈ EGC
is an edge corresponding to an RTL signal and has the

weight corresponding to the bitwidth of the RTL signal.

51

M1

M5

M2
M3

M4

e1

e2

e3

e4 e5

e6

e7

Path:

p1: e1, e4, e7

p2: e2, e5, e7

p3: e2, e6

p4: e3

p5: e1, e4

p6: e2, e5

p7: e5, e7

p8: e6

Figure 4.5. The circuit graph of the reconvergent structure.

Definition 10 (Reconvergent Structure) Let M and M ′ be modules. A set

of all the paths from M to M ′ is called a reconvergent structure S.

Definition 11 (Path Dependency Graph) Let VReconvP be a set of paths in

all the reconvergent structures. Let E(p) be a set of edges in a path p. A reconver-

gent path dependency graph is a bipartite graph GRPD = (VReconvP ∪ Ve, EGRPD
),

where Ve =
∪

p∈VReconvP

E(p), and EGRPD
= {(p, e) | p ∈ VReconvP , e ∈ E(p)}.

Figure 4.5 illustrates an example of circuit graph of a reconvergent structure

and names of paths. Figure 4.6 illustrates a path dependency graph corresponding

to the reconvergent structure in Figure 4.5. From the path dependency graph,

we can identify which paths share an edge.

The proposed algorithm consists of the following four steps.

Step 1: For each register, an initialization function is added if the register does

not have the function, and all the control signals of each tri-state bus and

all the control signals of its masking circuits are made observable.

Step 2: The circuit graph GC of the processor is generated.

Step 3: For each cycle in the circuit graph, at least one RTL signal on the cycle

is made observable.

Step 4: For each reconvergent path, at least one RTL signal is made observable.

52

p1 p2 p3 p4

e1 e2 e3 e4 e5 e6 e7

Ve

VRconvP

p5 p6 p7 p8p1 p2 p3 p4

e1 e2 e3 e4 e5 e6 e7

Ve

VRconvP

p5 p6 p7 p8

Figure 4.6. The path dependency graph.

We describe the details the Step 1, Step 3 and Step 4 of the algorithm as

follows because the circuit graph generated at Step 2 has already defined.

Step 1:

For each register in the processor, an initialization function is added. This

initialization function is controllable from a primary input. Since, in general,

the processor needs some controls from the outside, a primary input utilized

for initializing the registers can be shared for such control. Therefore, it is not

necessary to add a new primary input.

Step 3:

In this step, we find a set of RTL signals such that every cycle has at least

one RTL signal in the set and the sum of the bitwidths of RTL signals in the set

is the minimum. We perform the following four steps.

Step 3.1:

We find a cycle C such that the sum of the weight of edges is the minimum by

using the minimum cost to profit ratio cycles algorithm in [18]. Then the edge ei

with the minimum weight in C, ei is removed from GC . This process is repeated

until GC becomes acyclic. For later steps, we store the set Cmin of selected cycles.

All the removed edges are restored to GC .

Step 3.2:

Let Ecut denote a set of edges corresponding to the RTL signalsto be observed.

We initialize Ecut to be empty. From the set of edges in Cmin, the edge ei with

the minimum weight among the edges that appear in the maximum number of

53

cycles in Cmin is selected. The edge ei is removed from GC and added to Ecut,

and the cycles that include ei are removed from Cmin. This process is repeated

until Cmin becomes empty.

Step 3.3:

Step 3.1 and 3.2 are repeated until GC becomes acyclic. The circuit graph

obtained in this step is referred to as Gα
C .

Step 3.4:

If some of the edges in Ecut obtained by processing from Step 3.1 to Step 3.3

is added to Gα
C , the circuit graph may not become cyclic. For each ec ∈ Ecut, if

the circuit graph becomes acyclic when ec is added to it, ec is removed from Ecut

and ec is restored to GC . The circuit graph obtained in this step is referred to as

Gβ
C .

Step 4:

Let P be a set of paths in all the reconvergent structures in Gβ
C . We find a

set of RTL signals such that every path has at least one RTL signals in the set

and the sum of the bitwidths of RTL signals in the set is minimum. We perform

the following four steps.

Step 4.1:

We generate the path dependency graph GRPD = (VReconvP ∪Ve, EGRPD
) from

all the reconvergent structures in Gβ
C .

Step 4.2:

For each vertex vi ∈ Ve in GRPD, we calculate a bit rate Rvi
. The bit rate Rvi

is

obtained by Rvi
=

Wvi

Nvi
, where Wvi

is the bitwidth of the RTL signal corresponding

to vi and Nvi
is the outdegree of vi in GRPD. The bit rate means how may bits

needed to make one path observable, and is used to observe more paths by less

bitwidths.

Step 4.3:

The edge ei with the minimum bit rate in EGRPD
is selected, and vi and its

neighbors are removed from GRPD. The edge which corresponds to vi is added

to Ecut.

Step 4.4:

Steps 4.2 and 4.3 are repeated until the number of paths in each reconvergent

structure is less than or equal to one.

54

Table 4.1. Characteristics of processors.

Processor #Gate #Register #Module #Instruction

SAYEH 6141 12 10 29

Dlx N 34032 50 95 25

As the result of processing these steps, we observe RTL signals corresponding

to edges in Ecut. These RTL signals are connected to an MISR.

7. Experimental Results

We evaluate the proposed method using a non-pipelined processor SAYEH[19]

and a five-stage pipelined processor Dlx N that is based on Dlx processor[20].

Table 4.1 shows the characteristics of SAYEH and Dlx N. The column titled

“#Gate” denotes the number of primitive gates. The column headed “#Regis-

ter” and “#Module” denote the number of registers and the number of modules

at RTL in the processor, respectively. The column “#Instruction” denotes the

number of instructions defined in an instruction set architecture (ISA). The num-

bers of gates in SAYEH and Dlx N processor are 6,141 and 34,032, respectively.

The numbers of registers and modules at RTL in both processors are 12 and 50,

and 10 and 95, respectively. Both processors have the standard 29 and 25 instruc-

tions, respectively. All the registers of SAYEH processor are resetable. All the

registers except for registers of the register-file of Dlx N processor are resetable.

Table 4.2 shows hardware overhead of the proposed method and the full-

scan design for SAYEH and Dlx N. The column “DFT” denotes the design for

testability method applied to both processors, where “FS” and “PM” denote the

full-scan design method and the proposed method, respectively. The columns

“Area” and “HO” denote the area of the processor and the hardware overhead,

respectively. In the columns “Area,” “Original” and “Additional” denote the

original area of the processor without DFT and the additional area that increases

by applying the proposed DFT method to the processor, respectively. A unit of

the area sets a not gate to one. In the columns “Additional” and “HO”, the sub-

55

columns “Init. Func.” and “OB” denote the additional area and the hardware

overhead of the initialization function and MISR that increases by applying the

proposed DFT method to the processor, respectively. In these sub-columns, “-

” denotes no additional area and no hardware overhead. The column “#OB”

denotes the number of observable bits. In the full-scan design method and the

proposed method, an observable bit means the number of scan flip-flops and

the number of inputs of MISR. There are not any additional area or hardware

overhead of the initialization function since all the registers of SAYEH processor

are resetable. In the case of the full-scan design method, both processors do

not induce the additional area and the hardware overhead of the initialization

function since FFs are only modified into SFFs. The number of observable bits

of the proposed method becomes less than that of the full-scan design method

for both processors. For Dlx N processor, the hardware overhead of the proposed

method is smaller than that of the full-scan design method. The Dlx N processor

has many registers including the architecture registers that appear in instruction

set architecture and the pipeline registers to enhance the performance. Therefore,

the full-scan design induces a large area overhead. For details of the area for

Dlx N processor, the area of the initialization function is almost the same as

MISR for observable points. However, if Dlx N processor has already had the

initialization function for all the registers, the area of the initialization function

is not required. The area of the initialization function depends on the design

specification of the processor. On the other hand, for the SAYEH processor, the

hardware overhead of the proposed method is larger than that of the full-scan

design method. This is because that the SAYEH processor has a very area-

optimized design with a lot of loops and a few registers; therefore, the proposed

method needs many observation points whereas full-scan design requires little

area overhead. Moreover, the hardware overhead per one observed bit of the

proposed method is larger than for the full-scan design. However, this hardware

overhead can be reduced if we compress the observed space before applying it to

MISR.

In order to show the effectiveness of the proposed method, we apply the

proposed DFT method to the arithmetic logic unit (ALU) in Dlx N processor.

Table 4.3 and Table 4.4 show the results of the MUT test generation for the

56

Table 4.2. Hardware overhead.

Processor DFT

Area
HO(%)

Original
Additional

#OB
Init. Func. OB Init. Func. OB

SAYEH
FS

12389
- 1485 165 - 11.99

PM - 2958 102 - 23.88

DLX N
FS

55995
- 13635 1379 - 23.23

PM 3968 4379 151 7.09 7.46

Table 4.3. MUT test generation for ALU.

Total RF DF FC FE TGT (sec)

7030 12 7018 99.83 100.00 358.70

ALU in Dlx N processor and the execution of the template-based test program

before/after the proposed DFT method is applied, respectively. We used the

SBST method in [16] as an MUT test generation and a test program generation.

In Table 4.3, the columns “Total”, “RF”, “DF”, “FC”, “FE” and “TGT”

denote the number of total faults of ALU, the number of the identified redundant

faults, the number of the detected faults, the fault coverage, the fault efficiency,

and the total test generation time for the MUT test generation, respectively.

A unit of “TGT” is second. In order to identify redundant faults, we use the

method in [16]. The total fault coverage and fault efficiency are 99.83% and

100.00%, respectively. The total test generation time is 358.70 second. This test

generation time is reasonable because a combinational test generation is applied to

each constraint circuit synthesized by the method in [16] which is a combinational

circuit.

In Table 4.4, the columns “DF”, “EM”, “FC”, “FE”, “FET ” and “TAT”

denote the number of the detected faults, the number of faults undetected by

error masking, the fault coverage, the fault efficiency, the template level fault

efficiency and the test application time during the execution of the test program,

57

Table 4.4. Test program execution for ALU.

DFT DF EM FC FE FET TAT (clock)

Before 6948 54 98.83 99.00 99.26 7508

After 7022 0 99.89 100.00 100.00 7124

respectively. A unit of “TAT” is clock. In Table 4.4, there exist 54 faults unde-

tected by error masking before the proposed DFT method. However, after the

DFT method is applied, the number of faults undetected by error masking is 0.

The proposed DFT method can achieve 100% template level fault efficiency. The

fault coverage after the proposed DFT is larger than that of before the DFT.

Moreover, the proposed DFT method can also reduce about 5% of the total test

application time.

8. Summary

In this chapter, we showed a sufficient condition to avoid error masking for

template-based test programs, and proposed a design for testability method to

satisfy the sufficient condition. The experimental results reveal that the proposed

method achieves less hardware overhead than full-scan design if the processor fea-

tures many registers and less loops or reconvergent paths. In general, modern

processors oriented to high performance have many registers to accelerate their

speed, while the structure tends to be simpler than the design oriented to area

optimization. From this observation, we consider that the proposed method is

suitable for such modern processors. Since the proposed method adds only obser-

vation points to the original design, it enables at-speed testing. The reduction of

the hardware overhead caused by the DFT method is the issue to be investigated

in our future work.

58

Chapter 5

Conclusions and Future Work

When LSIs with high performance and a lot of functions are produced by VDSM

technologies, LSIs testing requires at-speed testing and short test generation

time. In order to meet these requirements, this thesis presented a test gener-

ation method for an LSI circuit and a design for testability (DFT) method which

is helpful to software-based self-test for processors.

In Chapter 3, we propose a method of accelerating test generation for sequen-

tial circuits using the knowledge about a set of state justification sequences, the

bound on the maximum length of state distinguishing sequences, the informa-

tion about the valid states and the value of the reset state. We assume that

circuits are given in FSM description. For circuits designed at register transfer

level (RTL), controllers of the circuits are generally specified by FSM description.

The proposed method is effective for such controllers. The sequential circuit is

synthesized from a given FSM by a synthesis for testability (SFT) method pro-

posed in this chapter which takes the features of our test generation method into

consideration. The SFT method guarantees the existence of state distinguishing

sequences of the specified length by making the given FSM reduced. Thus, the

performance of the test generator is improved as it uses state justification se-

quences extracted from the completely specified state transition function of the

FSM produced by the synthesizer.

In Chapter 4, we proposed a design for testability method of software-based

self-test for processors. We proved that the proposed method can achive 100%

template level fault efficiency if a processor satisfies three conditions: (1) each

59

register is initialized at the beginning of the execution of the test program, (2) all

the control signals of each tri-state bus and its masking circuits are observable,

(3) for each cycle, at least one RTL signal on the cycle is observable, (4) for each

pair of reconvergent paths, at least one RTL signal on the two paths is observable.

The experimental results reveal that the proposed method achieves less hardware

overhead than full-scan design if the processor features many registers and less

loops or reconvergent paths. From this observation, we consider that the proposed

method is suitable for such modern processors. Moreover, in the experimental

results, we showed that the proposed design for testability resolved error masking

and reduced the test application time of the ALU in Dlx N processor. Since the

proposed method adds only observation points to the original design, it enables

at-speed testing.

Finally, we discuss our future work. In Chapter 3, the test generation time

of the proposed test generation method is faster than that of the commercial

test generation. However, the area of the sequential circuit synthesized by the

proposed synthesis for testability (SFT) method may be larger than the area of

the sequential circuit synthesized by an ordinary synthesizer. In experimental

results, the area of the benchmark circuit “pma” is especially large. In order to

reduce hardware overhead, it leaves some room for consideration, where it is how

to assign coordinates with don’t cares in input vectors and output vectors of the

FSM during SFT. In Chapter 4, MISR is utilized for observing RTL signals. If an

error propagating to an observable RTL signal does not depend on propagating

to other observable RTL signals, we can compact the observable RTL signal with

other observable RTL signals. Therefore, we have possibility of further reducing

the hardware overhead compared with the proposed design for testabilty method.

We should investigate how to reduce hardware overhead of each method and the

algorithm for each method in future.

60

Acknowledgements

Many people have supported me during my Ph.D. studies 1 .

I would like to acknowledge their kind support.

I am very much grateful to my supervisor Professor Hideo Fujiwara for his

gracious guidance and advice.

I would like to thank Professor Hiroyuki Seki of NAIST (Nara Institute of

Science and Technology) for his valuable comments.

I also would like to express my gratitude to Associate Professor Michiko Inoue

of our laboratory for her frequent, stimulating and helpful discussions.

I am deeply indebted to Assistant Professor Satoshi Ohtake of our laboratory

for his frequent, stimulating and helpful discussions.

I also wish to thank Assistant Professor Tomokazu Yoneda of our laboratory

for his friendly discussions and encouragement.

I would like to thank Professor Kewal K. Saluja, University of Wisconsin-

Madison, USA, for friendly discussions and useful comments.

I am grateful to Professor Tomoo Inoue of Hiroshima City University for his

friendly helpful advice for submitting my journal paper and giving me useful

comments.

I would like to thank Mr. Masahide Miyazaki of STARC (Semiconductor

Technology Academic Research Center) and Mr. Yasuyuki Nozuyama of Toshiba

Corporation (Semiconductor Company) for their useful comments.

My thanks also go to the present and former members of our laboratory.

Finally, I wish to thank my parents and my little sister for their continuing

support and encouragement.

1 This work was supported in part by 21st Century COE (Center of Excellence) Program
“Ubiquitous Networked Media Computing.”

61

References

[1] H. Fujiwara, “Logic testing and design for testability,” The MIT press, Cam-

bridge, 1985.

[2] T. Niermann and J. Patel, “HITEC: A test generation package for sequential

circuits,” Proc. of the European Design Automation Conference, pp. 214–218,

1991.

[3] H. Cho, G. D. Hachtel and F. Somenzi, “Redundancy identification/removal

and test generation for sequential circuits using implicit state enumeration,”

IEEE Trans. Computer-Aided Design, vol. 12, pp. 935–945, July 1993.

[4] M. Samiha and Z. Yervant, “Principles of testing electronic systems,” Wiley-

Interscience, 2000.

[5] H. K. Ma, S. Devadas, A. R. Newton and A. Sangiovanni–vincentelli, “Test

generation for sequential circuit,” IEEE Trans. Computer-Aided Design,

vol. 7, pp. 1081–1093, October 1988.

[6] T. P. Kelsey and K. K. Saluja, “Fast test generation for sequential circuits,”

Int. Conf. on Computer-Aided Design 1989, pp. 354–357, November 1989.

[7] J. Gross and J. Yellen , Graph theory and its applications, CRC press, 1991.

[8] C. W. Cha, W. E. Donath and F. Özgüner, “9-v algorithm for test pat-

tern generation of combinational digital circuits,” IEEE Trans. Computers,

vol. C–27, pp. 193–200, March 1978.

[9] P. Muth, “A nine-valued circuit model for test generation,” IEEE Trans.

Computers, vol. C–25, pp. 630–636, June 1976.

[10] The CAD benchmarks at North Carolina State University,

http://www.cbl.ncsu.edu/www/.

[11] W. -C. Lai, A. Krtic and K. -T. Cheng, “Test program synthesis for path

delay faults in microprocessor cores,” Proc. of International Test Conference

2000, pp. 1080-1089, 2000.

62

[12] W. -C. Lai, A. Krtic and K. -T. Cheng, “Instruction-Level DFT for testing

processor and IP cores in system-on-a chip,” Proc. of Design Automation

Conference 2001, pp. 59-64, 2001.

[13] L. Chen and S. Dey, “Software-based self-testing methodology for processor

cores,” IEEE Trans. on CAD, vol. 20, no. 3, pp. 369-380, 2001.

[14] L. Chen, S. Rabi, A. Raghunath and S. Dey, “A scalable software-based self-

test methodology for programmable processors,” Proc. of Design Automation

Conference 2003, pp. 548-553, 2003.

[15] K. Kambe, M. Inoue and H. Fujiwara, “Efficient template generation for

instruction-based self-test of processor cores, ” Proc. of IEEE 13th Asian

Test Symposium (ATS’04), pp. 152-157, 2004.

[16] M. Inoue, M. Nakazato, S. Yokoyama, K. Kambe and H. Fujiwara，“Effi-

cient and Effective Test Program Generation for Software-Based Self-Test of

Pipelined Processors, ” NAIST Technical Reports, No.2006005, Aug. 2006.

[17] M. Inoue, K. Kambe, N. Hoashi, and H. Fujiwara, “Instruction-based self-

test for sequential modules in processors,” Proc. of IEEE 5th Workshop on

RTL and High Level Testing (WRTLT’04), pp. 109-114, 2004.

[18] M. Näher, “LEDA,” Cambridge university press, 1999.

[19] Z. Navabi, “VHDL analysis and modeling of digital systems,” McGraw-Hill,

1997.

[20] J. H. Hennesy and D. A . Patterson, “Computer Architecture: A quantative

approach,” Morgan Kaufmann Publishers, 1996.

[21] Semiconductor Technology Academic Research Center (STARC), “RTL de-

sign style guide,” STARC, 2000. (In Japanese).

63

Appendix

A. Dlx N Processor

I designed Dlx N processor to evaluate the proposed design for testability method.

Dlx N is a 32 bit, 5-stage pipelined RISC processor. It has 26 most common

instructions. It consists of 32 general purpose 32 bit registers.

Instruction Set

1. NOP 6. SUBU 11. ANDI 16. SW 21. SLTI

2. ADD 7. ADDIU 12. ORI 17. LUI 22. SLTU

3. SUB 8. MFC0 13. SLL 18. BEQ 23. SLTIU

4. ADDI 9. AND 14. SRL 19. BNE 24. J

5. ADDU 10. OR 15. LW 20. SLT 25. JR

26. JAL

Instruction Set Architecture

1. Register-Register Type Instruction (R-Type)

OP RS RT RD SHAMT FUNCT

(6 bit) (5 bit) (5 bit) (5 bit) (5 bit) (6 bit)

2. Immediate Instruction (I-Type)

OP RS RT IMMEDIATE

(6 bit) (5 bit) (5 bit) (16 bit)

3. Jump Instruction (J-Type)

OP TARGET ADDRESS

(6 bit) (26 bit)

OP: This field corresponds to an operation code distinguishing all the operations

except for R-Type instructions.

64

RS: This field corresponds to the address of a source register.

RT: This field usually corresponds to the address of a source register in case

of R-Type instructions. However, this field corresponds to the address of a

destination register in case of I-Type instructions.

RD: This field corresponds to the address of a destination register in case of

R-Type instructions.

SHAMT: This field corresponds to a shift amount in case of R-Type instruc-

tions.

IMMEDIATE: This field corresponds to an immediate value in case of I-Type

instructions.

65

Instruction Encoding

Instruction Operation OP FUNCT Type
NOP No operation 000000 000000 R
ADD RD, RT, RS RD ⇐ RS + RD (Overflow) 000000 100000 R
SUB RD, RT, RS RD ⇐ RS - RT (Overflow) 000000 100010 R
ADDI RT, RS, IMMEDIATE RT ⇐ RS + IMMEDIATE (Overflow) 001000 - I
ADDU RD, RT, RS RD ⇐ RS + RT 000000 100001 R
SUBU RD, RT, RS RD ⇐ RS - RT 000000 100011 R
ADDIU RT, RS, IMMEDIATE RT ⇐ RS + IMMEDIATE 001001 - I
MFC0 RD, RT, RS RD ⇐ $EPC 010000 000000 R
AND RD, RT, RS RD ⇐ RS and RT 000000 100100 R
OR RD, RT, RS RD ⇐ RS or RT 000000 100101 R
ANDI RT, RS, IMMEDIATE RT ⇐ RS and IMMEDIATE 001100 - I
ORI RT, RS, IMMEDIATE RT ⇐ RS or IMMEDIATE 001101 - I
SLL RD, RT, SHAMT RD ⇐ RT ≪ SHAMT 000000 000011 R
SRL RD, RT, SHAMT RD ⇐ RT ≫ SHAMT 000000 000010 R
LW RT, RS(IMMEDIATE) RT = MEM[RS + IMMEDIATE] 100011 - I
SW RT, RS(IMMEDIATE) MEM[RS + IMMEDIATE] = RT 001001 - I
LUI RT, IMMEDIATE RT ⇐ IMMEDIATE 000001 - I
BEQ RT, RS, IMMEDIATE if(RT == RS) go to $PC + 4 + IMMEDIATE 000100 - I
BNE RT, RS, IMMEDIATE if(RT ̸= RS) go to $PC + 4 + IMMEDIATE 000101 - I
SLT RD, RT, RS RD ⇐ 1 if(RT < RS) else 0 (Overflow) 000000 101010 R
SLTI RT, RS, IMMEDIATE RT ⇐ 1 if(RS < IMMEDIATE) else 0 (Overflow) 001010 - I
SLTU RD, RT, RS RD ⇐ 1 if(R T< RS) else 0 000000 101011 R
SLTIU RT, RS, IMMEDIATE RT ⇐ 1 if(RS < IMMEDIATE) else 0 001011 - I
J TARGET ADDRESS go to TARGET ADDRESS 000010 - J
JR $REG[31] go to $REG[31] 000000 001000 R
JAL TARGET ADDRESS $REG[31] = $PC + 4; go to TARGET ADDRESS 000011 - J
$PC: Program Counter, $EPC: Exception Program Counter

66

D
lx

N
T
e
st

b
e
n
ch

S
y
st

e
m

D
LX

s
C

or
e

D
-B

us

D
at

a
R

A
M

In
st

ru
ct

io
n

R
O

M I-Bus

I_adr-Bus

D
_a

dr
-B

us

T
es

t-
B

en
ch

C
T

R
L

C
LK

R
E

S
E

T

Write_me
m

D
lx

_N
S

ys
te

m

67

IF
S
ta

g
e

PC

IR

pc_mux

44

pc_incr

N
P

C
_D

E
C

I_
B

us

R
E

S
E

T

I_
ad

r_
B

us
ir_mux

0
(n

op
)

IF
_S

T
A

G
E

_
C

T
R

L

B
ra

nc
h_

in
st

r

Ju
m

p_
in

st
r

pc
_s

rc
_s

el

0

ir_
sr

c_
se

l

C
LK

R
E

S
E

T

IF
/ID

_W
rit

e CPC

ex
c.

E
X

C
_E

X
E

IF
/ID

_f
lu

sh

68

ID
S
ta

g
e

IR

pc_incr

S
ig

n
E

xt
.

N
P

C
_D

E
C

in
st

ru
ct

io
n_

de
co

de
r

da
ta

_h
az

ar
d_

ct
rl

R
eg

is
te

r
F

ile
s

rs rt

W
B

_O
U

T

R
D

_W
B

S1 S2
C

LK
R

E
S

E
T

fwd_s1

F
W

D
_E

X
E

F
W

D
_M

E
M

fo
rw

ar
d_

ct
rl

fwd_s2

C
LK

imm_sel

S3

rd_sel

rt rd
R

D
_E

X
E

R
D

_M
E

M

Ju
m

p_
in

st
r

IF
/ID

_W
rit

e

ct
rl_

ha
za

rd
_

ct
rl

IF
/ID

_f
lu

sh
EXE MEM WB

0

rs
&

 r
t

RD

R
D

_E
X

E

M
R

_E
X

E

jmp_sel

R
W

_E
X

E
 &

R
W

_M
E

M

CPC

R
W

$3
1

ID
/E

X
_f

lu
sh

2b
it

le
ft

S
hi

fte
r

op_sel

E
X

C
_E

X
E

E
X

/M
E

M
_f

lu
sh

CPC

69

E
X

S
ta

g
e

S1 S2 S3 EXE MEM WBRD

ALU

ALO MEO RD

R
D

_E
X

E

MEM WB

MR_EXE

WR_EXE

F
W

D
_E

X
E

al
u_

op
_c

od
e

ov
er

_f
lo

w

E
X

C
_E

X
E

sh
ift

_n
um

CPC

EPC

alo_sel

C
LK R

E
S

E
T

mem_sel

0

E
X

/M
E

M
_f

lu
sh

wb_sel

0

pass_sel

70

M
E
M

S
ta

g
e

ALO MEO RD MEM WB

D
at

a
R

A
M

A
dd

re
ss

D
at

a

M
em

R
ea

d

M
em

W
rit

e

ALO RD WB

R
D

_M
E

M

R
W

_M
E

M

MO_sel

F
W

D
_M

E
M

m
em

_c
tr

l

d_
bu

s_
ct

rl
w

m

C
LK R

E
S

E
T

71

W
B

S
ta

g
e

ALO RD WB

R
W

R
D

_W
B

W
B

_O
U

T

72

