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Studies on Design for Delay Testability and

Over-testing Reduction for Delay Faults∗

Yuki Yoshikawa

Abstract

LSIs are embedded in various digital systems. Testing of LSIs has an impor-

tant role in order to realize dependable digital systems. Especially, delay testing

is emphasized to guarantee the timing correctness of circuits in addition to test-

ing to guarantee logical correctness. In semiconductor industry, scan techniques

are generally used as a design-for-testability (DFT) to reduce some test costs.

As a previous work, Amin et al. have proposed a non-scan DFT method that

makes test application time shorter than that of scan techniques. However, area

overhead caused by the DFT method is still large. In this dissertation, we pro-

pose a non-scan DFT method that can reduce area overhead while keeping the

test quality. Experimental results show that area overhead of our proposed DFT

method becomes about half of that required for the previous DFT method.

In a circuit, there are a lot of untestable faults in normal operation, which

never affect the performance of the circuit even if there exist on. DFT techniques

augment the circuit into easily testable one, however they also make a number of

originally untestable faults testable. Testing such faults is called over-testing and

it induces yield loss. We address reduction in the over-testing by identifying a

subset of untestable faults using register transfer information, and also propose a

method to avoid testing the faults identified as untestable. Experimental results

show that our path identification method can identify many faults as untestable

in reasonable time.
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Chapter 1

Introduction

Nowadays, LSIs (Large scale Integration, LSI) are embedded in various digital

systems and IT equipment represented by a mobile phone and a personal com-

puter is widely spreading in our daily life. Although low cost, small size and low

power consumption are important factors of LSI circuits, to guarantee the correct

behavior of the circuit is more important, thus testing of LSIs is very important

technique. LSI testing is to check whether there exist faults in a circuit or not,

and it consists of two processes. One is test generation and the other is test ap-

plication. Test generation is that an input sequence to detect a fault is generated.

Test application is that the generated input sequence is applied to inputs of the

circuit and the responses are compared with expected values.

With the progress of LSI design and manufacturing technologies, the speed

of circuits has increased in recent years. For high speed circuits, delay testing is

emphasized to guarantee the timing correctness of circuits in addition to testing

to guarantee logical correctness. In order to model a delay defect in a circuit,

there are some delay fault models[1]. A transition fault model and a path delay

fault model are often used. Under the transition fault model, the extra delay

caused by the fault is assumed to be large enough to prevent a signal transition

(0 to 1, or 1 to 0) from reaching any observation point, which is a flip-flop or

a primary output, at the time of observation. The main advantage of the tran-

sition fault model is that the number of faults in a circuit is linear in terms of

the number of gates. On the other hand the path delay fault model, which is

our target model, considers propagation delay of a transition along a path and
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can deal with accumulation of small delay on the path. In a sequential circuit, a

path corresponds to an ordered set of gates between two flip-flops. Testing a path

delay fault on a path detects a defect that induces a propagation delay beyond

a specified clock period. Note that the number of paths in a circuit can be very

large (possibly exponential in the number of gates). Hence, the path delay fault

model is often used for a set of paths which are selected by some strategy, such

as selecting paths with expected delays greater than a specified threshold. To

test a path delay fault, consecutive two vectors are applied to FFs that are the

starting points of the target path and other related paths, and the response has

to be observed. However, test generation for sequential circuits is generally hard

task. For such sequential circuits, design for testability (DFT) is an important

approach to reduction in the test generation complexity. In this dissertation, the

first work is to propose a DFT method with low area overhead and high quality.

Scan techniques are generally used as a DFT method in semiconductor in-

dustry because they are simple and can easily apply the techniques to circuits

of complex structure. A fully enhanced scan technique has been proposed as a

straightforward DFT method in order to apply any two vectors to each FF[5].

In this design, every flip-flop (FF) is replaced by an enhanced scan FF. Each

enhanced scan FF can store arbitrary two bits. For a sequential circuit designed

by this technique, we can apply any consecutive two vectors to its combinational

logic part. However, area overhead caused by enhanced scan FFs is very high.

The functional justification[4] and the scan shift[3] techniques with standard scan

also have been proposed. Area overhead of these techniques is smaller than that

of enhanced scan technique because every FF is replaced by standard scan FF

that can store arbitrary one bit. However, any consecutive two vectors cannot be

applied to each FF. Both enhanced scan and standard scan approaches have the

following disadvantages, (1) long test application time because of scan-shift op-

eration, (2) test application at the rated speed of a given circuit, called at-speed

testing, cannot be performed.

To improve the disadvantages (1) and (2), non-scan DFT approaches at reg-

ister transfer level (RTL) have been proposed[8]. This DFT method bases on

hierarchical test generation[7]. An RT-level circuit generally consists of a con-

troller represented by a finite state machine, and a data path represented by
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hardware elements (e.g., registers, multiplexers and operational modules), and

lines to connect them. Hierarchical test generation consists of two processes, (i)

generating test patterns at gate-level for each combinational block such as an

operational module, (ii) generating control paths at RTL to justify the gener-

ated patterns from primary inputs (PIs) to registers which are inputs of each

combinational block, and also generating observation paths at RTL to propa-

gate the responses to primary outputs (POs). Amin et al, defined hierarchically

two-pattern testable (HTPT) data path, in which any two-pattern tests can be

applied to every combinational block from PIs and the responses can be observed

at POs. Also they proposed a DFT method to augment a given data path to an

HTPT data path[8]. The DFT method requires lower area overhead and shorter

test application time than enhanced scan approach does.

In this dissertation, we present a new testability called single-port-change

(SPC) two-pattern testability and propose a non-scan DFT method that makes

every RTL path SPC two-pattern testable. An RTL path is a path passing

through only combinational logic, which starts at a PI or a register and ends at

a register or a PO. For a target RTL path of testing in a combinational block,

an SPC two-pattern test launches transitions at the starting points of paths cor-

responding to the target RTL path while keeping the other related ports stable.

During justification of the SPC two-pattern tests from PIs to the combinational

block, the original hold function of a register can be used for stable inputs if

the hold function exists on its control path. Hence, our proposed DFT method

can reduce area overhead than that of HTPT supporting arbitrary two-pattern

tests. According to the quality of two-pattern tests, testable path delay faults

are generally classified into three classes: robust testable, non-robust testable

and functional sensitizable (FS)[1]. SPC two-pattern tests can guarantee robust

(resp. non-robust) test for a path if the path is robust (resp. non-robust) testable

and can also test a subset of FS path delay faults.

DFT techniques are mentioned above. DFT techniques are surely useful in

order to reduce test generation complexity, but on the other hand they induce

over-testing. Our second work is to reduce the over-testing caused by the DFT

techniques. It is generally known that a large number of paths in a circuit are

false paths. A false path is a path that transition is never launched at the starting
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point of the path or launched transition is never propagated to the ending point

along the path. For an original circuit before some DFT is done, it is impossible

to test a path delay fault on a false path because any vector pair cannot acti-

vate the path delay fault under normal functions of the circuit. A DFT technique

makes such untestable path delay faults testable by adding a mechanism to apply

test vectors from outside. However the path delay faults that became testable do

not affect the circuit performance even if they exist because they were originally

inactive faults in normal operations. Therefore we consider that testing such path

delay faults is over-testing. The over-testing induces yield loss because there is a

possibility that a good circuit is judged as a faulty one. Moreover it makes test

generation time and test application time long.

To reduce the over-testing, it is necessary to identify originally untestable

path delay faults in a circuit and exclude them from the target of testing. In

recent ten years, several path identification methods have been proposed. For

combinational circuits, works presented in [22, 23, 24] are efficient approaches to

identifying combinationally untestable path delay faults at gate-level. For sequen-

tial circuits, Krstic et al, proposed a method to find sequentially untestable path

delay faults using time expansion model at gate-level [18]. For small scale circuits

the method succeeded to identify sequentially untestable path delay faults within

practical time. However it is conceivable that the method takes long CPU time

for large scale circuits. In [13, 25], identification methods of multi-cycle paths at

gate-level are proposed. The work presented in [26] identified false paths at RTL.

However their interest is to prevent inaccurate decision of circuit performance

caused by identifying false paths as critical paths, hence they do not consider

correspondence between a path at RTL and a path at gate level.

In this dissertation, we propose a method of identifying a large number of

sequentially untestable paths and multi-cycle paths using register-transfer level

(RTL) information such as load-enable signals of registers and select signals of

multiplexers (MUXs). The target path of this method is an RTL path which is a

bundle of gate-level paths between two registers. The total number of RTL paths

in a circuit is much smaller than the total number of gate-level paths, therefore

our method can be performed in reasonable time.

The rest of this dissertation is organized as follows. Chapter 2 gives the ba-
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sics of delay testing and path delay fault. In Chapter 3, we proposed a non-scan

DFT method at RTL based on single-port-change two-pattern test. Experimen-

tal results show that our proposed method can reduce area overhead to about

half compared to that of the non-scan DFT method for HTPT datapaths. In

Chapter 4, we propose a path identification method using RTL information and

also address a method to guarantee that the identified paths are never tested. In

Chapter 5, this work is concluded and discusses directions for future work.
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Chapter 2

Preliminaries

1. Delay test

To observe delay defects it is necessary to launch and propagate transition in a

circuit. Launching transition requires application of a vector pair, V = (v1, v2).

The first vector v1 initializes a given circuit while the second vector v2 causes

the desired transitions. Figure 2.1 illustrates the test application scheme for

combinational circuits. In normal operation, only one clock (system clock) is used

to control the input and output latches and its period is TC . During test mode,

the input and output latches are controlled by two different clocks: the input

and output clocks, respectively. It is assumed that the period of these clocks,

TS, is larger than TC . The input and output clocks are skewed by an amount

equal to TC . At time t0 and t1, v1 and v2 are applied to the primary inputs,

respectively. Time TS = t1 − t0 is assumed to be sufficient for all signals in the

circuit to stabilize under the first vector v1. After applying the second vector v2,

the circuit is allowed to settle down only until time t2, where t2 − t1 = TC . At

time t2, the primary output values are observed and compared to an expected

value of a fault-free circuit to determine if there is a delay fault.
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Figure 2.1. Delay test for combinational circuits.

2. Path delay fault

In this section, we show a path delay fault model and the classification. A path

delay fault is classified according to their testability: robust testable, non-robust

testable, functionally sensitizable and functionally unsensitizable.

Definition 1: (path, path delay fault)

A path p is an ordered set of gates p = {g0, g1, ..., gn}, where g0 is a primary

input or a flip-flop and gn is a primary output or a flip-flop. Also gi(1 ≤ i ≤ n − 1)

is a gate.

A fault on p is said to be a path delay fault if a transition launched at g0

does not propagate to gn within a specified limit. A path delay fault on p has

two types, where a rising transition is launched at g0 and a falling transition is

launched at g0. 2

Definition 2: (Controlling value，Non-controlling value)

An input to a gate is said to have a controlling value (cv) if it determines the

value of the gate output regardless of the values on the other inputs to the gate.
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An input to a gate is said to have non-controlling value (ncv) if the values on the

other inputs to the gate determines the value of the gate output. 2

Definition 3: (On-input, Off-input)

An input is an on-input of path p if it is on p. An input is an off-input of

path p if it is an input to a gate on p but it is not an on-input. 2

2.1 Classification of path delay fault

Definition 4: (Robust off-input)

Let f denote the on-input to gate gi in the target path. Let h denote an

off-input to gate gi The off-input h is called robust off-input with respect to an

input vector pair (v1, v2) if:

1. there is a cv → ncv transition or，stable ncv on h when f has a cv → ncv

transition, and

2. there is a stable ncv on h when f has a ncv → cv transition 2

Definition 5: (Robust testable path delay fault)

A path delay fault where there exists an input vector pair (v1, v2) such that

it activates the required transitions on the path and all off-inputs in the path

are robust off-input is called a robust testable path delay fault. The vector pair

(v1, v2) can test the robust testable fault even if there exists a propagation delay

between the starting point of other path and a off-input of p 2

Definition 6: (Non-robust off-input)

Let f denote the on-input to gate gi in the target path. Let h denote an

off-input to gate gi The off-input h is called non-robust off-input with respect to

an input vector pair (v1, v2) if

• there is a ncv → cv transition on f and a cv → ncv transition on h 2

8



Definition 7: (Non-robust testable path delay fault)

A robust untestable path delay fault where there exists an input vector pair

(v1, v2) such that it activates the required transitions on the path and at least one

off-inputs in the path are non-robust off-input while the rest of the off-inputs are

robust is called a non-robust testable path delay fault. The vector pair (v1, v2)

can test the non-robust testable fault if there does not exist a propagation delay

between the starting point of other path and a off-input of p 2

Definition 8: Functionally sensitizable off-input

Let f denote the on-input to gate gi in the target path. Let h denote an

off-input to gate gi The off-input h is called functionally sensitizable off-input

with respect to an input vector pair (v1, v2) if

• there is a ncv → cv transition on both f and h 2

Definition 9: Functionally sensitizable path delay fault

A non-robust untestable path delay fault where there exists an input vector pair

(v1, v2) such that it activates the required transitions on the path and at least

one off-inputs in the path is functionally sensitizable off-input while the rest of

the off-inputs are either robust or non-robust is called a functionally sensitizable

path delay fault. The vector pair (v1, v2) can test the functionally sensitizable

fault only if there exist a propagation delay between the starting point of other

path and a off-input of p 2

9



Chapter 3

Non-scan Design for

Single-Port-Change Delay Fault

Testability

1. Introduction

With the progress of VLSI design and manufacturing technologies, the speed

of VLSI circuits has increased in recent years. High speed circuits need delay

testing to verify that a given logic operates correctly at the desired clock speed.

There are several delay fault models[1]. A path delay fault can model cumulative

propagation delay along a path. A path for a sequential circuit corresponds to an

ordered set of gates between two flip-flops. Testing a path delay fault on the path

detects a defect that induces a propagation delay beyond a specified clock period.

To test a path delay fault, a vector pair (two-pattern test) is required for FFs

that are the starting points of the target path and other related paths. However,

it is impossible to apply any two-pattern tests to the starting points. To enhance

two-pattern testability for FFs, there are the functional justification[4] and the

scan shift[3] techniques with standard scan. However, these techniques cannot

still guarantee the application of any two-pattern. The enhanced scan [5](ES)

approach that can apply any two-pattern incurs high area overhead. Moreover,

scan approaches cause long test application time because of scan-shift operation.

Non-scan design-for-testability (DFT) approaches at register-transfer level
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(RTL) based on hierarchical test generation have been proposed[7, 8]. The ap-

proaches utilize the data flow at RTL to test a circuit. The advantages are that

the number of primitive elements at RTL is much smaller than that at gate level,

and a number of gate-level paths between two registers are regarded as a bundled

path, which is called RTL path[8]. An RTL path is a path passing through only

combinational logic, which starts at a primary input (PI) or a register and ends

at a register or a primary output (PO). For example, R1−m1−m2−Add1−R5

in Figure 3.7 is one of the RTL paths in LWF circuit. Hierarchical test generation

consists of two processes: (i) generating test patterns for combinational blocks at

gate-level, (ii) generating control paths to justify the generated patterns from PIs

to registers that are inputs of every combinational block, and generating observa-

tion paths to propagate the responses to POs. Amin et al, defined hierarchically

two-pattern testable (HTPT) data path[8], in which any two-pattern tests can be

applied to every combinational block from PIs and the responses can be observed

at POs. We presented a DFT method to augment a given data path to an HTPT

data path, which requires lower area overhead and shorter test application time

than enhanced scan approach does.

In this dissertation, we introduce a testability called single-port-change (SPC)

two-pattern testability. A port means an input or an output of a primitive ele-

ment at RTL, and it has a bit width. We propose a DFT method that guarantees

to make every RTL path SPC two-pattern testable. For a target RTL path pass-

ing through a combinational block, an SPC two-pattern test launches transitions

at the starting points of paths corresponding to the target RTL path while keep-

ing the other related ports stable. The method of generating SPC two-pattern

tests for a combinational block is explained in Section 3.1, and how to generate

control and observation paths is shown in Section 5. During test application for

each combinational block, the original hold function of a register can be used

for stable inputs if the hold function exists on its control path. Hence, our pro-

posed DFT method can reduce area overhead than that of HTPT using arbitrary

two-pattern tests. According to the quality of two-pattern tests, testable path

delay faults are generally classified into three classes: robust testable, non-robust

testable and functional sensitizable (FS)[1].SPC two-pattern tests can guarantee

robust (resp. non-robust) test for a path if the path is robust (resp. non-robust)

11



testable and can also detect a subset of FS path delay faults (shown in Section

3.2).

Our experimental results show that the proposed method can reduce area

overhead and test application time compared to those for HTPT.

2. Target circuit and fault

An RTL design generally consists of a controller and a data path, and they are

connected each other by control signal lines and status signal lines. Our target

part is the data path separated from the controller part. All the control signals

and the status signals of the data path are assumed to be directly controllable and

directly observable, respectively. In order to realize controllability and observabil-

ity of control signals and status signals, respectively, we need some mechanism

to generate control signals and to observe status signals in test mode. In this

dissertation, the implementation of such mechanism is not considered.

A data path consists of hardware elements (e.g. PIs, POs, registers, mul-

tiplexers, operational modules, and observation modules) and lines to connect

output ports of hardware elements with input ports of others. There are two

types of input ports of a hardware element: data input ports and control input

ports. Each data input port is reachable directly or indirectly from at least one

PI. Each control input port is connected with control signal line. Similarly, there

are two types of output ports of a hardware element: data output ports and sta-

tus output ports. Each data output port is reachable directly or indirectly to at

least one PO. Each status output port is connected with status signal line. An

operational module has one or two data input ports, one data output port and

at most one status output port, and an observation module has one or two data

input ports, one status output port, at most one control input port. We assume

that (i) all lines have same bit width. (ii) There is no chaining of operational

modules. Note that chaining modules can be regarded as n input and one output

operational module. We relax the second assumption by extending the consider-

ation of two input modules. We target all the path delay faults except for faults

on paths that start at control inputs or end at status outputs.
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Figure 3.1. Constraints of ATPG to generate SPC two-pattern tests.

3. SPC two pattern testability

3.1 SPC two-pattern test

In this section, a combinational block that consists of combinational hardware

elements on an input cone to a register is considered at RTL. We refer to an

RTL path that is a target of testing as on-path. As opposed to on-path, we refer

to an RTL path that supports the propagation of a transition launched at the

starting point of an on-path along the on-path as off-path. For the input port

of an operational module on an on-path, one of the RTL paths passing through

the other port can be an off-path (See the left picture of Figure 3.1). In this

dissertation, we assume that an operational module has one or two input ports

and there is no chaining module, hence the number of off-paths is at most one for

each on-path. An SPC two-pattern test is a pair of two consecutive vectors that

launches transitions at the port corresponding to the starting point of the on-path

and sets stable two consecutive vectors for the other ports of the combinational

block. When SPC two-pattern tests are applied to a combinational block, the

select signal of each MUX is fixed with an on-path or an off-path being selected.

Amin[8] showed that while the select signal of a MUX is fixed, propagation of

the signals from the selected input to the output is independent of the signals at

the other input. Therefore the on-path is testable if SPC two-pattern tests can

be applied to the starting points of the on-path and the off-path.
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SPC two-pattern tests for combinational blocks can be generated by using a

combinational test generation algorithm with constraints. To describe the con-

straints, we use the notation X and H. X denotes that it is possible to generate

arbitrary vector and H means that the vector just before is held. In Figure 3.1,

we show an example of constraints for ATPG. XX for an on-path (a bold line

in the figure) denotes that it is possible to generate arbitrary two vectors consec-

utively. XH denotes that the first vector is an arbitrary vector and the second

vector is the same as the first one. This is the input constraint for off-path. As

we mentioned above, for the inputs other than those on on-path, off-path and

the select signal line of each MUX, we do not care generated vectors, hence we

denote them as merely XX.

3.2 Quality of SPC two-pattern test

Smith[11] showed that a path delay fault is testable by a robust test if and

only if there exits a robust single-input change (SIC) test for this fault, and

Gharaybeh[12] showed that the same applies to non-robust tests. Their theorems

show that there exist SIC robust tests for robust testable path delay faults and

SIC non-robust tests for non-robust testable path delay faults. At gate level

consideration, an SIC two-pattern test launches a transition for 1 bit of inputs

of a combinational block, while an SPC two-pattern test can launch transitions

for any bits of inputs of the corresponding port. Hence SPC two-pattern test can

completely cover an SIC two-pattern test. In other words, there exists an SPC

robust (resp. non-robust) test for a robust (resp. non-robust) testable path delay

fault without loss of test quality.

The remaining testable path delay faults are FS path delay faults. To test

these faults, transitions are needed at multiple inputs. A FS path delay fault

that needs transitions for some inputs of only on-path can be tested using an

SPC two-pattern test. However, faults that need transitions for some inputs of

both an on-path and an off-path cannot be tested under the concept. We will

experimentally examine how many FS faults become untestable.
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3.3 SPC two-pattern testability

We define SPC two-pattern testability for RTL paths. To test an RTL path that

does not pass through an operational module with two input ports, one control

path and one observation path are sufficient to test the RTL path. Control paths

are the paths to justify test patterns from PIs to each register and observation

paths are the paths to propagate the responses to POs. If we consider only one

control path, we need not care about timing conflict to justify test patterns.

Timing conflict means that more than or equal to two values are required to the

same PI at the same time. Hence it is certainly possible to generate a control path

by using a thru function[14], A thru function is added to an operational module

in order to propagate a value along a control path or an observation path without

changing the value . The realization of a thru function is shown in Section 5. To

test an RTL path p ∈ P that passes through an operational module having two

input ports, it is necessary to justify test patterns from a PI or PIs to appropriate

registers by a pair of control paths C1, C2 and propagate test responses from an

appropriate register to a PO by an observation path Op, where C1 is the path

from a PI to the starting register of an on-path p, and C2 is the path from a PI

to the starting register of an off-path.

Definition 10: An RTL path p is SPC two-pattern testable if there exists a

pair of control paths C1 and C2 that can apply SPC two-pattern tests to the

combinational block and Op that can observe the test responses.

Conditions for control paths

Here, to simplify the following discussion, we assume that there exists a thru

function for each input port of every operational module in a data path. In the

next section, we will propose an efficient DFT algorithm to add thru function to

data paths. In order to support the application of SPC two-pattern tests with

a pair of control paths C1 and C2, the difference between the sequential depths

of C1 and that of C2 and/or the number of hold registers on C1 and that on C2

should be considered. The sequential depth of a control path Ci is the number

of registers that appear on Ci and is denoted as SD(Ci). Let EP1 and EP2 be

the ending point of C1 and that of C2, respectively. If C1 and C2 are not disjoint,

let C ′
1 and C ′

2 be the paths from the diverging point of C1 and C2 to EP1 and
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EP2, respectively. In the following theorem, we show necessary and sufficient

conditions for a pair of control paths C1 and C2 to support SPC two-pattern

tests.

Theorem 1: A pair of control paths C1 and C2 can justify SPC two-pattern

tests to their ending points EP1 and EP2 if and only if C1 and C2 satisfy one of

the following five conditions.

1. C1 and C2 are disjoint.

2. |SD(C ′
1) − SD(C ′

2)| ≥ 2

3. There exist at least two hold registers on C ′
1.

4. There exists at least one hold register on C ′
2.

5. There exists at least one hold register on C ′
1 and SD(C ′

2) − SD(C ′
1) = 1 2

Examples of these conditions are shown in Figure 3.2.

Proof:An arbitrary SPC two-pattern test (V1, V2) is represented as V1 = v11&v21

and V2 = v12&v22. v11 and v12 are applied to an on-path. v21 and v22 are applied

to an off-path and they are the same value.

Sufficiency: Since we assume that there exists a thru function between each input

and the output of every operational module, we have only to consider timing

conflicts. If C1 and C2 satisfy Condition 1, it is obviously possible to justify any

SPC two-pattern test from PIs to EP1 and EP2 (see Condition 1 of Figure 3.2).

With regard to Conditions 2,3,4 and 5, although C1 and C2 are not disjoint, it

is also possible to justify any SPC two-pattern test without a timing conflict. In

Condition 2, we first apply the first and the second partial vectors consecutively

to the PI for the control path with higher sequential depth. Then we apply

consecutively the remaining two vectors to the same PI. In Condition 3, we first

load v11 and v12 into two hold registers on C ′
1 and hold the values, secondly we

apply consecutively v21 and v22 to the PI. In Condition 4, we first load v21 into

hold register on C ′
2 and hold the value. Then we apply v11 and v12 consecutively.

In Condition 5, we first load v11 into hold register on C ′
1 and hold v11, then we

apply v21, v22 and v12 consecutively.
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Figure 3.2. Conditions for C1 and C2.

Necessity: We assume that two control paths C1 and C2 do not satisfy any of the

above five conditions. Such control paths satisfy all the following properties.

1. C1 and C2 are not disjoint.

2. |SD(C ′
1) − SD(C ′

2)| < 2

3. The number of hold registers on C ′
1 is at most one.

4. There is no hold register on C ′
2.

5. There is no hold register on C ′
1 if SD(C ′

2) − SD(C ′
1) = 1.
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All the possible pairs of control paths C1 and C2 that satisfy all the above

properties are as follows.

• C1 and C2 are not disjoint and |SD(C ′
1)−SD(C ′

2)| = 1 and there is no hold

register on both C ′
1 and C ′

2.

• C1 and C2 are not disjoint and |SD(C ′
1)−SD(C ′

2)| = 0 and there is no hold

register on both C ′
1 and C ′

2.

• C1 and C2 are not disjoint and SD(C ′
1)−SD(C ′

2) = 1 and there is only one

hold register on C ′
1.

• C1 and C2 are not disjoint and |SD(C ′
1) − SD(C ′

2)| = 0 and there is only

one hold register on C ′
1.

Any pair of control paths C1 and C2 described above can not guarantee SPC

two-pattern test. Therefore five conditions are the only conditions for a pair of

control paths C1 and C2 to justify SPC two-pattern tests from a PI or PIs to EP1

and EP2. 2

Here we consider relaxation of the assumption of the number of input ports

of an operational module. The following theorem shows the sufficient conditions

for an operational module with n input ports.

Theorem 2: n control paths support the application of SPC two-pattern tests

for an RTL path p if either of the following conditions is satisfied. 2

1. Any pair of n control paths are disjoint.

2. With regard to each pair of control paths for off-paths that are not disjoint,

the mutually disjoint parts from the diverging point to both ending points

cross at least one hold register.

The proof of this theorem is similar to that of Theorem 1.

As we mentioned in this subsection, to guarantee SPC two-pattern test, a

register with hold function is needed even if the difference between sequential

depths of C1 and that of C2 is zero. However to guarantee arbitrary two-pattern

test in such case, we need more complex hardware element for DFT.
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Conditions for observation paths

To observe a test response, the value captured at the ending register of an RTL

path has to be propagated to a PO without changing its value. Fortunately, we

need not care about timing conflict because only one observation path is sufficient

to propagate the value. Hence to guarantee the propagation, it is sufficient to

add a thru function to each operational module on the observation path.

4. DFT method for RTL data path

In this section, we propose a DFT method that makes RTL paths in a data path

SPC two-pattern testable.

4.1 DFT element

Additional hardware elements of DFT are multiplexer (MUX), hold function and

thru function. We use a MUX to make a new RTL path from a PI to a register. A

hold function is added to a register for the purpose of holding the value according

to need, and it is realized by adding a MUX just before the register to feedback

a value from the output to the input(Figure. 3.3). A thru function is explained

briefly in Section 4. For a common module, such as adder or multiplier, it is

realized by providing a constant value to the other input(Figure. 3.4). It can

be provided by adding a mask element. A mask element generates a constant

depending on its control signal. For a more complex module or a module with one

input port, we cannot realize the thru function by only providing a constant, then

we deal with the thru function by bypassing the module using a MUX(Figure.

3.5).

4.2 Algorithm for adding DFT elements

The flow of the proposed DFT algorithm is shown in Figure 3.6.

step 1: There are some RTL paths that start at a register and go back to

the same register. There are many cases where SPC two-pattern tests cannot

be applied to such an RTL path because it is structurally difficult to satisfy the
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Select the registers which cannot apply SPC two-patterns 
because of a self-loop and insert a MUX for DFT

Solve one of the RTL paths which is not SPC two-pattern testable 
by adding hold functions

Search control paths to registers and observation paths from registers

Select an off-path for each RTL path and add thru functions 
which are indeed necessary

Can all the paths satisfy 
SPC two-pattern testability ?

No

Yes

1.

2.

3.

4.

Figure 3.6. Flow of our DFT algorithm.

conditions of Theorem 1. Since it is only possible to make such an RTL path SPC

two-pattern testable by adding MUX (hold function cannot solve this problem)

and making a new control path from a PI, we first find such structures. To find

RTL paths forming a loop we consider a circuit as a circuit graph consisting of

four types of nodes, R, Op, Fo and M , and directed edges. The nodes of type

R, Op, Fo and M correspond to a register, an operational module, a fanout and

a MUX, respectively, and they are connected by directed edges corresponding to

the signal lines of the circuit. We refer to the loop that starts at R-type node

and go back to the same node without passing through any other R-type node

as a self-loop.

We consider a self-loop Ri-Mj-Opk-Ri. It is impossible to apply SPC two-

pattern tests to the RTL path corresponding to the self-loop if there is no M -

type node, which can be reached from a PI without passing through the self-loop,

between the Opk and the Ri. Such an RTL path can be solved by inserting a

MUX between Opj and Ri, and adding a new path from a PI to the MUX. Here

we consider the self-loop, R1-m1-m2-Add1-m5-R1 in figure 3.7 as an example,

and corresponding nodes in its circuit graph are named R1,M1, M2, Op1 and M5,
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Figure 3.7. LWF benchmark circuit

respectively. There is no M -type node between Op1 and R1 which can be reached

from PI without passing through the self-loop, hence a MUX is added to the place

between Op1 and R1, and then a new RTL path PI1-MUX-R1 is made. When

there are some PIs in a circuit, we select the PI such that the pair of control

paths is disjoint to satisfy the first condition of Theorem 1. However if there is

only one PI in the circuit, we make a new RTL path from the PI. In this case,

if the pair of control paths may not satisfy any conditions from second to fifth,

hold function is added in step 3.

step 2: In this step, candidates for control and observation paths to each

register are selected using heuristics. The decision of control and observation

paths will be made in step 3.

In order to reduce area overhead and test application time, control paths is

selected as they form trees whose source nodes are PIs, accordingly each register

is reachable from a PI via a control path with the minimum sequential depth.

22



To search such control paths, we represent the data path as a port graph G =

(V,E)[14]. V is the set of all input ports and output ports of modules, and E is

the set of all directed edges corresponding to the signal lines in the data path and

relation between an input and an output of each module (we call the latter edge

inside edge). We apply breadth first search (BFS) with respect to the number

of registers to the port graph. From the result of the search, we obtain trees

that contain the information of control paths with the minimum sequential depth

from PIs to registers. The search ends when all the registers become reachable. In

[8][14], to search control paths they also make use of BFS. In this paper, we add a

new condition for search which takes advantage of the feature of SPC two-pattern

testability. Considering the conditions of Theorem 1, it is desirable that there

exists a hold register on a control path. Therefore we choose a path starting at

a hold register if there are some paths that can be chosen at the same sequential

depth. Figure 3.8 shows the port graph for LWF and candidates of control paths

for each register in LWF.

Next we search observation paths with the minimum depth. The search from

each register to a PO makes use of observation trees. Observation trees are made

by performing the BFS from each PO on the port graph that is generated by

reversing the direction of edges, then the BFS prioritize the path on a control

tree to share thru function between control paths and observation paths if there

is a branch.

step 3: For one of the RTL paths that are not SPC two-pattern testable, we

modify it into SPC two-pattern testable path by adding a hold function to its

starting register. In this step, RTL paths whose pairs of control paths have not

yet been determined are dealt with. We first judge RTL paths one by one whether

it satisfies one of the conditions of Theorem 1 or not. If the RTL path is SPC

two-pattern testable, the pair of control paths generated in step 2 is determined.

However, if the RTL path has no pair of control paths satisfying any one of the

five conditions at all, it is sufficient to add a hold function to one of the registers

that can be the starting points of off-paths in order to satisfy condition 4 of

Theorem 1. Among the registers, a hold function is added to the register with

the smallest sequential depth. Consequently, more control paths share the hold

function because a set of control paths forms trees. Here we consider testing
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Figure 3.8. The port graph and candidates of control paths for LWF

of RTL path R2-Add2-R4 in figure 3.8. The control paths for R2 and R1 are

PI1-R2 and PI1-Additional MUX-R1. The additional MUX was already added

between m5 and R1 in step 1. Since the pair of control paths cannot satisfy any

conditions of Theorem 1, a hold function is added to R1. If a hold function is

added, go back to step 2 and make the control trees again for the modified circuit.

Then only unsolved RTL paths will be target of step 3 again.

step 4: We consider how to realize shorter test application time when there

are some choices of off-paths for testing an on-path. We first try to select an

off-path having a control path with the minimum sequential depth among them

and disjointed from the control path for on-path. If there does not exist such an

off-path, that of the minimum depth is selected. We assumed that thru functions

are available for all the input ports of all operational modules, however some of

them may not be necessary. It is indeed necessary to add a thru function between
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Table 3.1. Circuit characteristics.
Circuit BW #PIs # POs # REGs # RTL path Area

Paulin 16 2 2 7 29 10,550

LWF 16 2 2 5 19 3,322

RISC 32 1 3 40 10,108 94,302

MPEG 8 7 16 241 651 77,554

an input port and an output port, corresponding to inside edges on control or

observation paths, of an operational module. To realize a thru function, we first

search a support path[14] considering timing conflict. A support path is a path

from a PI to an input of an operational module, which can justify a constant. If

there does not exist such a path, we add a mask element or a MUX for bypass to

realize it.

5. Experimental Results

In this section, we evaluate the effectiveness of the proposed DFT method com-

pared to the previous DFT method for HTPT[8] with regard to area overhead

and test application time. The DFT method that guarantees HTPT has similar

advantages to enhanced-scan approach and can reduce the area overhead and

the test application time. The circuit characteristics of RTL benchmarks used in

the experiments are shown in Table 3.1. Paulin, LWF are widely used circuits.

RISC and MPEG1 are more practical and larger circuits designed by industry.

In this experiment, we used the logic synthesis tool Design Compiler (Synopsys).

To generate SPC two-pattern tests, we used the combinational test generation

algorithm that supports constraints[15].

With regard to robust and non-robust path delay faults, the fault coverage of

our method is equal to that for HTPT. The CPU time required for our proposed

DFT algorithm is as follows. For LWF, Paulin and MPEG, their CPU times are

1 These circuits were provided for the Joint Research (1997-2001) with Semiconductor Tech-
nology Academic Research Center (STARC).
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about 0.1 seconds. For RISC, the CPU time is 3.94 seconds. Table 3.2 shows

the results of area overhead, test generation time and test application time. For

all benchmark circuits, area overhead of the proposed DFT method is lower than

that of the DFT method for HTPT. The difference between area overhead of the

proposed method and that of the previous one become large if there are many

registers that are reached from the same PI and at the same sequential depth.

For 8 bit Paulin, the test generation time of our proposed method is shorter than

that of HTPT. The reason is that Paulin has two multipliers, and for path delay

faults on paths passing through a multiplier, the test generation time with the

input constraint for single-port-change tends to become shorter than that with

no input constraint. For 8bit LWF and 16 bit LWF, the test generation times

of our method become longer than that of HTPT. The reason is that LWF has

an adder and for an adder, the test generation time with the input constraint for

single-port-change tends to become longer than that with no input constraint.

For 16 bit Paulin, RISC and MPEG, we cannot evaluate the test generation time

because the number of faults is extremely large.

For 8bit Paulin, 8bit LWF and 16 bit LWF, the test application times are

1,594,259 cycles, 49,916 cycles and 2,096,465 cycles, respectively. Those results

are smaller than that for HTPT data path. The reason is that the previous

method adds extra registers to these circuits. In such case, extra one cycle is

necessary for loading data into such a register. For RISC and MPEG, it is not

practical to test all paths in the data path because the number of paths is ex-

tremely large. Therefore we consider the critical parts that affect the difference

between test application time of the proposed method and that of previous one.

For RISC, an ALU is critical part and its number of tests is denoted as TALU

in the table. The proposed method can reduce 25% compared to the previous

one. For MPEG, a sub circuit composed of 64 identical structures of modules is

critical. The number of tests is denoted as TM in the table. For both methods,

the test application times are almost the same.

In subsection 3.2, we showed that SPC two-pattern tests can test a subset

of FS path delay faults. Here, we show the number of FS path delay faults in

three simple operational modules that can be tested by SPC two-pattern tests.

For an adder and a subtracter, there is no FS path delay fault. All the faults in
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an adder or a subtracter can be robust or non-robust path delay faults. For an 8

bit multiplier, 947 of the total 49328 FS path delay faults are tested. From these

results, SPC two-pattern tests do not always test all the FS path delay faults

of an operational module. On the other hand, if any two-pattern test can be

applied, all the FS path delay faults are tested. For every RTL path in an HTPT

data path, we can apply any two-pattern test. If it is necessary to test FS path

delay faults of such an operational module that is SPC two-pattern test resistant,

we can guarantee application of arbitrary two-pattern tests by applying the DFT

method of HTPT only for the module.

In Chapter 4, we propose a method of identifying false paths at RTL. The

objective is to reduce over-testing caused by DFT techniques. The path iden-

tification method identifies RTL path as control-dependent false paths (CFPs).

Path delay faults on gate-level paths corresponding to CFPs are excluded from

the target of testing, as a result, not only over-testing but also test generation

time and test application time are reduced. The detail of the path identification

method is shown in Chapter 4, however excluding path delay faults on paths

identified as false can reduce test generation time and test application time of

this experiments. For LWF and Paulin, we can identify 3 of the total 19 RTL

paths and 11 of the total 29 RTL paths as CFPs, respectively. For 8 bit Paulin,

8bit LWF and 16 bit LWF, test generation times become 1,956 seconds, 33 sec-

onds and 551 seconds, respectively. Test application time for 8 bit Paulin, 8 bit

LWF and 16 bit LWF become 785,136 cycles, 38,913 cycles and 1,638,660 cycles,

respectively. Test application times become about half of those for HTPT if our

path identification method is applied.
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Table 3.2. Results of DFT and test generation.

Area overhead[%] TG time [sec] Test application time[cyc]

Circuit BW Proposed HTPT Proposed HTPT Proposed HTPT

Paulin 8 5.13 11.56 3,906 5,828 1,594,259 1,645,335

16 3.30 7.43 - - - -

LWF 8 7.43 15.25 42 35 49,916 74,792

16 6.38 13.99 700 805 2,096,465 3,162,124

RISC 32 0.64 1.99 - - 3TALU+2 4TALU + 2

MPEG 8 4.64 9.35 - - 186TM+2079 186TM+2016

6. Summary

We have presented a concept of single-port-change (SPC) two-pattern testability

and proposed an efficient non-scan DFT method for data path. The proposed

method can reduce area overhead and test application time compared to the

previous DFT method for hierarchically two-pattern testability without losing

the quality of test.
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Chapter 4

Over-Tsting Reduction for Path

Delay Faults in

Controller-Datapath Circuits

Using RTL Information

1. Introduction

In today’s competitive LSI market, test cost and product quality of LSIs are

important factors which contribute to benefit of productions and customer sat-

isfaction. Alleviating overkill of products is an important issue in order to keep

the manufacturing cost lower, that is, reducing the number of parts which are

failed by its tests under evaluation but which never cause any failure in the

application[27]. One of the solutions of this issue is reduction in over-testing

caused by design-for-testability techniques, which is our objective. To realize

that, in this paper, we propose a method of identifying false paths using register

transfer level (RTL) information (most of the previous works have been done at

gate level) and carefully exclude them from the target of testing.

With the progress of VLSI design and manufacturing technologies, the speed

of VLSI circuits has increased in recent years. For high speed circuits, delay

testing is emphasized to guarantee the timing correctness of circuits in addition
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to testing logical correctness. A path delay fault model can deal with accumu-

lation of small delays along a path, and testing a path delay fault on a path

detects a defect which induces a delay beyond a specified clock period[1]. The

main disadvantage of the path delay fault model is the number of faults in a cir-

cuit is extremely large because the number of paths is exponential to the circuit

size. Besides, it is said that a large number of path delay faults are function-

ally untestable, which include both combinationally untestable and sequentially

untestable.

To reduce test costs, design-for-testability (DFT) techniques such as enhanced

scan [5] or standard scan with skewed-load testing [3] or broadside testing [4] are

used. These techniques make most or all the sequentially untestable path delay

faults testable. However, the path delay faults which became testable by the

DFT never affect the circuit performance even if they exist on paths. This is be-

cause a transition launched at the starting point of the untestable path is never

propagated to the ending point of the path during normal operation. Therefore

we consider that testing such path delay faults is over-testing. The over-testing

causes yield loss or overkill of products because good circuits in normal opera-

tions may be regarded as faulty ones under test mode. Also test generation time

and test application time become shorter if the over-testing is reduced.

A basic flow of reduction in the over-testing is as follows. First we identify

sequentially untestable path delay faults. Next the identified path delay faults are

removed from the fault list targeted by test generation. And then test generation

is performed for each path delay fault in the fault list, and generated patterns

are applied to a circuit. However, during test application, patterns generated

by the test generation may still test the excluded faults accidentally because the

generated pattern to test some path delay fault in the fault list may propagate

transitions along several paths and may activate other path delay faults simulta-

neously. Therefore, the over-testing have still unresolved. We have two tasks to

reduce the over-testing. One is to identify as many untestable faults as possible.

The other is to generate two-pattern tests that do not test the path delay faults

removed from the fault list.

In recent ten years, several path identification methods have been proposed.

For combinational circuits, techniques presented in [22, 23, 24] are efficient ap-
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proaches to identifying combinationally untestable path delay faults at gate-level.

For sequential circuits, Krstic et al, proposed a method to find sequentially

untestable path delay faults using time expansion model at gate-level [18]. For

small scale circuits the method succeeded to identify sequentially untestable path

delay faults within practical time. However it is conceivable that the method

takes long CPU time for large scale circuits. In [13, 25], identification methods

of multi-cycle paths at gate-level are proposed. In the work [26], false paths are

identified at RTL. However their interest is to prevent inaccurate decision of cir-

cuit performance caused by identifying false paths as critical paths, hence they do

not list identified false paths and do not consider shorter false paths than critical

paths.

We propose a method of identifying a large number of sequentially untestable

paths and multi-cycle paths using register-transfer level (RTL) information such

as load-enable signals of registers and select signals of multiplexers (MUXs). The

target path of this method is an RTL path which is a bundle of gate-level paths

between two registers. The total number of RTL paths in a circuit is much smaller

than the total number of gate-level paths, therefore our method can be performed

in reasonable time. Experimental results for some RTL benchmark circuits show

that our path identification method can identify many RTL paths as false in a

few seconds. We also show that there are a lot of gate-level paths, which are false

paths, corresponding to the identified RTL paths.

We also address a method to guarantee that the identified untestable path

delay faults are never tested by using the concept of single-port-change (SPC)

two-pattern testability proposed in Chapter 3. The concept of SPC was originally

proposed to reduce area overhead required for DFT techniques. In this Chap-

ter, we utilize the concept to reduce the over-testing. An SPC two-pattern test

changes the second vector at only one port and sets stable for the other ports. In

other words, The SPC two-pattern test can test path delay faults on the paths

starting from the port whose second vectors are changed. Therefore the SPC

two-pattern tests never test path delay faults on paths starting from other ports.

In our experiments, reduction in the over-testing for SPC two-pattern tests

compared to that for unconstrained (normal) two-pattern tests is shown and our

proposed method never tests path delay faults which are identified as false. More-
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over, we show that if unconstrained two-pattern tests for the same fault list are

generated, on average 10-60 % of path delay faults identified as false are acciden-

tally tested during test application.

2. Preliminaries

2.1 RTL circuit

Our path identification method uses RTL information. In this paper, we consider

structural RTL designs as shown in Figure 4.1. A structural RTL design consists

of a controller represented by a finite state machine, and a datapath represented

by RTL modules such as MUXs, operational modules and registers, and RTL

signal lines between them. They are connected to each other by control signal

lines and status signal lines. The controller controls control inputs of hardware

elements (e.g., load-enable signals of registers and select signals of MUXs) in the

datapath. On the other hand, status signals from the datapath are fed into the

controller. We assume that state transitions are completely specified for all pairs

of a state and an input vector.

If a target RTL circuit is described as a functional RTL, we may not obtain

such RTL information from the description. In such a case, we can obtain the

information about structure during synthesis process.

2.2 RTL path

A path at gate-level is an ordered set of gates {g0, g1, .., ga}, where g0 is a primary

input or a flip-flop and ga is a primary output or a flip-flop when we consider a

sequential circuit. Also gh(1 ≤ h ≤ a − 1) is a gate. The number of gate level

paths in a circuit is extremely large. When we consider the circuit at RTL, gate

level paths between two registers are dealt with as a bundle of paths. In this

paper, we use the concept of an RTL path. An RTL path is a path which starts

at a primary input or a register and ends at a register or a primary output, which

is passing through only combinational modules and has a bit width. The number

of RTL paths in a circuit described at RTL is much smaller than that of gate-level

paths in the circuit described at gate-level.
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Figure 4.1. An RTL circuit.

2.3 Logic synthesis

Logic synthesis is the manipulation of logic specifications to create logic models

as an interconnection of logic primitives. Thus logic synthesis determines the

gate-level structure of a circuit. The possible configurations of a circuit are many.

Optimization plays a major role, in connection with synthesis, in determining the

gate-level netlist [2]. In this paper, we apply a method of false path identification

to RTL paths in an RTL circuit and propagate the information about the paths

at RTL to gate-level paths in a gate-level circuit transformed by a logic synthesis.

Then it is necessary to clarify the correspondence of RTL paths to gate-level

paths. As one solution to achieve the clarification, we consider module interface

preserving-logic synthesis.

Definition 11:(Module interface preserving-logic synthesis)

Given an RTL circuit, if logic synthesis transforms each RTL module and each

RTL signal line into an individual gate-level netlist and individual one bit signal

lines, respectively, the logic synthesis is referred to as module interface preserving-

logic synthesis (MIP-LS). 2

During an MIP-LS for an RTL circuit, each RTL module is transformed to an

individual gate-level netlist. Then optimization is performed within each mod-

ule. Each RTL signal line connecting RTL modules is split to one bit signal
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lines. Therefore, for the RTL circuit, the connectivity of all the RTL modules

is guaranteed to be propagated to a synthesized gate-level circuit through any

MIP-LS.

3. False path identification

3.1 RTL false path

We define an RTL false path as follows.

Definition 12: (RTL false path)

An RTL path p in an RTL circuit is RTL false if any gate-level path corresponding

to p in its gate-level circuit is gate-level false for any logic synthesis. 2 Our

approach is to identify bundles of gate-level paths corresponding to RTL false

paths as false. However, it may be hard under any logic synthesis to match an

RTL path to all the gate-level paths corresponding to the RTL path completely.

To achieve the matching, we restrict logic synthesis to MIP-LS.

Definition 13: (RTL false path with respect to MIP-LS)

An RTL path p in an RTL circuit is RTL false with respect to MIP-LS if any

gate-level path corresponding to p in its gate-level circuit is gate-level false for

any MIP-LS. 2

In this paper, we focus on identification of RTL false paths w.r.t. MIP-LS. RTL

false paths w.r.t. MIP-LS are just referred to as RTL false paths in the rest of

this paper.

Let D and D′ be an RTL circuit and its gate-level circuit synthesized by an

MIP-SL, respectively. Let F = {Fj|1 ≤ j ≤ m} be a set of flip-flops in D′

corresponding to an m bit register R in D. τ(R) denotes a mapping from R to F .

Let Rs and Re be registers that are the starting register and the ending register of

p, respectively. Let M1,M2, ...,Ml be RTL modules on p. Suppose that p passes

through input ports M1in,M2in, ...,Mlin and output ports M1out,M2out, ...,Mlout.

Let Q be a set of all gate-level paths between τ(Rs) and τ(Re) passing through

M1in,M1out,M2in, M2out, ...,Mlin,Mlout in order. δ(p) denotes a mapping from p

to Q.
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Theorem 3: An RTL path p in an RTL circuit D is RTL false if one of the

following three conditions is satisfied for any input sequence.

Condition 1: No transition is ever launched at the register of the starting point

of p.

Condition 2: No transition at the starting point of p is ever propagated to the

ending point along p.

Condition 3: No value captured into the register at the ending point of p is ever

propagated to any primary output. 2

Proof: We show that ∀g ∈ δ(p) in a gate-level circuit synthesized by any MIP-LS

is gate-level false.

A combinational RTL module Ma in D and its synthesized logic block M ′
a in

D′ are guaranteed to have completely the same functionality if the outputs of Ma

are completely specified for the input domain 2n, where n is the number of inputs

of M ′
a. For such a completely specified Ma, we can know the ability of propagating

transitions through M ′
a at RTL completely by analyzing Ma. However, Ma and

M ′
a are not guaranteed to have the same functionality (the functionality of Ma is

a proper subset of that of M ′
a) if the outputs of Ma are incompletely specified. For

an RTL path p none of the three conditions of Theorem 3 can be satisfied if there

exists an incompletely specified Ma that influences p. The influence means that

unknown/unspecified values generated from Ma affect to the values captured into

Rs or propagating values on p or propagated values from Re. In the following

discussion, without losing generality, suppose that no incompletely specified RTL

module that influences p exists.

Let I1, I2 and I3 be a set of the input sequences that satisfy Conditions 1, 2

and 3 of Theorem 3, respectively. The set of input sequences I1 ∪ I2 ∪ I3 contains

all the input sequences.

Condition 1: Any input sequence u ∈ I1 does not launch any transition at the

starting register Rs on p. Since there is no incompletely specified combinational

module that affects Rs, u does not launch any transition at ∀f ∈ τ(Rs), which

is the starting point of ∀g ∈ δ(p).

Condition 2: For ∀v ∈ I2, propagation of any transition launched at the starting

point of p is prevented at some module Mc on p. Since there is no incompletely

specified combinational module in the sub-circuit that drives the ending point of
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p that affects off-inputs of p, propagation of any transition on ∀g ∈ δ(p) is also

prevented at the logic block corresponding to Mc.

Condition 3: For ∀w ∈ I3, propagation of any value captured into the ending

register Re on p is prevented at some module Md or some register Rd on every

sequential path from Re to every primary output. Since there is no incompletely

specified combinational module that affects propagation of the captured value

on Re to the primary outputs, propagation of the value on ∀h ∈ τ(Re) is also

prevented at the logic block corresponding to Md.

For any input sequence, no transition is launched at the starting point of

∀g ∈ δ(p) or no transition is propagated to the ending point along ∀g ∈ δ(p) or

no value captured into ∀h ∈ τ(Re) is propagated to any primary output. Thus

∀g ∈ δ(p) is gate-level false. Therefore, p is RTL false if one of the three conditions

of Theorem 3 is satisfied for any input sequence. 2

3.2 Control-dependent false path

From an RTL description of a circuit, for each pair of a state and an input vector,

we can obtain information about state transitions of the controller and the control

signals such as load-enable signals of registers and select signals of MUXs. A path

to transfer a data from a register to another register is determined by the select

signal of each MUX on the path. Timing of data transfer between registers is

determined by the load-enable signal of each register. In this section, from the

information of control signals, we define sufficient conditions for identifying RTL

false paths. The RTL path identified from the conditions is referred to as a

control-dependent false path (CFP).

Figure 4.2 shows a synthesized gate-level controller. The state register (SR)

represents states of the controller. Control signals for each state and a next state

are determined by the value of the SR and status signals from a datapath and/or

the PI. We distinguish an RTL path starting at the SR in a controller from the

other RTL paths. This is because we can know the timing where transitions are

launched for each bit of the SR by considering state assignment. A register in a

datapath is referred to as a datapath register (DR).
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Figure 4.2. An implementation of a controller.

RTL paths from DR/PI to DR/PO/SR

Let P be a set of RTL paths which start at a DR or a PI. Now we consider

whether p ∈ P is a CFP or not. Let Rs and Re be the starting register and the

ending register of p, respectively. Let CRs and CRe be load enable signals of Rs

and Re, respectively. If the load enable signal of a register is equal to ’1’, the

register loads a value, otherwise, holds its value. Note that if the register does

not have hold function, we assume that the register has a load enable signal line

and the value of that signal is always ’1’. If the starting point of p is a PI or the

ending point of p is a PO, the PI and the PO are treated as a register with no

hold function. Let Mi and CMi
(1 ≤ i ≤ n) be a MUX on p and its select signal,

respectively, where n is the number of MUXs on p. Let Ck
M be the control value

of M at time k. When Mi selects the input on p, the value of the select signal is

denoted as pMi
. For example, suppose that p is the RTL path R1-M1-ALU -M2-R3

in Figure 4.1. When M1 and M2 select p, pM1 = 0 and pM2 = 0. Let Sy and Sz

be states of a controller. When Sy transits to Sz, let k be the time at Sy and let

k + 1 be the time at Sz.

We first consider uncontrollability and unobservability of registers. Then we

define conditions of control signals to identify false paths.

Definition 14: (Uncontrollability of register R at time t)

Let q be an RTL path ending at R. For each state at time t − 1, if at least one

of the following conditions is satisfied, R is uncontrollable at time t.

• For each q, control signals of all the MUXs on q at time t and those at time

t − 1 are the same.
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• Each source register Rq of R is uncontrollable at time t − 1 or Ct−1
Rq

= 0,

where a source register of R at time t is a register whose value affects R at

time t. 2

An example of source registers is the following: Reg1 and Reg4 are the source

registers of Reg2 at time t in Figure 4.4. Reg3 is not a source register because

the data is prevented at the MUX at time t.

Definition 15: (Unobservability of register R at time t)

Let r and Rr be an RTL path starting at R and its ending register, respectively.

For each state at time t + 1, if every r satisfies at least one of the following

conditions, R is unobservable at time t.

• ∃i|1 ≤ i ≤ n,Ct+1
Mi

̸= rMi
, where n is the number of MUXs on r.

• Ct+1
Rr = 0.

• Rr is unobservable at time t + 1. 2

Lemma 1: An RTL path p is RTL false if one of the following three conditions

is satisfied for any state transition from time k to k + 1.

Condition 1: (1) Ck
Rs = 0 or (2) Rs is uncontrollable at time k.

Condition 2: ∃i|1 ≤ i ≤ n,Ck+1
Mi

̸= pMi
, where n is the number of MUXs on p.

Condition 3: (1) Ck+1
Re = 0 or (2) Re is unobservable at time k + 1. 2

Proof: We show that Lemma 1 is properly included in Theorem 3. For any input

sequence with any initial state, the input sequence causes at most all the state

transitions considered in Lemma 1. If any state transition satisfies at least one

of the conditions of Lemma 1, then the input sequence also satisfies at least one

of the conditions of Lemma 1.

If Condition 1(1) is satisfied for a state transition, Rs holds a value. If Condi-

tion 1(2) is satisfied for the state transition, a value is not changed at Rs although

Rs loads a new value. For both the conditions, no transition is launched at Rs,

which is the starting register of p. If Condition 1 of Lemma 1 is satisfied for the

state transition, Condition 1 of Theorem 3 is also satisfied for the state transi-

tion. If Condition 2 of Lemma 1 is satisfied for the state transition, Mi prevents

the propagation of a transition. Thus, for the state transition, Condition 2 of

Theorem 3 is also satisfied. If Condition 3(1) of Lemma 1 is satisfied for the state
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Figure 4.3. Examples of Condition 1(1), 2, and 3(1) of Lemma 1.

transition, no transition is captured to Re. If Condition 3(2) is satisfied for the

state transition, no captured value at Re is propagated to any primary output.

Thus, for the state transition, Condition 3 of Theorem 3 is also satisfied.

One of the three conditions of Theorem 3 is satisfied for any input sequence

if one of the three conditions of Lemma 1 is satisfied for any state transition.

Therefore, Lemma 1 are properly included in Theorem 3. 2

Conditions 1(1), 2 and 3(1) of Lemma 1 show the conditions of control signals

for two time frames k and k + 1. Examples of them are shown in Figure 4.3.

If Condition 1(1) of Lemma 1 is satisfied for a state transition, no transition is

launched at Rs at time k. If Condition 2 is satisfied for the state transition, no

transition at the starting point of p is propagated to the ending point along p at

time k + 1. If Condition 3(1) is satisfied for the state transition, no value is not

captured to Re at time k + 1. No transition is launched at Rs or no transition

at Rs is ever captured into Re if one of the three conditions is satisfied for any

state transition.

Conditions 1(2) and 3(2) are the conditions for the upstream and downstream

of the path, respectively. The uncontrollable condition of Condition 1(2) is that

the captured value of Rs at time k is the same as the previous value of Rs even

if the load-enable signal of Rs is ‘load’ at k; that is, there is no transition at Rs.

The unobservable condition of Condition 3(2) is that the captured value of Re
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Figure 4.4. An example of Condition 1(2) of Lemma 1.

at time k + 1 is not propagated to any PO even if the load-enable signal of Re

is ‘load’ at time k + 1. We show examples of these conditions in Figures 4.4 and

4.5, which are time expansion models of an RTL circuit.

In Figure 4.4, the target RTL path p is Reg2-Sub-Reg3. Reg2 loads a new

value ’A+B’ at time k. However, the value is the same as the previous value

that Reg2 loaded at time k − 1 because the select signal of the MUX is the same

at time k and k − 1. Moreover, Reg1 and Reg4 hold each value at time k − 1.

This is one of the cases where Condition 1(2) is satisfied. If a control signal of a

source register at time k− 1 is ‘load’, we will recursively check whether the value

captured into the source register is the same as the previous one.

In Figure 4.5, the target RTL path p is Reg2-MUX-Add-Reg3. The transition

launched at Reg2 is captured to Reg3 at k + 1. However, the value cannot

propagate to any PO because Reg1 does not capture the value at time k + 2. If

Reg1 captures the value, we will recursively check the next time frame at time

k + 3. For the other path from Reg3 to PO1, the MUX on the RTL path does
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Figure 4.5. An example of Condition 3(2) of Lemma 1.

not select the path at k + 1; that is, propagation of the value is prevented by the

MUX.

A path delay fault (PDF) on any gate-level path g ∈ δ(p) is non-robust

untestable if p is an RTL false.

RTL paths starting at SR-ff

For RTL paths from SR-ff, Lemma 1 can also be applied. The SR in a controller

uploads a new value every clock cycle. It means that CRs always becomes 1

(load). Therefore RTL paths from the SR to DRs do not satisfy Condition 1 (1)

of Lemma 1. Here we consider transitions from each flip-flop in the SR (SR-ff).

The relation between states and values of the flip-flops is determined by state

assignments. We can obtain the information on state assignments during logic

synthesis or designers can also determine state assignments before logic synthesis.

From the information on state assignments and state transition, we can know the

timing when a transition is launched at each flip-flop. For example, let us consider

state assignments to the controller in Figure 4.1. We assume that the SR in the

controller consists of two flip-flops (FF0, FF1), and (0, 0), (0, 1) and (1, 1) are

assigned to S0, S1 and S2, respectively. When S0 transfers to S1, FF1 has a

rising transition.

An RTL path is false with respect to a rising (resp. falling) transition if one

of the three conditions of Lemma 1 is satisfied for all the time t when a rising
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Figure 4.6. State assignment and a counter example.

(resp. falling) transition launches at the SR-ff of the starting point of the RTL

path.

Singh et al, proposed a method to identify untestable paths between SR-ffs

and SR-ffs by considering a state assignment and consecutive three states[15].

However we found that the method is not sufficient to identify the paths as

untestable. Consider FFi and FFj in the SR and consecutive three states Sk →
Sm → Sn on a state assignment. Now we assume that a transition launches

at FFi when Sk transfers to Sm. In [15], they consider that the transition at

FFi is not propagated to FFj if the value of FFj does not change on the state

assignment when Sm transfers to Sn. Therefore the paths from FFi to FFj are

untestable if a transition at FFi is not propagated to FFj for any consecutive

three states. Figure 4.6 is a counter example.

According to the path identification method in [15], they consider that the

0→1 transition of FF0 at Sm is not propagated to FF0 at Sn because the value

at FF0 does not change when Sm transfers to Sn. However the path FF0-b-G1-

f-G2-d-FF0 is non-robust testable. Actually, FF0 captures the faulty value 0 if

there exists a path delay fault on the path FF0-b-G1-f-G2-d-FF0. Hence the

path FF0-b-G1-f-G2-d-FF0 is testable.

4. Reduction in over-testing

To reduce over-testing, we consider that path delay faults on paths identified as

false are excluded from a fault list targeted by test generation, and then test gen-

eration is performed to the fault list. However, during test application, patterns

42



+

R1 R2

R3

V12

V11

V22

V21

Figure 4.7. A simple RTL structure.

generated by the test generation may still detect the excluded faults accidentally.

This is because a generated pattern to detect some path delay fault in the fault

list may also activate other path delay faults simultaneously. Actually, our exper-

imental results show that 10-60 % of the removed path delay faults is accidentally

tested if we generate two-pattern tests with no input constraint. However, we can

avoid the over-testing by generating single-port-change two-pattern tests that is

introduced in Chapter 3.

4.1 Test generation and test application

We first explain a case where sequentially path delay faults removed from a fault

list are tested by generating two-pattern tests. Figure 4.7 shows a simple RTL

structure and there are two RTL paths, R1-Adder-R3 and R2-Adder-R3. We

assume that R2-Adder-R3 is identified as a CFP. Then path delay faults on gate-

level paths corresponding to R2-Adder-R3 are removed from a fault list. For the

fault list, we generate a set of two-pattern tests without input constraints, i.e.,

any two-pattern tests can be generated. Let the first vectors for R1 and R2 be V11

and V21, respectively. Let the second vectors be V12 and V22, respectively. During

test application, transitions may be launched at the starting point of R2-Adder-

R3 because V21 and V22 can be different vectors. Therefore some path delay faults

on gate-level paths corresponding to R2-Adder-R3 may be tested even if they are

43



removed from the fault list.

Next, we show that the removed path delay faults are never tested by gener-

ating SPC two-pattern tests. Consider the same fault list as the above instance.

For the fault list, we generate a set of SPC two-pattern tests such that transitions

are launched at the only output port of R1. During test application, transitions

are never launched at the starting point of R2-Adder-R3 because V21 and V22 are

the same vectors. Therefore the removed path delay faults are never tested.

We assume enhanced scan design as a method to apply any two-pattern tests

to each FF. Note that if other DFT techniques such as non-scan DFT techniques

or broadside technique and skewed-load technique with standard scan are applied,

we have to consider incidental activation during justification of test patterns. The

incidental activation depends on scan-chain ordering for a standard scan or how

to generate control paths. Analyzing alleviation of over-testing for other DFT

techniques is our future work.

5. Experimental results

In this section, we evaluate the effectiveness of identifying a subset of RTL false

paths as control-dependent false paths (CFPs) in Section 5.1 and reduction in

over-testing in Section 5.2. The circuit characteristics of RTL benchmarks are

shown in Table 4.1. LWF, Tseng, Paulin and JWF are widely used benchmark

circuits. MPEG and RISC1 are more practical and larger circuit provided by

industry. These benchmarks are described at RTL and each circuit consists of a

controller and a datapath. The last two columns show the number of RTL paths.

The columns DR and SR-ff show that the number of RTL paths where an RTL

path starts at a datapath register or a PI and that of RTL paths where an RTL

path starts at an FF in the SR, respectively.

1 These circuits were provided for the Joint Research (1997-2001) with Semiconductor Tech-
nology Academic Research Center (STARC).
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Table 4.1. Circuit characteristics of benchmarks.

# RTL paths
Circuit Bit width #PIs # POs # REGs # States Area #DRs #SR-ffs
LWF 8 3 2 6 4 1,561 19 26
Tseng 8 4 3 7 5 2,975 20 42
Paulin 8 3 2 8 6 3,391 29 67
JWF 8 6 5 15 8 4,758 153 408

MPEG 8 7 16 241 163 77,554 651 2,152
RISC 32 1 3 39 10 97,739 10,181 38,122

5.1 Evaluation of the number of CFPs and the number of

gate-level false paths

Table 4.2 shows the result for the number of RTL paths identified as CFPs. The

second, third and fourth columns under DR show that the number of RTL paths

identified as a CFP starting at DR, that of RTL paths corresponding to starting

at DRs, and the ratio of the number of CFPs to that of RTL paths, respectively.

For JWF circuit, 117 of 153 RTL paths (76.5 %) is identified as CFPs within

0.1 second. MPEG has many registers with no hold function. Therefore the

starting registers may launch transitions and the ending registers may capture

the propagated transitions every clock cycle. Hence the number of CFPs is small.

However the CPU time is still less than 0.1 second. For even RISC, the CPU time

required for identifying 1,235 CFPs of 10,181 RTL paths is about 10 seconds.

The next three columns and the last three columns are results for RTL

paths starting at SR-ffs with rising transitions and that starting at SR-ffs with

falling transitions, respectively. For all the circuits except for RISC, the ratios of

RTL paths identified as CFPs are similar to that of RTL paths starting at DRs.

For RISC, a large number of RTL paths are identified. RISC has a state which

calculates some data using an ALU module and writes back the data to a register

in a register file. RTL paths from registers in the register file to registers in the

register file passing through the ALU are activated at only the state. If state

assignments are done as transitions at each SR-ff become fewer at the states, the

number of RTL paths identified as CFPs increase.
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Table 4.2. The number of RTL paths identified as CFPs.

DR SR-ff: Rise SR-ff: Fall
Circuit #CFPs #RTL paths % #CFPs #RTL paths % #CFPs #RTL paths %

LWF 3 19 16 % 4 26 15 % 4 26 15 %
Tseng 6 20 30 % 13 42 31 % 11 42 26 %
Paulin 12 29 41 % 25 67 37 % 30 67 45 %
JWF 117 153 76 % 285 408 70 % 319 408 78 %

MPEG 32 651 5 % 64 2,152 3 % 64 2,152 3 %
RISC 1,235 10,181 12 % 28,411 38,122 75 % 18,968 38,122 50 %

Moreover, we evaluated the number of RTL paths identified as CFPs when

only Conditions 1(1), 2 and 3(1) of Lemma 1 are applied, where the conditions

are for identifying CFPs within two time frames. For Tseng, the number of

RTL paths identified as CFPs, which is starting at DR, was reduced from 8 to

6. However the other results for the number of RTL paths identified as CFPs

was not changed. It means that almost all the CFPs that were identified by

considering all the conditions of Lemma 1 were identified. For very large scale

circuits, identification based on only two time frames may be efficient to reduce

the time required for finding CFPs.

Table 4.3 shows the result of gate-level false corresponding to RTL paths

identified as CFPs. We extracted gate-level paths from the longest path, which

have larger propagation delay, by using the “report path” function of the timing

analysis tool Prime Time (Synopsys). For LWF, Tseng, Paulin and JWF, we

extract all the paths in each circuit. For MPEG and RISC, we extracted 300,000

and 200,000 gate-level paths from the longest path, respectively. The second

column is the number of gate-level paths corresponding to CFPs, that is, these

are gate level false paths which were identified by our method. The third column

is the total number of gate level paths starting at DRs. The fourth column is the

ratio of the second column to the third column. For Tseng, our method identified

2,337 of 5,192 (45 %) gate level paths as false paths. For LWF, Tseng and Paulin,

the ratio of gate level false paths to the total is almost same as that of CFPs to

the total RTL paths. If an RTL path which is passing a large scale operational
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Table 4.3. The number of gate-level paths corresponding to CFPs.

DR SR-ff: Rise SR-ff: Fall
Circuit #GL false #GL path % #GL false #GL path % #GL false #GL path %

LWF 314 2,180 14 % 330 1,461 23 % 350 1,461 24 %
Tseng 2,337 5,192 45 % 142 414 34 % 236 414 57 %
Paulin 10,598 33,476 32 % 10,387 26,898 39 % 12,197 26,898 45 %
JWF 9,760 32,522 30 % 36,331 49,094 74 % 41,018 49,094 84 %

MPEG 0 257,552 0 % 922 39,398 2 % 192 3050 6 %
RISC 1,76 174,063 1 % 1,375 6,396 21 % 9,882 19,541 51 %

module such as a multiplier is identified as a CFP, a large number of gate level

paths are identified as false paths. For MPEG, most of extracted 300,000 paths

are starting at DRs, and there is no false paths corresponding to CFPs. The

reason is that gate level paths corresponding to the CFPs have short propagation

delays, hence they did not included among the extracted 300,000 paths.

5.2 Reduction in over-testing

Here we report results of reduction in over-testing for each benchmark. Note that

robust testable path delay faults and non-robust testable path delay faults are

considered in this result (We evaluate this result using TetraMax by Synopsys

but it cannot deal with functionally sensitizable path delay faults).

Figure 4.8 shows that the ratio of the number of path delay faults on paths

identified as CFPs to that of tested path delay faults as an example. For all

the path delay faults in an original sequential circuit, we cannot perform se-

quential test generation within practical time. Hence we do not know the exact

number of untestable path delay faults in the circuit. However, for the circuit

augmented by some DFT technique such as full scan, the ratio of untestable path

delay faults decreases because sequentially untestable path delay faults become

testable. path delay faults corresponding to CFPs are not only a subset of se-

quentially untestable path delay faults in the original circuit but also a part of

combinationally untestable path delay faults. If we normally generate uncon-
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Figure 4.8. The ratio of path delay faults to tested path delay faults.

strained two-pattern tests, some path delay faults corresponding to CFPs are

tested (See the third graph in Figure 4.8). On the other hand, our proposed

method never test all the path delay faults corresponding to CFPs.

Table 4.4 shows the results of the reduction in over-testing for each benchmark

circuit. The second column is the total number of PDFs. The third column is

the number of PDFs on CFPs, which corresponds to ‘A+B+C’ shown in Figure

4.8. The PDFs are generated by using the “write path” function, which is for

generating a fault list, of Prime Time in order to perform test generation and

fault simulation. The fourth column is the number of PDFs excluding PDFs on

paths that are identified as false, which corresponds to the total PDFs-(A+B+C)

in Figure 4.8. The fifth column shows the number of tested PDFs among PDFs

shown in the third column, which corresponds to ‘A’ and its ratio to the third

column. In terms of reduction in over-testing, when we generate SPC two-pattern

tests for fault lists excluding PDFs corresponding to CFPs, the removed PDFs

are never tested. However if we generate unconstrained two-pattern tests for the

same fault list, 10-60% of the removed PDFs is accidentally tested (over-testing).
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Table 4.4. Reduction in over-testing for data paths.

#PDFs (Total) #PDFs corresp. #PDFs #Over-tested PDFs(A)
Circuit to CFPs (A+B+C) Total-(A+B+C) Unconstrained Proposed
LWF 3,598 619 2,979 392 (63%) 0
Tseng 5,868 2,928 22,940 1,185 (40%) 0
Paulin 37,171 19,477 17,694 2,195 (11%) 0
JWF 45,658 37,150 9,402 3,452 (9%) 0

MPEG 41,521 340 41,181 220 (65%) 0
RISC 25,496 6,974 18,522 509 (7.3%) 0

6. Summary

In this chapter, first we have proposed a method to identify a large number of se-

quentially untestable path delay faults in a controller-data path circuit using RTL

information. However even if the untestable path delay faults are removed from a

fault list targeted by test generation, the generated test patterns incidentally test

the removed faults. Hence we have also proposed a method that never test path

delay faults identified as control-dependent false paths by using single-port-change

(SPC) two-pattern testability. In the experimental results, we showed that our

proposed method never tests path delay faults that were identified as CFPs. On

the other hand, if we normally generate unconstrained two-pattern tests, 10-60

% of path delay faults identified as CFPs were accidentally over-tested.
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Chapter 5

Conclusions and Future Works

Delay testing is an important technique to guarantee the timing correctness of

a given circuit. To reduce the test generation complexity design-for-testability

(DFT) techniques are generally used. On the other hand, over-testing problem

is induced by influence on the DFT techniques. We have proposed a non-scan

DFT method for data paths as our first work, and also have proposed a false path

identification method in order to reduce the over-testing.

In Chapter 3, we have presented a concept of single-port-change (SPC) two-

pattern testability and proposed an efficient non-scan DFT method to make every

RTL path that has to be tested SPC two-pattern testable. Our proposed method

reduced area overhead and test application time compared to the previous DFT

method for hierarchically two-pattern testability without losing the quality of

test with respect to robust test and non-robust. For an RTL path that is not

SPC two-pattern testable ( in this situation, also arbitrary two-pattern cannot

be applied ), our DFT method adds a hold function to the register that is the

starting point of the RTL path, but on the other hand the previous DFT method

may have to add an extra register. Therefore, our DFT method can reduce area

overhead in such situation. We showed the effectiveness of our DFT method

experimentally.

In Chapter 4, we have proposed a method of identifying false path using

RTL information. The method identifies a subset of RTL false paths as control-

dependent false path (CFPs) analyzing control signals such as select signal of a

mux and road enable signal of a register. In the experimental results, we show
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that a large number of untestable path delay faults are identified in reasonable

time. Moreover, SPC two-pattern tests never activate the identified path delay

faults, but on the other hand normal two-pattern tests accidentally activate 10-60

% of them.

Finally, we discuss directions for our future works. An RTL circuit consists of

a data path and a controller, and the two components are connected each other.

The data path occupies the majority of the RTL circuit, therefore in our work,

we first proposed a DFT method for the data path separated from the controller.

Our future work is to propose a DFT method taking the delay testing between a

controller and a data path into account. In our second work, a method of false

path identification for the controller-datapath circuit was considered. However,

non-separated RTL circuits can be also considered, which is called functional RTL

description. For a functional RTL circuit, control signals of a mux and a register

are not clear. False path identification for such circuits is our future work.
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