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Multiple Alignment for Structural RNA

Sequences®

Hisanori Kiryu

Abstract

Recent transcriptomic studies have revealed the existence of a considerable
number of non protein coding RNA transcripts in higher eukaryotic cells. To
investigate the functional roles of those transcripts, it is of great importance to
find conserved secondary structures from multiple alignments at a genomic scale.
In this thesis, I investigate the problem of multiple alignment of structural RNA
sequences.

The first part of the thesis presents a novel alignment algorithm for structural
RNA sequences. Structural RNA genes show unique evolutionary conservation
patterns to conserve their secondary structures, which should be taken into ac-
count for constructing accurate multiple alignments of RNA genes. An algorithm
that naturally includes the base covariance effect in its alignment model is intro-
duced which has an efficient scoring system that considerably reduces the time
and space requirement without degradation of the alignment quality. Sevaral ex-
periments are performed to show that the alignment quality and the accuracy of
the consensus secondary structure prediction from the alignment are the highest
among the leading alignment programs. The algorithm can align relatively long
RNA sequences such as eukaryotic type signal recognition particle RNA of length
about 300 nucleotides which has not been computable by other Sankoff-based
algorithms.

The second part of the thesis presents novel algorithms that predict consensus

secondary structures from the multiple alignment of RNA sequences. [ compare

*Doctoral Dissertation, Department of Bioinformatics and Genomics, Graduate School of
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13, 2007.



several algorithms for the consensus structure prediction under different levels of
alignment qualities. One of these algorithms, termed McCaskill-MEA, is shown
to be the robustest against alignment failures than the other algorithm. The
McCaskill-MEA method performs better than other algorithms, especially when

the alignment quality is low and when the alignment consists of many sequences.
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RNA, sequence analysis, multiple alignment, maximal expected accuracy, Mc-

Caskill algorithm
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Chapter 1
Introduction

Recently, a number of studies have shown that there are a substantial number of
RNA transcripts which do not code protein sequences in higher eukaryotic cells
[34],[7],[2], and the question whether such transcripts have any functional roles
in cellular processes has attracted much interest. To investigate the functional
roles of such transcripts, it is of great importance to find conserved secondary
structures from multiple alignments created at a genomic scale.

Since structural RNA genes show unique evolutionary conservation patterns to
conserve their secondary structures, multiple alignment methods should take into
account the base covariance effect to construct the accurate multiple alignments.
The Sankoff algorithm [38] is the alignment algorithm which naturally includes
the base pair covariation effect in the alignment model. However, it was not
practical to use the Sankoff algorithm for aligning multiple sequences due to
its prohibitive cost of computation. Therefore, most of the studies has used
alignment programs which neglect the special conservation patterns of secondary
structures to search for conserved secondary structures [42], [20],[44], [43], [35].
The neglect of the base pair covariance effect has potential risks to overlook
conserved secondary structures due to misalignment around the stem regions.
Such loss of sensitivity is particularly problematic in the early stage of large
scale screening which precedes the time-consuming but accurate experimental
validation stages.

In this thesis, I propose a practical method to align multiple RNA sequences

based on the Sankoff algorithm and a method that predicts conserved secondary



structures from alignments, which is robust against alignment failures.

The first part of the thesis presents a novel alignment algorithm for structural
RNA sequences. An algorithm based on the Sankoff model is introduced which
has an efficient scoring system that considerably reduces the time and space
requirement, without degradation of the alignment quality. The algorithm first
compute the match probability matrix that measures the alignability of each
position pair between sequences and the base pairing probability matrices for each
sequence. Then these probabilities are combined to score the alignment by the
Sankoff algorithm. Sevaral experiments are performed to show that the alignment
quality and the accuracy of the consensus secondary structure prediction from the
alignment are the highest among the leading alignment programs. The algorithm
can align relatively long RNA sequences such as eukaryotic type signal recognition
particle RNA of length about 300 nucleotides which has not been computable by
other Sankoff-based algorithms. The algorithm is implemented as the software
“Murlet”.

The second part of the thesis presents novel algorithms that predict consen-
sus secondary structures from the multiple alignment of RNA sequences. All
three algorithms maximize the expected accuracy of secondary structures under
different base pairing probability distributions. One of the algorithms, termed
McCaskill-MEA, is shown to be the robustest against alignment failures than the
other two algorithms and also the algorithms frequently used for the conserved
structure prediction. The McCaskill-MEA method first computes the base pair-
ing probability matrices for all sequences in the alignment, and then obtains the
base pairing probability matrix of the alignment by averaging over those matri-
ces. The consensus secondary structure is predicted from that matrix so that the
expected accuracy of the prediction is maximized. The McCaskill-MEA method
performs better than others, especially when the alignment quality is low and
when the alignment consists of many sequences. The model has a parameter that
controls the sensitivity and specificity of predictions, which is useful for multi-
step screening procedures to search for conserved secondary structures, and for

assigning confidence values to the predicted base pairs.



Chapter 2

Maximal Expected Accuracy
Algorithm

2.1. Overview

In this chapter, I give a few formal definitions of the secondary structure predic-
tion and the traditional pairwise sequence alignment. I also describe the maximal
expected accuracy (MEA) algorithm that forms the basis of the algorithms pro-

posed in the following chapters.

2.1.1 Secondary Structure Prediction Problem

For a sequence z of length L, let C = {i|]1 < i < L} be the set of sequence
positions and let PC = {(i,j) € C x C|1 < i < j < L} be the set of pairs of
alignment columns. A secondary structure of the sequence x is defined by the

mapping m®) from PC to the binary values {0, 1},
m® . PC — {0,1}

such that m(® (i, j) = 1 if the column pair (i, j) forms a base pair, and 0 otherwise.
Let

y® = (4 € {0,1}((i,5) € PC,yY = m®(i, j)}



L-1)/2)

be the image of the mapping. y® cannot take all possible 2(X( values to

form a consistent secondary structure. Since each column cannot be paired with

two or more columns, y®) satisfies the following constraint.

3G, 9), 05 =1 (2.1)
— Yk #6, 5,50 =y = 0 (2.2)

Moreover, since I do not consider pseudo-knot structures in this thesis, I assume

that y® follows the nested structure constraint;

(i, 1),y =1

— V(D) i<k<j<lork<i<Il<jyl=0

I also use an alternative representation S of a secondary structure, that consists

of a set of loop columns £ and a set of pair columns P.

§={cL,P}
L={ieCVk#i,yy =yy =0}
P ={(i.j) € PCly =1}

For a given conditional probability distribution p® (y®)|z), the base pairing
probability p® (i, j) of columns (4, j) can be defined as follows,
p¥i.5) = B 65, 1)
b
=Y "6y )p® (V)

y(®)

- Y 0

b
Y@y =1

where §(z, 2') is the Kronecker delta function which is defined by,

. l1if z=2
d(z,2') =
0 otherwise

and E[A] is the expectation value of A with respect to p® (y®|z). Let the loop
probability ¢{*)(i) be the probability that the alignment column 4 does not form

4



any pair with other columns,

V(i) =E Ha(y£;>,o>Ha(y§?,o>] (2.3)

Li<j Jj<i

=E H(1—6<y£;-”,1>>H(1—5<y§-2’,1>>] (2.4)

Li<j j<i
=E 1= 60,1 =Y 6, 1)] (2.5)
L 1<g 1<t
=1-Y p"i,5) =Y p" (i) (2.6)
1<J 1<t

In the third line, I have used the constraint in Equation (2.2). p® (y®|z) can
be computed for various models such as models based on loop decomposition of
secondary structure energy and models based on stochastic context free grammars
(SCFGs). In the energy based models, p® (y®|z) is given by the Boltzmann
distribution of secondary structure configurations,

® 4
POk = e (-2 27)
®) 4
Z(x) = %;exp (—%) (2.8)

where F (y(b), x) is the secondary structure energy which is computed using the
energy parameters collected by the Turner group [27], k is the Boltzmann con-
stant, T' is the temperature, and Z(z) is the partition function. In this case, the
corresponding base pairing probability matrix p(® is computed by the McCaskill’s
algorithm [30](Algorithm 1).

The maximal likelihood prediction of the energy based models, is given by the

secondary structure 3 that maximizes the p® (y®)|x)
y® = argmaxy(b)p(y(b)|x)

The Mfold algorithm [42], [46] is interpreted as one of such algorithms.
In the SCFG models [5], p® (y®)|z) is given by the sum of joint probabilities



Algorithm 1 The McCaskill Algorithm

Folding:
j—m—2
>y o
fj R i+1 1= h+m+1Qh LagkD/RT Z Qz+1h 1th 1€_MC/kT
UStmax h=i+1
J
Z Q_Ble—[/\/tz-i-/\/ts(j—l)]/kT
Z’
l=i+m+1
j m—1 J m—1
Z QM _ oM + Z Qe — Mp(h—i) /KT
h=l4+m+1 h=i
J
>, Qi
l=i+m+1
j—m—1
QZ,J _1+Q + Z th lQh,]
h=i+1
Backtracking:

Ql h— lQh lQl+1 L
Ql L

Z Z P —T(i,5,k,0) /KT

YA
Py th i=1 j=I+1

U<Umax 7_7

h—1
m _ B —[Mc+Mz]/kT M1 M M AM M —Mp(h—i—1)/kT
By =Qp e [Pi,l iih—1 TP Qiiaps + e ]

Phl

L

pPM _ EQM
i = B Wit1,j-1

j=1+2

Z —Mp(j—1-1)/kT
Q

J=Il+1

Phy =Py, + P/i,z +




p(b)(a, x) over the set of parses o sharing the same secondary structure y®),

PO (yz) = Y pP(o]x)

O-Ey(b)
_ Z(rey(b) p(b) (07 ZU)

2P (0, 7)

p® (o, z) is the joint probability of generating the parse o and given by the prod-

uct of transition and emission probabilities of the SCFG model. The sum of the
numerator in the second line is over all the parse trees which share the same sec-
ondary structure ¥, and the sum of the denominator is over the all the possible
parse trees. The corresponding base pairing probability matrix is computed by
the inside and outside algorithm [8],[4]. The computation of p®) requires O(L?)
time and O(L?) memory.

2.1.2 Maximal Expected Accuracy Algorithm

Recent studies have shown that the secondary structure predictions based on the
principle of the maximization of expected accuracy (MEA) [31], perform better
than the predictions made by the conventional maximal likelihood algorithm and
the energy minimization algorithm [35], [4],[24], [4]. This algorithm first computes
the base pairing probability p®) (i, j) for each pair of alignment columns (4, j) then
considers the expected accuracy EA(S) for each secondary structure candidate
S. The predicted secondary structure S is obtained by maximizing the expected
accuracy FA(S) with respect to S.

For a secondary structure S = {£,P} and a given parameter a® >0, the
expected accuracy EA, e (S) of S with respect to the conditional distribution
p® (y®)|z) is defined as,

FEA,S)=F ao® (ZH&(yg’),o)+ZH5(%{?),O)> 19 Z 5(%(;),1)

€L <] el j<i (i,)€P

a0 +2 Y 0d)

€L (i,4)EP

When a®) =1, EA,(S) can be interpreted as the expectation value of the number



of correctly annotated bases with respect to the conditional probability distribu-
tion p® (y|x).

The secondary structure that maximizes the expected accuracy can be com-
puted by the traceback procedure of Nussinov-like dynamic programming algo-
rithm [33].

(Mz'fl,jfl + 2p(b)(ia 7)

Mi— P+ Ol(b) (b) 7
Mi,j = max «{ b 1 ( ) (29)
M; i+ a®q®(5)

\Mi,k + Mk+1,j fori < k <J

The maximum of the expected accuracy MEA is given by

MEAa(b) == mgx EAa(b) (8)

- MI,L

The corresponding secondary structure & = Syga is the MEA solution. The

b controls the sensitivity and specificity of the structure prediction

parameter ol
[4]. A small o) value encourages the base pair formation, which results in higher
sensitivity, and a large a(®) value encourages the increase of single stranded region
and results in higher specificity .

The reason that the MEA algorithms show better prediction accuracy than
their maximal likelihood counterparts can be explained as follows. In general,
any computational model of secondary structure prediction based only on the
sequence data has its limitation in accuracy, because an RNA molecule in reality
forms a three dimensional structure in the cell, and interacts with itself among
three dimensional neighborhoods of bases other than the pair forming bases.
Moreover, it also interacts with bounded proteins and other cellular environments,
that affect the formation of its secondary structure. Hence the absolute optimality
with respect to the scoring system of the model is of limited importance. When
the model is not quite correct but reasonably good, then taking the majority
of structures among near optimal structures may be a more feasible way for
predicting the secondary structures. The MEA algorithm can be considered as

one of such algorithms.



For example, if an optimal structure does not form a pair at a column pair
(i, 7), but many suboptimal structures form a pair at (7, j), then the MEA solution
tends to form a pair at (¢, ), since the base pair probability p;; takes a large value
at that position.

Therefore, in contrast to the maximal likelihood method that considers the
only one optimal structure, the MEA algorithm takes into account various near
optimal structures and predicts the consensus structure supported by them. It

presumably acts to reduce model specific artifacts from the predictions.

2.1.3 Sequence Alignment Problem

For a given pair of sequences z(") and z(® of lengths L™ and L, an alignment
between () and z(® is defined by the mapping m(® from the pair positons
PC1D = ¢ % C®? to the binary values {0, 1},

m(@ . pc? — (0,1}

such that m(® (¢, 7) = 1 if the sequence position i of (M) and the sequence position
j of £ are matched in an equal column in the alignment, and m(® (i, j) = 0

otherwise. Let
v = {5 € {0,1}((5,1) € P12,y = m@ (i, 1)}

be the image of the mapping. Similar to the secondary structure case, y(* cannot

BN : . .
2L XL values to form a consistent alignment. Since each

take all possible
sequence position cannot be aligned with two or more sequence postion of the

other sequence, y(® satisfies the following constraint.
(i, §),yi) =1 (2.10)
= V(k, Dk #i,1 # j,y) =y =0 (2.11)
Moreover, if the positions 7 and 7 match each other in the alignment, the sequence
positions left of the position i of sequence () cannot match with the sequence
postions right of the position j of sequence z(® and vice versa, y(® also satisfies

the constraint,
3G, ), 0 =1 (2.12)
— V(k,1),(i < kand j <) or (k<iandl<j),y =0 (2.13)



We use an alternative representation A of the alignment, that consists of two set

2)

of insertion positions Z, T and a set of match pairs M.

A= {I(l),I(2),M}
W = {i e WL,y = 0}
I = {j € CO\VE, yi; = 0}
M ={(i.j) € PCUIyP =1}

The match probability p{® (i, 5) is the posterior probability that sequence po-
sitions 7 and 7 will be matched in an alignment For a given conditional probability
distribution p® (y@|z(") 2(2)), the match probability p® (i, j) of a pair position
(1,7) is defined by,

PG, j) = B [5,1)]
— Z 5(%(;), 1)p@ (y(®|zM), z®)

y(a)

— Z p(a)(y(a)|x(1),x(2))

Y@y =1

and E[A] is the expectation value of A with respect to p(® (y(® |z 2(3)). Let the
insertion probability q(“)(l)(i) to be the probability that the sequence position ¢

of sequence (1) does not match with any position of the other sequence,
¢V () =B |T] oy, 0)] (2.14)
L1

=F Ha—a(y;“’,l))] (2.15)

l

=F[1-) "6, 1)] (2.16)
=1 —_Zp(a)(i, ) (2.17)

l

The insertion probability ¢(®® of sequence z(? is defined similarly. For an align-

ment A = {ZM), T M} and a given parameter a(® > 0, the expected accuracy
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EAS(Z)(A) of A with respect to the conditional distribution p® (y(@|z(1) 2(2)) is
defined by,

EAy(8) =B [o@ [ 3" TTow,00+ > TTow 0] +2 > o6, 1)

ez 1 jez® k (3,5)EM

—a®@ [ 3 @06+ 3 g@2() | 42 3 p@(y@[a®, 2?)

ez (1) ez (i,j)EM

When o(® = 1, EA_ . (A) can be interpreted as the expectation value of the
number of correctly annotated bases with respect to the conditional probability
distribution p(® (y(@ |z, £2). The alignment that maximizes the expected ac-
curacy can be computed by the traceback procedure of the following dynamic

programming algorithm.

M;_y ;-1 + 2p(a)(i7j)
Mi,j = max Mi*l,j + a(a)q(a)(l) (Z) (218)
M; i1 + o @gl @) (j)

The maximum of the expected accuracy MEA is given by

MEA, = max EA . (A)
= ML(1>+1,L(2)+1

The corresponding alignment A = Ayga is the MEA solution. Similar to the sec-
ondary structure case, the parameter a(® controls the sensitivity and specificity
of the match positions. However, due to the strong constraint on the allowed
match positions in Equation2.13, the parameter o® is often set to zero so that
the sensitivity is maximized.

'@ (y@ |z, ?) can be calculated using the standard pair hidden Markov
model (PHMM) of sequence alignment [8]. The model structure of PHMM is

shown in Figure 2.1.

@ (20, @)
- 2P, )

P (5@ |20, £®)
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() () ()

/\/\

M

Figure 2.1. The model architecture of PHMM which is used to calculate the
match probabilities p(®. The M indicates the match state and I, D indicate the

insertion and deletion states, respectively.

pl@) (7,z,y) is the joint probability of generating the alignment path 7 and given
by the product of transition and emission probabilities of the PHMM model.
p@(i,7) is calculated using the forward and backward algorithms (Algorithm 2.
The computation of p{® requires O(L?) time and O(L?) memory.
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Algorithm 2 Forward and backward algorithms.

Forward:

Fu(ij) = D [Fy(i—1, - 1)+ F(i—1,j— e+ Fpi — 1,5 — 1)e”
Fr(i,j) = Far(i,j — e + Fr(i, j — 1)e
Fp(i,j) = Fa(i—1,5)e™ "+ Fp(i — 1, 7)e
Backward:

B (i, ) = By(i+ 1,54+ 1)e*0H+D 4 Bi(i 5+ 1)e 4+ Bp(i + 1,5)e
By (i, j) = Bar(i+ 1,5 + 1) By (i, j + 1)e
Bp(i,j) = By(i4 1,5+ 1)ef@it=d 4 (i 41, j)e

‘]
—e
—e
—e

—e

—e
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Chapter 3

Multiple alignment algorithm for

structural RN A sequences

3.1. Overview

In this chapter, I propose an efficient algorithm for multiple sequence alignment

of structural RNA sequences. The first half of this chapter describes

the alignment model and the objective function maximized by the Sankoff

algorithm.

an efficient method that considerably reduce the dynamic programming

(DP) region to be computed.
two approximation methods to constrain the DP region

the multiple alignment procedure such as how the guide tree of progressive
alignment are constructed, and the method to align two groups of aligned

sequences.

the probabilistic consistency transformations for match probabilities and

base pairing probabilities that improve the accuracy of alignment results.

The second half of this chapter describes the results of that experiments that

show the accuracy and speed of the proposed alignment method.
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3.2. Background

Because the evolution of a structural RNA gene has the unique characteristic that
the substitutions of distant bases are correlated in order to conserve their stem
structures, multiple alignment methods should account for such substitution pat-
terns for the accurate detection of conserved structures. The Sankoff algorithm
[38] is an alignment algorithm that naturally includes the base pair covariation
effect in the alignment model. However, it is not practical to use the Sankoff algo-
rithm in the original form due to its prohibitive computational cost. Hence, there
have been intensive studies that investigate practical variations of the Sankoff al-
gorithm in recent years [28],[17],[11],[22],[14],[41],[6]. The algorithms proposed
in these studies are roughly categorized into two groups, depending on how the
secondary structures are scored in the algorithm.

The algorithms in the first group score the structures using the free energy
parameters collected by the Turner group [27]. The algorithms in this group have
the advantage of their relatively accurate structure predictions. However, it is
difficult for these algorithms to combine the structure energy with the homology
information consistently. The pairwise alignment programs Dynalign [28],[41] and
Foldalign [14], and the multiple alignment program PMMulti [17] belong to this
group.

The second group scores the structures as a part of the probabilistic model
called the pair stochastic context free grammar (PSCFG). The advantage of these
algorithms is that the parameters that score both the alignments and structures
are determined in a unified manner. However, these algorithms have a potential
disadvantage that the accuracies of the structure models might be only mod-
est due to the limitations of PSCFG, as compared to those in the first group.
The pairwise alignment program Consan [6] and the multiple alignment program
Stemloc [22] belong to this group.

These algorithms provides a variety of methods to reduce the huge cost of
computation. Dynalign restricts the DP region to a narrow band region so that
only similar positions of sequences are compared to each other. Foldalign and PM-
Multi limit the lengths of subsequences that are compared to each other. Stemloc
implements a general method for combining the constraints in the structure space

and those in the alignment space that are computed using a Waterman-Eggert
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style suboptimal alignment algorithm [45]. Consan constrains the DP region by
anchoring the points in the DP matrix that have very high posterior probabilities
of alignment that are computed by the pair hidden Markov model (PHMM).

However, the computational cost is still quite high even these approxima-
tions are applied and It has been impractical to use these programs for aligning
sequences having lengths longer than 200 bases. Therefore, several studies have
sought for algorithms that circumvent the Sankoff algorithm for fast computation
of common secondary structures. For example, the SCARNA program [39] aligns
the stem candidate sets extracted from the base pairing probability matrices of
two sequences by using very fast dynamic programming algorithm. The RNAcast
program predicts common secondary structures from unaligned sequences [36],
and the RNAmine algorithm [13] exhaustively enumerates the frequent stem mo-
tif patterns from unaligned sequences.

In this chapter, I propose a practical method for aligning multiple RNA se-
quences based on the Sankoff algorithm. I show that both the alignment quality
and the accuracy of the consensus secondary structure prediction from the align-
ment are the highest among the existing alignment softwares. I also show that
our algorithm can align relatively long RNA sequences that have not been com-
putable by other Sankoff-based algorithms. The algorithm is implemented in the

software “Murlet.”

3.3. Systems and Methods

3.3.1 The Model

I first describe our algorithm for a pairwise sequence alignment. The derivation
of our alignment algorithm is guided by two principles.

The first is the principle of extensive preprocessing before applying the Sankoff
algorithm. In general, the alignment of structural RNA sequences requires simul-
taneous consideration of complex information such as base substitution score, gap
insertion cost, stacking energy, and various loop energies. If all of these elements
are included in the Sankoff model, the computation would be unmanageably slow.

Instead, I use the match probability p(® and the base pairing probability p®) to
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score the alignments and structures. Both p(® and p® can be computed by much
faster algorithms than the Sankoff algorithm and compactly represent complex
information such as sequence homology and structure contexts. This enables us
to keep the Sankoff model very simple. Since these quantities p(® and p® do not
include the base pair substitution effects, I also apply the base pair substitution
matrix s(i, 7, k,[) to score the base pair substitution events.

The second principle is the maximal expected accuracy (MEA) principle. Re-
cent studies have shown that the accuracy of the sequence alignment and the
secondary structure predictions based on the principle of the maximization of
expected accuracy [31] perform better than the predictions made by the conven-
tional maximal likelihood algorithms [4],[35],[24]. A straightforward application
of the MEA principle to the Sankoff algorithm would include the calculation of
the posterior probabilities of loop match and stem match events by using the
inside-outside algorithm. However, such computation is quite demanding be-
cause the corresponding Sankoff model would require a large number of states
to express the complex homology and structure information, as described in the
previous paragraph. Therefore, I instead have adopted a factorized form (Equa-
tions 3.1 and 3.2), which is expected to exhibit behavior similar to the posterior
probabilities of the Sankoff model.

To give the mathematical definition of our algorithm, I consider the consensus
secondary structure annotation S for each pairwise alignment A of length L,

which consists of sequences z and y of lengths L, and L, respectively.

S=8,={L,P}
L = {I € C|column I does not form any base pair}
P ={(I,J) € PC|columns (I, .J) form a base pair}

where the match columns C is the set of alignment columns without gap char-
acters, and PC = {(I,J) € C x C|1 < I < J < L} is the set of pairs of match
columns C. I consider only the cases where all the base pairs are formed between

the match columns. I also ignore pseudo-knotted structures. I assign a score ey,
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to each loop column I € £ and a score eg to each column pair (I,.J) € P.

e(ir, jr) =P (ir, 1)a™ (ir)a™ (jr) (3.1)
es(ir, jr,i5, 1) Z%‘p D (ir, i)' iy, js)
O (i, i)p® (rs 4)

X exp( (i1, J1,17,77)) (32)

where i; and j; represent the sequence positions of sequences x and y aligned at
column I. s(iy, jr, %y, js) denotes an element of the base pair substitution matrix.
vr, and 7 are constant coefficients.

For each alignment A and its consensus structure candidate S, the alignment
score z = z(\A, S) is defined as the sum of the loop match scores ey, and the base

pair match scores eg.

z = ZeL(iI,jI) + Z es(ir, jryig, jr)

IeL (1,J)eP

The alignment result (Apmax, Smax) 1S obtained by taking the maximum of the
SCOTe 2 = Zmax among all the alignments and structures.

To compute the maximum of z(A, S), I have adopted the following DP of the

Sankoff algorithm.

.
Mit1 j je—1,0-1 + es(i, j, k1)
M1 js100 +er(4,7)
M; jk—1,-1+er(k,1)

M; ;5 = max ¢ Mitrsps (3.3)

M j i1,k
M; k1,
M j k-1

\Mi,j,u,u + Myt1 vy fori<u<k, jg<ov<l

After the DP computation, the maximum of the score is obtained by zpa., =
M 1,1, The computation of Equation 3.3 requires O(L°) time and O(L*)

memory.
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Note that the alignment result is defined in terms of the score z(A,S) and
is independent of the details of the grammar of the Sankoff algorithm, when the
algorithm of Equation 3.3 is interpreted as the Cocke-Younger-Kasami (CYK)
algorithm of PSCFG. I can use an arbitrary grammar to compute the alignment,
provided that the grammar can parse all the alignments and structures, and that
it does not modify the score system. The latter condition implies that the model
cannot have any transition scores and that the left and right emission scores have
to be exactly the same. The independence of the alignment result on a particular
grammar also indicates that there are no problems with the ambiguity of the
grammar. For an ambiguous grammar, two or more parse trees correspond to the
same alignment and structure. Since the score only depends on the alignment
and structure, which of the parse trees is chosen depends on the detailed order
of computations. This indicates that the obtained parse tree has little meaning.
However, the alignment and its associated structure are unique, and they are
sufficient for our purpose.

In contrast, the computations of the match and pair probabilities are affected
by the redundant enumeration of the same alignment and structure. However,
both the forward-backward algorithm of the model of Figure 2.1 and the Mc-
Caskill algorithm enumerate all the alignments and structures without redun-

dancies. Therefore, the whole algorithm is free from the redundancy problems.

3.3.2 Reduction of DP Region

Because the loop match score e; and the base pair match score eg are both
proportional to the match probability p(®, I restrict the L, x L, DP region to
a smaller one that includes all the positions with p(®(k,[) > ¢, where € is a
prespecified threshold value.

For each alignment A, let M denote the set of match positions in the align-
ment A that satisfy p{®(i,j) > e. For a given initial alignment path and a
threshold value € > 0, I then define the restricted DP region as the smallest

region in the DP matrix that satisfies the following conditions.
1. The region is simply connected, that is, the region has no holes.

2. The region includes the initial alignment path.
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3. For each alignment path A with M¢% # () in the full DP region, there exists
an alignment A’ in the restricted DP region that satisfies M%, = M.

I have described the algorithm for computing the restricted DP region in the
supplementary information. The third condition implies that if all the match
probabilities p(“)(i,j) that are not greater than e are set to zero, then there
always exists an alignment in the restricted DP region that has the same score as
the optimal score of the Sankoff algorithm in the full DP region. It implies that
for a sufficiently low threshold value € (I use ¢ = 0.0001 throughout the study),
the restriction of the DP region rarely cause missing the optimal alignment.

If two sequences are highly similar, the match probabilities concentrate along
a specific diagonal in the DP matrix and the reduction of the DP region is quite
significant. As shown in the later section, the elapsed time and memory are
drastically reduced for similar sequences.

Previous studies have also considered to restrict the DP region using PHMM
[6],[22]. In particular, our reduction method is a particular case of a more general
method proposed by Holms et al. [22]. However, our method is different from
their algorithms in two respects. The first is that our method is more conservative
than their algorithms, since all the likely positions are kept in the DP region rather
than only highly possible regions are selected as in their methods. The second
point is that the score system of the Sankoff algorithm is more closely tied to the
PHMM that is used to reduce the DP region. Since the loop match score e;, and
the pair match score eg are both proportional to the match score p(®, there are no
contribution to the total score from the positions with zero match probabilities
p@(i,7) = 0. On the other hand, in their algorithm, the score system of the
Sankoff algorithm and the score system of PHMM is not directly related. Hence,
it is possible that the total alignment score have a large contribution from the
positions with vanishing match probabilities. For these reasons, our restriction
method is expected to have less possibility of missing the optimal alignment than

their algorithms.

3.3.3 Approximation Methods

Most of the alignment softwares based on the Sankoff algorithm provide optional

parameters to approximate the DP and to control the trade-offs between the
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computational cost and the alignment accuracy [17],[11],[28],[22],[14]. Murlet
provides two original approximations that constrain the DP region: the strip and
skip approximations.

For a given initial alignment path, the strip approximation constrains the DP
region to a strip region of fixed width ¢ around the alignment path. If the strip
width ¢ is equal to one, then the resulting alignment after the DP computation is
the same as the initial alignment, as in the QRNA software [37]. If a diagonal path
is specified as the initial alignment path, then the strip approximation corresponds
to the band alignment that calculates only the region |k — | < § for row k and
column [ in the DP matrix.

The previous version of Dynalign [28] software implements the band approxi-
mation. The limitation of the band approximation is that the band width cannot
be smaller than the difference |L, — L,| of two sequences. The approximation
method that is adopted by Foldalign and PMMulti also suffers from the similar
limitation. The recent version of Dynalign [41] has modified the definition of the
band region as |k(L,/L;) —I| < ¢ so that the band width can take values as small
as one. The strip approximation is more general as compared to these approxi-
mations, because the initial path can be arbitrarily far from the main diagonal of
the DP matrix and the strip width can be set to one irrespective of the difference
of sequence lengths.

If the restriction of the DP region by match probabilities is not applied, the
computational cost of the Sankoff algorithm is reduced by (6/L)? times in time
and (0/L)? times in memory.

The skip approrimation constrains the points of the bifurcation calculations

(the last line of Equation 3.3) to a restricted set of positions in the DP region.
Mi,j,u,v + Mu-l—l,v-i—l,k,l fori<u< k, ] <v<l

— if (Z,]), (k, l) € ’C, Mi,j,u,v + Mu+1,v+1,k,l for (U, 'U) e (34)

That is, the bifurcation calculation is performed only when the end positions (i, j)
and (k,[) are in the skip set K, and the only case considered is the one where the
mid position (u,v) is in the skip set IC. The skip set K is a set of grid positions
in the DP region that is defined as follows.

K={(,j)]i=1 (modk),j=7(i) (mod k)}
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where 7(7) is a point on the initial alignment path at row ¢, and k > 0 is a given
parameter. Kk = 1 corresponds to the full DP in the DP region, and in the limit
k — 00 , the algorithm can only parse non-bifurcating stem structures just as the
earlier version of the Foldalign software [11]. The bifurcation part of computation,
which requires O(L%) time and O(L*) memory, decreases by 1/x° times in time
and 1/k* times in memory with the skip approximation. If the skip size r is
three or more, the bifurcation part is not a dominant factor of computation for
aligning sequences of lengths shorter than 500 bases. In such cases, the leading
contribution to the total memory comes from the O(L*) memory that is required
to store the traceback pointers. In the Murlet implementation, only one byte
is required to store the traceback information for each DP iteration. Note that
only the O(L?) memory is required in order to calculate the first seven lines
of Equation 3.3. However, this part of computation requires O(L*) time and
dominates the total computation time.

The skip approximation is considered because the occurrence frequency of
bifurcations in the parse tree is small as compared to the lengths of the RNA
sequences, even though the bifurcation calculation is the most compute-intensive
part of the Sankoff algorithm. However, the skip approximation may miss a few
base pairs if two neighboring stems are close to each other and no skip points are
placed between them.

For a given strip width 0 and skip size x, the DP region of the Sankoff al-
gorithm is determined as follows (see Figure 3.1). First, the initial alignment
path is determined (Figure 3.1(a)) by the following DP algorithm which is an
application of the MEA principle to the PHMM.

M; ;1 + P (i, j)
Mi,j = Imax Mz

_lvj

M; 4

I refer to the alignment obtained by this computation as the PHMM-MEA align-
ment. Next, the DP region is constrained to the strip region around the initial
alignment path (Figure 3.1(b)). The DP region is further constrained by stripping
away the side regions with low match probabilities p(® (Figure 3.1(c)). Finally,

the skip set I is determined within the DP region using the initial alignment
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@)

Figure 3.1. Procedure to constrain the DP region of the Sankoff algorithm. (a)
The initial DP alignment is calculated by the PHMM-MEA method. (b) The DP
region is constrained to a strip region around the initial DP path. (c) The DP
region is reduced further by stripping away the regions with low match probabil-
ities. (d) The skip set is fixed inside the DP region.
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path (Figure 3.1(d)).

It is tedious to determine the appropriate strip width ¢ and skip size x for
each sequence pair being aligned. Murlet estimates the allocated memory and
the computational time for each pairwise alignment and automatically determines
the strip width and skip size so that the DP region is maximal under the given
memory and time limits specified by the user.

The computation time ¢ is estimated by the following formula.

6

= G traceback + buéifurca.tion (35)

where fiiraceback 1S the size of the O(L*) memory which is needed to store trace-
back information of the Sankoff algorithm, and fifurcation is the O(L*) memory
require to store the scores of the child states of the bifurcation. a and b are
fitting parameters. uéifurcmon is the estimated number of bifurcation calculations
(Equation 3.4).

Figure 3.2 shows a scatter plot of the estimated time (x-axis) and the real time
(y-axis). I used the pairwise alignments derived from the dataset of Table 3.1. I
varied the strip width ¢ from 0.1 to 0.5 and skip size k from 1 to 5, and measured
the elapsed time for the computation of pairwise alignments. As seen in the

figure, the computation time can be estimated with a reasonable accuracy.

3.3.4 Probabilistic Consistency Transformations

For three or more sequences in the same sequence family, Do et al. introduced
the probabilistic consistency transformation (PCT) of match probability matrices
[3], which is defined by the formula.

. 1 " . u )
Py (i) = w5 D pLa @ k)ply (k. )
weX,k

where x,y,w represent sequences in X, and i, j, k are the sequence positions in
sequences z,y,w. p'@°9 and p(®e¥ are the match probabilities before and after
the transformation, respectively. This computation requires O(N3L3) time for N
sequences of length L. By this transformation, the match probabilities pé“;(z, 7)is

increased if there are positions in other sequences that are likely to match with ¢
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Figure 3.2. A scatter plot showing the accuracy of the estimation of computation
time. The x-axis is the estimated time in seconds, computed by Equation 3.5.
The y-axis is the elapsed time in seconds for the pairwise alignment. The number
of the data points is 246.

25



and j, and is decreased if there are no such positions. Hence, the transformation
adds the family-specific homology information to the match probabilities.

Here, I propose the PCT for the base pairing probability matrices, which is
defined by the formula.

P (i, Z P (i k)P, (7. D™ (k1)

wEXkl

The computation requires O(N?L*) time. The new loop probabilities q;(cb)new(i)

(b)new

are computed by applying Equation 2.6 to p;" = (i, J).

qy)new( ) =1-—= Z Z t:vw ]a Z txw(iaj)

wEX 1<5<e 1<j<Lg
tow(iy ) = Y P (i, k)P, (3, )P (K, 1)
1<k<I< Ly

b .
Then, ¢\"*" (i) assumes a value between zero and one.

0 < gbmev(g) <1 (3.6)

x
This formula justifies in treating the transformed matrices p{’"*" (i, j) as the pair

probability matrices.

As in the case of match probabilities, the transformation adds the family-
specific structure information to the base pairing probabilities. I show in the later
section, the PCT for the match probabilities considerably improve the alignment
accuracy.

The formula 3.6 can be proved as follows. Since t,,(i,7) > 0, the inequality

(b)new

Gz (i) <1 is obviously satisfied. Hence, I prove only the inequality,
Y tew(i)+ D tawl(ig) <1 (3.7)
1<<i i<j<Ls

for fixed 2. The first term of the above formula can be bounded from above as

follows:

M tw(ii) = Y [Z P k ] G D (k1)

1<j<i 1<k<I<Ly L1<j<i
< >l DD (k1)
1<k<I<La
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The expression in the square bracket is not greater than one since it is the prob-
ability that the position k of sequence w is aligned to the range between 1 and

1 — 1 of sequence x. Similarly, the second term satisfies the inequality.

> (i) < Y PG k)pE (K, 1)

i<j<La 1<k<I< Loy

Hence, the left-hand-side [hs of Equation 3.7 satisfies the formula:

ths < Y pl (k) | >0 oD R+ > oD (k1)

1<k<Ly 1<I<k k<I<Luy
< Y pl (k)

1<k<Ly
<1

In the above formula, the expression inside the square bracket is not greater than
one because it is the probability that the position k£ forms any base pair with other
positions. Further, since the right-hand-side of the second inequality represents
the probability that the position i of sequence z is aligned to any position of
sequence w, the last inequality follows. Thus, the formula 3.6 is proved.

The PCTs for p® and p® are performed for the sparse matrix representations

of the probability matrices to reduce the computation time.

3.3.5 Multiple Alignment Procedure

I now describe the multiple alignment procedure. Let N be the number of input
sequences X . First, the base pairing probability matrices and the match prob-
ability matrices are computed for each sequence and each pair of sequences, re-
spectively. Next, PCT for the match probabilities is performed, which is followed
by the PCT for the pair probabilities using the transformed match probabilities.
For each pair of sequences, the similarity between them is defined as the score of
the Sankoff algorithm along the PHMM-MEA alignment path. Using this simi-
larity measure, the guide tree is constructed by using the unweighted pair group
method (UPGMA) clustering algorithm. The progressive alignment is then per-

formed using the guide tree. To compute two groups of aligned sequences, the
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base pairing probabilities are averaged over all the sequences of each group. Fur-
ther, the match probabilities are averaged over all the pairs of sequences between
the two groups. The base pair substitution score s(iy, jr,4s,js) in Equation 3.2
is computed as the sum of the corresponding values for all the pairs of sequences
between the groups. The proportionality constants v, and s in Equations 3.1

and 3.2 are set as

v = 0.005
Ys = 40N1N2

where N; and N, are the number of sequences in the two groups.

For the computation of the match probabilities, I used the ProbCons software
(version 1.10) [3]. For the computation of the base pairing probabilities, I used
the RNAAlifold program of the Vienna RNA package (version 1.5) [19],[16]. The
base pair substitution matrix is extracted from the Stemloc software in the DART

package [22].

3.3.6 The Dataset

I collected the test dataset from the Rfam database [12]. T used only the hand-
curated seed alignments with the consensus structures published in literatures.
For each sequence family, I generated up to 1000 random combinations of 10
sequences. I then removed the alignments with mean pairwise sequence identity
more than 95 %. Because I are considering the global multiple alignment problem,
I removed the alignments that contain gap characters more than 30 % of total
alignment characters. I also removed the alignments with gap characters less than
5 % of the total alignment characters, since for such alignments, the algorithms
that merely penalize or forbid the gap insertions show high accuracies. I found it
difficult to collect completely exclusive alignment set for many sequence families.
Therefore, I removed only the alignments that share more than 30 % of sequences
with another alignment. Inspecting the number of families and the number of
sub-alignments available for each family, I chose the dataset shown in Table 3.1.

The dataset consists of 85 multiple alignments of 10 sequences. The number
of sequence families is 17 and for each sequence family, there are five multiple

alignments. The dataset is reasonably diverged and its mean length varies from
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54 bases to 291 bases and mean pairwise sequence identities varies from 40 % to
94 %.

Previously, Gardner et al. [10] have collected a dataset of multiple align-
ments of structural RNA sequences in order to benchmark various alignment
algorithms. However, their dataset is not appropriate for our purpose for two
reasons. The first reason is that their dataset does not have sufficient variety
in sequence lengths, since the dataset consists of short (< 120 bases) sequence
families (Group IT introns, 5S rRNA, tRNA, and U5 splisomal RNA) and a rel-
atively long (=~ 300 bases) family (SRP). The second reason is that the dis-
tribution of sequence identity is strongly biased, and in particular, few align-
ments have low (< 55%) sequence identities. As they described at their web site
(http://www.binf.ku.dk/ pgardner/bralibase/), this is caused by the erroneous
calculation of sequence identities. Because of the lack of diversity in both the
sequence length and the sequence identity, I have used only our original dataset

for the evaluation.

3.3.7 Accuracy Measure

The accuracy of the alignments is measured by the standard sum-of-pairs score
(SPS) [1]. To measure the efficiency of the structural alignment, the consen-
sus structures for the alignment results are predicted using the Pfold program
([24]). The Matthews correlation coefficients (MCC) are then calculated for the
predictions ([29]). MCC is defined by the formula

tp-tn —fp-fn
V/ (tp + fp)(tp + fn)(tn + fp) (tn + fn)

where tp is the number of correctly predicted base pairs, tn is the number of base

MCC =

pairs that are correctly predicted as unpaired, fp is the number of incorrectly
predicted base pairs, and fn is the number of true base pairs that are not predicted.
Note that tn is computed in units of base pairs and is very large in most cases.
The numbers are computed by assigning both reference and predicted consensus
structures to each sequence using the alignment and then counting the matches
and mismatches of base pairs for all the sequences.

Since the computation of MCC uses the external program Pfold, the results

may be skewed by the compatibility of the programs with the Pfold software.
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Therefore, T also measured the efficiency of structural alignment with the novel
indicators SSS, SQS and PCS that quantify how well the true stems are aligned
to each other. These indicators do not depend on the structure predictions to
the alignment results and only use the reference and subject alignments and the
structures annotated to the reference alignments. Therefore, these measures do
not depend on any particular external program or adjustable parameters. They
are defined analogously to SPS and the column score (or TC score) [40],[1], which
are frequently used for the evaluation of the sequence alignments.

The sum-of-quadruples score (SQS) is defined as the fraction of the count of
the pairs of base pairs that are correctly aligned as in the reference alignment.
The counts are computed for all the pairs of sequences. The base pairing positions
of each sequence are derived from the annotated consensus secondary structure
to the reference alignment in the obvious manner. The sum-of-stem-pairs score
(SSS) is defined similarly, but the criterion of a count is looser and allows the
match of base pairs at different alignment columns in the reference alignment.
In other words, it counts one if a base pair is aligned to another base pair,
irrespective of their alignment columns in the reference alignment. The pair
column score (PCS) is the fraction of the number of pair columns, for each of
which there exists an identical pair columns in the reference alignment that form
a base pair. SQS and PCS take values between zero and one, and they are equal
to one if the subject alignment is identical to the reference alignment. SSS is also
a non-negative number and is equal to one if the alignment is identical to the
reference alignment. It is also equal to or less than one if all the stem regions
in the reference alignment do not contain gap characters. However, it might
be larger than one when two or more sequences have gap characters in the stem
regions of the reference alignment. The mathematical definitions and examples of

computations for these measures are presented in the supplementary information.
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3.4. Results

3.4.1 Comparison of Programs

Table 3.1 shows a comparison of the accuracy of the alignment for various align-
ment algorithms. The first three columns in the table show the Rfam family
name, mean sequence length, and mean pairwise percent identity. The remaining
the columns show the SPS and MCC values for various algorithms: ProbCons [3]
and ClustalW [40] are the alignment softwares based on PHMM. Murlet, Stemloc
[22], and PMMulti [17] are based on the Sankoff algorithm. I set the time limit
for each pairwise alignment to 10 min. The other softwares are used with the
default option. The computations are performed on a Linux machine equipped
with dual AMD Opteron 850 2.4 GHz processors and 4 GB RAM. Due to the
formidable time and memory consumption of Stemloc and PMMulti for longer
sequence families, I limit the time and the maximal resident physical memory of
the process to 500 min and 3.5 GB, respectively. I terminated the computation
if the process exceeded the time or memory limit. If some of the five alignments
in the family are not returned within the limits, the fraction of the alignments
returned is indicated inside round brackets.

The last four rows indicate the average values of SPS and MCC for each
software. “Average (all)” indicates the average values taken over all the families.
“Average (Stemloc),” “Average (PMMulti),” and “Average (common)” represent
the average values taken over the partial alignment set for which Stemloc, PM-
Multi, and both returned results, respectively. The fractions of the number of
alignments to the whole dataset are indicated in round brackets.

Table 3.1 shows that among the softwares examined, the performance of
Murlet was the best in terms of both the alignment accuracy (SPS) and the
accuracy of the structure prediction (MCC). Although the SPS values of Prob-
Cons and the MCC values of Stemloc are relatively close to those of Murlet, the
MCC values of ProbCons and the SPS values of Stemloc are much lower than
the corresponding values of Murlet. The table also shows that the accuracies of
ClustalW and PMMulti are lower than those of the other programs. Stemloc and
PMMulti could not align most of the RNA sequences having lengths longer than

150 bases within the time and the memory limit. In almost all the cases, the
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failures of Stemloc and PMMulti are caused by excessive memory requirements.
The fact that the SPS values of Murlet are higher than those of ProbCons indi-
cates that the inclusion of stem conservation in the alignment model really does
improve the alignment quality.
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Table 3.2 shows a comparison of the SSS, SQS, and PCS for different softwares.
The test sets are the same as those in the last four rows of Table 3.1. The
superiority of Murlet compared to the other programs is more obvious for these
measures. Moreover, Murlet is the only Sankoff-based program that performs
better than the PHMM-based ProbCons software. We have also performed the
one-sided Fisher’s sign test to see the statical significance of the superiority of
Murlet as compared to other programs. Table 3.3 shows the p values of the
Fisher’s sign test that tests the null hypothesis that Murlet is not more accurate
than each of the other programs. The first column shows the name of the program
compared. The other columns show the p values that measure the unlikeliness of
the null hypothesis. The number of observations that the accuracy of Murlet is
better (+) or worse (-) than that of the program being compared is also shown in
the round brackets. Table 3.3 shows that the accuracies of Murlet are significantly
better than the other programs in almost all the cases. Only the MCC and SSS
values of Murlet are less significant as compared to those of Stemloc, partly due
to the small size of the data that Stemloc has returned any alignment results.

Tables 3.1, 3.3, and 3.2 indicates that for the structural alignment of RNA

sequences, Murlet is the best among the examined programs.

3.4.2 Reduction of Time and Memory

Figure 3.3 shows the memory and time consumption of the three Sankoff-based
algorithms. Each data point corresponds to a sequence family shown in Table 3.1.
The x-axis represents the mean sequence length of the sequence family, and the y-
axis represents the maximal resident physical memory in mega bytes (left) and the
elapsed time in minutes (right). The figure shows that the memory consumption
of Stemloc and PMMulti drastically increases for sequences above 100 bases in
length, and these programs cannot align sequences above 200 nucleotides within
the limits of 3.5 GB and 500 min. In contrast, Murlet can align 10 sequences
of the SRP_euk_arch family of mean length 291, within a realistic memory (570
MB) and time. (32 min).

Figure 3.4 shows the dependence of the reduction of time and memory require-
ments on the sequence identities. I used 188 multiple alignments of four sequences

collected from the Hammerhead_3 ribozyme family in the Rfam database. I com-
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Table 3.2. Comparison of the accuracy of structural alignments using the pro-
posed accuracy measures. The test sets are the same as those shown in the last
four rows of Table 3.1. For each alignment set and accuracy measure, the highest
value of the measure is shown in bold type face.

Program SSS SQS PCS

Average Murlet 0.81 0.79 0.55
(all) ProbCons 0.75 0.75 0.52
ClustalW  0.60 0.60 0.34

Average Murlet 0.84 0.83 0.59
(Stemloc)  ProbCons 0.79 0.79 0.56
ClustalW  0.63 0.63 0.39
Stemloc 0.78 0.76 0.50

Average Murlet 0.84 0.83 0.59
(PMMulti) ProbCons 0.80 0.80 0.56
ClustalW  0.63 0.63 0.36
PMMulti  0.58 0.51 0.22

Average Murlet 0.85 0.84 0.60
(common) ProbCons 0.81 0.81 0.58
ClustalW  0.65 0.65 0.39
Stemloc 0.81 0.79 0.53
PMMulti  0.58 0.52 0.23
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Figure 3.3. Elapsed time and the maximal resident memory for computing align-
ments of Table 3.1. In both figures, x-axis is the mean length of the sequence
families. y-axes are the maximal resident physical memory of the process in mega
bytes (left) and the elapsed time in minutes. Each data point represents the spe-
cific sequence family of Table 3.1. Only the alignments returned correctly are
plotted.
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Figure 3.4. Dependence of the reduction of time and memory on the sequence
identity. The dataset contains 188 multiple alignments of four sequences collected
from the Hammerhead_3 ribozyme family in the Rfam database. Their mean
length is 55 bases. The x-axis represents the mean pairwise sequence identity
and the y-axis represents the ratio of the estimated time and allocated memory
for the DP calculation between the full DP and the DP in the reduced DP region.
The data points are categorized into bins of width 5 %, and the mean values of

the bins are plotted.
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pared the estimated time and the allocated memory between the full DP region
and the region reduced by the match probabilities. For all 188 alignments, the
two cases returned exactly the same alignment results. The mean SPS and MCC
values were 0.87 and 0.85, respectively. The ratios of time and memory were
binned for each five percent segment of the sequence identity, and the mean value
for each bin was plotted. The figure shows that for sequence identities larger
than 60 %, the time and memory requirements are hundreds of times smaller
than those in the full DP case. On the other hand, for sequence identities less
than 60 %, the required time and memory increase with the decrease of sequence
identities, though they are still an order of magnitude smaller than those of the
full DP case.

3.4.3 Effects of Probabilistic Consistency Transformations

Figure 3.5 shows density plots of the match probability distribution. The prob-
abilities of the left figure are computed using the forward-backward algorithm of
PHMM. The sequences are taken from the tRNA family shown in Table 3.1. The
figure on the right represents the probabilities after the consistency transforma-
tion. Although the dense regions are broadened by the transformation, they are
still concentrated around the main diagonal of the DP matrix.

Figure 3.6 shows an example of the true secondary structure of tRNA (left)
and the corresponding base pairing probability matrices (right). The base pairing
probability matrix computed by the McCaskill algorithm is shown in the lower-
left part of the figure on the right and that obtained after PCT is shown in
the upper-right part of the matrix. As indicated by the arrow in the figure,
the McCaskill algorithm fails to identify one of the four stems of tRNA. PCT
remedies this failure by adding small probabilities to this region.

Table 3.4 shows the effects of the PCTs for the probabilities p(® and p® on
the alignment accuracies. For all the measures, the accuracies are the highest
when PCT is applied to both the match and pair probabilities. The figure also
shows that the PCT for the pair probabilities are more significant than the PCT
for the match probabilities, and the latter is only effective when the former is
also performed. This indicates that incorrect base pairs are frequently predicted

by the McCaskill algorithm and considerably degrade the quality of alignment.

38



Table 3.3. The p values of the Fisher’s sign test that tests the null hypothesis that
Murlet is not more accurate than each of the other programs. The first column
shows the name of the program compared. The other columns show the p values
that measure the unlikeliness of the null hypothesis. The number of observations
that the accuracy of Murlet is better (+) or worse (-) than that of the program

being compared is also shown in the round brackets.

Program  SPS MCC SSS SQS PCS
p-value(+/-)  p-value(+/-)  p-value(+/-) p-value(+/-)  p-value(+/-)
ProbCons 0.0033 (52/27) 5e-7 (58/16)  8e-13 (61/6) 9e-11 (58/8)  0.022 (28/14)
Clustal W 5e-15 (75/8)  2e-12 (70/10)  2e-16 (75/6) 5e-15 (72/7)  3e-10 (58/9)
Stemloc 3-8 (43/6)  0.11 (26/17)  0.11 (25/16)  0.0083 (28/12) 0.017 (26/12)
PMMulti  3e-17 (55/0)  0.0092 (51/29) 6e-17 (54/0) 6e-17 (54/0)  9e-16 (50,0)

Figure 3.5. PCT for match probabilities. The figures on the left and right are the
match probabilities before and after the probabilistic consistency transformation,

respectively.
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Figure 3.6. PCT for the base pairing probabilities. The left figure is the secondary
structure of tRNA which is plotted using the RNAplot program of the Vienna
RNA package [16]. The right figure illustrates the base pairing probabilities of a
tRNA sequence. The lower left part of the matrix is computed by the McCaskill
algorithm. The upper right part is after PCT. In both triangles, the region of
the true stems of tRNA are indicated by ovals. The stem region that has been
missed by the McCaskill algorithm is indicated by the arrow.

Table 3.4. Effects of PCTs on the accuracy of the alignments. The first column of
each row indicates to which of the probabilities p(® and p® the transformation is
applied. The test set is the same as that of Table 3.1. For each accuracy measure,

the highest value is shown in bold type face.
SPS  MCC SSS SQS PCS

p® and p® 0.81 0.71 0.81 0.79 0.55

p® 0.80 0.68 0.79 0.77 051
ple) 0.74 067 0.76 0.72 0.44
none 0.74 0.68 0.78 0.73 0.45
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3.5. Summary

I have developed an efficient method to align multiple sequences of structural
RNAs. The method first computes the base pairing probabilities and match
probabilities. A simple Sankoff algorithm then is applied to obtain the final
alignment by using these probabilities. Our scoring system enables us to incor-
porate complex secondary structure and homology information without compli-
cating the Sankoff algorithm. I have shown that our method has the highest
accuracy among the examined programs in terms of both the alignment quality
and accuracy of structure prediction from the alignment. Our algorithm includes
an efficient method to reduce the DP region to be computed, and this allows the
alignment of long RNA sequences.

I have only optimized the proportionality constants of the loop match score
and the stem match score and have not optimized the pair substitution matrix
and the parameters of the models that are used to calculate the match and pair
probabilities. It will be interesting to investigate the application of machine-

learning methods in order to optimize these parameters in an integrated manner.
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Chapter 4

Divide and Conquer Algorithm
for Structural Alignment of RNA

Sequences

4.1. Overview

In this chapter, I derive a divide and conquer algorithm for the Sankoff algo-
rithm, which is analogous to the Hirschberg-Myers-Miller(H-M-M) algorithm for
the sequence alignment. I first briefly describe the H-M-M algorithm, and then
derive an analogous algorithm for a simple SCFG model. Finally, I describe the

extension of the algorithm to the Sankoff model.

4.2. Hirschberg-Myers-Miller Algorithm

A divide and conquer algorithm for computing maximal common subsequences
from a pair of sequences was first proposed by Hirschberg in the computer sci-
ence literture [15], and was introduced into computational biology by Myers and
Miller [32]. This algorithm does not use the memory for the traceback pointers
and recursively determines the midposition of the alignment path using dynamic
programming procedures similar to the forward and backward algorithms de-
scribed in Algorithm 2. The space complexity of the algorithm is O(L) rather
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than O(L?). The intuitive derivation of the Hirschberg-Myers-Miller (H-M-M)
algorithm is as follows. For the mid-row ¢ of the DP matrix, there must exist a
() at the row i. The state h

i
and the column j at which the state h emits the base xz(-l)

state in the alignment path that emits the base x
are computed by the
following formula,

(4, h) = argmaxr i A nry—1 F (i, 5") + B (i, §') (4.1)

where Fy(i,j) is the maximal DP score of the alignment that aligns the sub-
sequences [1..i] and [1..5] of sequences (") and 2(?) respectively, and ends with
the state h at the postion (7,j) of the DP matrix. By(i,J) is defined such that
Fy(i,7) + By(i, j) is the maximal DP score of the alignment path that pass (i, j)
with state h. Fy(i,j) and By, (i, j) is computed by the algorithms, termed Viterbi-
Forward and Viterbi-Backward, respectively, which are shown in Algorithm 4.2.

These algorithms are similar to the forward and backward algorithms described
in Algorithm 2, except that the recursions of the dynamic programming do not
take the maximum of the left hand side in Algorithm 2, rather than take the sum
in Algorithm 2. Once the state h and the column j is determined for the row i,

then the DP regions that remains to be computed shrink to the diagonal blocks
(1) (1)

in the DP matrix asscociated with the alignment of subsequences =7’ ...z;”; and
AR -375'2217 and that of subsequences x&)l . .x(Ll()l) and xgzl . .x(LZ()Q) (Figure 4.2).

Then, the same procedure is applied to the mid-rows of the diagonal blocks. The
procedure is recursively applied until the column positions that emit the bases of
sequence z(1 are determined. Finally, the alignment result is obtained by con-
necting the partial alignment paths with the states that emit only the bases of
2® using the standard Viterbi algorithm. For the computation of F}(i, ), only
the values of F}, on the neighboring cells (i —1,7), (i — 1,7 — 1) and (¢, — 1) are
needed. Similarly, to calculate the value of By, (i, j) only the values of neighboring
cells are needed. Therefore, only the linear memory is reuired for the computation

of Equation 4.1 (see Figure 4.1).
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Algorithm 3 Viterbi-Forward and Viterbi-Backward algorithm.

Forward:
Fu(i—=1,j-1)
Fu(i,j) = s(i,7) + max ¢ Fr(i— 1,5 —1) —d
Fp(i—1,j—1)—d

Fy(i,j) = max
F[(i,j — 1) — e

Fuli—1,9)—d
Fp(i,j) = max ml 7)
FD(Z_ 17]) —€

Backward:
Bu(i+1,74+1)—s(i+1,j+1)
Bi(i,j+1)—d
BD(Z + 17]) —€

By (i, j) = max

By(i+1,j+1)+s@+1,j+1)—d

By (i,j) = max
Bi(i,j+1)—e

By(i+1,j+1)+s(@+1,j+1)—d

Bp(i,j) = max
-BD(Z + ]-7.]) — €

—— —— ——— ————
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Figure 4.1. Procedures for Viterbi-Forward and Viterbi-Backward calculation.

Figure 4.2. Myers-Miller algorithm
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4.3. Divide and Conquer Algorithm for Secondary

Structure Prediction

An analog of the H-M-M algorithm in the case of SCFG models are derived
similarly to the derivation in the previous section. In this section, I consider a
simple SCFG model which has 5 states B, P, L, R and S as nonterminal symbols,

and is defined by the following grammer.

B =SS

P = aPblaLblab
L = aBlaL|a
R = Ba|Ra|a

S = BI|P|LIR

where a and b are terminal symbols which are base characters of the RNA se-
quence. Let k be the midpoint of the sequence x of length L. There exists a node
in the tree that emits the base x.

If z; is emitted as a left emission from the nonterminals, there exists a node
(k, 7, h) which corresponds to the parse subtree rooted at the nonterminal h for

subsequence . ... x;_;. The position j and the state h is obtained by the formula,
(i, h) = argmaxy .y A ny—1 F (@', k) + By (@', k)

where the F},(i,j) is the maximal DP score of the subtrees which are rooted at
nonterminal h for subsequence z;..x;_1. By(i,7) is defined such that Fj,(i,7) +
By (i,7) is the maximal score of the parse trees which pass through the point
(7,7) in the DP matrix with state h. Fj(i,7) and By(i, ) is calculated by the
algorithms similar to the inside and outside algorithms, These algorithms are
called the CYK-Inside and CYK-Outside algorithms in this theses and defined
by, where s((4,7), (i + 1,7 — 1)) is the score assigned to the stacking base pairs
(zi,z;) and (x40, xj-1). Ay(h) and A, (h) is the number of left and right emission
of the state h, which is defined in Table 4.1.

If x), is emitted as a right emission, there exists a node (i, k, h) in the parse tree

which is associated to the parse subtree rooted at nonterminal h for subsequence
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Figure 4.3. Divide and Conquer algorithm for trinangle-shaped DP region.

Table 4.1. The number of bases emitted by the states of SCFG
state A; A,

P

L
R
B
S

o O O = =
o O = O =
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Algorithm 4 CYK-Inside and CYK-Outside algorithm.

CY K-Inside:

er(Z—l—l,]—1)—|—S((Z,]),(Z—|—1,]—1))
Fpli+1,j—1
Fp(i,j) = max ¢ n =
Fr(i+1,7—-1)
\FB(Z‘—FLj_l)
Fr(i,j) =, max  Fa(i,j—1)

Fi(i,j) = max Fi(i+1,)

Fs(i,j) = ) max Fy(i, 5)

Fy(i,J) = ma [, K) + Fil, )]
CYK-Outside:
Bp(i—1,j+1) +s((i— 1,5 +1), (5, )
max,—p.r.s Bn(i — Ay(h), j+ A.(h))
Bg(i,j) = hg}ljft}){fth(i — Ay(h),j + Ar(h))

Bp(i,j) = max

BL(Z,]) = mnax Bh(l—Al(h),]—f—Ar(h))

h=P,R,L,S

BB(Z,]) = max Bh(l—Al(h),]—f—Ar(h))

h=P,R,L,S

max;<k<r, [Bs (i, k) + Fs(j, k)]
maxi<g<i [Fs(k, Z) + BS(kvj)]

BS(Zaj) = max
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Figure 4.4. Procedures for CYK-Inside and CYK-Outside computaion.
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Z;...xp_1. The position 7 and the state h is computed by following formula,

(j, h/) = argmaxk<]’/’h/,Al(h/):1Fh/(k, jl) + Bh/(k, jl)

The true node which emits the base z; is given by the node which corresponds
to the larger DP score.

Once the node (i,7,h) on the parse tree is determined, the trianglular DP
region that remains to be computed splits into two pieces: a trianglular region
associated to the subsequences {z;...zy|i < ¢ < j' < j} and a caret-shaped
region associated to the subsequences {x; ... ;|1 <i' <i,j <j' < L}.

For the triangular region, The same procedure is applied to the midpoint of
the segment x; ... x;_;. For the caret-shaped region, the midpoint & of the longer
segment of zy ...x; 1 and z; ...z is considered. As in the case of the triangular
region, the node in the parse tree the emits x; is obtained by the CYK-Inside and
CYK-Outside computations. Depending on the position of the node in the DP
region, there are three possible cases where the caret-shaped DP region splits into
smaller regions. In the first case, the region splits into two caret-shaped regions.
In this case, the same procedures described above is applicable. In the other
two cases, the DP region splits into a triangular region which is treated in the
same way as described previously, and a nose-shaped region. For the nose-shaped
region, there exists a unique node (i, j, B) in the parse tree which bifurcate into
two subtrees rooted at (i, k,S) and (k,j,S). for some k. Here, the sequence
positions ¢, k£ and j belong to the left, mid and right segments of the nose-shaped

DP region, respectively, which are obtained by the following formula.
(7:, k, ]) = argmaXi/,k/’j/BB(i', ]I) + Fs(il, k,) + Fs(kl, ]I)

After the three nodes are determined, the nose-shaped DP region splits into
three pieces of caret-shaped regions. Since these regions are treated by the pre-
vious procedures, the whole parse tree can be recursively determined. Although
the algorithm does not need the memory for the traceback pointers, as in the
case of the H-M-M algorithm, the computation of Fg(i,j) and Bg(i,j) need the
two-dimensional memories to store the values of Fs(i,j) and Bg(i, j), hence the
space complexity of the algorithm is the same O(L?) as the standard CYK algo-

rithm. The proposed algorithm has some similarity with the divide and conquer
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Figure 4.5. Divide and Conquer algorithm for caret-shaped DP region.

Figure 4.6. Divide and Conquer algorithm for nose-shaped DP region.
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algorithm for the profile-SCFG model proposed by S. Eddy in [9]. The present
algorithm is different from his approach since the divisions of the computations
into smaller pieces are performed in the sequence dimensions rather than in the

dimension of the states of the model.

4.4. Divide and Conquer Algorithm for Struc-

tural Alignment

It is straightforward to extend the divide and conquer algorithm derived in the
previous section to the Sankoff model. Here we consider a variant of the Sankoff

model that have nine nonterminals and defined by the following grammer,

B=SS
P = aa® 5p0p2 o012
ML = aMa®8jaMa®
IL = a¥$|a®
DL = aMS|aV)
MR = SoWp® [pp2)
IR = SH?|p®
DR = 5oV |pV)
S = B|P|ML|IL|DL|MR|IR|DR

where a® and o™ are the terminal symbols associated to the bases of the se-
quence (M.

The triangular, caret-shaped, and nose-shaped DP regions in the previous
section have direct analogs in the Sankoff model. For example, a triangular DP

region is defined for a pair of subsequences xg) . xgll) and x%) . .xg-?), by the set

{G, 9,k Dio <i <k <ip,j0<j <1<}

The caret-shaped region and the nose-shaped region are similarly defined such
that each sequence segment parsed by the DP region in the SCFG case are re-

placed with a pair of sequence segments.
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For the triangular and the caret-shaped regions, the mid-row r os the cur-
rent DP region is considered. If the base 2 is emitted as a left emission, the

corresponding node of the parse tree is obtained by the equation

(4, k,l,h) = argmax; Fi(r,j, k, 1) + Bp(r,j, k1)

1
el h, A (h)=1

where Agl)(h) is the number of the emitted base left of the nonterminal h with
respect to the sequence (). F},(4,7,k,1) and By(i, 4, k,[) are calculated by the
CYK-Inside and CYK-Outside algorithm of the Sankoff model. In the case where
2V is emitted as a right emission, the corresponding emission node is similary
calculated. Once the emission node is obtained, the region is split into smaller
pieces.

For the nose-shaped DP region, there exists are unique bifurcation node
(1,7, k,1, B) and two child nodes (i, j, u,v, S), (u,v, k.l, S) These nodes are calcu-

lated by the formula,
(4,4, u,v, k,1) = argmax; ; ., v, [Bp(i, J, k, 1) + Fs(i, j,u,v) + Fs(u,v, k,[)]

After the determination of the three nodes, the DP region splits into three pieces
of caret-shaped regions.

These procedures are applied recursively until all the nodes that emit the bases
of sequence z(!) are determined. Finally, the whole parse tree is constructed by
complementing the nodes of no emission and the nodes which emit only the bases
of the second sequence z(?) | using the standard CYK algorithm for the Sankoff
model.

As in the case of SCFG model, the algorithm does not require the memory for
the traceback pointers. However, the space complexity of computation is O(L?),
since the calculation of Fg(i, j, k,1) and Bg(i, j, k,1) require the four dimensional
memories to store the values of Fs(i, j, k, 1) and Bg(i, j, k,[). The computation of
the other states only require the three dimensional memories to store neighboring
values of Fj(i,j,k,1) and By (i, 7, k,1).

4.5. Use of New Algorithm

In subsection 3.3.3, I introduced the skip approximation which constrains the

bifurcation computation to a restricted set of positions in the DP matrix. When
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the skip approximation is combined with the divide and conquer algorithm, the
O(L*) part of the memory reduces by 1/x* times for skip size k, since the only
the memories for the bifurcation calculation need to be forth order in length L.
Therefore, the algorithm is useful for aligning long RNA sequences that cannot
be aligned by the standard CYK algorithm due to the limitation of available

memory.
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Chapter 5

Robust prediction of consensus
secondary structures using
averaged base pairing probability

matrices

5.1. Overview

In this chapter, I propose an algorithm that predicts the consensus secondary
structures from the alignments which is robust against alignment failures. Firstly,
I describe the programs that are frequently used to predict the consensus sec-
ondary structures from multiple alignments. I also describe three algorithms all
of which maximize the expected accuracy of secondary structure candidates un-
der different base pairing probability distributions. Then I show the result of
the experiments that compare the accuracy of the consesus secondary structure
prediction from the alignments that are created by human curation and by com-
puter programs. I show that one of the algorithms, termed McCaskill-MEA, is
the robustest against alignment failures than the others. The McCaskill-MEA
method performs especially better than others, for the low quality alignments
and the alignments that consists of many sequences. The model has a parameter

that controls the sensitivity and specificity of predictions. I discuss the uses of the
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parameter for multi-step screening procedures to search for conserved secondary

structures, and for assigning confidence values to the predicted base pairs.

5.2. Background

Since the existence of conserved secondary structures among phylogenetic rel-
atives indicates the functional importance of such transcripts, several research
groups have sought for conserved secondary structures on a genomic scale [20],[44],[43],[35].

In their studies, a large number of multiple alignments were created using
computer programs, and consensus secondary structures were then predicted from
these alignments. They used alignment programs that neglected the special con-
servation patterns of secondary structures such as the base covariations in the
stem regions since the alignment algorithms that took into account the base co-
variations required huge computational resources [38], [17],[28]. Therefore, there
were potential risks of overlooking conserved secondary structures due to mis-
alignments. Such loss of sensitivity is particularly problematic in the early stage
of large-scale screening that precedes the time-consuming but accurate computa-
tional and experimental validation stages.

In this chapter, I investigate the dependence of the accuracy of secondary
structure prediction on the quality of alignments and propose a method to pre-
dict conserved secondary structures from multiple alignments, which is robust
against alignment failures. Our algorithm first computes the base pairing proba-
bility matrix for each sequence in the alignment and then obtains the base pairing
probability matrix of the alignment by averaging over these matrices. The con-
sensus secondary structure is predicted from this matrix using a Nussinov-style
dynamic programming algorithm [33].

The use of the average pair probability matrix for obtaining the consensus
structures is not a new idea and there have been several studies [21],[18],[25],[23],[26]
that have used the base pairing probability matrices of single sequences to pre-
dict the consensus secondary structures. In particular, the ConStruct program
[26],[25] predicts the same consensus structures as those predicted by our al-
gorithm with a specific parameter value. However, [ present a new interpreta-

tion and justification of this method in terms of the maximal expected accuracy
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(MEA) principle [31], which has been successfully applied recently to the se-
quence alignment and the structure prediction to single sequences. This new
interpretation makes it obvious that the method has an advantage in predicting
the structures from seriously misaligned sequences. I show that our algorithm
outperforms the leading programs for the consensus structure prediction [19],[24]

in such a situation.

5.3. Methods

5.3.1 Algorithms for Consensus Structure Prediction

For a given alignment of length L, which is composed of N sequences X, let
C = {I|1 <1 < L} be the set of positions of alignment columns and let PC =
{(I,J) €CxC|l <I<J<L}. The consensus secondary structure y® of the
alignment is defined as in the case of single sequences (2.1.1).

Two programs RNAAlifold and Pfold are often used for predicting the con-
sensus secondary structures from given multiple alignments. RNAAlipfold [19]
is a multi-sequence extension of the McCaskill algorithm. For each consensus

secondary structure candidate, it assigns a Boltzmann factor,

exp (-E(y’X) + COV(y,X)>

P(ylX) =

Z(X) kT

where E(y, X) is the mean energy of the secondary structures of sequences X, all
of which are assumed to form the same structure y, and Cov(y, X) is the base co-
variation bonus factor that gives a positive value for stem-conserving covariations.
I consider an MEA algorithm that uses the base pairing probability matrices as
calculated by RNAAlipfold and refer to it as RNAAlipfold-MEA. The maximal
likelihood version of the RNAAlipfold algorithm corresponds to RNAAlifold [19]
and is compared with other programs in the following section.

Pfold [24] is a multi-sequence extension of the SCFG model for a single se-
quence structure prediction. The differences from the single sequence case are
that it simulteneously emits bases in each column and each pair of columns, and

that the emission scores assume the likelihood values computed by the Markov
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model of sequence evolution. The Pfold algorithm is an MEA algorithm that
maximizes the expected accuracy with a = 1.

Both RNAAlipfold and Pfold assume the correctness of alignments, and the
covariation scores contained in both the models rely on it. Their covariation
scores are most efficient when they are applied to high-quality multiple align-
ments. However, in low-quality alignment data, there are many fake inconsistent
mutations caused by alignment failures, which may cause the incorrect estima-
tions of the covariation scores and result in the loss of sensitivity to conserved
structures.

Here, I propose an alternative MEA algorithm that is not strongly dependent
on the correctness of alignments. First, I define the conditional probability dis-
tribution function P(Y|X) over all the secondary structures of all the sequences

in the alignment as follows:

PY|X)=]] Pl
zeX
where Y = {y® |z € X} denote the set of secondary structures of sequences
X, and P(y™|z) is given by the Boltzmann distribution of single sequence x
(Equation (2.7)). For each consensus structure candidate S = {L£,P}, I define
the expected accuracy EA,(S) of the structure as the mean value of the expected

accuracies of sequences.

PALS) =B {}VZ 53| CTUURED SRRy }

r€X i€L jHi (i,j)eP
=0 Gt ), P
el (i,§)€P
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(z)

where p;; is the mean value of the base pairing probabilities p;;”,

1 y
= | 2 o00)
r’'eX
1 y
XY X (5 S ) ro
Y@ ylen) ) o' eX
1 " .
=5 2.0y DPW)
zeX y(m)
1 o
=5 2P (5.1)
zeX

and ¢; is given by Equation (2.17).

The MEA structure is computed from ¢; and p;; in a manner identical to the
case of the prediction from single sequences. I refer to the algorithm as McCaskill-
MEA. For a = 0, the McCaskill-MEA algorithm predicts the same structures as
those of the ConStruct program [26],[25].

The McCaskill-MEA algorithm does not assume that all the sequences take
an equal single structure and instead predicts the structure that is supported by
the majority of sequences. Since the model does not include any covariation score
term, the accuracy of the prediction may be lower than that of other algorithms
for high-quality alignments. However, McCaskill-MEA has the advantage that the
algorithm is free from the negative effects of covariation scores in the presence of
severe alignment errors.

To observe the effect of the suboptimal structures contained in the base pairing
(z)
;
the predicted structures for all sequences using the Mfold program and defines

probability matrices p;.’, T consider another MEA algorithm. It first computes

the base pairing probability matrix of the sequence as

() 1 (4,7) is predicted to form a base pair by Mfold

’ 0 otherwise
The base pairing probabilities of the alignment are computed as shown in Equa-
tion (5.1), and the predicted structure is computed by Equation (2.9). The algo-
rithm is referred to as Mfold-MEA.
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I used version 1.5 of the Vienna RNA package [16] for the computation of the
base pairing probability matrices of McCaskill-MEA and RNAalipfold-MEA and
the structure predictions of the RNAAlifold algorithm. Version 5 of Mfold was
used for the computation of the Mfold-MEA algorithm. A stand-alone program
of Pfold was obtained (courtesy of Dr. B. Knudsen).

5.4. Results

5.4.1 Comparison of Algorithms

Figure 5.1 shows examples of the density plots of the base pairing probabilities,
which are calculated from a multiple alignment of ten tRNA sequences. The align-
ment is created using the ClustalW software. The lower left triangles in both the
figures show the true distribution of base pair probabilities. They are computed
by first assigning the annotated structure in the Rfam database to each sequence
and then computing base pairing probability matrices in a manner similar to
Mfold-MEA. Although the true tRNA structure has only four stems (Figure 5.1
bottom), about ten stems are observed in the plot due to severe misalignments.
The upper right triangles show the density plot of the pairing probabilities used
in the RNAAlipfold-MEA (left) and McCaskill-MEA (right) algorithms. Only
two out of four stems are observed in the matrix for RNAAlipfold-MEA, while
all the four stems are observed in the matrix for McCaskill-MEA.

Figure 5.2 shows the receiver operator characteristic (ROC) curves of the
structure predictions from alignments of ten sequences. The x and y axis represent
the specificity and the sensitivity of predictions, respectively. The ROC curves
are computed by varying « in the three MEA algorithms. The sensitivity is large
for small values of «, since the terms that score the base pairs in the expected
accuracy is emphasized and the number of predicted base pairs increases. The
ROC curve reaches a limit for &« — 0. In this limit, the entire regions of the
multiple alignments are filled with predicted stems. For large values of «, the
number of predicted base pairs decreases. In the limit of large «, the number of
predicted stems is so small that the corresponding plot fluctuates due to statistical

fluctuations. Therefore, I only showed the data points for which the total number
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Figure 5.1. Density plots of base pairing probability matrices. In both the matri-
ces, the lower left triangle is the true distribution of base pair probabilities that is
derived from the Rfam annotation of the tRNA secondary structure. The upper
right triangles are the base pairing probabilities used in the RNAAlipfold-MEA
and McCaskill-MEA algorithms respectively. The true tRNA secondary structure
is shown in the bottom figure, which is plotted using the RNAplot program of
Vienna RNA package [16].
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Figure 5.2. ROC plot of the consensus structure predictions. The x and y axes
represent the specificity and sensitivity of predictions, respectively. The colors
indicate the types of alignments from which the consensus structures are pre-

dicted. The black, blue, and red colors correspond to the reference alignments

of the Rfam database,

respectively. The character symbols indicate the types of structure prediction
MEA (open circle), RNAAlipfold-MEA (open triangle),
Mfold-MEA (open square), Pfold (filled circle), and RNAAlifold (filled triangle).
For McCaskill-MEA, RNAAlipfold-MEA and Mfold-MEA, multiple points are

computed by varying the parameter «, and their trajectories are connected by

algorithms: McCaskill-

lines.

the ProbCons alignments, and the Clustal W alignments,
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Table 5.1. The ROC score, maximal MCC, and maximal sensitivity for each
alignment type and structure prediction algorithm. Since I can obtain only one
point in the sensitivity-specificity plane for Pfold and RNAAlifold, I cannot show
the ROC score for these softwares. Further, the maximal MCC and maximal
sensitivity is the MCC and sensitivity at that point for these softwares. For
other algorithms, the ROC score is defined as the area of the convex region that
is spanned by the data points and the points {(0,0), (SPypaxs 0), (0, Simax) } in the
specificity-sensitivity plane, where sp, .. and sny,, denote the maximal specificity

and sensitivity of the data points, respectively.

Alignment Algorithm ROC score Max MCC Max sensitivity
Reference  McCaskill-MEA 0.81 0.81 0.88
RNAAlipfold-MEA 0.77 0.81 0.81
Mfold-MEA 0.73 0.77 0.83
Pfold - 0.82 0.79
RNA Alifold - 0.80 0.76
ProbCons McCaskill-MEA 0.60 0.66 0.69
RNAAlipfold-MEA 0.50 0.63 0.55
Mfold-MEA 0.51 0.62 0.65
Pfold - 0.65 0.56
RNA Alifold - 0.62 0.50
Clustal W McCaskill-MEA 0.48 0.57 0.60
RNAAlipfold-MEA 0.39 0.54 0.44
Mfold-MEA 0.40 0.54 0.56
Pfold - 0.53 0.41
RNAAlifold - 0.53 0.39

of predicted base pairs is greater than ten percent of the total number of true base
pairs. Since there is no parameter to control the specificity-sensitivity trade-off
for Pfold (filled circle) and RNAAlifold (filled triangle), only one point for each
alignment type is plotted.

Table 5.2 shows the p values of the Fisher’s sign test that tests the null
hypothesis that McCaskill-MEA is not more accurate than each of the other
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programs. The first column shows the name of the program compared. The other
columns show the p values that measure the unlikeliness of the null hypothesis.
The number of observations that the accuracy of Murlet is better (+) or worse
(-) than that of the program being compared is also shown in the round brackets.
The table indicates that the McCaskill-MEA method is comparable to the leading
programs of consensus structure prediction even for the reference alignments. For
the alignment set created by the alignment programs ProbCons and ClustalW,
McCaskill-MEA performs better than these programs with p-values ranges from
7e-3 % t0 9.4 %.

Figure 5.2 shows that the sensitivity considerably depends on the alignment
quality; the maximal sensitivity achieved for ClustalW alignments is less than
ProbCons alignments by 10 percent and less than the reference alignments by
about 30 percent. For all alignment types, the curves of McCaskill-MEA are
above Mfold-MEA, which shows the efficiency achieved by including the effect
of suboptimal structures in the consensus structure prediction. The higher sen-
sitivity of RNAAlipfold-MEA as compared to that of RNAAlifold at the same
specificity values also indicates the superiority of the MEA algorithm as com-
pared to its maximal likelihood version, although the difference is less prominent.
Both the specificity and sensitivity decrease for Mfold-MEA in the large o limit,
which indicates that the loop probability values ¢; incorrectly assume large values
at the columns of the true base pairs due to the neglect of suboptimal structures.
As expected, Pfold and RNAAlipfold-MEA show slightly better sensitivities for
specificities larger than 0.8 as compared to McCaskill-MEA due to the positive
effect of the base covariation scores. However, McCaskill-MEA shows the best
sensitivities for lower specificity regions in all the three alignment types.

Table 5.1 lists the ROC score, the maximal MCC, and the maximal sensitivity
for each alignment type and structure prediction algorithm. The ROC score is de-
fined by the area under the ROC curve and is a standard indicator for prediction
efficiency. Table 5.1 shows that the ROC score is the highest for the McCaskill-
MEA algorithm. As for the maximal MCC, the Pfold program achieves the best
MCC value for the high quality reference alignments. However, McCaskill-MEA
is better than the RNAAlifold program even for these alignments. For the Prob-
Cons and ClustalW alignments, McCaskill-MEA algorithm outperforms the other
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programs. The difference between the maximal MCC value of McCaskill-MEA
and that of other algorithms is larger for the lower quality Clustal W alignments.
The table also shows that the maximal sensitivity is the highest for the McCaskill-
MEA algorithm.

Note that in contrast to the specificity, the sensitivity values cannot be arbi-
trarily close to 1 unless the model’s accuracy is fairly high; this is because it is not
possible to predict all the base pair candidates (i.e., y;; = 1foralll1 <i < j <L)
to satisfy the consistency constraint (Equation (2.2)). At this point, the sec-
ondary structure prediction problem is different from other binary classification
problems where the classifier that predicts all the test samples as positive (which
corresponds to predicting y;; = 1 for all 1 < i < j < L), trivially achieves a sen-
sitivity of one. Therefore, it may be said that the maximal reachable sensitivity
is itself an indicator of the efficiency of the algorithms, and that McCaskill-MEA
is comparatively much better than other algorithms with respect to it.

Figure 5.3 shows the dependence of the ROC score on the number of sequences
in the alignments. The alignments of 2, 4, 6, and 8 sequences are created by
sampling sequences randomly from the alignments of ten sequences. The colors
and symbols are the same as in Figure5.2. The ROC scores of McCaskill-MEA
and Mfold-MEA increase with the number of sequences, while the increase of
RNAAlipfold-MEA is somewhat slower than that of the other algorithms. For
computationally aligned sequences, the McCaskill-MEA algorithm shows the best
performance among the three algorithms. Even for the reference alignments, the
McCaskill-MEA algorithm has a slightly better ROC score than the RNA Alipfold-
MEA algorithm, which might imply the difficulty to score sequence covariations
correctly for diverged sequences.

Figure 5.4 shows an example of the dependence of the sensitivity at fixed
specificity (0.7) on the mean sequence identities. The current Rfam dataset has
not permitted us to collect multiple sequence alignments over a wide range of
sequence identities for various families. The used dataset consists of 188 multiple
alignments of four sequences collected from the Rfam Hammerhead_3 ribozyme
family. The alignments are categorized into bins of width ten percent in their
mean sequence identities, and the mean sensitivities for each bin are plotted.

The colors and symbols have the same meanings as in Figure 5.2 and 5.3. For
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Figure 5.3. Dependence of the ROC score on the number of sequences in the

alignments. The colors and symbols have the same meanings as in Figure 5.2.
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Figure 5.4. An example of the sequence identity dependence of sensitivity at a
specificity of 0.7. The colors and symbols have the same meanings as in Figures
5.2 and 5.3. The dataset is taken from the Hammerhead_3 family of the Rfam
database. The dataset consists of 188 multiple alignments of four sequences.
They are binned according to their mean pairwise sequence identities, and the

result is averaged over each bin.
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this family, all three algorithms show similar behaviors for the reference align-
ments and the ProbCons alignments. For the ClustalW alignments, however,
the McCaskill-MEA algorithm shows the best sensitivity in the region where the

sequence identity is less than 60 percent.

5.4.2 Uses of Parameter o

As I have shown, the prediction accuracy of conserved secondary structures sig-
nificantly depends on the alignment quality, which indicates the necessity of re-
fining the alignments after candidates of alignments with conserved structures
are screened. The parameter a, which controls the sensitivity and specificity of
the prediction accuracy, can be conveniently used for such multi-step screening
procedures; this is done by taking small values of @ to screen conserved structure
candidates from coarse alignments with high sensitivity and then taking o large
to predict structures from refined multiple alignments with high specificity.
Another use of the parameter « is to assign confidence values to predicted
base pairs. Figure 5.5 shows an example of the predicted structures of the Unal.2
family for varying parameter . They are predicted from a ProbCons align-
ment using the McCaskill-MEA algorithm. As seen from the figure, the number
of base pairs monotonically decreases with a without creating alternative base
pairs. This behavior holds in most cases. Hence, I define the confidence value of
each predicted base pair as follows. For any base pair, we associate the a value
that is maximal among the ones whose MEA solutions predict that pair, and
define the confidence value of the pair as the specificity corresponding to that «
(Figure 5.6 (left)). The confidence value of a predicted base pair represents the
empirical probability that the pair is a true base pair. The definition of confi-
dence value depends only on the test dataset and the corresponding ROC curve
and is essentially independent of the details of models. It has the property that
the number of base pairs with high confidence values is large in the predicted
structures from the accurate multiple alignments. The confidence values of the
prediction to the UnaL2 family is plotted in Figure 5.6 (right). The confidence
values will be useful to rank the secondary structure candidates in genomic scale

studies of conserved secondary structures.
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Figure 5.5. An example of the consensus secondary structure prediction for vary-
ing the parameters « (left). A ProbCons alignment of the UnaL2 family in Table
5.1 is used. The predictions are made using the McCaskill-MEA algorithm. The
corresponding « values are 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.63, 1.26, 2.51 and
5.01 from top to bottom. The true structure is also shown in the figure on the

right.
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Figure 5.6. Confidence scores of each predicted base pair. In the left-hand-
side figure, the relation between the a values and specificity is plotted. The
curve is derived from the ROC curve of the McCaskill-MEA predictions from the
ProbCons alignments (Figure 5.2). The x axis denotes the « values on a log
scale, and the y axis denotes the specificity. In the right-hand-side figure, the
confidence values of the predicted base pairs (Figure 5.5) of the UnaL2 family
are plotted. The x axis indicates the column position of the alignment, and the

y axis indicates the computed confidence values.
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5.5. Summary

I have presented a method to predict the conserved secondary structures from
multiple aligned sequences that are subject to alignment failures. Our method
first calculates the base pairing probability matrix for each sequence, which are
subsequently averaged to yield the base pairing probability matrix of the align-
ment. The consensus secondary structure is obtained by maximizing the expected
accuracy of the structure with respect to the base pairing probabilities. For com-
putationally aligned multiple sequences, our method shows a better performance
as compared to other frequently used programs. I have shown that our method
is particularly suitable for the alignments that suffer from significant alignment
failures and that consist of a large number of sequences. [ have shown that
the parameter o in our model, which controls the sensitivity and specificity of
the prediction, is useful for the genomic scale screening of conserved secondary
structures and for assigning confidence values to the predicted base pairs.

In the present chapter, I have investigated only the global problem of structure
prediction, that is, the lengths of the alignments and those of the structural RNA
genes are assumed to be of the same order. For the [ocal problem of consensus
structure prediction that searches long multiple alignments for small conserved
structures, the calculation of the base pairing probability matrices over the en-
tire alignment might have problems caused by the stochastic disturbance from
the regions that are not related to the RNA genes and secondary structures. [
leave the investigation of the local structure prediction problem and the scaling
property of the base pairing probability matrices for future study.

I have considered only simple applications of the maximal expected accuracy
principle in which the base pairing probabilities are derived either from an align-
ment or from all the sequences in the alignment. However, I can extend our
method to compute the average of both the probabilities that might complement
each other. I can also consider combining other probability matrices derived
from other models such as SCFG models. Such considerations lead to the prob-
lem of finding the best proportionality constants to sum the various probabilities.
It may be interesting to study machine-learning approaches to combine various

base pairing probabilities in an optimal manner.
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Table 5.2. The p values of the Fisher’s sign test that tests the null hypothesis
that McCaskill-MEA is not more accurate than each of the other programs. The
first column shows the name of the program compared. The other columns show
the p values that measure the unlikeliness of the null hypothesis. The number of
observations that the accuracy of Murlet is better (4) or worse (-) than that of

the program being compared is also shown in the round brackets.

Program Reference ProbCons Clustal W
p-value(+/-) p-value(+/-)  p-value(+/-)

Pfold  0.67 (39/42)  0.094 (58/16)  7.7e-5 (59/24)
Alifold  0.091 (47/34) 0.0053 (53/29) 0.007 (52,/29)
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Chapter 6
Conclusion

I have developed an efficient alignment method that accurately aligns multiple
structural RNA sequences. The method first computes the base pairing proba-
bilities and the match probabilities. Then a simple Sankoff algorithm is applied
to obtain the final alignment using these probabilities. The scoring system of
the method enables to incorporate complex secondary structure information and
homology information without complicating the Sankoff algorithm. The method
have highest accuracy among the existing softwares in both the alignment qual-
ity and the accuracy of consensus secondary structure prediction from the align-
ments. The algorithm has an efficient method to reduce the DP region to be
computed which allows alignment of long RNA sequences that have not been
computable by other Sankoff-based alignment tools.

I have also proposed a method to predict the conserved secondary structures
from multiply aligned sequences which are subject to alignment failures. The
method first calculates the base pairing probability matrix for each sequence,
which are subsequently averaged over to give the base pairing probability matrix
of the alignment. The consensus secondary structure is obtained by maximizing
the expected accuracy of secondary structure with respect to the base pairing
probabilities. For computationally aligned multiple sequences, the method shows
better performance than other frequently used programs. The method is espe-
cially suitable for the alignments which suffer from significant alignment failures
and consist of a large number of sequences. The parameter a®) of the model, that

controls the sensitivity and specificity of the prediction, is useful for the genomic
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scale screening of conserved secondary structures, and for assigning confidence

values to the predicted base pairs.
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Appendix A

Supplements to Chapter 3

A.1. Algorithm for Reducing DP Region

I use the convention that the i-th base of the first sequence that is inserted
between j —1 and j-th base of the second sequence is emitted at position (i, 7) in
the DP matrix. In this convention, the size of the DP matrix is (L() 1) x (L) 41)
for sequences of lengths L") and L®. and the ranges of row and column indices
are 1 <i < (LMW +1) and 1 < j < (L® + 1) respectively, in order to account for
the 3'-terminal gap insertions. I represent the DP region by two arrays of left and
right column boundaries j;[i] and j,[¢] in the DP matrix. Using these arrays, the
DP region is represented by the set {(i,7)|1 < i < (LM 4+ 1), 5[i] < j < j.[i]}.

Algorithm 5 shows the algorithm for reducing the DP region. The initial DP
region is represented as j;[i] and j,.[i]. These boundaries are modified to represent
the reduced DP region after the computation. The algorithm requires as input the
initial DP region j;[i] and j,[i], the match probability matrix p{®, the threshold
value € and the minimum DP region that enclose the initial DP path, which is
represented by ji[i] and j.o7].

The reduced DP region has several properties.

e The region is simply connected. In other words, the region has no holes.
This is obvious since each slice of the region by rows is represented by only

one segment ji[i] < j < j.[d].
e The region includes the initial alignment path j;[i] < jioli] < jroli] < Ji[i]-

I6)



Algorithm 5 Algorithm for reducing the dynamic programming region. j[i] and
Jr[i] are the left and right column boundaries of the DP region at row 7. On input,
7i[7] and j,[i] represent the strip region around the initial DP alignment path. On
output, 7[7] and j,.[i] represent the reduced DP region. jj[i] and j,.o[i] are the
boundaries of the minimum DP region that enclose the initial DP path. p(®) (i, 7)
is assumed to returns an element of the match probability matrix at position (i, j)
if 1 <i< LW and1<j<L® and returns 0 otherwise.
Input: ji['], j.[1, jiol], jrol], € P@(,-)
Output: ji[], j.[]

1: Jp 1

2: for i < 1--- (LM + 1) do

31 Jo < max(jo, jroli])

4: J < ]r[l]

5 Jeli] < Jo

6: while 57 > j, do
7 if ¢ < pl@(i, ;) then
8: Jrli] <= j

9: o< (J+1)
10: break

11: end if

12: j— (-1
13:  end while

14: end for

15: jo + L

16: for i «+ (LW +1)---1 do
17 jo < min(Jjo, jio[?])

18 j < jild]

19:  5ift] < Jo

20: while j < j, do

21: if e <pl@(i—1,5—1) then

22: aili] < j

23: Jo (1 —1)

24: break

25: end if

26: j—(G+1) -6

27:  end while
28: end for




e for each position (i, ;) that has match probability p{® > ¢ and is right of
the initial path j > j,[i], the lower left region {(i',j")|i" = i, ji[i'] < 7' <
JYU L, 3" > i,500[d] < j < (j+1)} is contained in the reduced DP

region.

e for each position (i, j) that has match probability p{® > € and is left of the
initial path j < jjo[i], the upper right region {(7',j")|' = (i +1),(j + 1) <
7 < gl U{E, )" <i,5 <j" < jil[i']} is contained in the reduced DP
region.
From the last two properties, it follows that for any position pair (4, j) and (4', j")
that have match probabilities p(@ (i, j), p'® (i, j') > € and can coexist in an align-
ment (i.e. (i < i and j < j') or (i < i and j' < j)), there exists at least one
alignment path in the reduced DP region that connect these positions. In fact,
the reduced DP region is given by the union of the region corresponding to j[i]
and j,o[i] and all the upper-left and lower-right regions that are described in the
last two properties.

A.2. Novel Accuracy Measures: SQS, SSS, and
PCS

To define SQS, SSS and PCS mathematically, I first give a few definitions. Let LEZ)
be the mapping from the position i € C™ of sequence 2" to the corresponding
alignment column I € C4 in the alignment A

et — ey

h=1,---,N

For each consensus secondary structure & = {L£,P} of the alignment A4, the

secondary structure S of sequence 2"

St — {ﬁ(h)7 fp(h)}
P = {(i, j) € PCW(T, J) € P, T =1M(i), ] =™ (j)}
LW = {i e cMy(i',j') e PM i 4,5}

associated to § is defined by,
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For each alignment column [ in the alignment A, the column vector c4 ; is defined

as follows,
car(h) = "7 if the column I is a gap position for sequence 2"
| S
h=1,---,N

where ¢ = L(h)fl(l) is the position of sequence z(" aligned at the column I.
To compute SQS, the number of quadruples ((7, 5), (k,1)) € P") x P*) satis-

fying the following constraint is computed for each pair (x(h), x(h')) of sequences.

)

i) = B (k)

) =2

(i) = o) (k)
(

where the subscripts ref and sbj indicate the reference alignment and the subject
alignment being evaluated, respectively. Then the count is summed over all
the pairs of sequences. The SQS is obtained by taking the ratio of the count
of the subject alignment to that of the ideal alignment that is identical to the
reference alignment. To compute SSS, the number of quadruples that satisfies
the constraint

((3,7), (k1)) € PW x PH)
1} () = 53 (k)
) () = 1§} (1)
is computed. The SSS value is obtained by taking the ratio between the count
of the subject alignment and that of the ideal alignment. To compute PCS, the
number of pair columns (7, .J) that satisfies the constraint
(1,J) € PCy;
(K, L) € Prer
Cref,K = Csbj,I

Cref,. = Cgbj,J
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is calculated. The PCS value is obtained by taking the ratio between the count
of the subject alignment and that of the ideal alignment.

Figure A.1 shows examples of the alignments. (a) is the reference align-
ment, (b) is the subject alignment and the alignment (c) is a copy of the refer-
ence alignment used for the comparison. The secondary structures of sequences
in the three alignments are derived from the structure annotated to the refer-
ence, which are shown in the bottom part of the figure, where the aligned bases
are replaced with the corresponding sequence positions. Figure A.2 shows ex-
amples of the computation of SQS and SSS values for the multiple alignment
of Figure A.1. For the SQS computation, three quadruples ((1,7),(1,9)) in
PO x PP ((2,8),(1,7)) and ((3,7),(2,6)) in P? x PO contribute to the count
for the ‘subject’ alignment (Figure A.2(a)), while five quadruples ((1,7),(1,9)
and ((2,6),(2,8)) in PM x P@ ((2,6),(1,7)) in P x PO ((2,8),(1,7)) and
((3,7),(2,6)) in P x PO contribute to the count for the ‘subject0’ alignment
(Figure A.2(b)). The SQS value is given by the ratio 3/5 = 0.6. The count that
contributes to SQS also contributes to the count for SSS. However the quadruples
((2,6),(3,7)) in PO x P@ and ((2,6), (2,6)) in PV x PG) also contribute to the
SSS count (Figure A.2(c)). The count for the ‘subject0’ alignment is unchanged
from that of SQS (Figure A.2(d)). Therefore, SSS is given by (3 +2)/5 = 1.
Figure A.3 shows an example of the PCS computation. Since the pair of col-
umn vectors ((1,1,—),(7,9,8)) exists both in the reference and ‘subject’ align-
ments and these columns are annotated to form a base pair in the reference
alignment, The pair column (I, J) = (1,9) in PCgp; contributes to the count of
PCS (Figure A.3(b)). Similarly the three pair columns (1,9), (2,8) and (3,7)
in PCqpjo, whose pair column vectors are ((1,1,—),(7,9,8)), ((—,2,1),(—,8,7)),
and ((2,3,2),(6,7,6)), respectively, contribute to the count for the ’subject(’
alignment (Figure A.3(c)). The PCS value is then given by the ratio 1/3 ~ 0.33.

A.3. Consensus Structure Prediction By Stem-
loc and PMMulti

Table A.1 shows the MCC values of the Pfold predictions to the Stemloc and

PMMMulti alignments and the original consensus structure predictions made by
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(a) reference
CCAAG--GGC
CAUAAAAUGU
-CGAGAAGGC
<K< L >>>,

\
12345--678
<< ... >> .
1234567890
<K< L a>>>.
-123456789
K<L LD,

(b) subject

C-CAAGG-GC
CAUAAAAUGU
-CGAGAAGGC

\/
1-23456-78
<. <. Lu>0>.
1234567890
<<< . L .>>>.
-123456789
<K< L0 >>>.

(c) subject0

CCAAG--GGC
CAUAAAAUGU
-CGAGAAGGC

\
12345--678
<<. ... >>,
1234567890
<<< L L LD,
-123456789
K<Ll u>> L,

Figure A.1. Derivation of the secondary structures of sequences from the consen-

sus secondary structure of the alignment.

Table A.1.

Comparison of MCC values between the predictions made by

Pfold and those made by Stemloc and PMMulti. “Average(Stemloc),” “Aver-

age(PMMMulti),” and “Average(common)” have the same meanings as those in

the main text. “original” indicates the MCC values for the original predictions

made by Stemloc and PMMulti.

Stemloc PMMulti
Pfold / original Pfold / original
Average (Stemloc) 0.67 / 0.58 -/ -
Average (PMMulti) -/- 0.54 / 0.42
Average (common) 0.68 / 0.61 0.54 / 0.42
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(a) subject

<.<...>.>. <.<...>.>. <K<K L L. >>>,
1-23456-78 1-23456-78 1234567890
1234567890 -123456789 -123456789
j<<...>>>. << L L>> ., '<<'°'F>"
(b) subject0
<<. ..., >> . <<..... >> . <<< . L. >>> .
12345--678 12345--678 1234567890
1234567890 -123456789 -123456789
j<<...>>>. K<L L L >> .. '<<'°'F>"
SQS=3/5=06
(c) subject
<.<...>.>. <.<...>.>. <K<K L L >>>,
1-23456-78 1-23456-78 1234567890
1234567890 -123456789 -123456789
DR o g
. <<..... >> . <<< . L. >>>,
12345--678 12345--678 1234567890
1234567890 -123456789 -123456789
j<<...>>>. K<L L L >> .. '<<'°'F>"
SSS=5/5=1

Figure A.2.  Examples of the computation of SQS and SSS. The left,
center, and right alignments correspond to the sequence pairs (h,h') =
(1,2),(1,3), and (2, 3), respectively.
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these programs. The table shows that the accuracies of the original predictions

are almost 10% lower than those of Pfold predictions.
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(a) reference

1-23456-78
1234567890
-123456789
<K< L. 55>,

(b) subject

12345--678
1234567890
-123456789

L |

PCS=1/3=0.33

(c) subject0

1-23456-78
1234567890
-123456789

=

Figure A.3. An example of the computation of PCS.
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Appendix B

Test Dataset for Algorithm

Comparison

The Rfam accession and ID of the multiple alignments used to compare the

algorithms are listed below.

RF00001 55_rRNA
U39694.1/9296-9392
Y00159.1/2-117
X02706.1/2-120

750076.1/4-120
X03902.1/1-114
X02246.1/3-118

U05019.1/544-658
L37450.1/2-118
X52052.1/4-118

X62859.1/3-124
X02253.1/3-118
AB015590.1/1-119

X14441.1/5-123
X00081.1/2-117
X00998.1/1-119

M35167.1/2-111
M58387.1/5-112
X05535.1/1-118

X55253.1/3-119
M11546.1/4-118
X06834.1/1-119

X62858.1/1-121
X00691.1/1-119
M10436.1/2-120

M16172.1/3-119
X00475.1/121-239
X00378.1/2-120

M36188.1/5-125
L37446.1/4-117
X52048.1/2-120

AJ131602.1/3-115
X67494.1/1-118

M33888.1/3-119
1.37449.1/4-118

M11546.1/4-118
X00067.1/1-119

V00646.1/1-107
D10526.1/1-121

S73542.1/3-119
X02241.1/3-119

X52302.1/2-117
M36316.1/2-120

M34775.1/1-115
X79704.1/3397-3511

L.37449.1/4-118
X01004.1/1-119

M34772.1/1-114
X06847.1/1-119

X12884.1/1-117
K03169.1/1-118

RF00002 5-8S_-rRNA
AF093014.1/662-809
X53361.2/1206-1368
X80212.2/2104-2256

AF093014.1/662-809
AF158724.1/274-427
Y11511.1/115-268

AF093014.1/662-809
M63701.1/247-415
AF468917.1/611-763

U48228.1/7-166
AF196778.1/2-154

U21939.1/68-218
M63701.1/247-415
Y07978.1/48-201

AF223570.1/244-389
X00601.1/3997-4154
D16558.1/2710-2862

AF026388.1/2852-3006

M36008.1/959-1112
D10840.1/200-355

X53361.2/1206-1368
L78065.1/3758-3910
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X54512.1/4422-4569
U13369.1/6624-6776

AF306774.1/466-634
V01159.1/185-331

U21939.1/68-218
X00601.1/3997-4154

M63701.1/247-415
M36008.1/959-1112

M14649.1/2015-2169
AF158724.1/274-427

X99212.1/685-824
X66325.1/2369-2523

X01533.1/5-152
V01159.1/185-331

X90410.1/15-165
X03680.1/3159-3308



AF307619.1/287-442

AF093014.1/662-809
Y00055.1/4327-4494
X03680.1/3159-3308

Y07976.1/124-271

X54512.1/4422-4569
AL049755.2/30863-31016
X00601.1/3997-4154

U58510.1/2022-2198
AF196778.1/2-154

X52949.1/857-993
L78065.1/3758-3910

RF00061 IRES_HCV
AF046866.1/1-389
AY070180.1/1-277
U05027.1/1-361

AY188170.1/2-196
723075.1/1-230
784275.1/1-250

AY'188094.1/3-196
784216.1/1-250
L29581.1/2-237

784240.1/1-250
D63822.1/1-388
AF041278.1/1-191

AF207771.1/1-379
AJ006323.1/1-251
1.34364.1/1-279

D31726.1/1-254
7.84223.1/1-250
D14307.1/1-327

AF057153.1/1-237
AY190441.1/4-181
U14774.1/1-239

AF041280.1/1-191
AY446063.1/1-272
AY145980.1/1-251

L34393.1/1-279
AJ438621.1/1-250
AF056006.1/1-237

736523.1/3-205
U14772.1/1-239
AY163830.1/1-251

M84834.1/1-321
U45462.1/1-333

AY190387.1/1-182
AY145993.1/1-216

7.84228.1/1-250
AY145945.1/1-206

784248.1/1-250
D63857.1/2-298

U05022.1/1-360
U23390.1/1-319

L34381.1/1-279
D13448.1/1-296

AY344028.1/1-165
AY188160.1/2-196

AY188114.1/3-196
L27900.1/1-231

U23750.1/1-297
M84851.1/1-320

M84828.1/1-321
AF506669.1/3-246

RF00168 Lysine
AE017007.1/287994-288186
AF270308.1/2156-2331
AE006126.1/222-48

AE017007.1/287994-288186
AE016747.1/182196-182375
AEO015545.1/1265-1436

M93419.1/332-511
AL591976.1/186683-186486
AE016947.1/224792-224618

799121.2/6040-5861
AF270308.1/2156-2331
AP005335.1/123141-123320

AE017007.1/287994-288186
AE013039.1/9145-9323
AP005342.1/28132-28310

AP001512.1/119931-120105
AE007576.1/1562-1747
AE001799.1/20444-20268

AP001512.1/119931-120105
AP004827.1/261938-261763
AP005076.1/290738-290918

799121.2/6040-5861
AP003362.3/86114-86289
AE010489.1/2647-2468

AE017274.1/20257-20449
AP003187.2/139222-139393
AE001799.1/20444-20268

AP004827.1/261938-261763
AE016947.1/224792-224618
AE001799.1/20444-20268

AL596166.1/112469-112272
AE006448.1/6071-6253

AP004598.1/253855-254037
AE015937.1/285886-286061

AE017028.1/200117-200298
AP004827.1/261938-261763

AP001517.1/215539-215348
AP003194.2/187997-187828

AP003187.2/139222-139393
AE016770.1/235405-235209

AE016747.1/182196-182375
AE015829.1/4454-4280

AP004601.1/22341-22165
AE013149.1/9167-9356

AEO017274.1/20257-20449
AE007843.1/1920-1745

AE016747.1/182196-182375
AE013149.1/9167-9356

AE013149.1/9167-9356
AE004193.1/5679-5861

RF00050 RFN
X51510.1/938-1082
AE014142.1/1906-2030
AE004431.1/9358-9220

AP005274.1/66442-66279
AP004827.1/34791-34657
AE006176.1/9504-9349

AP005214.1/86557-86391
AL766851.1/11027-10882
AE006176.1/9504-9349

AP005274.1/66442-66279
AF269712.1/1300-1435
AE004431.1/9358-9220

AL939108.1/337004-336876
AP003187.2/100445-100560
U27202.1/210-335

AJ010128.1/362-218
AL766851.1/11027-10882
AE001820.1/156-35

AL939108.1/337004-336876
AE007574.1/3571-3685
AE004431.1/9358-9220

AE(014618.1/8796-8645
AL646083.1/100911-100755
AE001820.1/156-35

AE001878.1/30-178
AE006360.1/976-840
AE012168.1/3092-3260

X95955.1/376-523
AL591790.1/15823-15987
AJ009832.1/4549-4670

AF269712.1/1300-1435
AL766847.1/1-103

AE014618.1/8796-8645
AE006333.1/7352-7468

AE001878.1/30-178
M64472.1/901-1048

X95955.1/376-523
AE014142.1/1906-2030

AJ010128.1/362-218
AL646083.1/100911-100755

AF269345.1/3001-2863
AE010459.1/9470-9585

L09228.1/7992-8136
AP003011.2/168184-168036

AL591981.1/267609-267487
U27202.1/210-335

AL591981.1/267609-267487
AE009695.1/6814-6651

AP004827.1/34791-34657
M64472.1/901-1048

RF00175 Retroviral_psi



AF042100.1/691-809
AF538302.1/716-833
AY161882.1/12-127

K03454.1/240-356
AF076998.1/46-162
AJ288981.1/736-854

AF193253.1/70-186
AF082394.1/14-133
AY173957.1/62-175

K03454.1/240-356
AF110972.1/83-200
AF286236.1/192-308

AJ293865.1/46-165
AY118159.1/240-356
U8R822.1/208-327

U88826.1/62-176
M17451.1/208-324
U88822.1/208-327

AF286253.1/173-290
AF414006.1/702-819
AF492624.1/73-186

AB097869.1/693-813
AY162224.1/704-822
AF042105.1/49-165

AF190127.1/72-196
AY161885.1/12-128
AY118154.1/240-357

AF414006.1/702-819
AF443075.1/69-186
AF042104.1/28-144

AB097869.1/693-813
AJ291719.1/695-813

AY161881.1/12-129
AF192135.1/86-206

AF164485.1/717-830
AF061640.1/97-212

AF538304.1/695-811
ABO032741.1/666-779

AY161883.1/12-129
AY173957.1/62-175

AF110970.1/83-200
AY158534.1/41-159

AF443113.1/69-186
AY161882.1/12-127

AB097865.1/71-189
AF423756.1/144-260

AF179368.1/10-127
AF286233.1/39-156

AF049494.1/241-357
AF443111.1/69-188

RF00031 SECIS
AE003628.2/106178-106240
AF136399.1/1808-1868
AF093774.1/5851-5916

AC092237.1/57223-57161
AL645723.11/192421-192359
U67171.1/375-442

AY060611.1/560-627
X84742.1/5239-5302
X76008.1/2709-2772

AE003628.2/106178-106240
ABO030643.1/4176-4241
U67853.1/375-442

AY060611.1/560-627
AF288740.1/1291-1357
ABO017534.1/661-726

Y11109.1/1272-1330
AF195142.1/461-524
U43286.1/2054-2120

AY119185.1/838-902
AB030643.1/4176-4241
AF053984.1/1951-2017

Y11109.1/927-987
M63574.1/1465-1528
U61947.2/4246-4309

Y11111.1/1260-1324
X57999.1/1526-1586
U61947.2/4246-4309

AL645723.11/192421-192359
AC002327.1/156204-156268
AF053984.1/1951-2017

L28111.1/1299-1365
AF288740.1/1291-1357

Y11111.1/1260-1324
X12367.1/703-764

Y11111.1/1260-1324
AF166127.1/1919-1981

Y11273.1/1139-1211
S79854.1/1605-1666

AF241527.2/359-424
BC003127.1/865-928

AF241527.2/359-424
AF333036.1/2190-2249

AF125575.1/5781-5843
BC003127.1/865-928

AF322071.1/1577-1642
U43286.1/2054-2120

X84742.1/5239-5302
AC000078.2/21139-21077

AF136399.1/1808-1868
X53463.1/847-903

RF00169 SRP_bact
M31831.1/60-156
AF368293.1/121-224
U32795.1/4504-4603

AE000759.1/8335-8411
AE002112.1/7386-7290
AE014122.1/13296-13200

AEO012781.1/271-172
AE010530.1/10602-10691
AJ414155.1/123558-123461

AE012781.1/271-172
AE002112.1/7386-7290
AE001151.1/4236-4333

AL023596.1/21933-22018
D11418.1/118-220
AEO001151.1/4236-4333

AP002546.2/147527-147424
AE007319.1/10471-10547
AE004188.1/3986-4083

AP003584.1/338551-338455
AL591782.1/259929-260027
M31830.1/30-129

AP003584.1/338551-338455
U22036.1/386-480
AE001187.1/2891-2802

AJ011025.1/3477-3397
AP003006.2/282610-282707
AE001187.1/2891-2802

M31831.1/60-156
U39706.1/5918-5836
AE001187.1/2891-2802

AEO012781.1/271-172
X53678.1/99-175

D11419.1/119-221
AF203881.1/14955-14875

AF269814.1/2627-2730
AF203881.1/14955-14875

AF368293.1/121-224
AE008680.1/732-813

AP002546.2/147527-147424
AE010530.1/10602-10691

D90912.1/112591-112684
AE009624.1/3419-3517

AE006489.1/4483-4560
AL162755.2/146999-146906

AE007319.1/10471-10547
AF482014.1/12-103

AE006305.1/11176-11252
AL139074.2/66646-66744

D90912.1/112591-112684
AE003940.1/637-734

RF00017 SRP_euk_arch
X15364.1/835-1130
AL354512.3/23429-23155
X14661.1/2-308

M32222.1/953-1250
AEO010387.1/4828-4528

AE000940.1/8761-9056
M20837.1/128-397
X65990.1/1-300

U67510.1/7006-7301
ACO002512.1/76041-75744

M22560.1/129-422
799259.1/7742-7997

M22560.1/129-422
X01055.1/1-297

AE010126.1/9583-9877
734533.1/38786-39082

AEO013320.1/6338-6044
7Z30973.1/7231-6935



729104.1/1-303

M21085.1/9-299
X51658.1/237-504
X65991.1/1-302

AP000058.1/196062-195789
AE013320.1/6338-6044
729099.1/1-303

X17239.1/14-300
X51658.1/237-504
X65990.1/1-300

X65991.1/1-302

X17237.1/11-302
799259.1/7742-7997
AC005275.1/105500-105803

X17239.1/14-300
X56981.1/102-383
AB020752.1/35792-36096

X15364.1/835-1130
ACO002512.1/76041-75744
AC005275.1/105500-105804

AF006750.1/731-1010
ABO021174.1/1-299

AF395888.1/197-488
X01055.1/1-297

AF006750.1/731-1010
X01037.1/5-303

M80262.1/106-378
X13914.1/2-302

AE000940.1/8761-9056
AP003253.3/106424-106740

M80262.1/106-378
7Z30973.1/7231-6935

RF00162 S_box
799111.2/15242-15342
AP004603.1/162173-162282
AP004829.1/296359-296264

799123.2/188544-188650
AP004603.1/200738-200630
AF269983.1/571-671

799110.2/47875-47995
AL596170.1/192-86
AE016744.1/15971-16071

AJ000974.1/281-386
AP001518.1/300422-300310
AP004828.1/56121-56010

AE012834.1/3852-3958
AP004600.1/266413-266303
AP004829.1/296359-296264

AP001518.1/300422-300310
AL596170.1/192-86
AE007608.1/12720-12617

799109.2/169069-168952
AL591976.1/242770-242867
AE007614.1/6196-6300

AP004601.1/38307-38208
AL591983.1/96176-96058
AP004828.1/56121-56010

AF027868.1/5245-5154
AP001518.1/137068-136956
AP003193.2/95783-95678

799123.2/188544-188650
AL596163.1/172398-172500
AE015940.1/18048-17945

AP001511.1/149016-149129
AL596172.1/176254-176136

AP001511.1/149016-149129
AL591983.1/96176-96058

AP004596.1/197999-197893
AL596166.1/166748-166844

799123.2/187154-187260
ALB591976.1/242770-242867

AP001511.1/149016-149129
AF269983.1/571-671

AP001518.1/137068-136956
AL596163.1/172398-172500

AP004596.1/197999-197893
AL591980.1/66651-66543

AP004604.1/167020-166901
AL591974.1/109385-109266

799109.2/169069-168952
AF269983.1/571-671

AP004602.1/9845-9739
U36379.1/1-106

RF00230 T-box
AEO017001.1/248233-248002
AE017038.1/120994-120749
AL596169.1/50907-50661

AE017038.1/176480-176232
AE017028.1/41743-41995
AE016948.1/260670-260899

AE017002.1/174913-175177
AE017007.1/181606-181356
AE016948.1/260670-260899

AE017038.1/176480-176232
AL591980.1/26893-26637
AP004826.1/178432-178626

AEO017001.1/248233-248002
AE017028.1/41743-41995
AL596169.1/99976-99747

AE017002.1/188131-187860
AE017002.1/145236-145479
AP003362.3/336155-335957

AE(017002.1/188131-187860
AE(017028.1/179270-179514
AE016948.1/46912-47109

AE017029.1/241355-241630
AL596169.1/7629-7387
AE008470.1/7251-7489

AE(017012.1/106690-106445
AL596169.1/50907-50661
AE007811.1/6864-6593

AEO017028.1/222027-221756
AE(017002.1/145236-145479
AL596169.1/134070-133812

AE017033.1/112246-111996
AE017012.1/289721-289478

AE017033.1/112246-111996
AE017028.1/42023-42282

AE017012.1/106690-106445
AL596169.1/134070-133812

AE017028.1/41743-41995
AL591980.1/61532-61313

AEO017038.1/176480-176232
AE017007.1/181315-181066

AF188935.1/65129-65365
AL596169.1/42587-42347

AE017012.1/276630-276387
AL596169.1/7629-7387

AE017028.1/179270-179514
AL591980.1/61532-61313

AE017007.1/181315-181066
AEO016747.1/155449-155637

AE017012.1/276630-276387
AE017001.1/297992-298250

RF00059 THI
AP005276.1/73231-73124
782044.1/19193-19300
AE016785.1/288775-288889

AP005220.1/194416-194530
AP004594.1/205048-204933
AL139075.2/104313-104417

782044.1/19193-19300
AP004595.1/261047-260946
AE016836.1/195900-195996

AP005217.1/259663-259772
AP004825.1/152111-152011
AEO011282.1/7576-7478

ADO000014.1/41361-41472
AE007789.1/9122-9015
AE012556.1/212138-212040

AE017040.1/281858-281743
AL596164.1/123476-123581
AP005345.1/54245-54147
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AP005280.2/150221-150333
AL646057.1/132458-132357

AE016928.1/199416-199321
AP002998.2/95169-95056

AE017026.1/171648-171751
AEO013167.1/14408-14306

AE017179.1/109208-109098
AE016763.1/55154-55058

D64004.1/130312-130407
AL162753.2/24984-25083

AP004595.1/78821-78718
AL646057.1/132458-132357



AY102616.1/4667-4777
U64312.1/2271-2374
AEO013968.1/546-637

AE014730.1/8718-8610
AE001547.1/1336-1446
AK119882.1/1-98

BX248356.1/234808-234920
AE016999.1/106602-106704
AF279106.2/41735-41832

AE007806.1/8808-8702
AE015414.1/5697-5597
AK120238.1/2075-2184

AE017178.1/187260-187147
AE013127.1/3291-3189

AEO005876.1/3727-3622
AE006165.1/9171-9068

AE001862.1/178389-178274
BX571860.1/177712-177587

AE017257.1/202839-202737
AEO011282.1/7576-7478

RF00003 U1l
Y00131.1/944-1108
X13842.1/1-152
7Z11882.1/353-508

X63783.1/598-755
1.22246.1/5536-5699
X69331.1/1-139

X63783.1/2026-2185
X04994.1/647-780
X15928.1/1-160

X02585.1/923-1086
X69331.1/1-139
X14414.1/152-312

X55773.1/387-534
L.22246.1/5536-5699
7Z11882.1/353-508

X01749.1/448-581
X70869.1/1-161
X15927.1/1-160

X63783.1/1396-1555
AC006665.1/5230-5065
X14414.1/152-312

X01725.1/69-232
X13842.1/1-152
AB023028.1/448-285

AL137798.8/45314-45477
X69334.1/1-160
AB023028.1/448-285

AE003745.3/26197-26359
X70869.1/1-161
X14419.1/178-338

L.22246.1/3195-3357
X06880.1/1-162

AC004546.1/16021-16184
M73768.1/361-517

M59827.1/771-934
X70869.1/1-161

X69332.1/1-142
711883.1/361-516

X01091.1/442-605
X06880.1/1-162

AC006665.1/5230-5065
X69328.1/1-158

X01749.1/448-581
X13841.1/397-552

X75936.1/1034-1194
X69333.1/1-157

X69328.1/1-158
X14417.1/177-340

X75936.1/1034-1194
X69331.1/1-139

RF00004 U2
AY007785.1/849-1041
AF053589.1/90-279
X15930.1/1-195

X63786.1/549-738
M12856.1/361-551
M72888.1/1-195

X63784.1/412-602
K02457.1/1-187
X51375.1/389-580

AF326335.1/1-142
X04244.1/85-276
X51375.1/389-580

X63786.1/1152-1341
X04256.1/85-275
737972.1/1-174

AY007788.1/537-679
X04241.1/85-276
X06473.1/389-584

M23361.1/1-186
X51379.1/254-444
737973.1/1-173

X63786.1/549-738
M12856.1/361-551
X56322.1/513-709

X56457.1/243-390
AF287992.1/4918-5108
Z37972.1/1-174

X56456.1/243-390
X00093.1/360-550
X06475.1/589-783

AY205287.1/148-4
X51378.1/335-525

X04241.1/85-276
X51372.1/210-400

M58665.1/571-712
X54113.1/230-415

M14625.1/332-488
X54113.1/230-415

AY205287.1/148-4
X51379.1/254-444

X55772.1/223-412
L25918.1/1-181

X00093.1/360-550
S72337.1/1-193

X04244.1/85-276
1.22247.1/6321-6513

M23361.1/1-186
X51374.1/284-474

X55772.1/223-412
X71483.1/1-191

RF00436 UnaL2
AC145764.2/2295-2245
AL953899.7/42720-42666
BX569783.4/61302-61355

AC145510.2/144559-144615
BX664748.7/7629-7575
BX649566.3/34014-33960

AB029447.1/1210-1265
BX248111.7/42817-42871
BX005301.9/81584-81530

AC145764.2/2295-2245
AL954371.6/55095-55041
AC139110.4/26593-26647

AB001858.1/305-359
AL935128.13/73646-73700

AC144487.1/66140-66085
AL928824.13/119883-119934
AL935128.13/109621-109676

AC145764.2/6538-6588
BX569783.4/77351-77301
AL928834.15/4130-4184

AC145764.2/53928-53984
BX005334.9/36002-35945
AL928834.15/4130-4184

AC146543.2/7696-7640
BX537162.5/125134-125080
AL935128.13/109621-109676

AL591676.10/16205-16259
BX664748.7/7629-7575

AL732411.14/41691-41637
BX088699.4/105142-105196

AL929391.10/13836-13883
AL928834.15/61498-61552

BX890619.6/6528-6474
BX569783.4/77351-77301

AC145510.2/122254-122304
BX005334.9/52316-52370

AL807818.14/154315-154373
AL592062.11/88031-88081

AL954371.6/110643-110589
AL928701.7/182087-182139

AL928701.7/176380-176432
BX004821.5/36020-35966

AL954371.6/99505-99453
BX004821.5/46607-46553

AB001842.1/105-159
AL928701.7/19905-19959

AL928834.15/187161-187215
BX088699.4/24632-24686



BX293564.5/115366-115419

AF397467.1/9309-9363

RF00181 sno_14q-I_II
AC121784.2/51879-51950
ABO014878.1/1781-1860
AL132709.5/182043-181969

AC121784.2/82332-82403
AL132709.5/136822-136751
AL132709.5/145122-145048

AC121784.2/82332-82403
AL132709.5/135542-135471
AL132709.5/156819-156747

AC121784.2/46958-47030
AB014883.1/1284-1367
AL132709.5/133438-133369

AC121784.2/75479-75547
ABO076245.1/105-176
AL132709.5/128363-128289

AC121784.2/52659-52730
AL132709.5/136822-136751
AL132709.5/167225-167151

AC121784.2/48567-48638
AL132709.5/129680-129609
AL132709.5/148004-147935

AB014883.1/1284-1367
AL132709.5/129680-129609
AL132709.5/128363-128289

AC121784.2/48567-48638
AL132709.5/182043-181969
AL132709.5/169743-169666

AC121784.2/46958-47030
AC121784.2/77918-77991
AL132709.5/169743-169666

AC121784.2/69447-69528
AL132709.5/149496-149422

AC121784.2/52659-52730
AL132709.5/145774-145703

AL132709.5/175950-175879
AL132709.5/180473-180397

AC121784.2/77918-77991
AL132709.5/145122-145048

AC121784.2/51879-51950
AL132709.5/175950-175879

ABO014878.1/886-973
AL132709.5/129680-129609

AB014879.1/10-96
AL132709.5/178148-178075

AL132709.5/136822-136751
AL132709.5/142597-142509

AB014878.1/886-973
AL132709.5/158545-158469

AC121784.2/78528-78602
AL132709.5/134553-134482

RF00005 tRNA
M26977.1/379-453
X14822.1/1-73
AJ243756.1/1-71

X16748.1/1-73
JO1373.1/73-144
X14848.1/2654-2728

J01390.1/6861-6932
J04815.1/3159-3231
X12857.1/421-494

U18089.1/221-293
X52392.1/5025-5096
AJ400848.1/29803-29731

M16450.1/142-214
X14848.1/3824-3891
U25144.1/1062-991

AF105125.1/104-176
K02456.1/141-212
X67736.1/4837-4923

AF041468.1/43811-43739
X55342.1/30-101
ABO017063.1/58819-58900

J05395.1/2325-2252
M20972.1/1-72
M16863.1/21-94

J01390.1/6449-6519
X52392.1/6573-6508
X13558.1/186-115

J01390.1/6449-6519
J01435.1/6776-6846
X07377.1/52-124

Z11874.1/40212-40285
V00654.1/12038-12108

J01390.1/12028-12098
M19493.1/263-336

K00228.1/1-82
M68929.1/151018-150946

X66594.1/101-182
J01435.1/6776-6846

X02173.1/54-135
AC067849.6/4771-4840

711880.1/281-353
X17318.1/109-39

X05226.1/35-116
X03602.1/660-731

AC009395.7/99012-98941
X00360.1/1-73

M10217.1/9797-9871
AL590385.23/26129-26058

AF200843.1/3014-3079
AF134583.1/1599-1666
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Appendix C

Test Dataset from Hammerhead

Ribozyme Family

The Rfam accession and ID of the multiple alignments used in Figures 3.4 and
5.4 are listed below.

RF00008 Hammerhead_3

AJ295015.1/58-1
AJ536620.1/206-152
AJ005303.1/56-3
AJ241841.1/57-3
AJ295018.1/58-1
AJ295015.1/58-1
AF170504.1/284-337
AJ005303.1/56-3
AJ536615.1/1-44
AJ536614.1/206-152
AJ536612.1/206-152
AJ536620.1/206-152
AJ536620.1/206-152
AJ536617.1/1-40
AJ536619.1/206-152
AJ241840.1/56-3
AJ550911.1/56-3
AJ005305.1/56-3
AJ295015.1/58-1
AJ536620.1/1-40
AJ536614.1/206-152
AJ295015.1/58-1
AJ295018.1/58-1
AJ005302.1/281-334
AJ536620.1/206-152
AJ536620.1/1-40
AJ247121.1/133-53
AF170504.1/284-337
AJ536620.1/206-152
AJ247113.1/134-53
AJ536619.1/206-152
AJ295015.1/58-1
AJ536614.1/206-152
AJ005321.1/281-333
AJ536619.1/206-152

AJ247122.1/132-52
AJ241841.1/57-3
AJ241838.1/56-3
AF170516.1/283-335
AJ536620.1/206-152
AF339740.1/56-3
AJ241833.1/282-334
AJ550909.1/56-3
AJ536612.1/206-152
Y14700.1/133-53
AJ005298.1/56-3
AF170520.1/282-335
AJ550901.1/282-334
AJ536619.1/206-152
AF170503.1/55-3
AF170509.1/56-3
AJ247113.1/134-53
AJ550908.1/281-334
AF170519.1/55-3
AJ241840.1/56-3
AJ247123.1/132-52
AF170503.1/280-333
AJ550912.1/56-3
AJ005319.1/56-3
AF170503.1/55-3
AJ005310.1/56-3
AJ005322.1/281-334
AJ005303.1/56-3
AJ005298.1/56-3
AJ550903.1/281-333
AF170499.1/56-3
AJ536619.1/206-152
AJ005298.1/56-3
AJ550908.1/281-334
AJ241847.1/281-334
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AJ550911.1/282-335
AJ005322.1/56-3
AJ550907.1/281-333
AJ005319.1/56-3
AJ241843.1/56-3
AJ550909.1/56-3
AF170519.1/55-3
AJ550909.1/282-333
AF170503.1/55-3
AF170516.1/283-335
AJ241845.1/282-335
AJ550900.1/56-3
AJ241847.1/281-334
AJ247122.1/132-52
AJ005318.1/56-3
AF170499.1/56-3
AJ550906.1/56-3
AJ550898.1/282-335
AJ550907.1/281-333
M33000.1/55-110
M83545.1/282-335
AJ005302.1/281-334
AJ005302.1/281-334
AJ005294.1/282-334
AJ550909.1/282-333
AJ247121.1/133-53
Y12833.1/339-285
AJ005302.1/281-334
AJ241843.1/56-3
AJ550899.1/56-3
AJ247123.1/132-52
AJ241828.1/56-3
AJ241847.1/281-334
AF339739.1/56-3
AJ005322.1/281-334

M33000.1/55-110
AJ241823.1/282-335
M33001.1/56-111
Y12833.1/339-285
J02439.1/42-95
AJ241831.1/281-334
J02386.1/42-95
J02386.1/42-95
AJ005299.1/282-335
Y12833.1/339-285
AJ247116.1/133-53
Y12833.1/339-285
AF170519.1/55-3
AJ005294.1/282-334
AJ550898.1/282-335
M33001.1/56-111
D00685.1/1-46
M33001.1/56-111
AJ005294.1/282-334
M17439.1/1-48
M33000.1/55-110
AJ550909.1/282-333
AJ005322.1/281-334
J02386.1/42-95
AJ005314.1/281-334
AJ241831.1/281-334
M33001.1/56-111
J02439.1/42-95
AJ550909.1/282-333
M33000.1/55-110
J02386.1/42-95
Y14700.1/133-53
AJ550909.1/282-333
J02386.1/42-95
J02439.1/42-95



AJ536614.1/206-152
AF170503.1/280-333
AJ550908.1/281-334
AJ295018.1/58-1
AJ536614.1/206-152
AJ536617.1/1-40
AJ536619.1/206-152
AJ550901.1/282-334
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